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Abstract

The transport capacity of Internet-like communication networks and hence
their efficiency may be improved by a factor of 5–10 through the use of highly
optimized routing metrics, as demonstrated previously. Numerical determina-
tion of such routing metrics can be computationally demanding to an extent,
that prohibits both investigation of and application to very large networks. In
an attempt to find a numerically less expensive way of constructing a metric
with a comparable performance increase, we propose a local, self-organizing
iteration scheme and find two surprisingly simple and efficient metrics. The
new metrics have negligible computational cost and result in an approximately
5-fold performance increase, providing distinguished competitiveness with the
computationally costly counterparts. They are applicable to very large net-
works and easy to implement in today’s Internet routing protocol on the AS-
level.

Introduction

Today’s society relies heavily on communication networks, exemplified by their most
prominent specimen, the Internet. It provides the substrate for a wealth of activities,
ranging from email communication to on-demand video broadcasting, to name but
a few. The ubiquity of networked systems and their far reaching implications for
everyday life in our modern world have sparked a broad interest of science (Watts
and Strogatz, 1998; Albert et al., 1999; Newman, 2001; Barabási, 2009). The quest
for optimized utilization of the network connections to enhance communication flow
within networks is one of obvious significance (Tadić et al., 2007) and has particularly
attracted the attention of the physics community (Guimerà et al., 2002; Braunstein
et al., 2003; Zhao et al., 2005; Danila et al., 2006; Yan et al., 2006; Scholz et al.,
2008; Yang et al., 2009). Like many other networks found in various fields of science,
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from biology (Yook et al., 2004) to social sciences (Granovetter, 2003) and commu-
nication networks in general, the Internet exhibits a complex structure (Faloutsos
et al., 1999), far from the homogeneous configuration that is described by classical
random graphs (Erdös and Rényi, 1960). A common feature of these networks is
the small-world characteristic (Milgram, 1967; Watts and Strogatz, 1998), in many
cases accompanied by a scale-free degree distribution (Faloutsos et al., 1999; Albert
et al., 1999; Newman, 2001; Ebel et al., 2002). In the past decade, tremendous effort
has been put forth to explain the emergence of these complex networked systems
and to understand their dynamics (Barabási, 2009).

1 Traffic model and routing metrics

To estimate the performance of communication networks consider a network defined
by the graph G(V , E) with N = |V| nodes andM = |E| links. In the considered traffic
model data packets are created at a rate µ at every node, each with a random destina-
tion. As today’s Internet routers operate in full duplex mode we assume bandwidth
limits on the links, but unlimited processing capacity at the nodes. This corresponds
to M/M/k queuing in the standard queuing theory nomenclature (Kendall, 1953). For
simplicity and because these quantities are notoriously difficult to determine for the
real Internet (Krioukov et al., 2007), we assume uniform bandwidths on the links
and, without loss of generality, set these to 1 for both directions, i.e. each link eij
has the capacity to carry 1 packet per time step from node i to j and another one
from j to i. Each directed link e has to carry a certain amount of traffic load Le.
The link eBN = arg maxe Le which carries the highest load is the bottleneck of the
network and limits its transport capacity Te2e. In analogy to the case of limited node
bandwidth and unlimited link bandwidth (Guimerà et al., 2002; Zhao et al., 2005),
we get the total end-to-end transport capacity

Te2e = µcritN =
N(N − 1)

LeBN

(1.1)

of the network (Scholz et al., 2008). The critical rate µcrit is the packet generation
rate at which the bottleneck link is utilized exactly at its bandwidth and all other
links are utilized below their bandwidth capacity.

In communication networks employing deterministic routing, data packets follow
the shortest route with respect to a routing metric w, that assigns a weight we to
the link e ∈ E(G). These weights determine the length of a path P , given by the
sum of the weights on its links:

length(P , w) :=
∑

e∈E(P)
we . (1.2)

From the set paths(i, f) of all paths from source i to target f , the shortest paths
according to the metric w are

spath(i, f ;w) := arg min
P∈paths(i,f)

length(P , w) . (1.3)
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Should there be multiple shortest paths, one of these paths is chosen with uniform
probability to route a packet.

For the case of shortest path routing according to metric w the load of link e is
given by:

Le :=
∑

i,j∈V

|{P ∈ spath(i, j;w) : e ∈ P}|
|spath(i, j;w)| . (1.4)

The terms in the sum correspond to the probability, for a packet with source i and
destination j, to be routed over e. For the case of unweighted links, we = 1 for
all e ∈ E(G), the resulting load Le is known as the so called betweenness centrality
(Freeman, 1977; Brandes, 2001).

Compared to unweighted shortest path routing, which is the de facto standard in
current routing on the Internet’s AS level, previous work (Fukś and Lawniczak, 1999;
Yan et al., 2006; Krause et al., 2006; Schäfer et al., 2006; Danila et al., 2006; Scholz
et al., 2008) has found optimized metrics that are able to increase the transport
capacity Te2e by a factor of 5–10, depending on the underlying network structure.
The gist of the most successful metrics, the extremal metric (Danila et al., 2006)
and the hybrid metric (Scholz et al., 2008), is to find the highest loaded link of the
network, the bottleneck eBN, and to increase its weight, weBN

, either additively or
multiplicatively. As the optimization applies only to the maximally loaded link, it is
a form of extremal optimization (Danila et al., 2006). Because the weights influence
the shortest paths, which in turn determine the load and hence the bottleneck, the
procedure has to be iterated. As successful as the application of extremal optimiza-
tion is, it is also a weak point of the metrics. In every iteration step, only a single
weight is adjusted, which necessitates a relatively large number of steps, compared
to for example the smoothing metric (Schäfer et al., 2006), which updates all link
weights in each iteration. The number of iteration steps makes the extremal and
the hybrid metric numerically hard to obtain, requiring numerical calculations that
scale with the number of nodes N approximately like O (N2 logN) (Scholz et al.,
2008) or worse O (N3 logN) (Danila et al., 2006). Here we use the hybrid metric
as a benchmark for new, computationally less demanding metrics. In an attempt to
find numerically less expensive metrics with similar performance increases, we inves-
tigate a local, self-organizing weight assignment and find a simple and surprisingly
efficient weight assignment.

2 Self-organizing weights

Looking for a way to reduce the number of needed iterations, we introduce a rule,
that every node can apply by itself, in concert with its neighbors, using information
as local as possible, e.g. it must not be necessary to determine a global maximum
of the load. Additionally, we demand that the weights are conserved by the local
rule, i.e. weights shall not be created or destroyed, but only moved from one link to
another. For a stepwise update of the link weights w we propose the following rule,
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which we refer to as the self-organizing (SO) metric:

wt+1
m =

1

2

∑

n∈L(m)

(
wtm
`m

+
wtn
`n

)

+
ε

2

∑

n∈L(m)

(
wtm
`m

+
wtn
`n

)
sign(Ltm − Ltn) , (2.1)

where L(m) is the link neighborhood of link m, `m is its link degree, and sign(x) is
the signum function.1 The weight of link m at the iteration time t is given by wtm,
and Ltm denotes the load of link m subject to the weights at time t. The effect of the
first sum in Equation (2.1) is to average the weights in the link neighborhood, while
the second sum results in a shift of weights from links with a relatively low load to
neighbors that are relatively high loaded. The influence of the second sum in relation
to the first is controlled by the parameter ε, which may take values 0 ≤ ε < 1. Weight
conservation is fulfilled by the SO metric, as can easily be verified by calculating∑

m∈E w
t+1
m . The contributions of the first sum in Equation (2.1) sums up to

∑
mw

t
m,

and the second sum vanishes, as for every instance of the signum function, another
one with the negative argument exists. From this

∑
m∈E w

t+1
m =

∑
m∈E w

t
m follows.

As a change of the weights results in different packet routing, the link loads Le have
to be recalculated after the weight update.

Starting from initial weights set to 1 for every link, Figure 1 shows the devel-
opment of the end to end transport capacity Te2e of an AS-level Internet snapshot
(CAIDA Macroscopic Topology Project Team, 2000–2006) during the iteration of
the update rule. After a sufficient number of iteration steps, the network’s perfor-
mance becomes stationary around a mean value. The transport capacity in this
stationary state depends on the parameter ε, with the optimal performance of the
weight update (2.1) achieved by ε ≈ 0.35. That said, this stationary state optimum
by no means guarantees an improvement of Te2e relative to the hop metric, and in
fact, for the concrete network realization shown in Figure 1 it does not. However,
Figure 1 highlights a peculiarity for smaller ε-values, especially for ε = 0. Here Te2e
shows a pronounced peak around the 2nd to 3rd step. Focusing on this peculiar case,
we further investigate the iteration of Equation (2.1) for ε = 0.

1The signum function is defined as sign(x) = −1 for x < 0, sign(x) = 0 for x = 0, and
sign(x) = 1 for x > 0.
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Figure 1: Evolution of the transport capacity Te2e during iteration of the SO metric (2.1)
with ε = 0 and ε = 0.35. The dotted horizontal lines indicate the asymptotic Te2e in
the steady state of the iteration, determined by averaging the values from step 80 to
100. Dashed horizontal lines show Te2e achieved by the three static weight assignments
hop metric, node degree metric (Yan et al., 2006), and, in anticipation of our results, the
log(kikj) metric. The network topology used here is an AS-scan from June 2006, with 8111
nodes and 22370 links (CAIDA Macroscopic Topology Project Team, 2000–2006).

3 The iteration’s asymptotic state

For the case of ε = 0 we can determine the resulting link weights in the limit t→∞
by interpreting Equation (2.1) as a difference equation, and introducing ∆t, which
had been implicitly set to 1 before. We get

wt+1
m − wtm

∆t
= −1

2
wtm +

1

2

∑

n∈L(m)

wtn
`n

. (3.1)

Using matrix notation and going to infinitesimal time steps, this can be written as

∂w(t)

∂t
= −1

2

(
I − AD−1

)
w(t) , (3.2)

where I is the identity matrix, A is the adjacency matrix of the line graph Ĝ(G) of
G, and D is the diagonal matrix of the link degrees `m. Abbreviating I−AD−1 = Λ̃
the differential equation is solved by

w(t) = exp
(
−1

2
Λ̃t
)
w(0) . (3.3)

Using the eigendecomposition Λ̃ = Ṽ λṼ −1, this can be written as:

w(t) = Ṽ exp
(
−1

2
λt
)
Ṽ −1w(0) , (3.4)
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where λ is the diagonal matrix of eigenvalues λi of Λ̃, and Ṽ is the matrix of corre-
sponding eigenvectors ṽi. As, through the similarity transform D

1
2 , the linear oper-

ator Λ̃ is similar to the normalized graph Laplacian (Chung, 1997)

Λ = I −D− 1
2AD−

1
2 , (3.5)

the eigenvalues of Λ̃ and Λ are identical and for connected graphs the eigenvalues λi
of Λ̃ are all positive, except λ0 = 0. Hence, in the limit t → ∞ all eigenvectors are
damped out by the matrix exponential in Equation (3.4), except ṽ0 corresponding
to λ0. Using the similarity transform D

1
2 , ṽ0 can be calculated from v0, the zeroth

eigenvector of the normalized Laplacian:

ṽ0 = D
1
2v0 . (3.6)

As the normalized Laplacian’s zeroth eigenvector is given by v0 = D
1
21, see (Chung,

1997), for ε = 0 the link weight

lim
t→∞

wtm ∼ `m (3.7)

becomes proportional to the link degree independent of the initial weight configura-
tions.

4 The iteration’s peak

Using the weight distribution p(wij|kikj) we analyze the weight assignment that
leads to the peak in the performance measured by Te2e around the 2nd to 3rd iter-
ation step of Equation (2.1) with ε = 0. The weight distribution accounts for the
probability of a link eij to be assigned weight wij, given the product kikj of the
adjacent nodes’ degrees. The weight distribution directly at the peak is shown in
Figure 2a. It exhibits a well defined shape, that shows a clear relation of the weight
and the product of node degrees

wij(ki, kj) ∼ log(kikj) , (4.1)

shown by a least squares fit in Figure 2a. Another recently discussed (Yang et al.,
2009) functional form for link weights is

wij(ki, kj) ∼ (kikj)
θ , (4.2)

which approximates the weight distribution at the SO-metric’s peak for θ ≈ 0.14
almost as good as log(kikj). The sum of squared deviations of fitting Nl log(kikj)
to the weight distribution amounts to 80% of fitting Np(kikj)

θ. For comparison, the
asymptotic state of the iteration with ε = 0.35 is shown in Figure 2b. Unlike the case
for ε = 0, it exhibits no apparent structure and is therefore not easily approximated
by a simple function of the degrees.
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(a) Weight distribution at the ε = 0 peak.

(b) Asymptotic weight distribution for ε = 0.35

Figure 2: Weight distributions produced by the SO metric for (a) ε = 0 at the performance
peak during iteration, and (b) for the asymptotic state with ε = 0.35. The topology is the
same as in Figure 1.
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The surprisingly simple relations between link weight and node degrees found in
Figure 2a urge to pragmatically give the weight assignments

wij = log(kikj) , (4.3)

which we refer to as the log(kikj)-metric, and the (kikj)
0.14-metric

wij = (kikj)
θ ; θ = 0.14 (4.4)

a try.
Figure 3 shows the transport capacity Te2e of these metrics compared to the hop

metric, the smoothing metric (Schäfer et al., 2006) adapted to link weights (Scholz
et al., 2008), the (kikj)

0.4-metric as proposed to enhance the resilience to cascading
failures of nodes (Yang et al., 2009), and most notably the hybrid metric (Scholz
et al., 2008). The hybrid metric continues to be the best of the tested metrics, but

2000 2001 2002 2003 2004 2005 2006 2007
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T
e2

e

hybrid
log(kikj)

(kikj )
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(kikj )
0.4
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Figure 3: Comparison of the transport capacity Te2e achieved by the log(kikj) metric and
other metrics on monthly Internet snapshots by the CAIDA project. The log(kikj)-metric
and the (kikj)0.14-metric are compared to the hop, smoothing (Scholz et al., 2008), (kikj)0.4

(Yang et al., 2009), and hybrid metric (Scholz et al., 2008). The node degree metric and
the link degree metric (asymptotic state of the SO metric with ε = 0, see Equation (3.7))
generally perform similar to the hop metric or worse, but are left out, to avoid cluttering
the figure.

the performances of the log(kikj)-metric and the (kikj)
0.14-metric are of the same

order of magnitude. Relative to the hop metric both result in gain ratios g ≈ 5 which
compare very well with g ≈ 7 for the hybrid metric. The (kikj)

0.4-metric, determined
as optimal with respect to cascading node failures and transport capacity in the case
of limited node capabilities (Yang et al., 2009), can not guarantee an increase of the
transport capacity with respect to limited link capabilities investigated here.

The huge performance increase achieved by the two metrics determined from
Figure 2a is especially impressive when comparing the computational complexity to
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the computational complexity of the hybrid metric. As given by Scholz et al. (2008),
the computational complexity of iterating the hybrid metric is O (N2 logN). In
contrast the log(kikj)-metric and (kikj)

0.14-metric do not need to be iterated, instead
they merely determine the degrees of nodes and calculate the logarithm for every
node, hence the complexity is O (N). Assuming the calculation is done by every
node itself, it is trivial to parallelize, in which case the complexity reduces to O (1).

5 Sensitivity to topology changes

To investigate whether the success of the log(kikj) metric is confined to the special
network structure of the AS-level Internet we gradually perturb the structure of the
given network. The perturbations are done in two ways, to which we will refer as
randomization and rewiring.

As randomization we denote the crosswise exchange of links, where two random
links eab and ecd between distinct nodes a, b, c, d are removed and the links ead and
ecb are added instead, assuring that these links have not been present before. This
modification of the network structure conserves the degree of all involved nodes
and therefore the overall degree distribution as well. We quantify the progression of
randomization, by the ratio of exchanged links Mxchg to total number of links M in
the network. For sufficient progression of randomization Mxchg � M , the resulting
network is equivalent to a realization of the configuration model (Newman, 2003)
with the degree distribution of the unperturbed network. The effect of randomization
on the Te2e performance is shown in Figure 4a. The node degree metric and the
log(kikj) metric both profit from the shortcuts gradually added by the randomization
process. The transport capacity of the hop metric on the other hand is essentially
unaffected. Throughout the whole progression of randomization, the log(kikj) metric
maintains an increase of transport capacity of a factor of 5 or more compared to the
hop metric.

We refer to the second structure perturbation scheme as rewiring. Here a ran-
dom link is deleted, followed by the addition of a link between two random, not
yet connected nodes. This variant of structure perturbation has for example been
employed in (Watts and Strogatz, 1998) to make the transition from regular grids
to random graphs. Like in the case of randomization, we quantify the progression of
rewiring by the fraction of rewired links to the total number of links in the network.
For sufficiently large progression of rewiring M rwr � M , the network structure
approaches a Poissonean graph, with an average degree 〈k〉 and size N given by
the original graph. The effect of rewiring on Te2e is shown in Figure 4b. Again the
transport capacity achieved by the degree and log(kikj) metric is continuously in-
creased by the introduced shortcuts. The hop metric shows a slight decrease of Te2e
for a rewiring progression up to approximately M rwr ' 2M , with a steep ascent
for larger rewiring progressions. Figure 5 offers an explanation for this effect, as it
shows how the scale-free property of the last remaining high degree nodes, so called
hubs, is removed by the rewiring procedure around M rwr ≈ 2M . The node degree
and log(kikj) metric do not suffer from overloaded remaining hubs, as both metrics
explicitly avoid nodes with high degree. Once the rewired network structure is in
the regime of random graphs, the effect of the different metrics vanishes, consistent
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Figure 4: Change of Te2e based on the hop, node degree, and log(kikj) metric under
(a) randomization and (b) rewiring.
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with prior results (Scholz et al., 2008).
The connection of optimal transport efficiency to resilience to cascading failures,

as implicitly used by previous studies (Schäfer et al., 2006; Scholz et al., 2008) and
explicitly stated by Yang et al. (2009), suggests to employ the log(kikj)-metric in
the context of protection against cascading failures (Motter and Lai, 2002) in future
studies. Here the numerical simplicity of the log(kikj)-metric is of extraordinary
importance, as the change of network topology during the cascade steps demands a
timely re-determination of the weights.
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co
u
n
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Mrwr/M=0.25

Mrwr/M=2
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Figure 5: Change of degree distribution p(k) under rewiring.

6 Conclusion

The investigation of a self-organized, local link weight assignment rule has lead to
the discovery of the simple, but surprisingly efficient log(kikj)-metric and (kikj)

0.14-
metric. The enhancement of transport capacity achieved through application of the
log(kikj) metric proves to be robust with respect to the topology changes in the
sense, that in general it results in an approximately 5-fold performance increase
relative to the hop metric. Compared to previously proposed metrics with compa-
rable efficiency, the advantage of both newly found metrics is the simplicity with
respect to numerical complexity. While other efficient metrics demand considerable
computational resources, the log(kikj)-metric and (kikj)

0.14-metric are computable
in no time. It is thus straightforward to implement these metrics, for example in the
Internets routing protocol on the AS-level.
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