
CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

RESEARCH REPORT
www.csgb.dk

2011
Kristjana Yr Jonsdottir, Anders Rønn-Nielsen, Kim Mouridsen
and Eva B. Vedel Jensen

Lévy Based Modelling in Brain Imaging

No. 02, April 2011



Lévy Based Modelling in Brain Imaging

Kristjana Yr Jonsdottir1,2, Anders Rønn-Nielsen3, Kim Mouridsen1

and Eva B. Vedel Jensen2,4

1Center of Functionally Integrative Neuroscience, Aarhus University
2Department of Mathematical Sciences, Aarhus University

3Department of Mathematical Sciences, University of Copenhagen
4Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University

Abstract

Traditional methods of analysis in brain imaging based on Gaussian random
field theory may leave small, but significant changes in the signal level unde-
tected, because the assumption of Gaussianity is not fulfilled. In group compar-
isons, the number of subjects in each group is usually small so the alternative
strategy of using a non-parametric test may not be appropriate either because
of low power. We propose to use a flexible, yet tractable model for a random
field, based on kernel smoothing of a so-called Lévy basis. The resulting field
may be Gaussian but there are many other possibilities, e.g. random fields
based on Gamma, inverse Gaussian and normal inverse Gaussian (NIG) Lévy
bases. We show that it is easy to estimate the parameters of the model and
accordingly to assess by simulation the quantiles of a test statistic. A finding
of independent interest is the explicit form of the kernel function that induces
a covariance function belonging to the Matérn family.

Keywords: Covariance, cumulant, Gaussian random field, Matérn covariance
function, non-Gaussian random field, normal inverse Gaussian Lévy basis

1 Introduction

Neuroimaging studies typically aim to detect localized changes in brain structure,
physiology, or neuronal activity attributable to disease and/or therapeutic interven-
tion. Positron emission tomography (PET) is the current gold standard for imaging
key physiological markers such as cerebral blood flow and blood volume, but such
measures can also be obtained without the use of radioactive tracers using MRI.
Additionally MRI can produce high resolution images of brain anatomy. Further,
MRI is used intensively in the study of human brain function (fMRI) where serial
images are acquired while subjects perform specific mental tasks.

To enable detection of regional changes, the measure of interest is recorded in
each volume element (voxel) of the brain. In group comparisons, such a field of
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measurements is obtained for each subject belonging to a disease/treatment group
and a control group. Typically, a t−test of the hypothesis of no difference between the
two groups is performed at each voxel, resulting in a field of thousands of correlated
t−statistics.

To control the false positive rate, various methods to evaluate the field of test
statistics have been proposed. A very useful review of these methods can be found
in Nichols and Hayasaka (2003). Apart from the Bonferroni procedure that usually
disregards the dependence of the test statistics, methods based on random field
theory (Worsley 1994, Worsley et al. 1992, Worsley et al. 1996) are very popular.
Under the assumption that the random field is Gaussian or Gaussian derived, the
P−value of the maximum of the field can be approximated by the expected Euler
characteristic of the excursion set. An alternative to the maximum is to consider
under a Gaussian assumption the size of the largest connected component of the
excursion set (Cao 1999). It is, however, wellknown that the Gaussian assumption
of the random field may be too restrictive, cf. Salmond et al. (2002), Viviani et al.
(2007) and references therein. Furthermore, it has been shown that the geometry
of excursion sets is considerably more complicated for non-Gaussian random fields
than for Gaussian random fields (Adler et al. 2010a,b).

Unfortunately, there are at the moment no methods of evaluating the robustness
of this analysis against the departures from Gaussianity seen in a concrete data
set. In group comparisons, an alternative is to use a permutation test (Nichols and
Holmes 2001) but this test may have low power in the cases where the number of
subjects in each group is small, as is typical. This is exactly the situation where
departures from Gaussianity may affect most severely the null distribution of the
field of test statistics.

The present paper takes up this problem. We propose a flexible, yet tractable
model for a random field, based on kernel smoothing of a Lévy basis, an indepen-
dently scattered, infinitely divisible random measure. (The short terminology of a
Lévy basis has been introduced in Barndorff-Nielsen and Schmiegel (2004), see also
Wolpert (2001)). This type of model has earlier been used with success in modelling
of turbulence (Barndorff-Nielsen and Schmiegel 2004), Cox point processes (Hell-
mund et al. 2008) and growth (Jónsdóttir et al. 2008). We derive the kernel function
that induces the flexible Matérn covariance function (Guttorp and Gneiting 2006).
Earlier, specific covariance functions such as the exponential and Gaussian covari-
ance functions have been considered in Bowman (2007) and Spence et al. (2007).
The Lévy basis may be Gaussian but there are many other possibilities, e.g. Gamma,
inverse Gaussian and normal inverse Gaussian to name a few. We show that it is
easy to estimate the parameters of the model and accordingly to assess by simulation
the quantiles of the distribution of the maximum of the field of test statistics.

Furthermore, we expect that the proposed extended random field model will have
independent interest in functional neuroimaging. Gaussian random fields only focus
on the mean, variance and covariance. Interesting changes due to disease or therapy
that imply that the distribution of the measurement has more heavy tails or is more
skewed can only be modelled if one goes beyond Gaussianity.

The present paper is organized as follows. In Section 2, we give a short introduc-
tion to Gaussian random fields and the notation used for covariances and cumulants,
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while Section 3 gives a number of examples of kernel functions and their induced
covariance functions. In particular, the kernel function, inducing a covariance func-
tion belonging to the Matérn family, is given in Section 3. In Section 4, we give an
example of brain imaging data that cannot be described satisfactory by a Gaussian
random field. This motivates us to consider Lévy based random fields and their sta-
tistical inference in Sections 5 and 6. The data set is reanalyzed, using a model based
on the normal inverse Gaussian distribution in Section 7 and consequences for brain
imaging are discussed in Section 8. Our findings are put into further perspective in
Section 9. The derivation of the kernel function that induces the Matérn covariance
function is deferred to the Appendix.

2 Gaussian random fields, covariances and
cumulants

Let xv be the observation at the site (pixel or voxel) with coordinate v ∈ V , where
V is a bounded subset of Rd, d = 2 or 3.

In case V ⊆ Zd, a simple example of a Gaussian random field is given by the
following equation

Xv =
∑

u∈Zd

k(v, u)Zu, (2.1)

where k is a kernel function and the Zus are independent and identically distributed
Gaussian random variables. This type of model is very similar to moving average
models for time series (Gaetan and Guyon 2010, Section 1.7.1, Wolpert 2001).

Let Z be a random variable with the common distribution of the Zus. Under the
model (2.1), the covariances take the form

Cov(Xv1 , Xv2) = Var(Z)
∑

u∈Zd

k(v1, u)k(v2, u), (2.2)

while the cumulants of the random variables Xv can be expressed as

κn(Xv) = κn(Z)
∑

u∈Zd

k(v, u)n, n = 1, 2, . . . , (2.3)

since the Xvs are linear combinations of independent random variables.
The model (2.1) may be formulated continuously as

Xv =

∫

Rd

k(v, u)Z( du), (2.4)

where Z is an independently scattered, stationary Gaussian random measure (Gae-
tan and Guyon 2010, Section 1.5.1). It turns out that under mild regularity condi-
tions any Gaussian random field can be described in this fashion, cf. e.g. Hellmund
et al. (2008, Proposition 6).

Suppose that
Z( du) ∼ N(µ du, τ 2 du),
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and let Z ′ ∼ N(µ, τ 2). Then, under the continuous formulation (2.4), (2.2) takes the
form

Cov(Xv1 , Xv2) = Var(Z ′)

∫

Rd

k(v1, u)k(v2, u) du. (2.5)

Furthermore, (2.3) becomes

κn(Xv) = κn(Z ′)

∫

Rd

k(v, u)n du, n = 1, 2, . . . . (2.6)

Covariances and cumulants of Xv can thus directly be expressed in terms of the
cumulants of Z ′, if the relevant integrals of the kernel function can be calculated
explicitly.

In the remaining part of the paper, we will assume that k(u, v) = k(u− v), say,
and that ∫

Rd

k(u) du = 1.

If we let
K(v) =

∫

Rd

k(u)k(v + u) du,

then
Cov(Xv1 , Xv2) = Var(Z ′)K(v1 − v2).

If K(v) = K(‖v‖), say, the covariance

Cov(Xv1 , Xv2) = C(‖v1 − v2‖) = Var(Z ′)K(‖v1 − v2‖)

depends only on the distance between sites. The correlation function takes the form

ρ(h) = K(h)/K(0), h ≥ 0.

The variogram γ, defined as E(Xv1 − Xv2)
2, depends in this case also only on the

distance between sites and can be expressed as

γ(h) = 2 Var(Z ′)(K(0)−K(h)).

A normalized version of the variogram is

γ̄(h) = γ(h)/Var(Xv) = 2(1− ρ(h)).

3 Covariance models

In this section, we give examples of kernel functions k and induced covariance struc-
tures determined by K. For further details, see Cressie (1993) and Gaetan and
Guyon (2010, Section 1.5.1). We also give the explicit form of

∫
Rd k(v, u)n du for the

different kernels when possible. The kernel function that induces the general Matérn
covariance model, see Example 3 below, is to the best of our knowledge not available
in the literature.
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Example 1 (Spherical covariance). Suppose that

k(u, v) = 1[‖u− v‖ ≤ R]/|B(0, R)|.

Then, if ω ∈ Sd−1 is a unit vector in Rd,

K(h) =
|B(0, R) ∩B(hω,R)|

|B(0, R)|2

and ∫

Rd

k(v, u)n du = |B(0, R)|−n+1.

For d = 3, we get

K(h) =
1

|B(0, R)|

(
1 +

h

4R

)(
1− h

2R

)2

1[h ≤ 2R].

Example 2 (Gaussian covariance). Suppose that

k(u, v) =
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖u− v‖2

)
.

Then,

K(h) =
1

(4πσ2)d/2
exp

(
− 1

4σ2
h2
)

and ∫

R3

k(v, u)n du = n−d/2(2πσ2)−d(n−1)/2.

Example 3 (Matérn covariance). In the Appendix, we derive the kernel function
that induces a covariance function belonging to the Matérn family, see Guttorp and
Gneiting (2006) and references therein. It is shown that if

k(u, v) =
λd

πd/22ν/2−1+3d/4Γ
(ν+d/2

2

)‖λ(u− v)‖ν/2−d/4Kν/2−d/4(λ‖u− v‖), (3.1)

then

K(h) =
λd

πd/22d+ν−1Γ(ν + d/2)
(λh)νKν(λh). (3.2)

Here, Kν is the modified Bessel function of the second kind, and λ and ν are positive
parameters.

As shown in the supplement file, the flexible Matérn covariance family includes
a number of well-known covariance functions. Let us concentrate on the 3D case,
i.e. d = 3. For d = 3 and ν = 1

2
, (3.1) becomes

k(u, v) =
λ2

4π‖u− v‖ exp (−λ‖u− v‖) ,
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and (3.2) is the exponential covariance function

K(h) =
λ3

8π
exp (−λh) .

For d = 3 and ν = 5
2
, the kernel function (3.1) is of the form

k(u, v) =
λ3

8π
exp (−λ‖u− v‖) ,

and (3.2) is the 3rd order autoregressive covariance function

K(h) =
λ3

64π
exp (−λh)

(
λ2

3
h2 + λh+ 1

)
.

In order to evaluate the cumulant relation (2.6), we will also need to evaluate∫
Rd k(v, u)n du. For n = 2, we get, see the Appendix,

∫

Rd

k(v, u)2 du =
λdΓ(ν)

2dπd/2Γ(ν + d/2)
. (3.3)

For n > 2, it can be shown that
∫

Rd

k(v, u)n du <∞ for ν > ν(d, n),

where the limit ν(d, n) depends on n and d: ν(2, 3) = 1
3
, ν(2, 4) = 1

2
, ν(3, 3) = 1

2
and

ν(3, 4) = 3
4
. In particular, for the exponential covariance model in R3 (d = 3, ν = 1

2
),

we get ∫

R3

k(v, u)n du =∞, n > 2,

Analytic forms of the integrals
∫
Rd k(v, u)n du can be derived for some parameter

values, in other cases the integrals have to be evaluated numerically. For the 3rd
order autoregressive model in R3 (d = 3, ν = 5

2
), we have

∫

R3

k(v, u)n du =
1

n3

(
λ3

8π

)n−1
, n ≥ 2. (3.4)

Note that the last equation also holds for n = 2. Further details are provided in the
Appendix.

4 Data example

We obtained dynamic susceptibility contrast magnetic resonance imaging (MRI)
scans from four healthy subjects (1.5Tesla, gradient echo, TR/TE = 1500ms/30ms).
From these scans, maps of vascular mean transit time (MTT), were calculated using
singular value decomposition (Wu et al. 2003; Østergaard et al. 1996). The MTT
measurements are recognized as a valuable indicator of the cerebral blood circulation
(Helenius et al. 2003; Ibaraki et al. 2007; Ito et al. 2003). While MTT is at a stable
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Figure 1: MTT images. The trace of the cortical region on the three slices under study is
delineated by the black curve.

level throughout the cortical region in healthy subjects, changes may appear in
specific cortical regions in patients with certain diseases such as cerebrovascular
diseases, Alzheimer’s disease and multiple sclerosis (Adhya et al. 2006; Luckhaus
et al. 2008; Lythgoe et al. 2000).

The data to be analyzed for each of the four healthy subjects are MTT measure-
ments from three slices through the right side of the cortical region. The voxels have
dimension 1mm× 1mm× 1mm, the distance between neighbour slices is 10mm.
Figure 1 shows the boundary of the cortical region on the three slices under study.
Note the extensive boundary of the region under study which is typical in brain
imaging. The total number of voxels in the studied region was 8882. All analysis
and simulations presented were performed in MATLAB 7.9.0 (R2009b).

In Figure 2, we show for each of the four subjects the estimated variogram
normalized with the empirical variance, see Section 6 for further details. We fitted
by least squares a Matérn covariance model to the normalized variograms as this
model was superior to both the spherical model and the Gaussian covariance model.
The corresponding parametric fits of the normalized variogram are also shown in
Figure 2.

The remaining unknown parameters of the Gaussian random field model (2.4)
are µ (the mean value of Z ′) and τ 2 (the variance of Z ′). These parameters can be
estimated from E(Xv) and Var(Xv). For a 3D image (d = 3), we get, using (2.6) and
(3.3),

E(Xv) = µ

Var(Xv) = τ 2
λ3Γ(ν)

8π3/2Γ(ν + 3/2)
. (4.1)

Substituting E(Xv) and Var(Xv) by their empirical analogues gives us an estimate of
the parameters µ and τ 2. Since we subtracted the average x̄· from the measurement
xv in each voxel, µ̂ = 0 for all the four subjects. The estimates of the standard
deviation τ and the parameters ν and λ of the kernel function of the Matérn model
are shown in Table 1 for each of the four subjects.

A closer look at the observed distribution of Xv shows systematic departures
from the Gaussian distribution, especially for subject 4, see Figure 3. The observed
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Figure 2: The estimated normalized variogram of the four subjects (·), together with
a fitted Matérn variogram model (green stippled line). The fitted variogram under the
Gaussian covariance model (red stippled line) and the spherical covariance model (blue
stippled line) are also shown.

Table 1: The estimates of the parameters of a Gaussian random field model with a Matérn
covariance structure.

Subject τ̂ ν̂ λ̂

1 21.7136 1.5700 0.3971
2 11.0862 1.9345 0.5477
3 14.9562 1.5660 0.5162
4 13.4618 2.0054 0.5938
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distributions are markedly right skewed. There is therefore a need to go beyond the
Gaussian random field model.
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Figure 3: Histograms for the data in the selected region for four healthy subjects together
with the fitted Gaussian density. The average x̄· has been subtracted from the measurement
in each voxel. Note that the observed distributions are markedly right skewed.

5 Lévy based random fields

In this section, we consider more general random fields defined by the equation

Xv =
∑

u∈Zd

k(v, u)Zu, (5.1)

where the Zus still are independent and identically distributed but not necessarily
Gaussian. The common distribution of the Zus is assumed to be infinitely divisi-
ble. Possible choices of the distribution of the Zus are the Gaussian distribution,
the Gamma distribution, the inverse Gaussian distribution and the normal inverse
Gaussian distribution. The moment relations (2.2)–(2.3) still hold with Z being a
random variable with the common distribution of the Zus.

There also exists a continuous formulation of (5.1)

Xv =

∫

Rd

k(v, u)Z( du), (5.2)

where Z is an independently scattered infinitely divisible random measure. Such a
measure is called a Lévy basis, cf. Hellmund et al. (2008) and references therein.
Associated with Z is a random variable Z ′, called the spot variable. In the Gaussian
case, we have

Z( du) ∼ N(µ du, τ 2 du), Z ′ ∼ N(µ, τ 2)
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such that
κ1(Z

′) = µ, κ2(Z
′) = τ 2, κ3(Z

′) = κ4(Z
′) = 0.

Corresponding characteristics are given for the Gamma, the inverse Gaussian and
the normal inverse Gaussian bases in Table 2.

Table 2: The spot variable and its cumulants for various Lévy bases.

Basis Gamma Inverse Gaussian Normal Inverse Gaussian
Z( du) Γ(α du, λ) IG(δ du, γ) NIG(α, β, µ du, δ du)

Z ′ Γ(α, λ) IG(δ, γ) NIG(α, β, µ, δ)

κ1(Z
′) α/λ δ/γ µ+ δβ/(α2 − β2)1/2

κ2(Z
′) α/λ2 δ/γ3 δα2/(α2 − β2)3/2

κ3(Z
′) 2α/λ3 3δ/γ5 3δβα2/(α2 − β2)5/2

κ4(Z
′) 6α/λ4 15δ/γ7 3δ(α2 + 4β2)α2/(α2 − β2)7/2

It is important that the moment relations (2.5) and (2.6) still hold for the model
(5.2) so that model parameters may be expressed in terms of the moments of Xv

also in the non-Gaussian case.
Note that if the Lévy basis Z is stationary and k(u, v) = k(u− v), then {Xv}v∈V

is the restriction to V of a stationary process. In particular, the distribution of Xv is
the same at the boundary as in the interior of V . This may be an important feature
when V has an extensive boundary as is typical in brain imaging.

For any of the bases listed in Table 2 and any bounded Borel subset A of Rd,
the distribution of Z(A) is as indicated by the name of the basis. For instance, for
a normal inverse Gaussian basis,

Z(A) ∼ NIG
(
α, β, µλd(A), δλd(A)

)
,

where λd is the notation used for Lebesgue measure in Rd, cf. Barndorff-Nielsen
(1998). It follows that if the kernel function in (5.2) is proportional to an indicator
function as for the spherical covariance model, see Section 3, then the marginal
distribution of Xv will be of the type indicated by the name of the Lévy basis.
Otherwise, the marginal distribution of Xv will not be as simple but still we will
adopt the name of the Lévy basis. For instance, if Z is a normal inverse Gaussian
Lévy basis, the random field defined by (5.2) will be called a normal inverse Gaussian
random field irrespectively of the choice of kernel function.

Note that if Z is a normal inverse Gaussian Lévy basis, then conditionally on a
Inverse Gaussian Lévy basis L, L(A) ∼ IG(δλd(A),

√
α2 − β2), we have that Xv is

a Gaussian random field

Xv | L ∼
∫

Rd

k(u, v)Z0( du),

where Z0 is a Gaussian Lévy basis with Z0(A) ∼ N(µλd(A) + βL(A), L(A)). In
particular, {Xv : v ∈ V} can be seen as a Gaussian random field with a stochastic
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mean field {µ + βMv : v ∈ V} and a stochastic variance field {Sv : v ∈ V}, where
{Mv : v ∈ V} and {Sv : v ∈ V} are correlated inverse Gaussian random fields

Mv =

∫
k(u, v)L( du), Sv =

∫
k(u, v)2L( du).

For more details, cf. Barndorff-Nielsen (2010) and Barndorff-Nielsen and Pedersen (2010).

6 Inference

The parameters of the kernel function can be estimated from the variogram of the
observed image. If {xv : v ∈ V} are the available data, then, cf. Cressie (1993),

1

|N(d)|
∑

(i,j)∈N(d)

(xvi − xvj)2/κ̂2(xv) (6.1)

is an estimate of the normalized variogram

γ̄(d) = 2(1− ρ(d)) = 2(1−K(d)/K(0)).

Here, N(d) is the set of pairs of indices of sites with mutual distance d, |N(d)|
is the number of such pairs and κ̂2(Xv) is the empirical variance in the observed
image, see (6.2) below. Since the normalized variogram is uniquely determined by
the parameters of the kernel function we can determine estimates of these parameters
from the estimate (6.1) of the normalized variogram.

The basis for obtaining the estimates of the parameters of the Lévy basis is the
cumulant relations (2.6). The actual values of the integrals

∫
R3 k(v, u)n du can be

found in Section 3 for the various covariance models. In order to use the cumu-
lant relations we need estimates of the cumulants of Xv. This can either be done
non-parametrically by using the following equations, cf. Kendall and Stuart (1976,
p. 299),

κ̂1(Xv) =
1

n
S1

κ̂2(Xv) =
1

n(n− 1)
(nS2 − S2

1) (6.2)

κ̂3(Xv) =
1

n(n− 1)(n− 2)
(n2S3 − 3nS2S1 + 2S3

1)

κ̂4(Xv) =
1

n(n− 1)(n− 2)(n− 3)

(
(n3 + n2)S4 − 4(n2 + n)S3S1

− 3(n2 − n)S2
2 + 12nS2S

2
1 − 6S4

1

)
,

or by fitting a parametric distribution to the marginal distribution of Xv and use
the parametric form of the cumulants in this estimated distribution. In the above
equations, n is the number of observations and Si =

∑
v∈V x

i
v.
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7 Data example revisited

In this section, we investigate whether a normal inverse Gaussian random field pro-
vides a better fit to the data presented in Section 4. The covariance model is still
the Matérn covariance model. Let θ = (α, β, µ, δ) be the parameters of the normal
inverse Gaussian Lévy basis and let κn(θ) be the parametric form of the cumulants
of a random variable with this distribution, see Table 2, right column. We then
estimated θ by solving the non-linear equations

κ̂n = κn(θ)

∫

R3

k̂(v, u)n du, n = 1, 2, 3, 4,

with respect to θ. The integral
∫
R3 k̂(v, u)n du is known in analytic form for n = 2, cf.

(3.3), while for n = 3 and 4, numerical integration was performed in Mathematica.
We used two methods of determining estimates κ̂n of the cumulants of Xv, a

non-parametric method, using (6.2), and a semi-parametric method where a normal
inverse Gaussian distribution was fitted by the EM algorithm directly to the data
{xv : v ∈ V}. If we let θ̂0 be the estimated parameter of the normal inverse Gaussian
distribution fitted by the EM algorithm to the distribution of the xvs, we then
refitted a Matérn covariance model to the empirical variogram, now normalized
with κ̂2(θ̂0). A figure showing the empirical variogram normalized with κ̂2(θ̂0) and
its Matérn fit together with the variogram normalized with the empirical variance
and its corresponding Matérn fit, are shown in Figure 4. The two methods produce
fits of comparable quality to the empirical variograms.
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Figure 4: The estimated variogram normalized with the model based variance estimate
(×) together with a fitted Matérn variogram model (green) are shown for each of the
four subjects. The estimated variogram normalized with the empirical variance (•) and its
associated fitted Matérn variogram model (red) are also shown.
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Table 3: The estimates of the parameters of a normal inverse Gaussian random field model
with a Matérn covariance structure, using non-parametric and semi-parametric estimation.

Subject Method α̂ β̂ µ̂ δ̂ ν̂ λ̂

1 Non-parametric 0.0111 0.0064 −2.0127 2.8583 1.5700 0.3971
Semi-parametric 0.0113 0.0059 −1.9007 3.1041 1.6179 0.4094

2 Non-parametric 0.0260 0.0145 −1.2282 1.8321 1.9345 0.5477
Semi-parametric 0.0605 0.0428 −2.4025 2.4004 2.0715 0.5795

3 Non-parametric 0.0203 0.0096 −1.6696 3.0894 1.5660 0.5162
Semi-parametric 0.0469 0.0326 −3.6205 3.7466 1.6065 0.5281

4 Non-parametric 0.0306 0.0240 −1.6647 1.3088 2.0054 0.5938
Semi-parametric 0.0314 0.0207 −1.4767 1.6747 2.8686 0.7759

In Table 3, the estimated parameters θ of the normal inverse Gaussian Lévy basis
and ν and λ of the kernel function are shown for each of the four subjects analyzed in
Section 4 and the two methods of estimation (non-parametric and semi-parametric).

In Figure 5, the observed distribution of Xv (shown as ×) is shown for each of
the four subjects with the fitted distribution described by the model equation (5.2)
and the estimated parameters θ̂, ν̂ and λ̂. Both the non-parametric (blue line) and
the semi-parametric (green line) fit are shown as well as the fit obtained, using a
Gaussian random field (red line). Since the density of Xv under the model (5.2) with
a Matérn kernel and a normal inverse Gaussian Lévy basis is not known analytically,
the blue and green curves in Figure 5 have been determined by simulation. Note that
a log-scale on the y−axis is used in Figure 5. The normal inverse Gaussian random
fields model provides a more satisfactory fit.

Figure 6 shows simulations of the normal inverse Gaussian random field, fitted
by the semi-parametric method, together with simulations of the Gaussian random
field, fitted as described in Section 4, and the observed random field in slice 1, 2 and
3, respectively, for subject 4. It is seen that the NIG based simulations capture more
satisfactory the feature of the data that occasionally very high values are observed
at some voxels.
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Figure 5: Log-histograms for the data (×) in the selected region for four healthy subjects
together with the fitted Gaussian densities and the densities based on a NIG (normal
inverse Gaussian) random field model. The Gaussian density is shown as the red curve, the
NIG based density estimated using the method of moments is shown as the blue curve and
the NIG based density estimated using the EM algorithm is shown as the green curve.
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Slice 1 NIG simulation Gaussian simulation

Slice 2 NIG simulation Gaussian simulation

Slice 3 NIG simulation Gaussian simulation

Figure 6: Observed MTT measurements (left) together with simulations under the fitted
NIG model (middle) and the fitted Gaussian model (right) for subject 4.
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8 Consequences for brain imaging

8.1 Voxel-wise comparisons

As indicated in the Introduction of our paper, a widely used procedure in brain
imaging for testing the hypothesis of no difference between two groups of subjects is
the following. Assume that we want to compare two groups of N subjects. Let Xijv

be the measurement recorded at voxel v ∈ V of the jth subject in group i, i = 1, 2,
j = 1, . . . , N . At each voxel the t−test statistic of no difference between the groups
is determined

Tv =
X̄2·v − X̄1·v√

2S2
v/N

,

where X̄i·v is the average in group i = 1, 2 and

S2
v =

1

2N − 2

∑

i,j

(Xijv − X̄i·v)
2

is the estimate of the variance at voxel v, respectively.
If the alternative hypothesis is that group 2 subjects show increased level com-

pared to group 1 subjects at some voxels, a common practice is to consider the distri-
bution of the observed maximal test statistic Tmax = max{Tv : v ∈ V} under the null
hypothesis of no difference between the groups and to reject the null hypothesis at
voxel v if Tv > tmax 95(Gauss). Here, tmax 95(Gauss) is the 95 percentile in the distri-
bution of Tmax calculated under the null hypothesis and under the assumption that
the observed random fields can be modelled as Gaussian random fields. For Gaussian
random fields, the 95 percentile can be estimated using the Euler characteristic of
excursion sets of thresholded t fields but below we use a bootstrap technique. (Note
that by using Tmax, the so-called family wise error (FWE) is controlled as opposed
to the false discovery rate (FDR), see Chumbley and Friston (2009); Chumbley et al.
(2010b); Nichols and Hayasaka (2003) and references therein.)

In order to evaluate the robustness of this procedure against departures from
Gaussianity, we have simulated random fields of size 100 × 100 under the fitted
Gaussian random field model and under the fitted normal inverse Gaussian random
field model for subject 4, see bottom row in Table 1 and Table 3. We simulated a
total of 100 images from each model and estimated the null distribution of the test
statistic Tmax for the various group sizes N , using a bootstrap technique.

In Figure 7, the difference tmax 95(Gauss)−tmax 95(NIG) is plotted as a function of
the number N of subjects in each group. Here, tmax 95(NIG) is the 95 percentile in the
distribution of Tmax calculated under the null hypothesis and under the assumption
that the observed random fields can be modelled by normal inverse Gaussian random
fields. The difference between the percentiles is positive for all N and largest for
small N . So for small group sizes N , we may overlook an increased signal in group 2
compared to group 1 if the fields are normal inverse Gaussian but wrongly assumed
to be Gaussian.

For illustrating how much impact the difference in the 95 percentiles of the
distribution of Tmax may have, we added in group 2 a signal of strength s in a
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subregion of size 20×20 voxels and estimated the average proportion of the subregion
that was correctly declared as significant, using the NIG threshold and the Gaussian
threshold, respectively.

The average proportion was calculated using a bootstrapping technique. The
results are shown in Figure 8. We see that in either case, no or few voxels are
declared significant for small values of N and/or a low signal strength s. For larger
signal strengths s and a large number N of subjects in each group, both methods
declare the majority of the signal significant. For intermediate values of N and s the
NIG threshold shows superior performance, see Figure 8 (right). For instance, for
s = 2 and N = 10, the average proportion declared significant is 0.8727 and 0.5832,
using the NIG and Gaussian threshold, respectively. In this case, a much larger part
of the signal is detected if the NIG threshold is used.

5 10 15 20
0

20

40

60

N

Figure 7: The difference tmax 95(Gauss)− tmax 95(NIG) as a function of the number N of
subjects in each group.

Figure 8: The average proportion of a subregion of size 20×20 voxels with signal strength
s that is declared significant using the NIG threshold (left) and the Gaussian threshold
(middle), shown as a function of s and the group size N . The difference in the proportion
of the subregion declared significant using the two methods is also shown as a function of
s and the group size N (right).

8.2 Region-wise comparisons

Lévy based random fields may also strengthen another type of analysis often per-
formed in neuroscience, so-called ROI (Region Of Interest) analysis (Chumbley et al.
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2010a; Friston et al. 1994). Again, two groups of subjects are compared, this time
with the aim of revealing whether the overall level of the signal in a specific region of
the brain is increased in one group compared to the other. A proper modelling of the
correlation structure in the field may be used to construct optimally weighted aver-
age signals with minimal variance in each group, thereby increasing the possibility
for detecting small differences in the signal level in the two groups. This has already
been advocated in Spence et al. (2007). See also Bowman (2007), where functional
distances is used instead of Euclidean distances in the covariance structure. In ad-
dition, the Lévy based random fields offer the possibility to analyze changes that
imply that the distribution of the signal is more skewed or has more heavy tails in
one group compared to the other.

9 Discussion

In the present paper, we have mainly been focusing on developing Lévy based ran-
dom fields as a practical statistical tool of analyzing images, especially brain images.
Earlier, this type of model has also been used as prior in non-parametric function
estimation, see Tu et al. (2007). We have advocated Lévy based random fields as
a flexible class of models for random fields. A more specific class of skew-Gaussian
random fields has been described in Alodat and Al-Rawwash (2009).

In the analysis of the magnetic resonance imaging data presented in Sections 4
and 7, we found that the observed random fields were markedly non-Gaussian and,
using Gaussian random field theory, may lead to incorrect conclusions when com-
paring small groups of subjects. Similar type of conclusion has been reached in a
number of fMRI studies (Nichols and Hayasaka 2003).

In the concrete data analysis, the normal inverse Gaussian random field model
provided a satisfactory fit. We believe that it is interesting to study this type of
random field further from a theoretical point of view. Especially, it should be inves-
tigated whether the properties of the excursion sets of such random fields can be
derived by conditioning with its associated stochastic variance field.
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Appendix: Derivations for the Matérn family

Under the Lévy based random field model we have that the covariance function is
given by

C(h) = Var(Z ′)

∫

Rd

k(u)k(h+ u) du.

The spectral density of the random field is given by

f(ω) =
1

(2π)d

∫

Rd

C(h)e−iω·h dh =
1

(2π)d
Var(Z ′)

(∫

Rd

k(h)e−iω·h dh
)2
.

It follows that
k(u) =

1√
Var(Z ′)(2π)d

∫

Rd

√
f(h)eiu·h dh. (9.1)

One parametrization of the Matern correlation family is given by a correlation
of the type

ρ(h) =
21−ν

Γ(ν)
(λ‖h‖)νKν(λ‖h‖), (9.2)

for ν, λ > 0, cf. Guttorp and Gneiting (2006), which corresponds to the spectral
density

f(ω) ∝ 1

(λ2 + ‖ω‖2)d/2+ν . (9.3)
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Now using equation (9.1) for the spectral density in (9.3) we find that

k(u) ∝
∫

Rd

p(‖h‖)eiu·h dh, (9.4)

where
p(r) =

1

(λ2 + r2)d/4+ν/2
.

In Lord (1954), it is shown that an integral of this form can be expressed as
∫

Rd

p(‖h‖)eiu·h dh = (2π)d/2‖u‖1−d/2
∫ ∞

0

rd/2Jd/2−1(‖u‖r)p(r) dr, (9.5)

where Jd/2−1 is a Bessel function of the first kind. Further reduction can be obtained
by using that, cf. Abramowitz and Segun (1968, (11.4.44)),

∫ ∞

0

tβ+1Jβ(at)

(t2 + z2)µ+1
dt =

aµzβ−µ

2µΓ(µ+ 1)
Kβ−µ(az), (9.6)

which holds for a > 0, β > −1 and β < 2µ+ 3/2. These inequalities are satisfied in
our case and we find by combining (9.4), (9.5) and (9.6) that

k(u) ∝ ‖u‖1−d/2
∫ ∞

0

rd/2Jd/2−1(‖u‖r)
1

(λ2 + r2)d/4+ν/2
dr

∝ ‖u‖ν/2−d/4Kd/4−ν/2(λ‖u‖) = ‖u‖ν/2−d/4Kν/2−d/4(λ‖u‖).

The constant of proportionality can be determined by using that
∫

Rd

k(u) du = 1.

Let ωd = 2πd/2/Γ(d/2) denote the surface area of the unit sphere in Rd. Then
∫

Rd

‖u‖ν/2−d/4Kν/2−d/4(λ‖u‖) du

= ωd

∫ ∞

0

rν/2−1+3d/4Kν/2−d/4(λr) dr

= Γ
(ν + d/2

2

)πd/22ν/2−1+3d/4

λν/2+3d/4
,

where we at the last equality sign have used the identity
∫ ∞

0

tµKβ(t)dt = 2µ−1Γ
(µ+ β + 1

2

)
Γ
(µ− β + 1

2

)
, (9.7)

cf. Abramowitz and Segun (1968, (11.4.22)). The identity (9.7) holds for µ±β > −1.
This condition is satisfied for our choice of parameters if d ≥ 2. Consequently the
kernel function is given by

k(u) =
λd

πd/22ν/2−1+3d/4Γ
(
ν+d/2

2

)‖λu‖ν/2−d/4Kν/2−d/4(λ‖u‖).
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In order to use the cumulant relations for the Lévy based random fields, we need
to determine

∫
Rd k(u)n du. For n = 2, we use that
∫ ∞

0

tα−1Kβ(t)2 dt =

√
π

4Γ(α+1
2

)
Γ
(α

2

)
Γ
(α

2
− β

)
Γ
(α

2
+ β

)
,

for α > 2|β|, and find
∫

Rd

k(u)2 du =
λd

πd/22ν−3+3d/2Γ(ν+d/2
2

)2Γ(d/2)

∫ ∞

0

tν+d/2−1Kν/2−d/4(t)
2 dt

=
λdΓ(ν)

πd/22dΓ(ν + d/2)
,

where we at the last equality sign also have used that

Γ(x)Γ(x+ 1/2) = 21−2x√πΓ(2x).

Note that the explicit form of the covariance function follows easily

C(h) = C(0)ρ(h) = Var(Z ′)

∫

Rd

k(u)2 du · ρ(h)

=
Var(Z ′)λd

πd/22d+ν−1Γ(ν + d/2)
(λ‖h‖)νKν(λ‖h‖).

For n > 2, it is only possible in special cases to derive an explicit form of∫
Rd k(u)n du. In any case, the integral can be expressed as an integral over R+. If we
let

γd,ν =
λd

πd/22ν/2−1+3d/4Γ
(ν+d/2

2

)

we get ∫

Rd

k(u)n du = γnd,ν ωd
1

λd

∫ ∞

0

rnν/2+(1−n/4)d−1Kν/2−d/4(r)
n dr.

For n = 3, this integral is finite for d = 2 and ν > 1/3 and for d = 3 and ν > 1/2.
For n = 4, the integral is finite for d = 2 and ν > 1/2 and for d = 3 and ν > 3/4.

The modified Bessel function of the second kind Kν has nice analytic expressions
for specific ν. Thus, cf. Abramowitz and Segun (1968, (10.2.17)),

K1/2(x) =

√
π

2x
e−x,

K3/2(x) =

√
π

2x
e−x

(
1 +

1

x

)
,

K5/2(x) =

√
π

2x
e−x

(
3

x2
+

3

x
+ 1

)
.

For ν = 1/2, the exponential covariance function is obtained while for ν = 5/2 we
get the 3rd order autoregressive covariance function.

23


