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The homogeneous geometries of real
hyperbolic space

M. Castrillón López, P. M. Gadea and A. F. Swann

Abstract

We describe the holonomy algebras of all canonical connections of homogeneous
structures on real hyperbolic spaces in all dimensions. The structural results
obtained then lead to a determination of the types, in the sense of Tricerri
and Vanhecke, of the corresponding homogeneous tensors. We use our analysis
to show that the moduli space of homogeneous structures on real hyperbolic
space has two connected components.
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1 Introduction
Homogeneous manifolds provide a rich and varied class of spaces on which to study
Riemannian geometry. One difficulty that arises is that the same Riemannian manifold
(M, g) can admit several different descriptions as a homogeneous space G/H. It is
surprising how little is known this problem for many well-known spaces.

A substantial attempt to solve this problem was made by Ambrose and Singer [1].
They characterised the property that (M, g) is homogeneous in terms of the existence
of a tensor S satisfying a certain set of non-linear differential equations. Each
homogeneous description of (M, g) gives rise to a different solution to these equations.
These equations were studied further by Tricerri and Vanhecke [10], who introduced
a decomposition of S into components under the action of the orthogonal group,
and produced a number of examples illustrating the occurrence of different possible
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classes. In particular, they showed that in dimension 3, the real hyperbolic space
RH(3) admits homogeneous tensors of two different types. However, they left as an
open problem, the determination of all homogeneous tensors on RH(n) for n > 3 [10,
p. 55].

In [4], we took a different route and used general results of Witte [11] on co-
compact subgroups to determine all the groups acting transitively on RH(n). This
left open the determination of the corresponding homogeneous tensors S and their
types. Any homogeneous space G/H with a Lie algebra decomposition g = h+m

carries a canonical connection ∇̃, characterised by the property that G-invariant
tensors are parallel for ∇̃. By work of Nomizu [5], the tensor S depends only on the
holonomy algebra hol 6 h of ∇̃ and hol+m determines the Lie algebra of a smaller
group acting transitively on G/H.

In this paper we answer two questions: what are the holonomy algebras of the
canonical connections on RH(n)? and what are the types of the corresponding
homogeneous tensors? Regarding a geometric structure as being given by a collection
of tensors that are parallel with respect to some connection, the answer to the first
question thus determines which geometric structures may be realised homogeneously
on RH(n). Our answer to the first question is given by:

Theorem 1.1. The holonomy algebras of canonical connections on RH(n) are so(n)
and all the reductive algebras

k = k0 + kss

of compact type with k0 ∼= Rr Abelian and kss semi-simple such that

3r + dim kss 6 n− 1.

The proof includes a description of how this algebra acts on the tangent space of
RH(n). We then use these results to determine the complete answer to the second
question, extending the partial results of [10, 6, 8, 7, 9]. Furthermore, the ideas of
our constructions are used to show that the moduli space of homogeneous structures
on RH(n), n > 1, with fixed scalar curvature has exactly two components.

The paper is organised as follows. In Section 2, we briefly recall the results of
Ambrose & Singer and Nomizu relating homogeneous spaces to homogeneous tensors.
We then specialise to the real hyperbolic space in Section 3 and review our result on
the groups that act transitively, establishing notation for the rest of the paper. The
determination of the holonomy algebras and their isotropy representations is given
in Section 4. We use this in Section 5 to determine the homogeneous tensors and
their types. Finally, we use our results to determine the connected components of the
moduli space of homogeneous tensors on RH(n) and discuss a couple of geometric
consequences in Section 6.

2 The Ambrose-Singer equations

Let (M, g) be a connected, simply-connected complete Riemannian manifold. Suppose
S is a tensor of type (1, 2); so for each X ∈ TM , we have that SX is an endomorphism
of TM . Writing ∇ for the Levi-Civita connection of g, we define a new connection
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∇̃ = ∇− S. In general, ∇̃ has non-zero torsion. Ambrose and Singer [1] showed that
(M, g) admits a homogeneous structure if and only if there is an S such that

∇̃g = 0, ∇̃R = 0 and ∇̃S = 0, (2.1)

where R is the curvature tensor of ∇. Nomizu [5] gave this homogeneous description
as follows. Fix a point p in M . The holonomy algebra hol is the subalgebra of the
endomorphisms of TpM generated by the elements { R̃X,Y : X, Y ∈ TpM }, where R̃
is the curvature of ∇̃. Writing m = TpM , the vector space

g̃ = hol+m

has a Lie bracket defined by

[U, V ] = UV − V U, [U,X] = U(X), [X, Y ] = R̃X,Y + (SXY − SYX)

for U, V ∈ hol ⊂ End(TpM) and X, Y ∈ m = TpM . Exponentiating these groups we
obtain a reductive homogeneous description of M as G̃/H, where G̃ and H have Lie
algebras g̃ and hol respectively. The connection ∇̃ is now the canonical connection
of the reductive space (G̃/H,m). Indeed for any homogeneous space M = G/H with
reductive description g = h+m, the canonical connection is given at the identity by

∇̃BC = −[B,C]m (2.2)

where C ∈ g is extended to the vector field on M whose one-parameter group
is gH 7→ exp(tC)gH. The canonical connection has the property that every left-
invariant tensor on M is parallel.

3 Homogeneous descriptions of real hyperbolic space

The description of RH(n) as a symmetric space is

RH(n) = SO(n, 1)/O(n),

where we take SO(n, 1) to be the set of matrices of determinant +1 preserving the
form diag(Idn−1, ( 0 1

1 0 )). The connected isometry group has Iwasawa decomposition
SO0(n, 1) = SO(n)R>0N whose Lie algebra is so(n, 1) = so(n) + a+ n, given
concretely by

so(n) =

{(
B v v
−vT 0 0
−vT 0 0

)
: B ∈ so(n− 1), v ∈ Rn−1

}
,

a = R diag(0, . . . , 0, 1,−1), n =
{(

0 0 v
−vT 0 0
0 0 0

)
: v ∈ Rn−1

}
.

If G acts transitively on RH(n) then G\RH(n) is a point, so compact. It follows
that G\SO0(n, 1) is an orbit space of the compact group O(n), thus G is a non-
discrete co-compact subgroup of SO0(n, 1). Witte’s structure theory for co-compact
groups [11] then leads to the following result.
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Theorem 3.1 ([4]). The connected groups acting transitively on RH(n) are the
connected isometry group SO0(n, 1) and the groups G = FrN , where N is the
nilpotent factor in the Iwasawa decomposition of SO(n, 1) and Fr is a connected
closed subgroup of SO(n− 1)R>0 with non-trivial projection to R>0.

The case Fr = R>0, gives the description RH(n) = R>0N of real hyperbolic space
as a solvable group.

4 The holonomy algebras
Assume that G = FrN acts transitively on RH(n) as in Theorem 3.1. This implies
that RH(n) = G/H, with H = Fr ∩ SO(n − 1). We have immediately that H is
reductive, and thus

h = h0 + hss,

where h0 is Abelian and hss is semi-simple. Let us write

fr = h+ ar, g = h+ ar + n,

with ar projecting non-trivially to a = LieR>0. Since fr is a subalgebra of so(n−1)⊕a,
it admits a positive definite invariant metric. This implies that fr is reductive with

fr = (h0 + ar) + hss .

In particular, [ar, h] = 0 and dim ar = 1.
Let us write

s = a+ n, sr = ar + n,

and note that [s, s] = n = [sr, sr]. For later use, we remark that ar is not canonically
specified, but is any one-dimensional complement to h0 + n in

sf = (fr)0 + n .

A homogeneous Riemannian structure on G/H depends on a choice of adH-
invariant complement m to h in g. Such a complement is the graph of an h-equivariant
map

ϕr : sr → h . (4.1)

Choose an h-equivariant map χr : s → sr extending the identity on n. Define
ϕ : s→ h as

ϕ = ϕr ◦ χr. (4.2)

Proposition 4.1. The Lie algebra hol of the holonomy group of the canonical
connection ∇̃ associated to the decomposition g = h+m, is

hol = ϕr(n) = ϕ(n).

Proof. The holonomy algebra is spanned by [m,m]h. For A ∈ a the standard generator
and arbitrary X ∈ n, we have [A,X] = X. The space m is spanned by

Xϕ := X + ϕX ∈ m, for X ∈ n,
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and the element
ξ := χrA+ ϕA =: A+ A0.

Noting that [A0, fr] = 0, we compute

[ξ,Xϕ] = [A,X] + [A,ϕX] + [A0, X] + [A0, ϕX]

= X + 0 + [A0, X] + 0.

This element lies in n. Moreover, A0 acts on n as an element of so(n− 1) on Rn−1, in
particular its characteristic polynomial has no non-zero real roots. This implies that
1 + ad(A0) : n→ n is invertible and so {[ξ,Xϕ] : X ∈ n} spans n. For Y ∈ n ⊂ h+m,
we have Ym = Y + ϕ(Y ) and so Yh = −ϕ(Y ). We conclude that hol contains
{−ϕ[ξ,Xϕ] : X ∈ n} = ϕ(n).

For X, Y ∈ n, we have

[Xϕ, Yϕ] = [X, Y ] + [X,ϕY ] + [ϕX, Y ] + [ϕX,ϕY ]

= 0 + ([X,ϕY ] + [ϕX, Y ]) + [ϕX,ϕY ].

The last term lies in h, whereas the middle pair lies in n. Projecting to h ⊂ h+m,
the middle pair contributes −2[ϕX,ϕY ], since ϕ is h-equivariant. Thus

[Xϕ, Yϕ]h = −[ϕX,ϕY ].

We find that
hol = ϕ(n) + [ϕ(n), ϕ(n)].

But h is reductive and ϕ(n) is a sum of h-modules so [ϕ(n), ϕ(n)] ⊂ [h, ϕ(n)] ⊂ ϕ(n)
and hol = ϕ(n) as claimed.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us first show that the holonomy algebra has the claimed
form. Via ϕ we have that the h-module hol is isomorphic to a submodule Vhol of
n ∼= Rn−1. Write k = hol and note that k is a subalgebra of so(n− 1), so of compact
type. We may thus split

k = k0 + kss

as a sum of Abelian and semi-simple algebras. This gives a similar splitting Vhol =
V0 + Vss.

Now k acts effectively on m ∼= ar + n, and trivially on ar, and its action preserves
the inner product on n. The action of kss is effective on Vss and trivial on V0. The
action of k0 is trivial on all of Vhol.

As k0 ∼= Rr is Abelian, its irreducible metric representations are direct sums
of modules of real dimension 2, and an effective representation is of dimension at
least 2r. Thus n contains inequivalent modules of dimension dimVhol = dim kss +r
and 2r. It follows that n− 1 = dim n > dim kss +3r.

Conversely, given a reductive algebra k = k0 + kss of compact type satisfying this
constraint on dimensions, we wish to show that it arises a holonomy algebra for a
canonical connection.
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Let Vk be a copy of the k-module k and let V1 be a minimal effective metric
representation of k0 ∼= Rr. Then dimV1 = 2r and we put

n = Rn−1 = Vk + V1 + Rm,

with Rm a trivial k-module. This decomposition of Rn−1 = n admits a k-invariant
inner product extending a bi-invariant metric on k ∼= Vk and the invariant inner
product on V1. Such an inner product realises k as a subalgebra of so(n − 1). Let
ψ : Vk → k be an isomorphism of k-modules. Defining ϕ to be ψ on Vk and zero on
V1 + Rr + a then realises k as the holonomy algebra of a canonical connection ∇̃ on
RH(n) with g = k+ a+ n.

Note that in the construction of the second part of the proof, the Lie algebra k
exponentiates to a closed (so compact) subgroup K of SO(n− 1), and so k is the
isotropy algebra of a homogeneous realisation of RH(n). Also note that the module
V1 +Rr may be replaced by any metric representation of k on which k0 acts effectively,
but in this case the corresponding subgroup of SO(n− 1) may not be closed.

5 Homogeneous tensors

We now wish to compute the homogeneous tensor S = ∇−∇̃ associated to a invariant
Riemannian structure on G/H.

Let g be the Riemannian metric and let g also denote its restriction to m. This
bilinear form on m is adH-invariant. At eH, the homogeneous tensor is given by

2g(SBC,D) = g([B,C], D)− g([C,D], B) + g([D,B], C), (5.1)

for B,C,D ∈ m. This follows from (2.2) and [2, p. 183]. The description of RH(n)
as a symmetric space corresponds to S ≡ 0. We thus concentrate on the other
homogeneous descriptions associated to subgroups Fr of SO(n)R>0, and use the
notation of the previous section.

Note that g induces h-invariant inner products gr = (1 + ϕr)
∗g on sr and

gϕ = χ∗rgr = (χ∗r + ϕ∗)g on s. As we remarked above, the space ar is not canonical.
The module s splits gϕ-orthogonally as a sum of a trivial h-module s0 and a module
s1 ⊆ n that decomposes as a sum of non-trivial h-modules. The space a is contained
in s0 and is any complement to s0 ∩ n. In particular, we can take a to be gϕ orthogonal
to n and take ar = χr a.

As above, let A be the generator of a that satisfies ad(A)|n = +1. An arbitrary
element B of m may be written as

B = λBξ +NB,

where NB = (XB)ϕ, for some XB ∈ n. By our choice of a, we see that

λB = g(B, ξ)/g(ξ, ξ).
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Lemma 5.1. Let S be a homogeneous tensor on RH(n) associated to module maps
ϕ and ϕr as in (4.2) and (4.1). Then

g(SBC,D) = −λCg(B,D) + λDg(B,C) + g([B′, C], D)

+1
2

(
λB
(
hr(C,D)− hr(D,C)

)

− λC
(
hr(B,D) + hr(D,B)

)

+ λD
(
hr(B,C) + hr(C,B)

))
,

(5.2)

where B′ = ϕ(λBA + XB) = ϕ(Bs) ∈ h and hr(B,C) = g([A1, XB]ϕ, C), A1 =
χrA− A ∈ so(n− 1).

Proof. To see this, let us compute

[B,C]m = (λB[ξ,NC ]− λC [ξ,NB] + [NB, NC ])m

= λB(NC + [ϕA,XC ] + [A1, XC ]ϕ)

− λC(NB + [ϕA,XB] + [A1, XB]ϕ)

+ [ϕXB, NC ]− [ϕXC , NB],

where we have used that ϕ[ϕA,XC ] = [ϕA,ϕXC ] = 0. This gives

g([B,C], D) = λB
(
g(C,D)− λCg(ξ,D) + g([ϕA,C], D) + hr(C,D)

)

− λC
(
g(B,D)− λBg(ξ,D) + g([ϕA,B], D) + hr(B,D)

)

+ g([ϕXB, C], D)− g([ϕXC , B], D)

= λBg(C,D)− λCg(B,D) + g([B′, C], D)− g([C ′, B], D)

+ λBhr(C,D)− λChr(B,D)

and the result (5.2) follows from (5.1) and the fact that g is h-invariant.

We now wish to determine the possible types of S in the sense of Tricerri
and Vanhecke [10]. The first of the Ambrose-Singer equations (2.1) implies that at
each point Sx preserves g, so S is a section of T ∗M ⊗ so(n) ∼= TM ⊗ Λ2TM . As
representation of so(n), this space decomposes as

Γ(TM ⊗ Λ2TM) ∼= T1 ⊕T2 ⊕T3

with T1
∼= Γ(TM) and T3

∼= Γ(Λ3TM). One says that S is of type Ti if S lies in T1,
and correspondingly S is of type Ti+j if S ∈ Ti + Tj.

Tricerri and Vanhecke [10] showed that if (M, g) is connected, simply-connected
and complete, then it admits a homogeneous structure of type T1 if and only if (M, g)
is isometric to the standard metric on RH(n). The corresponding homogeneous
description is that of RH(n) as a solvable group. Furthermore, [8] showed that
structures on RH(n) of type T1+3 correspond to semi-simple isotropy groups. We
can now describe all the types of homogeneous structures on RH(n).

Theorem 5.2. Let S be a non-zero homogeneous tensor for RH(n) with holonomy
algebra hol. Then S always has a non-trivial component in T1 and S is of type T1

if and only if hol is 0.
The structure is of strict type T1+3 if and only if a ⊂ kerϕ and hol is a non-zero

semi-simple algebra acting trivially on kerϕ, in the notation of Section 4.
Otherwise S is of general type.
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Proof. From (5.2), we have S = S1 + S2, with

S1
BC = g(ξ, ξ)−1(g(B,C)ξ − g(C, ξ)B), (5.3)

which is of type T1, and

S2
BC = [B′, C] + SrBC,

2SrBC = (λB(Zr − Z∗r )(XC)− λC(Zr + Z∗r )(XB))ϕ

+ (hr(B,C) + hr(C,B))g(ξ, ξ)−1ξ,

where Zr : n→ n is Zr = ad(A1)|n.
We claim that S2 is of type T2+3. This means that

∑n
i=1 S

2
ei
ei = 0 for an

orthonormal basis of m. Noting that this condition is independent of the choice of
orthonormal basis, we deal with the two terms of S2 separately.

Let us show that the (1, 2)-trace
∑n

i=1 S
r
ei
ei is zero. Write g0 for the metric on n

preserved by so(n− 1); this metric is unique up to scale. Then Zr is skew-adjoint
with respect to g0. Let E1, . . . , En−1 be a gϕ-orthonormal basis diagonalising g0, so
g0(Ei, Ei) = ti > 0. Then the matrix (zij) of Zr satisfies tizji + tjzij = 0 so zii = 0.
Putting ei = (Ei)ϕ and en = ξ/g(ξ, ξ)1/2, we obtain an orthonormal basis for all
of m. For i = 1, . . . , n− 1, we have that Sreiei is g(ξ, ξ)

−1ξ multiplied by the factor
hr(Ei, Ei) = g((Zr(ei)ϕ, Ei) = gϕ(Zr(ei), ei) = zii = 0, so Sreiei = 0 in these cases.
Moreover, Srξξ = 0, and thus we have the claimed vanishing of the (1, 2)-trace of Sr.

For the remaining terms
∑n

i=1[e
′
i, ei] of the (1, 2)-trace of S2 we choose a different

basis ei. Write n = Vhol + kerϕ|n, in such a way that these are h-modules whose
images in m are orthogonal. Choose a compatible orthonormal basis ei for m with
ei = Xi +ϕ(Xi), i = 1, . . . , n− 1, such that Xi ∈ Vhol, i = 1, . . . , k, and Xj ∈ kerϕ|n,
j = k+ 1, . . . , n− 1 and with en proportional to ξ. Then for i = 1, . . . , n− 1 we have

[e′i, ei] = [ϕ(Xi), Xi + ϕ(Xi)] = [ϕ(Xi), Xi].

This is clearly zero for i = k + 1, . . . , n − 1. For i = 1, . . . , k, the fact that
Vhol is an h-module implies [ϕ(Xi), Xi] ∈ Vhol, so [e′i, ei] = ψ−1(ϕ[ϕ(Xi), Xi]) =
ψ−1[ϕ(Xi), ϕ(Xi)] = 0. Finally [e′n, en] is proportional to [A0, ξ] = [A0, A] = 0. Thus
in all cases [e′i, ei] = 0 and S2 has no T1 component.

To see when S2 is in T3, consider

S2
2(B,C) := S2

BC + S2
CB

= [C ′, XB] + [B′, XC ]− (Z∗r (λBXC + λCXB))ϕ

+ (hr(B,C) + hr(C,B))g(ξ, ξ)−1ξ,

which is proportional to its projection to T2. For S2 to belong to T3 we need this
expression to be zero for all B and C. First, consider C = ξ and B orthogonal to
ξ, then S2

2(B, ξ) = [ϕA,XB] − (Z∗rXB)ϕ = 0. This implies that g(S2
2(B, ξ), D) =

gϕ(XB, [A0, XD]) = 0, but the representation of so(n− 1) on n is faithful, so A0 = 0.
Thus m and hence g contains a and we may take sr = s, giving A1 = 0 and hence
ϕA = 0. We now have S2

2(B,C) = [C ′, XB] + [B′, XC ]. Second, suppose XB ∈ kerϕ,
then we must have [C ′, XB] = [ϕ(Cs), XB] = 0 for all Cs ∈ s. Thus S ∈ T1+3

requires kerϕ to be a trivial hol-module. By the proof of Theorem 1.1, this is the
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case if and only if hol is semi-simple and n = Vhol + Rs, with the trivial module
Rs lying in kerϕ. Moreover, in this situation, if B,C have XB, XC ∈ Vhol then
S2
2(B,C) = [ϕ(XC), XB] + [ϕ(XB), XC ] = ψ−1([C ′, B′] + [B′, C ′]) = 0, so S ∈ T1+3.
Furthermore, the T3-component is non-zero exactly when hol is non-trivial. Indeed,

in general the T3-component is proportional to

S2
3(B,C) := S2

BC − S2
CB

= [B′, C]− [C ′, B] + (Zr(λBXC − λCXB))ϕ.

Suppose this tensor S2
3 is zero. Considering B = ξ and C orthogonal to ξ, we have

S2
3(ξ, C) = [ϕA,C] + Zr(XC)ϕ = [A0, XC ]ϕ, since [C ′, A] = 0 = [C ′, ϕA] = [C ′, A1]

as C ′ ∈ h. This gives A0 = 0, and we may write

S2
3(B,C) = 2[B′, C ′] + [B′, XC ]− [C ′, XB].

For general B,C, the component of S2
3(B,C) in h is 2[B′, C ′]. This implies that hol

is Abelian. Finally for XC ∈ kerϕ and λC = 0, we have S2
3(B,C) = [B′, XC ], so hol

acts trivially on kerϕ. By the proof of Theorem 1.1 we conclude that hol = 0. Thus
the T3-component is zero exactly when ϕ = 0.

6 Consequences
Our description of splittings via graphs in Section 4 yields the following statement.

Theorem 6.1. For n > 1, the moduli space of homogeneous tensors on RH(n) with
fixed scalar curvature, consists of two connected components.

Proof. Any non-zero S is homotopic to the S of type T1 on AN via a scaling of ϕ
to 0. So there are at most two components in the moduli space. We need to show
that {S = 0} is a separate component.

We have RH(n) = SO(n, 1)/O(n), SO0(n, 1) = KAN and Theorem 3.1 tells us
that ArN acts transitively on any homogeneous description of RH(n). Now ArN
is isomorphic to AN as a group, and any metric on AN is hyperbolic, indeed the
isomorphism may be chosen to be an isometry of left-invariant metrics, cf. [4]. With
fixed scalar curvature, we may assume that this is an isometry to one fixed choice of
left-invariant hyperbolic metric on AN . If S is a homogeneous tensor on RH(n) it
gives a left-invariant tensor on ArN and hence on AN . The equation ∇̃S = 0 may
be rewritten as

∇S = S.S, (6.1)

where (SX .S)YZ = SX(SYZ)−SSXYZ −SY (SXZ), and ∇ is the Levi-Civita connec-
tion. On the set of left-invariant tensors on AN , equation (6.1) is a set of polynomial
equations in the components of S. We thus see that the set of homogeneous tensors
for RH(n) may be regarded as a real algebraic variety S in Rn ⊗ Λ2Rn = RN . The
moduli space is a quotient of S by the relation of isomorphism of homogeneous
structures; in particular tensors S with different holonomy groups give rise to dif-
ferent points of the moduli space. Once we have shown that {S = 0} is a separate
component of S , we will have that the components of S are preserved by the
equivalence relation and so give distinct components of the moduli space.
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Now for any real algebraic variety S ⊂ RN and any point S in S there is an
analytic path St, t ∈ [0, 1], with S0 = S and St 6= S, for t ∈ (0, 1]. Indeed such a
path may be taken to be a Nash function, see Bochnak et al. [3, Proposition 8.1.17].
Combining this with [3, Définition et Proposition 2.5.11] one has that the connected
components of S are analytically path-connected.

Suppose St is an analytic path of homogeneous structures with S0 = 0. Then
equation (6.1), gives that for Ṡ = dSt/dt|t=0, we have ∇Ṡ = Ṡ.S0 + S0.Ṡ = 0, so
Ṡ is parallel for the Levi-Civita connection. But any parallel tensor on RH(n) is
holonomy invariant.

The holonomy representation of ∇ on the tangent space of RH(n) is U = Rn as
the standard representation of SO(n). The tensor Ṡ lies in

U ⊗ Λ2U ∼= U ⊕ Λ3U ⊕W,

with W an irreducible representation of SO(n) of dimension 1
3
n(n− 2)(n+ 2). This

decomposition contains an invariant submodule only when n = 3. So for n 6= 3, we
conclude that Ṡ = 0.

We may repeat this argument for the higher derivatives of St at t = 0. When
n 6= 3, this gives that St has Taylor expansion 0 around t = 0, and thus that St is
the constant path. So for n 6= 3, we have that {S = 0} is a connected component of
the moduli space.

For n = 3, we may argue more directly. By Theorem 1.1, the holonomy algebras of
homogeneous connections on RH(3) are so(3) and 0, since the only other possibility
is so(n− 1) = so(2), which is Abelian, but has 3 dim so(2) = 3 > n− 1 = 2. Thus
there are only two homogeneous structures on RH(3), one with S = 0, and the other
of type T1 by Theorem 5.2. For structures of type T1, the tensor S is the S1 of
equation (5.3). The scalar curvature of the corresponding metric is determined by
‖ξ‖2, so for fixed scalar curvature, there is no path to S = 0, and the moduli space
again has two components.

Note that the final of the proof part confirms the determination of homogeneous
structures on RH(3) by Tricerri and Vanhecke [10].

The proof of the main Theorem 1.1 yields the following information about the
action of the holonomy group.

Corollary 6.2. Suppose ∇̃ is a homogeneous canonical connection on RH(n) whose
holonomy algebra hol is not so(n). Then the isotropy representation of hol on m
contains at least three disjoint modules: the first isomorphic to hol, the second an
effective representation of the centre of hol and the third a one-dimensional trivial
module. If hol is semi-simple the second module is zero.

Proof. In the notation of the proof of Theorem 1.1 the three modules are Vhol, V1
and ar.

Let us regard a geometric structure as any collection of tensors preserved by
some connection, not necessarily torsion-free. We say this geometry is homogeneous
if can be realised on a reductive homogeneous space with the connection being the
canonical connection.
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Corollary 6.3. Any homogeneous geometry on RH(n) that is not invariant under
the connected isometry group SO0(n, 1), admits a nowhere vanishing parallel vector
field.
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