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Abstract

The r-parallel volume V (Cr) of a compact subset C in d-dimensional Euclidean
space is the volume of the set Cr of all points of Euclidean distance at most
r > 0 from C. According to Steiner’s formula, V (Cr) is a polynomial in r
when C is convex. For finite sets C satisfying a certain geometric condition,
a Laurent expansion of V (Cr) for large r is obtained. The dependence of the
coefficients on the geometry of C is explicitly given by so-called intrinsic power
volumes of C. In the planar case such an expansion holds for all finite sets C.
Finally, when C is a compact set in arbitrary dimension, it is shown that the
difference of large r-parallel volumes of C and of its convex hull behaves like
crd−3, where c is an intrinsic power volume of C.

Keywords: Large parallel sets, Laurent expansion of parallel volume, Steiner
formula, intrinsic power volume.

1 Introduction

In 1840, Jakob Steiner [10] showed that the r-parallel volume of certain compact
convex sets in Rd are polynomials in r ≥ 0 when d = 2 or d = 3. The generalization
to arbitrary dimensions is now known as the Steiner formula

Vd(Cr) =
d∑

i=0

κd−iVd−i(C)ri, r ≥ 0. (1.1)

Here C is any compact convex subset of Rd, Cr is the (outer) r-parallel set of C
consisting of all points of distance at most r from C, Vd is the Lebesgue measure and
Vi(C) are the intrinsic volumes of C, which are defined by this relation. A possible
proof of (1.1) uses the fact that the intrinsic volumes can be given explicitly in the
case where the set C is a convex polytope P :

Vi(P ) =
∑

F∈Fi(P )

γ(P, F )Vi(F ), (1.2)
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i = 0, . . . , d. Here Fi(P ) is the family of i-dimensional faces of P and γ(P, F ) is
the outer angle of P at F defined in Equation (3.2) below. There are numerous
generalizations of the Steiner formula, for instance local versions [8, Chapter 4] and
even Steiner-type results for arbitrary closed sets C; see [3]. Often, Steiner-type
formulas are only valid for sufficiently small r, e.g. in the case of sets of positive
reach [1]. In the present work we focus on r-parallel volumes for large r and determine
a Laurent series expansion or at least its leading coefficients. We discuss mainly
the parallel volume of finite sets, which turns out to be already nontrivial, but
Theorem 2, below, deals with compact sets C ⊆ Rd. A first result for large parallel
volumes has been obtained in [4] for compact sets C ⊆ Rd, where it is shown that
the volume of Cr is close to the volume of its convex hull convCr = (convC)r. In
fact, there is a constant c = c(C) such that

0 ≤ Vd(convCr)− Vd(Cr) ≤ crd−3 (1.3)

for all sufficiently large r. In [4] an example set C was given where this volume
difference behaves like rd−3, so the exponent here is best possible. Independently, a
weaker version of (1.3) was shown in [7, Lemma 2], where C was assumed to be an
at most two-dimensional subset of the set {0, 1}d, d ≥ 3, and the volume difference
was shown to converge to zero faster than rd−2. In [7] this was used to obtain an
(incomplete) collection of asymptotic Miles-type formulas for the specific intrinsic
volumes of stationary digitized Boolean models of balls. It was the original moti-
vation for the present research to complete and generalize these results. One might
even ask for similar asymptotic formulas for the specific intrinsic volumes of digitized
standard random sets. (Standard random sets are stationary, a.s. locally polyconvex
random sets, satisfying a certain integrability condition; see [9, Definition 9.2.1]).
While the Boolean model case only requires (truncated) Laurent expansions for the
volume of the set Cr, being the Minkowski sum of C with the r-scaled Euclidean
unit ball Bd, results for general standard random sets would require such expansions
for the volume of the Minkowski sum of C with an arbitrary r-scaled polyconvex
set. In [6, Corollary 2.2] the first two leading coefficients of such a Laurent expan-
sion are determined and [6, § 5] discusses its application to the theory of random
sets, including the calculation of the one-sided derivative of the contact distribution
function at zero. However, higher order expansions in this general setting appear
not to be known.

Other applications of our expansions appear to be in reach. For example, in
[4] formula (1.3) was used to examine the expected value of the parallel volume
of Brownian paths, when the time is small, and to relate analytical properties of
r 7→ W (rK) to geometric properties of K, where W denotes the Wills functional
and K is a fixed compact set.

In the next section, the main results will be stated starting with the definition of
functionals of finite subsets of Rd capturing all geometric properties that are relevant
when considering large parallel volumes. An optimal lower bound for the constant c
in (1.3) will be given in Theorem 2. For finite sets C, we obtain an explicit Laurent
expansion in the case d = 2 in Proposition 1 and, under an additional condition
on C, in Theorem 5 for all d ≥ 2. Section 3 provides proofs of the main results and
discusses in particular the properties of the coefficients in the Laurent expansion.
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2 Main results

The r-parallel volumes of one-dimensional compact sets are trivially affine functions
for sufficiently large r. We therefore assume d ≥ 2 throughout the following. In the
spirit of (1.2) define

V
(m)
i (C) =

∑

F∈Fi(convC)

γ(convC,F )

∫

F

d(C ∩ F, x)m−i dx, (2.1)

where i = 0, . . . , d, m ≥ i, and C is a finite subset of Rd. We call the functionals
V

(m)
i the intrinsic power volumes. Here, integration is understood with respect to i-

dimensional Lebesgue measure in the affine hull of F , and d(C∩F, x) is the smallest
Euclidean distance between x and a point in C ∩ F . Due to (1.2), we have

V
(i)
i (C) = Vi(convC)

for all i = 0, . . . , d. The functionals V (m)
i , defined on the family of finite subsets

of Rd, share many properties with usual intrinsic volumes (see Lemma 9) and are
in particular independent of the dimension of the embedding space. The functional
V

(m)
1 (C), where the sum in (2.1) extends over all edges of convC, is given more

explicitly in (3.6). In particular, if C is the set of vertices of a convex polytope,

V
(m)
1 (C) =

1

m2m−1

∑

F∈F1(convC)

γ(convC,F )V m
1 (F ) (2.2)

m ≥ 1. In the case of planar finite sets, these (and the classical intrinsic volumes) are
the only intrinsic power volumes that occur in a Laurent expansion of large parallel
volumes.

Proposition 1. Let C ⊆ R2 be a finite set and put K = convC. Then

V2(Kr)− V2(Cr) = 2
∞∑

n=1

(2n− 3)!!

(2n)!!
V

(2n+1)
1 (C)r−(2n−1)

for all sufficiently large r. (The definition of the double factorial n!! is recalled in
Equation (3.1) below.)

Proposition 1 and Corollary 6 follow from Theorem 5 below. All other results in
this section will be shown in Section 3. The leading coefficient of the Laurent ex-
pansion in Proposition 1 depends on C through the intrinsic power volume V (3)

1 (C).
An analogue statement holds when C is only assumed to be compact, and in all
dimensions d ≥ 2. To define V (m)

1 (C), m ≥ 1, also for compact C ⊆ Rd, we choose
for any x ∈ Rd two points pCx and qCx in C with x in the line-segment [pCx , q

C
x ] and

C ∩ [pCx , q
C
x ] = {pCx , qCx }, whenever such points exist and are unique up to permuta-

tion. Otherwise we put pCx = qCx = x. We then define

V
(m)
1 (C) =

1

κd−1

∫

Rd

d({pCx , qCx }, x)m−1C1(convC, dx), (2.3)

where C1(convC, ·) is the first curvature measure of convC. If C is finite, then the
definitions (2.1) and (2.3) coincide as will be shown in Remark 7.
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Theorem 2. If K is the convex hull of a compact set C ⊆ Rd, then

lim
r→∞

Vd(Kr)− Vd(Cr)
rd−3

= ωd−1

2
V

(3)
1 (C). (2.4)

Here ωi is the surface area of the ((i− 1)-dimensional) unit sphere in Ri.

A natural question is whether the speed of convergence in Theorem 2 can be
determined: is there an α > 0 such that, for any compact C ⊆ Rd, there is a
constant c = c(C) with

∣∣∣∣
Vd(Kr)− Vd(Cr)

rd−3
− ωd−1

2
V

(3)
1 (C)

∣∣∣∣ ≤ cr−α

for all sufficiently large r? The following proposition (with f(r) = r−α/2) shows that
already in R2, such a stability result cannot hold.

Proposition 3. Let f : (0,∞)→ (0,∞) be a continuous bijective map with limr→∞
f(r) = 0. Then there is a compact set C ⊆ R2 and a number c > 0 such that

cf(r) ≤
∣∣∣∣
V2(Kr)− V2(Cr)

r−1
− V (3)

1 (C)

∣∣∣∣

for all sufficiently large r. As usual, we have put K = convC.

However, if the class of compact sets is replaced by the smaller class of all finite
sets, a stability result with α = 1 can be obtained. (That this speed of convergence
is optimal for this class when d ≥ 3 follows from Theorem 5 below.)

Theorem 4. Let C ⊆ Rd be finite and put K = convC. Then there is a constant
c = c(C) such that

∣∣∣∣
Vd(Kr)− Vd(Cr)

rd−3
− ωd−1

2
V

(3)
1 (C)

∣∣∣∣ ≤
c

r
, (2.5)

for sufficiently large r.

In the remainder of this section, C will always be a finite subset of Rd. Under the
following condition on the facets (these are the (d−1)-dimensional faces) of convC,
we can also obtain a Laurent series expansion of infinite order in higher dimensions,
generalizing Proposition 1.

Condition (A). For all facets G of the polytope K = convC and all faces F of G
we have

d(C ∩ F, x) = d(C ∩G, x) for all x ∈ F. (2.6)

Clearly (2.6) holds whenever F is a singleton or F = G. Hence Condition (A)
must only be checked for faces F of dimension between 1 and d − 2, and is in
particular satisfied for all finite sets C in R2. In R3, only edges F ∈ F1(K) must
be considered. In particular, if C is the vertex set of a simplicial polytope in R3,
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Condition (A) is violated if and only if at least one facet of convC is a triangle with
a strictly obtuse angle.

For instance, Condition (A) is fulfilled if C ⊆ Rd is the set of vertices of a
rectangular cuboid. If C is the set of the vertices of the standard simplex

Sd = {(x1, . . . , xd) ∈ Rd :
d∑

i=1

xi ≤ 1, x1, . . . , xd ≥ 0}

in Rd, Condition (A) is satisfied if and only if d ∈ {2, 3}. This can be shown as
follows. We have already seen that Condition (A) is trivially fulfilled when d = 2,
and it also holds for d = 3 as the triangles forming the facets of S3 do not contain
a strictly obtuse angle. For d ≥ 4 the point x = (1/3, 1/3, 1/3, 0, . . . , 0) ∈ Rd is
contained in the face

F = {(y1, y2, y3, 0, . . . , 0) ∈ Rd :
3∑

i=1

yi = 1, y1, y2, y3 ≥ 0}

of the facet G = Sd−1 × {0}. Hence (2.6) is violated, as

d(C ∩ F, x) =

√
2

3
>

√
1

3
= ‖x− o‖ = d(C ∩G, x).

If C ⊆ Rd satisfies Condition (A), a Laurent expansion for large parallel volumes
with explicit coefficients can be shown.

Theorem 5. Let K be the convex hull of a finite set C ⊆ Rd that satisfies Condi-
tion (A). Then

Vd(Kr)− Vd(Cr) =
∞∑

n=3−d
an(C)r−n

for all sufficiently large r. Here, the coefficients

an(C) =

min{d−1,n+d−2}∑

i=1,
2|(n+d−i)

(−1)(n+d−i+2)/2

(
(d− i)/2

(n+ d− i)/2

)
κd−iV

(n+d)
i (C)

vanish for all even positive n.

As Condition (A) is satisfied for all planar finite sets, Proposition 1 is a direct
consequence of Theorem 5. For d = 3 the representation in Theorem 5 simplifies
considerably.

Corollary 6. Let K be the convex hull of a finite set C ⊆ R3 that satisfies Condi-
tion (A). Then

V3(Kr)− V3(Cr) = πV
(3)
1 (C) + 2

∞∑

n=1

(2n− 3)!!

(2n)!!
V

(2n+2)
2 (C) r−(2n−1). (2.7)
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This section is concluded by an example where Corollary 6 is applied to the
vertex set

Cd = vert([0, 1]d) =
⋃

F∈F0([0,1]d)

F

of the unit cube [0, 1]d ⊆ Rd for d = 3. It will be shown in Subsection 3.6 below,
that (2.7) then becomes

V3([0, 1]3r)− V3(C3
r ) =

π

4
+
∞∑

n=1

bn r
−(2n−1) (2.8)

with

bn =
6

(2n+ 1)(2n− 1)(n+ 1)4n

n∑

i=0

(2i− 1)!!

i!
.

3 Proofs and auxiliary results

3.1 Notations and the intrinsic power volumes

The following subsection summarizes the notation and discusses basic properties
of the intrinsic power volumes. For the reader’s convenience we repeat the most
important concepts already named in the previous sections.

The Euclidean norm in Rd is denoted by ‖ · ‖, the closed Euclidean unit ball by
Bd and its boundary, the (d − 1)-dimensional unit sphere by Sd−1. We write AC,
diamA, bdA, intA, relintA for the set complement, the diameter, the topological
boundary, the interior and the relative interior of a set A ⊆ Rd, respectively. Let
d(A, x) = infy∈A ‖x− y‖ be the distance of x ∈ Rd to A ⊆ Rd. Let [x, y] be the line-
segment with endpoints x, y ∈ Rd. We denote the m-dimensional Hausdorff measure
by Hm and use the volume of the Euclidean unit ball κd = Hd(Bd) and the surface
area of the (d − 1)-dimensional unit sphere ωd = Hd−1(Sd−1). Often, we will write
Vd = Hd for the usual Lebesgue measure. The double factorial is defined to be

n!! =

{
n · (n− 2) · · · · · 2, if n is even,
n · (n− 2) · · · · · 1, if n is odd,

(3.1)

with the usual convention (−1)!! = 0!! = 1.
We recall some basic notions from convex geometry; see [8] for details. A convex

body is a nonempty compact convex set in Rd. For a convex body K let p(K, x)
be the metric projection of x ∈ Rd, that is the point in K closest to x. Then
d(K, x) = ‖x− p(K, x)‖ is the distance between x and K. If x 6∈ K,

u(K, x) =
x− p(K, x)

d(K, x)
∈ Sd−1

is the negative projection direction. Let Fi(K) be the family of all i-dimensional faces
of K, i = 1, . . . , d. We denote the normal cone of K at F ∈ Fi(K) by N(K,F ) and
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put n(K,F ) = N(K,F )∩Sd−1. Then n(K,F ) = {u(K, x) ∈ Sd−1 : x 6∈ K, p(K, x) ∈
relintF} and

γ(K,F ) =
Hd−i−1(n(K,F ))

ωd−i
(3.2)

is the exterior angle of K at F ∈ Fi(K), i = 0, . . . , d − 1. For completeness we
set γ(K,K) = 1 if K is full-dimensional. We recall that the support measures
Θ0(K, ·), . . . , Θd−1(K, ·) of K are the measures on Rd × Sd−1 satisfying

Hd({x ∈ Rd \K : d(K, x) ≤ r, (p(K, x), u(K, x)) ∈ η})

=
d−1∑

m=0

(
d−1
m

)

d−mrd−mΘm(K, η)

for all r ≥ 0 and all Borel-sets η ⊆ Rd × Sd−1. More generally, for any measurable
function f ≥ 0 on Rd we have

∫

Rd\K
f(x) dx =

d−1∑

m=0

(
d− 1

m

)∫

Rd×Sd−1

∫ ∞

0

f(x+ su)

×sd−m−1 dsΘm(K, d(x, u)). (3.3)

The support measures are concentrated on the (generalized) normal bundle

N (K) = {(p(K, y), u(K, y)) : y 6∈ K} ⊆ (bdK)× Sd−1.

Their total mass is

Θm(K,Rd × Sd−1) = ωd−m

(
d− 1

m

)−1
Vm(K). (3.4)

The area measures of K are the projections of the support measures to their second
component:

Sm(K,ω) = Θm(K,Rd × ω)

where ω is a Borel-set in Sd−1. The curvature measures are their projections on the
first component given by

Cm(K, β) = Θm(K, β × Sd−1)

for Borel-sets β ⊆ Rd. If K is a polytope, then
(
d− 1

m

)
Θm(K, η) =

∑

F∈Fm(K)

∫

F

∫

n(K,F )

1η(x, u) dHd−m−1(u)dHm(x) (3.5)

for any Borel set η ⊆ Rd × Sd−1; see [8, (4.2.2)].
Remark 7. If C is finite, then (3.5) implies

C1(convC, ·) = κd−1
∑

F∈F1(convC)

γ(convC,F )H1(F ∩ ·),

and thus, (2.3) coincides with the definition (2.1) when i = 1.
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For a convex body K ⊆ Rd we call

FK(u) = {x ∈ K : 〈x, u〉 = hK(u)}

the support set of K in direction u ∈ Sd−1.

Lemma 8. Let K ⊆ Rd be a convex body and m ∈ {0, . . . , d− 2}. Set

Am = {u ∈ Sd−1 : dimFK(u) ≥ m+ 1}.

Then Sm(K,Am) = 0.

Proof. As a straight-forward generalization of [8, Theorem 2.2.9], we obtain

Hd−m−1(Am) = 0.

By [8, Theorem 4.6.5] there is a constant a such that

Sm(K,ω) ≤ aHd−m−1(ω)

for each (Hd−m−1, d−m−1)-rectifiable set ω ⊆ Sd−1, where we just want to mention
that zero sets are always rectifiable and refer to [2, 3.2.14] for a complete definition.
So, Sm(K,Am) = 0.

We now summarize properties of the intrinsic power volumes as functionals on
the family E of finite subsets of Rd. In order to get a simplified expression for V1(C),
we define the set

F∗1 (C) = {[x, y] : x 6= y, [x, y] ∩ C = {x, y},
there is e ∈ F1(convC) with [x, y] ⊆ e}

of all refined edges of convC, where every edge in F1(convC) is partitioned into line
segments such that exactly their endpoints are in C. Note that if C = F0(K) for a
convex polytope K, then F∗1 (C) = F1(convC), but in general this does not hold.
For e ∈ F∗1 (C) we put N(convC, e) = N(convC, ẽ) and γ(convC, e) = γ(convC, ẽ),
where ẽ is the unique edge of convC with e ⊆ ẽ.

Lemma 9 (Properties of V (m)
i ). Let i = 1, . . . , d, and m ≥ i be given.

(a) V (i)
i (C) = Vi(convC) for any C ∈ E.

(b) V (m)
i is homogeneous of degree m:

V
(m)
i (αC) = αmV

(m)
i (C)

for all α ≥ 0 and all C ∈ E.
(c) V (m)

i is motion invariant.

(d) V (m)
i is independent of the embedding space: Let C be a finite set in Rd′ ⊆ Rd

for some d′ < d. Then V (m)
i (C) for C considered as a subset of Rd′ coincides

with V (m)
i (C) for the (lower-dimensional) subset C of Rd.
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(e) Simplified expression for V (m)
1 : For finite C ⊆ Rd we have

V
(m)
1 (C) =

1

2m−1m

∑

F∈F∗1 (convC)

γ(convC,F )V1(F )m. (3.6)

Thus, V (m)
i , as a functional on E , has similar properties as the intrinsic volume

on the family of convex bodies. However, in contrast to the latter, V (m)
i is in general

not a valuation and not continuous with respect to the Hausdorff metric.

3.2 Proof of Theorem 2

The proof of Theorem 2 is divided in a sequence of lemmas. Several times, the
following analytical lemma will be needed. It can be shown using a Taylor expansion
of order two.

Lemma 10. Let n ∈ N, 0 ≤ a ≤ r, and fn(r) = rn −
√
r2 − a2n. Then

1
2
a2r−1 ≤ fn(r) ≤ 1

2
a2r−1 +

√
2
4
a4r−3, if n = 1, and a ≤ r

2
,

3
2
a2r − 3

√
2

8
a4r−1 ≤ fn(r) ≤ 3

2
a2r, if n = 3, and a ≤ r

2
,

n
2
a2rn−2 − n(n−2)

8
a4rn−4 ≤ fn(r) ≤ n

2
a2rn−2, if n ≥ 4.

In short,
∣∣fn(r)− n

2
a2rn−2

∣∣ ≤ cna
4rn−4 (3.7)

where c2 = 0 and cn = n(n − 2)/8 for n ≥ 4. Inequality (3.7) also holds for n = 1
with c1 =

√
2/4 and for n = 3 with c3 = 3

√
2/8 if 0 ≤ a ≤ r/2. In particular, the

inequality fn(r) ≤ na2rn−2, which is elementary for n = 1, holds for all n.

For compact C ⊆ Rd we now show that the difference between the parallel
volume of K = convC and the parallel volume of C is approximately

IC(r) = (d− 1)

∫

Rd×Sd−1

∫ ∞

0

1Kr\Cr(x+ su)sd−2 dsΘ1(K, d(x, u)).

Lemma 11. Let C ⊆ Rd be a compact set and put K = convC. Then there is a
constant c = c(C) with

0 ≤ Vd(Kr)− Vd(Cr)− IC(r) ≤ c · rd−4 (3.8)

for all r ≥ diamC.

Proof. If x ∈ Kr \ Cr, then extK ⊆ C, where extK :=
⋃
F∈F0(K) F , implies

p(K, x) /∈ extK, (3.9)

and an application of the Pythagorean theorem implies

d(K, x) >
√
r2 − (diamC)2, (3.10)
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whenever r ≥ diamC; see [5, Example 3.2 and Lemma 3.4]. Since r ≥ diamC implies
(Kr\Cr)∩K = ∅ and (3.9) together with Lemma 8 imply Θ0(K, {(p(K, x), u(K, x)) |
x ∈ Kr \ Cr}) = 0, we get from (3.3) with f = 1Kr\Cr that

Vd(Kr)− Vd(Cr) = Vd(Kr \ Cr)

=
d−1∑

m=1

(
d− 1

m

)∫

Rd×Sd−1

∫ ∞

0

1Kr\Cr(x+ su)

× sd−m−1 dsΘm(K, d(x, u)). (3.11)

The term on the right hand side of (3.11) corresponding to m = 1 is IC(r). We
now consider the summands of the right hand side of (3.11) for which m ≥ 2. For
d = 2 no such summands exist. Since all these summands are non-negative for d ≥ 3,
the left inequality of the assertion is shown. The right inequality follows from the
fact that – due to equations (3.10) and (3.4) and Lemma 10 – the right hand side
of (3.11), without the summand for m = 1, is bounded from above by

d−1∑

m=2

(
d− 1

m

)∫

Rd×Sd−1

∫ r

√
r2−(diamC)2

sd−m−1 dsΘm(K, d(x, u))

=
d−1∑

m=2

ωd−m
1

d−m
(
rd−m − (r2 − (diamC)2)(d−m)/2

)
Vm(K)

≤
d−1∑

m=2

ωd−m(diamC)2rd−m−2Vm(K)

≤ crd−4,

where c =
∑d−1

m=2 ωd−m(diamC)4−mVm(K).

An upper bound for IC(r) is obtained easily.

Lemma 12. Let C ⊆ Rd be a compact set and put K = convC. If r ≥ 2(diamC),
then

IC(r) ≤ ωd−1

2
V

(3)
1 (C)rd−3

for d ≥ 3 and
IC(r) ≤ V

(3)
1 (C)r−1 +

√
2
4
V

(5)
1 (C)r−3

for d = 2.

Proof. Recall A1 := {u ∈ Sd−1 | dimFK(u) ≥ 2}. For any (x, u) ∈ ((bdK)× AC
1 ) ∩

N (K) the set FK(u) is a (possibly degenerate) line segment, and thus there are
points p and q with x ∈ [p, q] and [p, q]∩C = {p, q}. If x /∈ C, then these points are
(up to permutation) unique and then they are denoted by pCx and qCx . Otherwise we
put pCx = qCx = x. Now

1Kr\Cr(x+ su) = 1[pCx ,q
C
x ]r\Cr

(x+ su) ≤ 1[pCx ,q
C
x ]r\{pCx ,qCx }r(x+ su)
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holds for all (x, u) ∈ ((bdK) × AC
1 ) ∩ N (K) and hence for Θ1-a.a. (x, u) ∈ N (K)

by Lemma 8. Setting ax = d({pCx , qCx }, x), we get

IC(r) ≤ (d− 1)

∫

Rd×Sd−1

∫ ∞

0

1[pCx ,q
C
x ]r\{pCx ,qCx }r(x+ su) sd−2 dsΘ1(K, d(x, u))

= (d− 1)

∫

Rd×Sd−1

∫ r

√
r2−a2x

sd−2 dsΘ1(K, d(x, u))

=

∫

Rd

(
rd−1 −

√
r2 − a2x

d−1)
C1(K, dx).

Lemma 10 with n = d− 1 and a = ax yields

IC(r) ≤ d−1
2

∫

Rd

a2xC1(K, dx)rd−3

for d ≥ 3, and

IC(r) ≤ 1
2

∫

Rd

a2xC1(K, dx)r−1 +
√
2
4

∫

Rd

a4xC1(K, dx)r−3

for d = 2. In view of (2.3) this shows the assertion.

We now derive the corresponding asymptotic lower bound for IC(r)r−(d−3).

Lemma 13. For any compact C ⊆ Rd we have

lim inf
r→∞

IC(r)

rd−3
≥ ωd−1

2
V

(3)
1 (C). (3.12)

Proof. Let K be the convex hull of C. For x ∈ Rd set τx = (qCx − pCx )/‖qCx − pCx ‖ if
pCx 6= qCx , and set τx = o, otherwise. The following arguments do not depend on the
orientation of τx. For (x, u) ∈ N (K), ε ≥ 0 and δ > 0 we denote the indicator of the
following event by ζ(x, u, ε, δ): for any y ∈ C the implication

〈x− y, u〉 ≤ ε ⇒ 〈y, τx〉 < 〈pCx , τx〉+ δ or 〈y, τx〉 > 〈qCx , τx〉 − δ

holds. Note that if pCx = qCx (and in particular if x ∈ C), we have ζ(x, u, ε, δ) = 1.
Fix (x, u) ∈ N (K) with x /∈ C, and numbers δ > 0, ε, s ≥ 0. Put

ax = d({pCx , qCx }, x) ≤ diamC

2

and rε = max{(diamC)2/(4ε), (diamC)/2}. In order to find a lower bound for IC(r),
we will first show the inequality

ζ(x, u, ε, δ)1{
√
r2−((ax−δ)+)2≤s} ≤ 1{d(C,x+su)≥r}, (3.13)

for all r ≥ rε.
So assume ζ(x, u, ε, δ) = 1 and

√
r2 − ((ax − δ)+)2 ≤ s. Next let y ∈ C. If

〈x− y, u〉 ≤ ε, then ζ(x, u, ε, δ) = 1 implies

d(y, x+ su)2 ≥ s2 + 〈x− y, τx〉2 ≥ s2 + ((ax − δ)+)2 ≥ r2.

11



If 〈x− y, u〉 > ε, then

d(y, x+ su)2 ≥ (〈x− y, u〉+ s)2 ≥
(
ε+

√
r2 − ((ax − δ)+)2

)2 ≥ r2

for all r ≥ rε by Lemma 10. So d(C, x+ su) ≥ r for all r ≥ rε, which completes the
proof of (3.13).

Now let ε, δ > 0. For all r ≥ rε Lemma 8 and inequality (3.13) imply

IC(r) = (d− 1)

∫

(bdK)×AC
1

∫ r

0

1{d(C,x+su)≥r}s
d−2 dsΘ1(K, d(x, u))

≥ (d− 1)

∫

(bdK)×AC
1

∫ r

√
r2−((ax−δ)+)2

ζ(x, u, ε, δ)sd−2 dsΘ1(K, d(x, u))

=

∫

(bdK)×AC
1

ζ(x, u, ε, δ)
(
rd−1 −

√
r2 − ((ax − δ)+)2

d−1)
Θ1(K, d(x, u)).

Since

lim
r→∞

rd−1 −
√
r2 − ((ax − δ)+)2

d−1

rd−3
= d−1

2
((ax − δ)+)2

due to Lemma 10, Fatou’s lemma gives

lim inf
r→∞

IC(r)

rd−3
≥ d−1

2

∫

(bdK)×AC
1

ζ(x, u, ε, δ)
(
(ax − δ)+

)2
Θ1(K, d(x, u)).

Now we first let ε → 0 using limε→0 ζ(x, u, ε, δ) = ζ(x, u, 0, δ), and the monotone
convergence theorem. Since ζ(x, u, 0, δ)((ax − δ)+)2 ≤ (diamC)2, we can use the
dominated convergence theorem to let δ → 0, and get

lim inf
r→∞

IC(r)

rd−3
≥ d−1

2

∫

(bdK)×AC
1

lim
δ→0

ζ(x, u, 0, δ)a2x Θ1(K, d(x, u)).

For all (x, u) ∈ (bdK)× AC
1 , we have limδ→0 ζ(x, u, 0, δ) = 1, and (3.12) follows

using (2.3) and Lemma 8.

Theorem 2 now follows directly from Lemmas 11, 12, and 13.

3.3 Proof of Proposition 3

Without loss of generality, may assume that f(r) ≥ 1
r
holds for all r ∈ (0,∞). Put

g : [0, 1]→ (−∞, 0], x 7→ −x/(6f−1(x)), and let S = g(1)− 1,

C = {(x, g(x)) : x ∈ [0, 1]} ∪ {(x, g(2− x)) : x ∈ [1, 2]} ∪ {(0, S), (2, S)}

and
C0 = {(0, 0), (2, 0), (0, S), (2, S)}.

12



For any r ∈ R, large enough that f(r) ≤ 1/3, we have r ≥ 1
f(r)
≥ 3 and

V2(Cr)− V2(C0
r ) ≥

∫ 1

0

max{y ∈ R : (x, y) ∈ Cr}

−max{y ∈ R : (x, y) ∈ C0
r} dx

≥
∫ 1

0

max{y ∈ R : ‖(x, y)− (f(r), g(f(r)))‖ ≤ r}

−max{y ∈ R : (x, y) ∈ C0
r} dx

=

∫ 1

0

√
r2 − (x− f(r))2 + g(f(r))−

√
r2 − x2 dx

≥
∫ 1

0

2xf(r)− f(r)2

2
√
r2 − (x− f(r))2

+ g(f(r)) dx

by using Lemma 10 with r, a, and n replaced by
√
r2 − (x− f(r))2,

√
2xf(r)− f(r)2,

and 1, respectively. Since g(f(r)) = −f(r)
6r

, this integral can be estimated from below
by

∫ 1

0

2xf(r)− f(r)2

2r
− f(r)

6r
dx =

f(r)

2r
− f(r)2

2r
− f(r)

6r
≥ f(r)

6r
.

Observing that K = convC = convC0 and V (3)
1 (C) = V

(3)
1 (C0) we conclude from

Proposition 1 that there is a constant c1 ≥ 0 with

V
(3)
1 (C)1

r
−
(
V2(Kr)− V2(Cr)

)

= −
(
V2((convC0)r)− V2(C0

r )− V (3)
1 (C0)1

r

)
+
(
V2(Cr)− V2(C0

r )
)

≥ −c1
r3

+
f(r)

6r

≥ f(r)

12r

for all sufficiently large r. Hence

V2(Kr)− V2(Cr)
r−1

− V (3)
1 (C) ≤ − 1

12
f(r)

for all sufficiently large r and Proposition 3 is shown.
Remark 14. In order to show an statement analogue to Proposition 3 in higher
dimensions, one can consider bodies of revolution.

3.4 Proof of Theorem 4

Theorem 4 is a consequence of Lemmas 11, 12 and the following result.

Lemma 15. For any finite set C ⊆ Rd there is a constant c = c(C) > 0 such that

IC(r) ≥ ωd−1

2
V

(3)
1 (C)rd−3 − crd−4 (3.14)

for sufficiently large r.
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Proof. We have

IC(r) = (d− 1)

∫

(bdK)×Sd−1

∫ r

0

1(Cr)C(x+ su)sd−2 dsΘ1(K, d(x, u)).

As

1(Cr)C(x+ su) = 1({pCx ,qCx }r)C(x+ su)
(
1− 1(C\{pCx ,qCx })r(x+ su)

)

≥ 1({pCx ,qCx }r)C(x+ su)
(
1−

∑

y∈C
1[0,r](‖x+ su− y‖)

)
,

and
1({pCx ,qCx }r)C(x+ su) = 1(√

r2−a2x,∞
)(s)

(with ax = d({pCx , qCx }, x)), we get

IC(r) ≥
∫

(bdK)×Sd−1

(
rd−1 −

√
r2 − a2x

d−1)
Θ1(K, d(x, u))−

∑

y∈C
JC(r, y). (3.15)

Here,

JC(r, y) = (d− 1)

∫

(bdK)×Sd−1

∫ r

0

1({pCx ,qCx }r)C(x+ su) (3.16)

× 1[0,r](‖(x+ su)− y‖)sd−2 dsΘ1(K, d(x, u)).

By Lemma 16 below, JC(r, y) = O(rd−4) for all y ∈ C, as r → ∞, and thus the
second term on the right hand side of (3.15) is O(rd−4). Lemma 10 with n = d− 1
and a = ax together with (2.3) shows that the first term on the right hand side of
(3.15) is bounded from below by

ωd−1

2
V

(3)
1 (C)rd−3 − cd−1κd−1V (5)

1 (C)rd−5

for all sufficiently large r. Hence (3.14) follows from (3.15).

Lemma 16. Let C ⊆ Rd be finite and y ∈ C. Then there is a constant c =
c(C, y) > 0 such that

JC(r, y) ≤ crd−4

for all sufficiently large r, where JC(r, y) is defined by (3.16).

Proof. From (3.16) and (3.5) we get

JC(r, y) =
∑

e∈F∗1 (K)

∫

e

∫

n(K,e)

∫ r

0

ζ(x+ su)sd−2 ds dHd−2(u) dH1(x).

where ζ(z) = 1((relbd e)r)C(z)1[0,r](‖z − y‖). Note that the relative boundary relbd e
of e consists just of the two endpoints of e. Spherical coordinates in hyperplanes
orthogonal to e and Fubini’s theorem give

JC(r, y) =
∑

e∈F∗1 (K)

∫

Rd

1e(p(K, z))1n(K,e)(u(K, z))ζ(z) dz. (3.17)
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Fix e ∈ F∗1 (K) and let x1 and x2 be its endpoints. We assume without loss of
generality that e contains the origin. Let g be the affine hull of e and let L be the
affine hull of e and y. We may assume y 6∈ g, since we cannot have y ∈ relint e and
we have 1e(p(K, z))1n(K,e)(u(K, z))ζ(z) = 0 for all z ∈ Rd if y ∈ g \ relint e. Let H+

be the closed half space containing e in its boundary with normal vector y− p(g, y),
such that y 6∈ H+. Finally let Vy be the Voronoi cell of y with respect to the set
{x1, x2, y}. The planar set

T = L ∩ Vy ∩H+ ∩ (e+ g⊥)

is either empty or a bounded triangle. For nonempty T let δ > 0 be the maximal
distance from a point of T to {x1, x2}. If T = ∅ put δ = 0. If we can show that

1e(p(K, z))1n(K,e)(u(K, z))ζ(z) ≤ 1T (z|L)1(
√
r2−δ2,r](‖z|L⊥‖) (3.18)

holds for all sufficiently large r, then
∫

Rd

1e(p(K, z))1n(K,e)(u(K, z))ζ(z) dz

≤
∫

L⊥

∫

L

1T (y1)1(
√
r2−δ2,r](‖y2‖) dy1 dy2

= V2(T ) · κd−2
(
rd−2 −

√
r2 − δ2d−2

)

≤ (d− 2)κd−2V2(T )δ2rd−4,

for all sufficiently large r. The last inequality is evident in the case d = 2, and follows
for d ≥ 3 from Lemma 10 with n = d − 2 and a = δ. Bounding all summands in
(3.17) in such a way shows the assertion.

It remains to prove (3.18). Assume that the left hand side of (3.18) is one. Then
p(K, z) ∈ e, u(K, z) ∈ n(K, e), ‖z−x1‖ > r, ‖z−x2‖ > r, and ‖z−y‖ ≤ r. The last
three inequalities imply z ∈ Vy and z|L ∈ Vy|L = Vy ∩ L. The convexity of K and
y ∈ K imply 〈z − p(K, z), y − p(K, z)〉 ≤ 0. Since both z − p(K, z) and y − p(g, y)
are perpendicular to g, this gives z ∈ H+. Finally,

z ∈ e+N(K, e) ⊆ e+ g⊥

gives z|L ∈ T . As ‖z|L⊥‖ ≤ ‖z − y‖ ≤ r and

r2 < d({x1, x2}, z)2 = d({x1, x2}, z|L)2 + d(z|L, z)2 ≤ δ2 + ‖z|L⊥‖2,

we have
√
r2 − δ2 < ‖z|L⊥‖ ≤ r, and (3.18) is shown.

3.5 Proof of Theorem 5

We first show a key observation: If Condition (A) holds, then the part of the dif-
ference set Kr \ Cr that is projected on a face F is independent of the points of C
outside F .
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Lemma 17. Let C ⊆ Rd be a finite set satisfying Condition (A). If K = convC,
m ∈ {0, . . . , d}, and F ∈ Fm(K) then

(Kr \ Cr) ∩ (F +N(K,F )) = (Fr \ (C ∩ F )r) ∩ (F +N(K,F )) (3.19)

for all sufficiently large r.

Proof. Since
Kr ∩ (F +N(K,F )) = Fr ∩ (F +N(K,F ))

and (C ∩ F )r ⊆ Cr, the set on the left-hand side is contained in the set on the
right-hand side. To show the opposite inclusion, let Vy be the Voronoi cell of y ∈ C
with respect to C, let Sy = Vy ∩ (F + N(K,F )) be the set of all the points in Vy
with metric projection in F , and define

r0 = min{r ≥ 0 : Sy ⊆ (C ∩ F )r for all y ∈ C with bounded Sy}.

Let r > r0 and assume

x ∈ (Fr \ (C ∩ F )r) ∩ (F +N(K,F )).

Then, clearly, x ∈ Kr. Moreover, we have ‖x − y‖ > r for all y ∈ C ∩ F . As
{Vy : y ∈ C} covers Rd, there is a y ∈ C with x ∈ Vy ∩ (F + N(K,F )) = Sy. The
definition of r0 and x /∈ (C ∩F )r imply that the closed convex set Sy is unbounded.
Hence, there is a ray with direction v, say, completely contained in Sy. It follows
that v ∈ N(K,F ) and, as the ray is contained in Vy, that 〈y, v〉 ≥ hK(v). Hence F
and y are contained in a supporting hyperplane of K (with normal v), and thus they
are contained in some facet G of K. As x′ = p(K, x) ∈ F , Condition (A) implies
that there is a point y′ ∈ C ∩ F with ‖y − x′‖ ≥ ‖y′ − x′‖ and thus

d(C, x)2 = ‖y − x‖2 ≥ ‖y − x′‖2 + ‖x′ − x‖2
≥ ‖y′ − x′‖2 + ‖x′ − x‖2 = ‖y′ − x‖2 > r2,

where the first equality is due to x ∈ Vy, and the last inequality is due to x /∈ (C∩F )r.
Hence x /∈ Cr, which completes the proof of (3.19).

We now prove Theorem 5. Let C ⊆ Rd be a finite set that satisfies Condition
(A), and set K = convC. Assume r > diamC. Due to (3.3) with f = 1Kr\Cr , (3.9),
and (3.5) we have

Vd(Kr)− Vd(Cr) =
d−1∑

m=1

∑

F∈Fm(K)

IF,m (3.20)

with

IF,m =

∫

F

∫

n(K,F )

∫ ∞

0

1Kr\Cr(x+ su)sd−m−1 ds dHd−m−1(u) dHm(x),
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m ∈ {1, . . . , d− 1}, F ∈ Fm(K). Lemma 17 implies

IF,m =

∫

F

∫

n(K,F )

∫ ∞

0

1Fr\(C∩F )r(x+ su)sd−m−1 ds dHd−m−1(u) dHm(x)

=

∫

F

∫

n(K,F )

∫ r

√
r2−d(C∩F,x)2

sd−m−1 ds dHd−m−1(u) dHm(x)

=
ωd−m
d−mγ(K,F )

∫

F

(
rd−m −

√
r2 − d(C ∩ F, x)2

d−m)
dHm(x).

Put aF,x = d(C ∩ F, x). The binomial series

rd−m −
√
r2 − a2F,x

d−m
= rd−m

∞∑

k=1

(−1)k+1

(
(d−m)/2

k

)(aF,x
r

)2k

converges absolutely as r > diamC ≥ aF,x. Hence

IF,m =
∞∑

k=1

(−1)k+1

(
(d−m)/2

k

)
κd−mγ(K,F )

∫

F

a2kF,x dHm(x)rd−m−2k

=
∞∑

n=2−(d−m),
2|(n+d−m)

(−1)(n+d−m+2)/2

(
(d−m)/2

(n+ d−m)/2

)

× κd−mγ(K,F )

∫

F

an+d−mF,x dHm(x) r−n.

Substitution into (3.20) and definition (2.1) gives

Vd(Kr)− Vd(Cr) =
d−1∑

m=1

∞∑

n=2−(d−m),
2|(n+d−m)

(−1)(n+d−m+2)/2

(
(d−m)/2

(n+ d−m)/2

)

× κd−mV (n+d)
m (C) r−n

=
∞∑

n=3−d

min{d−1,n+d−2}∑

m=1,
2|(n+d−m)

(−1)(n+d−m+2)/2

(
(d−m)/2

(n+ d−m)/2

)

× κd−mV (n+d)
m (C) r−n.

This concludes the proof of Theorem 5.

3.6 The example of the unit cube.

We show (2.8). In arbitrary dimension d we have

#Fi([0, 1]d) = 2d−i
(

d

d− i

)

and, using orthogonal projections and symmetry,

γ([0, 1]d, F ) = γ([0, 1]d−i, {o}) = (#F0([0, 1]d−i))−1 = 2−(d−i),
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for any F ∈ Fi([0, 1]d), i = 0, . . . , d − 1. Thus definition (2.1) and a symmetry
argument give

V
(m+i)
i (Cd) =

(
d

d− i

)∫

[0,1]i
d(Ci, x)mdx

= 2i
(

d

d− i

)∫

[0,1/2]i
‖x‖mdx

= 2−m
(

d

d− i

)∫

[0,1]i
‖x‖mdx.

This implies

V
(m+1)
1 (Cd) =

d

(m+ 1)2m
(3.21)

for m ≥ 0, and, introducing polar coordinates,

V
(m+2)
2 (Cd) = 2−m

(
d

d− 2

)
2

∫ π/4

0

∫ 1/ cosϕ

0

‖(r · (cosϕ, sinϕ)‖mr dr dϕ

=
d(d− 1)

(m+ 2)2m

∫ π/4

0

cos−(m+2)(ϕ) dϕ.

We put dn :=
∫ π/4
0

cos−n(ϕ) dϕ. Integrating
∫ π/4
0

cos−(n+1)(ϕ) cos(ϕ) dϕ by parts,
we obtain the recurrence

(n+ 1)dn+2 = 2n/2 + ndn, n ≥ 0,

with starting value d0 = π
4
. Induction gives

d2m = 2m−1
(m− 1)!

(2m− 1)!!

m−1∑

i=0

(2i− 1)!!

i!
,

and we arrive at

V
(2m+2)
2 (C3) =

3

(m+ 1)4m
d2m+2

=
3(m!)

(2m+ 1)!! (m+ 1)2m

m∑

i=0

(2i− 1)!!

i!
. (3.22)

As C3 satisfies Condition (A), (2.8) follows by substituting (3.21) with d = 3,
m = 2, and (3.22) into (2.7).
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