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RENORMALIZED TWO-BODY LOW-ENERGY SCATTERING

E. SKIBSTED

Abstract. For a class of long-range potentials, including ultra-strong pertur-
bations of the attractive Coulomb potential in dimension d ≥ 3, we introduce
a stationary scattering theory for Schrödinger operators which is regular at zero
energy. In particular it is well defined at this energy, and we use it to establish a
characterization there of the set of generalized eigenfunctions in an appropriately
adapted Besov space generalizing parts of [DS1]. Principal tools include global
solutions to the eikonal equation and strong radiation condition bounds.
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1. Introduction

For a class of long-range potentials we introduce a stationary scattering theory
for Schrödinger operators H = −∆ + V on L2(Rd) which is regular at zero energy.
In particular it is well defined at this energy, and we use it to establish a charac-
terization there of the set of generalized eigenfunctions in an appropriately adapted
Besov space. The analogue of this characterization at positive energies for potentials
obeying 〈x〉µ+|α||∂αV (x)| ≤ Cα for some µ > 0 is well known [AH, Hö, GY]. It goes
as follows:

For all λ > 0 and all generalized eigenfunctions, (H − λ)uλ = 0, in the Besov
space B(|x|)∗ there exist unique τ, τ̃ ∈ L2(Sd−1) such that

uλ(x)− C|x|−(d−1)/2(eiS(x,λ)τ(ω) + e−iS(x,λ)τ̃(ω)) ∈ B(|x|)∗0. (1.1)

Here S(·, λ) =
√
λ|x| + o(|x|) is a solution to the eikonal equation, ω = x/|x| and

B(|x|)∗0 ⊂ B(|x|)∗ are specified by

u ∈ B(|x|)∗ ⇔ u ∈ L2
loc(Rd) and sup

R>1
R−1‖F (|x| < R)u‖ <∞,

u ∈ B(|x|)∗0 ⇔ u ∈ L2
loc(Rd) and lim

R→∞
R−1‖F (|x| < R)u‖ = 0.

Moreover we can write τ̃(ω) = (S(λ)−1τ)(−ω) where the operator S(λ) is a unitary
operator on L2(Sd−1) named the scattering matrix at energy λ. The family of
these operators is connected to a scattering operator from time-dependent scattering
theory by a Legendre transformation.

The (inverse) scattering matrix at energy λ is determined by (1.1): For all τ ∈
L2(Sd−1) there exist a unique τ̃ ∈ L2(Sd−1) and a unique generalized eigenfunction
uλ ∈ B(|x|)∗ such that the asymptotics (1.1) is fulfilled. Whence indeed the set
of generalized eigenfunctions in B(|x|)∗ at any positive energy λ is characterized
by (1.1). The variable ω may be thought of as the observable asymptotic normalized
velocity, see [DS1] for discussion.

We refer to [Me, Va] for a related approach to stationary scattering theory for a
class of geometric models.

For a class of potentials, negative at infinity and to leading order spherically
symmetric, the above constructions were extended down to (and including) zero
energy [DS1]. We refer to [DS2, Fr] for explicit calculations of the scattering matrix
at zero energy and to [Ya, SW] for related one-dimensional results on asymptotics
of scattering quantities. Whence in particular the set of generalized zero energy
eigenfunctions in an appropriately adapted Besov space is characterized in [DS1]
for the restrictive class of potentials. Since in turn this class of potentials is close
to being optimal for the existence in Classical Mechanics of asymptotic normalized
velocity at zero energy the given characterization result may be viewed as “best
possible”. Nevertheless the purpose of this paper is to provide a similar characteri-
zation of generalized zero energy eigenfunctions for a bigger class of potentials than
considered in [DS1]. Again we obtain a parametrization by L2(Sd−1) howewer the
isomorphism is different. Rather than involving functions on a sphere of asymptotic
normalized velocities it will be in terms of functions on a sphere of initial velocities.
In this sense our approach will be in the spirit of [ACH] where a distorted Fourier
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transform is constructed for order zero potentials at high energies in terms of a fam-
ily of initially controlled geodesics. We prove low-energy radiation condition bounds
of independent interest.

The class of potentials to be studied in this paper is introduced in Section 2. In
the remaining part of the present section we review various background results for
a somewhat bigger class. The zero energy characterization problem makes sense for
this bigger class (at least to some degree), see Subsection 1.2. Whence the class
considered in the bulk of the paper may not be optimal for the characterization
problem although a further extension would involve difficult problems to overcome,
see Subsection 1.3.

1.1. A priori quantum bounds. We give an account of some recent results [Sk].
These include Besov space bounds of the resolvent at low energies in any dimension
for a class of potentials that are negative and obey a virial condition with these
conditions imposed at infinity only. There are two boundary values of the resolvent
at zero energy which are characterized by radiation conditions. These radiation con-
ditions are zero energy versions of the well-known Sommerfeld radiation condition.

We consider the Schrödinger operator H = −∆+V on H = L2(Rd), d ≥ 1, where
the potential V obeys the following condition. We use the notation 〈x〉 =

√
x2 + 1,

N0 = N ∪ {0}, and for µ ∈ (0, 2) the notation s0 = 1/2 + µ/4.

Condition 1.1. Let V = V1 + V2 be a real-valued function defined on Rd; d ≥ 1.
There exists µ ∈ (0, 2) such that the following conditions (1)–(5) hold.

(1) There exists ε1 > 0 such that V1(x) ≤ −ε1〈x〉−µ.
(2) V1 ∈ C∞(Rd). For all α ∈ Nd

0 there exists Cα > 0 such that

〈x〉µ+|α||∂αV1(x)| ≤ Cα.

(3) There exists ε̃1 > 0 such that −|x|−2 (x · ∇(|x|2V1)) ≥ −ε̃1V1.
(4) There exists δ, C,R > 0 such that

|V2(x)| ≤ C|x|−2s0−δ,

for |x| > R.
(5) V2 ∈ Lploc(Rd), where p = 2 if d = 1, 2, 3 and p > d/2 if d ≥ 4.

Due to (4) and (5) the operator V2(−∆ + i)−1 is a compact operator on L2(Rd),
cf. [RS, Theorem X.20]. Whence H is self-adjoint. The Schrödinger operator with
an attractive Coulomb potential in dimension d ≥ 3 is a particular example.

Let θ ∈ (0, π), λ0 > 0 and define

Γθ,λ0 = {z ∈ C \ {0}
∣∣ arg z ∈ (0, θ), |z| ≤ λ0}. (1.2)

For a Hilbert space H (which in our case will be L2(Rd)) we denote by B(H)
the space of bounded linear operators on H (a similar notation will be used for
Banach spaces). A B(H)-valued function T (·) on Γθ,λ0 is said to be uniformly Hölder
continuous in Γθ,λ0 if there exist C, γ > 0 such that

‖T (z1)− T (z2)‖ ≤ C|z1 − z2|γ for all z1, z2 ∈ Γθ,λ0 .

We denote the resolvent of H by R(z) = (H − z)−1. The notation B(|x|) and
B(|x|)∗ refers to the Besov space for the operator of multiplication by |x| and its
dual space, respectively.
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Proposition 1.2 (LAP). Suppose Condition 1.1. For all s > s0 the family of oper-
ators T (z) = 〈x〉−sR(z)〈x〉−s is uniformly Hölder continuous in Γθ,λ0. In particular
the limits

T (0 + i0) = 〈x〉−sR(0 + i0)〈x〉−s = lim
Γθ,λ03z→0

T (z),

T (0− i0) = 〈x〉−sR(0− i0)〈x〉−s = lim
Γθ,λ03z→0

T (z̄)

exist in B(L2(Rd)).
There exists C > 0 such that for all z ∈ Γθ,λ0

‖(|z|+ 〈x〉−µ)1/4R(z)(|z|+ 〈x〉−µ)1/4‖B(B(|x|),B(|x|)∗) ≤ C. (1.3)

1.1.1. Zero energy Sommerfeld radiation condition. We shall give an outline of some
microlocal estimates and characterizations of solutions to the equation Hu = v. In
particular we estimate and characterize the “outgoing” solution whose existence is
provided by Proposition 1.2. This particular solution is given as follows in terms
of Besov spaces. First note that the relevant Besov space at zero energy is Bµ :=

B(〈x〉2s0) = 〈x〉−µ/4B(|x|), cf. (1.3). We have the following characterization of the
corresponding dual space

u ∈ (Bµ)∗ ⇔ u ∈ L2
loc(Rd) and sup

R>1
R−s0‖F (|x| < R)u‖ <∞.

A slightly smaller space is given by

u ∈ (Bµ)∗0 ⇔ u ∈ L2
loc(Rd) and lim

R→∞
R−s0‖F (|x| < R)u‖ = 0.

Now suppose v ∈ Bµ. Then due to Proposition 1.2 there exists the weak-star limit

u = R(0 + i0)v = w?–lim
Γθ,λ03z→0

R(z)v ∈ (Bµ)∗.

Note that indeed this u is a (distributional) solution to the equation Hu = v.
To state microlocal properties of this solution we first introduce for all λ ≥ 0 the

function

f = fλ(x) = (λ+K〈x〉−µ)1/2; x ∈ Rd, (1.4)

where K := ε1ε̃1/(2 − µ) with the ε’s given in Condition 1.1. In terms of f0 we
introduce symbols

a0 =
ξ2

f0(x)2
, b0 =

ξ

f0(x)
· x〈x〉 , (1.5)

and we have, using here Weyl quantization,

Opw(χ−(a0)χ̃−(b0))u ∈ (Bµ)∗0 for all χ− ∈ C∞c (R) and χ̃− ∈ C∞c ((−∞, 1)). (1.6a)

These estimates are accompanied by “high energy estimates”, stated as follows:
Let us note that

f−2
|z| (x)

∣∣V1(x)− z
∣∣ ≤ C ′0 := max(C0/K, 1),

where C0 is given in Condition 1.1 (2) (i.e. the constant with α = 0). Consider
real-valued χ− ∈ C∞c (R) such that χ−(t) = 1 in a neighbourhood of [0, C ′0], and let
χ+ := 1− χ−. For all such functions χ+

Opw(χ+(a0))u ∈ (Bµ)∗0. (1.6b)
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The support property of χ̃− in (1.6a) mirrors that the particular solution studied
is the outgoing one, and we refer to (1.6a) as the outgoing Sommerfeld radiation
condition. This condition (in fact a weaker version) suffices for a characterization
as expresssed in the following result. Here and henceforth L2

m := 〈x〉−mL2(Rd).

Proposition 1.3 (Uniqueness of outgoing solution, data in Bµ). Suppose v ∈ Bµ.
Suppose u is a distributional solution to the equation Hu = v belonging to the space
L2
m for some m ∈ R, and suppose that there there exists κ ∈ (0, 1] such that

Opw(χ−(a0)χ̃−(b0))u ∈ (Bµ)∗0 for all χ− ∈ C∞c (R) and χ̃− ∈ C∞c ((−∞, κ)). (1.7)

Then u = R(0 + i0)v. In particular (1.6a) and (1.6b) hold.

The “incoming” solution u = R(0 − i0)v can be characterized similarly. These
results generalize [DS1, Proposition 4.10] at zero energy.

Remark 1.4. There are similar results for positive energies. For R(λ+ i0) we have
the same conclusion u = R(λ+ i0)v for an outgoing solution to (H − λ)u = v. This
means more precisely that if we replace the Besov spaces by replacing s0 → s0 = 1/2
in the definition of these spaces and change the localization symbols a0, b0 in (1.5)
and (1.7) by replacing f0 → fλ there, then indeed the solution u is given by u =
R(λ + i0)v. This result is known for larger classes of potentials, see [Hö, Theorem
30.2.10] and [GY].

1.2. Open problems. Define under Condition 1.1 the operator

δ(0) = (2πi)−1(R(0 + i0)−R(0− i0)) = π−1 Im(R(0 + i0)) ∈ B(Bµ, (Bµ)∗),

and note that its range

Ran(δ(0)) ⊆ E0 := {u ∈ (Bµ)∗|Hu = 0}.
Under some stronger conditions it follows from [DS1, Theorem 8.2] that Ran(δ(0)) =
E0 (proved in terms of wave matrices at zero energy). Equality and characterization
of E0 are open problems under Condition 1.1, in fact it is only known that δ(0) 6= 0,
see [FS]. More specifically “scattering theory at zero energy” in the spirit of [DS1,
Theorem 8.2] is an open problem under Condition 1.1. In this paper we address
these problems for an intermediate class of potentials, i.e. a smaller class than the
one defined by Condition 1.1 but bigger than the one studied in [DS1].

1.3. Ideas of procedure and results. Let us give an outline of a possible proce-
dure for solving the problems posed in the proceeding subsection. This procedure
will be implemented for the subclass of potentials to be introduced in Section 2.
The corresponding (main) results are stated more precisely in Theorem 6.3. For
simplicity we assume in the discussion below that V is negative.

First we need a global solution to the eikonal equation (or at least solving outside
a compact set)

|∇xS(x, λ)|2 = λ− V (x); λ ≥ 0.

The existence for λ = 0 is not known under Condition 1.1. Potentially we could
define S(·, λ) to be the distance in the metric gλ = (λ−V )dx2 to the origin in Rd, i.e.
S(x, λ) = dgλ(x, 0). This is the so-called maximal solution to the eikonal equation.
However under Condition 1.1 it is a problematic choice, in fact for d ≥ 2 it might
be expected that in some generic sense this S(·, λ) /∈ C1(Rd \ {0}).
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However for the subclass of potentials to be considered the above geometric con-
struction is manageable and we shall consider the corresponding geodesic flow

d
ds

Φ = (λ− V (Φ))−1∇xS(Φ, λ), Φ(0, σ) = 0, d
ds

Φ(s, σ)|s=0 = (λ− V (0))−1/2σ;

(s, σ) ∈ [0,∞)× Sd−1.

In particular it turns out that this flow is a diffeomorphism Φ : R+×Sd−1 → Rd\{0}.
Next for an appropriate Jacobian type function J , see (3.7a), we propose to in-

troduce
F+(λ)v = G–lim

s→∞
(J1/2e−iS(·,λ)R(λ+ i0)v)(Φ(s, ·)), (1.8)

where G := L2(Sd−1, dσ). This is for v in an appropriate dense subset of L2(Rd),
and using an integration by parts and Stone’s formula we then derive the following
formula for the orthogonal projection onto the continuous subspace of H:

‖Pcv‖2 =

∫ ∞

0

‖F+(λ)v‖2
G dλ.

This leads to the distorted Fourier transform

F+ :=

∫ ∞

0

⊕F+(λ) dλ.

This map is a partial isometry diagonalizing Hc, i.e. F+Hc = MλF
+. We show

the existence of the limit (1.8) by using some new low-energy radiation condition
bounds valid under the conditions of Section 2. The reader may consult (5.10) for
a somewhat cleaner definition.

Now we can address the problems of Subsection 1.2 (under these conditions).
Indeed

Ran(δ(0)) = E0 = {u ∈ (Bµ)∗|Hu = 0}
follows from the following properties:

F+(0) : Bµ → G is onto,

F+(0)∗ : G → E0 is a bi-continuous isomorphism, (1.9)

δ(0) = F+(0)∗F+(0).

Furthermore note that (1.9) constitutes a parametrization of E0. The isomorphism
F+(0)∗, named the wave matrix at zero energy, is given more explicitly as follows:
For any u = 2πiF+(0)∗τ ∈ E0

u(x)− J−1/2(x)(eiS(x,0)τ(σ)− e−iS(x,0)τ̃(σ)) ∈ (Bµ)∗0; x = Φ(t, σ). (1.10)

The function τ̃ ∈ G in (1.10) is uniquely determined from u and it is of the form
τ̃ = S(0)−1τ where S(0) is a unitary operator on G. This operator is called the
scattering matrix at zero energy. Combined with similar constructions for λ > 0 the
scattering matrix S(λ) is strongly continuous in λ ≥ 0. Whence this renormalized
stationary scattering theory is regular at zero energy.

2. Class of potentials

We introduce the class of potentials to be studied in this paper. The zero energy
dynamics for this class of potentials is generically qualitatively very different (unless
d = 1) from the one for potentials in the smaller class of [DS1]. We give an example
to that effect.
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2.1. Conditions.

Condition 2.1 (Unperturbed potential). Let V = V1 +V2 be a real-valued function
defined on Rd; d ≥ 1. There exists µ ∈ (0, 2) such that the following conditions
(1)–(4) hold.

(1) There exists ε1 > 0 such that V1(x) ≤ −ε1〈x〉−µ.
(2) V1 ∈ C∞(Rd). For all α ∈ Nd

0 there exists Cα > 0 such that

〈x〉µ+|α||∂αV1(x)| ≤ Cα.

(3) V1(x) = Vrad(|x|) is spherically symmetric, and there exists ε̃1 > 0 such that

−2Vrad(r)− rV ′rad(r) ≥ −ε̃1Vrad(r).

(4) V2 is compactly supported, and V2 ∈ Lp(Rd), where p = 2 if d = 1, 2, 3 and
p > d/2 if d ≥ 4.

Given Condition 2.1 we consider the class W of real-valued smooth functions W
on Rd obeying that for all α ∈ Nd

0

sup
x∈Rd
〈x〉µ+|α||∂αW (x)| <∞. (2.1a)

Given l ∈ N we say that Wε ∈ W is ε-small if for some ε > 0

max
|α|≤l

sup
x∈Rd
〈x〉µ+|α||∂αWε(x)| ≤ ε. (2.1b)

Clearly this quantity depends on the given l, however we prefer for the above temi-
nology of ε-smallness to suppress this dependence. If in a given context l is not
specified, it is tacitly understood that l = 2 (although for example l = 1 suffices
for Proposition 4.1). We use l = 4 in Lemma 3.2 stated below. Similarly we need
l ≥ 4 in Lemma 3.3 and Proposition 4.2 (a sufficient choice l = l(µ, d) can be cal-
culated, however we shall not bother). Consequently our main result Theorem 6.3
will depend on some fixed l ≥ 4 in the definition (2.1b) of ε-small perturbations.

We shall study potentials of the form Vε = V +Wε where V = Vrad+V2 agrees with
Condition 2.1 and Wε ∈ W is an ε-small perturbation. The class of such potentials
Vε, say Vε, is a particular subclass of the one defined by Condition 1.1; here we need
ε small. In fact at various other points of the paper we need to take ε > 0 small,
however this will be expressible in terms of Vrad only, which henceforth is considered
as fixed. For convenience we assume throughout the paper that

Vrad(r) = Vrad(0) for r ≤ R := (−Vrad(0))−1/2, (2.2a)

and similarly for perturbations that

Wε(x) = 0 for |x| ≤ R. (2.2b)

We can freely assume (2.2a) and (2.2b). As for Vrad the property (2.2a) can be
assumed possibly upon making ε1 smaller (but not changing ε̃1) and changing V2.
Although this is an elementary fact it is not completely obvious. Let us give a proof:
Decompose 1 = χ+ +χ− where χ+, χ− ∈ C∞(R+) are monotone, χ+(t) = 1 for t ≥ 2
and χ+(t) = 0 for t ≤ 1. Introduce

Vn(r) = Vrad(r)χ+(r/n)− n−2χ−(r/n); n ∈ N. (2.3)

We claim that for any n big enough such that ε1〈2n〉−µ ≥ n−2 indeed Condi-
tions 2.1(1)–(3) and (2.2a) hold with ε1 replaced by n−2, new constants Cα, the
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same constant ε̃1 and with R = n, respectively. To see that indeed the same ε̃1
works we consider the estimates

−rV ′n(r) ≥ (2− ε̃1)Vn(r) + (2− ε̃1)n−2χ−(r/n)− r
n
χ′−(r/n)(−Vrad(r)− n−2)

≥ (2− ε̃1)Vn(r)− r
n
χ′−(r/n)(ε1〈2n〉−µ − n−2)

≥ (2− ε̃1)Vn(r);

we assumed that ε̃1 ≤ 2. The other statements are obvious. Similarly (2.2b) can be
assumed by changing V2 and possibly by taking ε smaller.

2.1.1. Example. Let g ∈ C∞(R) be 2π-periodic with max g′ ≥ 1 − µ/2. Let χ ∈
C∞(R+) obey χ(r) = 0 for r < 1 and χ(r) = 1 for r > 2. Similarly introduce for
µ ∈ (0, 2) and (large) n ∈ N a function h = hn ∈ C∞(R+) obeying





h(r) = r/n for r ≤ n

h(r) = (1− µ/2)−1r1−µ/2 + Cn for r ≥ 2n

h′(r) > max(0,−rh′′(r)) for r > 0

.

Note that the construction (2.3) with Vrad(r) = −r−µ leads to the particular example

hn(r) =
∫ r

0

√
−Vn(t)dt. We construct in dimension d = 2 a potential in terms of a

parameter ε ≥ 0 and polar coordinates (r, θ) (i.e. x = (r cos θ, r sin θ)):

Sε(x, λ = 0) = hn(r)exp{εg(θ − ε ln r)χ(r/n)},
Vε(x) = −|∇Sε(x, λ = 0)|2.

Clearly Vε=0(x) = Vrad(r) obeys Condition 2.1 and (2.2a) (the latter with R = n).
Moreover clearly Wε(x) := Vε(x) − Vrad(r) satisfies (2.1a) and (2.2b). Morever for
any l ∈ N there exists C > 0, sufficiently large and possibly depending on n, such
that the potential Wε is (Cε)-small. So up to a linear reparametrization also (2.1b)
is satisfied.

This example does not fit into the framework of [DS1]. In fact for the class studied
in [DS1] classical zero energy scattering orbits have asymptotic normalized velocities.
This would for the above example mean that there exist limt→±∞ θ(t). However this
cannot be as the following arguments show: Consider the flow (in polar coordinates)





ṙ(= d
ds
r(s)) = (−Vε(x))−1∂rSε(x, λ = 0)

θ̇(= d
ds
θ(s)) = (−Vε(x)r2)−1∂θSε(x, λ = 0)

(r, θ)(s = 1) = (n, σ).

. (2.4a)

Noticing that for ε > 0 small ∂rSε > 0 we can consider θ as a function of r determined
by the single equation

dθ

dr
= F (r, θ) :=

ε

r

g′χ

rh′/h+ ε r
n
gχ′ − ε2g′χ. (2.4b)

Here of course g and χ are functions of ψ := θ − ε ln r and r/n, respectively. For
r ≥ 2n (2.4b) reduces to

dψ

dr
=
ε

r

( g′

1− µ
2
− ε2g′ +O(rµ/2−1)− 1

)
=
ε

r

((1 + ε2)g′ − 1 + µ
2

1− µ
2
− ε2g′ +O(rµ/2−1)

)
.
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Introducing a new time, dτ/dr = εr−1, we obtain

dψ

dτ
=

(1 + ε2)g′(ψ)− 1 + µ
2

1− µ
2
− ε2g′(ψ)

+O(e(µ/2−1)τ/ε). (2.4c)

Note that to leading order (2.4c) is autonomous. Any solution ψ to (2.4c) converges
to a root of the corresponding fixed point equation g′(ψ) = (1 − µ/2)(1 + ε2)−1,
say ψ → ψ0. In particular going back to the time s of (2.4a) we conclude that
θ − ε ln r → ψ0 as s → ∞, and since ln r → ∞ indeed also θ → ∞. So the
asymptotic normalized velocity does not exist for the flow (2.4a). Noticing that
(2.4a) defines a class of zero energy scattering orbits in a reparametrized time we
conclude that indeed these orbits do not have asymptotic normalized velocity.

In Subsection 3.1 we study a flow of the type (2.4a) for general ε-small perturba-
tions in any dimension (extended as well to any non-negative energy).

3. Eikonal equation

One reason for considering Vε with ε small only is that Classical Mechanics is
particularly nice for this class. Whence (cf. [CS]) there exists a global solution to
the eikonal equation

|∇Sε|2 = Kε; (3.1)

Kε(x) = Kε(x, λ) := λ− Vrad(|x|)−Wε(x), λ ≥ 0.

We also introduce

K0(r) = λ− Vrad(r),

f(r, λ) =
√
K0(r)

S0(x) = S0(|x|) =

∫ |x|

0

f(r, λ)dr.

As used in [CS] we have uniformly in r, λ ≥ 0

crf(r, λ) ≤ S0(r) ≤ Crf(r, λ).

Notice also that S0 is a solution to (3.1) if Wε = 0.
Due to [CS] we have

Proposition 3.1. Let Vrad be given as in Condition 2.1 (assuming also (2.2a)) and
let l ≥ 2. There exists ε0 > 0 such that for all ε ∈ (0, ε0] and all ε-small perturbations
Wε (assuming (2.2b)) there exists a family of real-valued smooth functions {Sε ∈
C∞(Rd \ {0})|λ ≥ 0} with the following properties:

(1) |∇Sε(x)|2 = Kε(x) for x ∈ Rd \ {0}.
(2) Sε(x) = S0(x) = f(0, λ)|x| for r = |x| ≤ R = (−Vrad(0))−1/2.
(3) For all r0 > 0, uniformly in Wε with ε ∈ (0, ε0]

max
|α|≤l

sup
λ≥0

sup
|x|≥r0

〈x〉|α|
∣∣S0(x)−1∂αxSε(x)

∣∣<∞.
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(4) Uniformly in Wε, λ ≥ 0 and x ∈ Rd \ {0}
Sε(x) = S0(r)(1 +O(ε)),

∇Sε(x) = f(r, λ) (〈x̂|+O(ε3/4)); x̂ := x/r,

∇2Sε(x) = f(r,λ)
r

(P⊥ + rf ′(r,λ)
f(r,λ)

P +O(ε1/2));

P = P (x̂) := |x̂〉〈x̂|, P⊥ := I − P.
(5) For all α ∈ Nd

0

∂αxSε ∈ C(Rd \ {0} × [0,∞)); Sε = Sε(x, λ).

We remark that for l = 2 the bounds (3) follow from (4). Having l > 2 influences
only on (3) and requires, according to the proposition, an ε0 > 0 possibly depending
on l. It is tempting to conjecture that one could take l = 2 in the proposition and
replace the constraint of (3), |α| ≤ l, by |α| ≤ k where k is arbitrarily given. The
new bounds would be uniform in perturbations from any bounded family (bounded
in terms of the seminorms (2.1a)). However this is an open problem, and in fact
it is not known whether ε0 > 0 can be chosen independently of l, although there
are weaker estimates than (3) indeed independent of l, cf. [CS, Proposition 1.2].
The latter deficiency gives rise to a slight complication when dealing with Sε in the
context of pseudodifferential operators, see (4.8c).

3.1. Geometric properties. The construction of the function Sε of Proposition
3.1 is given by a geometric procedure: We consider the metric gε = Kεdx

2 on the
manifold M = Rd and the origin o = 0 ∈M . Then for all x ∈M the number Sε(x)
is the distance in this metric to o, i.e. Sε(x) = dgε(x, o). The function Sε is called
the maximal solution to the eikonal equation.

3.1.1. Flow. In the metric gε the unit-sphere in the tangent space TMo at the origin
o = 0 is given by f(0, λ)−1Sd−1 where Sd−1 is the standard unit-sphere in Rd. We
shall use the notation σ for generic points of Sd−1 and we let dσ denote the standard
Euclidean surface measure on Sd−1. The exponential mapping at the origin for the
metric gε defines a diffeomorphism Φ : R+ × Sd−1 → Rd \ {0}

Φ(s, σ) = expo(sf(0, λ)−1σ),

and we have the flow property

d
ds

Φ = (K−1
ε ∇Sε)(Φ); s > 0, σ ∈ Sd−1. (3.2a)

Since by assumption, cf. (2.2a) and (2.2b), the conformal factor Kε is constant for
r = |x| ≤ R = (−Vrad(0))−1/2 we have explicitly

Φ(s, σ) = sf(0, λ)−1σ for s ≤ 1.

Whence we can supplement (3.2a) by the “initial condition”

Φ(1, σ) = f(0, λ)−1σ. (3.2b)

The assertion above that Φ is a diffeomorphism can be proved taking (3.2a) and
(3.2b) as a definition of the map. Notice the consequences of (3.1), (3.2a) and
(3.2b) that the distance dgε(x, o) = Sε(x) = s. This point of view is taken in the
proof of an analogous statement [ACH, Proposition 2.2]. However the mapping
property can also be viewed as an independent part of the proof of Proposition 3.1
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given in [CS]. The flow Φ constitutes a family of reparametrized Hamiltonian orbits
for the Hamiltonian

hε = ξ2 + Vrad(|x|) +Wε(x) (3.3)

at energy λ. It is continuous in λ, i.e. Φ ∈ C(R+ × Sd−1 × [0,∞)); Φ = Φ(s, σ, λ).

3.1.2. Surface measure. The mapping Φ(s, ·) : Sd−1 → Sε(s) := {x ∈ Rd | Sε(x) = s}
induces a measure on Sd−1 by pullback dω = Φ(s, ·)∗dA(x) where dA(x) refers to
the Euclidean surface measure on Sε(s). A computation using (3.2a) and (3.2b)
shows that explicitly

dω = K1/2
ε (x)mε(x) dσ;

mε(x) = f(0, λ)2−dK−1
ε (x)exp

(∫ s

1

(K−1
ε 4Sε)(Φ(t, σ)) dt

)
, x = Φ(s, σ).

(3.4)

Indeed, take local coordinates θ1, . . . , θd−1 on Sd−1, write (3.2a) as η̇ = F (η) and let
A be the d× (d− 1)−matrix with entries aki = ∂θiη

k. The pullback dω is computed
from the metric gij = (ATA)ij noting that the determinant |g| obeys

d
ds

ln |g| = tr((ATA)−1 d
ds

(ATA)) = tr((BT +B)P ) = 2K−1
ε 4Sε − d

ds
lnKε(Φ),

where B = F ′ (the Jacobian matrix) and Pkl = δkl− (∂kSε)(∂lSε)K
−1
ε . We integrate

and obtain

dω = |g|1/2dθ = f(0, λ)K−1/2
ε (x)exp

(∫ s

1

(K−1
ε 4Sε)(Φ(t, σ))dt

)
f(0, λ)1−d dσ,

showing (3.4).

3.1.3. Volume measure. In combination with (3.4) the co-area formula, cf. [Ev, The-
orem C.5], yields for (reasonable) functions φ on Rd

∫
φ(x) dx =

∫ ∞

0

ds

∫

Sε(s)
φK−1/2

ε dA(x)

=

∫ ∞

0

ds

∫

Sd−1

(φmε)(Φ(s, ·)) dσ.

(3.5)

Let Bε(s) := {x ∈ Rd|Sε(x) ≤ s} for s > 0. Clearly ∂Bε(s) = Sε(s) and whence
the Gauss integration theorem, cf. [Ev, Theorem C.1], yields for j = 1, . . . , d∫

Bε(s)
(∂jφ)(x)dx =

∫

Sε(s)
φ(∂jSε)K

−1/2
ε dA(x)

=

∫

Sd−1

(φ(∂jSε)mε)(Φ(s, ·)) dσ.

(3.6)

3.2. Diagonalization. Under the conditions of Section 2 we consider the Hamil-
tonian H = −∆ + Vε on H = L2(Rd). Denoting the corresponding continuous part
by Hc we aim at constructing a diagonalizing transform taking Hc → Mλ where

Mλ is multiplication by λ in H̃ := L2(R+, dλ;G) with G := L2(Sd−1, dσ). Here we
explain our procedure leaving the details of implementation to Section 5. It goes as
follows, assuming below v ∈ L2

3 (recall L2
m := 〈x〉−mL2(Rd)): By Stone’s formula,

cf. [RS],

‖Pcv‖2 = π−1 lim
λ0→∞

∫ λ0

0

〈v, (ImR(λ+ i0))v〉 dλ = π−1

∫ ∞

0

〈v, (ImR(λ+ i0))v〉 dλ.
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Whence writing u = R(λ+ i0)v, pj = −i∂j and using (3.6)

‖Pcv‖2 = π−1

∫ ∞

0

Im〈(H − λ)u, u〉 dλ

= π−1

∫ ∞

0

lim
s→∞

Re
d∑

j=1

∫

Sd−1

((pju)u(∂jSε)mε)(Φ(s, ·)) dσdλ.

Next we substitute pju = (pj − ∂jSε)u + (∂jSε)u. The contribution from the first
term will be shown to vanish in the limit s→∞. Whence we have

‖Pcv‖2 = π−1

∫ ∞

0

lim
s→∞

∫

Sd−1

(|u|2Kεmε)(Φ(s, ·)) dσdλ.

We are lead to define

F+(λ)v = G–lim
s→∞

π−1/2(e−iSεK1/2
ε m1/2

ε R(λ+ i0)v)(Φ(s, ·)), (3.7a)

yielding

‖Pcv‖2 =

∫ ∞

0

‖F+(λ)v‖2
G dλ.

Finally the “distorted Fourier transform”

F+ :=

∫ ∞

0

⊕F+(λ) dλ

diagonalizes Hc, i.e. F+Hc = MλF
+.

Similarly we can define the “distorted Fourier transform”

F− :=

∫ ∞

0

⊕F−(λ) dλ,

where

F−(λ)v = G–lim
s→∞

π−1/2(eiSεK1/2
ε m1/2

ε R(λ− i0)v)(Φ(s, ·)). (3.7b)

3.3. Outgoing approximate generalized eigenfunctions. We conclude this sec-
tion by stating and proving a technical result motivated by the formulas (3.7a)
and (3.7b). This enable us to construct outgoing and sufficiently well approximate
generalized eigenfunctions which in turn are used to construct exact generalized
eigenfunctions.

Let τ ∈ C∞(Sd−1) and λ ≥ 0 be given. Define a function ũ by

ũ = ũ(x) = π1/2(χeiSεK−1/2
ε m−1/2

ε )(x)τ(σ); x = Φ(s, σ), χ(x) = χ(|x|). (3.8)

Here χ(r) = χ(r > 2) is a cutoff function; see Subsection 4.1 for the precise defini-
tion. A short computation (using for example (4.10) stated below) shows that

(H − λ)ũ = −π1/2χeiSε(x)4x((K
−1/2
ε m−1/2

ε )(x)τ(σ)) + compactly supported term.

It will be important for us that also the first term to the right is small at infinity.

Lemma 3.2. Let ε > 0 be given and suppose l = 4. Then for ε0 > 0 sufficiently
small, for all τ ∈ C∞(Sd−1) and all λ0 > 0 there exists C > 0 such that uniformly
in Wε with ε ∈ (0, ε0] and in λ ∈ [0, λ0]:

∀|α| ≤ 2∀|x| ≥ 1 :
∣∣K1/2

ε m1/2
ε ∂αx ((K−1/2

ε m−1/2
ε )(x)τ(σ))

∣∣ ≤ C〈x〉ε−|α|. (3.9a)
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In particular the function ũ of (3.8) obeys

K1/2
ε m1/2

ε (H − λ)ũ = O(〈x〉ε−2). (3.9b)

Proof. Let

T1(x) =

∫ s

1

(K−1
ε 4Sε)(Φ(t, σ))dt,

T2(x) = τ(σ); x = Φ(s, σ).

We need to show that

∀|α| ≤ 2 ∀|x| ≥ 1 :
∣∣∂αxTj(x)

∣∣ ≤ C〈x〉ε−|α|; j = 1, 2. (3.10)

For that we shall use the diffeomorphism ψ : Rd → Rd given by

y = Ψ(x) = S0(x)x̂ =

∫ |x|

0

f(r, λ)dr |x|−1x,

and invoke results of [CS] for the model metric

g̃ε = (Ψ∗)−1gε; gε = Kεdx
2.

This idea of changing framework is actually behind Proposition 3.1 too. Here we
shall use the bounds

∀|α| ≤ 2 : |∂αxΨ(x)| ≤ C〈x〉−|α|〈Ψ(x)〉, (3.11a)

∀|β| ≤ 2 : |∂βyΨ−1(y)| ≤ C〈y〉−|β|〈Ψ−1(y)〉, (3.11b)

which are uniform in λ ∈ [0, λ0].

Step I. We note the representation

Φ(t, σ) = Ψ−1(γ̃Ψ(x)(t/Sε(x))); x = Φ(s, σ) = Φ(Sε(x), σ), (3.12)

where, using notation of [CS], γ̃y(t) = ty+κy(t) is the unique geodesic in the metric
g̃ε emanating from 0 ∈ Rd with value y at time one. Whence we can rewrite Tj(x)
as

T1(x) =

∫ Sε(x)

1

φ(γ̃Ψ(x)(t/Sε(x)))dt; φ = (K−1
ε 4Sε) ◦Ψ−1,

T2(x) = τ(f(0, λ)Ψ−1(γ̃Ψ(x)(1/Sε(x)))).

Due to Proposition 3.1(3) and (3.11b) we have the bounds (since we have assumed
that l = 4)

∀|β| ≤ 2 : |∂βy φ| ≤ C〈y〉−1−|β|. (3.13)

Step II. We prove Sobolev bounds of model geodesics. As in [CS, Section 6] in-
troduce the Sobolev spaces Hp := W 1,p

0 (0, 1)d, 1 < p < ∞, consisting of abso-
lutely continuous functions h : [0, 1] → Rd vanishing at the endpoints and having

ḣ ∈ Lp(0, 1)d = Lp(]0, 1[,Rd) (we use the notation Lp for this vector-valued Lp

space). The space Hp is equipped with the norm

‖h‖Hp = ‖ḣ‖p =
(∫ 1

0

|ḣ(t)|pdt
)1/p

.
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Due to [CS, Proposition 6.8], with reference to the model geodesic γ̃y(t) = ty+κy(t),
we have κy ∈ Hp for any prescribed p ∈ [2,∞), and for all sufficiently small ε > 0

∀|β| ≤ 2 : ‖∂βy κ‖Hp ≤ Cp〈y〉1−|β|. (3.14a)

We claim that any such fixed p the following generalization holds. For all k ∈
{0, 1, 2}:

∀|β| ≤ 2 : ‖tk−1∂βy γ̃
(k)
y (t)‖p ≤ Cp〈y〉1−|β|. (3.14b)

Here γ̃
(k)
y refers to the k’th time-derivative of γ = γ̃y. Due to (3.14a) and the Hardy

inequality [CS, Lemma 6.1] only the case k = 2 needs to be proved. But since γ
is a geodesic for the metric g̃ε the second derivative γ(2) is a sum of expressions
φjk(γy)(γ̇y)

j(γ̇y)
k where

∀|β| ≤ 2 : |∂βz φjk| ≤ C〈z〉−1−|β|. (3.15)

We use the product and chain rules to calculate derivatives ∂βy , |β| ≤ 2, of any such
expression. Then we can obtain the desired bound for any term in the resulting
expansion by combining (3.14b) for k = 0, 1 (and some bigger values of p), (3.15),
the a priori bounds

ct|y| ≤ |γy(t)| ≤ Ct|y|, (3.16)

cf. [CS, Lemma 2.1], and the generalized Hölder estimate. We omit the details. The
reader may consult [CS, Section 6] for similar arguments.

Step III. We can treat T1(x) by combining Proposition 3.1(3), (3.13), (3.14b) and
the generalized Hölder estimate. The smaller ε > 0 is given the bigger p ≥ 2 in
(3.14b) is needed. The estimations are straightforward. Let us for completeness do
it in details for |α| = 1:

∂αT1 = (∂αSε)K
−1
ε 4Sε +

∫ Sε

1

∇φ · ((∂yγ)Ψ(t/Sε) · ∂αΨ− γ̇Ψ(t/Sε)
t
S2
ε
(∂αSε)) dt;

(3.17)

The first term is O(〈x〉−1). For the second term we estimate for δ = min(ε, 1)

|(∇φ)(γΨ)| ≤ C
∣∣ t
Sε

Ψ
∣∣δ−2

and substitute t→ tSε leading to the upper bound of the integral

Cf
∣∣Ψ
∣∣δ−2

∫ 1

0

t δ−1(Sεt
−1|∂yγ)Ψ(t)|+ |γ̇Ψ(t)|) dt.

We choose p ≥ 2 so big that (δ− 1)/(1− 1/p) > −1 yielding in turn, using (3.14b),
the upper bounds

C1(δ)fSδ−1
ε ≤ C2(δ)Sδε 〈x〉−1 = O(〈x〉ε−1).

The case |α| = 2 is treated similarly differentiating (3.17) except that now there
is one term involving γ̇Ψ(1). For this term we use the formula

γ̇y(t) = 2

∫ 1

1/2

(
γ(1)
y (s) +

∫ t

s

γ(2)
y (t′)dt′

)
ds (3.18a)

with t = 1 and invoke again (3.14b).
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Step IV. We need to treat T2(x). In addition to (3.18a) we shall use

γy(t) =

∫ t

0

γ(1)
y (s)ds. (3.18b)

The case |α| = 0 is trivial. We treat the case |α| = 1 in details leaving the remaining
case |α| = 2 to the reader (it is very similar apart from an application of (3.15) for
one term arising after yet another differentiation):

∂αT2 = ∇(τ ◦ (f(0, λ)Ψ−1)) · ∂αγΨ(1/Sε). (3.19)

Here the first factor is evaluated in γΨ(1/Sε) ∈ Sd−1 and whence, cf. (3.11b), it is
bounded (uniformly in λ). For the second factor of (3.19) we compute

∂αγΨ(1/Sε) = (∂yγ)Ψ(1/Sε) · ∂αΨ− γ̇Ψ(1/Sε)S
−2
ε ∂αSε. (3.20)

We look at the first term. Using the Hölder estimate, (3.14b) and (3.18b) we
estimate

|(∂yγ)Ψ(t)| ≤ Cpt
1/p′ ; 1/p′ + 1/p = 1,

which is used with t = 1/Sε. Moreover due to (3.11a) we have |∂αΨ| ≤ C〈x〉−1〈Ψ〉,
so altogether

|(∂yγ)Ψ(1/Sε) · ∂αΨ| ≤ CpS
1−1/p′
ε 〈x〉−1; |x| ≥ 1.

If p ≥ 2 is chosen big enough then 1 − 1/p′ = 1/p ≤ ε, so the first term of (3.20)
conforms with (3.10) with j = 2 and |α| = 1.

We look at the second term. Using the Hölder estimate, (3.14b) and (3.18a) we
estimate

|γ̇Ψ(t)| ≤ Cpt
−1/p〈Ψ〉,

which again is used with t = 1/Sε, yielding

|γ̇Ψ(1/Sε)| ≤ CpS
1+1/p
ε ; |x| ≥ 1.

Moreover |S−2
ε ∂αSε| ≤ CS−1

ε 〈x〉−1, so altogether

|γ̇Ψ(1/Sε)S
−2
ε ∂αSε| ≤ CpS

1/p
ε 〈x〉−1,

which again conforms with (3.10) with j = 2 and |α| = 1 provided p ≥ 2 is chosen
as above. �

Remark. The similar result [ACH, Proposition 2.5] also contains a loss of decay (in
Lemma 3.2 expressed by the power 〈x〉ε). Such loss can in general not be avoided.
This can seen using the example in Subsection 2.1.1.

3.3.1. Generalized eigenfunctions. We learn from (3.5) and (3.9b) that

(H − λ)ũ ∈ f 1/2L2
δ ; δ < 3

2
− µ

2
− ε. (3.21)

In particular we can choose δ > 1
2

in (3.21) provided ε > 0 is small enough. With
such δ we can define the generalized eigenfunctions

u± = u±(·, λ) = ũ−R(λ± i0)(H − λ)ũ. (3.22)

Since intuitively u+ is a purely outgoing exact eigenfunction it should be zero. This
is the content of the following result.
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Lemma 3.3. There exist l ≥ 4 and ε0 > 0 such that for all ε-small perturbations
Wε with ε ∈ (0, ε0] the generalized eigenfunction u+ of (3.22) vanishes for any
τ ∈ C∞(Sd−1) and any λ ≥ 0 .

Proof. By Proposition 1.2 the second term of (3.22) is in f−1/2B(|x|)∗. The first
term is also in this space due to an explicit calculation using (3.5) and the Besov
space bound (5.13c) (stated below), see (5.17) for a more general statement. So we
conclude that f 1/2u± ∈ B(|x|)∗.

Let us argue for λ = 0 only. The case λ > 0 can be treated similarly using Re-
mark 1.4. To conclude that indeed u+ = 0 for λ = 0 it suffices due to Proposition 1.3
to show, with reference to the notation (1.5), that for some small positive κ

Opw(χ−(a0)χ̃−(b0))u+ ∈ (Bµ)∗0 for all χ− ∈ C∞c (R) and χ̃− ∈ C∞c ((−∞, κ)).
(3.23)

The contribution from the second term of (3.22), R(λ + i0)(H − λ)ũ, is treated by
(1.6a) (here we may have κ = 1).

As for the contribution from the first term, ũ, a computation using (3.9a) shows
that f−1(p − ∇Sε)ũ ∈ (Bµ)∗0. On the other hand due to Proposition 3.1(4) for
small κ, ε > 0 the symbol f−1(ξ − ∇Sε) is elliptic on the support of any symbol
χ−(a0)χ̃−(b0) as in (3.23) which intuitively yields the desired bound. However at
this point some care must be taken in that ∂jSε is singular at zero and the good
bounds of Proposition 3.1(3) are only valid for |α| ≤ l (which consequently must
be chosen sufficiently large). A similar deficiency will arise in Section 4, see (4.8c)
and the discussion there. Let us give an elaboration: First it is more convenient
to use S0 (modified by a cutoff near infinity) rather than Sε. Then we have good
bounds of all derivatives well suited for the calculus of pseudodifferential operators
(see Section 4 for some details). Whence by this calculus we can use the ellipticity
property (with the above replacement and for small κ > 0) to write, abbreviating
T = Opw(χ−(a0)χ̃−(b0)),

T = T
d∑

j=1

Tj(f(r, 0)−1pj − 〈x〉−1xj) + T̃ 〈x〉µ/2−1,

where Tj and T̃ are bounded pseudodifferential operators. We apply this identity to
ũ. The last term contributes by a term in (Bµ)∗0. As for the first term we use (3.9a)
(with ε < 1− µ/2) and get a similar contribution and in addition the term

T
d∑

j=1

Tjφjũ; φj = f(r, 0)−1χ(r > 1)∂jSε − 〈x〉−1xj.

Next using a statement like (4.8c) (see the discussion there) we can write

T
d∑

j=1

Tjφj =
d∑

j=1

φjTjT + T̃ 〈x〉µ/2−1

for some T̃ ∈ B((Bµ)∗0). Note at this point that we need Proposition 3.1(3) for an
appropriate l = l(µ, d). By Proposition 3.1(4) we then conclude that

T ũ−O(ε3/4)T ũ ∈ (Bµ)∗0.

Consequently (for small ε > 0) also T ũ ∈ (Bµ)∗0. �
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4. Quantum bounds

In this section we collect various microlocal resolvent bounds that will be useful in
Section 5 for proving the existence of the limit (3.7a) for v ∈ L2

3 as well as for proving
some continuity properties. Our main result Proposition 4.2 has some independent
interest, in particular it is new even for spherically symmetric potentials.

4.1. Microlocalization for ε-small perturbation. Let r̃ denote a smooth convex
function of r ≥ 0 equal to 1/2 for r ≤ 1/4 and equal to r for r ≥ 1. We introduce
for λ ≥ 0 the symbols

aλ = aλ(x, ξ) =
ξ2

fλ(r)2
, bλ = bλ(x, ξ) =

ξ

fλ(r)
· x
r̃
, (4.1)

given in terms of the function r̃ of r = |x| and the function f = fλ = fλ(x) =
fλ(r) = f(r, λ) of Section 3. Note that b2

λ ≤ aλ. We shall state microlocal properties
in terms of these observables. For zero energy the resolvent bounds of this sub-
section are stronger than similar estimates obtainable using the observables (1.5),
see [Sk, Proposition 3.5 ii)]. They are in the spirit of [DS1, Proposition 4.1] and
[Sk, Lemmas 3.2 and 3.3]. We shall use Weyl quantization of symbols in a uniform
symbol class Sunif(m|z|, g|z|),

g = gλ = 〈x〉−2dx2 + fλ(x)−2dξ2.

The word uniform refers to the requirement that bounds of derivatives are uniform
in z in the closure of Γθ,λ0 ⊂ C, say z ∈ Γclos

θ,λ0
. Precisely a symbol c = cz ∈

Sunif(m|z|, g|z|) with z in this set, if and only if c obeys the bounds

|∂γx∂βξ cz(x, ξ)| ≤ Cγ,βm|z|(x, ξ)〈x〉−|γ|f−|β||z| (x). (4.2)

For example a|z| is defined for z ∈ Γclos
θ,λ0

(obviously) and a|z| ∈ Sunif(a|z|+ 1, g|z|), and

similarly for the symbol hε defined in (3.3) hε, hε − z ∈ Sunif(f
2
|z|(a|z| + 1), g|z|). For

the corresponding calculus the quantity 〈x〉µ/2−1 plays the role of a “uniform Planck
constant”. We refer to [Sk] for a more elaborate discussion. The corresponding class
of Weyl quantized operators is denoted by Ψunif(m|z|, g|z|).

Consider real-valued χ− ∈ C∞c (R) such that χ−(t) = 1 in a neighbourhood of
[0, 1] and such that χ′−(t) ≤ 0 for t > 0. Let correspondingly χ+ = 1−χ−. Consider
χ̃− ∈ C∞(R) with χ̃′− ∈ C∞c ((−1, 1)), χ̃−(−1) = 1 and χ̃−(1) = 0. Let χ̃+ = 1− χ̃−.
Clearly the bound (4.3) below (involving the function χ+) is an energy bound.
The bound (4.4) (involving the functions χ− and χ̃−) is a microlocal bound whose
classical analogue is partly explained after Proposition 4.1.

Proposition 4.1. Let functions χ−, χ+ and χ̃− be given as above. There exists
ε0 > 0 such the following three properties hold: For all θ ∈ (0, π), λ0 > 0, δ > 1/2,
t ≥ 0 and ε-small perturbations Wε with ε ∈ (0, ε0] there exists C > 0 such that

(i) with T+(z) := 〈x〉t−δf 1/2
|z| Opw(a|z|χ+(a|z|))R(z)f

1/2
|z| 〈x〉−t−δ for z ∈ Γθ,λ0

‖T+(z)‖ ≤ C, (4.3)

(ii) with T−(z) := 〈x〉t−δf 1/2
|z| Opw(χ−(a|z|)χ̃−(b|z|))R(z)f

1/2
|z| 〈x〉−t−δ for z ∈ Γθ,λ0

‖T−(z)‖ ≤ C, (4.4)
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(iii) uniformly in λ ∈ [0, λ0] there exist

T±(λ+ i0) := lim
Γθ,λ03z→λ

T±(z) in B(L2). (4.5)

There are analogous properties for z̄ ∈ Γθ,λ0 . By the calculus (or the same proof)
we can replace the symbol a|z|χ+(a|z|) in (i) by χ+(a|z|. In particular the combination
of (i) and (ii) yields an effective microlocalizationR(z)v ≈ Opw(χ−(a|z|)χ̃+(b|z|))R(z)v.
Let us for later applications choose the localization more concretely: Let χ(· < 1) be
a decreasing smooth function on R with χ(t < 1) = 1 for t ≤ 1/2 and χ(t < 1) = 0
for t ≥ 1. Introduce for κ > 0 (small) the functions χ(t < κ) := χ(t/κ < 1) and
χ(t > κ) := 1−χ(t < κ). Choose χ− = χ−κ = χ(·−1 < κ) and χ̃+ = χ̃+

κ = χ(1−· <
κ). This leads to the introduction of the symbols

χκ = χκ,|z| = χ−κ (a|z|)χ̃
+
κ (b|z|) ∈ Sunif(1, g|z|); κ > 0. (4.6)

The proof of Proposition 4.1 (not to be given in details here) is similar to the ones
of [Sk, Lemmas 3.2 and 3.3] using instead of [Sk, (3.12)] the following computation,
cf. [DS1, (4.30)]: Let hrad = ξ2 + Vrad(r). The Poisson bracket with b = bλ (i.e. the
derivative of b along the flow generated by hrad) is given by

{hrad, b} = 2f
r̃

(1− rV ′rad
2f2

)(1− b2) + 2
fr̃

(hrad − λ). (4.7a)

Due to Condition 2.1(3) the factor 1− rV ′rad
2f2
≥ ε̃1/2. For the Hamiltonian hε of (3.3)

we have uniformly x, ξ ∈ Rd and λ ≥ 0

{hε, b} = 2f
r̃

(1− rV ′rad
2f2

)(1− b2) + 2
fr̃

(hε − λ) +O(ε)f
r̃
. (4.7b)

Whence uniformly in a set of the form {b2 ≤ 1− δ}, δ > 0, and λ ≥ 0

{hε, b} ≥ ε̃1
f
r̃
(1− b2) + 2

fr̃
(hε − λ)− εC f

r̃

≥ f
r̃
(ε̃1δ − Cε) + 2

fr̃
(hε − λ).

(4.7c)

We learn from (4.7c) that provided ε is taken small the observable b grows along the
flow generated by hε on any set {b2 ≤ 1 − δ, hε = λ}. This is part of the classical
analogue of (4.4). For κ-depending symbols used as input in Proposition 4.1 the
bounds (4.7c) indicate an optimal choice, ε0 ≈ κ. In fact, and more precisely, the
proof of Proposition 4.1 shows that we can choose ε0 = κ/C for some C > 0 in the
regime κ > 0 small, whence allowing us to write R(z)v ≈ Opw(χκ,|z|)R(z)v for all
(κ/C)-small perturbations. This will be one reason for considering perturbations of a
spherically symmetric potential only. Another reason originates in the construction
of Sε, i.e. Proposition 3.1.

4.2. Preliminary considerations. We assume in this subsection that V2 = 0.
Whence we consider here the quantization of (3.3), H = Hε.

4.2.1. Calculus considerations. By the calculus the family of symbols (4.6) has the
properties that for all n ∈ N and all c = cz ∈ Sunif(a|z| + 1, g|z|)

(I −Opw(χ2κ,|z|)) Opw(χκ,|z|) ∈ Ψunif(〈x〉−n〈ξ〉−2, g|z|), (4.8a)

[Opw(cz),Opw(χκ,|z|)] Opw(χκ/2,|z|) ∈ Ψunif(〈x〉−n〈ξ〉−2, g|z|). (4.8b)
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Note that in particular (4.8b) applies to cz = h− z and any function cz = cz(x, ξ) =
φz(x) ∈ Sunif(1, g|z|). We shall need the following modification of the latter state-
ment. Consider φz ∈ CN(Rd), with z ∈ Γclos

θ,λ0
, obeying uniform bounds

|∂αxφz(x)| ≤ Cαf|z|(x)〈x〉−|α|; |α| ≤ N.

Now for any given n ∈ N we can find N = N(n, µ, d) such that for all φz ∈ CN(Rd)
obeying these bounds we have (uniformly in z ∈ Γclos

θ,λ0
)

[φz(x),Opw(χ2κ,|z|)] Opw(χκ,|z|) = 〈x〉−nB〈x〉−n; ‖B‖ ≤ C. (4.8c)

This statement can be proved by the symbolic calculus and an explicit estimation
of an associated oscillatory integral. Note that the constant C in (4.8c) can be
chosen proportional to a natural norm of φz, and whence the bound is an example
of a familiar continuity property of the calculus of pseudodifferential operators. We
shall apply it to φz = χ(r > 2)∂jSε(x, |z|) = χ(r > 2)∂jSε(x, |z|), j = 1, . . . , d. Note
that we here need l = N + 1 in Proposition 3.1(3). If n in (4.8c) is taken large
possibly (in fact likely so) ε0 > 0 in Proposition 3.1 must then be small (since in
practise N = l − 1 large is needed for (4.8c) for given large n).

The last preliminary property we will discuss is an application of the Fefferman-
Phong inequality [Hö, Theorem 18.6.8] (uniform version), concretely bounds for the
symbol b|z| and χ2κ,|z|: For all κ > 0 there exists C = Cκ > 0 so that for all z ∈ Γclos

θ,λ0

Opw(χ2κ,|z|) Opw(b|z| − 1 + 2κ) Opw(χ2κ,|z|) ≥ −C(〈x〉f|z|)−2, (4.9a)

Opw(χ2κ,|z|) Opw(b|z| − 1− 2κ) Opw(χ2κ,|z|) ≤ C(〈x〉f|z|)−2, (4.9b)

Opw(χ2κ,|z|) Opw((b|z| − 1)2 − (2κ)2) Opw(χ2κ,|z|) ≤ C(〈x〉f|z|)−2. (4.9c)

4.2.2. Radiation operators. We shall combine Propositions 3.1 and 4.1 to obtain
radiation condition bounds similar to some of [HS1, HS2] for positive energies (see
also [Sa1, Sa2]). Our method is different in that it is purely stationary whereas
[HS1, HS2] rely on propagation estimates. Whence we introduce for λ ≥ 0 and any
given ε-small perturbation Wε radiation operators defined in terms of the function
Sε = Sε(x, λ) from Proposition 3.1 as

γ = p−∇Sε, γj = pj − ∂jSε, j = 1, . . . , d, and γ‖ = Re(∇Sε · γ).

Using (3.1) we obtain, cf. [HS1, HS2],

2γ‖ = (H − λ)− γ2. (4.10)

Next we compute the Heisenberg derivative, say denoted by D = i[H, ·], of γ. The
involved operators are local and we shall only need the computation for r ≥ 1.

Dγ = −2∇2Sεγ + i2∇4Sε
= −2f

r
(γ − (1 +

rV ′rad
2f2

)f−1|x̂〉∇Sε · γ +O(ε1/2)γ) + i2∇4Sε
= −2f

r
(γ + Ff−1(2γ‖ + i4Sε) +O(ε1/2)γ) + i2∇4Sε

= −2f
r

(γ + Ff−1((H − λ)− γ2) +O(ε1/2)γ)− 2i(F
r
4Sε −∇4Sε);

F := f̃
r̃
x, f̃ = −1

2
(1 +

rV ′rad
2f2

).

(4.11)

Here we used Proposition 3.1(4) and (4.10). The meaning of O(ε1/2) is the same as
in the proposition, i.e. it is a uniform bound. We can simplify the right hand side
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using Proposition 3.1(3) (assuming l ≥ 3) and conclude that

Dγ = −2f
r

(
(I +O(ε1/2))γ + Ff−1(H − λ)− Ff−1γ2 − ir−1O(ε0)

)
, (4.12)

where as above the estimates are uniform in Wε, λ ≥ 0 and x with r = |x| ≥ 1.
Next we compute

Re(f−1F · γ) = Re(f̃(Opw(b)− 1 +O(ε3/4))). (4.13)

Effectively the right hand side will be “small”; we will use it to treat the third term
in (4.12). Here it is also useful to note that

[γi, γj] = 0 ≤ i, j ≤ d. (4.14)

4.3. Strong radiation condition bounds. We introduce for k ∈ N

X = 〈x〉 = (1 + r2)1/2 and Xk = X(1 + r2/k)−1/2,

and “propagation observables”

P1 =
∑

i

Q∗iQi; Qi = X1−ε′
k χ(r)γi Opw(χκ,|z|), (4.15a)

P2 =
∑

i,j

Q∗ijQij; Qij = X
2(1−ε′)
k χ(r)γiγj Opw(χκ,|z|), (4.15b)

where γ = γ(λ = |z|), χ(r) = χ(r > 2) and ε′ ∈ (0, 1] needs to be specified. Note
that the powers of Xk are bounded factors and that pointwise Xk ↑ X for k →∞.

We compute the Poisson brackets

{h, χ(r)} = 2χ′(r)x̂ · ξ = 2fχ′(r) b, (4.16a)

{h,X} = 2X−1x · ξ = 2f
r
φ bX; φ = rr̃

X2 , (4.16b)

{h,Xk} = 2f
r

(φ− φk) bXk; φk = rr̃
k+r2

. (4.16c)

Note for (4.16c) that

0 ≤ φ− φk = (k−1)rr̃
(k+r2)X2 ≤ 1. (4.17)

Yet another property we will use (tacitly) are the uniform bounds

|∂αx f sλ| ≤ Cα,sf
s
λ〈x〉−|α|; λ ≥ 0, x ∈ Rd,

|∂αxXs
k| ≤ Cα,sX

s
k〈x〉−|α|; k ∈ N, x ∈ Rd.

The main result of this section is

Proposition 4.2. There exist l = l(µ, d) ∈ N (l ≥ 4 is used explicitly) and ε0, C0 > 0

with
√
C0ε0 ≤ 1, such that for all ε-small perturbations Wε with ε ∈ (0, ε0] and with

ε′ = C0

√
ε the following bounds (4.18a) and (4.18b) hold uniformly in λ in intervals

of the form I = [0, λ0]. We consider in these bounds components γi, γj, 1 ≤ i, j ≤ d,
of γ = γε(λ) = p−∇Sε(x, λ).

‖X1−ε′(fλ
r

)1/2χ(r)γiR(λ+ i0)f
1/2
λ X−3/2‖ ≤ C, (4.18a)

‖X2(1−ε′)(fλ
r

)1/2χ(r)γiγjR(λ+ i0)f
1/2
λ X−5/2‖ ≤ C. (4.18b)
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Proof. Due to resolvent equations we can assume that V2 = 0. Throughout the proof
the notations H and R(z) refer to this case. Fix θ ∈ (π/2, π) and λ0 > 0. We shall
prove microlocal bounds of states u = R(z)v in terms of quantities related to P1 of
(4.15a) and P2 of (4.15b), respectively, where z ∈ Γθ,λ0 . In particular we consider
below γi = pi − ∂iSε(x, |z|) with z ∈ Γθ,λ0 . We could choose to take κ > 0 in the
definition of the factors Opw(χκ,|z|) to be proportional to ε with a sufficiently large
constant of proportionality, cf. a discussion at the end of Subsection 4.1. However
the larger choice κ = ε3/4 suffices and will be used below. In any case for the
corresponding lozalization operators B = Opw(χκ,|z|) and B = Opw(χκ/2,|z|) we can
use the bounds of Proposition 4.1 for ε-small perturbations (more precisely we have
such bounds upon replacing the pseudodifferential operators there by I − B). This
is done in (4.20b) and (4.23b) below (for (4.18a)). We choose ε0 > 0 in agreement
with any such application as well as being in agreement with Proposition 3.1 with
an l (the one to be used in the proposition) choosen sufficiently large. How large
l must be depends for (4.18a) partly on applications below of Proposition 3.1 and
the symbolic calculus property (4.8c), used in (4.26) and (4.29). See (4.35) for the
case of (4.18b) (used in (4.34) and (4.37)). Of course it is legitimate to take ε0
smaller if needed. The choice ε′ = C0

√
ε for some (large) constant C0 (rather than

ε′ being proportional to ε) is needed (and best possible) in our treatment of the
contribution from the term O(ε1/2)γ in (4.12) in the computation and estimation of
a commutator, see (4.24) below. We fix an applicable C0 for (4.18a) at the end of
Step I (this constant will also work for (4.18b), see the end of Step II).

Step I. We show (4.18a) by first establishing the bound

〈P ′1〉u ≤ C1‖f−1/2
|z| X3/2v‖2 + C2

|(z−|z|)|2
Im z

‖X−1X1−ε′
k u‖2; (4.19)

P ′1 =
∑

i

Q∗i
f|z|
r
Qi.

Here we have suppressed the dependence of |z| in Qi (as above). The constants are
independent of z ∈ Γθ,λ0 and k ∈ N (however dependent on ε and possibly also Wε).
Whence we conclude by first letting Im z → 0 (for fixed λ = Re z ≥ 0) and then
letting k →∞, that at all energies λ ∈ [0, λ0]

∑

i

〈Q∗i fλr Qi〉u ≤ C1‖f−1/2
λ X3/2v‖2,

and whence

‖X1−ε′(fλ
r

)1/2χ(r)γi Opw(χκ,λ)R(λ+ i0)v‖ ≤
√
C1‖f−1/2

λ X3/2v‖. (4.20a)

On the other hand we have, cf. Proposition 4.1,

‖X1−ε′(fλ
r

)1/2χ(r)γi(I −Opw(χκ,λ))R(λ+ i0)v‖ ≤ C3‖f−1/2
λ X3/2v‖. (4.20b)

Clearly (4.18a) follows from (4.20a) and (4.20b).
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To show (4.19) we calculate the expectation

〈i[H,P1]〉u = 2 Im z 〈P1〉u + 2 Im〈P1u, v〉, (4.21a)

〈i[H,P1]〉u = 2
∑

i

Re〈Qiu, i[H,Qi]u〉, (4.21b)

i[H,Qi] = T 1
i + T 2

i ; (4.21c)

T 1
i = i[H,X1−ε′

k χ(r)γi] Opw(χκ,|z|),

T 2
i = X1−ε′

k χ(r)γii[H,Opw(χκ,|z|)].

The idea of the proof is to show that (4.21a) “tends” to be non-negative while (4.21b)
“tends” to be non-positive. To keep the notation at a minimum we abbreviate
f|z| = f in the remaining part of the proof of the proposition.

Clearly indeed the first term to the right in (4.21a) is non-negative (to be used in
(4.25) stated below).

The second term to the right in (4.21a) can be estimated as

|2 Im〈P1u, v〉| ≤ δ〈P ′1〉u + δ−1
∑

i

〈r/f〉Qiv

≤ δ〈P ′1〉u + δ−1C1‖X3/2−ε′f 1/2v‖2

≤ δ〈P ′1〉u + δ−1C2‖f−1/2Xmv‖2; m ≥ 3/2− ε′.

(4.22)

We choose δ > 0 suitably small later.
As for (4.21b) we substitute (4.21c). The contribution from the terms T 2

i is
estimated similarly using (4.8b) (for suitable n) and (1.3)

2
∑

i

|〈Qiu, T
2
i Opw(χκ/2,|z|)u〉|

≤ δ
2
〈P ′1〉u + δ−1C1‖f−1/2Xmv‖2; m > 1/2,

(4.23a)

and by using Proposition 4.1

2
∑

i

|〈Qiu, T
2
i (I −Opw(χκ/2,|z|))u〉|

≤ δ
2
〈P ′1〉u + δ−1C2‖f−1/2Xmv‖2; m > 3/2− ε′.

(4.23b)

It remains to consider the contribution from T 1
i . We split

T 1
i = S1

i + S2
i + S3

i ;

where

S1
i = X1−ε′

k χ(r)(Dγi) Opw(χκ,|z|),

S2
i = X1−ε′

k (Dχ(r))γi Opw(χκ,|z|),

S3
i = (DX1−ε′

k )χ(r)γi Opw(χκ,|z|),

and intend to use (4.12), (4.16a) and (4.16c) to treat the contribution to (4.21b)
from the three terms, respectively.

The seeked negativity comes from the terms S1
i more precisely from the contri-

bution from the first term to the right in (4.12). Thus, by the Cauchy Schwarz
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inequality,

2
∑

i

Re〈Qiu,X
1−ε′
k χ(r)−2f

r
(γi + (O(ε1/2)γ)i) Opw(χκ,|z|)u〉

≤ (−4 + C̃
√
ε)〈P ′1〉u.

(4.24)

To bound the contribution from the second term to the right in (4.12) we use that
F is (uniformly) bounded and estimate

2
∑

i

Re〈Qiu,X
1−ε′
k χ(r)−2F i

r
(H − |z|) Opw(χκ,|z|)u〉

≤ − 4(z − |z|)
∑

i

Re〈Qiu,X
1−ε′
k χ(r)F

i

r
Opw(χκ,|z|)u〉

+ δ〈P ′1〉u + δ−1C1‖f−1/2Xmv‖2

≤ 2 Im z 〈P1〉u + C̃2
|(z−|z|)|2

Im z
‖X−1X1−ε′

k u‖2

+ δ〈P ′1〉u + δ−1C1‖f−1/2Xmv‖2; m > 1/2.

(4.25)

To bound the contribution from the third term to the right in (4.12) we “redis-
tribute” the factors of components in γ2 and use (1.3), (4.8a), (4.8c), (4.9c), (4.13)
and (4.14) estimating with uj := Opw(χ2κ,|z|)(2f/r)1/2Qju

2
∑

i

Re〈Qiu,X
1−ε′
k χ(r)2F i

r
γ2 Opw(χκ,|z|)u〉

≤ 2
∑

j

Re〈2
r
F · γQju,Qju〉+ C1‖f−1/2Xmv‖2

= 2
∑

j

Re〈f̃(Opw(b)− 1 +O(ε3/4))〉uj + C2‖f−1/2Xmv‖2

≤ (2κ(sup |f̃ |2 + 1) + C1ε
3/4)〈2P ′1〉u + C3‖f−1/2Xmv‖2

= C4ε
3/4〈P ′1〉u + C3‖f−1/2Xmv‖2; m > 1/2.

(4.26)

To bound the contribution from the fourth term to the right in (4.12) it is con-
venient (although not necessary) to symmetrize (assuming then l ≥ 4). This gives

with ũ := X1−ε′
k Opw(χκ,|z|)u

2
∑

i

Re〈Qiu,X
1−ε′
k χ(r)i2f

r2
Oi(ε

0) Opw(χκ,|z|)u〉

≤ C1〈2fr̃3 〉ũ
≤ C2‖f−1/2Xmv‖2; m > 1/2.

(4.27)

Clearly the contribution from from the terms S2
i are bounded similarly, cf. (4.16a),

2
∑

i

Re〈Qiu, S
2
i u〉 ≤ C‖f−1/2Xmv‖2; m > 1/2. (4.28)
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It remains to examine the contribution from from the terms S3
i . We shall use

the following statements (4.8a), (4.8c), (4.9b), (4.16c) and (4.17) estimating with
ui := Opw(χ2κ,|z|)((φ− φk)2f/r)1/2Qiu,

2
∑

i

Re〈Qiu, S
3
i Opw(χκ,|z|)u〉

≤ 2(1− ε′)
∑

i

〈Opw(b)〉ui + C1‖f−1/2Xmv‖2

≤ 2(1− ε′)(1 + 2κ)
∑

i

‖ui‖2 + C2‖f−1/2Xmv‖2

≤ 4(1− ε′)(1 + 2ε3/4)〈P ′1〉u + C3‖f−1/2Xmv‖2; m > 1/2.

(4.29)

Now by combining (4.22)–(4.29) with (4.21a)–(4.21c) we obtain

(4− C̃√ε− 3δ − C4ε
3/4 − 4(1− ε′)(1 + 2ε3/4))〈P ′1〉u

≤ Cδ‖f−1/2Xmv‖2 + C̃2
|(z−|z|)|2

Im z
‖X−1X1−ε′

k u‖2; m > 3/2− ε′.
(4.30)

We choose δ =
√
ε and fix C0 = 1

4
(C̃ + 5). Then (possibly by taking ε0 > 0 smaller)

we conclude the bound

√
ε〈P ′1〉u ≤ Cδ‖f−1/2Xmv‖2 + C̃2

|(z−|z|)|2
Im z

‖X−1X1−ε′
k u‖2; m = 3/2,

whence (4.19) follows.

Step II. We show (4.18b) by establishing the bound

〈P ′2〉u ≤ C1‖f−1/2X5/2v‖2 + C2
|(z−|z|)|2

Im z
(‖X−2X

2(1−ε′)
k u‖2 + k2〈P ′1〉u) + C3〈P ′1〉u;

(4.31)

P ′2 =
∑

i

Q∗ij
f
r
Qij.

Here P ′1 is given as in (4.19). Due to (4.19) we can proceed as above letting first
Im z → 0 (for fixed λ = Re z ≥ 0) and then k → ∞. Then again we invoke
Proposition 4.1. Whence it suffices for (4.18b) to show (4.31).

For (4.31) we proceed similarly as in Step I giving now less details. We replace
P1 by P2 in (4.21a)–(4.21c) and need to show “essential positivity” and “essential
negativity” of the expression to the right of the analogous (4.21a) and (4.21b),
respectively. The most interesting contribution to the analogous commutator (4.21b)
is the one from an expression like S1

i . More precisely this term is now replaced by

S1
ij = X

2(1−ε′)
k χ(r)(D(γiγj)) Opw(χκ,|z|).

We write

D(γiγj) = (Dγi)γj + γi(Dγj),

and invoke again (4.12) which contains four terms.
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As for the first term the analogous of (4.24) reads (using the constant C̃ from
(4.24))

2
∑

i,j

Re〈Qiju,X
2(1−ε′)
k χ(r)

(
−2f
r

(γi + (O(ε1/2)γ)i)γj + γi
−2f
r

(γj + (O(ε1/2)γ)j)
)

Opw(χκ,|z|)u〉

≤ (−8 + 2C̃
√
ε+ δ)〈P ′2〉u + δ−1C1〈P ′1〉u.

(4.32)

As for the analogous of (4.25) we have, using the bound X2
k ≤ k and the first

identity of (4.11), and by arguing as in (4.23a)–(4.23b),

2
∑

i,j

Re〈Qiju,X
2(1−ε′)
k χ(r)

(
−2F i

r
(H − |z|)γj + γi

−2F j

r
(H − |z|)

)
Opw(χκ,|z|)u〉

≤ 2 Im z 〈P2〉u + C̃1
|(z−|z|)|2

Im z
(‖X−2X

2(1−ε′)
k u‖2 + k2〈P ′1〉u)

+ δ〈P ′2〉u + δ−1C2(‖f−1/2X3/2v‖2 + 〈P ′1〉u).
(4.33)

As for the analogous of (4.26) we obtain by redistributing components of γ2, using
the notation umn = Opw(χ2κ,|z|)(4f/r)1/2Qmn,

2
∑

i,j

Re〈Qiju,X
2(1−ε′)
k χ(r)

(
2F i

r
γ2γj + γi

2F j

r
γ2
)

Opw(χκ,|z|)u〉

≤ 2
∑

m,n

Re〈f̃(Opw(b)− 1 +O(ε3/4))〉umn + δ
2
〈P ′2〉u + C1,δ‖f−1/2Xv‖2

≤ (2κ(sup |f̃ |2 + 1) + C1ε
3/4)〈4P ′2〉u + δ〈P ′2〉u + C2,δ‖f−1/2Xv‖2

= C̃3ε
3/4〈P ′2〉u + δ〈P ′2〉u + C2,δ‖f−1/2Xv‖2.

(4.34)

Here we used twice that (rf)−1 = O(rµ/2−1) (whence up to a compactly supported
term this function is bounded by δ/C), and we used a uniform bound similar
to (4.8c), for example

[(4f/r)1/2X
2(1−ε′)
k χ(r)γmγn,Opw(χ2κ,|z|)] Opw(χκ,|z|) = X−2BX−1f 1/2; ‖B‖ ≤ C.

(4.35)

As for the analogous of (4.27) we have (using l ≥ 4)

2
∑

i,j

Re〈Qiju,X
2(1−ε′)
k χ(r)

(
i2f
r2
Oi(ε

0)γj + γii
2f
r2
Oj(ε

0)
)

Opw(χκ,|z|)u〉

= 4
∑

i,j

Re〈Qiju,X
2(1−ε′)
k χ(r)

(
i2f
r2
Oi(ε

0)γj + f
r3
Oij(ε

0)
)

Opw(χκ,|z|)u〉

≤ δ〈P ′2〉u + δ−1C1(‖f−1/2Xv‖2 + 〈P ′1〉u).

(4.36)

The analogue of (4.28) is obvious.
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The analogue of (4.29) reads with uij := Opw(χ2κ,|z|)((φ− φk)2f/r)1/2Qiju

2
∑

i,j

Re〈Qiju, (DX
2(1−ε′)
k )χ(r)γiγj Opw(χκ,|z|)u〉

≤ 4(1− ε′)
∑

i,j

〈Opw(b)〉uij + C1‖f−1/2Xv‖2

≤ 4(1− ε′)(1 + 2κ)
∑

i,j

‖uij‖2 + δ〈P ′2〉u + C2‖f−1/2Xv‖2

≤ (8(1− ε′)(1 + 2ε3/4) + δ)〈P ′2〉u + C3‖f−1/2Xv‖2.

(4.37)

Here we used the bound (4.35) trivially modified by an insertion of a factor (φ−φk).
Collecting bounds we get (similar to (4.30))

(8− 2C̃
√
ε− 7δ − C̃3ε

3/4 − 8(1− ε′)(1 + 2ε3/4))〈P ′2〉u
≤ C1(δ)‖f−1/2X5/2v‖2 + C̃1

|(z−|z|)|2
Im z

(‖X−2X
2(1−ε′)
k u‖2 + k2〈P ′1〉u) + C2(δ)〈P ′1〉u.

(4.38)

Picking δ =
√
ε and C0 = 1

4
(C̃ + 5) in (4.38) (as in Step I) the left hand side

bounds
√
ε〈P ′2〉u from above, and whence (4.31) follows. �

5. Distorted Fourier transform

We prove the existence of the limit (3.7a) for all λ ≥ 0 and all v ∈ L2
3. For that

we first compute the derivative d
ds

along the flow Φ(s, ·)
d
ds

(e−iSεK1/2
ε m1/2

ε R(λ+ i0)v) = ie−iSεK−1/2
ε m1/2

ε γ‖(λ)R(λ+ i0)v. (5.1)

It suffices to show that the right hand side is integrable as a G-valued function. For
the latter purpose we use (3.5), the identity Sε(Φ(s, ·)) = s and the Cauchy Schwarz
inequality to conclude that in turn it suffices to find δ > 0 such that

‖S1/2+δ
ε K−1/2

ε γ‖(λ)R(λ+ i0)v‖ ≤ C <∞. (5.2)

We plug in (4.10). Since

crf(r, λ) ≤ Sε(x) ≤ Crf(r, λ) (5.3)

the contribution from the first term (H−V2−λ) is in H for any δ ≤ 2 (then we have

(fr)1/2+δK
−1/2
ε ≤ CX3 and by assumption X3v ∈ H). For the contribution from

the second term −γ2 we use (4.18b) with i = j. Again since X3v ∈ H we only need
to examine the weight X2(1−ε′)f 1/2r−1/2 to the left in (4.18b), in particular we need
to specify applicable δ and ε′: More precisely we need to specify these parameters
such that the function

S1/2+δ
ε K−1/2

ε X−2(1−ε′)f−1/2r1/2 is bounded.

Using (5.3) this property will follow from boundedness of

X2ε′+δ−1f δ−1,

which in turn for δ ≤ 1 will follow from boundedness of

X2ε′+(δ−1)(1−µ/2).

The latter boundedness is achieved for any δ ∈ (0, 1) (henceforth taken fixed) and
for all sufficient small ε, ε′ = C0

√
ε > 0. We have shown (5.2) for all λ ≥ 0 and
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all v ∈ L2
3. Since the bound (5.2) is uniform in λ ∈ [0, λ0] for any λ0 > 0 and the

function [0, λ0] 3 λ→ (e−iSεK
1/2
ε m

1/2
ε R(λ + i0)v)(Φ(s, ·)) ∈ G is continuous for any

(large) fixed s > 1, we conclude that also the function

[0,∞) 3 λ→ F+(λ)v ∈ G is continuous. (5.4)

Clearly (by time-reversal invariance) we conclude the existence of (3.7b) for all
v ∈ L2

3 also. Similarly F−(λ)v is continuous in λ ≥ 0.
There are other assertions in Subsection 3.2. As for the formula

‖Pcv‖2 = lim
λ0→∞

∫ λ0

0

‖F+(λ)v‖2
G dλ,

it suffices to show that for all λ ≥ 0

π−1〈v, (ImR(λ+ i0))v〉 = ‖F+(λ)v‖2
G. (5.5)

We first estimate (recall u := R(λ+ i0)v)

∣∣∣ lim
s→∞

Re
d∑

j=1

∫

Sd−1

((γj(λ)u)u(∂jSε)mε)(Φ(s, ·)) dσ
∣∣∣

≤ lim inf
s→∞

d∑

j=1

∫

Sd−1

|((γj(λ)u)u(∂jSε)mε)(Φ(s, ·))| dσ.
(5.6)

By (3.5) and the Cauchy Schwarz inequality, for any big enough s0 > 0
∫ ∞

s0

ds s−1

d∑

j=1

∫

Sd−1

|((γj(λ)u)u(∂jSε)mε)(Φ(s, ·))| dσ

=
d∑

j=1

∫ ∞

s0

ds

∫

Sd−1

∣∣m1/2
ε X1−ε′(fλ

r
)1/2γj(λ)u

∣∣ ∣∣m1/2
ε Xε′−1(fλ

r
)−1/2(∂j lnSε)u

∣∣ dσ

≤
d∑

j=1

‖X1−ε′(fλ
r

)1/2χ(r)γj(λ)u‖ ‖Xε′−1(fλ
r

)−1/2χ(r)(∂j lnSε)u‖.

Since

|Xε′−1(fλ
r

)−1/2χ(r)(∂j lnSε)| ≤ CXε′+µ/2−1(fλ
r

)1/2χ(r),

cf. (5.3), we conclude using (1.3) and (4.18a) that for all ε′ = C0

√
ε ∈ (0, 1 − µ/2)

the latter integral is finite. Whence for all small ε > 0 indeed the right hand side of
(5.6) is zero. We have shown (5.5).

Throughout the rest of the paper we abbreviate B = B(|x|) and B∗ = B(|x|)∗.
Note that due to (1.3) and (5.5)

∀λ ≥ 0 : F+(λ)f 1/2 ∈ B(B,G). (5.7)

Next introduce

F+ =

∫ ∞

0

⊕F+(λ) dλ,

which due to (5.5) obeys (F+)∗F+ = Pc. Notice that we here consider F+ ∈
B(H, H̃). A short argument shows that for all v ∈ (H − λ)C∞c (Rd) the function
F+(λ)v = 0. Whence F+Hc ⊂ MλF

+. We claim that F+ diagonalizes Hc. This
stronger statement is part of the following
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Proposition 5.1. The map F+ : RanPc → H̃ is a unitary diagonalizing transform,
in particular

RanF+ = H̃ and F+Hc = MλF
+. (5.8)

Proof. It suffices to show the first identity of (5.8), since then indeed the restricted

map F+ : Hc(H) = RanPc → H̃ is unitary and the second identity of (5.8) holds.

Step I. Let τ ∈ C∞(Sd−1) and consider the function ũ of (3.8). We claim that

τ = F+(λ)(H − λ)ũ. (5.9)

Note that due to Lemma 3.3 this is formally true, however since we dont know that
(H − λ)ũ ∈ L2

3 a continuity argument is required. This motivates the claim that for
all v ∈ B

F+(λ)f 1/2v = G–lim
S→∞

S−1

∫ S

0

π−1/2(e−iSεK1/2
ε m1/2

ε R(λ+i0)f 1/2v)(Φ(s, ·)) ds. (5.10)

Clearly this is consistent with (5.7) if v ∈ f−1/2L2
3. To show that indeed the right

hand side of (5.10) makes sense for v ∈ B we need to show the Cauchy property.
Approximating Cc(Rd) 3 vn → v ∈ B it suffices to show the bound

sup
S>1
‖S−1

∫ S

0

π−1/2(e−iSεK1/2
ε m1/2

ε R(λ+ i0)f 1/2(v − vn))(Φ(s, ·)) ds‖G
≤ C‖v − vn‖B.

(5.11)

We proceed a little more general and show for all w ∈ B(|x|)∗

sup
S>1
‖S−1

∫ S

0

π−1/2(e−iSεK1/2
ε m1/2

ε f−1/2w)(Φ(s, ·)) ds‖G ≤ C‖w‖B∗ . (5.12)

In fact given (5.12) the bound (5.11) follows using (1.3), and whence the formula
(5.10) and then in turn (5.9) are justified.

To show (5.12) we first recall the Besov space bound

sup
ρ>1

ρ−1

∫

|x|≤ρ
|w|2 dx ≤ C‖w‖2

B∗ , (5.13a)

and its proof: Let R0 = 0 and Rj = 2j−1 for j ∈ N. Then

ρ−1

∫

|x|≤ρ
|w|2 dx ≤

∑

j≤J ; RJ−1≤ρ<RJ
(ρ−1Rj)R

−1
j

∫

Rj−1≤|x|<Rj
|w|2 dx

≤
∑

j≤J ; RJ−1≤ρ<RJ
(ρ−1Rj)‖w‖2

B∗

≤ 4‖w‖2
B∗ .
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Now for (5.12) we estimate using the Cauchy Schwarz inequality, notation from
Subsection 3.1, (3.5) and (5.13b) (stated below)

∥∥∥S−1

∫ S

0

π−1/2(e−iSεK1/2
ε m1/2

ε f−1/2w)(Φ(s, ·)) ds
∥∥∥
G

≤ C1S
−1

∫ S

0

‖(K1/2
ε m1/2

ε f−1/2w)(Φ(s, ·))‖G ds

≤ C1S
−1/2

(∫ S

0

‖(K1/2
ε m1/2

ε f−1/2w)(Φ(s, ·))‖2
G ds

)1/2

= C1S
−1/2

(∫

Bε(S)

|K1/2
ε f−1/2w|2 dx

)1/2

≤ C2S
−1/2

(∫

Bε(S)

|f 1/2w|2 dx
)1/2

≤ C3‖w‖B∗ .
In the last step we used the following analogue of (5.13a):

sup
S>1

S−1

∫

Bε(S)

|f 1/2w|2 dx ≤ C(λ)‖w‖2
B∗ . (5.13b)

Note that for λ > 0 we can bound Sε(x) ≥ c|x| and f 1/2(x) ≤ C yielding (5.13b) in
this case due to (5.13a). For λ = 0 we can bound Sε(x) ≥ c|x|1−µ/2 and f 1/2(x) ≤
C|x|−µ/4 for |x| ≥ 1 yielding (5.13b) in that case also. This can be seen by arguing
as in the above proof of (5.13a). Consequently we have (5.13b) for all λ ≥ 0, and
(5.12) is proven.

For a later application let us note the following inverse of (5.13b) (proved simi-
larly):

‖w‖2
B∗ ≤ C(λ) sup

S>1
S−1

∫

Bε(S)

|f 1/2w|2 dx. (5.13c)

For an abstract version of (5.13b) and (5.13c) see [Sk, Lemma 2.4].

Step II. We can mimic the proof of [ACH, Theorem 1.1] using (5.9). Notice that
we only need (5.9) for λ > 0 (which is the analogue of [ACH, Theorem 3.3 iv)]).
Details are omitted.

�
Corollary 5.2. For all τ ∈ C∞(Sd−1) ⊂ G the generalized eigenfunction u− =
u−(λ), λ ≥ 0, defined by (3.8) and (3.22) is also given by

u−(λ) = 2πiF+(λ)∗τ. (5.14)

Proof. By Lemma 3.3, (5.5) and (5.9)

u− = (R(λ+ i0)−R(λ− i0))(H − λ)ũ

= 2πiF+(λ)∗F+(λ)(H − λ)ũ = 2πiF+(λ)∗τ. �

Definition 5.3. For any λ ≥ 0 we define the scattering matrix S(λ) ∈ B(G) by the
identity

F+(λ)v = S(λ)F−(λ)v; v ∈ f 1/2
λ B(|x|). (5.15)
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Proposition 5.4. The operator S(λ) is a well-defined unitary operator on G. It is
strongly continuous as a function of λ ≥ 0. In particular the scattering matrix at
zero energy S(0) is uniquely determined by the diagonalizing transforms F±.

Proof. We apply (5.5), (5.7), (5.9) and their analogues for change of superscript
+ → −. This yields the well-definedness and the unitarity. For all v ∈ L2

3 the

functions {F±(λ)v|λ ≥ 0} ∈ H̃ are continuous in λ, cf. (5.4). Since moreover
F−(λ)L2

3 is dense in G for any fixed λ the continuity property follows by a density
argument. �
5.1. Asymptotics of generalized eigenfunctions. We complete this section by
a discussion of the asymptotics of the generalized eigenfunctions

u−τ (·, λ) := 2πiF+(λ)∗τ ; τ ∈ G. (5.16)

Notice that Corollary 5.2 provides a representation for τ ∈ C∞(Sd−1).
Let B∗0 ⊂ B∗ be the closure of Cc(Rd) in B∗. For all λ ≥ 0 and τ ∈ G the function

w(x) = (K−1/2
ε m−1/2

ε f 1/2)(x)τ(σ); x = Φ(t, σ),

belongs to B∗ with
‖w‖B∗ ≤ C‖τ‖G. (5.17)

This is due to (3.5) and (5.13c).
Next, using (5.9) and (5.15) we decompose for all τ ∈ C∞(Sd−1)

w−τ (x) : = π1/2(K−1/2
ε m−1/2

ε f 1/2)(x)(S(λ)−1τ)(σ)

= π1/2(K−1/2
ε m−1/2

ε f 1/2)(x)(F−(λ)(H − λ)ũ)(σ)

= w−1 (x) + w−2 (x);

w−1 := eiSεf 1/2R(λ− i0)(H − λ)ũ.

While w−τ , w
−
1 ∈ B∗ we have the stronger assertion for the second term,

w−2 ∈ B∗0 . (5.18)

To prove (5.18) we introduce the quantity

wn = π1/2(K−1/2
ε m−1/2

ε f 1/2)(x)(F−(λ)((H − λ)ũ− f 1/2vn))(σ),

where Cc(Rd) 3 vn → v := f−1/2(H − λ)ũ ∈ B. We have ‖wn‖B∗ ≤ C‖vn − v‖B, cf.
(5.17), showing that ‖wn‖B∗ → 0 for n→∞. Similarly

eiSεf 1/2R(λ− i0)f 1/2vn → w−1 in B∗.

We are lead to consider the quantity (for fixed n ∈ N)

w̃n(x) = π1/2(K−1/2
ε m−1/2

ε f 1/2)(x)
(
(F−(λ)f 1/2vn)(σ)

− π−1/2(eiSεK1/2
ε m1/2

ε R(λ− i0)f 1/2vn)(x)
)
,

It follows from (3.5), (5.1), (5.2) and (5.13c) by yet another approximation that
w̃n ∈ B∗0 . Note that indeed

‖w̃n − 1Bε(S)w̃n‖B∗ → 0 for S →∞,
while obviously we have 1Bε(S)w̃n ∈ B∗0 for all S > 1. Whence (5.18) is proven.

Now, combining (3.22) and (5.18) we conclude that for all τ ∈ C∞(Sd−1)

u−τ (·, λ)− (ũ− e−iSεf−1/2w−τ ) ∈ f−1/2B∗0 .
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This formula extends to G and implies an injectivety property.

Corollary 5.5. Let λ ≥ 0 and τ ∈ G be given. Introducing the following function
of x = Φ(t, σ),

u−0,τ (x, λ) = π1/2(K−1/2
ε m−1/2

ε )(x)(eiSε(x)τ(σ)− e−iSε(x)(S(λ)−1τ)(σ)),

we have

u−τ (·, λ)− u−0,τ (·, λ) ∈ f−1/2
λ B∗0 . (5.19a)

In particular

2π‖τ‖2
G = lim

S→∞
S−1

∫

Bε(S)

|K1/2
ε u−τ (x, λ)|2 dx. (5.19b)

Proof. Since we know (5.19a) for τ ∈ C∞(Sd−1) the statement for τ ∈ G follows by
approximation, cf. (5.17). As for (5.19b) we can replace u−τ to the right by u−0,τ due
to (5.19a). Then we compute using (3.5) and the unitarity of the scattering matrix.
Note that cross terms do not contribute to the limit due to oscillatory behaviour. �

6. Characterization of generalized eigenfunctions

We introduce the following class of generalized eigenfunctions.

Definition 6.1. For λ ≥ 0 let

Eλ = {u ∈ f−1/2
λ B∗|(H − λ)u = 0}.

Notice that it follows from (5.7) and the definition (5.16) that for all τ ∈ G
u−τ (·, λ) ∈ Eλ.

In fact it follows from (5.7), (5.13b) and (5.19b) that the map

G 3 τ → u−τ (·, λ) ∈ Eλ
is a bi-continuous linear isomorphism onto its range. The latter is identified as

Proposition 6.2. For all λ ≥ 0 the set

Eλ = {u−τ (·, λ)|τ ∈ G}. (6.1)

Proof. Let uλ ∈ Eλ be arbitrarily given. We need to show that it must have the
form uλ = u−τ (·, λ) for some τ ∈ G. For that we partly mimic [DS1, Section 8].
In particular, with reference to symbols (4.1) and the corresponding localization
symbols as appearing in Proposition 4.1 let us introduce

χ± = χ−(aλ)χ̃±(bλ) + 1
2
χ+(aλ). (6.2)

We consider in the following these functions as fixed and consider ε-small perturba-
tions Wε ∈ W with ε > 0 small exactly as in Proposition 4.1. Note the properties

Opw(aλχ+(aλ))uλ, Opw(χ+(aλ))uλ ∈ f−1/2
λ B∗0 , (6.3)

cf. [Sk, Lemma 3.1], in fact these functions are in any weighted L2-space L2
m. Whence

the quantization of the second term of (6.2) contributes by a small term when applied
to uλ. The quantization of the first term localizes to an outgoing (incoming) region
of phase space. A priori we only have

Opw(χ±)uλ, Opw(χ−(aλ)χ̃±(bλ))uλ ∈ f−1/2
λ B∗.
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Step I. We construct a candidate τ . Pick a non-negative g ∈ C∞c (R+) with∫∞
0
g(t)dt = 1, and let Gn(s) = 1−

∫ s/n
0

g(t)dt, n ∈ N. Define

τn = F+(λ)Gn(Sε)(H − λ) Opw(χ+)uλ; n ∈ N.

We note that this family {τn} is a bounded subset of G. In fact we have

τn = iF+(λ)i[H,Gn(Sε)] Opw(χ+)uλ

= −iF+(λ)(Re(p · ∇Sε) 2
n
g(Sε/n) + i|∇Sε|2n−2g′(Sε/n)) Opw(χ+)uλ

= τ 1
n + τ 2

n.

For any τ̃ ∈ G we have

‖f 1/2
λ u−τ̃ (·, λ)‖B∗ ≤ C‖τ̃‖G, (6.4a)

‖f−3/2
λ χ(|x| > 2) Re(p · ∇Sε)u−τ̃ (·, λ)‖B∗ ≤ C‖τ̃‖G, (6.4b)

cf. (6.3). We aim at showing the uniform bounds

|〈τ̃ , τ jn〉| ≤ C‖τ̃‖G; j = 1, 2, (6.5)

which suffices for the boundedness.
For j = 2 we write

−2πi〈τ̃ , τ 2
n〉 = 〈f 1/2

λ u−τ̃ (·, λ), h2
nw〉;

h2
n = f

−1/2
λ |∇Sε|2n−2g′(Sε/n)f

−1/2
λ , w = f

1/2
λ Opw(χ+)uλ.

For λ > 0 we have |h2
n(x)| ≤ Cλ〈x〉−2 while for λ = 0 there is the bound |h2

n(x)| ≤
C〈x〉−2+µ/2. Since B∗ is continuously imbedded in L2

−δ for any δ > 1/2 we conclude
the bound (6.5) for j = 2 using (6.4a).

Decomposing similarly for j = 1,

〈τ̃ , τ 1
n〉 = 〈w̃, h1

nw〉;
h1
n = f

3/2
λ n−1g(Sε/n)f

−1/2
λ , w = f

1/2
λ Opw(χ+)uλ,

and using (6.4b) we need to show the bound

|〈w̃, h1
nw〉| ≤ C‖w̃‖B∗ ‖w‖B∗ .

For that it suffices for any λ ≥ 0 to find C > 1 and a bounded interval I such that
for all n ∈ N there exists R ≥ 1 such that |h1

n(x)| ≤ CR−11I(|x|/R) for all x ∈ Rd.
We recall the bounds crfλ ≤ Sε ≤ Crfλ. In particular for λ > 0 the assertion is
immediate with R = n. For λ = 0 we choose R = n1/(1−µ/2) and obtain the same
conclusion. So indeed (6.5) holds, and the sequence {τn} ⊂ G is bounded.

Take τ ∈ G as the weak limit of some subsequence of {τn}, cf. [Yo, Theorem 1
p. 126]. Upon changing the notation we can assume that

τ = w–G–lim
n→∞

F+(λ)Gn(Sε)[H,Opw(χ+)]uλ. (6.6)
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Step II. We show that this τ works. We compute using (5.5) in the third step, and
Propositions 3.1 and 4.1 in the last step, and taking m = −3,

f 1/2u−τ (·, λ) = 2πif 1/2F+(λ)∗τ

= 2πi w?–B*–lim
n→∞

f 1/2F+(λ)∗F+(λ)Gn(Sε)[H,Opw(χ+)]uλ

= w?–B*–lim
n→∞

f 1/2(R(λ− i0)−R(λ+ i0))Gn(Sε)[Opw(χ+), H − λ]uλ

= w?–L2
m–lim

n→∞
f 1/2R(λ− i0)Gn(Sε)[H − λ,Opw(χ−)]uλ

+ w?–L2
m–lim

n→∞
f 1/2R(λ+ i0)Gn(Sε)[H − λ,Opw(χ+)]uλ

= w− + w+; w∓ = f 1/2R(λ∓ i0)(H − λ) Opw(χ∓)uλ.

Using again Proposition 4.1 we compute

w∓ = w?–L2
m–lim

ε↘0

f 1/2R(λ∓ iε)(H − λ) Opw(χ∓)uλ

= f 1/2 Opw(χ∓)uλ ∓ w?–L2
m–lim

ε↘0

iεf 1/2R(λ∓ iε) Opw(χ∓)uλ

= f 1/2 Opw(χ∓)uλ.

Whence

u−τ (·, λ) = f−1/2(w− + w+) =
(

Opw(χ−) + Opw(χ+)
)
uλ = uλ.

�
We summarize

Theorem 6.3. Suppose Condition 2.1 (and (2.2a)). There exist ε0 > 0 and l =
l(µ, d) ∈ N such that for all ε-small perturbations Wε with ε ∈ (0, ε0] (assuming also
(2.2b)) the following statements hold for all λ ≥ 0:

For all τ ∈ G there exist unique τ̃ ∈ G and uλ ∈ Eλ such that (with x = Φ(t, σ))

uλ(x)− π1/2(K−1/2
ε m−1/2

ε )(x)(eiSε(x)τ(σ)− e−iSε(x)τ̃(σ)) ∈ f−1/2
λ B∗0 . (6.7a)

Moreover for all uλ ∈ Eλ there exist unique τ, τ̃ ∈ G such that (6.7a) holds. In
particular the map G 3 τ → uλ ∈ Eλ is a linear isomorphism. It is bi-continuous,
in fact

2π‖τ‖2
G = lim

S→∞
S−1

∫

Bε(S)

|K1/2
ε uλ|2 dx. (6.7b)

There are formulas

uλ = u−τ (·, λ) = 2πiF+(λ)∗τ and τ̃ = S(λ)−1τ. (6.7c)

In particular the wave matrix F+(λ)∗ : G → Eλ is a bi-continuous linear isomor-

phism. The maps F+(λ)f
1/2
λ : B → G and δ(λ) = π−1 Im(R(λ + i0)) : f

1/2
λ B → Eλ

are onto.

Proof. The uniqueness of τ̃ and uλ in (6.7a) follows from the proof of Lemma 3.3,
and the existence part (in agreement with (6.7c)) follows from (5.19a). The map-
ping properties mentioned in the last sentence of the theorem are consequences of
Banach’s closed range theorem [Yo, Theorem p. 205] and previous statements. The
remaining parts of the latter are consequences of (5.19b) and Proposition 6.2. �
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6.1. Concluding remarks. With some more effort one should be able to show that
the operator F+(λ)∗ has a somewhat regular kernel, formally given by (F+(λ)∗δσ)(x).
More precisely one should have

(F+(λ)∗τ)(x) =

∫

G
φ+(x, σ, λ)τ(σ) dσ,

where the plane wave type eigenfunction φ+ has a degree of regularity. In particular
it should be continuous in all variables for x /∈ suppV2 provided the perturbation
Wε ∈ W is ε-small with ε > 0 taken small enough. More regularity in σ ∈ G
would require ε taken smaller. These assertions depend on possible generalizations
of Proposition 4.2, cf. [HS2]. We shall not elaborate further on this issue. Note also
that smoothness in the angular variable of analogous plane wave type eigenfunctions
was indeed obtained in [DS1].

Another remark concerns the relationship between the scattering theory developed
here and [DS1] in case of overlapping conditions (which means under the conditions
of [DS1]). In the case of a spherically symmetric potential we have for all λ ≥ 0 that

σ = η(σ) := lim
s→∞

Φ(s, σ)/|Φ(s, σ)|,

and the two involved solutions to the eikonal equation are identical up to a trivial
explicit term. In particular the two families of S-matrices are explicitly connected
as follows: For all λ ≥ 0 the operator S(λ) of this paper and the scattering matrix
of [DS1], say SDS(λ), are up to an explicit phase factor related as S(λ) = SDS(λ)R
where (Rτ)(ω) = τ(−ω), cf. the discussion at the beginning of Section 1.

More generally under the conditions of [DS1] the asymptotic normalized velocity
η(σ) exists for all λ ≥ 0 and as a map it is a diffeomorphism on Sd−1. This property,
Theorem 6.3 and [DS1, Theorem 8.2] yields the connection formula

SDS(λ)−1 = Re−iφ(·,λ)DηS(λ)−1Dη−1e−iφ(·,λ), (6.8)

where φ(ω, λ) is real and for any diffeomorphism ψ on Sd−1 the operator Dψ is the
unitary map on L2(Sd−1) implemented by the classical map Sd−1 3 ω → ψ(ω) ∈
Sd−1, viz. (Dψτ)(ω) = J1/2(ω)τ(ψ−1(ω)).

Although we shall not elaborate the formula (6.8) suggests a criterion for regularity
at zero energy of a family of (inverse) scattering matrices under the conditions of
Section 2: It suffices that the families of diffeomorphisms η = ηλ and η−1

λ on Sd−1

as well as the family of phases φ(·, λ) are regular at zero energy. Indeed in this
case the right hand side of (6.8) has a limit as λ→ 0 due to Proposition 5.4. This
criterion is of course not applicable for the example in Subsection 2.1. Note that
under the conditions of Section 2 the form of the right hand side of (6.8) makes
sense for positive energies and the expression coincides with the (inverse) scattering
matrix discussed in the beginning of Section 1.
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