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Abstract

In order to estimate the specific intrinsic volumes of a planar Boolean model
from a binary image, we consider local digital algorithms based on weigted
sums of 2 × 2 configuration counts. For Boolean models with balls as grains,
explicit formulas for the bias of such algorithms are derived, resulting in a
set of linear equations that the weights must satisfy in order to minimize the
bias in high resolution. These results generalize to larger classes of random
sets, as well as to the design based situation, where a fixed set is observed on
a stationary isotropic lattice. Finally, the formulas for the bias obtained for
Boolean models are applied to existing algorithms in order to compare their
accuracy.

Keywords:Digitization in 2D; intrinsic volumes; local estimators; configura-
tions; Boolean models; design based digitization.

1 Introduction

Let X ⊆ R2 be a compact subset of the plane. Suppose we are given a digital image
of X, i.e. the only information about X available to us is the set X∩L where L ⊆ R2

is a square lattice. In the language of signal processing, we are thus using an ideal
sampler to obtain a sample of the characteristic function of X at all the points of
L. In image analysis terms, L can be interpreted as the set of all pixel midpoints
and the digitization X ∩L contains the same information about X as the commonly
used Gauss digitization [10, p. 56]. From this binary representation of X, we would
like to recover certain geometric properties of X. The quantities we are interested
in are the so-called intrinsic volumes Vi. In the plane, these are simply the volume
V2(X), the boundary length 2V1(X), and the Euler characteristic V0(X). See [14,
Chapter 4] for the definition when X is polyconvex.

In this paper, we exclusively consider local digital estimators based on 2 × 2
configuration counts in a square lattice. Using the additivity of intrinsic volumes,
these may be described as follows: The plane is divided into a disjoint union of
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square cells with vertices in L. For each 2 × 2 cell in the lattice, each vertex may
belong to either X or R2\X, yielding 24 = 16 different possible configurations. Each
cell contributes to the estimator for Vi(X) with a certain weight depending only on
the configuration. Thus the estimator becomes a weighted sum of the configuration
counts. The weights can in principle be chosen freely. Algorithms of this type are
desirable as they are simple and efficiently implementable based on linearly filtering
the image.

One way of testing the quality of local algorithms is by simulations on a fixed
test set for various high resolutions, see e.g. [10, Section 10.3.4]. In contrast, we
shall follow Ohser, Nagel, and Schladitz in [13], where the algorithms are applied to
a standard model from stochastic geometry, namely the Boolean model. But rather
than testing a known algorithm, we let the weights be arbitrary and derive conditions
on the weights such that the bias of the estimator is minimal for high resolutions.

If the grains are almost surely balls, a Steiner-type result for finite sets shown
by Kampf and Kiderlen in [7] yields a general formula for the estimator from which
the asymptotic behaviour can be derived. The main result is that a local estimator
is asymptotically unbiased if and only if the weights satisfy certain linear equations.
Moreover, we obtain formulas for the approximate bias in high resolution. These
results are stated in Theorem 4.2 and 4.4 below.

Local estimators are introduced in Section 2. This is specialized to Boolean mo-
dels in Section 3 and the computations are performed in Section 4.

In Section 5, the main theorems are generalized to a larger class of Boolean
models. This relies on a generalization, proved by Kampf in [5], of the formulas
obtained in [7] to the case where grains are compact convex sets inside which an
ε-ball slides freely. A formula by Kiderlen and Jensen presented in [8] also yields an
immediate generalization of the first-order results to general standard random sets,
see Section 6.

We then turn to the design based situation where a deterministic set X is ob-
served on a randomly translated and rotated lattice. Under certain conditions on X,
we obtain a generalization of the main theorems for Boolean models. This is done
for the boundary length in Section 7, using a result of Kiderlen and Rataj from [9],
and for the Euler characteristic in Section 8 by a refinement of their approach.

In the litterature, various algorithms for computing intrinsic volumes are sug-
gested. The obtained formulas allow for a computation of the bias in high resolution
and hence a comparison of the commonly used algorithms. This is the content of
the last section of the paper, Section 9.

2 Local digital estimators

Let Z2 be the standard lattice in R2. Let C denote the unit square [0, 1] × [0, 1]
in R2 and let C0 be the set of vertices in C. We enumerate the elements of C0 as
follows: x0 = (0, 0), x1 = (1, 0), x2 = (0, 1), and x3 = (1, 1). A configuration is a
subset ξ ⊆ C0. We denote the 16 possible configurations by ξl, l = 0, . . . , 15, where
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the configuration ξ is assigned the index

l =
3∑

i=0

2i1xi∈ξ.

Here 1xi∈ξ is the indicator function.
More generally, we shall consider an orthogonal lattice aL = aRv(Z2 + c) where

c ∈ C is a translation vector, Rv is the rotation by the angle v ∈ [0, 2π], and a > 0 is
the lattice distance. The configuration ξl is then understood to be the corresponding
transformation aRv(ξl + c) of the configuration ξl ⊆ Z2.

The elements of ξl are referred to as the ‘foreground’ or ‘black’ pixels and will also
sometimes be denoted by Bl, while the points in the complementWl = C0\ξl = ξ15−l
are referred to as the ‘background’ or ‘white’ pixels.

The 16 possible configurations are divided into six equivalence classes under rigid
motions. These are denoted by ηj for j = 1, . . . , 6. These are defined in Table 1.

Table 1: Configuration classes

j ηj dj Description Example

1 {ξ0} 1 4 white vertices
(
◦ ◦
◦ ◦

)

2 {ξ1, ξ2, ξ4, ξ8} 4 3 white and 1 black vertices
(
◦ ◦
• ◦

)

3 {ξ3, ξ5, ξ10, ξ12} 4 2 adjacent white and 2 black vertices
(
◦ ◦
• •

)

4 {ξ6, ξ9} 2 2 opposite white and 2 black vertices
(
◦ •
• ◦

)

5 {ξ7, ξ11, ξ13, ξ14} 4 1 white 3 black vertices
(
• ◦
• •

)

6 {ξ15} 1 4 black vertices
(
• •
• •

)

The number dj is the number of elements in the equivalence class ηj.
Now let X ⊆ R2 be a compact set. Suppose we observe X on the lattice aL.

Based on the set X ∩ aL we want to estimate the intrinsic volumes Vi introduced in
Section 1.

In order for the Vi to be well-defined and for the digitization X ∩ aL to carry
enough information about X, we require that X is sufficiently ‘nice’. The notion of
a gentle set is introduced in Section 7 when dealing with V1. This includes all topo-
logically regular polyconvex sets. When we work with V0, X will be assumed to be
either a compact topologically regular polyconvex set or a compact full-dimensional
manifold. A set is called topologically regular if it coincides with the closure of its
interior.

Our approach is to consider a local algorithm based on the observations of X
on the 2 × 2 cells of aL. By additivity of the intrinsic volumes, Vi(X) is a sum of
contributions from each lattice cell z + aRv(C) for z ∈ aL. We estimate this by a
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certain weight w(i)(a, z), depending only on the information we have about the cell,
i.e. the configuration

X ∩ (z + aRv(C0))− (z − c) = (X − (z − c)) ∩ ξ15.

Recall here that ξ15 = aRv(C0 + c) is the set of vertices in the unit cell of aL.
Since Vi is invariant under rigid motions, we would like the estimator to satisfy

V̂i(X) = V̂i(MX)

for any rigid motion M preserving aL. Thus w(i)(a, z) should only depend on the
equivalence class ηj of (X − (z − c)) ∩ ξ15 under rigid motions.

As Vi is homogeneous of degree i, i.e. Vi(aX) = aiVi(X), the estimator should
also satisfy

V̂i(aX ∩ aL) = aiV̂i(X ∩ L).

This corresponds to weights of the form w(i)(a, z) = aiw
(i)
j where w(i)

j ∈ R are some
constants.

We are thus led to consider estimators of the form

V̂i(X) = ai
6∑

j=1

w
(i)
j Nj

where Nj is the number of occurences of the configuration class ηj

Nj =
∑

z∈aL
1(X−(z−c))∩ξ15∈ηj .

It is also natural to require the estimators to be compatible with interchanging
background and foreground as follows:

V̂1(X) = V̂1(R2\X), (2.1)

V̂0(X) = −V̂0(R2\X). (2.2)

The reason for the first condition is that interchanging foreground and background
does not change the boundary. The second condition is natural because the Euler
characteristic satisfies

V0(X) = −V0(R2\X)

for both topologically regular compact polyconvex sets, see [12], and compact 2-ma-
nifolds with boundary.

3 The 2D Boolean model

Let Ξ be a stationary Boolean model in the plane with compact convex grains and
intensity γ. That is,

Ξ =
⋃

i

(xi +Ki)
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where {x1, x2, . . . } is a stationary Poisson process in R2 with intensity γ and the Ki

are i.i.d. random compact convex sets in R2 with distributionQ. We assume through-
out that the grain distribution Q is rotation invariant and hence Ξ is isotropic. See
e.g. [15] for more details.

Since the Boolean model is a standard random set in the sense of [15, Defini-
tion 9.2.1.], one can define the specific intrinsic volumes. These may be thought of
as the mean intrinsic volumes per unit volume. They are defined by

V i(Ξ) = lim
r→∞

EVi(Ξ ∩ rW )

V2(rW )
(3.1)

where W is any compact convex set with non-empty interior, see [15].
Now assume that we observe Ξ on a lattice aL in a compact convex window W

with non-empty interior. By the isotropy assumption, we may as well assume the
lattice to be the standard lattice aZ2. Thus we are given the set Ξ∩aZ2∩W . Based
on this, we want to define local estimators for the specific intrinsic volumes.

The limit in (3.1) is introduced to correct for edge effects. However, we only
observe in a bounded window. We can get rid of the limit as follows: Let Cz = z+aC
be a lattice cell with z ∈ aZ2 and let ∂+Cz = z+ a([0, 1]×{1} ∪ {1}× [0, 1]) be the
upper right boundary. Write Cz,0 = Cz\∂+Cz and define

Vi(Cz,0 ∩ Ξ) = Vi(Cz ∩ Ξ)− Vi(∂+Cz ∩ Ξ).

Then Theorem 9.2.1. in [15] implies that

EVi(Cz,0 ∩ Ξ) = V2(Cz)V i(Ξ) = a2V i(Ξ).

A summation over all lattice cells contained in W yields

V i(Ξ) =
∑

z∈aZ2∩(W	aČ)

EVi(Cz,0 ∩ Ξ)

V2(Cz)N0

=
∑

z∈aZ2∩(W	aČ)

EVi(Cz,0 ∩ Ξ)

a2N0

. (3.2)

whenever N0 6= 0 where N0 is the total number of points in aZ2 ∩ (W 	 aČ). Here
Č = {−x | x ∈ C} and W 	 aČ = {x ∈ R2 | x + aC ⊆ W}. Thus aZ2 ∩ (W 	 aČ)
contains exactly those z such that Cz is contained in W .

As in Section 2, we estimate each contribution EVi(Cz,0 ∩ Ξ) by a weight of the
form aiw

(i)
j depending on the configuration type ηj. Then (3.2) yields an estimator

of the form

V̂i(Ξ) = ai−2

6∑

j=1

w
(i)
j

Nj

N0

(3.3)

where w(i)
j ∈ R are arbitrary weights and the number of configurations Nj are given

by
Nj =

∑

z∈aZ2∩(W	aČ)

1(Ξ−z)∩ξ15∈ηj . (3.4)

As opposed to the approach in [13], we make no a priori assumptions on the
weights but leave them arbitrary and investigate the behavior of the estimator.
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Ideally, V̂i would define an unbiased estimator, i.e. EV̂i(Ξ) = V i(Ξ). Generally, this
is not possible with finite resolution, i.e. when a > 0. Instead, we shall obtain
conditions for this to hold asymptotically when the lattice distance tends to zero,
that is,

lim
a→0

EV̂i(Ξ) = V i(Ξ).

The mean value of V̂i(Ξ) is

EV̂i(Ξ) = ai−2

6∑

j=1

w
(i)
j E

(
Nj

N0

)
= ai−2

6∑

j=1

w
(i)
j P (Ξ ∩ aC0 ∈ ηj) (3.5)

by (3.4) and stationarity of Ξ.
For each ξl, there are formulas of the form

P (Ξ ∩ aC0 = ξl) =
15∑

k=0

blkP (ξk ⊆ R2\Ξ) (3.6)

for suitable integers blk, see also [13]. As Ξ is stationary and isotropic, P (Ξ∩aC0 = ξl)
and P (ξk ⊆ R2\Ξ) depend only on the equivalence class of ξl and ξk under rigid
motions. Let ξki and ξlj be representatives for ηi and ηj, respectively. Then (3.6)
reduces to

P (Ξ ∩ aC0 = ξlj) =
6∑

i=1

b′ijP (ξki ⊆ R2\Ξ) (3.7)

with the integer b′ij given as the ijth entry in the matrix

B =




0 0 0 0 0 1
0 0 0 0 1 −4
0 0 1 0 −2 4
0 0 0 1 −1 2
0 1 −2 −2 3 −4
1 −1 1 1 −1 1



.

The right hand side of (3.7) is now well-known, since

P (ξk ⊆ R2\Ξ) = e−γEV2(ξk⊕K) (3.8)

whereK is a random compact convex set of distribution Q and ⊕ denotes Minkowski
addition, see [15]. Thus we only need to describe EV2(ξk ⊕K).

If Fk = conv(ξk) denotes the convex hull of ξk, an application of the rotational
mean value formula, see [15, Theorem 6.1.1], shows that

EV2(Fk ⊕K) = EV2(K) +
2

π
V1(Fk)EV1(K) + V2(Fk), (3.9)

since the grain distribution is isotropic. In order to apply this, it remains to compute
the error

EV2(Fk ⊕K)− EV2(ξk ⊕K). (3.10)
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4 Boolean models with random balls as grains

We first restrict ourselves to Boolean models where the grains are a. s. balls B(r) of
random radius r. For technical reasons we will assume throughout this section that
there is an ε > 0 such that r ≥ ε a. s.

In [7, Proposition 1], Kampf and Kiderlen give an expression for the error (3.10).
Applied to our situation, this becomes a power series in a

r
:

V2(Fk ⊕B(r))− V2(ξk ⊕B(r)) = a2V2

(
a−1(Fk ⊕B(r))

)
− a2V2

(
a−1(ξk ⊕B(r))

)

= 2a2

∞∑

n=1

(2n− 3)!!

(2n)!!
V

(2n+1)
1 (a−1ξk)

(r
a

)2n−1

(4.1)

whenever a
r
is sufficiently small. The coefficients V (m)

1 (ξk) are called intrinsic power
volumes in [7]. These are defined by

V
(m)

1 (ξk) =
1

m2m−1

∑

F∈F1(Fk)

γ(Fk, F )V1(F )m

where F1(Fk) is the set of 1-dimensional faces of Fk and γ(Fk, F ) is the outer angle.
In the plane, this equals 1 if dimFk = 1 and 1

2
if dimFk = 2. See [7] for the definition

of the double factorial. Note that the set a−1ξk is independent of a, so the coefficients
V

(2n+1)
1 (a−1ξk) are positive constants.
The condition r ≥ ε a. s. ensures that whenever a is sufficiently small, (4.1) holds

a. s. Combining this with (3.9), we obtain a power series expansion

EV2(ξk ⊕B(r)) = EV2(B(r)) + a
2

π
V1(a−1Fk)EV1(B(r)) + a2V2(a−1Fk)

− a3V
(3)

1 (a−1ξk)E(r−1) +O(a5).

The constants Vi(a−1Fk) and V (3)
1 (a−1ξk) can be computed directly for each k. In-

serting this in the Taylor expansion for the exponential function in (3.8), yields a
power series expansion

P (ξk ⊆ R2\Ξ) = c1 +

(
c2 + ac3

γ

π
EV1(B(r)) + a2

(
c4γ + c5

(γ
π
EV1(B(r))

)2
)

+ a3

(
c6γE(r−1) + c7

γ2

π
EV1(B(r)) + c8

(γ
π
EV1(B(r))

)3
))

e−γEV2(B(r)) +O(a4)

(4.2)

for a sufficiently small and constants c1, . . . , c8 depending on k. If ξkj is a represen-
tative for ηj, define A to be the matrix with entry amj the constant cm occuring in
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the formula for P (ξkj ⊆ R2\Ξ) for j = 1, . . . , 6. A direct computation shows that

A =




1 0 0 0 0 0
0 1 1 1 1 1

0 0 −2 −2
√

2 −(2 +
√

2) −4
0 0 0 0 −1

2
−1

0 0 2 4 3 + 2
√

2 8

0 0 1
12

√
2

6

√
2+1
12

1
6

0 0 0 0 2+
√

2
2

4

0 0 −4
3
−8
√

2
3

−10+7
√

2
3

−32
3




.

Inserting this in (3.7), we obtain expressions for P (Ξ ∩ aC0 = ξlj) of the form
(4.2) with constants cm given by the jth column in AB. Then by (3.5), a2−iEV̂i(Ξ)

is also of this form with vector of constants c(i) = (c
(i)
1 , . . . , c

(i)
8 ) given by

(c(i))T = ABD(w(i))T

where w(i) = (w
(i)
1 , . . . , w

(i)
6 ) is the vector of weights and D is the diagonal matrix

with jth diagonal entry the number dj of elements in ηj. Writing this out, we get

EV̂i(Ξ) = ai−2
(
c

(i)
1 + c

(i)
2 e
−γEV2(B(r))

)

+ ai−1c
(i)
3

γ

π
EV1(B(r))e−γEV2(B(r)) (4.3)

+ ai
(
c

(i)
4 γ + c

(i)
5

(γ
π
EV1(B(r))

)2
)
e−γEV2(B(r))

+ ai+1

(
c

(i)
6 γE(r−1) + c

(i)
7

γ2

π
EV1(B(r)) + c

(i)
8

(γ
π
EV1(B(r))

)3
)
e−γEV2(B(r))

+O(ai+2)

where

c
(i)
1 = w

(i)
6

c
(i)
2 = w

(i)
1 − w(i)

6

c
(i)
3 = 4(−w(i)

1 + (2−
√

2)w
(i)
2 + (−2 + 2

√
2)w

(i)
3 + (2−

√
2)w

(i)
5 − w(i)

6 )

c
(i)
4 = − w(i)

1 + 2w
(i)
2 − 2w

(i)
5 + w

(i)
6

c
(i)
5 = 4(2w

(i)
1 + (−5 + 2

√
2)w

(i)
2 + (4− 4

√
2)w

(i)
3 + (3− 2

√
2)w

(i)
4

+ (−7 + 6
√

2)w
(i)
5 + (3− 2

√
2)w

(i)
6 )

c
(i)
6 = 1

6
(w

(i)
1 + (2

√
2− 2)w

(i)
2 + (2− 4

√
2)w

(i)
3 + (2

√
2− 2)w

(i)
5 + w

(i)
6 )

c
(i)
7 = 2(2w

(i)
1 + (−6 +

√
2)w

(i)
2 + (4− 2

√
2)w

(i)
3 + (2−

√
2)w

(i)
4

+ (−2 + 3
√

2)w
(i)
5 −

√
2w

(i)
6 )

c
(i)
8 = 4

3
(−8w

(i)
1 + (22− 7

√
2)w

(i)
2 + (−16 + 14

√
2)w

(i)
3 + (−6 + 3

√
2)w

(i)
4

+ (10− 13
√

2)w
(i)
5 + (−2 + 3

√
2)w

(i)
6 ).

(4.4)
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Note that c(i)
8 = −16c

(i)
6 − 2c

(i)
7 .

We now look for weights w(i)
j such that lima→0EV̂i(Ξ) = V i(Ξ). In [15, Theo-

rem 9.1.4], the following formulas for the specific intrinsic volumes are shown:

V 2(Z) = 1− e−γEV2(B(r)), (4.5)

V 1(Z) = γEV1(B(r))e−γEV2(B(r)), (4.6)

V 0(Z) =

(
γ − 1

π
(γEV1(B(r)))2

)
e−γEV2(B(r)). (4.7)

These are truncated expressions of the form (4.3) with fixed constants c(i)
m , so the

bias of EV̂i(Ξ) can be found by comparing coefficients.
First consider V 2(Ξ). From (4.3) we see that

lim
a→0

EV̂2(Ξ) = c
(2)
1 + c

(2)
2 e−γEV2(B(r)),

so by (4.5), we get an asymptotically unbiased estimator for V 2(Ξ) exactly if c(2)
1 = 1

and c(2)
2 = −1. By Equation (4.4), this means:

Proposition 4.1. V̂2(Ξ) is asymptotically unbiased if and only if the weights satisfy
w

(2)
1 = 0 and w(2)

6 = 1.

It is well known that V̂2(Ξ) is unbiased, not only asymptotically, with the choice
w(2) =

(
0, 1

4
, 1

2
, 1

2
, 3

4
, 1
)
, since this yields the estimator that computes the area of the

approximation of X by a union of squares of sidelength a centered at the foreground
points, see e.g. [11].

Next we compare EV̂1(Ξ), given by (4.3), with (4.6) and obtain:

Theorem 4.2. The limit lima→0EV̂1(Ξ) exists if and only if c(1)
1 = c

(1)
2 = 0, or

equivalently

w
(1)
1 = w

(1)
6 = 0. (4.8)

In this case,

lim
a→0

EV̂1(Ξ) =
1

π
c

(1)
3 V 1(Ξ).

In particular, EV̂1(Ξ) is asymptotically unbiased if and only if the weights satisfy

c
(1)
3 = 4((2−

√
2)w

(1)
2 + (−2 + 2

√
2)w

(1)
3 + (2−

√
2)w

(1)
5 ) = π. (4.9)

The bias is

a

(
c

(1)
4 γ + c

(1)
5

(γ
π
EV1(B(r))

)2
)
e−γEV2(B(r)) +O(a2),

so the estimator converges as O(a2) exactly if c(1)
4 = c

(1)
5 = 0 or equivalently if the

weights satisfy:

w
(1)
2 − w(1)

5 = 0, (4.10)

(−5 + 2
√

2)w
(1)
2 + (4− 4

√
2)w

(1)
3 + (3− 2

√
2)w

(1)
4 + (−7 + 6

√
2)w

(1)
5 = 0. (4.11)
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If these equations are satisfied, the bias is

a2

(
c

(1)
6 γE(r−1) + c

(1)
7

γ2

π
EV1(B(r)) + c

(1)
8

(γ
π
EV1(B(r))

)3
)

+O(a3). (4.12)

The first condition (4.8) is intuitive, since lattice cells of type η1 and η6 will
typically not contain any boundary points. Equation (4.10) is also natural since it is
exactly the condition (2.2), saying that interchanging foreground and background in
the digital image should not change the value of the estimator. Equation (4.9) is not
so obvious. The coefficient in front of w(1)

j in 1
8
c

(1)
3 is the asymptotic probability that

a lattice square containing a piece of the boundary is of type ηj. Equation (4.11)
does not seem to have a simple geometric interpretation. While (4.9) and (4.10)
generalize to the design based setting, as we shall see in Section 7 and 8, (4.11)
seems to be special for the Boolean model and the underlying distribution.

The equations (4.8), (4.9), (4.10), and (4.11) do not determine the weights
uniquely. There is still one degree of freedom in the choice. However, this is not
enough to remove the a2-term in (4.12), since the system of linear equations the
weights must satisfy becomes overdetermined. The following proposition gives the
best possible choice of weights:

Proposition 4.3. The complete solution to the system of linear equations (4.8),
(4.9), (4.10), and (4.11) is

w(1) =
π

16
(0, 1 +

√
2,
√

2, 12 + 8
√

2, 1 +
√

2, 0) + w(0, 1,−
√

2,−4− 4
√

2, 1, 0)

where w ∈ R is arbitrary.

In general, the best choice of w depends on the intensity γ and the grain distri-
bution Q. Note that negative weights are allowed, even though this does not have
an intuitive geometric interpretation.

Finally for the Euler characteristic, comparing (4.3) with (4.7) yields

Theorem 4.4. The limit lima→0EV̂0(Ξ) exists if and only if c(0)
1 = c

(0)
2 = c

(0)
3 = 0,

i.e.

w
(0)
1 = w

(0)
6 = 0, (4.13)

(2−
√

2)w
(0)
2 + (−2 + 2

√
2)w

(0)
3 + (2−

√
2)w

(0)
5 = 0. (4.14)

In this case,

lim
a→0

EV̂0(Ξ) =

(
c

(0)
4 γ + c

(0)
5

(γ
π
EV1(B(r))

)2
)
e−γEV2(B(r))

so V̂0 is asymptotically unbiased if and only if the following two equations are satisfied

c
(0)
4 = 2w

(0)
2 − 2w

(0)
5 = 1, (4.15)

c
(0)
5 = 4

(
(2
√

2− 5)w
(0)
2 + (4− 4

√
2)w

(0)
3

+ (3− 2
√

2)w
(0)
4 + (6

√
2− 7)w

(0)
5

)
= −π.

(4.16)
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If these equations are satisfied, the bias is

a

(
c

(0)
6 γE(r−1) + c

(0)
7

γ2

π
EV1(B(r)) + c

(0)
8

(γ
π
EV1(B(r))

)3
)

+O(a2). (4.17)

Thus the best possible weights are given by:

Proposition 4.5. The general solution to the linear equations (4.13), (4.14), (4.15),
and (4.16) is

w(0) =

(
0,

1

2
,− 1

2
√

2
,

(
3

4
+

1√
2

)
(2− π), 0, 0

)
+ w

(
0, 1,−

√
2,−4− 4

√
2, 1, 0

)

with w ∈ R arbitrary.

Again there is one degree of freedom in the choice of weights, which is not enough
to annihilate the leading term of (4.17).

Again the equations (4.13), (4.14), and (4.15) are geometric in the sense that
they also show up in the design based setting, while (4.16) seems to be special for
the Boolean model.

Also note that V̂0 does not satisfy the condition (2.2), not even asymptotically.
For a choice of weights satisfying (4.13),

EV̂0(Ξ) = w
(0)
2 N2(Ξ) + w

(0)
3 N3(Ξ) + w

(0)
4 N4(Ξ) + w

(0)
5 N5(Ξ).

Since Nj(Ξ) = N7−j(R2\Ξ) for j = 2, 5, while Nj(Ξ) = Nj(R2\Ξ) for j = 3, 4,

EV̂0(R2\Ξ) = w
(0)
2 N5(Ξ) + w

(0)
3 N3(Ξ) + w

(0)
4 N4(Ξ) + w

(0)
5 N2(Ξ).

Under the condition (2.2), we would thus have

2V 0(Ξ) = lim
a→0

(EV̂0(Ξ)− EV̂0(R2\Ξ))

= lim
a→0

a−2(w
(0)
2 − w(0)

5 )E(N2 −N5)

= (w
(0)
2 − w(0)

5 )

(
4γ + 4(2− 4

√
2)
(γ
π
EV1(B(r))

)2
)
e−γEV2(B(r))

which no choice of weights can satisfy by (4.7).
The two equations (4.11) and (4.16) become more important compared to (4.10)

and (4.15) when r and γ are large. These are the only equations involving the
configuration η4, which can only occur where two different balls are close.

5 General Boolean models

The case where the grains are random balls generalizes to stationary Boolean models
where the grain distribution is isotropic and satisfies the following extra condition:
there is an ε > 0 such that for almost all grains K, B(ε) slides freely inside K.
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This means that for every x ∈ ∂K there is a ball of radius ε contained in K and
containing x. More formally, the condition is that for almost all K:

∀x ∈ ∂K : x− εn(x) +B(ε) ⊆ K. (5.1)

Here n(x) denotes the (necessarily unique) outward pointing unit normal vector
at x. The condition (5.1) is equivalent to B(ε) being a summand of K, i.e. there is
a convex set L s.t. K = L⊕B(ε), see [14, Theorem 3.2.2]

Condition (5.1) is a generalization of the assumption r ≥ ε a. s. in the case where
the grains are random balls.

Letting diam(X) denote the diameter of a compact set, we have:

Lemma 5.1. For any finite set S and convex set K containing B(ε) as a summand,
there is a constant c depending only on diam(K), diam(S), and ε such that

V2(conv(aS)⊕K)− V2((aS)⊕K) ≤ ca3

for all a < 1.

Proof. It is shown in [5, Lemma 17] that if K has twice differentiable support func-
tion, then for all λ ≥ 1,

V2(conv(S)⊕ λK)− V2(S ⊕ λK) ≤ c′max{1, diam(K)}2λ−1

where c′ is a constant depending only on diam(S) and ε. Taking λ = a−1 yields the
claim in this situation.

For a general K = L⊕B(ε), we may approximate L by a sequence Ln of convex
bodies with smooth support functions, see [14, Theorem 3.3.1]. Then Ln ⊕ B(ε)
converges to L⊕B(ε) and Ln ⊕B(ε) has smooth support function.

According to [5, Lemma 10], the map B 7→ V2(M ⊕ B) is continuous for M
compact and B compact convex with interior points. Hence

V2(conv(aS)⊕Ln⊕B(ε))−V2((aS)⊕Ln⊕B(ε)) ≤ c′max{1, diam(Ln⊕B(ε))}2a3

for all n implies

V2(conv(aS)⊕ L⊕B(ε))− V2((aS)⊕ L⊕B(ε)) ≤ c′max{1, diam(L⊕B(ε))}2a3

by continuity of the diameter function.

Now let ξl be a configuration and write Fl = conv(ξl). Then Lemma 5.1 implies:

Corollary 5.2. Let Ξ be a Boolean model such that the grains satisfy (5.1) almost
surely. For

√
2a < ε and l = 0, . . . , 15,

EV2(Fl ⊕ C)− EV2(ξl ⊕ C) ∈ O(a3).

12



This allows us to compute P (ξl ⊆ R2\Ξ) as in Section 4, but only up to second
order:

P (ξl ⊆ R2\Ξ) = e−γEV2(ξl⊕C)

= e−γEV2(Fl⊕C)+O(a3)

= e−γ(EV2(C)+ 2
π
V1(Fl)EV1(C)+V2(Fl)+O(a3))

= c1 + e−γEV2(C)

(
c2 + ac3

γ

π
EV1(C)

+ a2

(
c4γ + c5

(γ
π
EV1(C)

)2
))

+O(a3)

with exactly the same constants cm as those in (4.2), since these depend only on
Vi(a

−1Fl).
Furthermore, for isotropic Boolean models, the specific intrinsic volumes are

again given by

V 2(Ξ) = 1− e−γEV2(C),

V 1(Ξ) = γEV1(C)e−γEV2(C),

V 0(Ξ) =

(
γ − 1

π
(γEV1(C))2

)
e−γEV2(C),

so by exactly the same arguments as in Section 4, we find:

Theorem 5.3. Theorem 4.2 and 4.4, except for Equation (4.12) and (4.17), also
hold for an isotropic Boolean model with grains satisfying (5.1) almost surely.

6 Generalization to standard random sets

The first-order results for Boolean models generalize further to isotropic standard
random sets. This is an easy consequence of well-known results obtained in [8]. A
standard random set Z is a stationary random closed set, such that the realizations
Z(ω) are locally polyconvex for a. a. ω. This means that for every compact convex
set K, Z(ω) ∩K is a finite union of convex sets. Furthermore, Z should satisfy the
integrability condition

E2N(Z∩B(1)) <∞
where N(Z(ω)∩B(1)) is the minimal number n such that Z(ω)∩B(1) is a union of n
convex sets. A stationary Boolean model with compact convex grains is an example
of a standard random set.

The specific intrinsic volumes of a standard random set are again defined by
(3.1) and we estimate V 1 by

V̂1(Z) = a−1

6∑

j=1

w
(1)
j

Nj

N0

as in (3.3) where Nj are defined as in (3.4) with Ξ replaced by Z. Since lower
dimensional parts of Z are usually invisible in the digitization, we assume that Z is
a. s. topologically regular.

13



Theorem 6.1. Let Z be an isotropic standard random set in the plane which is a. s.
topologically regular. Then lima→0EV̂1(Z) exists if and only if w(1)

1 = w
(1)
6 . In this

case,

lim
a→0

EV̂1(Z) =
1

π
c

(1)
3 V 1(Z)

with c(1)
3 as in (4.4). In particular, V̂1(Z) is asymptotically unbiased exactly if (4.9)

holds.

Proof. As in the case of the Boolean model,

EV̂1(Z) = a−1

6∑

j=1

w
(1)
j P (Z ∩ aC0 ∈ ηj).

First let ξl, l 6= 0, 15, be a configuration with black and white points Bl 6= ∅ and
Wl 6= ∅, respectively. Define the support function of a set A to be

h(A, n) = sup{〈x, n〉 | x ∈ conv(A)}
for n ∈ S1 and 〈·, ·〉 the standard Euclidean inner product. In [8], the following
formula is shown as Theorem 4:

lim
a→0

a−1P (Bl ⊆ Z,Wl ⊆ Zc) =

∫

S1

(−h(Bl ⊕ W̌l), n)+L̄(dn).

Here x+ = max{x, 0} and L̄ is the mean normal measure on S1:

L̄(A) = lim
r→∞

ES1(Z ∩B(r);A)

V2(B(r))
, A ∈ B(S1),

where S1(K; ·) is the length measure of a polyconvex set K, see [14, Chapter 4]. In
particular, the total measure L̄(S1) is 2V 1(Z).

By the isotropy of Z, L̄ is rotation invariant, so Tonelli’s theorem yields

lim
a→0

a−1P (Bl ⊆ Z,Wl ⊆ Zc) =

∫

S1

(−h(Bl ⊕ W̌l, n))+L̄(dn)

=
1

2π

∫ 2π

0

∫

S1

(−h(Bl ⊕ W̌l, R−vn))+L̄(dn)dv

=
1

2π

∫

S1

∫ 2π

0

(−h(Bl ⊕ W̌l, uv))
+dvdL̄

where uv = (cos v, sin v). The inner integral depends only on the equivalence class ηj
containing ξl. Thus we only need to compute it for one representative ξlj of each ηj.

(−h(B1 ⊕ W̌1, uv))
+ = (−h(B7 ⊕ W̌7, v))+ =





cos v, v ∈ [0, π
4
],

sin v, v ∈ [π
4
, π

2
],

0, otherwise.

(−h(B3 ⊕ W̌3, uv))
+ =





sin v − cos v, v ∈ [π
4
, π

2
],

cos v + sin v, v ∈ [π
2
, 3π

4
],

0, otherwise.

(−h(B6 ⊕ W̌6, uv))
+ = 0.
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A direct computation now shows that

lim
a→0

a
5∑

j=2

w
(1)
j ENj =

5∑

j=2

w
(1)
j dj

1

2π

∫

S1

∫ 2π

0

(−h(Blj ⊕ W̌lj , uv))
+dvdL̄

=
1

2π

∫

S1

(w
(1)
2 4(2−

√
2) + w

(1)
3 4(−2 + 2

√
2) + w

(1)
5 4(2−

√
2))dL̄

=
1

2π
c

(1)
3 2V 1(Z).

Finally, it is well-known that

lim
a→0

P (Z ∩ aC0 ∈ η6) = V 2(Z),

lim
a→0

P (Z ∩ aC0 ∈ η1) = 1− V 2(Z),

so we must choose w(1)
1 = w

(1)
6 = 0 in order for lima→0EV̂1(Z) to exist for all Z.

7 Boundary length in the design based setting

Instead of considering random sets observed on a fixed lattice, we now turn to
the design based setting. In this situation, we sample a deterministic compact set
X ⊆ R2 with a lattice that has been randomly translated and rotated before making
the observation. More formally, we let L be the random set L(c, v) = Rv(Z2 + c)
where v ∈ [0, 2π] and c ∈ C are mutually independent uniform random variables
and Rv denotes the rotation by the angle v.

We first consider estimators for the boundary length 2V1, as this is a fairly easy
consequence of known results. Based on the digital image X ∩ aL, we consider an
estimator of the form

V̂1(X) = a
6∑

j=1

w
(1)
j Nj(X ∩ aL), (7.1)

as decribed in Section 2. Again we study the asymptotic behavior of EV̂1(X).
We first need some conditions on X. A compact set X ⊆ R2 is called gentle if

the following two conditions hold:

(i) H1(N (∂X)) <∞,

(ii) For H1-almost all x ∈ ∂X, there exist two balls Bi and Bo with non-empty
interior, both containing x, and such that Bi ⊆ X and int(Bo) ⊆ R2\X.

Here and in the following Hd denotes the d-dimensional Hausdorff measure, and
N (∂X) is the reduced normal bundle

N (∂X) = {(x, n) ∈ ∂X × S1 | ∃t > 0 : ∀y ∈ ∂X : |tn| < |tn+ x− y|}.

The last condition means that (x, n) ∈ N (∂X) if there is a t > 0 such that x is the
point in ∂X closest to x+ tn.

The following is now a consequence of [9, Theorem 5]:
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Theorem 7.1. Let X ⊆ R2 be a compact gentle set. Assume that X is observed on a
stationary and isotropic random lattice aL of grid distance a. Then lima→0EV̂1(X)
exists iff

w
(1)
6 = w

(1)
1 = 0.

In this case,

lim
a→0

EV̂1(X) =
1

π
c

(1)
3 V1(X)

with c(1)
3 as in (4.4). In particular, V̂1(X) is asymptotically unbiased if and only the

weights satisfy Equation (4.10).

In Section 8 we shall see that under stronger conditions on X, the convergence
is actually O(a) and the weights can be chosen so that it is even O(a2).

Theorem 5 of [9] is only shown for a uniformly translated lattice, wheras we
assume isotropy as well. Thus we need the following lemma.

Lemma 7.2. For any compact gentle set X, there is a constant M > 0 such that
for any square lattice L with unit grid distance,

Nj(X ∩ aL) ≤M + 4
√

2a−1V1(X)

for all a > 0 and j = 2, . . . , 5.

Proof. Let N∂(X ∩ aL) be the number of z ∈ aL such that (z + aRvC) ∩ ∂X 6= ∅.
Then

Nj(X ∩ aL) ≤ N∂(X ∩ aL)

≤ a−2V2

(
∂X ⊕B

(√
2a
))
.

The second inequality holds because (z + aRvC) ∩ ∂X 6= ∅ implies that

z + aRvC ⊆ ∂X ⊕B
(√

2a
)
.

It is shown in [4] that for a bounded measurable function f with compact support,
∫

R2

fdH2 =
2∑

i=1

iκi

∫

N (∂X)

∫ δ(∂X;x,n)

0

ti−1f(x+ tn)dtµ2−i(∂X; d(x, n)). (7.2)

Here κi denotes the volume of the unit ball in Ri and the µi are signed measures on
N (∂X) with total variation |µi|. For (x, n) ∈ N (∂X), the reach is defined by

δ(∂X;x, n) = sup{t > 0 | ∀y ∈ ∂X : |tn| < |tn+ x− y|}.
Applying this to the indicator function 1∂X⊕B(

√
2a) yields:

Nj(X ∩ aL) ≤ a−2

2∑

i=1

iκi

∫

N (∂X)

∫ δ(∂X;x,n)

0

ti−11∂X⊕B(
√

2a)dtµ2−i(∂X; d(x, n))

≤ a−2

2∑

i=1

iκi

∫

N (∂X)

∫ δ(∂X;x,n)

0

ti−11∂X⊕B(
√

2a)dt|µ2−i|(∂X; d(x, n))

≤ a−2

2∑

i=1

κi

∫

N (∂X)

(√
2a
)i|µ2−i|(∂X; d(x, n))

≤ 2π|µ0|(∂X;N (∂X)) + 2
√

2a−1H1(∂X).
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In the last step we used the identity (8) of [9]. It follows from [4, Corollary 2.5] that
the total variation |µ0|(N (∂X)) is finite when H1(N (∂X)) <∞. Hence, if we define
M = 2π|µ0|(∂X;N (∂X)), the lemma is proved.

Proof of Theorem 7.1. Since X is compact, N1 is always infinite, so w(1)
1 must equal

zero in order for the estimator to be well-defined. Moreover, lima→0 a
2N6 = V2(X).

Thus aN6 diverges when a → 0, while all other aNj remain bounded according to
Lemma 7.2. Hence the condition w(1)

6 = 0 is necessary in order for lima→0EV̂1(X)
to exist.

Let ξl be a configuration with l 6= 0, 15. Theorem 5 of [9] then reads:

lim
a→0

a

∫

C

Nl(X ∩ aL(v, c))dc =

∫

S1

(−h(Rv(Bl)⊕Rv(W̌l), n))+S1(X; dn)

where S1(X; ·) again denotes the first length measure on S1.
We must compute

lim
a→0

aENl(X ∩ aL) = lim
a→0

a
1

2π

∫ 2π

0

∫

C

Nl(X ∩ aL(v, c))dcdv.

By Lemma 7.2,
aNl(X ∩ aL(v, c)) ≤M ′

for some constant M ′ depending only on ∂X. Thus the Lebesgue theorem of domi-
nated convergence applies, and together with Tonelli’s theorem it yields:

lim
a→0

aENl(X ∩ aL(v, c)) =
1

2π

∫ 2π

0

lim
a→0

a

∫

C

Nl(X ∩ aL(v, c))dcdv

=
1

2π

∫

S1

∫ 2π

0

(−h(Rv(Bl)⊕Rv(W̌l), n))+dvS1(X; dn)

=
1

2π

∫

S1

∫ 2π

0

(−h(Bl ⊕ W̌l, R−vn))+dvS1(X; dn).

The claim now follows as in the proof of Theorem 6.1, since S1(X;S1) = 2V1(X).

Note how the isotropy of the lattice was crucial in the proof. This corresponds
to the isotropy requirement for the Boolean model.

8 Euler characteristic in the design based setting

We remain in the design based setting of Section 7 where a deterministic set X is
sampled on a stationary and isotropic lattice. We now turn the attention to the Euler
characteristic and the higher order behavior of the boundary length estimator. For
this, we need to put some stronger boundary conditions on X. For instance, Kampf
shows in [5] that if we leave out the random rotation of the lattice, it is impossible to
find local estimators for the Euler characteristic that are asymptotically unbiased for
all polygons. On the other hand, it is well-known that there exists a local algorithm
for the Euler characteristic which is asymptotically unbiased on the class of so-called
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r-regular sets, see e.g. the discussion in [16]. We will assume throughout this section
that X is a full-dimensional C2 manifold, which is a special case of an r-regular set.

The estimator for the Euler characteristic was defined in Section 2 as

V̂0(X) =
6∑

j=1

w
(0)
j Nj(X ∩ aL).

Note that a−1V̂1(X), as defined in (7.1), is also of this form with weights w(1)
j . To

treat both cases, we sometimes just write w(i)
j for the weights.
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The main result we shall obtain is the following:

Theorem 8.1. Assume X ⊆ R2 is a compact 2-dimensional C2 submanifold with
boundary.

The limit lima→0EV̂0(X) exists if and only if the weights satisfy (4.13) and (4.14).
The limit is then given by

lim
a→0

EV̂0(X) = c
(0)
4 V0(X)

with c
(0)
4 as in (4.4). Thus V̂0(X) is asymptotically unbiased if and only if (4.15)

holds. In this case, EV̂0(X) satisfies condition (2.2) asymptotically.
Under the condition (4.8), EV̂1(X) satisfies

lim
a→0

a−1(EV̂1(X)− lim
a→0

EV̂1(X)) = c
(1)
4 V0(X),

so EV̂1(X) converges as O(a), and if (4.10) is satisfied, even as o(a). In this case,
V̂1(X) satisfies (2.1).

Theorem 8.1 generalizes the equations (4.10) and (4.15) to the design based
setting. However, the equations (4.11) and (4.16) do not appear. These involve the
configuration η4, which cannot occur when the boundary is C2 and a is sufficiently
small.

It was noted already in Section 7 that we must choose w(i)
1 = 0 in order for V̂i to

be well-defined and w(i)
6 = 0 to make a1−iEV̂i(X) asymptotically convergent. Hence

we assume w(i)
1 = w

(i)
6 = 0 for the remainder of this section.

For the proof, we must thus compute

5∑

j=2

w
(i)
j ENj =

5∑

j=2

w
(i)
j

1

2π

∫ 2π

0

∫

C

Nj(X ∩ aL(c, v))dcdv.

We follow the same approach as in [9]. The idea is that

Nj(X ∩ aL(c, v)) =
∑

l:ξl∈ηj

∑

z∈aL(c,v)

1{z+aRv(Bl)⊆X}1{z+aRv(Wl)⊆R2\X}.

Integrating over all c ∈ C,
∫

C

Nj(X ∩ aL(c, v))dc

= a−2
∑

l:ξl∈ηj
H2(z ∈ R2 | z + aRv(Bl) ⊆ X, z + aRv(Wl) ⊆ R2\X)

= a−2
∑

l:ξl∈ηj

∫

R2

fl(z, v)H2(dz). (8.1)

where fl denotes the indicator function

fl(z, v) = 1{z+aRv(Bl)⊆X}1{z+aRv(Wl)⊆R2\X}. (8.2)

19



As in the proof of Lemma 7.2, we apply [4, Theorem 2.1] to compute (8.1).
By the assumptions on X, there is a unique outward pointing normal vector n(x)
at x. Since ∂X is an embedded C2 submanifold, the tubular neighborhood theorem
ensures that there is an ε > 0 such that all points in ∂X ⊕ B(ε) have a unique
closest point in ∂X, that is, δ(∂X;x, n(x)) ≥ ε for all x ∈ ∂X. For

√
2a < ε, the

support of fl is contained in ∂X ⊕B(ε).
Using [4, Corollary 2.5] to describe µi, Formula (7.2) applied to fl simplifies to

∫

R2

fl(z, v)H2(dz) =

∫

∂X

∫ ε

−ε
tfl(x+ tn, v)k(x)dtH1(dx)

+

∫

∂X

∫ ε

−ε
fl(x+ tn, v)dtH1(dx)

(8.3)

where k(x) is the signed curvature at x.
The main part of the proof of Theorem 8.1 is now contained in Lemma 8.4

and 8.5, handling each of the two integrals in (8.3). Before proving these, we show two
technical lemmas that will become useful later. The first auxiliary lemma describes
the boundary structure of X.

Let τ(x) denote the unit tangent vector at x chosen such that {τ(x), n(x)} are
positively oriented.

Lemma 8.2. Let X ⊆ R2 be a C2 submanifold with boundary. For some δ < 0,
there is a well-defined C1 function l : [−2δ, 2δ] × ∂X → R such that l(r, x) is the
signed length of the line segment parallel to n(x) from x+ rτ(x) to ∂X. The sign is
chosen such that x+ rτ(x) + l(r, x)n(x) ∈ ∂X. Moreover, the functions

l(br, x)

r
,
l(br, x)

r2

are bounded and continuous for (b, r, x) ∈ [−2, 2]× [−δ, δ]\{0} × ∂X and

lim
r→0

l(br, x)

r
= 0,

lim
r→0

l(br, x)

r2
= −1

2
b2k(x).

Proof. By the assumptions on X, there are finitely many isometric C2 parametriza-
tions of the form α : (a − 2µ, b + 2µ) → ∂X such that the sets α([a, b]) cover ∂X.
For any t ∈ (a−2µ, b+2µ), let n(t) denote the outward pointing unit normal vector
at α(t). There are unique functions l, r : (−µ, µ)× (a− µ, b+ µ)→ R such that for
any (s, t) ∈ (−µ, µ)× (a− µ, b+ µ),

α(s+ t)− α(t) = r(s, t)α′(t) + l(s, t)n(t)

where
r(s, t) = 〈α(s+ t)− α(t), α′(t)〉,
l(s, t) = 〈α(s+ t)− α(t), n(t)〉.

In particular, note that both functions are C1, and as functions of s they are even C2.
In an open neighborhood of [a, b]× 0, ∂

∂s
r(s, t) > 0. By the inverse function theorem
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applied to (r(s, t), t), there is a δ such that the inverse s(r, t) is defined and is C1 on
(−3δ, 3δ) × [a, b]. In fact, r 7→ s(r, t) is C2 as it is the inverse of s 7→ r(s, t). Then
l(s(r, t), t) is the distance from α(t) + rα′(t) to α(s(r, t) + t). If 3δ < ε, this is the
boundary point on the line parallel to n(t) closest to α(t) + rα′(t).

By the mean value theorem,

l(s(br, t), t)

r
= b

∂

∂s
l(s, t)

∣∣∣
s=s(br0,t)

∂

∂r
s(r, t)

∣∣∣
r=br0

,

l(s(br, t), t)

r2
= b2 r0

r

∂2

∂s2
l(s, t)

∣∣∣
s=s(br1,t)

∂

∂r
s(r, t)

∣∣∣
r=br0

∂

∂r
s(r, t)

∣∣∣
r=br1

,

(8.4)

for some 0 ≤ |r1| ≤ |r0| ≤ |r|. The continuity of ∂
∂s
l, ∂2

∂s2
l and ∂

∂r
s on [−2δ, 2δ]× [a, b]

implies that (8.4) is bounded on [−2, 2]× [−δ, δ]\{0} × [a, b].
Finally, since l(s(0, t), t) = 0 and ∂

∂s
l(s, t) |s=0= 0, we obtain

lim
r→0

l(s(br, t), t)

r
=

∂

∂r
l(s(br, x))

∣∣∣
r=0

= 0

lim
r→0

l(s(br, t), t)

r2
=

1

2

∂2

∂r2
l(s(br, x))

∣∣∣
r=0

=
1

2

(
∂2

∂s2
l(s, t)

∣∣∣
s=0

(
∂

∂r
s(br, x)

∣∣∣
r=0

)2

+
∂

∂s
l(s, t)

∣∣∣
s=0

(
∂2

∂r2
s(br, x)

∣∣∣
r=0

))

= 1
2
b2〈α′′(t), n(t)〉

= −1
2
b2k(α(t)),

proving the last claim.

Before proving the main lemmas, we set up some notation. Let v ∈ [0, 2π] and
x ∈ ∂X. Let v0, . . . , v3 be the elements of Rv(C0) ordered such that si ≥ si+1 where
si = 〈vi, n(x)〉. Let bi = 〈vi, τ(x)〉 and define

ti = −asi + l(bia, x).

The ti are constructed such that for t ∈ [−ε, ε],

x+ tn(x) + avi ∈ X if and only if t ≤ ti. (8.5)

The values of si and bi are given in Table 2 for values of u = θ(n(x))−v ∈ (−5π
4
,−π

4
)

where θ(n(x)) is the angle between n(x) and the vector (1, 0). For u and −u− π
4
the

value of si is the same, while bi changes sign. This yields the values of si and bi for
u ∈ (−π

4
, 3π

4
). In the table, w is chosen such that w ∈ (0, π

4
).

Let t′i be a reordering of the ti such that t′i ≤ t′i+1 and let v′i be the corresponding
ordering of the vi. This ordering depends on both x, v and a. Since ti may not equal
t′i, we need the following lemma, ensuring that this does not happen too often:

Lemma 8.3. There is a constant M such that for all x ∈ ∂X and a sufficiently
small,

a−1H1(v ∈ [0, 2π] | ∃i : vi 6= v′i) ≤M.
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Table 2: Values of si and bi for u ∈ (−5π
4 ,−π

4 ).

u = θ(n)− v i si bi

u ∈ (−π
2
,−π

4
) w = u+ π

2
0 cosw + sinw cosw − sinw
1 cosw − sinw
2 sinw cosw
3 0 0

u ∈ (−3π
4
,−π

2
) w = −u− π

2
0 cosw sinw
1 cosw − sinw cosw + sinw
2 0 0
3 − sinw cosw

u ∈ (−π,−3π
4

) w = u+ π 0 sinw cosw
1 0 0
2 −(cosw − sinw) cosw + sinw
3 − cosw sinw

u ∈ (−5π
4
,−π) w = −u− π 0 0 0

1 − sinw cosw
2 − cosw − sinw
3 −(cosw + sinw) cosw − sinw

Furthermore, there is a constant M ′ such that

|ti − t′i| ≤ 4 sup{|l(ba, x)| | (b, x) ∈ [−
√

2,
√

2]× ∂X} ≤M ′a2.

Proof. If vi 6= v′i, then in particular there is a j1 < j2 with tj1 > tj2 . But then

0 ≤ tj1 − tj2 = a(sj2 − sj1) + l(bj1a, x)− l(bj2a, x) (8.6)

and hence
0 ≤ a(sj1 − sj2) ≤ l(bj1a, x)− l(bj2a, x) ≤ Ca2

for some uniform constant C, according to Lemma 8.2.
But then

0 ≤ cos(θ(x, v)) ≤ 〈(vj1 − vj2), n(x)〉 ≤ Ca

where θ(x, v) is the angle from n(x) to vj1 − vj2 . Thus, θ(x, v) = θ(x, 0) + v must lie
in cos−1([0, Ca]). But

H1(v ∈ [0, 2π] | θ(x, v) ∈ cos−1([0, Ca])) = H1(cos−1([0, Ca]) ∩ [0, 2π]) ≤ C ′a

and there are only 6 possible combinations of j1 and j2, so

a−1H1(v ∈ [0, 2π] | ∃i : vi 6= v′i) ≤ a−16H1(cos−1([0, Ca]) ∩ [0, 2π]) ≤ 6C ′.

Suppose ti < t′i = tj. If j < i, the last claim of the lemma follows from Lemma 8.2
and (8.6) as a(sj2 − sj1) is negative. If i < j, there must be a k < i with tj < tk.
Then

|ti − t′i| ≤ |ti − tk|+ |tk − tj| ≤ 4 sup{|l(ba, x)| | (b, x) ∈ [−
√

2,
√

2]× ∂X}
by a double application of (8.6). The case ti > t′i can be treated in a similar way.
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In order to prove Theorem 8.1, we need to describe the asymptotic behavior of
ENj. This is computed by integrating over all rotations in (8.3) and letting a tend
to 0. The two terms on the right hand side of (8.3) are treated separately in the two
next lemmas.

Lemma 8.4. With fl as in (8.2),

lim
a→0

a−2
∑

l:ξl∈ηj

1

2π

∫ 2π

0

∫

∂X

∫ ε

−ε
tfl(x+ tn, v)k(x)dtH1(dx)dv =





V0(X), j = 2,

0, j = 3, 4,

−V0(X), j = 5.

Proof. By Fubini’s theorem
∫ 2π

0

∫

∂X

∫ ε

−ε
tfl(x+ tn, v)k(x)dtH1(dx)dv

=

∫

∂X

∫ 2π

0

∫ ε

−ε
t1{x+tn+aRv(Bl)⊆X}1{x+tn+aRv(Wl)⊆R2\X}dtdvk(x)H1(dx)

=

∫

∂X

∫ 2π

0

∫ ε

−ε
t1{x+tn+aRv−θ(n)(Bl)⊆X}1{x+tn+aRv−θ(n)(Wl)⊆R2\X}dtdvk(x)H1(dx).

For x ∈ ∂X fixed, write u = v − θ(n(x)) as in Table 2 and let

Ij(x, u) =
∑

l:ξl∈ηj

∫ ε

−ε
tfl(x+ tn, u)dt.

For
√

2a < ε, configurations of type η4 can never occur, so (x+tn+aRu(C0))∩X
corresponds to a configuration of type

η1 for t > t′3,

η2 for t ∈ (t′2, t
′
3],

η3 for t ∈ (t′1, t
′
2],

η5 for t ∈ (t′0, t
′
1],

η6 for t ≤ t′0,

according to (8.5).
As an example, consider the configuration type η5. Then we get

I5 =

∫ t′1

t′0

tdt = 1
2
(t′21 − t′20 ).

Thus we must compute

lim
a→0

a−2

∫

∂X

∫ 2π

0

I5dukdH1 = lim
a→0

a−2

∫

∂X

∫ 2π

0

1

2
(t′21 − t′20 )dukdH1.

By Lemma 8.3, lima→0H1(u ∈ [0, 2π] | ti 6= t′i) = 0. Moreover, it follows from
Lemma 8.2 that

a−2t2i = s2
i − 2si

l(bia, x)

a
+
l(bia, x)2

a2
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is uniformly bounded. Hence we may replace t′2i by t2i in the integral. Furthermore,
the Lebesgue theorem of dominated convergence applies. This yields

lim
a→0

a−2

∫

∂X

∫ 2π

0

I5dukdH1 =

∫

∂X

∫ 2π

0

lim
a→0

a−2 · 1
2
(t21 − t20)duk(x)H1(dx)

=

∫

∂X

∫ 2π

0

1
2
(s2

1 − s2
0)duk(x)H1(dx)

The last step used Lemma 8.2.
Using the values of si given in Table 2, we get

lim
a→0

a−2

∫

∂X

∫ 2π

0

I5dukdH1 =

∫

∂X

∫ 2π

0

1
2
(s2

1 − s2
0)dukdH1

= 2πV0(X) · 2
∫ π

4

0

1

2

(
(cos2w − (cosw + sinw)2)

+ ((cosw − sinw)2 − cos2w) + (− sin2w) + sin2w

)
dw

= 2πV0(X)

∫ π
4

0

(−4 cosw sinw)dw

= − 2πV0(X).

Similarly for the remaining configuration types:

∫ 2π

0

lim
a→0

1

a2
I3du =

∫ 2π

0

1
2
(s2

2 − s2
1)du = 2

∫ π
4

0

0dw = 0,

∫ 2π

0

lim
a→0

1

a2
I2du =

∫ 2π

0

1
2
(s2

3 − s2
2)du = 2

∫ π
4

0

1
2
· 4 cosw sinwdw = 1,

and the claim follows.

Lemma 8.5. For w(i)
j ∈ R and c(i)

3 as in (4.4), the limit

lim
a→0

a−2 · 1

2π

( 5∑

j=2

w
(i)
j

∫

∂X

∫ 2π

0

∫ ε

−ε

∑

l:ξl∈ηj
fl(x+ tn, v)dtdvH1(dx)− 2ac

(i)
3 V1(X)

)

exists and equals
(w

(i)
2 − w(i)

5 )V0(X).

Proof. Let x ∈ ∂X be given and define

Ij(x, v) =
∑

l:ξl∈ηj

∫ ε

−ε
fl(x+ tn, v)dt.

By the same reasoning as in the proof of Lemma 8.4,

I2 = t′3 − t′2, I3 = t′2 − t′1 and I5 = t′1 − t′0.
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As an example, consider η5. We will compute

lim
a→0

a−2

∫

∂X

∫ 2π

0

(I5 + a(s1 − s0))dvdH1

= lim
a→0

∫

∂X

∫ 2π

0

(a−2(t′1 − t′0) + a−1(s1 − s0))dvdH1.

(8.7)

Since a−2|ti − t′i| ≤ M ′ and H1(ti 6= t′i) < Ma by Lemma 8.3 for some uniform
constants M and M ′, we may replace ti by t′i in (8.7).

By another application of Lemma 8.2,

a−2ti + a−1si = l(bia, x)

is uniformly bounded. This allows us to apply Lebesgue’s theorem to (8.7). In the
case of η5, this yields

lim
a→0

∫

∂X

∫ 2π

0

(a−2I5 + a−1(s1 − s0))dvdH1

=

∫

∂X

∫ 2π

0

lim
a→0

(a−2(t′1 − t′0) + a−1(s1 − s0))dvdH1

=

∫

∂X

∫ 2π

0

lim
a→0

a−2(l(ab1, x)− l(ab0, x))dvH1(dx)

=

∫

∂X

∫ 2π

0

−k
2

(b2
1 − b2

0)dvdH1,

where the last step also follows from Lemma 8.2.
Doing the same for the remaining configurations shows that
∫

∂X

∫ 2π

0

−k
2

(w
(i)
2 (b2

3 − b2
2) + w

(i)
3 (b2

2 − b2
1) + w

(i)
5 (b2

1 − b2
0))dvdH1 (8.8)

= lim
a→0

a−2

∫

∂X

∫ 2π

0

( 5∑

j=2

w
(i)
j Ij

− a(w
(i)
2 (s2 − s3) + w

(i)
3 (s1 − s2) + w

(i)
5 (s0 − s1))

)
dvdH1

= lim
a→0

a−2

( 5∑

j=2

w
(i)
j

∫

∂X

∫ 2π

0

IjdvdH1

− aH1(∂X)8

(∫ π
4

0

(w
(i)
2 sinw + w

(i)
3 (cosw − sinw) + w

(i)
5 sinw)dw

))

= lim
a→0

a−2

( 5∑

j=2

w
(i)
j

∫

∂X

∫ 2π

0

IjdvdH1

− 2aV1(X)
(
(8− 4

√
2)w

(i)
2 + (8

√
2− 8)w

(i)
3 + (8− 4

√
2)w

(i)
5

))
.
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On the other hand, inserting the bi from Table 2, a direct computation shows:
∫ 2π

0

(b2
1 − b2

0)dv = 2

∫ π
4

0

4 sinw coswdw = 2,

∫ 2π

0

(b2
2 − b2

1)dv = 2

∫ π
4

0

0dw = 0,

∫ 2π

0

(b2
3 − b2

2)dv = 2

∫ π
4

0

(−4 sinw cosw)dw = −2.

Thus (8.8) equals
∫

∂X

−k(x)

2
(−2w

(i)
2 + 2w

(i)
5 )H1(dx) = 2πV0(X)(w

(i)
2 − w(i)

5 ),

from which the claim follows.

Proof of Theorem 8.1. From Lemma 8.4 and 8.5, it follows that the limit

lim
a→0

(
a−iEV̂i(X)− a−1 1

π
c

(i)
3 V1(X)

)
(8.9)

= lim
a→0

( 5∑

j=2

w
(i)
j ENj − a−1 1

π
c

(i)
3 V1(X)

)

= lim
a→0

a−2

( 5∑

j=2

w
(i)
j

∑

l:ξl∈ηj

1

2π

∫ 2π

0

(∫

∂X

∫ ε

−ε
tfl(x+ tn, v)k(x)dtH1(dx)

+

∫

∂X

∫ ε

−ε
fl(x+ tn, v)dtH1(dx)

)
dv − a 1

π
c

(i)
3 V1(X)

)

exists and equals (2w
(i)
2 − 2w

(i)
5 )V0(X) = c

(i)
4 V0(X). Hence lima→0EV̂0(X) exists if

and only if c(0)
3 = 0, and in this case the limit equals c(0)

4 V0(X).
In the limit, the condition (2.2) is

lim
a→0

EV̂0(X) = lim
a→0

(w
(0)
2 EN2(X) + w

(0)
3 EN3(X) + w

(0)
5 EN5(X)) = V0(X),

lim
a→0

EV̂0(R2\X) = lim
a→0

(w
(0)
2 EN5(X) + w

(0)
3 EN3(X) + w

(0)
5 EN2(X)) = −V0(X).

This is equivalent to

lim
a→0

(w
(0)
2 EN2 + w

(0)
3 EN3 + w

(0)
5 EN5) = V0(X),

lim
a→0

(w
(0)
2 − w(0)

5 )(EN2 − EN5) = 2V0(X).

From (8.9) with w(0)
2 = 1, w(0)

3 = w
(0)
4 = 0, and w(0)

5 = −1, it follows that

lim
a→0

(EN2 − EN5) = 4V0(X).

Thus Equation (4.15) ensures that (2.2) holds asymptotically.
The statement about V̂1(X) follows from (8.9) in a similar way.
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When ∂X is actually a C3 manifold, we can get slightly better asymptotic results:

Theorem 8.6. Let X ⊆ R2 be a C3 full-dimensional submanifold. Assume that the
weights defining V̂1(X) satisfy Equations (4.9) and (4.10) and the weights defining
V̂0(X) satisfy Equations (4.14) and (4.15). Then EV̂1(X) and EV̂0(X) converge as
O(a2) and O(a), respectively.

Proof. It is enough to check that a−i−1(EV̂i(X)− lima→0EV̂i(X)) is bounded. Going
through the proofs of Lemma 8.4 and 8.5, we see that it is enough to show that

a−3(t′2i+1 − t′2i )− a−1(s2
i+1 − s2

i ) (8.10)

and

a−1

∫ 2π

0

(
a−2(t′i+1 − t′i)− a−1(si − si+1) +

k

2
(b2
i+1 − b2

i )

)
dv (8.11)

are uniformly bounded.
The triangle inequality yields

|a−3(t′2i+1 − t′2i )− a−1(s2
i+1 − s2

i )| ≤ |a−3t2i − a−1s2
i |+ |a−3t2i+1 − a−1s2

i+1|
+ a−3|t′2i − t2i |+ a−3|t2i+1 − t′2i+1|

The terms
|a−3t2i − a−1s2

i | =
∣∣∣∣− 2si

l(bia, x)

a2
+
l(bia, x)2

a2

∣∣∣∣
are uniformly bounded by Lemma 8.2. Furthermore,

|t′2i − t2i |
a3

=
|t′i + ti|
a

|t′i − ti|
a2

is bounded by Lemma 8.3. This takes care of (8.10).
Similarly,

∣∣a−3(t′i+1 − t′i)− a−3(si − si+1) + a−1k

2
(b2
i+1 − b2

i )
∣∣

≤
∣∣a−3(ti+1 − ti)− a−2(si − si+1) + a−1k

2
(b2
i+1 − b2

i )
∣∣

+ a−3|ti − t′i|+ a−3|ti+1 − t′i+1|.
Again by Lemma 8.3, a−2|ti − t′i| is uniformly bounded by some C and hence

∫ 2π

0

a−3|ti − t′i|dv ≤
∫ 2π

0

a−1C1{ti 6=t′i}dv

is also bounded by Lemma 8.3. Finally,

a−3(ti+1 − ti)− a−2(si − si+1) + a−1k

2
(b2
i+1 − b2

i )

= a−3(l(bi+1a, x)− l(bia, x)) + a−1k

2
(b2
i+1 − b2

i ).

But by a refinement of Lemma 8.2, r 7→ l(r, x) is C3 when ∂X is a C3 manifold and

l(br, x)

r3
+
b2k(x)

2r

is bounded for (b, r, x) ∈ [−
√

2,
√

2]×[−δ, δ]\{0}×∂X. This takes care of (8.11).
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Remark 8.7. The proof of Theorem 8.1 easily generalizes to describe the asymptotic
behavior of local estimators for Vd−2 in higher dimensions d.

9 Classical choices of weights

For a stationary isotropic Boolean model Ξ with typical grain C having a ball B(ε)
as summand a. s., we found in Theorem 4.2 that the estimator for half the specific
boundary length satisfies

lim
a→0

EV̂1(Ξ) =
1

π
c

(1)
3 V 1(Ξ).

In particular, V̂1(Ξ) is asymptotically unbiased if and only if c(1)
3 = π. In this case,

the bias for small values of a is approximately

EV̂1(Ξ)− V 1(Ξ) ≈ a

(
c

(1)
4 γ + c

(1)
5

(γ
π
EV1(C)

)2

e−γEV2(C)

)

with c(1)
m as in (4.4).

In the literature, various local algorithms are used for estimating the boundary
length of a planar set. With the formulas above we can compute their asymptotic
bias and thus compare their accuracy.

Ohser and Mücklich, [11], describe an estimator for the specific boundary length
based on a discretized version the Cauchy projection formula. In the rotation invari-
ant setting, the estimator corresponds to (3.3) with weights:

w(1) =

(
0,
π

16

(
1 +

√
2

2

)
,
π

16
(1 +

√
2),

π

8
,
π

16

(
1 +

√
2

2

)
, 0

)
.

Inserting these weights in the equations shows that this estimator satisfies (4.9).
Hence it defines an asymptotically unbiased estimator. The weights also satisfy
(4.10) but not (4.11). For small values of a, the error is approximately

−a1 +
√

2

2

γ2

π
EV1(C)2e−γEV2(C) ≈ −1, 207a

γ2

π
EV1(C)2e−γEV2(C).

One of the oldest algorithms for estimating the boundary length is suggested
by Bieri in [1]. The idea is to reconstructing the underlying object as a union of
squares of sidelength a centered at the foreground pixels. The boundary length is
then estimated by the boundary length of the reconstructed object. This corresponds
to a local estimator with weights

w(1) =
(
0, 1

2
, 1

2
, 1, 1

2
, 0
)
.

However, it is well-known that for a compact object X this is the boundary length of
the smallest box containing X and hence is a very coarse estimate. The asymptotic
mean is

4

π
V 0(X).
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Of course, one can correct for the factor 4
π
and consider the weights

w(1) =
(
0, π

8
, π

8
, π

4
, π

8
, 0
)

(9.1)

instead. These weights can be justified by the Cauchy formula in [11] using θ1 = π
2
.

It is also the unique unbiased estimator where all weights are equal, except that
configurations of type η4 are counted with double weight. These weigths satisfy
Equations (4.9) and (4.10) but not (4.11). The bias for small a is approximately

−aγ
2

π
EV1(C)2e−γEV2(C).

The approach of Dorst and Smeulders in [2] is to reconstruct the underlying
set by an 8-adjacency system and compute the length of the boundary of the recon-
structed set, letting vertical and horizontal segments contribute with one weight and
diagonal segments with another weight. The resulting estimators are of the forms

w(1) =

(
0, 0,

θ

2
,
√

2θ,

√
2θ

2
, 0

)
,

w(1) = (0, 0, a, 2b, b, 0).

(9.2)

These algorithms are only tested on straight lines in [2] and therefore it was not
necessary to assign a value w(1)

4 . The weights chosen here are such that a diagonal
segment coming from a configuration of type η4 is counted double. In particular, the
first line with θ = 1 computes V1 of the approximating polyconvex set.

The authors list some of the constants frequently used in the literature. The case
θ = 1 goes back to Freeman in [3]. This yields a biased estimator. But even if the
constants are chosen such that the estimator is asymptotically unbiased, all weights
of this form have the disadvantage of not satisfying Equation (4.10), which is the
most desirable af the two equations (4.10) and (4.11), as it also appears in the design
based setting.

The boundary is also sometimes approximated using a 4- or 6-adjacency graph.
However, the same problem with Equation (4.10) arises.

Another classical approach is the marching squares algorithm. This is based on
a reconstruction of both foreground and background. The boundary is then ap-
proximated by a digital curve lying between these, see e.g. [10], Figure 4.29. The
corresponding weights are

w(1) =

(
0,

√
2

4
,
1

2
,

√
2

2
,

√
2

4
, 0

)
.

This estimator is not asymptotically unbiased either. In fact, the asymptotic mean
is

lim
a→∞

EV̂1(Ξ) = (2
√

2− 2)
4

π
V 1(Ξ) ≈ 1, 0548V 1(Ξ).

Correcting for this factor, we obtain an asymptotically unbiased estimator satisfying
(4.14) with approximate bias for small values of a

a

√
2− 6

4

γ2

π
EV1(C)2e−γEV2(C) ≈ −1, 146a

γ2

π
EV1(C)2e−γEV2(C).
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One can compare the classical estimators for the Euler characteristic in a similar
way. Ohser and Mücklich, [11], suggest an estimator based on the approximation of
Ξ by a 6-neighborhood graph. This results in weights

w(0) =
(
0, 1

4
, 0, 0,−1

4
, 0
)
. (9.3)

These satisfy (4.14) and (4.15), but not (4.16). Hence it does not define an asymp-
totically unbiased estimator for Boolean models, but it does in the design based
setting of Section 8. For Boolean models, the asymptotic bias is

lim
a→0

EV̂0−V 0 =

(
2− 4

√
2

π
+1

)
γ2

π
EV1(C)2e−γEV2(C) ≈ −0, 164

γ2

π
EV1(C)2e−γEV2(C).

The estimator for the Euler characteristic suggested in [1] corresponds to the
weights

w(0) =
(
0, 1

4
, 0,−1

2
,−1

4
, 0
)
.

The bias of this estimator is

lim
a→0

EV̂0 − V 0 =

(−4

π
+ 1

)
γ2

π
EV1(C)2e−γEV2(C) ≈ −0, 273

γ2

π
EV1(C)2e−γEV2(C),

which is slightly worse.
The conclusion is that for Boolean models, the best of the estimators for V 1 and

V 0 listed here are (9.1) and (9.3), respectively. However, the weights in Proposition
(4.3) and (4.5), respectively, give better etimators.

In the design based setting, all of the classical algorithms listed here except (9.2)
are equally good when assessed by means of the results of the present paper.
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