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Half-flat structures on S3 × S3

Thomas Bruun Madsen and Simon Salamon

Abstract

We classify left-invariant half-flat SU(3)-structures on S3 × S3, using the
representation theory of SO(4) and matrix algebra. This leads to a systematic
study of the associated cohomogeneity one Ricci-flat metrics with holonomy
G2 obtained on 7-manifolds with equidistant S3 × S3 hypersurfaces. The
generic case is analysed numerically.
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1 Introduction

It was Calabi [11] who first recognised the rich geometry that can be found on
a hypersurface of R7 when the latter is equipped with its natural cross product
and G2-structure. The realization, much later, of metrics with holonomy equal
to G2 allowed this theory to be extended, whilst retaining the key features of
the “Euclidean” theory. The second fundamental form or Weingarten map W
of a hypersurface Y in a manifold X with holonomy G2 can be identified with
the intrinsic torsion of the associated SU(3)-structure. The latter is defined by a
2-form ω and a 3-form γ induced on Y, and W is determined by their exterior
derivatives. The symmetry of W translates into a constraint on the intrinsic
torsion (equivalently, on dω and dγ) that renders the SU(3)-structure what is
called half flat.

Conversely, a 6-manifold Y with an SU(3)-structure that is half flat can (at
least if it is real analytic) be embedded in a manifold with holonomy G2 [7]. The
metric g on X is found by solving a system of evolution equations that Hitchin
[25] interpreted as Hamilton’s equations relative to a symplectic structure defined
(roughly speaking) on the space parametrising the pairs (ω, γ). The simplest
instance of this construction occurs when Y is a so-called nearly-Kähler space, in
which case g is a conical metric over Y, in accordance with a more general scheme
described by Bär [3]. The first explicit metrics known to have holonomy equal to
G2 were realized in this way.

In this paper, we are concerned with the classification of left-invariant half-
flat SU(3)-structures on S3 × S3, regarded as a Lie group G, up to an obvious
notation of equivalence. One of these structures is the nearly-Kähler one that
can be found on G× G, for any compact simple Lie group G, by realizing the
product as the 3-symmetric space (G× G× G)/G. Indeed, we verify that this



nearly-Kähler structure is unique amongst invariant SU(3)-structures on S3 × S3

(see Proposition 3.8, that has a dynamic counterpart in Proposition 5.1).
Examples of the resulting evolution equations for G2-metrics have been much

studied in the literature [6, 16, 17], but one of our aims is to highlight those G2-
metrics that arise from half-flat metrics with specific intrinsic torsion, motivated
in part by the approach in [9]. Nearly-Kähler corresponds to Gray-Hervella
class W1, and it turns out that a useful generalization in our half-flat context
consists of those metrics of class W1 +W3; see Section 2. By careful choices of
the coefficients in ω and γ, we obtain metrics on S3 × S3 of the same class with
zero scalar curvature.

Another aim is to develop rigorously the algebraic structure of the space of
invariant half-flat structures on S3× S3, and in Section 3 we show that the moduli
space they define is essentially a finite-dimensional symplectic quotient. This
is a description expected from [25], and in our treatment relies on elementary
matrix theory. For example, the 2-form ω can be represented by a 3× 3 matrix P,
and mapping ω to the 4-form δ = ω2 = ω ∧ω corresponds to mapping P to the
transpose of its adjugate. We shall however choose to use a pair of symmetric
4× 4 matrices to parametrise the pair (ω, γ).

The matrix algebra is put to use in Section 4 to simplify and interpret the
flow equations for the associated Ricci-flat metrics with holonomy G2. The
significance of the class W1 +W3 becomes clearer in the evolutionary setting, as
it generates known G2-metrics. In our formulation, the equations (for example
in Corollary 4.3) have features in common with two quite different systems
considered in [23] and [20], but both in connection with Painlevé equations.

A more thorough analysis of classes of solutions giving rise to G2-metrics is
carried out in Section 5. Some of these exhibit the now familiar phenomenon of
metrics that are asymptotically circle bundles over a cone (“ABC metrics”). All
our G2-metrics are of course of cohomogeneity one, and this allows us to briefly
relate our approach to that of [21].

In the final part of the paper, we present the tip of the iceberg that represents
a numerical study of Hitchin’s evolution equations for S3 × S3. We recover
metrics that behave asymptotically locally conically when Q belongs to a fixed
2-dimensional subspace. More precisely, we show empirically that the planar
solutions are divided into two classes, only one of which is of type ABC. This
can be understood in terms of the normalization condition that asserts that ω
and γ generate the same volume form, and is a worthwhile topic for further
theoretical study. For the generic case, the flow solutions do not have tractable
asymptotic behaviour, but again the geometry of the solution curves (illustrated
in Figure 2) is constrained by the normalization condition that defines a cubic
surface in space.

This paper grew out of an attempt to reconcile various contributions appear-
ing in the literature. Of particular importance concerning SU(3)-structures are
Schulte-Hengesbach’s work on half-flat structures [30], and Hitchin’s notion of
stable forms [25]. In addition, the explicit constructions of G2-metrics appearing
in this paper are based on the work of Brandhuber et al, Cvetič et al [6, 16, 17], as
well as the contributions of Dancer and Wang [20].
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2 Invariant SU(3)-structures

Throughout the paper M will denote the 6-manifold S3 × S3. As this is a Lie
group, we can trivialise the tangent bundle. We describe left-invariant tensors via
the identification

TM ∼= M× so(4) ∼= M×R6,

relative to left multiplication. We keep in mind that there are Lie algebra isomor-
phisms

su(2)⊕ su(2) ∼= so(3)⊕ so(3) ∼= so(4),

which at the group level can be phrased in terms of the diagram

SU(2)2 SO(4)

SO(3)2

-2:1

@
@
@

@
@@R

4:1

?

2:1 (1)

The cotangent space of M, at the identity, consists of two copies of su(2)∗. We
shall write T∗ = T∗1 M = A⊕ B and choose bases e1, e3, e5 of A and e2, e4, e6 of B
such that

de1 = e35, de2 = e46, and so forth; (2)

here d denotes the exterior differential on A and B induced by the Lie bracket.
We wish to endow M with an SU(3)-structure. To this end it suffices to specify

a suitable pair of real forms: a 3-form γ, whose stabiliser (up to a Z/2-covering)
is isomorphic to SL(3, C), and a non-degenerate real 4-form δ = ω ∧ ω = ω2.
These two forms must be compatible in certain ways. Above all, γ must be a
primitive form relative to ω, meaning γ ∧ω = 0. So as to obtain a genuine almost
Hermitian structure we also ask for volume matching and positive definiteness:

3γ ∧ γ̂ = 2ω3, ω(·, J·) > 0. (3)

These forms γ and δ are stable in the sense their orbits under GL(6, R) are
open in ΛkT∗. The following well known properties (cf. [25]) of stable forms will
be used in the sequel:

1. There are two types of stable 3-forms on T. These are distinguished by the
sign of a suitable quartic invariant, λ, which is negative precisely when the
stabiliser is SL(3, C) (up to Z/2); each form of this latter type determines
an almost complex structure J.
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2. The stable forms δ and γ determine “dual” stable forms: δ determines the
stable 2-form ±ω, and γ determines the 3-form γ̂ = J(γ) characterised by
the condition that γ + iγ̂ be of type (3, 0).

As SU(3)-modules ΛkT∗ decomposes in the following manner:

T∗ ∼= [[Λ1,0]] ∼= Λ5T∗,

Λ2T∗ ∼= [[Λ2,0]]⊕ [Λ1,1
0 ]⊕R ∼= Λ4T∗,

Λ3T∗ ∼= [[Λ3,0]]⊕ [[Λ2,1
0 ]]⊕ [[Λ1,0]],

(4)

using the bracket notation of [29]. In terms of this decomposition (see [4]), the
exterior derivatives of γ, ω may now be expressed as





dω = −3
2 w1γ + 3

2 ŵ1γ̂ + w4 ∧ω + w3,
dγ = ŵ1ω2 + w5 ∧ γ + w2 ∧ω,
dγ̂ = w1ω2 + (Jw5) ∧ γ + ŵ2 ∧ω,

where we have used a suggestive notation to indicate the relation between
forms and the intrinsic torsion τ, i.e., the failure of Hol(∇LC) to reduce to
SU(3). Obviously, this expression depends on our specific choice of normalisation
(cf. (3)).

Generally, τ takes values in the 42-dimensional space

T∗ ⊗ su(3)⊥ ∼= W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5.

Our main focus, however, is to study the subclass of half-flat SU(3)-structures:
these are characterised by the vanishing of ŵ1, w2, w4, and w5, i.e.,





dω = −3
2 w1γ + w3,

dγ = 0,
dγ̂ = w1ω2 + ŵ2 ∧ω.

Remark 1. To appreciate the terminology “half flat”, it helps to count dimensions:
dimW1 = 2, dimW2 = 16, dimW3 = 12, dimW4 = 6 = dimW5. In particu-
lar, observe that for half-flat structures τ is restricted to take its values in 21
dimensions out of 42 possible. In this context, “flat” would mean SU(3) holonomy.

For emphasis, we formulate:

Proposition 2.1. For any invariant half-flat SU(3)-structure (ω, γ) on M the following
holds:

1. if W3 = 0 then dω = −3
2 w1γ.

2. if W−2 = 0 then dγ̂ = w1ω2.
In particular, any structure with vanishing W3 component has [γ] = 0 ∈ H3(M).

In the case when W3 = 0 we shall say the half-flat structure is coupled. The
second case above, W−2 = 0, is referred to as co-coupled. When the half-flat
structure is both coupled and co-coupled, so W−2 = 0 = W3, it is said to be
nearly-Kähler.
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Examples of type W1 +W3. As the next two examples illustrate, it is not
difficult to construct half-flat structures of type W1 +W3.

Example 2.2. In this example we fix a non-zero real number a ∈ R∗ and consider
the pair of forms (ω, γ) given by:

{
ω = −3

4 αa
(
e12 + e34 + e56) ,

γ = a(e135 − e246) + 1
2 a
(
e352 − e146 + e514 − e362 + e136 − e524) ,

where α is defined via the relation

aα3

2
√

3
=

4
9

.

Clearly, d(ω2) = 0 and dγ = 0.
A calculation shows λ = −27

16 a4 so that

√
−λ =

3
√

3
4

a2.

The 3-form γ̂ is given by

γ̂ = −
√

3
2

a
(

e352 + e146 + e514 + e362 + e136 + e524
)

.

Note that the following normalisation condition is satisfied:

2
3 ω3 = −27α3a3

16
e123456 = −9α3

4
3a3

4
e123456 = −3

√
3a2

2
e123456 = γ ∧ γ̂.

In order to verify that the intrinsic torsion is of type W1 +W3, we calculate
the exterior derivatives of ω, γ, and γ̂:





dω = −3
2 αγ + 3

2 αa(e135 − e246),
dγ = 0,
dγ̂ = αω2.

Finally, note that the associated metric is given by

g =

√
3

2
αa

3

∑
i=1

(
ei ⊗ ei + e2i ⊗ e2i + 1

2(e
i ⊗ e2i + e2i ⊗ ei)

)
,

and one finds that the scalar curvature is positive: s = 4√
3αa

= 3
2 α2.

Example 2.3 (Zero scalar curvature metric). Consider the following pair of stable
forms:

{
ω = a

(
e12 + e34 + e56) ,

γ =
√

5b(e135 − e246) + b
(
e352 − e146 + e514 − e362 + e136 − e524) ,
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We find that λ = −8(1 +
√

5)b4, and the 3-form γ̂ is given by

−
√
−λγ̂ = 2(

√
5− 1)b3(e135 + e246)

+ 2(3 +
√

5)b3
(

e352 + e146 + e514 + e362 + e136 + e524
)

.

The normalisation condition then reads

a3 = −
√

2(1 +
√

5)b2.

The associated metric takes the form

g = − 2ab2
√
−λ

3

∑
i=1

(
(1 +

√
5)(ei ⊗ ei + e2i ⊗ e2i) + 2(ei ⊗ e2i + e2i ⊗ ei)

)
.

In this case one finds that the scalar curvature is zero.

Remark 2 (Group contractions). The author of [15] uses Lie algebra degenerations
to study invariant hypo SU(2)-structures on 5-dimensional nilmanifolds. In a
similar way, one could study half-flat structures on the various group contractions
of S3 × S3 like S3 × N3, where N3 is a compact quotient of the Heisenberg group.
(See [14] for partial studies of such contractions).

3 Parametrising invariant half-flat structures

The invariant half-flat structures on M can be described in terms of symmetric
matrices. In order to do this, we recall the local identifications (1) and set
U = R3,3, the space of real 3× 3 matrices, and V = S2

0(R
4), the space of real

symmetric trace-free 4× 4 matrices.
There is a well known correspondence between U and V; a fact which is for

example used in the description of the trace-free Ricci-tensor Ric0 ∈ Λ2
+ ⊗Λ2

− on
a Riemannian 4-manifold.

Lemma 3.1. There is an equivariant isomorphism U → V which maps a 3× 3 matrix
K = (kij) to the matrix




−k11 − k22 − k33 k23 − k32 −k13 + k31 k12 − k21
k23 − k32 −k11 + k22 + k33 −k12 − k21 −k13 − k31
−k13 + k31 −k12 − k21 k11 − k22 + k33 −k23 − k32
k12 − k21 −k13 − k31 −k23 − k32 k11 + k22 − k33


 .

Proof. By fixing an oriented orthonormal basis { f1, f2, f3, f4} of (R4)∗, we make
the identifications Λ2

+ = A, Λ2
− = B via

e1 = f 12 + f 34, e2 = f 12 − f 34, and so forth.
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The asserted isomorphism is then given by contraction on the middle two indices,
as in the following example:

U ∼= A⊗ B 3 e5 ⊗ e2 = ( f 14 + f 23)⊗ ( f 12 − f 34)

= ( f 1 f 4 − f 4 f 1 + f 2 f 3 − f 3 f 2)( f 1 f 2 − f 2 f 1 − f 3 f 4 + f 4 f 3)

7−→ f 1 f 3 − f 4 f 2 − f 2 f 4 + f 3 f 1 = f 1 � f 3 − f 2 � f 4 ∈ V.

Table 1 summarises how invariants and covariants are related under the above
isomorphism U ∼= V.

K ∈ U S ∈ V

K S

4 tr(KKT) tr(S2)

−2 Adj(KT) (S2)0

−24 det(K) tr(S3)

4 tr(KKT)K tr(S2)S

2KKTK 3
4 tr(S2)S− (S3)0

4 tr((KKT)2) 3 det(S) + 1
4 tr(S4)

2 tr(KKT)2 det(S) + 1
4 tr(S4)

−24 det(K)K tr(S3)S

4 tr(KKT)Adj(K) 1
3 tr(S3)S− (S4)0

Table 1: Dictionary between invariants and covariants; S denotes the image of K under
the isomorphism U → V of Lemma 3.1.

Now, let us fix a cohomology class c = (a, b) ∈ H2(M, R) ∼= R2. We have:

Theorem 3.2. The set Hc of invariant half-flat structures on M with [γ] = c can be
regarded as a subset of the commuting variety:

{(Q, P) ∈ V ⊕V : [Q, P] = 0} . (5)

Proof. Recall T∗M = A⊕ B, where A ∼= su(2)∗ ∼= B so that we have

Λ2T∗ ∼= Λ2A⊕ (A⊗ B)⊕Λ2V ∼= Λ4T∗M

Λ3T∗ ∼= Λ3A⊕ (Λ2A⊗ B)⊕ (A⊗Λ2B)⊕Λ3B.

The equation d(ω2) = 0 implies that

ω ∈ A⊗ B ∼= U ∼= V,
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which defines P. Also note δ = ω2 lies in a space isomorphic to V.
We may assume that

γ = ae135 + dβ + be246

The condition ω ∧ γ = 0 implies Q ⊗ P lies in the kernel of some SO(4)-
equivariant map

V ⊗V −→ Λ5T∗M ∼= A⊕ B ∼= Λ2R4,

which must correspond to [Q, P] = QP− PQ.

Remark 3. Consider the open subset set Uc, c = (a, b), of the commuting variety
given by pairs (Q, P) satisfying

tr(P3) 6= 0, det(Q) +
a− b

6
tr(Q3) +

ab
2

tr(Q2) + (ab)2 < 0. (6)

Then Hc is the hypersurface in Uc characterised by the normalisation condition

tr(P3) = 12
(
−det(Q)− a− b

6
tr(Q3)− ab

2
tr(Q2)− (ab)2

) 1
2

. (7)

The space V ⊕ V ∼= V × V∗ = T∗V has a natural symplectic structure, and
SO(4) acts Hamiltonian with moment map µ : V ⊕V → so(4) ∼= Λ2R4 given by

(Q, P) 7−→ [Q, P].

Via (singular) symplectic reduction [26], we can the simplify the parameter space
significantly:

Corollary 3.3. The set Hc of half-flat structures modulo equivalence relations is a subset
of the singular symplectic quotient

µ−1(0)
SO(4)

∼= R3 ⊕R3

S3
.

For later use, we observe that in terms of the matrix framework, the dual
3-form γ̂ has exterior derivative given as follows:

Lemma 3.4. Fix a cohomology class c = (a, b) ∈ H3(M). For any element (Q, P) ∈ Hc
corresponding to an invariant half-flat structure, the associated 4-form dγ̂ corresponds to
the matrix R̂ = 1√−r R, where

{
R = −(Q3)0 +

a−b
2 (Q2)0 + (ab + 1

2 tr(Q2))Q,
4r = det(Q) + a−b

6 tr(Q3) + ab
2 tr(Q2) + (ab)2 (= λ(c, Q))

In particular, if a + b = 0 and we set Q̂ = Q + aI then
{

R = (Adj(Q̂))0,
4r = det(Q̂)

8



Proposition 3.5. Let (Q, P) ∈ Hc:
1. if (Q, P) corresponds to a coupled structure then c = 0 and P = −3

2 αQ for a
non-zero constant α ∈ R.

2. if (Q, P) corresponds to a co-coupled structure then R̂ = α(P2)0 for a non-zero
constant α ∈ R.

Example 3.6. Obviously, the half-flat pair (Q, P) is of type W1 +W3 if and only
if the matrices (P2)0 and R are proportional, i.e., we have R̂ = α(P2)0; the type
does not reduce further provided c 6= 0 and α 6= 0. Using these conditions it is
easy to show that the structures of Example 2.2 and Example 2.3 have the type of
intrinsic torsion claimed. Indeed, in the first example, using Lemma 3.4, we find
that

(P2)0 =
9a2α2

8
diag(3,−1,−1,−1), R =

9a3

8
diag(3,−1,−1,−1),

whilst the matrices of the second example satisfy

(P2)0 = 2a2 diag(3,−1,−1,−1), R = (1
2

√
5a2b + 6b3)diag(3,−1,−1,−1).

Example 3.7 (Nearly-Kähler). In this case, the following conditions should be
satisfied:

{
P = −3

2 αQ ≡ −3
2 α diag(−x− y− z, x, y, z),

4 Adj(Q)0 =
√
−det(Q)α(P2)0 = 9

4 α3
√
−det(Q)(Q2)0,

for some α ∈ R∗. This is equivalent to solving the equations

(Q2)0 = α̃
(
(Q3)0 − 1

2 tr(Q2)Q
)

,

where α̃ = − 16
9α3
√−det Q . We find this system of equations can be formulated as




(y + z)(2x + y + z) = −α̃yz(2x + y + z),
(x + z)(x + 2y + z) = −α̃xz(x + 2y + z),
(x + y)(x + y + 2z) = −α̃xy(x + y + 2z).

Keeping in mind that we must have (x + y + z)xy > 0, we obtain only the
following solutions (Q, P) ∈ H0:

x = y = z =
8

9
√

3α3
,

−1
3

x = y = z =
8

9
√

3α3
or with the roles of x, y, z interchanged.

Note that these solutions are identical after using a permutation; the correspond-
ing matrices Q are of the form

diag(−3x, x, x, x) and diag(x,−3x, x, x),

respectively.
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The above example captures a well known fact about uniqueness of the
invariant nearly-Kähler structure on S3 × S3. In our framework, this can be
summarised as follows (compare with [10, Proposition 2.5]).

Proposition 3.8. Modulo equivalence and up to a choice of scaling q/p ∈ R∗, there is a
unique invariant nearly-Kähler structure on M. It is given by the class [(Q, P)] where

(Q, P) = (q(diag(−3, 1, 1, 1), p diag(−3, 1, 1, 1)) ∈ H0.

As observed in [30, Proposition 1.8] there are no invariant (integrable) complex
structures on M admitting a left-invariant holomorphic (3, 0)-form. Indeed, in
terms of 4× 4 matrices this assertion is captured by

Lemma 3.9. In the notation of Lemma 3.4, if R = 0 then r > 0.

Although we have chosen to focus on the vector space V and 4× 4 matrices,
we conclude this section with a neat consequence of stability. Consider K ∈ R3,3.
The Cayley-Hamilton theorem states that

K3 − c1K2 + c2K− c3 I = 0,

where c1 = tr K, tr(K2) = c2
1 − 2c2, and c3 = det K. Consider now the adjugate

Adj K = K2 − c1K + c2 I,

so that K(Adj K) = (det K)I. Table 1 implies that the mapping ω 7→ ω2 corre-
sponds to a multiple of K 7→ Adj(KT). The following result describes a viable
alternative to the square root of a 3× 3 matrix; it can be proved directly using
the singular value decomposition.

Corollary 3.10. Any 3× 3 matrix with positive determinant equals Adj K for some
unique ±K.

4 Evolution equations: from SU(3) to G2

Let I ⊂ R be an interval. A G2-structure and metric on the 7-manifold M× I
can be constructed from a one-parameter family of half-flat structures on M by
setting {

ϕ = ω(t) ∧ dt + γ(t),
∗ϕ = γ̂(t) ∧ dt + 1

2 δ(t),
(8)

where δ(t) = ω(t)2 and t ∈ I. It is well known [24] the holonomy lies in G2 if
and only if dϕ = 0 = d∗ϕ. For structures defined via a one-parameter family of
half-flat structures, this can be phrased equivalently as:

Proposition 4.1. The Riemannian metric associated with the G2-structure (8) has
holonomy in G2 if and only if the family of forms satisfies the equations:

{
γ′ = dω,
δ′ = −2dγ̂.

(9)
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Proof. Differentiation of ϕ and ∗ϕ gives us:
{

dϕ = dω ∧ dt + dγ− γ′ ∧ dt,
d∗ϕ = dγ̂ ∧ dt + 1

2 dδ + δ′ ∧ dt,

Since the one-parameter family consists of half-flat SU(3)-structures, we have
dγ = 0 = dδ (for each fixed t), so the conditions dϕ = 0 = d∗ϕ reduce to the
system (9).

Remark 4. As explained in [25, Theorem 8], the evolution equations (9) can be
viewed as the flow of a Hamiltonian vector field on Ω3

ex(M)×Ω4
ex(M). It is a

remarkable fact that this flow does not only preserve the closure of δ and γ, but
also the compatibility conditions (3).
Remark 5. In order to show that a given G2-metric on M× I has holonomy equal
to G2, one must show there are no non-zero parallel 1-forms on the 7-manifold
(see the treatment by Bryant and the second author [8, Theorem 2]). For many of
the metrics constructed in this paper, the argument is the same, or a variation of,
the one applied in [8, Section 3].

In terms of matrices (Q, P) ∈ Hc, we can rephrase the flow equations by

Proposition 4.2. As a flow, t 7→ (Q(t), P(t)), in Hc, the evolution equations (9) take
the form {

Q′ = P,
(P2)′0 = −2R̂.

(10)

These equations are particularly simple when the cohomology class c = (a, b)
of γ satisfies the criterion a + b = 0. In this case, by Lemma 3.4, we have:

Corollary 4.3. For a flow, t 7→ (Q(t), P(t)), in H(a,b) with a + b = 0, the equations
(10) take the form: 




Q′ = P,

(P2)′0 = − 4 Adj(Q̂)0√
−det Q̂

.

Remark 6. When phrased as above, the preservation of the normalisation (7)
essentially amounts to Jacobi’s formula for the derivative of a determinant.

Proposition 4.2 tells us that the G2-metrics on M× I that arise from the flow
of invariant half-flat structures, can be interpreted as the lift of suitable paths
t 7→ Q(t) to paths

t 7→ (Q(t), P(t)) ∈ S2
0(R

4)× S2
0(R

4) ∼= T∗(S2
0(R

4)),

and moreover these paths lie on level sets of the (essentially Hamiltonian) func-
tional

Hc(Q, P) =
√
−λ(c, Q)− 1

12 tr(P3).

Corollary 4.4. Let (Q, P) be a (normalised) solution of the flow equations (10). Then
the trajectory (Q(t), P(t)) lies on the level set {Hc = 0} inside the space (S2

0(R
4))2 ∼=

T∗(S2
0(R

4)).
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Dynamic examples of type W1 +W3. Rephrasing results of [6], we now con-
sider the one-parameter family of forms t 7→ (ω(t), γ(t)) given by

{
ω(t) = −3

2 α(t)x(t)(e12 + e34 + e56) ≡ −3
2 α(t)x(t)ω0,

γ(t) = x(t)dω0 + a(e135 − e246).

In this case, we find that

λ = (a− 3x)(x + a)3,

and we shall assume 3x < a and x < −a, so as to ensure λ < 0. Also note that

−
√
−λγ̂ = x(a + x)2(e135 + e246)

+ (a− 2x)(a + x)2
(

e352 + e146 + e514 + e362 + e136 + e524
)

.

In particular, the normalisation condition reads:

27α3x3 = 4
√
(3x− a)(x + a)3. (11)

In order to solve the flow equations, we also need the 4-form

dγ̂ =
1√
−λ

x(x + a)2ω2
0.

Based on the above expressions, the system (9) becomes:

{
x′(t) = −3

2 α(t)x(t),

(α2x2)′ = −8
9 x
√

x+a
3x−a .

These equations can be rewritten as a system of first order ODEs in x and α:

{
x′ = −3

2 αx

α′ = 3
2 α2 − 4

9
1

αx

√
x+a

3x−a .

As we require the normalisation (11) to hold, we cannot choose initial conditions
(xi, αi) freely.

After suitable reparametrization, we find the explicit solution:
{

x(s) = 1
3(4s3 + a),

α(s) = 4s2√
3

√
1+as−3

4s3+a ,
(12)

where −∞ < s < min{0,−a
1
3}, and

t = −2
√

3
∫ ds√

1 + as−3
.
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Note that whilst x′ is always non-zero, α′ can be zero. Indeed, this happens if
a is chosen such that the quadratic equation

x2 + 2ax− a2 = 0

has a solution x(s) for some s < min{0,−a
1
3}. This is the case for any non-zero

a: if a > 0 the solution is obtained for

s = −a
1
3 (1 + 3

4

√
2)

1
3 ,

and if a < 0 the solution occurs when

s = a
1
3 (−1 + 3

4

√
2)

1
3 .

Introducing A(t) = − (αx)′
αx , we can express the exterior derivatives of the

defining forms via




dω = −3
2 Aγ + 3

2

(
αa(e135 − e246) + (A− α)γ

)
≡ −3

2 Aγ + β,
dγ = 0,
dγ̂ = Aω2.

(13)

As γ ∧ β = 0 = γ̂ ∧ β and ω ∧ β = 0, this implies that the constructed one-
parameter family of SU(3)-structures consists of members of type W1 +W3.

The associated family of metrics takes the form

g = − 3αx√
(3x− a)(x + a)

(
x

6

∑
i=1

ei ⊗ ei + 1
2(a− x)

3

∑
i=1

(ei ⊗ e2i + e2i ⊗ ei)

)
,

and has scalar curvature given by

s =
6(a2 − 5x2)√

(3x− a)3(a + x)
.

Zero scalar curvature is obtained for the solution which has a = −(5 +
√

5).
Indeed, in this case the scalar curvature is zero when s3 = 1−

√
5

2 .
Finally, let us remark that the associated G2-metric is of the form dt⊗ dt + g,

or, phrased more explicitly, in terms of the parameter s:

12
1 + as−3 ds⊗ ds +

4s2 + as−1
√

3

6

∑
i=1

ei ⊗ ei − 2s2 − as−1
√

3

3

∑
i=1

(ei ⊗ e2i + e2i ⊗ ei)

=
12

1 + as−3 ds⊗ ds

+
3

∑
i=1

(
s2(1 + as−3)√

3
(ei + e2i)⊗ (e2i + ei) +

√
3s2(ei − e2i)⊗ (e2i − ei)

)
.
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If a = 0 this metric is conical whilst for a 6= 0, the metric is asymptotically conical:
when |s| → ∞ it tends to a cone metric

12ds2 + s2
3

∑
i=1

(
1√
3
(ei + e2i)⊗ (e2i + ei) +

√
3(ei − e2i)⊗ (e2i − ei)

)

over M. In terms of the classification [20], the metrics belong to the family (I).
In terms of the matrix framework, the one-parameter families of pairs (Q, P)

take the form:

Q = −x diag(3,−1,−1,−1), P = −3
2 αx diag(3,−1,−1,−1).

In particular, we get another way of verifying the co-coupled condition:

(P2)0 =
9α2x2

2
diag(3,−1,−1,−1), R = x(a + x)2 diag(3,−1,−1,−1).

5 Further examples

Metrics with SU(2)2 × ∆U(1) n Z/2 symmetry. Following mainly [14], we
study examples that relate our framework to certain constructions of G2-metrics
appearing in the physics literature. Our starting point in a one-parameter families
half-flat pairs (ω, γ) of the form:

{
ω = p1e12 + p2e34 + p3e56,
γ = ae135 + be246 + q1d(e12) + q2d(e34) + q3d(e56).

Using the normalisation condition, we are able to express the associated one-
parameter family of metrics on M as follows:

g =
q2q3 + aq1

p2p3
e1 ⊗ e1 +

q2q3 − bq1

p2p3
e2 ⊗ e2 +

q2
1 − q2

2 − q2
3 − ab

2p2p3
(e1 ⊗ e2+e2 ⊗ e1)

+
q1q3 + aq2

p1p3
e3 ⊗ e3 +

q1q3 − bq2

p1p3
e4 ⊗ e4 +

q2
2 − q2

1 − q2
3 − ab

2p1p3
(e3 ⊗ e4+e4 ⊗ e3)

+
q1q2 + aq3

p1p2
e5 ⊗ e5 +

q1q2 − bq3

p1p2
e6 ⊗ e6 +

q2
3 − q2

1 − q2
2 − ab

2p1p2
(e5 ⊗ e6+e6 ⊗ e5),

(14)

and the flow equations (9) read:
{

q′i = pi,
(p2p3)

′ = 1
p1 p2 p3

(
−abq1 + (a− b)q2q3 + q1(q2

2 + q2
3 − q2

1)
)

, etc.
(15)

Remark 7. Notice that the Z/2 action which interchanges the two copies of
S3 preserves the metric (14) provided the cohomology class [γ] is of the form
a+ b = 0, i.e., [γ] = (a,−a). The action interchanges metrics of half-flat structures
with [γ] = (a, 0) with those for which [γ] = (0,−a). The latter observation is
related to the notion of a flop [2].
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Remark 8. The quantity
√

det g(t) can be viewed as the ratio of the volume of g(t)
relative to a fixed background metric on S3 × S3. As expected, we find that

√
det(g) = 2

√
−λ,

where we have used that tr(P3) = −6
√
−λ, by the normalisation condition (7).

A metric ansatz that has led to the discovery of new complete G2-metrics (see,
for instance, [6, 19]) can be expressed in terms of the condition a + b = 0. In this
case, we find

g =
q2q3 + aq1

p2p3
(e1 ⊗ e1 + e2 ⊗ e2) +

q2
1 − q2

2 − q2
3 + a2

2p2p3
(e1 ⊗ e2+e2 ⊗ e1)

+
q1q3 + aq2

p1p3
(e3 ⊗ e3 + e4 ⊗ e4) +

q2
2 − q2

1 − q2
3 + a2

2p1p3
(e3 ⊗ e4+e4 ⊗ e3)

q1q2 + aq3

p1p2
(e5 ⊗ e5 + e6 ⊗ e6) +

q2
3 − q2

1 − q2
2 + a2

2p1p2
(e5 ⊗ e6+e6 ⊗ e5)

=
3

∑
i=1

a2
i (e

i − e2i)⊗ (ei − e2i) + b2
i (e

i + e2i)⊗ (ei + e2i),

(16)

where 



a2
1 + b2

1 = q2q3+aq1
p2 p3

, b2
1 − a2

1 =
q2

1−q2
2−q2

3+a2

2p2 p3
,

a2
2 + b2

2 = q1q3+aq2
p1 p3

, b2
2 − a2

2 =
q2

2−q2
1−q2

3+a2

2p1 p3
,

a2
3 + b2

3 = q1q2+aq3
p1 p2

, b2
3 − a2

3 =
q2

3−q2
1−q2

2+a2

2p1 p2
,

or, alternatively,




q1 = −a1a2a3 − a3b1b2 − a2b1b3 + a1b2b3,
q2 = −a1a2a3 − a3b1b2 + a2b1b3 − a1b2b3,
q3 = −a1a2a3 + a3b1b2 − a2b1b3 − a1b2b3

p2p3 = 4a2a3b2b3, p1p3 = 4a1a3b1b3, p1p2 = 4a1a2b1b2,
a = −b = a1a2a3 − a3b1b2 − a2b1b3 − a1b2b3.

(17)

Note that, up to a sign, we have pi = −2aibi.
Expressed in terms of the metric function ai, bi, the flow equations (15) become:





4a′1 =
a2

1
a3b2

+
a2

1
a2b3
− a2

b3
− a3

b2
− b2

a3
− b3

a2
,

4b′1 =
b2

1
a2a3
− b2

1
b2b3
− a2

a3
− a3

a2
+ b2

b3
+ b3

b2
,

4a′2 =
a2

2
a3b1

+
a2

2
a1b3
− a1

b3
− a3

b1
− b1

a3
− b3

a1 ,

4b′2 =
b2

2
a1a3
− b2

2
b1b3
− a1

a3
− a3

a1
+ b1

b3
+ b3

b1
,

4a′3 =
a2

3
a2b1

+
a2

3
a1b2
− a1

b2
− a2

b1
− b1

a2
− b2

a1
,

4b′3 =
b2

3
a1a2
− b2

3
b1b2
− a1

a2
− a2

a1
+ b1

b2
+ b2

b1
.
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The complete metrics constructed by Brandhuber et al [6] arise as a further
specialisation of this system. Indeed, if we take a1 = a2 ≡ a and b1 = b2 ≡ b and
set t =

∫ ds
b3

, then the system (5) reads





4∂a
∂s =

a2−a2
3−b2

ba3b3
− 1

a ,

4∂b
∂s =

b2−a2−a2
3

aa3b3
+ 1

b ,

2∂a3
∂s =

a2
3−a2−b2

abb3
,

4∂b3
∂s = b3

a2 − b3
b2 ,

which is the same as in [6, Equation (3.1)], where the authors find the following
explicit holonomy G2-metric:

ds2

b2
3
+

(s− 3
2)(s +

9
2)

12

(
(e1 − e2)⊗ (e1 − e2) + (e3 − e4)⊗ (e3 − e4)

)

+
(s + 3

2)(s− 9
2)

12

(
(e1 + e2)⊗ (e1 + e2) + (e3 + e4)⊗ (e3 + e4)

)

+
s2

9
(e5 − e6)⊗ (e5 − e6) +

(s− 9
2)(s +

9
2)

(s− 3
2)(s +

3
2)
(e5 + e6)⊗ (e5 + e6).

(18)

Asymptotically this is the metric of a circle bundle over a cone, in short an ABC
metric. In terms of the classification [20], it belongs to the family (II).

Cohomogeneity one Ricci flat metrics. Any solution of (9) gives us a cohomo-
geneity one Ricci flat metric on M× I. An important aspect of the cohomogeneity
one terminology is to bridge a gap between our framework and the “Lagrangian
approach” appearing in the physics literature (see, e.g., [6, Section 4]). For ex-
ample, consider the metric (16) from the above example, assuming for simplicity
that a1 = a2 ≡ a and b1 = b2 ≡ b. By [22], we know that the shape operator L
of the principal orbit S3 × S3 ⊂ I ×M satisfies the equation g′ = 2g ◦ L. For the
given metric, we find that

L =
1
2




a′b+ab′
ab

ab′−a′b
ab 0 0 0 0

ab′−a′b
ab

a′b+ab′
ab 0 0 0 0

0 0 a′b+ab′
ab

ab′−a′b
ab 0 0

0 0 ab′−a′b
ab

a′b+ab′
ab 0 0

0 0 0 0 a′3b3+a3b′3
a3b3

a3b′3−a′3b3
a3b3

0 0 0 0 a3b′3−a′3b3
a3b3

a′3b3+a3b′3
a3b3




.
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We also observe that

tr(L)2 =
(2a3b3ab′ + 2a3b3ba′ + aba3b′3 + abb3a′3)

2

a2b2a2
3b2

3
,

tr(L2) =
(2a2

3b2
3a2b′2 + 2a2

3b2
3b2a′2 + a2b2a2

3b′23 + a2b2b2
3a′23

a2b2a2
3b2

3
,

det(g) = 64a4b4a2
3b2

3,

s = −1
8

2a4
3a2b2 + a2

3a4b2
3 − 8a4b2a2

3 + a2
3b4b2

3 − 8b4a2a2
3 + 2a6b2 − 4a4b4 + 2a2b6

a4b4a2
3

.

In general, the Ricci flat condition can now be expressed as:

L′ + (tr(L))L− Ric = 0, tr(L′) + tr(L2) = 0, (19)

combined with another equation expressing the Einstein condition for mixed
directions. If we take the trace of the first equation in (19), and combine with the
second one, we obtain the following conservation law:

(tr(L))2 − tr(L2)− s = 0.

As explained in [20], the above system has a Hamiltonian interpretation.
It is this interpretation, in its Lagrangian guise and phrased with the use of
superpotentials, one frequently encounters in the physics literature. In this
setting, the kinetic and potential energies are given by

T =
(
(tr(L))2 − tr(L2)

)√
det(g), V = −s

√
det(g);

these definitions agree with those in [6] up to a multiple of
√

det(g) = 8a2b2a3b3.
In [21], the authors provide a relevant description of the superpotential; in

classical terms this is a solution of a time-independent Hamilton-Jacobi equation.
In the concrete example, the superpotential u can be viewed as a function of ai, bi.
Concretely, we can take

u = 2
(

2a3bb3 + 2ab3b3 − a2a3b2
3 + b2a3b2

3 + 2aba2
3b3

)
.

In terms of u, the flow equations can then be expressed as follows:

∂ #»α

∂r
= G−1 ∂u

∂ #»α
,

where #»α = (ln(a), ln(b), ln(b3), ln(a3))
T (assuming ai, bi > 0), t =

∫√
det(g) dr

and

G =




2 4 2 2
4 2 2 2
2 2 0 1
2 2 1 0


 .
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Finally, we remark that the kinetic and potential terms can be expressed in the
form

√
det(g)T =

∂ #»α

∂r
G
(

∂ #»α

∂r

)T
,
√

det(g)V = − ∂u
∂ #»α

G−1
(

∂u
∂ #»α

)T
.

As a further specialisation, let us consider the case when a = 0 and a =
a3 = t

2
√

3
, b = b3 = t

6 ; this is the nearly-Kähler case. Then the shape operator is

proportional to the identity: L = t−1 I, and the kinetic and potential terms are

T =
5
√

3t4

324
, V = −5

√
3t4

324
,

respectively. So the total energy is zero T +V = 0 for all t > 0. The superpotential
is the fifth oder polynomial

u =
13t5

216
√

3
.

Uniqueness: flowing along a line. In the case when (Q, P) ⊂ H0, the flow
equations (10) turn out to have a unique (admissible) solution satisfying for
which Q belongs to a fixed one-dimensional subspace.

Proposition 5.1. Assume t 7→ (Q(t), P(t)) ∈ H0 is a solution of (10). Then Q belongs
to a fixed 1-dimensional subspace of S2

0(R
4) if and only if the associated G2-metric is the

cone metric over S3 × S3 endowed with its nearly-Kähler structure.

Proof. It is easy to see that the solution of (10) which corresponds to the cone
metric over S3 × S3 (with its nearly-Kähler structure) is represented by

{
(Q(t), P(t)) = (q(t)diag(−3, 1, 1, 1), p(t)diag(−3, 1, 1, 1)) ∈ H0,
(q(t), p(t)) = − t2

6
√

3
( t

3 , 1).
(20)

So, in this case, Q indeed belongs to a fixed 1-dimensional subspace of S2
0(R

4).
Conversely, let us assume we are given a solution such that

Q(t) = U(t)diag (−1− a− b, a, b, 1) .

Then the system (10) reads:




(
1 + b + c− b2 + c2 + bc

)
uu′ = b(−1+c)2+b2(1+c)−3c(1+c)√

bc(1+b+c)
U,

(
1 + b + c + b2 − c2 + bc

)
uu′ = b2(−3+c)+c(1+c)+b(−3−2c+c2)√

bc(1+b+c)
U,

(
−1 + b + c + b2 + c2 + bc

)
uu′ = b+b2+c−2bc−3b2c+c2−3bc2√

bc(1+b+c)
U.
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These equations show that there is a purely algebraic constraint to having a
solution:





1 + b + c− b2 + c2 + bc = b(−1+c)2+b2(1+c)−3c(1+c)√
bc(1+b+c)

κ,

1 + b + c + b2 − c2 + bc = b2(−3+c)+c(1+c)+b(−3−2c+c2)√
bc(1+b+c)

κ,

−1 + b + c + b2 + c2 + bc = b+b2+c−2bc−3b2c+c2−3bc2√
bc(1+b+c)

κ,

where κ ∈ R. Uniqueness of the “nearly-Kähler cone”, as a flow solution, now
follows by observing that these algebraic equations have the following set of
solutions:

(κ, b, c) = (0,−1,−1), (κ, b, c) = (0, 1,−1), (κ, b, c) = (0,−1, 1),

(κ, b, c) =
(

1√
3

,−1
3

,−1
3

)
, (κ, b, c) = (−

√
3, 1,−3), (κ, b, c) = (−

√
3,−3, 1),

(κ, b, c) = (−
√

3, 1, 1).

The solutions with κ = 0 are not “admissible” whilst the remaining solutions all
result in one-parameter families of pairs equivalent to (20).

6 Numerical solutions

As indicated in the earlier parts of this paper, previous studies of G2-metrics on
M× I have focused mainly on metrics with isometry group (at least) SU(2)2 ×
∆U(1)n Z/2. In addition, most of the attention has been centred around solu-
tions in Hc for c = (a,−a) 6= 0.

A technique that seems effective if one is specifically looking for complete
metrics is to choose the initial values of the flow equations (10) to obtain a
singular orbit at that point (meaning, in our context, one whose stabilizer has
positive dimension in SU(2)2). This approach was adopted in [27, 18] for Spin(7)
holonomy. However, this final section shifts the focus of our investigation in order
to illustrate some more generic behaviour of the flow on the space of invariant
half-flat structures on S3 × S3.

Two-function ansatz. We first look for solutions in H0 for which Q takes the
form

Q(t) = diag(−2U(t)−V(t), U(t), U(t), V(t)),

where U, V are smooth functions on an interval I ⊂ R. A solution of (10) is then
uniquely specified by the quadruple

(U(0), V(0), U′(0), V′(0)).

We have solved the system for a wide range of initial conditions. A selection
of solutions are shown in Figure 1. Apart from the nearly-Kähler straight line,
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these solutions are new. Plotting the metric functions, we find that some of
the new metrics have one stabilising direction when t → ∞ and no collapsing
directions (they are therefore ABC metrics of the sort mentioned in connection
with (18)). The others have shrinking directions which cause the volume growth
to slow down as shown in Figure 1c.

(a) Solution curves with
(U(0), V(0)) fixed.

(b) Solution curves with
(U′(0), V′(0)) fixed.

(c) Volume growth for selected solutions.

Figure 1: A collection of “planar solutions” satisfying a = 0 = b. The solution curves are
given in terms of t 7→ (U(t), V(t)) whilst the volume growth refers to t 7→

√
−λ(t).

More precisely, in the case U(0) = V(0), the normalisation forces Q′(0),
written as (x, y) = (U′(0), V′(0)), to lie on the curve

x(x + y)2 = −2
√

3, (21)

20



which has two branches separated by the line x + y = 0. One branch corresponds
to positive-definite metrics, including the nearly-Kähler solution

x = y = ν, where ν = −31/6/21/3 = −0.953 . . . (22)

The ABC metrics are those for which ν < x < 0, and appear on the top left of the
nearly-Kähler line in Figure 1a, in green in the coloured version.

When U(0) 6= V(0), the nearly-Kähler solution is excluded. Nevertheless, the
overall picture remains valid, meaning one branch of the normalisation curve
corresponds to positive-definite metrics, and this branch itself has two half pieces,
one corresponding to ABC curves and one to the other solutions.

In the trace-free case, a = 0 = b, all solutions degenerate at a point t0. The
ABC solutions are “half complete”, meaning that away from the degeneration
they are complete in one direction of time. (See [1, 12] for other examples of
half-complete G2-metrics). The other solutions reach another degeneracy point
t1 in finite time. The singularity at t0 cannot be resolved. In particular, it is not
possible to find complete G2-metrics. One way to circumvent this issue is to
consider flow solutions for which [γ] 6= 0; solutions of this form include the
metrics discovered by Brandhuber et al [6].

Three-function ansatz. Now, turning to “less symmetric” G2-metrics, we con-
sider for solutions in H0 with Q of the (generic) form:

Q(t) = diag(−U(t)−V(t)−W(t), U(t), V(t), W(t)),

where U, V, W are smooth functions on an interval I ⊂ R. A solution of (10) is
then uniquely specified by the sextuple

(U(0), V(0), W(0), U′(0), V′(0), W ′(0)).

As in the case of planar solutions, we have solved the flow equations for a
large number of initial conditions. In contrast with the planar case, we have not
been able to find metrics with one stabilising directions as t→ ±∞.

We shall confine our presentation to the class of solutions with the same initial
point

(U(0), V(0), W(0)) = (1, 1, 1)

as the nearly-Kähler solution, but with varying velocity vector

(x, y, z) = (U′(0), V′(0), W ′(0)). (23)

Similar to the planar case, the flow lines are governed by the normalization
condition, and (21) is replaced by the cubic surface

(x + y)(x + z)(y + z) = −4
√

3. (24)

The asymptotic planes corresponding to the vanishing of x + y, x + z, y + z
separate the surface into four hyperboloid-shaped components, and only the one
with all factors negative is relevant to our study of positive-definite metrics with
holonomy G2. The nearly-Kähler solution x = y = z = ν (cf. (22)) corresponds to
its centre point.
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(a) Side view with diagonal nearly-Kähler line.

(b) Looking down the line. (c) Planar ABC solutions.

Figure 2: Families of space curve solutions satisfying a = 0 = b. The solution curves are
given in terms of t 7→ (U(t), V(t), W(t)).

Families of solutions are shown in Figure 2 which, like those in Figure 1, were
plotted using Mathematica and the command NDSolve. To obtain the curves, it was
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convenient to further reduce attention to the case in which x, y, z are all negative.
The corresponding subset of (24) is now a curved triangle T with truncated
vertices. By issuing a plotting command for T , we obtained an abundant sample
of mesh points to feed into (23) as initial values. One can then regard each curve
as the continuing trajectory of a particle launched towards a point of T , which
fits in close to the apex of Figure 2a.

All the solutions, apart from the central nearly-Kähler one, are new. They
tend to have shrinking directions, causing the volume growth to slow down. The
5250 solution curves in Figure 2a are plotted for the range −0.97 6 t 6 0 since
many develop singularities close to t = −1 (and close to t = 0.2 though positive t
is not shown). In the coloured “cocktail umbrella” picture, they are separated
into groups distinguished by the value of the function x2 + y2 + z2 of the initial
condition, with the nearly-Kähler line x = y = z and its close neighbours in red.
Solutions resulting from one of the coordinates being positive can be short-lived
in comparison to the others, leading to less coherent plots, and this is why they
are absent.

The view looking down the nearly-Kähler line from a point (u, u, u) with
u� 1 is shown in Figure 2b. The Z/3Z symmetry obtained by permuting the
coordinates is evident. The splitting behaviour at the three “ends” is to some
extent artificial, reflecting as it does the truncation that has resulted from our
decision to restrict attention to the negative octant.

The ABC two-function solutions of Figure 1a in the previous subsection arise
when two of x, y, z coincide and assume a common value greater than ν. The
projection of these planar curves orthogonal to the nearly-Kähler line can be seen
in Figure 2c. Computations confirm that, unlike the generic curves of Figure 2b
emanating from (1, 1, 1), these can be extended for all t→ −∞.

In addition to the solutions in H0 = H(0,0), we have investigated solutions in
H(1,−1). Regarding the asymptotic behaviour of the associated G2-metrics, the
overall picture appears not dissimilar to the one we have described by deforming
the nearly-Kähler velocity. Taking account also of the numerical analysis in [18],
we conjecture that the only solutions that can be extended for t→ −∞ or t→ ∞
lie in a plane.
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