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Abstract

Local digital algorithms based on n×· · ·×n configuration counts are commonly
used within science for estimating intrinsic volumes from binary images. This
paper investigates multigrid convergence of such algorithms. It is shown that
local algorithms for intrinsic volumes other than volume are not multigrid con-
vergent on the class of convex polytopes. In fact, counter examples are plenty.
Also on the class of r-regular sets, counter examples to multigrid convergence
are constructed for the surface area and the integrated mean curvature. Fi-
nally, a multigrid convergent local algorithm in 2D for the Euler characteristic
of convex particles with a lower bound on the interior angles is suggested.

Keywords:Image analysis, Local algorithm, Multigrid convergence, Intrinsic
volumes, Binary morphology

1 Introduction and main results

The purpose of this paper is to assess a certain class of algorithms that are widely
used for analysing digital output data from e.g. microscopes and scanners. These
algorithms yield a fast way of estimating the so-called intrinsic volumes of a given
object. The intrinsic volumes Vq, q = 0, . . . , d, include many of the quantities, sci-
entists are most frequently interested in, see e.g. [11], such as the volume Vd, the
surface area 2Vd−1, the integrated mean curvature 2π(d − 1)−1Vd−2, and the Euler
characteristic V0.

The algorithms considered rely only on what the image looks like locally, thus
we refer to them as local algorithms. The use of local algorithms goes back to [4],
see also [8, 10] for an overview of the algorithms suggested in the literature. The
popularity of local algorithms is due to the fact that they allow simple linear time
implementations [12], as opposed to the more complex algorithms of [2, 9]. However,
as we shall see below, this efficiency is often paid for by a lack of accuracy.

We model a digital image of an object X ⊆ Rd by a binary image, i.e. as the set
X ∩L where L is some lattice in Rd. In applications, such a binary image is usually
obtained from an observed grey-scale image by thresholding. Each point in L may
belong to either X or the background. For every n× · · · × n cell in the observation
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lattice, this yields 2n
d possible configurations of foreground and background points.

The idea of local algorithms is to estimate Vq as a weighted sum of configuration
counts, see Definition 2.11.

Local algorithms are suggested many places in the literature [8, 10, 17, 18] and
various partial definitions are given [5, 6, 8, 22]. In Section 2 we attempt to set up a
unified, rigorous definition of local algorithms and, in particular, to justify the use
of local algorithms for the estimation of intrinsic volumes.

The next question is, when a local algorithm yields a good approximation of Vq.
A natural criterion for an algorithm is multigrid convergence, i.e. that the estimator
converges to the true value when the resolution goes to infinity. This is a very strong
and in applications often unnatural requirement. In practice, observations are often
made in a design based setting where the lattice has been randomly translated
before making the observation. The natural, and usually weaker, requirement in
this situation is that the estimator should be unbiased, at least asymptotically when
the resolution tends to infinity. The various convergence criteria are discussed in
Section 2.2 in more detail.

In order for the digital image to contain enough information about X to en-
able us to estimate Vq(X), some niceness assumptions on the underlying set X are
needed. In this paper, we shall investigate which intrinsic volumes Vq allow asymp-
totically unbiased local estimators when X is assumed to belong to the class of
compact convex polytopes with non-empty interior or the class of r-regular sets (see
Definition 4.1).

1.1 Known results

Various results have already been obtained in this direction. It is well-known, see
e.g. [12], that there is a local estimator for the volume Vd which is unbiased even in
finite resolution given by counting lattice points in X and weighting them by the
volume of the unit lattice cell.

In contrast, Jürgen Kampf has proved [5] that on the class of finite unions of
polytopes, local algorithms for Vq based on 2× · · · × 2 configurations in orthogonal
lattices are always asymptotically biased for 0 ≤ q ≤ d − 2. In fact, he has shown
that the worst case asymptotic bias is always 100 %.

For q = d − 1, Ziegel and Kiderlen showed in [24] that there exists no asymp-
totically unbiased local algorithm for the surface area in 3D based on 2 × 2 × 2
configurations in an orthogonal lattice, but the asymptotic worst case bias is finite
in this case.

It has been conjectured in [8] and [6] that no local algorithm for estimation of
surface area is multigrid convergent in dimension d = 2 and d = 3, respectively. This
was proved by Tajine and Daurat [23] in dimension d = 2 in the special case of length
estimation for straight line segments. In fact, they show that any algorithm will be
(asymptotically) biased for almost all slopes of the line segment. In [7, Theorem 5],
Kiderlen and Rataj prove a formula for the asymptotic mean of a surface area
estimator, on which a proof in arbitrary dimension d could be based.

On the other hand it is known that with suitable smoothness conditions (r-
regularity) on the boundary ∂X there exists a multigrid convergent local algorithm
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for estimating the Euler characteristic V0 in 2D [14] and in 3D [20]. In fact, this
algorithm yields the correct value in sufficiently high finite resolution. It is still
a partially open question whether the existence of such an algorithm is due to
the smoothness conditions on the boundary or to the fact that V0 is a topological
invariant. However, it is shown in [22] that there is no asymptotically unbiased
estimator for the integrated mean curvature Vd−2 in dimensions d > 2 based on
2 × · · · × 2 configurations. This suggests that it is the topology invariance that
makes V0 special.

1.2 Main results of the paper

We first consider the estimation of Vq on the class Pd of compact convex polytopes
with non-empty interior. Any P ∈ Pd can be written in the form

P =
N⋂

i=1

H−ui,ti

where H−u,t denotes the halfspace {x ∈ Rd | 〈x, u〉 ≤ t} for u ∈ Sd−1 and t ∈ R. The
parameters ui, ti can be used to define a measure ν on Pd. This is made precise in
Section 3.1.

When 1 ≤ q ≤ d − 1, we shall prove the following theorem, generalizing the
results of [23]:

Theorem 1.1. For 1 ≤ q ≤ d − 1, any local algorithm for Vq in the sense of
Definition 2.11 is asymptotically biased (and hence not multigrid convergent) for
ν-almost all P ∈ Pd if d − q is odd and for a subset of Pd of positive ν-measure if
d− q is even.

As simple examples of sets for which an asymptotic bias occur, one may take
almost all rotations of almost all orthogonal boxes

⊕d
i=d[0, tiei] where t1, . . . , td ∈ R

and e1, . . . , ed ∈ Rd is the standard basis.
If an algorithm were only asymptotically biased for a very small class of sets, for

instance orthogonal boxes, this could well be acceptable in practice where objects
are often randomly shaped with a probability of zero for hitting this class. Hence we
state the theorem for all polytopes in a set of positive ν-measure. The reasonableness
in choosing the measure ν on Pd may be disputed, see the discussion in Section 3.1,
since it depends on how the studied particles arise. However, it would apply to
many situations where the particles under study arise from random sections of some
material.

In the case q = 0, we can obtain a similar theorem

Theorem 1.2. Any local algorithm for V0 in the sense of Definition 2.11 is asymp-
totically biased (and hence not multigrid convergent) on Pd if d > 1.

However, constructing the counter examples is now harder. In fact, in R2 there is
a sequence of local algorithms V̂ n

0 for n ∈ N based on n×· · ·×n configurations such
that V̂ n

0 is multigrid convergent for all P ∈ Pd (or even all relatively open compact
convex sets) having no interior angles less than ψn ∈ R where limn→0 ψn = 0. In
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particular, for any P ∈ Pd there is an N ∈ N such that V̂ n
0 (P ) = V0(P ) whenever

n ≥ N and the resolution is sufficiently high. Thus, if one studies convex particles
with a lower bound on the interior angles, there exists a multigrid convergent lo-
cal algorithm for V0. The explicit construction of these algorithms and the precise
conditions on the weights are given in Section 3.5.

As in [5], the proof goes by first constructing a counter example P ⊆ R2. This is
then generalized to higher dimensions by the prism P ×⊕d

i=3[0, ei]. This approach
also provides the following generalization of Kampf’s results:

Theorem 1.3. For 0 ≤ q ≤ d− 2, any local algorithm for Vq as in Definition 2.11
has an asymptotic worst case bias of 100% on Pd.

We finally move on to the case of r-regular sets. Using the main results of [7]
and [22], we shall see:

Theorem 1.4. For q = d − 1, d − 2 and q > 0, any local algorithm for Vq as in
Definition 2.11 with homogeneous weights is asymptotically biased (and hence not
multigrid convergent) on the class of r-regular sets.

The definition of homogeneous weights is given in Definition 2.9 below. For
0 < q < d− 2, the asymptotic behavior of local estimators for Vq is not well enough
understood to determine whether asymptotically unbiased estimators exist. How-
ever, Theorem 1.4 suggests that the Euler characteristic is the only Vq with q < d
that allows an asymptotically unbiased local estimator on the class of r-regular sets.

2 Local digital algorithms

2.1 Digital estimators

We first set up some notation and terminology and introduce digital estimators in
general.

Let ξ = {ξ1, . . . , ξd} be a positively oriented basis of Rd and let L denote the
lattice spanned by ξ. Let Cξ =

⊕d
i=1[0, ξi] be the unit cell of the lattice with volume

det(L). For c ∈ Rd, we let Lc = L + c denote the translated lattice.
Now suppose X ⊆ Rd is some subset of Rd. We use the binary digitization model

for a digital image, see e.g. [12]. That is, we think of a digital image as the set
X ∩ aLc ⊆ aLc where a > 0 is the lattice distance. This set contains the same
information about X as the Gauss digitization [8, Definition 2.7], which is the union
of all translations of Cξ having midpoint in X ∩ aLc.

Let V : S → R be a function defined on some class S of subsets of Rd. We want
to estimate this function based on digital images of elements of S.
Definition 2.1. By a digital algorithm V̂ for V , we mean a collection of functions
V̂ aLc : P(aLc) → R for every a > 0 and c ∈ Cξ where P(aLc) is the power set of
aLc. For X ∈ S we use V̂ aLc(X) := V̂ aLc(X ∩ aLc) as a digital estimator for V (X).

A digital algorithm V̂ is said to be

• translation invariant if V̂ aL0(S) = V̂ aLc(S + ac + az) for all S ∈ P(aL),
c ∈ Cξ, z ∈ L, and a > 0.
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• rotation (reflection) invariant if V̂ aLc(S) = V̂ aLRc(RS) for all S ∈ P(aL),
c ∈ Cξ, a > 0, and all rotations (reflections) R ∈ SO(d) preserving aL.
• motion invariant if it is both translation and rotation invariant.

Remark 2.2. Sometimes, e.g. in [19], V̂ aL is only defined for a belonging to some
sequence ak → 0 (typically, ak = 2−k). Though a weaker requirement, this will not
affect the non-existence theorems of this paper, so we consider only the case of the
definition.

Similarly, the algorithm is sometimes only defined for a subset of P(aLc), e.g.
finite sets, or only for c = 0, but of course, such a definition can easily be extended.

2.2 Various convergence criteria

Having defined a digital algorithm, the next question is how it should relate to
V (X). Obviously, many different sets may have the same digital image, so V̂ aLc(X)
will typically not give the correct value. However, X ∩ aLc will contain more and
more information about X as a decreases. Thus it is reasonable to require that
V̂ aLc(X) converges to the correct value when the lattice distance goes to zero. In [8],
this is called multigrid convergence and the formal definition here is as follows:

Definition 2.3. A digital algorithm V̂ for V : S → R is called multigrid convergent
if for all X ∈ S,

lim
a→0

V̂ aL0(X) = V (X).

Note that the definition only involves the non-translated lattice L0. This defini-
tion does cause some problems. It depends on the choice of origo with respect to
which the lattice is scaled. For instance, it could be that V̂ aLc(X) does not con-
verge to V (X), even if the algorithm is translation invariant. One could of course
repair this by requiring lima→0 V̂

aLc(X) = V (X) for all c ∈ Cξ. In practical applica-
tions, however, the lattice may not be scaled with respect to a fixed origo. Thus the
following stronger condition would be natural:

Definition 2.4. A digital algorithm V̂ is called uniformly multigrid convergent if
for all X ∈ S and ε > 0 there is a δ > 0 such that

|V̂ aLc(X)− V (X)| ≤ ε

for all c ∈ Cξ and a < δ.

In other words, the convergence V̂ aLc(X) → V (X) is uniform with respect to
translations of L. An equivalent formulation is that for every pair of sequences
ak → 0+ and ck ∈ Rd,

lim
k→∞

V̂ akLck (X) = V (X).

Multigrid convergence is in many situations a much too strong requirement. Of
the examples mentioned in the introduction, only the estimator for the Euler cha-
racteristic of r-regular sets is multigrid convergent.

In practice, a design based approach is often taken. Here the observation is made
on a uniform random translation of the lattice. That is, the observed image is the
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random set X ∩ aLc where c ∈ Cξ is a uniform random translation vector. A digital
algorithm is called integrable if c 7→ V̂ aLc(X) is integrable over Cξ for all a > 0 and
X ∈ S, i.e. the mean EV̂ aLc(X) is finite for all X ∈ S. The natural requirement for
an integrable digital algorithm is that V̂ aLc(X) is unbiased, at least when a tends
to zero. More formally:

Definition 2.5. Let V̂ be an integrable digital algorithm for V defined on a class S
of subsets of Rd. Then V̂ is called asymptotically unbiased if for all X ∈ S,

lim
a→0

EV̂ aLc(X) = V (X).

It is clear that uniform multigrid convergence implies asymptotic unbiasedness.
So does multigrid convergence in most nice situations, as the next proposition shows.
Let C∂ denote the collection of compact subsets of Rd whose boundary has Hd-
measure zero where Hd is the d-dimensional Hausdorff measure.

Proposition 2.6. Suppose V : S → R is a translation invariant function defined
on some S ⊆ C∂ and that V̂ aLc is a translation invariant digital estimator for V .
Then multigrid convergence implies asymptotic unbiasedness.

Proof. Suppose X ∈ S and that V̂ is multigrid convergent. It will be enough to
show that for all ε > 0 there is a δ > 0 such that for all a < δ,

|V̂ aL0((X − ac) ∩ aL)− V (X)| < ε

holds for almost all c ∈ Cξ.
Assume this were not true. Then there would be an ε > 0, a sequence am → 0,

and Wm ⊆ Cξ with Hd(Wm) > 0 such that

|V̂ amL0((X − amc) ∩ amL)− V (X)| ≥ ε

for all c ∈ Wm.
First assume that a is fixed. By compactness of X, (X − ac) ∩ aL can take only

finitely many values in P(aL) when c ∈ Cξ. Thus also V̂ aL0((X − ac) ∩ aL) takes
only finitely many different values for c ∈ Cξ.

Define
Sz = {c ∈ Cξ | az ∈ X − ac} = Cξ ∩ (a−1X − z)

for z ∈ L and note that only finitely many Sz are non-empty. Thus for S ⊆ aL

{c ∈ Cξ | (X − ac) ∩ aL = S} =
⋂

z∈S
Sz ∩

⋂

z /∈S
Scz (2.1)

Observe that Scz ∩ intCξ is open and equals intCξ for all but finitely many z. The
boundary of Sz is contained in ∂Cξ ∪ ∂(a−1X − z) and therefore it has Hd-measure
zero. A point in (2.1) will either lie in the interior of all Sz, z ∈ S, or in the boundary
of one of them. Thus (2.1) will either have non-empty interior or Hd-measure zero.

Since Wm is the finite union of sets of the form (2.1) and Hd(Wm) > 0, it must
have non-empty interior Um. Now choose ami inductively. First let am1 = a1 and
let Km1 ⊆ U1 be a compact set with non-empty interior. For am2 sufficiently small,
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am2(Cξ + z) ⊆ Km1 for some z. Therefore we may choose a compact set with non-
empty interior Km2 ⊆ Km1 ∩ am2(Um2 + z). Continuing this way yields a decreasing
sequence of compact sets Kmi . In particular,

⋂
Kmi is non-empty, so we may choose

y ∈ ⋂Kmi . By the translation invariance of V̂ aL0 and V ,

|V̂ amiL0((X − y) ∩ amiL)− V (X)| ≥ ε

for all i, so V̂ is not multigrid convergent for X − y, which is a contradiction.

2.3 Local digital algorithms

In this section we introduce the notion of local algorithms. The name ‘local algo-
rithm’ is adopted from [6, Definition 4.1] and [8, Definition 8.3]. In these definitions,
a local algorithm is really an algorithm for reconstructing the boundary of a solid
in 2D or 3D as a union of line segments or polygons, respectively. The idea is that
each of these building blocks should only depend on what the digital image looks
like locally. From the reconstructed set, the length or surface area can be estimated
as a sum of lengths or areas of the building blocks, respectively. The authors also
refer to algorithms for estimating length and surface area arising in this way as local
algorithms.

We choose the following definition for general digital algorithms:

Definition 2.7. A digital algorithm V̂ is called local if there is a finite collection of
pairs (Bk,Wk) for k ∈ K such that Bk,Wk ⊆ L are two finite disjoint sets and

V̂ aLc(S) =
∑

k∈K

∑

z∈L
wk(a, a(z + c))1{a(Bk+z+c)⊆S,a(Wk+z+c)⊆aLc\S} (2.2)

for all finite S ⊆ aLc. Here 1A denotes the indicator function for the set A. The
pair (Bk,Wk) is called a configuration and the elements of Bk are referred to as the
‘foreground’ or ‘black’ pixels, while Wk is referred to as the set of ‘background’ or
‘white’ pixels. The functions wk : (0,∞)× Rd → R are called the weights.

Thus each occurrence of a translation of the configuration (Bk,Wk) contributes
to the estimate with a weight wk(a, z) depending only on the translation vector z
and the lattice distance a.

The definitions of [6] and [8] correspond to the collection

{(Bk,Wk) | Bk ∪Wk = B(R) ∩ L, Bk ∩Wk = ∅}
for some R > 0 where B(R) denotes the ball of radius R. Strictly speaking, their
definition is not quite contained in Definition 2.7. However, all the examples of local
algorithms for computing length and surface area mentioned in these references are
of this form.

We introduce a bit more notation: An n × · · · × n cell is a set of the form
Cn
z = (z +

⊕d
i=1[0, nξi)) for z ∈ L. The set of lattice points lying in such a cell is

denoted by Cn
z,0 = Cn

z ∩ L. A lattice point in Cn
0,0 has the form x =

∑d
i=1 λiξi for

some λi ∈ {0, . . . , n− 1} and we write x = xj where the index is given by

j =
d∑

i=1

ni−1λi.
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An n×· · ·×n configuration is a pair (Bn,W n) where Bn,W n ⊆ Cn
0,0 are disjoint

with Bn ∪ W n = Cn
0,0. We index these by (Bn

l ,W
n
l ), l = 0, . . . , 2n

d − 1, where a
configuration (Bn,W n) is assigned the index

l =
nd−1∑

i=0

2i1{xi∈Bn}.

Proposition 2.8. For every local algorithm V̂ there is an n ∈ N such that for all
finite S ⊆ aLc,

V̂ aLc(S) =
2n
d−1∑

l=0

∑

z∈L
w̃l(a, a(z + c))1{a(Bnl +z+c)⊆S,a(Wn

l +z+c)⊆Rd\S} (2.3)

for suitable weights w̃l(a, z).

Proof. By finiteness of K, there is an n ∈ N and a y ∈ L with Bk,Wk ⊆ Cn
y,0 for all

k ∈ K. Thus, (2.2) becomes an estimator of the form (2.3) with weights

wl(a, z) =
∑

k∈K
wk(a, z)1{Bk−y⊆Bnl ,Wk−y⊆Wn

l }

( 2n
d−1∑

m=0

1{Bk−y⊆Bnm,Wk−y⊆Wn
m}

)−1

.

Thus, for the remainder of this paper we shall only consider local algorithms of
the form (2.3). We usually skip the n from the notation and write (Bl,Wl) for the
n× · · · × n configurations.

Clearly, the larger n is, the better accuracy of the algorithm can be expected,
as more information is taken into account. For most algorithms used in practice
[8, 12], n = 2. However, algorithms with n = 3 have been suggested, see [13]. Also,
most theoretical studies of local algorithms only involve n = 2, see Section 1.1. One
exception is [23].

Definition 2.9. The weights are said to be

• translation invariant if wl(a, z) is independent of z ∈ Rd.

• rotation (reflection) invariant if wl1(a, z1) = wl2(a, z2) whenever there is
a rotation (reflection) R preserving L such that R(Bl1 + z1) = Bl2 + z2.

• motion invariant if the weights are both translation and rotation invariant.

• homogeneous (of degree q) if wl(a, z) = aqwl(1, z) for all a > 0 and z ∈ Rd.

The estimators for Minkowski tensors in e.g. [17, 18] are examples of local digital
estimators where the weights are not translation invariant. If V is rotation (reflec-
tion) invariant, the following proposition justifies the choice of rotation (reflection)
invariant weights, see also [22]:
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Proposition 2.10. Assume V is rotation (reflection) invariant. For every local
algorithm V̂ , there is a local algorithm Ŵ with rotation (reflection) invariant weights
such that for all compact X ∈ S,

supR∈R |Ŵ aLRc(RX)− V (RX)| ≤ supR∈R |V̂ aLRc(RX)− V (RX)| (2.4)

where R denotes the group of rotations (reflections) preserving L.

Proof. If |R| is the cardinality of R, define for S ⊆ L

Ŵ aLc(a(S + c)) =
1

|R|
∑

R∈R
V̂ aLRc(aR(S + c)).

This is a local estimator with rotation invariant weights and it clearly satisfies (2.4)
since V (RX) = V (X).

Finally, we introduce a bit more notation: For A,B ⊆ Rd, let B̌ = {−b | b ∈ B}
and A	B = {x ∈ Rd | x+ B̌ ⊆ A}. The hit-or-miss transform of X with structure
elements B and W is defined to be the set

X 	 B̌\X ⊕ W̌ = {y ∈ Rd | y +B ⊆ X, y +W ⊆ Rd\X}.

A local estimator then takes the form

V̂ aLc(X) =
2n
d−1∑

l=0

∑

z∈L
wl(a, a(z + c))1X	aB̌l\X⊕aW̌l

(a(z + c)).

If z 7→ w0(a, z) is integrable and z 7→ wl(a, z) are locally integrable for l > 0,
V̂ aLc(X) is always integrable for X compact since

E

(∑

z∈L
wl(a, a(z + c))1X	aB̌l\X⊕aW̌l

(a(z + c))

)

= a−d det(L)−1

∫

X	B̌l\X⊕W̌l

wl(a, z)dz

(2.5)

and hence

EV̂ (X ∩ aLc) = a−d det(L)−1

2n
d−1∑

l=0

∫

X	B̌l\X⊕W̌l

wl(a, z)dz.

2.4 Local digital estimators for intrinsic volumes

We finally specialize the definition of local digital estimators to intrinsic volumes.
This resulting definition coincides with the ones used in [5, 22].

Suppose X ⊆ Rd is a compact convex set. The intrinsic volumes Vq(X) are
defined for q = 0, . . . , d to be the coefficients in the well-known Steiner formula

Hd(X ⊕B(r)) =
d∑

q=0

rd−qκd−qVq(X)
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for the volume of the Minkowski sum X ⊕ B(r) of X and the ball B(r) ⊆ Rd of
radius r. Here κq is the volume of the unit ball in Rq. The intrinsic volumes can be
generalized to the class of sets of positive reach, see [3].

Each Vq is the total measure of the q’th curvature measure Φq(X; ·) on Rd,
see [16]. Thus

Vq(X) = n−d
∑

z∈L
Φq(X; aCn

z ).

This justifies the use of a local algorithm V̂q for estimating Vq(X), i.e. an algorithm
of the form

V̂ aLc
q (X) =

∑

z∈L

2n
d−1∑

l=0

w
(q)
l (a, a(z + c))1X	aB̌l\X⊕aW̌l

(a(z + c))

where w(q)
l (a, a(z + c)) can be thought of as an estimate of n−d2Φq(X; a(Cn

z + c)).
As Φq(X; ·) is rotation and reflection invariant, Proposition 2.10 justifies choos-
ing the weights to be rotation and reflection invariant as well. Moreover, Φq(X; ·)
is translation invariant so it is natural to require the weights to be so too, i.e.
w

(q)
l (a, z) = w

(q)
l (a). In order to get finite estimators for compact sets, we always

assume that w(q)
0 (a) = 0.

We thus arrive at the following definition of a local digital estimator for Vq:

Definition 2.11. For 0 ≤ q ≤ d, a local digital estimator for Vq is an estimator of
the form

V̂ aLc
q (X) =

2n
d−1∑

l=1

wl(a)Nl(X ∩ aLc) (2.6)

where
Nl(X ∩ aLc) =

∑

z∈L
1X	aB̌l\X⊕aW̌l

(a(z + c))

is the total number of occurrences of the configuration (Bl,Wl) in the image X∩aLc.
The weights are assumed to be motion and reflection invariant.

Throughout this paper, a local digital estimator of for Vq will mean an estimator
of the form (2.6). We often skip the superscripts aLc and (q) in the notation for the
estimator and the weights and write V̂q(X) and wl(a), respectively.

In applications, the weights are usually chosen to be homogeneous of degree q:
w

(q)
l (a) = aqw

(q)
l for some constants w(q)

l ∈ R, motivated by the homogeneity pro-
perty:

Φq(aX; aA) = aqΦq(X;A).

However, in [5], also the case of general functions is considered. In this paper, we
will not assume homogeneity unless explicitly specified.

If an algorithm is not asymptotically unbiased, the worst case relative asymptotic
bias measures the bias:
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Definition 2.12. The worst case relative asymptotic bias of an estimator V̂q for Vq
on a class of compact convex sets S is given by

sup
X∈S

| lima→0EV̂
aLc
q (X)− Vq(X)|
Vq(X)

.

As long as we restrict ourselves to convex sets, this agrees with the definition
in [5]. Note that by Proposition 2.10, the worst case relative asymptotic bias is
minimized by an algorithm with rotation and reflection invariant weights.

3 Local estimators for the intrinsic volumes of
polytopes

We first consider local digital estimators for intrinsic volumes on the class Pd of
compact convex polytopes in Rd with non-empty interior.

We will use the following notation: for a set A ⊆ Rd, we denote by aff(A) ⊆ Rd

the smallest affine linear subspace containing A and by lin(A) ⊆ Rd the small-
est linear subspace parallel to aff(A). For a set of vectors u1, . . . , uN , we denote
by pos(u1, . . . , uN) the set of linear combinations of u1, . . . , uN with non-negative
coefficients.

3.1 The space of polytopes

The set Pd is usually given the topology induced by the Hausdorff metric, see [16,
Section 1.8]. As our main Theorem 1.1 is stated for almost all polytopes, we need
an appropriate measure on the induced Borel σ-algebra in order to make sense of
the statement. However, the choice of such a measure is not unambiguous. The most
natural way of describing a polytope is either as the convex hull of its vertex set or as
an intersection of halfspaces. The parameters describing the vertices and halfspaces,
respectively, can be used to parametrize Pd, but this leads to two very different
measures. In the first case, almost all polytopes will be simplicial while non-simple
polytopes constitute a set of positive measure. In the second case, it is the other
way around. A polytope is called simple if every vertex is the intersection of exactly
d facets and it is called simplicial if every facet is a simplex, see e.g. [25].

As we shall be viewing polytopes as intersections of halfspaces, we take the
second approach. There may still be different ways of defining a measure, and the
best choice depends on the application one has in mind. The main purpose here is
to convince the reader that counter examples to multigrid convergence are plenty on
Pd. As Theorem 1.1 only claims something to be a zero-set, the theorem will also
hold for any measure absolutely continuous with respect the one introduced below.

A convex polytope can always be written in the form

P =
N⋂

i=1

H−ui,ti (3.1)

11



where ti ∈ R and ui ∈ Sd−1. The idea is to use the parameters ti, ui to parametrize
polytopes by. We denote by Sd,N ⊆ (Sd−1)N the open subset consisting of N -tuples
of pairwise different vectors in Sd−1. A point will be written either as a vector
(u1, . . . , uN) or as an N × d-matrix U . Then (3.1) is the solution set to the matrix
inequality Ux ≤ t.

First note that (3.1) is unbounded if and only if the inequality Ux ≤ 0 has a
non-trivial solution x and (3.1) is non-empty. The set where Ux ≤ 0 has a non-
trivial solution is closed in Sd,N . Let Sd,Nc ⊆ (Sd−1)N denote the complement. Then
Sd,N ∩ Sd,Nc is open in (Sd−1)N .

Next observe that (3.1) has non-empty interior exactly if there exists a solution
x to Ux < t. This happens for (U, t) in an open subset

Ud,≤N ⊆ (Sd,N ∩ Sd,Nc )× RN .

A point (U, t) ∈ Ud,≤N defines a polytope with exactly N facets if and only if
for every i = 1, . . . , N there is a solution to Ũ ix < t̃i where Ũ i and t̃i are U and t
except the ith row and the ith coordinate have changed sign, respectively. This is
again an open subset Ud,N ⊆ Ud,≤N .

Let Pd,N ⊆ Pd be the subset consisting of polytopes with exactly N facets. Then
Pd is the disjoint union of the subsets Pd,N .

There is a surjective map

P : Ud,N → Pd,N

given by (3.1). This is continuous with respect to the Hausdorff metric on Pd,N , as
one can see e.g. by using [16, Theorem 1.8.7]. If ΣN is the N ’th symmetric group
acting on Ud,N by permutation of the pairs (ui, ti), then P is the quotient map.

Definition 3.1. The measure on Pd whose restriction to Pd,N is HdN ◦ P−1 is
denoted by ν.

We introduce the following notation for P ∈ Pd: Fk(P ) denotes the set of k-
faces of P . The facet with normal vector ui is denoted by Fi. If P is simple, every
F ∈ Fk(P ) is the intersection of exactly d− k facets. See e.g. [25] for details on the
combinatorics of simple polytopes. We index the facets containing F by

I1(F ) = {iF1 , . . . , iFd−k} ⊆ {1, . . . , N},

i.e. F =
⋂
i∈I1(F ) Fi. The ordering is not important here. Let

I2(F ) = {i ∈ {1, . . . , N}\I1(F ) | Fi ∩ F 6= ∅}

index the facets intersecting F in a lower dimensional faces. If P is simple, this lower
dimensional face must have dimension k − 1.

Let USd,N denote the set

USd,N = {(U, t) ∈ Ud,N | P (U, t) is simple}

and let USd,Nµ , µ ∈M , denote the connected components of USd,N .
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Proposition 3.2.
(i) For I ⊆ {1, . . . , N}, the set

GI = {(U, t) ∈ Ud,N | ∃x ∈ Rd : ∀i ∈ I : 〈x, ui〉 = ti, Ux ≤ t}

is relatively closed in Ud,N .
(ii) Ud,N\USd,N is relatively closed in Ud,N and has HdN -measure 0.

(iii) For any I ⊆ {1, . . . , N} of cardinality |I| = d− k, P (U, t) has a k-face F with
I1(F ) = I for either no or all (U, t) ∈ USd,Nµ .

Proof. (i) To see this, take a sequence (Uk, tk) ∈ Gi1,...,is such that (Uk, tk)→ (U, t)
inside Ud,N . Then there is a sequence xk with 〈ukij , xk〉 = tkij and U

kxk ≤ tk. If the xk

are bounded, there is a convergent subsequence xkn → x and it follows by continuity
that 〈uij , x〉 = tij and Ux ≤ t. If xk is unbounded, choose a subsequence such that
|xkn| → ∞ and xkn

|xkn | converges to x ∈ Sd−1. Then Ukn xkn

|xkn | ≤ tkn

|xkn | and thus in the
limit Ux ≤ 0, contradicting U ∈ Sd,Nc .

(ii) If P (U, t) is not simple, it has a vertex v solving d + 1 of the equations
〈uij , v〉 = tij , j = 1, . . . , d+ 1. The claim now follows from (i) and the fact that

G{i1,...,id+1} ⊆ {(U, t) ∈ Ud,N | ∃x ∈ Rd : ∀j = 1, . . . , d+ 1 : 〈uij , x〉 = tij},

since the latter has HdN -measure 0.
(iii) By the definition of simple polytopes, the set of (U, t) ∈ USd,Nµ having a

vertex v with I1(v) = I is GI ∩ USd,Nµ . This is closed by (i). On the other hand,

〈ui, v〉 = ti for i ∈ I and 〈ui, v〉 < ti for i /∈ I. (3.2)

Uniqueness of v shows that the system 〈ui, v〉 = ti for i ∈ I may be inverted in a
neighborhood of (U, t), yielding a solution to (3.2) and thus showing that GI∩USd,Nµ
is also open. Hence GI ∩ USd,Nµ ∈ {USd,Nµ , ∅}, proving the k = 0 case.

Given I with |I| = d− k,

F =
⋂

i∈I
Fi ∈ Fk(P (U, t)) ∪ {∅}

whenever (U, t) ∈ USd,Nµ . If there is a (U, t) ∈ USd,Nµ and a v ∈ F0(P (U, t)) with
I ⊆ I1(v), the k = 0 case shows that

⋂
i∈I1(v) Fi ∈ F0(P (U, t)) must hold for all

(U, t) ∈ USd,Nµ and hence, in particular,
⋂
i∈I Fi 6= ∅ for all (U, t) ∈ USd,Nµ . If there is

no v ∈ F0(P (U, t)) with I ⊆ I1(v), F can have no vertices and is hence empty.

The proposition shows that all P ∈ P (USd,Nµ ) have the same combinatorial struc-
ture. A path (U(s), t(s)) in USd,Nµ defines a path of vertex sets F0(P (U(s), t(s)))
and hence an isotopy of P (U(s), t(s)) preserving the combinatorial structure. We
therefore speak of the images P (USd,Nµ ) = Pd,Nµ ⊆ Pd as the combinatorial isotopy
classes.
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3.2 Hit-or-miss transforms of polytopes

In order to study the asymptotic bias of a local digital estimator V̂q applied to
P ∈ Pd, we must consider

EV̂q(P ) =
2n
d−1∑

l=1

wl(a)ENl(P ∩ aLc).

By (2.5),
ENl(P ∩ aLc) = a−d det(L)−1Hd(P 	 aB̌l\P ⊕ aW̌l).

Thus, we need to describe the volume of hit-or-miss transforms of polytopes.
Suppose P ∈ Pd,N is given by

P (U, t) =
N⋂

i=1

H−ui,ti .

Let Xi,l denote the set

Xi,l = (H−ui,ti 	 aB̌l)\(H−ui,ti ⊕ aW̌l)

= H−ui,ti−ah(Bl,ui)
\H−

ui,ti+ah(W̌l,ui)

for l = 1, . . . , 2n
d − 2 and

Xi,0 = Rd\H−
ui,ti+ah(Čn0,0,ui)

,

X
i,2nd−1

= H−ui,ti−ah(Cn0,0,ui)
.

Then Rd is the disjoint union of the sets Xi,l for l = 0, . . . , 2n
d − 1. Hence it is

also the disjoint union of the sets

Xl1,...,lN =
N⋂

i=1

Xi,li

for l1, . . . , lN ∈ {0, . . . , 2nd − 1}.
We also use the multi index notationXL = Xl1,...,lN for L ∈ L = {1, . . . , 2nd−1}N .

We associate to an index L ∈ L the index sets IL = {i | li 6= 2n
d − 1} and

JL = {i | li = 2n
d−1}. Moreover, we associate the face of P given by FL =

⋂
i∈IL Fi.

If P is simple, this is either |IL|-dimensional or the empty face.

Lemma 3.3. For (U, t) ∈ USd,Nµ , the volume of P (U, t) is given by a polynomial in
t1, . . . , tN with coefficients depending only on U :

Hd(P (U, t)) =
1

d!

N∑

j1,...,jd=1

aj1,...,jd(U)
d∏

s=1

tjs .
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In fact, there are functions aj(u1, . . . , us) for all j, s = 1, . . . , d, defined whenever
(u1, . . . , us) ∈ (Sd−1)s are linearly independent, such that for F ∈ Fq(P (U, t)),

Hq(F ) =
1

q!

∑

v∈F0(F )

∑

σ∈Σq

d∑

jd−q+1,...,jd=1

d∏

s=d−q+1

ajs(uiF1 , . . . , uiFd−q , ui
v
σ(d−q+1)

, . . . , uiv
σ(s)

)

× tiF1 ,...,iFd−q ,ivσ(d−q+1)
,...,iv

σ(s)
(js) (3.3)

where ti1,...,is(j) = tij and indices are chosen so that I1(v) = I1(F )∪{ivd−q+1, . . . , i
v
s}.

In particular, one may take

aj1,...,jd(U) =
∑

v∈F0(
⋂d
k=1 Fjk )

∑

σ∈Σd

d∏

s=1

aσ−1(js)(uivσ(1) , . . . , uivσ(s)). (3.4)

Each aj is rotation invariant and depends analytically on ui, . . . , us. For s < j,
aj(u1, . . . , us) = 0 and as(u1, . . . , us) > 0. If us is orthogonal to all ui with i < s,

aj(u1, . . . , us) =

{
1 for j=s,
0 otherwise.

We sometimes write aj(ui1 , . . . , uis) = ai1,...,is(j) to keep notation short.

Proof. The first equation is [16, Lemma 5.1.2]. The remaining claims follow by writ-
ing out the details of the proof of that lemma.

Define aj(u1, . . . , us) ∈ R such that the normalized projection of us onto the
subspace lin(u1, . . . , us−1)⊥ is given by

s∑

j=1

aj(u1, . . . , us)uj. (3.5)

We set aj(u1, . . . , us) = 0 for j > s. The listed properties of aj then follows imme-
diately.

The idea is to use of the identity

Hd(P ) =
1

d

N∑

i=1

h(P, ui)Hd−1(Fi)

inductively on the faces of P . The identity (3.3) clearly holds for q = 0, the empty
product being equal to 1.

Let F ∈ Fq(P ) be given and let F ′ ∈ Fq−1(P ) be a face of F . We may assume
that I1(F ′) = I1(F )∪{iF ′d−q+1}. The normal vector u(F, F ′) of F at F ′ is exactly the
normalized projection of us onto lin(uiF1 , . . . , uiFs−1

)⊥ given by (3.5). It follows that

h(F, u(F, F ′)) =

d−q+1∑

j=1

aj(uiF1 , . . . , uiFd−q , uiF
′

d−q+1
)tiF1 ,...,iFd−q ,iF

′
d−q+1

(j).
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Thus by induction,

Hq(F ) =
1

q

∑

F ′∈Fq−1(F )

d−q+1∑

j=1

aiF1 ,...,iFd−q ,iF
′

d−q+1
(j)tiF1 ,...,iFd−q ,iF

′
d−q+1

(j)

× 1

(q − 1)!

∑

v∈F0(F ′)

∑

σ∈Σq−1

d∑

jd−q+2,...,jd=1

d∏

s=d−q+2

aiF1 ,...,iFd−q ,iF
′

d−q+1,i
v
σ(d−q+2)

,...,iv
σ(s)

(js)

× tiF1 ,...,iFd−q ,iF ′d−q+1,i
v
σ(d−q+2)

,...,iv
σ(s)

(js)

=
1

q!

∑

F ′∈Fq−1(F )

∑

v∈F0(F ′)

∑

σ∈Σq−1

d∑

jd−q+1,...,jd=1

aiF1 ,...,iFd−q ,iF
′

d−q+1
(jd−q+1)

× tiF1 ,...,iFd−q ,iF ′d−q+1
(jd−q+1)

d∏

s=d−q+2

aiF1 ,...,iFd−q ,iF
′

d−q+1,i
v
σ(d−q+2)

,...,iv
σ(s)

(js)

× tiF1 ,...,iFd−q ,iF ′d−q+1,i
v
σ(d−q+2)

,...,iv
σ(s)

(js)

=
1

q!

∑

v∈F0(F )

∑

σ∈Σq

d∑

jd−q+1,...jd=1

d∏

s=d−q+1

aiF1 ,...,iFd−q ,ivσ(d−q+1)
,...,iv

σ(s)
(js)

× tiF1 ,...,iFd−q ,ivσ(d−q+1)
,...,iv

σ(s)
(js).

Given a multi index L ∈ L, we use the notation for i ∈ IL:
βi = −h(Bli , ui),

ωi = h(W̌li , ui),

ζi = −h(Cn
0,0, ui),

δL(U) =
∏

i∈IL
1{βi>ωi}.

Lemma 3.4. Let (U, t) ∈ USd,Nµ and L ∈ L be given. Then Hd(XL) is a homoge-
neous polynomial of degree d in the numbers (ti + aβi) and (ti + aωi) for i ∈ I1(FL)
and (ti + aζi) for i ∈ I2(FL) with coefficients depending only on U . In particular, it
is a homogeneous polynomial of degree d in a, t1, . . . , tN given by

Hd(XL) = δL(U)
1

d!

∑

j1,...,jd∈I1(FL)∪I2(FL)

aj1,...,jd(U) (3.6)

×
∏

i∈I1(FL)

n(i)∑

si=1

(
n(i)

si

)
asit

n(i)−si
i (βsii − ωsii )

∏

j∈I2(FL)

(tj + aζj)
n(j).

In particular, Hd(XL) = 0 if FL = ∅.
As a polynomial in a, the lowest order term is

a|I1(FL)|δL(U)
1

d!

∑

j1,...,jd∈I1(FL)∪I2(FL)

aj1,...,jd(U)
∏

i∈I1(FL)

n(i)t
n(i)−1
i (βi − ωi)

∏

j∈I2(FL)

t
n(j)
j .
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Proof. We must compute the volume of

XL =
⋂

i∈IL
(H−ui,ti+aβi\H

−
ui,ti+aωi

) ∩
⋂

j∈JL
H−uj ,tj+aζj .

Clearly, if δL(U) = 0, this is empty. For I ⊆ IL let

XI =
⋂

i∈I
H−ui,ti+aωi ∩

⋂

j∈IL\I
H−uj ,tj+aβj ∩

⋂

k∈JL
H−uk,tk+aζk

.

Then XI ∩XJ = XI∪J and
XL = X∅\

⋃

i∈IL
X{i}.

For a sufficiently small, all XI ∈ Pd,Nµ by openness of USd,Nµ . Let Q(t) = Hd(P (U, t))
be the polynomial in (3.6), write

ξi(I) = ωi1i∈I + βi1i∈IL\I + ζi1i∈JL ,

and for a given index set j1, . . . , jd, let

n(i) = |{k ∈ {1, . . . , d} : jk = i}|.

Then the inclusion-exclusion principle yields:

Hd(XL) =
∑

I⊆IL
(−1)|I|Hd(XI)

=
∑

I⊆IL
(−1)|I|Q(t1 + aξ1(I), . . . , tN + aξN(I))

=
1

d!

∑

j1,...,jd

aj1,...,jd
∑

I⊆IL
(−1)|I|

∏

i∈I
(ti + aωi)

n(i)

×
∏

j∈IL\I
(tj + aβj)

n(j)
∏

k∈JL
(tk + aζk)

n(k)

=
1

d!

∑

j1,...,jd

aj1,...,jd
∏

i∈IL
((ti + aβi)

n(i) − (ti + aωi)
n(i))

∏

j∈JL
(tj + aζj)

n(j)

=
1

d!

∑

j1,...,jd∈I1(FL)∪I2(FL)

aj1,...,jd
∏

i∈I1(FL)

n(i)∑

si=1

(
n(i)

si

)
asit

n(i)
i (βsii − ωsii )

×
∏

j∈I2(FL)

(tj + aζj)
n(j).

The last equality follows from the fact that IL = I1(FL) and since only terms with
I1(FL) ⊆ {j1, . . . , jd} contribute, the description of aj1,...,jd in Lemma 3.3 shows that
aj1,...,jd = 0 unless {j1, . . . , jd} ⊆ I1(FL) ∪ I2(FL).
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3.3 Asymptotic behavior of the estimators

For x ∈ Xl1,...,lN ,

(x+ aCn
0,0) ∩ P = x+ a

N⋂

i=1

Bli .

We denote the configuration
⋂N
i=1Bli by Bl1,...,lN and the corresponding weight is

denoted by wl1,...,lN (a) or w(
⋂N
i=1Bli , a). Note that if one of the li equals 0, then

Bl1,...,lN = B0 = ∅. For L ∈ L, we also use the notation BL and wL(a). The preceding
section yields the following formula:

Corollary 3.5. Let P ∈ Pd,Nµ be a polytope. Then for l 6= 0,

ENl(P ∩ aLc) = a−d det(L)−1
∑

L∈L
Hd(XL)1{BL=Bl}.

It follows that
EV̂q(P ) = a−d det(L)−1

∑

L∈L
wL(a)Hd(XL).

where Hd(XL) is given by Lemma 3.4.

For a local estimator V̂q, we introduce the following notation:

EN = {P ∈ Pd,N | lim
a→0

EV̂q(P ) exists },

VN = {P ∈ EN | lim
a→0

EV̂q(P ) = Vq(P )}.

Similarly, for a combinatorial isotopy class Pd,Nµ of simple polytopes, ENµ = Pd,Nµ ∩EN
and Vd,Nµ = Pd,Nµ ∩ VN .
Lemma 3.6. There exist measurable subsets V N

µ , E
N
µ of (Sd−1)N satisfying

ẼNµ := (EN
µ × RN) ∩ USNµ ⊆ ENµ ,

ṼNµ := (V N
µ × RN) ∩ USNµ ⊆ VNµ ,

HdN(ENµ \ẼNµ ) = HdN(VNµ \ṼNµ ) = 0,

such that on ẼNµ , lima→0EV̂q(P (U, t)) is a polynomial in t1, . . . , tN with coefficients
depending only on U and on ṼNµ ⊆ ẼNµ , this is homogeneous of degree q.

Proof. Let
EN
µ = {U ∈ (Sd−1)N | HN(ENµ ∩ ({U} × RN)) > 0}.

Then
HdN(ENµ \ẼNµ ) =

∫

(Sd−1)N\ENµ

∫

RN
1ENµ dHNdH(d−1)N = 0.

By Lemma 3.4 and Corollary 3.5, EV̂q(P ) has the form

d−1∑

n1,...,nN=0,∑
ni≤d

Hn1,...,nN (a)
N∏

i=1

tnii .
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For a fixed U ∈ EN
µ , the function Hn1,...,nN (a) depends only on a and the limit when

a→ 0 exists for all t1, . . . , tN in a set of non-zero HN -measure. It follows from linear
independence of the monomials

∏N
i=1 t

ni
i that each limit lima→0Hn1,...,nN (a) must

exist. Denote this limit by Hn1,...,nN . Then

lim
a→0

d−1∑

n1,...,nN=0,∑
ni≤d

Hn1,...,nN (a)
N∏

i=1

tnii

d−1∑

n1,...,nN=0,∑
ni≤d

Hn1,...,nN

N∏

i=1

tnii (3.7)

and in particular, ẼNµ ⊆ ENµ .
Similarly, define

V N
µ = {U ∈ (Sd−1)N | HN(VNµ ∩ ({U} × RN)) > 0}.

Recall that
Vq(P ) =

∑

F∈Fq(P )

γ(F, P )Hq(F ) (3.8)

where

γ(F, P ) =
Hd−q−1(pos(uiF1 , . . . , uiFd−q) ∩ S

d−1)

Hd−q−1(Sd−q−1)

is the external angle of P at F and clearly depends only on U . By Lemma 3.3, each
Hq(F ) is a homogeneous polynomial of degree q in t1, . . . , tN . Thus, for U ∈ EN

µ ,
either HN(VNµ ∩ ({U} × RN)) = 0 or the coefficients of (3.7) and (3.8) must agree.
In particular, Hn1,...,nN = 0 unless

∑
ni = q.

Let ẼN =
⋃
µ∈M ẼNµ and ṼN =

⋃
µ∈M ṼNµ .

Corollary 3.7. Given a local estimator V̂q, there is a local estimator V̂ ′q with polyno-
mial weights such that on ẼN , lima→0EV̂q(P ) = lima→0EV̂

′
q (P ). Moreover, there is

an estimator V̂ ′′q with homogeneous weights of degree q and lima→0EV̂
′′
q (P ) = Vq(P )

on ṼN .
Proof. By Lemma 3.4 and Corollary 3.5, EV̂q(P ) takes the form

EV̂q(P ) =
2n
d−1∑

l=1

wl(a)
d∑

k=0

ak−dcl,k(P )

where cl,k(P ) ∈ R are coefficients depending only on P ∈ P (USd,N).
For each k = 0, . . . , d, choose Mk ⊆ {1, . . . , 2nd − 1} maximal with no linear

relation between the coefficients cl,k(P ) with l ∈ Mk that holds for all P ∈ P (ẼN).
In particular, for l ∈Mk there are functions

wl,k(a) = wl(a) +
∑

s/∈Mk

αsl,kws(a)

for suitable αsl,k ∈ R such that

lim
a→0

EV̂q(P ) = lim
a→0

d∑

k=0

∑

l∈Mk

wl,k(a)ak−dcl,k(P ) (3.9)
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for all P ∈ P (ẼN). By the proof of Lemma 3.6, the limit exists in each degree on
P (ẼN).

Choose Pm ∈ P (ẼN) for m ∈Mk such that the vectors (cl,k(Pm))l∈Mk
are linearly

independent. The existence of the limit (3.9) for all Pm yields an invertible linear
system, and solving this shows that also

wl,k := lim
a→0

wl,k(a)ak−d

exists for all l.
Let W be the formal vector space spanned by the functions wl(a) and let Wq

denote the subspace spanned by {wl,q(a) | l ∈Mq}.
We show by induction that it is possible to choose polynomials w̃l,k(a) of degree

at least d − k such that lima→0 w̃l,k(a)ak−d = wl,k consistently in the sense that
it defines a linear map span{W q, q = 0, . . . , d} → Pold where Pold is the set of
polynomials with R-coefficients of degree at most d.

For k = 0, choose w̃l,0(a) = wl,0a
d. Suppose now that we have chosen w̃l,k(a) for

all k < q defining a map span{W k, k < q} → Pold.
We know lima→0w(a)aq−d exists for all w(a) ∈ W q. Choose a maximal set of

independent wli,ki(a) ∈ W q, i ∈ I, with ki < q and extend this by wq1, . . . , wqm to a
basis of W q. Then lima→0 a

q−dwli,ki(a) = 0 and lima→0 a
q−dwqj (a) = wqj . For

wl,q =
∑

i∈I
αiwli,ki(a) +

m∑

j=1

βjw
q
j (a)

define

w̃l,q(a) =
∑

i∈I
αil,qw̃li,ki(a) +

m∑

j=1

βjl,qw
q
ja
d−q.

This clearly extends the map span{W k, k < q} → Pold to span{W k, k ≤ q} → Pold,
completing the induction step.

Extending the map span{W q, q = 0, . . . , d} → Pold trivially to a map W → Pold
yields a way of choosing the wl(a) as polynomials.

The proof of the second claim is similar, except we now choose Pm only from the
set ṼN . By Lemma 3.6, wl,k = 0 for k 6= q. Thus the inductive construction yields
an estimator with homogeneous weights.

3.4 Intrinsic volumes of positive degree

We are finally ready to prove Theorem 1.1 which we restate as follows:

Theorem 3.8. Let V̂q be any local algorithm for Vq for 1 ≤ q ≤ d− 1

If d− q is odd, V̂q is asymptotically biased ν-almost everywhere on Ed,N .
For d − q even, V̂q is asymptotically biased ν-almost everywhere on ENµ for all

combinatorial isotopy classes µ ∈M corresponding to polytopes having a (d−q)-face
which is combinatorially isotopic to

⊕d−q
i=1 [0, ei]. In particular, V̂q is asymptotically

biased on a set of positive ν-measure.
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Proof. Suppose we are given an estimator V̂q. Fix a combinatorial isotopy class
USd,Nµ . We want to show that HdN(VNµ ) = 0. It is enough to show H(d−1)N(V N

µ ) = 0.
By Corollary 3.7, we may assume that the weights are homogeneous of degree q.

Then
lim
a→0

EV̂q(P ) = det(L)−1
∑

L∈L
wLA

q
L(U, t) (3.10)

where AqL is coefficient in front of ad−q in the formula (3.6) for Hd−1(XL). We write
w′L = det(L)−1wL to shorten notation. In particular, (3.10) is a homogeneous poly-
nomial in t1, . . . , tN of degree q. On ṼNµ , this must equal

Vq(P ) =
1

q!

∑

F∈Fq(P )

γ(F, P )Hq(F ). (3.11)

Choose a (d − q)-face FI =
⋂
i∈I Fi with |I| = q. We want to compare the

coefficients in front of
∏

i∈I ti. Denote the coefficient in (3.10) by HI and the one
in (3.11) by GI . Then HI must equal GI on ṼNµ . Both HI and GI depend only on
U ∈ (Sd−1)N . In order to show that H(d−1)N(V N

µ ) = 0, it is enough to show that
almost all points in V N

µ have a small neighborhood W ⊆ (Sd−1)N with

H(d−1)N(W ∩ {HI = GI}) = 0.

For c1 6= c2 ∈ Cn
0,0, let Hc1,c2 denote the hyperplane {x ∈ Rd | 〈x, c1〉 = 〈x, c2〉}.

Let
D =

⋃

c1 6=c2∈Cn0,0

Hc1,c2 .

Observe that for a set S ⊆ Cn
0,0 and a connected component E in Sd−1\D, there is

a unique s ∈ S such that h(S, u) = 〈s, u〉 for all u ∈ E. Moreover, all the indicator
functions δl are constant on E.

Since Hd−1(D) = 0, almost all (u1, . . . , uN) ∈ V N
µ belong to (Sd−1\D)N . Let

such U ∈ V N
µ ∩ (Sd−1\D)N be given. Choose a small connected neighborhood W

contained in USd,Nµ ∩ ((Sd−1\D)N × RN). Then there are vectors bil ∈ Bl ∪ {0},
wil ∈ W̌l ∪ {0}, and ci ∈ Cn

0,0 such that

h(Bl, ui)δl(ui) = 〈bil, ui〉,
h(W̌l, ui)δl(ui) = 〈wil , ui〉,
h(Cn

0,0, ui) = 〈ci, ui〉,
whenever (u1, . . . , uN) ∈ W . Thus HI has the form

HI(U) =
∑

L∈L
w′L1I⊆I1(FL)∪I2(FL)

∑

j1,...,jd∈I1(FL)∪I2(FL)

dj1,...,jdaj1,...,jd(U)

×
∏

i∈I1(FL)

(〈bili , ui〉e(i) − 〈wli , ui〉e(i))
∏

j∈I2(FL)

〈cj, uj〉e(j)

on W . Here dj1,...,jd are certain constants and e(i) are certain exponents with
∑

i∈I1(FL)∪I2(FL)

e(i) = d− q.
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In particular,HI is an analytic function, depending only on the ui with i ∈ I∪I2(FI).
Similarly, by (3.11) and Lemma 3.3

GI(U) =
1

q!

∑

F∈Fq(P )
F∩FI 6=∅

γ(F, P )
∑

v∈F

∑

σ∈Σq

∑

(jd−q+1,...,jd)∈Jv,σ

d∏

s=d−q+1

aiF1 ,...,iFd−q ,ivσ(d−q+1)
,...,iv

σ(s)
(js)

where Jv,σ are certain index sets. Each γ(F, P ) is an analytic function of uiF1 , . . . , uiFd−q
which is defined whenever uiF1 , . . . , uiFd−q are linearly independent. This follows from
Schläfli’s formula [15], see also [1], according to which γ(F, P ) is analytic as a func-
tion of the angles between the faces in pos(uiF1 , . . . , uiFd−q), and these angles can again
be expressed analytically as functions of uiF1 , . . . , uiFd−q . It follows that GI is analytic
on W .

The formulas for HI and GI , initially defined on W , naturally extend to analytic
functions H̄I , ḠI : W ′ → R where W ′ ⊆ (Sd−1)|I∪I2(FI)| is the largest connected
subset containing W and such that uiv1 , . . . , uivd are linearly independent for every
v ∈ F0(FI).

Choose a path through independent unit vectors inside lin(ui, i ∈ I)|I| from
(ui)i∈I to an orthonormal frame (u′i)i∈I . Next, for each uj with j ∈ I2(F ), choose
a path inside lin(uj, ui, i ∈ I)\ lin(ui, i ∈ I) from uj to its normalized projection
onto lin(ui, i ∈ I)⊥ denoted by u′j. Together, this defines a path inside W ′ from
(ui)i∈I∪I2(FI) to (u′i)i∈I∪I2(FI) such that the u′i with i ∈ I are orthogonal and each u′j
with j ∈ I2(FI) is orthogonal to all u′i with i ∈ I.

By Lemma 3.4, a term with index j1, . . . , jd in the summation formula forHd(XL)
can only contribute a

∏
i∈I ti term if I ⊆ {j1, . . . , jd}, and by Lemma 3.3, if ivs ∈ I,

then

ajs(u
′
iv1
, . . . , u′ivs ) =

{
1, for js = s,

0, otherwise.

Moreover, if ivs /∈ I, and js ∈ I,

ajs(u
′
iv1
, . . . , u′ivs ) = 0.

Thus, aj1,...,jd can only be non-zero if every element of I appears exactly once in
j1, . . . , jd.

It follows from the formula for Hd(XL) given in Lemma 3.4 that the term
∏

i∈I ti
can only appear if I ⊆ I2(FL). Define the index set

JL = {j1, . . . , jd | ∃v ∈ F0(FI ∩ FL) : j1, . . . , jd ∈ I1(v), ∀j ∈ I : n(j) = 1}.

Then the coefficient in front of
∏

i∈I ti in the formula for Hd(XL) extended to the
point (u′i)i∈I∪I2(FI) has the form

1

q!

∑

j1,...,jd∈JL
aj1,...,jd

∏

i∈I1(FL)

(〈bili , u′i〉n(i) − 〈wili , u′i〉n(i))
∏

j∈I2(FL)\I
〈cj, u′j〉n(j).
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and thus

H̄I((u
′
i)i∈I∪I2(FI)) =

1

q!

∑

L:I⊆I2(FL)

w′L
∑

j1,...,jd∈JL
aj1,...,jd

×
∏

i∈I1(FL)

(〈bili , u′i〉n(i) − 〈wili , u′i〉n(i))
∏

j∈I2(FL)\I
〈cj, u′j〉n(j).

On the other hand, ḠI is given by

ḠI((u
′
i)i∈I∪I2(FI)) =

∑

F∈Fq(P ):F∩FI∈F0(P )

γ(F, P ) = V0(FI) = 1.

This follows from (3.3) because if tiF1 ,...,iFd−q ,ivσ(d−q+1)
,...,iv

σ(s)
(js) = ti for some i ∈ I, then

i must be the jsth coordinate in (iF1 , . . . , i
F
d−q, i

v
σ(d−q+1), . . . , i

v
σ(s)). But then

ajs(u
′
iF1
, . . . , u′iFd−q

, u′iv
σ(d−q+1)

, . . . , u′iv
σ(s)

) = 0

unless js = s. Hence {ivd−q+1, . . . , i
v
s} = I.

Suppose d− q is odd and q > 0. Choose a rotation R ∈ SO(d) changing all signs
in lin(u′i, i ∈ I)⊥. This is possible because dim(lin(u′i, i ∈ I)⊥) = d − q < d. This
clearly preserves ḠI = 1 since the orthogonality properties among the u′i are not
changed. Since the aj1,...,jd are rotation invariant and d− q is odd, H̄I changes sign.
As SO(d) is connected, there is a path from (u′i)i∈I∪I2(FI) to (Ru′i)i∈I∪I2(FI) inside
W ′. It follows that H̄I and ḠI cannot agree everywhere on W ′. As they are both
analytic and W ′ is connected, H(d−1)N(W ′ ∩{H̄I = ḠI}) = 0. This proves the claim
in the case where d− q is odd.

If d − q is even, we assume that USNµ is chosen such that the elements have a
(d−q)-face which is combinatorially isotopic to [0, 1]d−q. Assume that FI is this face.
Let ḠI′ = 0 for I ( I ′. It is enough to show that

H(d−1)N(W ′ ∩ {H̄I′ = ḠI′}) = 0

for some I ⊆ I ′ since V N
µ ⊆ A :=

⋂
I⊆I′{H̄I′ = ḠI′}.

Since (u′i)i∈I2(FI) is exactly the set of normal vectors of FI ⊆ aff(FI), it is possible
to choose a path from (u′i)i∈I2(FI) inside lin(FI) to (u′′i )i∈I2(FI) such that these are the
normal vectors {±v1, . . . ,±vd−q} of an orthogonal box of the form

⊕d−q
i=1 [0, vi]. This

ensures that for all v ∈ F0(FI), the u′′i with i ∈ I1(v) are orthogonal. It follows from
the above reasoning that aj1,...,jd = 0 unless js = s for all s. By (3.4), a1,...,d = q! and
hence

H̄I((u
′′
i )i∈I∪I2(FI)) =

∑

L:I⊆I2(FL)

w′L
∏

i∈I1(FL)

(〈bili , u′′i 〉 − 〈wili , u′′i 〉)
∏

j∈I2(FL)\I
〈cj, u′′j 〉.

A similar argument for I ′ with I ⊆ I ′ ⊆ I ∪ I2(FI) shows that the coefficient H̄I′

in front of
∏

i∈I′ ti is

H̄I′((u
′′
i )i∈I∪I2(FI)) =

∑

L:I′⊆I2(FL)

w′L
∏

i∈I1(FL)

(〈bili , u′′i 〉 − 〈wilj , u′′i 〉)
∏

j∈I2(FL)\I′
〈cj, u′′j 〉.

(3.12)
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Suppose (u′′i )i∈I∪I2(FI) ∈ A. Then (3.12) vanishes. If I ( I ′, multiplication by∏
j∈I′\I〈cj, u′′j 〉 shows that also

K̄I′((u
′′
i )i∈I∪I2(FI)) :=

∑

L:I′⊆I2(FL)

w′L
∏

i∈I1(FL)

(〈bili , u′′i 〉 − 〈wili , u′′i 〉)
∏

j∈I2(FL)\I
〈cj, u′′j 〉 = 0.

Hence, on A

H̄I((u
′′
i )i∈I∪I2(FI)) =

∑

I(I′
(−1)|I

′|−|I|+1K̄I′ +
∑

L:I=I2(FL)

w′L
∏

i∈I1(FL)

(〈bili , u′′i 〉 − 〈wili , u′′i 〉)

=
∑

L:FI∩FL∈F0(FI)

w′L
∏

i∈I1(FL)

〈bili − wili , u′′i 〉

=
2n
d−1∑

l1,...,ld−q=1

w′l1,...,ld−q

d−q∏

j=1

∑

εj∈{±1}
〈blj(εjvj)− wlj(εjvj), εjvj〉

where blj(εjvj) = bilj and wlj(εjvj) = wilj if εjvj = u′′i .
For l ∈ {1, . . . 2nd − 1}, let

α(l) =
2n
d−1∑

l2,...,ld−q=1

w′l,l2,...,ld−q

∑

ε2,...,εd−q∈{±1}

d−q∏

j=2

〈blj(εjvj)− wlj(εjvj), εjvj〉.

This depends only on l and vj for j = 2, . . . , d− q. Then

H̄I((u
′′
i )i∈I∪I2(FI)) =

2n
d−1∑

l=1

α(l)(〈bj1l − wj1l , v1〉+ 〈bj2l − wj2l ,−v1〉) = 〈x, v1〉.

where v1 = u′′j1 and −v1 = u′′j2 and x ∈ Rd is some vector depending only on
v2, . . . , vd−q. It follows that

H̄I((Ru
′′
i )i∈I∪I2(FI)) = 〈x,Rv1〉 (3.13)

for any rotation R ∈ SO(K⊥), where SO(K⊥) is the subgroup of SO(d) that fixes
K = lin(v2, . . . , vd−q). But v1 is orthogonal to K and dimK⊥ = q + 1 > 1, so (3.13)
cannot equal ḠI((Ru

′′
i )i∈I∪I2(FI)) = 1 for all rotations R ∈ SO(K⊥). Thus, there

must be an R ∈ SO(K⊥) such that (Ru′′i )i∈I∪I2(FI) /∈ A. But then

HI′((Ru
′′
i )i∈I∪I2(FI)) 6= GI′((Ru

′′
i )i∈I∪I2(FI))

for at least one I ⊆ I ′. Since SO(K⊥) is path connected, (Ru′′i )i∈I∪I2(FI) ∈ W ′ and
it follows that

H(d−1)N(W ′ ∩ {HI′ = GI′}) = 0

as in the odd case.
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The theorem does not explicitly construct the polytopes for which V̂q is biased.
However, consider the space of orthogonal boxes

B(U, t) =
d⊕

i=1

[0, tiui]

parametrized by U ∈ SO(d) and t ∈ (0,∞)d.

Corollary 3.9. Let V̂q be a local algorithm for Vq where 1 ≤ q ≤ d − 1. Then
V̂q(B(U, t)) is asymptotically biased for almost all (U, t) ∈ SO(d)× (0,∞)d.

Proof. This follows from the proof of Theorem 1.1 in the case d − q even since the
proof does not use the fact that d− q is even, only that q 6= 0, d.

Remark 3.10. It seems likely that Theorem 3.8 should hold for all combinatorial
isotopy classes of simple polytopes in the case d− q even as well, but a proof would
require a different argument.

3.5 The Euler characteristic in 2D

In this section we investigate the estimation of the Euler characteristic V0 on P2 and
prove Theorem 1.2 in the case d = 2.

From Section 3.2 we have:

Corollary 3.11. Let P ∈ P2,N be given and let θij denote the interior angle between
Fi and Fj, i.e. π − θij is the angle between ui and uj.

EV̂0(P ) =
2n
d−1∑

l=1

w′l(a)
N∑

i=1

(
1

2
δl(ui)(h(W̌l, ui)

2 − h(Bl, ui)
2)
∑

j∈I2(Fi)

cot(θij)

)

+ (−h(Bl ⊕ W̌l, ui))
+

(
a−1H1(Fi) +

∑

j∈I2(Fi)

h(Čn
0,0, uj) csc(θij)

)
(3.14)

+
2n
d−1∑

l,k=1

w′lk(a)
∑

v∈F0(P )

csc(θiv1iv2)(−h(Bl ⊕ W̌l, uiv1))+(−h(Bk ⊕ W̌k, uiv2))+

where δl(u) = 1{h(Bl⊕W̌l,u)<0} and w′l is as in the proof of Theorem 3.8.

Proof. It follows from Lemma 3.4 or directly from plane geometric considerations
that for a sufficiently small,

H2(Xi,l ∩
⋂

j 6=i
X
j,2nd−1

) =
a2

2
δl(ui)(h(W̌l, ui)

2 − h(Bl, ui)
2)
∑

j∈I2(Fi)

cot(θij)

+ (−h(Bl ⊕ W̌l, ui))
+

(
aH1(Fi) + a2

∑

j∈I2(Fi)

h(Čn
0,0, uj) csc(θij)

)
,

H2(Xiv1 ,l
∩Xiv2 ,k

∩
⋂

m 6=iv1 ,iv2

X
m,2nd−1

)

= a2 csc(θiv1iv2)(−h(Bl ⊕ W̌l, uiv1))+(−h(Bk ⊕ W̌k, uiv2))+.

25



We introduce the following notation:

Definition 3.12. Let L ⊆ R2 be the lattice spanned by ξ = {ξ1, ξ2}. Define DL ⊆ S1

by
DL =

{
z
|z| | z ∈ C2n

−n(ξ1+ξ2),0\{0}
}
.

We say that a vertex v of a polygon P is n-critical if (P − v) ∩ aC2n
−n(ξ1+ξ2),0 = {0}

for all a small enough or equivalently if a−1(P − v)∩S1 is contained in a connected
component of S1\DL.

Theorem 3.13. Theorem 1.2 holds for d = 2.

Proof. Suppose the weights wl(a) of an asymptotically unbiased estimator V̂0 are
given. We just need to show the existence of one element in P2,N\VN for some N ,
so assume for contradiction that VN = P2,N . Since all polygons are simple, Corol-
lary 3.7 allows us to assume that the weights are homogeneous, i.e. wl(a) = wl.

Let

v1 = (cosϕ, sinϕ),

v2 = (cos(ϕ+ ψ), sin(ϕ+ ψ)),

where (ϕ, ψ) ∈ U for some small open subset U ⊆ R2 such that v1 and v2 lie in the
same connected component E ⊆ S1\DL.

Consider a parallelogram

P (ϕ, ψ, s1, s2) = [0, s1v1]⊕ [0, s2v2] (3.15)

for s1, s2 > 0. Then P has two n-critical vertices at 0 and s1v1 + s2v2. The normal
vectors of P are

u1 = −u3 = (− sinϕ, cosϕ),

u2 = −u4 = (− sin(ϕ+ ψ), cos(ϕ+ ψ)).

Observe that csc(θiv1iv2) = cscψ for all v ∈ F0(P ), and if I2(Fi) = {j1, j2}, then
cot(θij1) = − cot(θij2).

Since lima→0EV̂0(P ) exists, the coefficient in front of a−1 in (3.14)

2n
d−1∑

l=1

w′l

2∑

i=1

si
∑

ε=±1

(−h(Bl ⊕ W̌l, εui))
+

must vanish. This holds for all s1, s2 > 0, so for each i = 1, 2, also

2n
d−1∑

l=1

w′l((−h(Bl ⊕ W̌l, ui))
+ + (−h(Bl ⊕ W̌l,−ui))+) = 0

and Corollary 3.11 reduces to

EV̂0(P ) = cscψ
2n
d−1∑

l,k=1

w′lk
∑

v∈F0(P )

(−h(Bl ⊕ W̌l, uiv1))+(−h(Bk ⊕ W̌k, uiv2))+
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for all a sufficiently small.
Let R denote the reflection of Cn

0,0 in the point (n
2
ξ1,

n
2
ξ2) and observe that

h(Bl ⊕ W̌l, u) = h(RBl ⊕RW̌l,−u).

Thus, since the weights are reflection invariant,

EV0(P ) = 2 cscψ
2n
d−1∑

l,k=1

(w′(Bl ∩Bk) + w′(RBl ∩Bk))

× (−h(Bl ⊕ W̌l, u1))+(−h(Bk ⊕ W̌k, u2))+.

(3.16)

for all sufficiently small a.
Let β+

l , ω
−
l : S1 → Cn

0,0 denote the functions given by β+
l (u) = h(Bl, u) and

ω−l (u) = −h(W̌l, u). In particular, h(Bl ⊕ W̌l, u) = 〈β+
l (u) − ω−l (u), u〉. Note that

β+
l and ω−l are constant on the set R−π

2
E ⊆ S1 where R−π

2
is the rotation by −π

2
.

Thus, whenever ϕ, ϕ+ ψ ∈ E,

δl(u1) = δl(u2),

βl = β+
l (u1) = β+

l (u2),

ωl = ω−l (u1) = ω−l (u2),

for some fixed vectors βl, ωl ∈ R2.
Write ωl − βl = (xl, yl). Then for ϕ, ϕ+ ψ ∈ E,

(−h(Bl ⊕ W̌l, u1))+(−h(Bk ⊕ W̌k, u2))+ + (−h(Bk ⊕ W̌k, u1))+(−h(Bl ⊕ W̌l, u2))+

= δl(u1)δk(u1)(〈ωl − βl, u1〉〈ωk − βk, u2〉+ 〈ωk − βk, u1〉〈ωl − βl, u2〉)
= δl(u1)δk(u1)((−xl sinϕ+ yl cosϕ)(−xk sin(ϕ+ ψ) + yk cos(ϕ+ ψ))

+ (−xk sinϕ+ yk cosϕ)(−xl sin(ϕ+ ψ) + yl cos(ϕ+ ψ)))

= δl(u1)δk(u1)((2xlxk sinϕ sin(ϕ+ ψ) + 2ylyk cosϕ cos(ϕ+ ψ))

− (xkyl + xlyk)(sinϕ cos(ϕ+ ψ) + cosϕ sin(ϕ+ ψ))).

Since w(Bl ∩Bk) = w(Bk ∩Bl) and

w(RBl ∩Bk) = w(R(RBl ∩Bk)) = w(RBk ∩Bl),

the terms in (3.16) pair up, showing that EV̂0(P (ϕ, ψ)) is a linear combination of
the functions

cosϕ cos(ϕ+ ψ) cscψ = cos2 ϕ cotψ − sinϕ cosϕ, (3.17)
sinϕ sin(ϕ+ ψ) cscψ = sin2 ϕ cotψ + sinϕ cosϕ,

(cosϕ sin(ϕ+ ψ) + sinϕ cos(ϕ+ ψ)) cscψ = sinϕ cosϕ cotψ + cos2 ϕ− sin2 ϕ.

On the other hand, (3.16) equals V0(P (ϕ, ψ)) = 1 for all (ϕ, ψ) ∈ U . But the
functions in (3.17) are clearly linearly independent of the constant function 1, yield-
ing the contradiction.
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Corollary 3.14. Any local estimator for V0 has a worst case asymptotic relative
bias on P2 of either 0 or ∞.

Proof. Let P (ϕ, ψ) be as in the proof of Theorem 1.2 for d = 2. The proof shows
that lima→0EV̂0(P (ϕ, ψ)) has the form

α1(cos2 ϕ cotψ − sinϕ cosϕ) + α2(sin2 ϕ cotψ + sinϕ cosϕ)

+ α3(sinϕ cosϕ cotψ + cos2 ϕ− sin2 ϕ) (3.18)

for some α1, α2, α3 ∈ R and all (ϕ, ψ) ∈ I × (0, ε) ⊆ U for some small open interval
I and some ε > 0.

The functions cos2 ϕ, sin2 ϕ, and sinϕ cosϕ are linearly independent, so if (3.18)
is non-trivial, there must be a ϕ ∈ I such that

lim
ψ→0

lim
a→0

EV̂0(P (ϕ, ψ)) = ±∞.

Note how the fact that P (ϕ, ψ) had an n-critical vertex was essential in the proof.
The next proposition shows that the polygons with n-critical vertices are the only
sets in P2 where the estimation of V0 fails. To get a slightly more general result, we
first extend the definition of an n-critical vertex to the class K2 of compact convex
sets with non-empty interior.

Definition 3.15. Let K ∈ K2. We say that x ∈ ∂K is an n-critical boundary point
if for all a > 0,

(K − x) ∩ aC2n
−n(ξ1+ξ2),0 = {0}.

Note that K can have at most finitely many n-critical boundary points

Lemma 3.16. Let K ∈ K2 have no n-critical boundary points. Then there exists a
δ > 0 such that whenever a < δ,

(K − x) ∩ aC2n
−n(ξ1+ξ2),0 6= {0}. (3.19)

Proof. Let x ∈ ∂K. Then [x, x + a(x)c] ⊆ K for some c ∈ C2n
−n(ξ1+ξ2),0. There is an

open neighborhood Ux of x in ∂K such that y + 1
2
a(x)c ∈ K for all y ∈ Ux. Cover

∂K by finitely many such Ux and choose a to be the smallest of the corresponding
1
2
a(x).

Let (Bn
l ,W

n
l ) be a configuration. Define the corresponding weight

wl =
n2∑

k=1

(−1)k
1

k
nk−1
l (3.20)

where nkl is the number

nkl =

∣∣∣∣
{
S ⊆ L\{0}

∣∣∣ |S| = k,Bl ∩
⋂

z∈S
Cn
z,0 6= ∅

}∣∣∣∣.
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Proposition 3.17. Let V̂ n
0 be the local algorithm based on n×· · ·×n configurations

with weights given by (3.20). For all K ∈ K2 with no n-critical boundary points,
V̂ n

0 (K) = 1 whenever a is sufficiently small.

The idea is to approximate K by a polyconvex set. Let Pz = conv(Cn
z,0 ∩K) be

the convex hull of Cn
z,0 ∩K and define the approximation

K̂ =
⋃

z∈Z2

Pz.

Then the proof will show that V0(K) = V0(K̂) and that V̂ n
0 (K) = V0(K̂).

Proof. Let K ∈ K2 with no n-critical boundary points be given. For simplicity,
assume L = Z2. The general case follows by considering a linear map L : R2 → R2

with L(L) = Z2. Then K has an n-critical vertex for L if and only if L(K) has an
n-critical vertex with respect to Z2. Moreover, Nl(K ∩L) = Nl(L(K)∩Z2) and thus
EV̂ aL

0 (K) = EV̂ aZ2

0 (L(K)). Choose a so small that (3.19) is satisfied and such that
K contains a ball of radius

√
2(n+ 1)a. By possibly considering a−1K instead of K,

we may assume that a = 1 to keep notation simple.
We first claim that

V0(K̂) = V0(K) = 1.

For this, it is enough to show that K̂ and R2\K̂ are both connected.
In order to show that K̂ is connected, we show that every x = (x1, x2) ∈ K̂ ∩Z2

is connected by a path in K̂ to a fixed reference point y = (y1, y2) ∈ K̂ ∩ Z2

with y + B(
√

2n) ⊆ K. We may assume that x1 ≤ y1 and x2 ≤ y2 such that
Cn

0 ∩ (K − x) 6= {0}. Then Cn
0,0 ∩ (K − x) must contain a point z 6= x. To see this,

choose p ∈ ∂K with x ∈ [p, y]. Then Cn
0,0 ∩ (K − p) contains a point z 6= 0 since

p is not n-critical. Since p + z, y + z ∈ K, also x + z ∈ K by convexity. Thus x is
connected to x+ z in K̂, and the claim follows by induction on |x1− y1|+ |x2− y2|.

In order to show that R2\K̂ is connected, assume for contradiction that x ∈ K\K̂
is contained in a compact component. Let l be the vertical line through x and let
b1, b2 ∈ K̂ ∩ l be such that

[b1, b2] ∩ K̂ = {b1, b2}, (3.21)

x ∈ [b1, b2], and the vector b2 − b1 points upwards. Then for i = 1, 2 there are line
segments [xi, yi] ⊆ ∂Pzi with xi, yi, zi ∈ Z2 such that bi ∈ [xi, yi]. After possibly
reflecting the picture in the coordinate axes, we may assume:

x1, x2 ∈ H−e1,〈x,e1〉,
y1, y2 ∈ H−−e1,−〈x,e1〉,
〈x1, e1〉 ≤ 〈x2, e1〉,

aff[x1, y1] ∩ aff[x2, y2] ⊆ H−−e1,−〈x,e1〉.

First observe that the vertical distance from x2 to [x1, y1] is at most 1. Assume
this were not true. If [x1, y1] has positive slope, either x2 = y1 + (0,m) ∈ l for some
m ∈ N, implying x ∈ [x2, y1] ⊆ K̂, or there is an m ∈ N such that x2 − (0,m)
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lies above [x1, y1] and conv(x2 − (0,m), x1, y1) ⊆ Pz for some z ∈ Z2. If [x1, y1] has
non-positive slope, so must [x2, y2] and hence conv(x2, x2− (0, 1), y2) ⊆ Pz for some
z ∈ Z2. All three cases contradict the assumption (3.21).

Thus, either conv(x1, y1, x2) ⊆ Pz for some z ∈ L, or x2 = y1 + (0, 1), or [x1, y1]
has negative slope and x2 = x1+(0, 1). The second case implies [x2, y1] ⊆ K̂∩l. In the
third case, [x2, y2] must also have negative slope. Hence conv(x2− (0, 1), x2, y2) ⊆ Pz
for some z ∈ L. Again, all three cases contradict the assumption (3.21).

The proof is now complete if we can show that

V̂ n
0 (K ∩ Z2) = V0(K̂).

By the inclusion-exclusion principle,

V0(K̂) =
nd∑

k=1

∑

S⊆L,
|S|=k

(−1)kV0

(⋂

z∈S
Pz

)

=
nd∑

k=1

∑

z0∈L

∑

S⊆L,
|S|=k−1

(−1)k
1

k
V0

(
Pz0 ∩

⋂

z∈S
Pz

)

=
nd∑

k=1

(−1)k
1

k

∑

z0∈L

∑

S⊆L,
|S|=k−1

1{Pz0∩
⋂
z∈S Pz 6=∅}.

By construction of the weights, it remains to show that if Pz1 ∩ · · · ∩ Pzk 6= ∅,
then Cn

z1,0
∩ · · · ∩ Cn

zk,0
∩K 6= ∅.

For k = 1 this is trivial. Assume Pz1 ∩ Pz2 6= ∅. If Pz1 ⊆ Pz2 , then the claim
is clearly true. Otherwise, ∂Pz1 ∩ ∂Pz2 6= ∅. Hence there are xi, yi ∈ Cn

zi,0
∩ K

such that the line segments [x1, y1] and [x2, y2] intersect in Cn
z1
∩ Cn

z2
. Assume that

x1, y1, x2, y2 /∈ Cn
z1
∩ Cn

z2
. Then [x1, y1] divides Cn

z2
into two components C1 and C2

with C1 ⊆ Cn
z1
∩Cn

z2
. As [x2, y2] intersects [x1, y1]∩Cn

z2
, either x2 or y2 must belong

to C1 ∪ [x1, y1] ⊆ Cn
z1
, which is a contradiction.

For k ≥ 3, assume that z1 and z2 have the smallest and largest 1st coordinate
among the zi, respectively. By the above, there is a y1 ∈ Cn

z1,0
∩ Cn

z2,0
∩K. If y1 lies

in Cn
z1,0
∩ · · · ∩Cn

zk,0
, we are done. Otherwise, suppose that the 2nd coordinate is too

large for y1 to belong to Cn
z1,0
∩ · · · ∩ Cn

zk,0
. Let z3 have the smallest 2nd coordinate

among the zi. There are points

y2 ∈ Cn
z1,0
∩ Cn

z3,0
∩ · · · ∩ Cn

zk,0
∩K,

y3 ∈ Cn
z2,0
∩ Cn

z3,0
∩ · · · ∩ Cn

zk,0
∩K,

by induction. If y2, y3 /∈ Cn
z1
∩· · ·∩Cn

zk
, write yi = (ri, si) with r2 < r1 < r3. We may

assume s1 > s2 ≥ s3. Then (r1, s2) ∈ conv(y1, y2, y3) ⊆ K and thus

(r1, s2) ∈ Cn
z1,0
∩ · · · ∩ Cn

zk,0
∩K.

Example 3.18. For n = 2 and L = Z2, V̂ 2
0 is the algorithm suggested by Pavlidis

in [14], which is multigrid convergent on the class of r-regular sets. Theorem 3.17
shows that this algorithm is also multigrid convergent on the class of compact convex
polygons with no interior angles of less than 45 degrees.
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3.6 The Euler characteristic in higher dimensions

The results of the previous sections allow us to generalize Theorem 3.13 and Corol-
lary 3.14 to higher dimensions.

Theorem 3.19. For d ≥ 2 and q ≤ d − 2, any local algorithm V̂q for which
lima→0EV̂q(P ) exists for all P ∈ Pd has a worst case asymptotic relative bias of
100% on Pd. In particular, Theorem 1.2 holds.

The proof uses the fact that if P =
⊕d

i=1[0, vi] with v1, . . . , vd ∈ Rd linearly
independent, then

Vq(P ) =
∑

1≤i1<···<iq≤d
Hq

( q⊕

s=1

[0, vis ]

)
. (3.22)

This follows because
∑

S⊆{1,...,d}\{i1,...,iq}
γ

(∑

i∈S
vi +

q⊕

s=1

[0, vis ], P

)
= 1.

Proof. First consider the case of the standard lattice Zd. Take Q = P ⊕⊕d
j=3[0, ej]

where e1, . . . , ed ∈ Rd is the standard basis and P ⊆ lin{e1, e2} ∼= R2 is as in (3.15).
Let L : Rd → Rd be a linear map taking P to [0, s1e1]⊕ [0, s2e2] and fixing e3, . . . , ed.
Then

lim
a→0

EV̂ aZd
q (Q) = lim

a→0
EV̂ aL(Zd)

q (L(Q)). (3.23)

The left hand side is a polynomial in s1, s2, t3, . . . , td.
On the other hand, (3.22) yields

Vq(Q) =
∑

S⊆{3,...,d},
|S|=q

∏

i∈S
ti +

∑

S⊆{3,...,d},
|S|=q−1

(s1 + s2)
∏

i∈S
ti +

∑

S⊆{3,...,d},
|S|=q−2

s1s2 sinψ
∏

i∈S
ti.

If (3.23) contains monomials in s1, s2, t3, . . . , td of degree larger than q, we can
make the relative bias arbitrarily large and if it contains monomials of degree less
than q, it can be made arbitrarily close to 0 just by scaling Q.

Otherwise, (3.23) is homogeneous in s1, s2, t3, . . . , td of degree q, and the argu-
ment in the proof of Corollary 3.7 shows that the weights may be assumed to be
homogeneous of degree q. Observing that

(−h(L(Bli ⊕ W̌li),±ei))+ ∈ {0, 1}
for i = 3, . . . , d, the proof of Theorem 3.8 shows that

lim
a→0

EV̂
aL(Zd)

0 (L(Q)) =
2n
d−1∑

l1,...,ld−q=1

wl1,...,ld−q
∏

i∈IL1

∑

εi∈±1

(−h(L(Bli ⊕ W̌li), εiei))
+
∏

i/∈IL1

ti

= lim
a→0

V̂ ′aZ
d

0 (P )
∑

S⊆{3,...,d},
|S|=q

∏

i∈S
ti +

∑

S⊆{3,...,d},
|S|=q−1

(β1
S(Q)s1 + β2

S(Q)s2)
∏

i∈S
ti

+
∑

S⊆{3,...,d},
|S|=q−2

β12
S (Q)s1s2

∏

i∈S
ti
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where β1
S(Q), β2

S(Q), β12
S (Q) are certain numbers depending only on (ϕ, ψ) and V ′0 is

the estimator for V0 in R2 with weights

w′l =
∑

3≤i1<···<id−q−2≤d

n−2∑

c3,...,cd−q=−n+1

w(π−1(Bl) ∩Bi1,c1 ∩ · · · ∩Bid−q−2,cd−q−2
).

where π : Cn
0,0(Rd) → Cn

0,0(R2) is the projection induced by Rd → lin{e1, e2} and
Bj,c = Cn

0,0∩H−ej ,c for c = 0, . . . , n−2, whileBj,c = Cn
0,0∩H−−ej ,c for c = −n+1, . . . ,−1.

By Corollary 3.14, lima→0 V̂
′

0(P ) is either zero or can be made arbitrarily large by
properly choosing P . Thus, the asymptotic worst case error can be made arbitrarily
close to zero or arbitrarily large, respectively, by choosing P first and then choosing
s1 and s2 small compared to t3, . . . , td.

Now consider a general lattice L. Choose a linear map L : Rd → Rd such that
L(Zd) = L. Then

EV̂ aZd
q (Q) = EV̂ aL

q (L(Q)),

while

Vq(L(Q)) =
∑

S⊆{3,...,d},
|S|=q

αS
∏

i∈S
ti +

∑

S⊆{3,...,d},
|S|=q−1

(α1
Ss1 + α2

Ss2)
∏

i∈S
ti +

∑

S⊆{3,...,d},
|S|=q−2

α12
S s1s2ti

where αS depends only on L while α1
S, α

2
S, α

12
S may also depend on (ϕ, ψ). Thus the

general case follows as before by first choosing P and then choosing s1, s2.

4 Local estimators on the class of r-regular sets

We now move on to local digital algorithms applied to r-regular sets. The formal
definition of r-regular sets is as follows:

Definition 4.1. X ⊆ Rd is called r-regular if for every x ∈ ∂X there exist two balls
B1, B2 ⊆ Rd both of radius r and containing x with B1 ⊆ X and int(B2) ⊆ Rd\X.
For x ∈ ∂X, n(x) denotes the unique outward pointing normal vector.

The purpose of this section is to prove Theorem 1.4. As we only consider local
estimators with homogeneous weights, we may assume w

2nd−1
= 0, see [22, Section 3].

The case of the surface area 2Vd−1 is an easy consequence of the corresponding
theorem for polytopes and the following formula due to Kiderlen and Rataj [7,
Theorem 5]:

Theorem 4.2 (Kiderlen, Rataj). For any local estimator V̂d−1 with homogeneous
weights and w

2nd−1
= 0 and for any compact r-regular set X ⊆ Rd:

lim
a→0

EV̂d−1(X) = det(L)−1

2n
d−2∑

l=1

wl

∫

∂X

(−h(Bl ⊕ W̌l, n))+dHd−1.
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Proof of Theorem 1.4 for Vd−1. Suppose V̂d−1 is given. By Corollary 3.9, we may
choose v1, . . . , vd ∈ Rd orthogonal such that

lim
a→0

EV̂d−1

( d⊕

i=1

[0, vi]

)
6= Vd−1

( d⊕

i=1

[0, vi]

)
.

Consider the r-regular set

X(r) = B(r)⊕
d⊕

i=1

[0, vi].

Observe that

lim
r→0

Vd−1(X(r)) = Vd−1

( d⊕

i=1

[0, tiui]

)
.

On the other hand, Theorem 4.2 yields

lim
a→0

EV̂d−1(X(r)) = det(L)−1

2n
d−2∑

l=1

wl

∫

∂X(r)

(−h(Bl ⊕ W̌l, n))+dHd−1

= lim
a→0

EV̂d−1

( d⊕

i=1

[0, vi]

)

+ det(L)−1

2n
d−2∑

l=1

wl

∫

Y

(−h(Bl ⊕ W̌l, n))+dHd−1

where
Y = X\

⋃

F∈Fd−1(
⊕d
i=1[0,vi])

(F + ruiF1 ).

Since each h(Bl ⊕ W̌l, n) is bounded for n ∈ Sd−1 and limr→0Hd−1(Y ) = 0, it
follows that

lim
r→0

lim
a→0

EV̂d−1(X(r)) = lim
a→0

EV̂d−1

( d⊕

i=1

[0, vi]

)
.

In particular,
lim
a→0

EV̂d−1(X(r)) 6= Vd−1(X(r))

when r is sufficiently small.

It follows from the definition of r-regularity that the boundary of an r-regular
set X is a C1 manifold. The normal vector field n is almost everywhere differentiable
on ∂X, see [3]. In particular, the second fundamental form IIx is defined on Tx∂X if n
is differentiable at x. Define Qx to be the quadratic form on Tx∂X⊕ lin{n(x)} = Rd

given by
Qx(α, tn(x)) = −IIx(α) + Tr(IIx)t2.
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For a finite set S ⊆ Rd, define

II+
x (S) = max{IIx(s) | s ∈ S, h(S, n) = 〈s, n〉},

II−x (S) = min{IIx(s) | s ∈ S, h(S,−n) = 〈s,−n〉},

and if s± ∈ S are such that II±x (S) = II±x (s±), define

Q±x (S) = Qx(s
±).

The following formula is shown in [22]:

Theorem 4.3. For a local estimator V̂d−2 with homogeneous weights and w
2nd−1

= 0
and an r-regular set X,

lim
a→0

EV̂d−2(X) = det(L)−1 1

2

2d−2∑

l=1

wl

∫

∂X

(Q+(Bl)−Q−(Wl))δl(n)dHd−1.

The proof of Theorem 1.4 for Vd−2 follows from this:

Theorem 1.4 for Vd−2. We first introduce the sets that will serve as counter exam-
ples. For 0 < r < R and θ ∈ (0, π), let

T (R, r) = B(r)⊕Bd−1((R− r) sin θ)

where Bd−1(s) is the ball of radius s in lin(e1, . . . , ed−1). We then consider r-regular
sets of the form

X(R, r) = (B(R) ∩H−R cos θ,ed
) ∪ (T (R, r) + (R− r) cos θed).

Choose a rotation ρ ∈ SO(d) taking ed to Sd−1\D where D is as in the proof of
Theorem 3.8 and consider ρ(X(R, r)). Then

V̂ aLc
d−2 (ρX(R, r)) = V̂ aρ−1Lc

d−2 (X(R, r)),

so by possibly changing the lattice, we may assume that ρ = I and ed ∈ Sd−1\D.
Let U ⊆ Sd−1\D be the connected component containing ed. This is open in Sd−1.

If n(x) /∈ D, there exist unique vectors bl(n) ∈ Bl and wl(n) ∈ Wl depending
only on n ∈ Sd−1 such that Q+

x (Bl) = Qx(bl(n)) and Q−x (Wl) = Qx(wl(n)). This
defines functions

βl, ωl : Sd−1\D → Cn
0,0.

Note that these are locally constant and so is the indicator function δl on Sd−1\D.
Let ε1, . . . , εd−1 ∈ T∂X(R, r) denote the principal directions corresponding to

the principal curvatures k1, . . . , kd−1. Since ed /∈ D, n(x) ∈ Sd−1\D for almost all
x ∈ ∂X(R, r) and for such x

Q+
x (Bl)−Q−x (Wl) =

d−1∑

j=1

kj(−〈βl(n), εj〉2 + 〈βl(n), n〉2 + 〈ωl(n), ε1〉2 − 〈ωl(n), n〉2).
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Observe that ∂X(R, r) is the disjoint union of three sets S1, S2, and S3 where

S1 = (∂B(R)) ∩H−R cos θ,ed
,

S2 = (∂T (R, r) + (R− r) cos θed)\(H−R cos θ,ed
∪ S3),

S3 = Bd−1((R− r) sin θ) + ((R− r) cos θ + r)ed.

On S3, k1 = · · · = kd−1 = 0 and thus Q vanishes on S3.
Parametrize S1 by g1 : Sd−2× (θ, π)→ S1. Identifying Sd−2 with the unit sphere

in lin(e1, . . . , ed−1) ⊆ Rd,

g1(u, ϕ) = R(sinϕu+ cosϕed).

Similarly, parametrize S2 by g2 : Sd−2 × (0, θ)→ S2 where

g2(u, ϕ) = (R− r) sin θu+ r cosϕed.

Note that on both S1 and S2,

n(u, ϕ) = sinϕu+ cosϕed,

εd−1(u, ϕ) = − cosϕu+ sinϕed,

εj(u, ϕ) = ε′j(u),

for j = 1, . . . , d− 2, where ε′j(u) are the principal directions on Sd−2.
On S1,

kj =
1

R
,

∫

S1

f =

∫ π

θ

∫

Sd−2

f(u, ϕ)Rd−1 sind−2 ϕHd−2(du)dϕ,

for all j = 1, . . . , d− 1 and any integrable function f . On S2,

kd−1 =
1

r
,

kj(ϕ) =
sinϕ

(R− r) sin θ + r sinϕ
,

∫

S2

f =

∫ θ

0

∫

Sd−2

f(u, ϕ)r((R− r) sin θ + r sinϕ)d−2Hd−2(du)dϕ,

for j = 1, . . . , d− 2 and any integrable function f .
Define F1, F2 : (0, π)→ R by

F1 = det(L)−1 1

2

2n
d−2∑

l=1

wl

∫

Sd−2

(−〈βl, εd−1〉2 + 〈βl, n〉2

+ 〈ωl, εd−1〉2 − 〈ωl, n〉2)δl(n)dHd−2,

F2 = det(L)−1 1

2

2n
d−2∑

l=1

wl

d−2∑

j=1

∫

Sd−2

(−〈βl, εj〉2 + 〈βl, n〉2

+ 〈ωl, εj〉2 − 〈ωl, n〉2)δl(n)dHd−2.
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Then Theorem 4.3 yields

lim
a→0

EV̂d−2(X) =

∫

S1∪S2

(
kd−1F1 +

d−2∑

j=1

kjF2

)
dHd−1 = I2 + I4, (4.1)

while

Vd−2(X) =
1

2π

∫

S1∪S2

(
kd−1 +

d−2∑

j=1

kj

)
dHd−1 =

1

2π
(I1 + I3). (4.2)

Here

I1 =

∫

S1

(
kd−1 +

d−2∑

j=1

kj

)
dHd−1

= (d− 1)Rd−2

∫ 2π

θ

sind−2 ϕdϕ,

I2 =

∫

S1

(
kd−1F1 +

d−2∑

j=1

kjF2

)
dHd−1

= Rd−2

∫ 2π

θ

(F1(ϕ) + (d− 2)F2(ϕ)) sind−2 ϕdϕ,

I3 =

∫

S2

(
kd−1 +

d−2∑

j=1

kj

)
dHd−1

=

∫ θ

0

(
1

r
+ (d− 2)

(
sinϕ

(R− r) sin θ + r sinϕ

))
r((R− r) sin θ + r sinϕ)d−2dϕ

=

∫ θ

0

(((R− r) sin θ + r sinϕ)d−2 + (d− 2)rsinϕ((R− r) sin θ + r sinϕ)d−3)dϕ

= Rd−2 sind−2 θ

∫ θ

0

1dϕ+ rp(r, θ),

I4 =

∫

S2

(
kd−1F1 +

d−2∑

j=1

kjF2

)
dHd−1

=

∫ θ

0

(
1

r
F1(ϕ) +

(
(d− 2) sinϕ

(R− r) sin θ + r sinϕ

)
F2(ϕ)

)

× r((R− r) sin θ + r sinϕ)d−2dϕ

=

∫ θ

0

(((R− r) sin θ + r sinϕ)d−2F1(ϕ)

+ (d− 2)rsinϕ((R− r) sin θ + r sinϕ)d−3F2(ϕ))dϕ

= Rd−2 sind−2 θ

∫ θ

0

F1(ϕ)dϕ+ rp̃(r, θ).

Here p and p̃ are both polynomials in r with coefficients depending only on θ and R.
Since V̂d−2 is asymptotically unbiased, (4.1) must equal (4.2), i.e.

I2 + I4 = 1
2π

(I1 + I3).
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This must hold for all 0 < r < R, so letting r → 0 shows that
∫ π

θ

(F1(ϕ) + (d− 2)F2(ϕ)) sind−2 ϕdϕ+ sind−2 θ

∫ θ

0

F1(ϕ)dϕ (4.3)

= (d− 1)
1

2π

∫ 2π

θ

sind−2 ϕdϕ+ sind−2 θ
1

2π

∫ θ

0

1dϕ

holds for all θ ∈ (0, π).
The assumption ed ∈ U ensures that for small values of ϕ, n(u, ϕ) ∈ U for all

u ∈ Sd−1, and hence all bl, wl, and δl are constants. This shows that F1 and F2 are
continuous for small ϕ. In fact, a direct computation shows that for such small ϕ,

F1(ϕ) = K1(sin2 ϕ− cos2 ϕ) +K2 sinϕ cosϕ,

F2(ϕ) = K3 +K4 sin2 ϕ+K5 cos2 ϕ+K6 sinϕ cosϕ,

where K1, . . . , K6 ∈ R are certain constants. In particular, (4.3) may be differentia-
ted with respect to θ for small values of θ. This yields

(d− 2)

(
− F2(θ) sind−2 θ + cos θ sind−3 θ

∫ θ

0

F1(ϕ)dϕ

)

=
(d− 2)

2π
(− sind−2 θ + θ cos θ sind−3 θ)

(4.4)

for θ small.
Since d − 2 6= 0, (4.4) shows that θ cos θ sind−3 θ must be a polynomial in cos θ

and sin θ, which is a contradiction.
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