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Abstract

An insurance company has a large number N of potential customers character-
ized by i.i.d. r.v.’s A1, . . . , AN giving the arrival rates of claims. Customers are
risk averse, and a customer accepts an offered premium p according to his A-
value. The modeling further involves a discount rate d > r of customers, where
r is the risk-free interest rate. Based on calculations of the customers’ present
values of the alternative strategies of insuring and not insuring, the portfolio
size n(p) is derived, and also the rate of claims from the insured customers is
given. Further, the value of p which is optimal for minimizing the ruin prob-
ability is derived in a diffusion approximation to the Cramér-Lundberg risk
process with an added liability rate L of the company. The solution involves
the Lambert W function. Similar discussion is given for extensions involving
customers having only partial information on their A and stochastic discount
rates.
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1 Introduction

For controlling its business, an insurance company has at its disposal several decision
variables. In particular, strategies for dividend payments and reinsurance arrange-
ments have been much studied (cf., e.g., the bibliography in [10]). The present paper
focuses on a further decision variable, the premium p charged, that is an obvious
choice but has received less detailed analysis. The rough picture is that decreasing
p may increase the portfolio size but also decreases the profit per customer. Thus,
it is not clear what is the sign in the change in the profit when changing p, and the
question is what is a reasonable trade-off. This of course depends on the optimality
criterion used; we return to this point later. In any case, a key first step is to identify
the form of the portfolio size n(p) as function of the premium p offered, and precise
quantitative investigations of this seem to be few, if any, in the insurance mathemat-
ics literature (but note Højgaard [8] who takes the route of taking an unspecified
function of the safety loading, and thereby the premium, as control). Providing ex-
plicit forms of n(p) in a variety of models is one of the main contributions of this
paper.

For a more precise formulation, consider the classical Cramér-Lundberg surplus
process

R(t) = r0 + ct−
M∑

i=1

Zi,

where R(t) is the surplus at time t, r0 is the initial surplus, c is the rate of premium
income per period, M = Mλ is a Poisson process of intensity λ governing the arrival
of claims, and Z1, Z2, . . . are the claim sizes (assumed i.i.d. and independent of M).
In the diffusion approximation

dx(t) = µ dt+ σ dW (t)

where x is the reserve, we have

µ = c− λz , σ2 = λz2 , (1.1)

where z = EZ, z2 = EZ2.
We assume that the market consists of N potential customers (agents) who may

insure against their losses, and of whom the insurance company attracts n = n(p)
as customers, 0 ≤ n(p) ≤ N , when the offered premium rate is p per customer. The
compound Poisson process describing losses to the insurance company is the sum of
n processes, one for each customer, and the gross premium c is collected from all n
customers. We then have

c = n(p)p , λ = λ(p) = n(p)α(p) ,

where α(p) is the arrival rate of the typical customer’s claims at premium level p.
We will see well motivated examples where indeed α depends on p; in contrast, for
simplicity we make the assumption that the distribution of the claim size Z does
not depend on p.
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In the diffusion approximation,

µ = n(p)p− n(p)α(p)z = n(p)
(
p− α(p)z

)
.

We expect that lowering p will increase n(p). Hence, the effect could be to either
increase or decrease µ. Letting p be large one expects a substantial loss of customers
and hence of income. In most situations we meet, this is indeed the case. However, if
n(p) decreases slowly as p→∞, the overall premium inflow pn(p) could potentially
increase, and we will in fact see examples of this. In summary, the crux is the
functional dependence of n(p) (and possibly α(p)) on p in the whole range 0 <
p <∞.

A simplified approach is to postulate α(p) ≡ α to be independent of p and n(p)
to have some specific ad hoc form, for example to be exponentially decreasing. We
survey this line of attack briefly in Section 4. However, the main contribution of
this paper (as we see it) is to present some ideas inspired from economics as well
as classical Bayesian insurance modeling which provide some suggestions on less ad
hoc forms of n(p) and α(p). Doing so, we take the view that the customers have only
one potential insurer, i.e., we neglect the market effects. The decision on whether
to insure or not is then based on certain comparisons between the wealth resulting
from one or the other decision and studied in more detail in Section 2; the modeling
involves a discount factor d of the customers.

Roughly, in the naive setting either all customers insure or none according to
whether p < p0 or p > p0 for a certain threshold value p0 given in (2.2) at the end of
Section 2. In more realistic settings, a customer is characterized by a random value
A of his α or/and a random value D of his d, and the decision on whether to insure
then involves comparisons of these r.v.’s to certain thresholds. When using such
randomized values of α, d, (α, d), it is throughout assumed that r.v.’s corresponding
to different customers are i.i.d.; a classical example is A being Gamma in car insur-
ance, cf. Bichsel [2], Bühlmann & Gisler [3] and Denuit et al. [5]. Examples of such
modeling and associated optimization calculations are the main topic of Sections 3
and 5–8 occupying the rest of the paper.

Now consider control problems. Standard settings are optimization of dividend
payout (before ruin ), reinsurance arrangements and ruin probability minimization.
In a controlled setting (assuming feedback control), µ and σ2 will depend on the
parameters c, λ, z, z2 in (1.1) as well on the current level x of the reserve, the control
strategy and possibly further parameters. As an example, we will focus here on find-
ing the minimum ψ∗(x) of the ruin probability ψ(x) in the diffusion approximation,
where x = x(0). In the formulation given so far, this is a trivial problem, since by
taking p =∞ one expects that no customers will insure so that the reserve becomes
freezed at its current value x corresponding to ψ∗(x) = 0. Accordingly, we will in-
troduce a fixed rate L > 0 of liability payments. Then the diffusion approximation
becomes

µ = n(p)p− L− n(p)α(p)z = n(p)
(
p− α(p)z

)
− L , σ2(p) = n(p)α(p)z2 . (1.2)
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2 Customer’s problem

The problem faced by the potential customer is to decide whether or not to insure.
While insuring, the customer pays premium at the constant rate p. For simplicity, we
consider a customer with infinite life length, discount rate d, and access to a riskless
invest opportunity at interest rate r > 0. Since the decision problem is identical
in every period, the customer’s choice does not change over time. It is given by
min(V0, V1) where V0 is the cost of not insuring at time 0 and V1 is the cost of insuring.
Our modeling of this choice takes these costs as expected discounted present values,
with an adjustment for risk aversion on the part of the potential customer. The
standard transversality condition d > r ensuring finite asset valuation is maintained
throughout, i.e., present values are assessed using a discount rate exceeding the
growth rate (cf. Gordon [6]).

As the funds used to pay the premium could alternatively (in case of not insuring)
be invested, the total cost of insuring is identical to the value to the customer of this
investment process. A possible approach to this valuation could be to introduce a
rate of consumption out of running wealth and consider expected discounted utility
of consumption, or fix a finite horizon and consider expected discounted terminal
wealth. With risk aversion modelled using a concave utility of consumption function,
as is common in economics and finance (including cases with both continuous and
jump components, Øksendahl & Sulem [11]), this would introduce dependence on
initial wealth. A finite horizon would introduce nonstationarity. Assume instead that
the present (time t = 0) value to the customer of the deterministic flow at rate p
is
∫∞

0
e−dtdwt, where wt is the wealth generated by time t from investing this flow

along with interest on accumulated wealth, i.e.,

dwt = (p+ rwt) dt .

The solution to this differential equation with initial wealth w0 is

wt = ert
(
w0 +

p

r

)
− p

r
.

The present value to the customer of the lost cash flow (if he decides to insure and
thus pay the premium) is therefore

V1 =

∫ ∞

0

e−dtdwt =

∫ ∞

0

e−dtrert
(
w0 +

p

r

)
dt =

rw0 + p

d− r .

As a special case, if p = 0 and only w0 and interest on this is invested, the value
is rw0/(d − r). This may be more or less than w0, depending on the interest and
discount rates.

The customer compares V1 to the expected present value of the cost incurred
over the inifinite horizon of not insuring, V0. Write Ti for the time of arrival of the
ith claim (with the convention T0 = 0), Zi for the random size of the claim, and
z = EZi. Again, the funds used to pay the uninsured claims could alternatively be
invested, and the total subjective cost of not insuring is given by the value to the
customer of the investment process where Zi is invested at Ti. Ignoring risk aversion,
the above expression for V1 at p = 0 would suggest that investing Zi at Ti generates
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a present value of rZi/(d − r) to the customer at time Ti, with expected present
value at t = 0 given by rz/(d − r) · Ee−dTi . To capture the effect of risk aversion
simply, assume instead that the customer’s subjective expected cost of a claim is
given by its certainty equivalent ẑ using an increasing and convex cost function ϕ.
Specifically, ẑ is defined by ϕ(ẑ) = Eϕ(Zi), and by convexity Eϕ(Zi) > ϕ(z), so
that ϕ(ẑ) > ϕ(z). Since ϕ is increasing we get ẑ > z. The certainty equivalent is
a convenient way to express the risk premium given by ẑ − z > 0, see Pratt [9].
Replacing EZi = z in the expected present value by ẑ and starting again with initial
wealth w0, it follows that

V0 =
rw0

d− r +
rẑ

d− rE
∞∑

i=1

e−dTi . (2.1)

This is evaluated simply:

Lemma 1. The present value of expected losses from the unpaid claims if not in-
suring is

V0 =
rw0

d− r +
rẑα

(d− r) d .

Proof. Writing M∞ = E
∑∞

i=1 e−dTi and M1 = Ee−dT1 , we clearly have M∞ = M1 +
E
∑∞

i=2 e−dTi = M1 +E
∑∞

i=2 e−dTi−1e−d(Ti−Ti−1). Because the waiting times Ti− Ti−1

between arrivals are i.i.d. exponential with arrival rate α, we can write M∞ =
M1 + M∞M1, i.e., M∞ = M1/(1 −M1). Further, since T1 is exp(α) we have M1 =∫∞

0
e−dtαe−αt dt = α/(α + d), and so M∞ = α/d.

When choosing to insure or not the customer compares the expected present
values of the costs of paying the premium respectively the uncovered claims.

Corollary 2. A customer insures iff V1 < V0, i.e., he insures iff the offered premium
p satisfies

p <
rαẑ

d
. (2.2)

Thus, the customer may be willing to pay more for the insurance than the net
premium αz, i.e., the expected net losses per period, provided

dz

rẑ
< 1 . (2.3)

It seems reasonable to assume that d is only moderately larger than r whereas ẑ is
substantially larger than z, and so the assumption (2.3) is maintained throughout
in the following.

3 Portfolio characteristics with stochastic arrival
rates

A classical and practically highly relevant point of view in insurance mathematics
is that the portfolio is non-homogeneous in the sense that the value A of the arrival
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rate α of claims of a customer is a r.v. with i.i.d. values over the portfolio. We
will exemplify this via the classical example of car insurance where A is assumed
to have a Gamma(s, β) distribution with density βsxs−1e−βx/Γ(s). Since in some
cases ([2]) there is empirical evidence that s is close to 1, we assume in the following
that s = 1, so that A has an exponential(β) distribution with density βe−βxand tail
FA(x) = e−βx. See, e.g., Bichsel [2], Bühlmann & Gisler [3] and Denuit et al. [5] for
more discussion and detail.

The condition (2.2) for the customer insuring now takes the form

A >
pd

rẑ
.

Now we have
P
(
A >

pd

rẑ

)
= FA

(
pd

rẑ

)
= e−βpd/rẑ.

The number of insured individuals is this fraction out of the total population of N
individuals:

Theorem 3. In the model with exponential stochastic arrival rate A, the portfolio
size is given by n(p) = Ne−βpd/rẑ .

Theorem 3 gives the demand curve of the insurance company. Strictly speaking,
this assumes a continuum of customers and so it is only the mean demand curve, and
in principle a distribution of demand centered at n(p) could be considered. However,
we will assume that N is so large that this variation is negligible.

With stochastic arrival rates, the calculation of µ, σ2 must be modified. The
insurance company faces an arrival rate of claims that appropriately aggregates
the arrival rates of those potential customers who choose to insure. More precisely,
these arrival rates have the distribution of A given A > pd/rẑ. By the memoryless
property of the exponential distribution, E[A |A > a] = a+ 1/β if a ≥ 0. It follows
that under the the large population assumption,

λ = λ(p) = P
(
A >

pd

rẑ

)
E
(
A
∣∣A >

pd

rẑ

)
N

= e−βpd/rẑ[1/β + pd/rẑ]N = n(p)
[
1/β + pd/rẑ

]
.

This shows that, again, the arrival rate of claims to the company takes the form
λ(p) = n(p)α(p), but as noted in the introduction, both factors may depend on the
premium charged. The functional form of α(p) reflects adverse selection: The higher
the premium charged, the less desirable (to the company) the average customer.

In the diffusion approximation, we have

µ(p) = pn(p)− L− λ(p)z = n(p)
(
p(1− dz/rẑ)− z/β

)
− L

= Ne−βpd/rẑ
(
p(1− dz/rẑ)− z/β

)
− L , (3.1)

σ2(p) = n(p)[1/β + pd/rẑ]z2 = Ne−βpd/rẑ[1/β + pd/rẑ]z2. (3.2)
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4 Ruin probability minimization in a simplified
setting

As noted by Hipp & Taksar [7] in a more general setting, minimizing the ruin
probability amounts to maximizing µ/σ2 for each x. In our case, µ and σ2 do not
depend on x, so that the optimal parameter choice is global in x. The conclusion that
minimizing the ruin probability amounts to maximizing µ/σ2 is also immediate from
the observation that the controlled process is a Brownian motion and so the ruin
probability is ψ(x) = e−2µx/σ2 when x = x(0) is the initial reserve in the diffusion
approximation.

Assume that α(p) ≡ α. Then

µ

σ2
=
n(p)(p− αz)− L

n(p)αz2
=
p− αz
αz2

− L

n(p)αz2

(note the independence of the level R(t) = x). For the purpose of maximization, we
consider the derivatives

∂(µ/σ2)

∂p
=

1

αz2
+

n′(p)L

n(p)2αz2
,

∂2(µ/σ2)

∂p2
=

L

αz2

(
n′′(p)n(p)− 2n′(p)2

n(p)3

)
.

The first order condition for finding an interior extremum p̆ of µ/σ2 is that p̆ solves

n′(p̆)L+ n(p̆)2 = 0. (4.1)

The second order condition for the solution of (4.1) to be a proper optimum is that

n′′(p̆)n(p̆)

n′(p̆)2
< 2 or equivalently

d

dp
log n(p) >

1

2

d

dp
log n′(p) (4.2)

at p = p̆. I.e., the elasticity of the demand curve should be sufficiently high, more
than half the elasticity of marginal demand n′.

We may also assume that the maximization has to be performed on an interval
[p−,∞) with p− ≥ 0; the most obvious possibilities are p− = 0 and p− = αz. The
latter applies if the company does not want to charge less than the net premium αz,
although this constraint need not be binding given the objective of minimization of
ruin probability.

Clearly, without liabilities (the case L = 0), the optimum is n = 0, which may be
achieved by setting the premium prohibitively high. For L > 0, the solution depends
on the precise relation between p and n, as shown by the following examples.

Example 4. Assume n(p) = Ke−bp. The first order condition (4.1) becomes

−bKLe−bp̆ +K2e−2bp̆ = 0 (4.3)

with solution
p̆ =

c

b
where c = logK − log b− logL .

The l.h.s. in (4.2) collapses to unity identically, so that the second order condition
is automatic. It follows that µ/σ2 is maximized and the ruin probability minimized
at p∗ = p̆ if p̆ > p− and p∗ = p− otherwise.
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Example 5. Assume n(p) = K(1 + bp)−τ . Then

αz2
d

dp

µ(p)

σ2(p)
= 1− Lτb

K
(1 + bp)τ−1 . (4.4)

Equating (4.4) to 0 gives the first order condition with solution

p̆ =
1

b

[( K

Lτb

)1/(τ−1)

− 1
]
.

At p = 0 we have µ = −Kαz − L < 0, giving ruin probability 1.
We have four cases:

(i) τ < 1, Lτb/K < 1. Here p̆ < 0 and (4.4) is positive for all p > 0, so that µ/σ2

is maximized and the ruin probability minimized at p∗ = ∞, with minimum
ψ∗(x) = 0 since µ(p/σ2 →∞ by (4.4).

(ii) τ < 1, Lτb/K > 1. Here p̆ > 0 and (4.4) increases from a negative value
to 1, so that p̆maximizes, not minimizes, the ruin probability. Instead, µ/σ2

is maximized and the ruin probability minimized at p∗ = ∞, with minimum
ψ∗(x) = 0.

(iii) τ > 1, Lτb/K < 1. Here p̆ > 0 and (4.4) decreases from a positive value to
−∞, so that p∗ = p̆ is the minimizer of the ruin probability if p̆ > p− and
p∗ = p− otherwise. We have ψ∗(x) < 1 or ψ∗(x) = 1 according as µ(p∗) > 0 or
µ(p∗) ≤ 0.

(iv) τ > 1, Lτb/K > 1. Here p̆ < 0 and (4.4) is negative for all p > 0, so that
µ/σ2 is maximized and the ruin probability minimized at p∗ = 0 if p− = 0 and
p∗ = p− otherwise, giving ψ∗(x) = 1 for all x.

Example 6. Assume n(p) = K1[K2 − p]+. The first order condition (4.1) becomes
[
−K1L+K2

1 [K2 − p̆]2
]
1{p̆<K2} = 0

with solution

p̆ = K2 −
√

L

K1

< K2 .

The l.h.s. in (4.2) vanishes identically, so that the second order condition is again
automatic. It follows that µ/σ2 is maximized and the ruin probability minimized at
p∗ = p̆ if p̆ > p− and p∗ = p− otherwise.

Example 5 includes cases where it pays for the company to accept a smaller
portfolio size, at a higher profit per customer. We will encounter aspects of Example 4
in Section 5 and of (the richer) Example 5 in Section 6, though the set-ups are
sufficiently different that a direct comparison is not possible.
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5 Ruin probability minimization with stochastic
arrival rates

Consider the stochastic arrival rate model of Section 3.

Proposition 1. Let x = x(0) be the initial reserve in the diffusion approximation,
ψ(x) the ruin probability and

p# =
(rẑ)2

β(rẑ − dz)
.

Then ψ(x) = 1 for all x, p > 0 if µ(p#) ≤ 0. If µ(p#) > 0, then ψ(x) < 1 for all
x > 0 and all p in some bounded open interval I ⊂ (0,∞) containing p#.

Proof. Differentiating (3.1), we get

µ′(p) = Ne−βpd/rẑ
[
−βd
rẑ

(
p(1− dz/rẑ)− z/β

)
+ 1− dz/rẑ

]
.

Therefore µ′(p) = 0 for

p =
1

1− dz/rẑ

[
rẑ

βd
(1− dz/rẑ) +

z

β

]
=

1

1− dz/rẑ
rẑ

βd
= p# ,

and thus by (2.3), µ′(p) > 0 for p < p#, µ′(p#) = 0, and µ′(p) < 0 for p > p#. Also
clearly µ(0) < 0 and µ(∞) = −L < 0. Therefore µ(p) attains a unique maximum at
p = p#. Thus, if µ(p#) ≤ 0, also µ(p) ≤ 0 for all p and ψ(x) = 1 for all x, p > 0.
If conversely µ(p#) > 0, then µ(p) > 0 for all p in some bounded open interval
containing p# and hence ψ(x) = e−2xµ/σ2

< 1 for all x > 0.

The case µ(p#) > 0 may arise, certainly if N is sufficiently large compared to L:
indeed, if p is so large that p(1 − dz/rẑ) > z/β, then µ(p) > 0 for all large N and
so also µ(p#) > 0.

It remains to maximize µ(p)/σ2(p) (and hence minimize the ruin probability
ψ(x)) in the case µ(p#) > 0. We start by remarking that the ratio of the −λ(p)z term
in µ(p) and σ2(p) = λ(p)z2 does not depend on p, hence vanishes by differentiation,
and this explains that (maybe surprisingly) the optimizers in the following do not
depend on ẑ, only on ẑ.

Theorem 7. Assume µ(p#) > 0. Then µ(p)/σ2(p) is maximized, and hence ψ(x)
minimized, for p = p∗ where

p∗ =
rẑ

βd
W

(
Nrẑ

Lβd

)
∈ I , (5.1)

where W is the Lambert W function. Further, ψ∗(x) < 1 for all x > 0.

[For W , see the Appendix.]
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Proof. The first order condition 0 =
(
µ(p)/σ2(p)

)′ means (multiply by z2)

0 =
d

dp

(
p

1/β + pd/rẑ
− z/β − L

N

1

e−βpd/rẑ[1/β + pd/rẑ]

)

= β
(1 + βpd/rẑ) · 1− p · βd/rẑ

(1 + βpd/rẑ)2

+
βL

N

−e−βpd/rẑβd/rẑ(1 + βpd/rẑ) + e−βpd/rẑβd/rẑ

e−2βpd/rẑ(1 + βpd/rz)2
.

Multiplying by (1 + βpd/rz)2, this becomes

0 = β +
βL

N

(
−βd/rẑ(1 + βpd/rẑ) + βd/rẑ

)
eβpd/rẑ ,

1 =
L

N

(
βd

rẑ

)2

peβpd/rẑ ,
Nrẑ

Lβd
= βpd/rẑeβpd/rẑ ,

βpd/rẑ = W (Nrẑ/Lβd)

so that indeed the solution of 0 =
(
µ(p)/σ2(p)

)′ is given by the r.h.s. of (5.1).
Using the properties ofW given in the Appendix and the shape of µ(p) discussed

above also shows that there is a unique maximum of µ(p)/σ2(p) at p∗ given by (7.1),
and that necessarily p∗ ∈ I.

In particular, p∗ is strictly increasing in N, r, ẑ, does not depend on z, and is
strictly decreasing in β, d, L. Further:

Corollary 8. In the setting of Theorem 7, the portfolio size at the optimum is

n(p∗) = Ne−W (Nrẑ/Lβd) .

This follows by combining Theorems 1 and 2. Similarly, p∗ may be inserted in the
foregoing expressions to find the optimum arrival rate of claims, drift and diffusion
of the reserve, and the minimized ruin probability.

6 Customers with partial information

The discussion above assumes complete information on behalf of the customer in
the sense that he knows his rate of claim occurences. In reality, this is of course not
the case. We consider here the model where the customer’s belief is that his rate
is AS, where S is a r.v. independent of A; the S-values for different customers are
assumed i.i.d. How S is centered compared to 1 expresses the optimism/pessimism
of customers in assessing their true rate: a distribution left skewed compared to 1 is
optimistic, a right skewed one is pessimistic.

When deciding on whether to insure or not, the customer will make his decision
based upon AS rather than A. With the exponential assumption on A, we have

P(AS > x) = Ee−βx/S .
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An appealing possibility is to take S as inverse Gamma. That is, 1/S is Gamma(τ, δ)
(say), i.e. with density δτxτ−1e−δx/Γ(δ), so that

P(AS > x) = Ee−βx/S =
( δ

δ + βx

)τ
=
( 1

1 + βx/δ

)τ
,

i.e., AS is Pareto. Using again the memoryless property of the exponential distribu-
tion, we further get

α(p) = E
[
A
∣∣AS > pd/rẑ

]
= E

[ 1

β
+

pd

rẑS

]
=

1

β
+
τpd

δrẑ
.

Thus:

Theorem 9. In the model with exponential stochastic arrival rate A and an inverse
Gamma multiplicative subjective uncertainty factor S, the portfolio size is given by

n(p) = N P
(
AS > pd/rẑ

)
=

N(
1 + βpd/δrẑ

)τ . (6.1)

Further, the overall arrival rate of claims is

λ(p) = n(p)α(p) =
N(

1 + βpd/δrẑ
)τ
(

1

β
+
τpd

δrẑ

)
. (6.2)

It follows that in the diffusion approximation, we have

µ = pn(p)− λ(p)z − L =
N

(1 + βpd/δrẑ)τ

(
p−

[ 1

β
+
τpd

δrẑ

]
z
)
− L

= Nq−τ (p−mz)− L ,

σ2 =
N

(1 + βpd/δrẑ)τ

[
1

β
+
τpd

δrẑ

]
z2 = Nq−τmz2 ,

where

q = 1 +
βd

δrẑ
p , p =

δrẑ

βd
(q − 1) , m =

1

β
+

τd

δrẑ
p =

1

β
+
τ

β
(q − 1) .

Consider the properties of the drift µ(p). As for boundary behavior, we get
µ ∼ −Nz/β − L as p ↓ 0. At the other extreme,

µ ≈





Np1−τ
(δrẑ
βd

)τ(
1− τdz

δrẑ

)
→∞ τ < 1,

τdz

δrẑ
< 1 ,

Np1−τ
(δrẑ
βd

)τ(
1− τdz

δrẑ

)
→ −∞ τ < 1,

τdz

δrẑ
> 1 ,

−L τ > 1

as p ↑ ∞. The interpretation is that if τ < 1, then n(p) → 0 so slowly that the
average premium inflow pn(p) goes to ∞ as p ↑ ∞ (at rate p1−τ ). If furthermore
customers are so pessimistic in their subjective assessment of their A that τdz/δrẑ =

11



ES−1 · dz/rẑ < 1, they are willing to pay enough premium to make the overall gain
go to infinity (even with ever fewer customers) so that µ is maximized at p = ∞,
while if ES−1 ·dz/rẑ > 1, they are so optimistic that there is a loss by taking p large
(recall from (2.3) that dz/rẑ < 1). Conversely, if τ > 1 then pn(p)→ 0 and all that
matters in the limit p ↑ ∞ is the fixed liability payment L.

Finally consider ruin probability minimization. As p ↓ 0, z2µ/σ2 ∼ −z−Lβ/N < 0.
As p ↑ ∞,

σ2 ∼ Np1−τ (δrẑ/βd)τ (τd/δrẑ)z2 ,

and thus

z2
µ

σ2
∼





δrẑ

τd

(
1− τdz

δrẑ

)
> 0 τ < 1,

τdz

δrẑ
< 1 ,

δrẑ

τd

(
1− τdz

δrẑ

)
< 0 τ < 1,

τdz

δrẑ
> 1 ,

−∞ τ > 1 .

We further get

z2
µ(p)

σ2(p)
=

p

m
− z − L

N

qτ

m
,

z2
d

dp

µ(p)

σ2(p)
=
m− τpd/δrẑ

m2
− L

N

τqτ−1mβd/δrẑ − qττd/δrẑ
m2

=
1

βm2
− Lqτ−1τd

Nm2δrẑ
(βm− q)

=
1

βm2
− Lτ(τ − 1)d

Nδrẑm2
qτ−1(q − 1)

Note that this is expression is positive if τ < 1 and always positive at p = 0
(corresponding to q = 1). Putting things together and noting the sign behavior of
(µ(p)/σ2(p))′, we get:

Theorem 10. In the model with exponential stochastic arrival rate A and an inverse
Gamma multiplicative subjective uncertainty factor S, we have:

(i) If τ < 1, then µ(p)/σ2(p) is monotonically increasing in p. If τdz/δrẑ < 1,
then µ(p)/σ2(p) is maximized at p = ∞ and hence the ruin probability ψ(x)
minimized, with

ψ∗(x) = exp
{
−2x

δrẑ

τd

(
1− τdz

δrẑ

)}
< 1.

If τdz/δrẑ > 1, then µ(p)/σ2(p) is negative for all p and hence ψ(x) = 1.

(ii) If τ > 1, then µ(p)/σ2(p) has a unique maximum in (0,∞), say at p̆, where
p̆ = (q̆ − 1)δrẑ/(βd) with q̆ the unique solution in (1,∞) of

qτ − qτ−1 =
Nδrẑ

Lτ(τ − 1)βd
. (6.3)
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If µ(p̆) ≤ 0, then ψ(x) = 1 for all x, whereas if µ(p̆) > 0, then the ruin
probability is minimized for p = p∗ = p̆, with

ψ∗(x) = exp
{
−2x

( p
m
− z − L

N

qτ

m

)
/z2
}
< 1,

where p = p̆, q = q̆, m =
1

β
+
τ

β
(q̆ − 1).

7 Stochastic discount rates

An alternative to the model where each customer has a separate arrival rate is that
the discount rate d varies over the population but A ≡ α is fixed. That is, for each
customer the discount rate is the outcome of a r.v. D, such that the D’s for different
customers are i.i.d.

A case that is easily analysized is that where 1/D is exponentially(β) distributed.
Indeed, since the fundamental inequality (2.2) p < rαẑ/d takes the form p < rαẑ/D,
it has the same form as in Section 3 (where it read p < rAẑ/d), only with A replaced
by 1/D and d by 1/α. In Section 2, inequality (2.2) was derived explicitly from the
potential customer’s cost minimization problem under the condition d > r, and in-
surance above the net premium in addition required condition (2.3). With stochastic
discount rates, both conditions may be violated with some probability across the
population. One possibility would be to consider a distribution for D with support
concentrated in (r, rẑ/z) . For simplicity, we maintain 1/D ∼ exp(β) and regard the
decision criterion p < rαẑ/D as a behavioral assumption, not necessarily attached to
the analysis in Section 2, and similarly for condition (2.3). With this interpretation
of the modified model, the analysis of Section 3 carries through without changes,
and we get:

Corollary 11. Assume that the stochastic discount rate is a r.v. D and that A ≡ α
is fixed. Then µ(p)/σ2(p) is maximized for p = p∗ where

p∗ =
αrẑ

β
W
(Nαrẑ

Lβ

)
. (7.1)

If µ(p∗) > 0, then ψ(x) < 1 for all x and all p in a bounded open interval containing
p∗, and p∗ is the unique minimizer of the ruin probability for all x. The optimum
portfolio size in this case is n(p∗) = Ne−W (Nαrẑ/Lβ) . If µ(p∗) ≤ 0, then ψ(x) = 1 for
all x, p > 0.

8 Stochastic arrival and discount rates

The models with stochastic arrival and discount rates may be combined, by assuming
both the arrival rate α = A and the discount rate d = D to be r.v.’s. The customer’s
criterion for insuring at premium p becomes

rAẑ

D
> p ,

13



and under appropriate conditions, there is an easy reduction to the partial infor-
mation case. Indeed, assuming independence and A to be exponential(β), D to be
gamma(τ, δ), we are back to the setting of Section 6 and get:

Corollary 12. Assume the arrival rate α = A and the discount rate d = D to be
independent r.v.’s with A exponential(β), D gamma(τ, δ). Then:

(i) the portfolio size is given by

n(p) = N P
(
A/D > p/rẑ

)
=

N(
1 + βp/δrẑ

)τ . (8.1)

Further, the overall arrival rate of claims is

λ(p) = n(p) =
N(

1 + βp/δrẑ
)τ
( 1

β
+

τp

δrẑ

)
. (8.2)

(ii) If τ < 1, then µ(p)/σ2(p) is monotonically increasing in p. If τz/δrẑ < 1,
then µ(p)/σ2(p) is maximized at p = ∞ and hence the ruin probability ψ(x)
minimized, with

ψ∗(x) = exp
{
−2x

δrẑ

τ

(
1− τz

δrẑ

)}
< 1.

If τz/δrẑ > 1, then µ(p)/σ2(p) is negative for all p and hence ψ(x) = 1.

(iii) If τ > 1, then µ(p)/σ2(p) has a unique maximum in (0,∞), say at p̆, where
p̆ = (q̆ − 1)δrẑ/β with q̆ the unique solution in (1,∞) of

qτ − qτ−1 =
Nδrẑ

Lτ(τ − 1)β
. (8.3)

If µ(p̆) ≤ 0, then ψ(x) = 1 for all x, whereas if µ(p̆) > 0, then the ruin
probability is minimized for p = p∗ = p̆, with

ψ∗(x) = exp
{
−2x

( p
m
− z − L

N

qτ

m

)
/z2
}
< 1,

where p = p̆, q = q̆, m =
1

β
+
τ

β
(q̆ − 1).

Appendix: The Lambert W function

The Lambert W function (e.g. Corless et al. [4]) is defined as solution of x = wew,
i.e. as the function implicitly given by x = W (x)eW (x). We are only concerned with
the case of x being real and positive, and in this case W is strictly increasing and a
bijection (0,∞)→ (0,∞).

Computationally, one may note that W is available in Maple and Matlab, and
that an alternative expression is given by the series expansion

W (x) =
∞∑

n=1

(−n)n

n!
xn .
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