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Abstract

Let Y1, . . . , Yn be i.i.d. subexponential and Sn = Y1 + · · · + Yn. Asmussen
and Kroese (2006) suggested a simulation estimator for evaluating P(Sn > x),
combining an exchangeability argument with conditional Monte Carlo. The
estimator was later shown by Hartinger & Kortschak (2009) to have vanishing
relative error. For the Weibull and related cases, we calculate the exact error
rate and suggest improved estimators. These improvements can be seen as
control variate estimators, but are rather motivated by second order subexpo-
nential theory which is also at the core of the technical proofs.

Keywords: Complexity, conditional Monte Carlo, control variates, lognormal
distribution, M/G/1 queue, Pollaczeck-Khinchine formula, rare event, regular
variation, ruin theory, second order subexponentiality, subexponential distri-
bution, vanishing relative error, Weibull distribution

1 Introduction

This paper is concerned with the efficient simulation of

z = z(x) = P(Sn > x) ,

where Y1, . . . , Yn are i.i.d. with a common subexponential distribution, Sn = Y1 +
· · · + Yn and x is large so that z is small. By definition of subexponentiality (e.g.,
[18], [3, X.1], or [19]), we have z ∼ nF (x) as n→∞ where F (x) = 1− F (x) is the
tail. Our main set-up is that F is heavy-tailed Weibull with tail F (x) = e−x

β with

0 < β < β0 = log(3/2)/ log(2) ≈ 0.585 (1.1)
∗The second author was supported by the the MIRACCLE-GICC project and the Chaire

d’excellence “Generali – Actuariat responsable: gestion des risques naturels et changements cli-
matiques.”
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(the Weibull distribution with β0 ≤ β < 1 is also heavy-tailed, but (1.1) is in fact
essential for our results as well as for our key references [8], [21]). We chose the
Weibull distribution since it is the prototype of a distribution with sublinear hazard
rate and also keeps the expressions in the proofs simple. Nevertheless, we will give in
Section 6 the main ideas that are needed to extend the results to a more general class
of distributions that also includes the lognormal distribution as well as distributions
close to but more general than the Weibull.

The general subexponential problem has a long history. As is traditional in
the literature ([6]), we denote by a simulation estimator a r.v. Z = Z(x) that
can be generated by simulation and is unbiased, EZ = z. The usual performance
measure is the relative error e(x) = Var1/2(Z)/z. The relative error is bounded if
lim supx→∞ e(x) <∞, and the estimator Z is logarithmically efficient if

lim sup
x→∞

e(x)/z(x)ε <∞ for all ε > 0.

Efficient estimators have long been known with light tails (see e.g. [6, VI.2], [15],
[22] and [23] for surveys), and are typically based on ideas from large deviations the-
ory implemented via exponential change of measure. The heavy-tailed case is more
recent. In [5], some of the difficulties in a literal translation of the light-tailed ideas
are explained. However, in the regularly varying case [4] gave the first logarithmi-
cally efficient estimator for P(Sn > x) using a conditional Monte Carlo idea. The
idea was further improved in [8], which as of today stands as a model of an efficient
and at the same time easily implementable algorithm. It is also at the core of this
paper. The idea is to combine an exchangeability argument with the conditional
Monte Carlo idea. More precisely (for convenience assuming existence of densities
to exclude multiple maxima) one has

z = nP(Sn > x, Mn = Yn)

where Mk = maxi≤k Yi. An unbiased simulation estimator of z based on simulated
values Y1, . . . , Yn is therefore the conditional expectation

ZAK = nF
(
Mn−1 ∨ (x− Sn−1)

)

of this expression given Y1, . . . , Yn−1, where Sn−1 = Y1 + · · · + Yn−1. In the Weibull
case, this estimator (baptized the Asmussen-Kroese estimator by the simulation
community) is shown in [8] to be logarithmically efficient when β < β0 and in [21]
to have vanishing relative error (e(x) → 0), though the argument for this is rather
implicit and no quantitative rates are given. A survey of the area (that also includes
some importance sampling algorithms) is in [6, VI.3].

The contribution of this paper is two-fold: to compute the exact error rate of ZAK;
and to produce different estimators with better rates. Both aspects combine with
ideas of higher order subexponential methodology (cf. Remark 4). A companion
paper [7] gives similar results for the regularly varying case, though it should be
remarked that the analysis is rather different and in fact easier than in the Weibull
case.

Our main results are:
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Theorem 1. If 0 < β < β0, then the Asmussen-Kroese estimator’s variance is
asymptotically given by

Var(ZAK) ∼ n2 Var(Sn−1)f(x)2

This Theorem is just a special case of the following more general result.

Theorem 2. Denote with f (k) the k-th derivative of the density f . Define the esti-
mator

Zm = ZAK + n
m∑

k=1

(−1)k−1

k!

(
ESkn−1 − Skn−1

)
f (k−1)(x). (1.2)

If 0 < β < β0, then the estimator Zm in (1.2) has vanishing relative error. More
precisely,

Var(Zm(x)) ∼ n2

(m+ 1)!2
Var((Sn−1)m+1)f (m)(x)2.

Remark 3. The rates for the variances in Theorems 1 and 2 have to be compared
with the rate e−2β for the bounded relative error case. Note that f(x) = βxβ−1e−x

β

and f (k)(x) = (−1)kpk(x)F (x) where pk is regularly varying with index (k+1)(β−1).
Thus ZAK improves the bounded relative error rate by a factor of x1−β and (1.2) by
a factor of x(k+1)(1−β)

The feature of vanishing relative error is quite unusual. The few further examples
we know of are [14] and [17] in the setting of dynamic importance sampling, though
it should be remarked that the algorithms there are much more complicated than
those of this paper and [7], and that the rate results in [14], [17] are not very explicit.

Remark 4. A main idea of higher order subexponential methodology is the Taylor
expansion

F (x− Sn−1) = F (u) + f(x)Sn−1 − 1
2
f ′(x)S2

n−1 + · · · (1.3)

which leads to the refinement

z(x) = P(Sn > x) = nF (x) + nf(x)ESn−1 − 1
2
f ′(x)ES2

n−1 + · · · ,

cf. [24], [11], [10] and [9]. Technically, the Taylor expansion is only useful for moderate
Sn−1, and large values have to be shown to be negligible by a separate argument;
this also is the case in the present paper. One may note that (1.3) is only useful
for heavy-tailed distributions where typically F (x) � f(x) � f ′(x) � · · · – for
light-tailed distributions like the exponential typically F (x), f(x), f ′(x), . . . have the
same magnitude.

Remark 5. Main applications of the problem under study occur in ruin theory and
the M/G/1 queue. These cases are connected by ψ(x) = P(W > x) where ψ(x) is
the ruin probability in a Cramér-Lundberg risk process and W is the steady-state
waiting time of the queue. These quantities are in turn given by the Pollaczeck-
Khinchine formula, where the number n of terms in Sn is an independent geometric
r.v. N and the Yi have the integrated tail distribution of the claim size/service time
distribution, which is again subexponential. By means of dominated convergence
our theory can be refined to this case (see Section 4).
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A further application is credit risk, where N is the number of defaults and
Y1, Y2, . . . their sizes. Here the treatise Basel II calls for P(SN > x) to be of magni-
tude e − 2 to 3e − 4, which is also the relevant order for ruin theory. In queueing,
P(W > x) could go all the way down to e− 12, for example when studying bit loss
rates in data transmission.

Remark 6. The main properties of the Weibull distribution F (x) = e−x
β that are

used in the proofs are that the Weibull distribution is subexponential, has moments
of all orders, that the density is infinitely often differentiable and that the hazard
rate behaves like a power tail. Hence the results can be broadened, say to F (x) =
c1x

γe−c2x
β or the lognormal distribution, see Section 6 for more details.

2 First proofs

In this section we will prove Theorem 2. Since we want to extend the results to a
random N , we will provide the constants as functions of n which is not needed if we
are only interested in a fixed n.
Define V̂ = I (Sn−1 ≤ x/2),

V1 = V̂
(
F (x− Sn−1)− F (x)−

m∑

k=1

(−1)k+1

k!
Skn−1f

(k−1)(x)
)
,

V2 = (1− V̂ )F
(
Mn−1 ∨ (x− Sn−1)

)
, V3 = −(1− V̂ )F (x) ,

V3+k =
(−1)k

k!
(1− V̂ )(Sn−1)kf (k−1)(x), k ≥ 1 .

Then the estimator in (1.2) satisfies

Zm = n
(m+3∑

k=1

Vk

)
+ n
(
F (x) +

m∑

k=1

(−1)k−1

k!
ESkn−1f

(k−1)(x)
)
. (2.1)

Note that the second summand in (2.1) is constant. In the proofs, we will need two
lemmas that are proved in Section 3:

Lemma 7.
F
(
Mn−1 ∨ (x− Sn−1)

)

F (x)
≤ F (Mn−1

)

F (Mn−1 + Sn−1)
.

Lemma 8. If β < β0 then for all k > 0, ` ∈ {1, 2}, γ > 0 and ε > 0 there exist a
C such that for all n ≥ 0.

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)`]
< C(1 + ε)n , (2.2)

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)`
; Sn > x/2

]
≤ C(1 + ε)nx−γ. (2.3)
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Remark 9. In the following proofs we will sometimes consider bounds similar to

F (x)2E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)`
; Sn > x/2

]
≤ C(1 + ε)nx−γF (x)2 = o(f (m)(x)2).

Since F (x)2f (k)(x)2 ∼ x2(m+1)(β−1) we have to choose γ > 2(m + 1)(β − 1) for the
above inequality to be true.

Proof of Theorem 2. Since

Var(Zm) = n2
(m+3∑

i=1

Var(Vi) +
m+3∑

i,j=1, i 6=j
Cov(Vi, Vj)

)

and
∣∣Cov(Vi, Vj)

∣∣ ≤
√

Var(Vi)Var(Vj) it is enough to show that Var(Vi) = o(f (m)(x)2)
for i > 1 and

Var(V1) ∼ 1

(m+ 1)!2
Var(Sm+1

n−1 )f(m)(x)2.

V1: A Taylor expansion leads to

V1(x) = (−1)mV̂ (x)
(Sn−1)m+1

(m+ 1)!
f (m)(x− ξSn−1)

with 0 ≤ ξSn−1 ≤ Sn−1. Since f (m)(x) is long tailed (i.e., f (m)(x)/f (m)(x + y) → 1
for all y), it follows that for fixed Sn−1

lim
x→∞

V1(x)

(−1)mf (m)(x)
=

(Sn−1)m+1

(m+ 1)!
.

Remember that f (m)(x) = (−1)mpm(x)F (x) with pm(x) is regularly varying and
Cm = supx≥0 supx/2≤y≤x p(y)/p(x) < ∞. In the following, we will use that when
V̂ 6= 0 then Sn−1 ≤ x/2 and hence Mn−1 ≤ x− Sn−1, so that by Lemma 7

V1

(−1)mf (m)(x)
=
pm(x− ξSn−1)

pm(x)
V̂

(Sn−1)m+1

(m+ 1)!

F (x− ξSn−1)

F (x)

≤ CmV̂
(Sn−1)m+1

(m+ 1)!

F (x− Sn−1)

F (x)

= CmV̂
(Sn−1)m+1

(m+ 1)!

F (Mn−1 ∨ (x− Sn−1))

F (x)

≤ Cm
(Sn−1)m+1

(m+ 1)!

F (Mn−1)

F (Mn−1 + Sn−1)

Since (n− 1)Mn−1 > Sn−1, we get for k ∈ {1, 2} that

E
∣∣∣∣

V1(x)

(−1)mf (m)(x)

∣∣∣∣
k

≤
(
Cm(n− 1)(m+1)k

(m+ 1)!

)k
E
[
M

(m+1)k
n−1

(
F (Mn−1)

F (Mn−1 + Sn−1)

)k]
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which is finite by Lemma 8. Thus by dominated convergence,

lim
x→∞

Var(V1(x))

f (m)(x)2
= lim

x→∞
E
( V1(x)2

f (m)(x)2

)
−
(
E
V1(x)

f (m)(x)

)2

=
1

(m+ 1)!2
[
E((Sn−1)2(m+1))− E((Sn−1)m+1)2

]
.

V2: from Lemmas 7, 8, (choose γ > 2(m+ 1)(β − 1) in Lemma 8) we get

Var(V2) ≤ E(V 2
2 ) = E

[
F
(
Mn−1 ∨ (x− Sn−1)

)2
; Sn−1 > x/2

]

≤ F (x)2E
[( F (Mn−1)

F (Mn−1 + Sn−1)

)2

; Sn−1 > x/2
]

= o(f (m)(x)2) .

V3: Since V̂ is a Bernoulli random variable and F (x) is constant we get

Var(V3) = P(Sn−1 > x/2)P(Sn−1 ≤ x/2)F (x)2 = o(f (m)(x)2) .

We used P(Sn−1 > x/2) ≤ K(1 + ε)nF (x/2) = o(x−γ) ∀γ > 0.
V3+k k ≥ 1: We get

Var(V3+k)

=
f (k−1)(x)2

k!2
Var

(
(1− V̂ )(Sn−1)k

)
≤ f (k−1)(x)2

k!2
E
(
(1− V̂ )Skn−1

)2

=
f (k−1)(x)2

k!2

∫ ∞

x/2

y2k P(Sn−1 ∈ dy)

=
f (k−1)(x)2

k!2

(
2k

∫ ∞

x/2

y2k−1P(Sn−1 > y) dy − (x/2)2kP(Sn−1 > x/2)

)

≤ K(1 + ε)n−1f
(k−1)(x)2

k!2

(
2k

∫ ∞

x/2

y2k−1P(Y1 > y) dy + (x/2)2kP(Y1 > x/2)

)

= o(f (m)(x)2).

The estimator Z1 in (1.2) has the form ZAK +α(Sn−1−ESn−1), so it is a control
variate estimator, using Sn−1 as control for ZAK (for m ≥ 1 Zm can be interpreted as
an estimator with multiple controls). It is natural to ask whether the α = −nf(x) at
least asymptotically coincides with the optimal α∗ = −Cov(ZAK, Sn−1)/Var(Sn−1)
(cf. [6, V.2]). The following lemma shows that this is the case and further provides
some more detailed expansions of Var(ZAK), cf. Proposition 11 below. We get for
the estimator Z∗ = ZAK + α∗(Sn−1 − ESn−1) that

Var(Z∗) ∼ Var(ZAK)
(
1− ρ(S2

n−1, Sn−1))2
)
,

where ρ(S2
n−1, Sn−1) denotes the correlation between Sn−1 and S2

n−1. So Z1 can be
improved by the use of the optimal rate α∗.

Lemma 10.

Cov(ZAK, Sn−1) = nVar(Sn−1)f(x)− n
2

(
ES3

n−1 − ESn−1ES2
n−1)

)
f ′(x)

+ n
6

(
ES4

n−1 − ESn−1ES3
n−1)

)
f ′′(x) + o

(
f ′′(x)

)
.
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Proof. Since

E(ZAKSn−1) = E(ZAKSn−1I (Sn−1 > x/2)) + E(ZAkSn−1I (Sn−1 ≤ x/2))

Now as in the proof for V2 we get

E(ZAKSn−1; Sn−1 > x/2) = o
(
x−kF (x)

)
.

Further we get with a Taylor expansion that for some 0 ≤ ξy ≤ y

1
n
E(ZAkSn−1; Sn−1 ≤ x/2) =

∫ x/2

0

yF (x− y)dFSn−1(y)

=

∫ x/2

0

yF (x)dSn−1 +

∫ x/2

0

y2f(x)dFSn−1(y)− 1

2

∫ x/2

0

y3f ′(x)dFSn−1(y)

+
1

6

∫ x/2

0

y4f ′′(x− ξy)dFSn−1(y).

Since f ′′(x) is monotonely decreasing we get that for every fixed y

1 ≤ lim
x→∞

f ′′(x− ξy)
f ′′(x)

≤ lim
x→∞

f ′′(x− y)

f ′′(x)
= 1.

Denote with c = supx>0
f ′′(x/2)

F (x/2)

F (x)
f ′′(x)

< ∞. As in the proof for V1, we get using
Lemma 7 that

S4
n−1

f ′′(x− ξSn−1)

f ′′(x)
I (y < x/2) ≤ S4

n−1

f ′′(x− Sn−1)

f ′′(y)
I (Sn−1 < x/2)

≤ S4
n−1

f ′′(x− Sn−1)

f ′′(Sn−1)
I (Sn−1 < x/2) ≤ c1S

4
n−1

F (x− Sn−1)

F (x)
I (Sn−1 < x/2)

≤ c1S
4
n−1

F (Mn−1 ∨ x− Sn−1)

F (x)
≤ c1S

4
n−1

F (Mn−1)

F (Mn−1 + Sn−1)
.

The last random variable is integrable by Lemma 8, hence we get by dominated
convergence

∫ x/2

0

y4f ′′(x− ξy)dFSn−1(y) ∼
∫ x/2

0

y4f ′′(x)dFSn−1(y).

Since for every k > 0
∫ ∞

x/2

ykF
(k−1)

(x)dFSn−1(y) ∼ (n− 1)F
(k−1)

(x)

∫ ∞

x/2

ykdF (y) = o(f ′′(x))

it follows that
1
n
E(ZAkSn−1; Sn−1 ≤ x/2)

= ESn−1F (x) + ES2
n−1f(x)− 1

2
ES3

n−1f
′(x) + 1

6
ES4

n−1f
′′(x) + o(f ′′(x)) .

Since (see [10])

EZAKESn−1 = ESn−1P(Sn > u) = nESn−1F (x) + n (ESn−1)2 f(x)

− n
2
ESn−1ES2

n−1f
′(x) + n

6
ESn−1ES3

n−1f
′′(x) + o(f ′′(x)).

and Cov(X, Y ) = EXY − EXEY , the lemma follows.
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The following result gives more detailed expansions of the variance of the Asmussen-
Kroese estimator than Theorem 1. We omit the proof.

Proposition 11. The Asmussen-Kroese estimator has asymptotic variance

Var(ZAK) = n2 Var(Sn−1)f(x)2 − n2
(
ES3

n−1 − ESn−1ES2
n−1

)
f(x)f ′(x)

+ n2

3

(
ES4

n−1 − ESn−1ES3
n−1

)
f(x)f ′′(x)

+ n2

4

(
ES4

n−1 −
(
ES2

n−1

)2
)
f ′(x)2 + o(f ′(x)2).

3 Further proofs

Proof of Lemma 7. This is essentially Lemma 4.2 of [21], but since the proof is short,
we reproduce it here. The inequality is obvious if x ≤ Mn−1 + Sn−1. Otherwise, let
z = x −Mn−1 − Sn−1. Since in the Weibull case, the failure rate λ(x) = β/x1−β is
non-increasing for all x > 0, we have (recall that F (y) = exp{−

∫ y
0
λ(u) du})

log
F
(
Mn−1 ∨ (x− Sn−1)

)

F (x)
= log

F (x− Sn−1)

F (x)
= log

F (Mn−1 + z)

F (z +Mn−1 + Sn−1)

=

∫ z+Mn−1+Sn−1

Mn−1+z

λ(u) du ≤
∫ Mn−1+Sn−1

Mn−1

λ(u) du = log
F (Mn−1

)

F (Mn−1 + Sn−1)
.

Lemma 12. Let x > 0, c > 0 and β2β < 1. Then∫ x

0

βyβ−1 exp
{

2 (2x+ c+ y)β − yβ
}

dy

≤ exp
{

2 (2x+ c)β
}[

1− exp
{
−(1− β2β)xβ

}
+

2βΓ(1/β)

(1− β2β)1/β
xβ−1

]
.

Proof. By Taylor’s theorem we get that for some 0 < ξy < y

(2x+ c+ y)β = (2x+ c)β + βy (2x+ c+ ξy)
β−1 ≤ (2x+ c)β + βy (2x)β−1 .

Hence ∫ x

0

βyβ−1 exp
{

2 (2x+ c+ y)β − yβ
}

dy

≤ exp
{

2 (2x+ c)β
}∫ x

0

βyβ−1 exp
{
β2βyxβ−1 − yβ

}
dy.

By partial integration and xβ−1 < yβ−1,∫ x

0

βyβ−1 exp
{
β2βyxβ−1 − yβ

}
dy =

∫ x

0

βyβ−1e−y
β

exp
{
β2βyxβ−1

}
dy

= − exp
{
β2βyxβ−1 − yβ

} ∣∣∣
x

0
+ β2βxβ−1

∫ x

0

exp
{
β2βyxβ−1 − yβ

}
dy

≤ 1− exp
{
−(1− β2β)xβ

}
+ β2βxβ−1

∫ ∞

0

exp
{
−(1− β2β)yβ

}
dy

=
(
1− exp

{
−(1− β2β)xβ

})
+

2βΓ(1/β)

(1− β2β)1/β
xβ−1 .

8



Proof of Lemma 8. At first note that it is enough to prove the Lemma with (1 + ε)n

replaced by nτ (1 + ε)n where τ might dependent on `, k. The reason for that is

lim
n→∞

nτ (1 + ε/2)n

(1 + ε)n
= 0.

Since β2β < 3
2

log(3/2)/ log(2) < 1 for β < log(3/2)/ log(2), we can choose x0 such
that for x > x0

(
1− exp

{(
β2β − 1

)
xβ
})

+
β2βΓ(1 + 1/β)

(1− β2β)1/β
xβ−1 ≤ 1 + ε. (3.1)

Since F (Mn)/F (Mn + Sn) > 1,

( F (Mn)

F (Mn + Sn)

)`
≤
( F (Mn)

F (Mn + Sn)

)2

.

Hence we only have to consider ` = 2. First note that for every ε > 0 there exists a
C1 with

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2

; Mn ≤ x0

]
≤ xk0

F
(
(n+ 1)x0

)2

= xk0 e2xβ0 (n+1)β ≤ C1(1 + ε)n .

By the same exchangeability argument as for the Asmussen-Kroese estimator, we
get that for every x ≥ 0

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2

;Mn > x
]

= nE
[
Y k
n

( F (Yn)

F (Yn + Sn)

)2

; Yn > x, Mn = Yn

]

= nE
[
Y k
n

( F (Yn)

F (2Yn + Sn−1)

)2

; Yn > x, Mn = Yn

]
.

If x > x0 we get with an iterative application of Lemma 12 and (3.1) that

E
[
Y k
n

( F (Yn)

F (2Yn + Sn−1)

)2

; Mn = Yn, Yn > x
]

=

∫ ∞

yn=x

∫

[0,yn]n−1

yknβ
n

n∏

i=1

yβ−1
i exp

{
−2yβn + 2

(
2yn +

n−1∑

i=1

yi

)β
−

n∑

i=1

yβi

}
dy

≤ (1 + ε)n−1

∫ ∞

yn=x

βyk+β−1
n exp

{
−2yβn + 2 (2yn)β − yβn

}
dyn

= (1 + ε)n−1

∫ ∞

yn=x

βyk+β−1
n exp

{
−(3− 21+β)yβn

}
dyn

9



where the last integral is uniformly bounded in x since 3− 21+β > 0 by assumption,
and (2.2) follows.

Using the same arguments, we get that for x > 2nx0

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2

; Sn > x/2
]
≤

≤ E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2

; Mn > x/(2n)
]

≤ n(1 + ε)n−1

∫ ∞

x/(2n)

βyk+β−1 exp
{
−(3− 21+β)yβ

}
dy

=
n(1 + ε)n−1

(3− 21+β)1+k/β
Γ

(
1 +

k

β
, (3− 21+β)

x

2n

)
,

where Γ(α, z) =
∫∞
z
xα−1e−xdx is the incomplete Gamma function. Since x/2n > x0

and for every γ > 0 there exists an C2 with e−x < C2x
−γ−k/β, we have for some

C3 > 0

n(1 + ε)n−1

(3− 21+β)k+1
Γ

(
1 + k, (3− 21+β)

x

2n

)
≤ C3n

γ+1(1 + ε)n−1x−γ .

So (2.3) holds if x > 2nx0. If x ≤ 2nx0, then by (2.2)

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2

; Sn > x/2
]
≤ C(1 + ε)n ≤ C(2nx0)γ(1 + ε)nx−γ

and the Lemma follows.

4 The case of a random n = N

In practice one is often interested in a random n = N . The easiest way to get an
estimator for random N is to first simulate N and then use the estimator Zm which
leads to the estimator

Zm,N(x) = NF (x− SN−1 ∨ u− SN−1)−NF (x)−N
m∑

k=1

(−1)k−1SkN−1

k!
f (k−1)(x)

+ ENF (x) +
m∑

k=1

(−1)k−1

k!
E
[
NSkN−1

]
f (k−1)(x).

Since in the proof of Theorem 2 we can bound all terms by Cε(1 + ε)n for all ε > 0
and some corresponding constant Cε, we get by dominated convergence that

Theorem 13. Assume that β < β0 and for some ε > 0 E(1 + ε)N < ∞. Then the
estimator Zm,N satisfies

Var Zm,N ∼
1

(m+ 1)!2
Var(NSm+1

N−1)f (m)(x)2

10



5 Numerical examples

In this section we will provide some numerical examples. As distribution for Yi we
will use either a lognormal distribution (cf. Section 6) with parameters µ = 0 and
σ = 1 or a Weibull distribution with parameter β ∈ {0.25, 0.5}. For N we will use
either a Poisson distribution with parameter λ = 10, a geometric distribution with
parameter p = 1/11 or we take N = 10 constant. For these 9 examples we choose x
such that (for the second order asymptotic cf. [1])

ENF
(
x−

(
EN2

EN
− 1

)
EY
)

= 10−k, k = 1, . . . , 7

holds. In the Tables we present x, z = P(SN > x) and the relative error Var[Zi,N ]/(EZi,N)2

(compare Section 4 for the definition of the estimators).
The picture is that the higher order estimators provide a substantial improvement

of the Asmussen-Kroese estimator Z0,N for large x. This was of course to be expected
from the asymptotic results. However, one also sees that when x is fixed the higher
order estimators can have a quite poor performance. This was somehow expected
since for fixed x one can easily show that limi→∞Var Zi,N =∞

Remark 14. We also see that for lognormal and Weibull with β = 0.5 and N
geometric the estimators have a poor performance. In this case also the asymptotics
provides poor estimates. A possible conclusion is that the estimators are not working
well when the asymptotic approximation is not good. In principle one can understand
this phenomenon when one convinces oneself that the estimators as well as the
asymptotic approximation are not working well when there is a “high” probability
that SN−1 is “large” and as was pointed out in Ghamami & Ross [20]. this will usually
be the case when N is large. Therefore [20] suggests a stratification estimator which
uses different estimators depending on the size of N . We want to add the following
observation to the discussion that might be useful to construct future estimators.
If we assume that F (x) is holomorphic for <(x) > 0 and for a fixed n we define
Y x
i = Yi|Yi ≤ x/n, then

P(Sn > u|Mn−1 ≤ x/n) =
∞∑

k=0

(−1)k

k!
E(Y x

1 + · · ·Y x
n−1)kF

(k)
(x).

So using the estimators discussed in this paper an efficient estimation of P(Sn >
u|Mn−1 ≤ x/n) is possible and one has to find efficient estimators for P(Sn >
u|Mn−1 > x/n) of course this method is not easily applied to random n. One should
note that it is also true that

P(Sn > u|Sn−1 ≤ x/2) =
∞∑

k=0

(−1)k

k!
E
[
(Sn−1)k|Sn−1 ≤ x/2

]
F

(k)
(x).

but here the difficulty lies in evaluating E
[
(Sn−1)k|Sn−1 ≤ x/2

]
efficiently.
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x z Z0,N Z1,N Z2,N Z3,N Z4,N

27 0.11 2.83 2.7 2.47 3.65 688
38 0.021 6.21 5.98 5.49 5.28 24.3
58 0.0018 10.1 9.34 8.76 8.22 23.2
88 0.00013 4.9 4.45 3.56 3.41 4.2
132 1.1×10−5 1.07 0.818 0.553 0.449 0.99
198 1×10−6 0.303 0.152 0.0837 0.0569 0.0639
290 1×10−7 0.109 0.0345 0.0149 0.00826 0.0113
419 1×10−8 0.0497 0.00922 0.00362 0.00437 0.00114
596 1×10−9 0.0242 0.00191 0.000656 0.000412 0.000173
834 1×10−10 0.0127 0.000595 0.000653 1.06×10−5 6.88×10−6

1152 1×10−11 0.0071 0.000162 8.06×10−6 5.91×10−6 5.02×10−6

1571 1×10−12 0.00407 5.72×10−5 4.58×10−6 4.02×10−6 3.92×10−6

Table 1: Lognormal Y with Poisson N .

x z Z0,N Z1,N Z2,N Z3,N Z4,N

25 0.097 0.987 0.943 0.926 3.55 248
37 0.015 1.74 1.62 1.43 2.01 94.2
56 0.0013 1.86 1.68 1.38 1.59 14.7
86 0.00012 0.946 0.771 0.576 0.816 4.15
131 1.1×10−5 0.325 0.23 0.144 0.137 0.415
196 1×10−6 0.113 0.0595 0.0327 0.0284 0.07
289 1×10−7 0.0387 0.0152 0.00648 0.00668 0.00881
417 1×10−8 0.0151 0.00394 0.00218 0.000783 0.000861
594 1×10−9 0.00688 0.00112 0.000981 0.000248 0.000384
832 1×10−10 0.00345 0.000521 4.67×10−5 9.07×10−5 9.95×10−7

1150 1×10−11 0.00189 5.62×10−5 2.45×10−6 5.28×10−7 5.97×10−8

1569 1×10−12 0.00106 1.72×10−5 6.25×10−7 4.68×10−7 3.05×10−9

Table 2: Lognormal Y with constant N = 10.

x z Z0,N Z1,N Z2,N Z3,N Z4,N

43 0.087 13.1 12.8 12.1 17.5 399
55 0.047 23.8 23.9 23 22.1 50.7
74 0.017 62 61.8 61.9 59.6 59.1
104 0.0036 265 270 267 264 262
149 0.00035 2530 2390 2270 2290 2440
214 1.4×10−5 45600 45900 58700 43000 30000
307 3.7×10−7 699000 2100000 33300 123000 64800
436 1.2×10−8 32.6 427 7.34 15.5 68.1
612 1.1×10−9 2.11 0.965 0.369 0.239 0.166
850 1×10−10 0.72 0.198 0.0712 0.0123 0.00319

1168 1×10−11 0.343 0.0463 0.00676 0.00138 0.00058
1587 1×10−12 0.179 0.0153 0.00168 0.000612 0.000547

Table 3: Lognormal Y with geometric N .
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x z Z0,N Z1,N Z2,N Z3,N Z4,N

690 0.075 0.168 1.35 758 84300000 1.35×1011

2517 0.0099 0.127 0.207 18.1 17200 2.64×108

7436 0.001 0.0703 0.0444 0.875 85.6 42800
17809 1×10−4 0.0312 0.0128 0.071 2.13 82.6
36671 1×10−5 0.0133 0.00511 0.0105 0.125 2.15
67732 1×10−6 0.00511 0.0021 0.00164 0.00463 0.11
115379 1×10−7 0.00242 0.000949 0.000418 0.00127 0.000356
184671 1×10−8 0.000796 0.000372 0.000193 5.91×10−5 9.57×10−5

281341 1×10−9 0.000397 3.19×10−5 3.9 ×10−5 1.38×10−5 5.53×10−6

411800 1×10−10 0.000163 4.95×10−5 8.06×10−6 4.79×10−6 4.53×10−6

583132 1×10−11 8.82×10−5 6.41×10−6 6.61×10−6 4.51×10−5 5.47×10−6

803093 1×10−12 5.54×10−5 4.84×10−6 4.61×10−6 4.53×10−6 4.54×10−6

Table 4: Weibull Y with β = 0.25 and Poisson N .

x z Z0,N Z1,N Z2,N Z3,N Z4,N

666 0.077 0.11 1.08 936 8480000 3.08×1011

2493 0.0099 0.084 0.159 13.1 187000 1.51×108

7412 0.001 0.0485 0.0318 1.44 164 33500
17785 1×10−4 0.0225 0.00943 0.041 1.62 26.9
36647 1×10−5 0.00944 0.00329 0.0053 0.0654 0.699
67708 1×10−6 0.00396 0.0012 0.00151 0.00446 0.0886

115355 1×10−7 0.00158 0.000506 0.00049 0.000729 0.000247
184647 1×10−8 0.000598 0.000216 0.00015 4.62×10−5 2.94×10−5

281317 1×10−9 0.000286 9.41×10−5 5.77×10−5 2.29×10−5 7.02×10−6

411776 1×10−10 0.000116 4.94×10−6 1.09×10−6 4.67×10−7 8.14×10−7

583108 1×10−11 5.82×10−5 1.84×10−6 1.63×10−5 1.59×10−8 4.4 ×10−8

803069 1×10−12 3.95×10−5 6.26×10−7 4.72×10−7 1.25×10−9 2.59×10−10

Table 5: Weibull Y with β = 0.25 with constant N = 10.

x z Z0,N Z1,N Z2,N Z3,N Z4,N

930 0.06 1.35 4.57 1530 4270000 2.23×1011

2757 0.01 1.48 1.33 59.6 26300 2.1 ×107

7676 0.001 0.735 0.399 4.32 1900 197000
18049 1×10−4 0.252 0.106 0.281 9.9 823
36911 1×10−5 0.0937 0.0335 0.053 0.292 67.3
67972 1×10−6 0.0356 0.0115 0.00808 0.0253 0.326

115619 1×10−7 0.0145 0.00448 0.00323 0.00363 0.0394
184911 1×10−8 0.00583 0.00257 0.00161 0.00292 0.0764
281581 1×10−9 0.00264 0.000937 0.000836 0.000885 0.000748
412040 1×10−10 0.00172 0.000798 0.000742 0.000758 0.000742
583372 1×10−11 0.00124 0.000824 0.000738 0.000738 0.00114
803333 1×10−12 0.00102 0.000743 0.00074 0.000739 0.000785

Table 6: Weibull Y with β = 0.25 and geometric N .
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x z Z0,N Z1,N Z2,N Z3,N Z4,N

41 0.089 1.49 1.22 2.03 22.8 369
68 0.015 3.21 2.75 2.28 5.16 65.1

105 0.0017 6.3 5.6 4.56 4.27 13.5
153 0.00015 9.33 8.28 7.4 6.02 7.41
211 1.4×10−5 9.76 9.3 8.78 7.65 7.26
280 1.2×10−6 6.43 11.6 6.53 6.36 4.42
359 1.2×10−7 5.17 6.13 4.82 3.25 5.46
449 1.1×10−8 3.18 2.41 4.24 2.36 1.77
550 1.1×10−9 1.82 2.02 2.45 2.03 1.51
662 1.1×10−10 2.83 1.61 0.954 1.21 0.648
783 1.1×10−11 0.546 0.257 0.873 0.131 2.5
916 1×10−12 0.853 0.188 0.152 0.0437 0.0972

Table 7: Weibull Y with β = 0.5 and Poisson N .

x z Z0,N Z1,N Z2,N Z3,N Z4,N

39 0.088 0.712 0.619 1.42 15.5 413
66 0.013 1.48 1.22 1.08 3.55 45.1
103 0.0014 2.59 2.21 1.69 2.04 9.34
151 0.00014 3.5 3.04 2.42 2 3.66
209 1.2×10−5 3.75 3.12 2.57 2.12 2.21
278 1.2×10−6 3.23 3.08 2.45 2.17 1.57
357 1.1×10−7 2.16 2.02 1.75 1.82 1.19
447 1.1×10−8 1.73 1.42 1.43 1.5 0.972
548 1.1×10−9 1.24 1.18 0.692 0.958 0.779
660 1.1×10−10 1.3 0.753 0.492 0.537 0.263
781 1×10−11 0.415 0.704 1.23 1.98 0.113
914 1×10−12 0.406 0.145 0.125 0.0677 0.0341

Table 8: Weibull Y with β = 0.5 and constant N = 10.

x z Z0,N Z1,N Z2,N Z3,N Z4,N

61 0.072 10 8.95 9.85 140 5280
88 0.027 23.8 22.6 20.3 27.6 321

125 0.007 75.8 75 72.3 67.4 83
173 0.0013 335 324 321 320 308
231 0.00016 1990 2060 2090 1850 2010
300 1.5×10−5 21000 14400 17700 17100 13200
379 8.3×10−7 92800 266000 43900 220000 81400
469 3.5×10−8 26000 35800 234000 603000 5190000
570 2.3×10−9 21500 13900 395000 316000 45000
682 1.7×10−10 945 614000 6610 3350 1030
803 1.7×10−11 98500 691 249 521 1110
936 1.4×10−12 400 87.2 53.8 418 950

Table 9: Weibull Y with β = 0.5 and geometric N .
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6 Distributions with regularly varying hazard rate

In this section we assume that F (x) = e−Λ(x) where Λ(x) =
∫ x

0
λ(y) dy and λ(x)

is regularly varying with index β − 1 and β < β0 = log(3/2)/ log(2). We further
assume that λ(x) is m+ 1 times differentiable and that λ(m+1) is regularly varying.
It follows that the distribution of F is semiexponential (cf. [12, Definition 1.4]) and
hence subexponential. To exclude regularly varying distribution we will assume that
limx→∞ λ(x)x = ∞ (and hence F (x) = o(x−γ) for all γ > 0). Using Karamata’s
Theorem (e.g. [13]) it is easy to see that

f (m)(x) ∼ (−1)mλ(x)m+1F (x).

Remark 15. In [10] for the same class of distributions (without the bound on β)
it is shown that the higher order asymptotic up to the term f (m−1)(x) holds if
lim infx→∞ xλ(x)/ log(x) > 0 and limx→∞ λ(x) = 0. So our result is a little bit more
general for distributions close to the regularly varying distributions.

Theorem 16. Assume that λ(x) is regularly varying with index β−1 and β < β0 =
log(3/2)/ log(2). Assume further that λ(x) is m+ 1 times differentiable, that λ(m+1)

is regularly varying and that xλ(x) → ∞. If E(1 + ε)N < ∞ for some ε > 0. Then
the estimator Zm,N satisfies

Var Zm,N ∼
1

(m+ 1)!2
Var(N(SN−1)m+1)f (m)(x)2.

Proof. In the proof of Theorem 2, replace Lemmas 7 and 8 with Lemmas 17 and 18
below. The rest is obvious adaptations.

Lemma 17. Assume that − log(F (x)) =
∫ x

0
λ(z)dz with λ(x) = L(x)xβ−1 and

β < 1. Then for every ε > 0 there exists an Cε > 1 such that

F
(
Mn−1 ∨ (x− Sn−1)

)

F (x)
≤ Cεn

α(1+ε)

(
F (Mn−1

)

F (Mn−1 + Sn−1)

)1+ε

.

Proof. Since λ(x) ∼ supz>x λ(z) (λ(x) is regularly varying) for every ε > 0 there
exists an x0 such that for x > x0 and z > 0 λ(x+ z) ≤ (1 + ε)λ(x).

The inequality is obvious if x ≤Mn−1+Sn−1. Otherwise, let z = x−Mn−1−Sn−1.
if Mn−1 > x0 then

log
F
(
Mn−1 ∨ (x− Sn−1)

)

F (x)
= log

F (x− Sn−1)

F (x)
= log

F (Mn−1 + z)

F (z +Mn−1 + Sn−1)

=

∫ z+Mn−1+Sn−1

Mn−1+z

λ(u) du ≤ (1 + ε)

∫ Mn−1+Sn−1

Mn−1

λ(u) du

= log

(
F (Mn−1

)

F (Mn−1 + Sn−1)

)1+ε

.
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If Mn−1 ≤ x0 then for x > 2(n− 1)x0 and some K1 > 0.

F (x− Sn−1)

F (x)
≤ F (x− (n− 1)x0)

F (x)
≤ F (x/2)

F (x)
≤ K1

and for x ≤ 2(n− 1)x0 we get by the Potter bounds that

F (x− Sn−1)

F (x)
≤ 1

F (2(n− 1)x0)
≤ K2(n− 1)α(1+ε).

The Lemma follows since
F (Mn−1)

F (Mn−1 + Sn−1)
> 1.

Lemma 18. If β < β0 then there exists a δ > 0 such that for all k > 0, ` ∈ {1, 2},
γ > 0 and ε > 0 there exist a C such that.

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)`+δ]
< C(1 + ε)n , (6.1)

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)`+δ
; Sn > x/2

]
≤ C(1 + ε)nx−γ. (6.2)

Proof of Lemma 18. As in the proof of Lemma 8 it is enough to prove the Lemma
for ` = 2 and with (1 + ε)n replaced by nτ (1 + ε)n where τ might dependent on k.
Since β2β < 1 and 3 − 21+β > 0 for β < log(3/2)/ log(2), we can choose x0 (bigger
than the x0 of Lemma 19), δ and γ such that for x ≥ x0

1− exp
{
−(1− (β + γ)(2 + δ)β)Λ(x)

}
+ Cδ,γ

Λ (x)

x
≤ 1 + ε, (6.3)

(1 + γ)(β + γ)(2 + δ)β < 1 and 3 + δ − (1 + γ)(2 + δ)1+β > 0. First note that for
every ε > 0 there exists a C1 with

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2+δ

; Mn ≤ x0

]
≤ xk0

F
(
(n+ 1)x0

)2+δ

= xk0 e(2+δ)Λ(x0(n+1)) ≤ C1(1 + ε)n .

By the same exchangeability argument as for the Asmussen-Kroese estimator, we
get that for every x ≥ 0

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2+δ

;Mn > x
]

= nE
[
Y k
n

( F (Yn)

F (2Yn + Sn−1)

)2+δ

; Yn > x, Mn = Yn

]
.
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If x > x0 we get with an iterative application of Lemma 19 and (6.3) that

E
[
(Y k

n

( F (Yn)

F (2Yn + Sn−1)

)2+δ

; Mn = Xn, Yn > x
]

=

∫ ∞

xn=x

∫

[0,yn]n−1

ykn

n∏

i=1

λ(yi)

exp
{
−(2 + δ)Λ(yn) + (2 + δ)Λ

(
2yn +

n−1∑

i=1

yi

)
−

n∑

i=1

Λ(yi)
}

dy

≤ (1 + ε)n−1

∫ ∞

yn=x

yknλ(yn) exp
{
−(2 + δ)Λ(yn) + (2 + δ)Λ (2yn)− Λ(yn)

}
dyn

≤ (1 + ε)n−1

∫ ∞

yn=x

yknλ(yn) exp
{
−(3 + δ − (1 + γ)(2 + δ)1+β)Λ(yn)

}
dyn

where the last integral is uniformly bounded in x and (6.1) follows.
Since xλ(x) → ∞ it follows that Λ(x)/ log(x) → ∞ and hence for every γ > 0

we can find a C such that for all x > x0

xkλ(x) exp
{
−(3 + δ − (1 + γ)(2 + δ)1+β)Λ(x)

}
≤ Cx−γ−1.

Using the same arguments, we get that for x > 2nx0

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2+δ

; Sn > x/2
]
≤ E

[
Mk

n

( F (Mn)

F (Mn + Sn)

)2+δ

; Mn > x/(2n)
]

≤ n(1 + ε)n−1

∫ ∞

xn=x/(2n)

xknλ(xn) exp
{
−(3 + δ − (1 + γ)(2 + δ)1+β)Λ(xn)

}
dxn.

≤ Cn(1 + ε)n−1

∫ ∞

xn=x/(2n)

x−γ−1dxn =
C

γ
2γnγ+1(1 + ε)n−1.

So (6.2) holds if x > 2nx0. If x ≤ 2nx0, then by (6.1)

E
[
Mk

n

( F (Mn)

F (Mn + Sn)

)2

; Sn > x/2
]
≤ C(1 + ε)n ≤ C(2nx0)γ(1 + ε)nx−γ

and the Lemma follows.

Lemma 19. Let c > 0 and (1 + γ)(β + γ)(2 + δ)β < 1. Then there exists an x > 0
and constant Cδ,ε such that for x > x0

∫ x

0

λ(y) exp
{

(2 + δ)Λ (2x+ c+ y)− Λ(y)
}

dy

≤ exp
{

(2 + δ)Λ (2x+ c)
}[

1− exp
{
−(1− (β + γ)(2 + δ)β)Λ(x)

}
+ Cδ,ε

Λ (x)

x

]
.

Proof. Since λ(x) ∼ supx>z λ(z), λ(x) ∼ βΛ(x)/x and λ(x) is regularly varying, we
get by Taylor’s theorem that for some 0 < ξy < y and x large enough

Λ (2x+ c+ y) = Λ (2x+ c) + yλ (2x+ c+ ξy)

≤ Λ (2x+ c) + (β + γ)2β−1 y

x
Λ (x) .
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Hence
∫ x

0

λ(y) exp
{

(2 + δ)Λ (2x+ c+ y)− Λ(y)
}

dy

≤ exp
{

(2 + δ)Λ (2x+ c)
}∫ x

0

λ(y) exp
{

(β + γ)(2 + δ)β
y

x
Λ (x)− Λ(y)

}
dy.

By partial integration
∫ x

0

λ(y) exp
{

(β + γ)(2 + δ)β
y

x
Λ (x)− Λ(y)

}
dy

= − exp
{

(β + γ)(2 + δ)β
y

x
Λ (x)− Λ(y)

} ∣∣∣∣∣

x

0

+ (β + γ)(2 + δ)β
Λ (x)

x

∫ x

0

exp
{

(β + γ)(2 + δ)β
y

x
Λ (x)− Λ(y)

}
dy

≤ 1− exp
{
−(1− (1 + ε)β(2 + δ)β)Λ(x)

}
+ Cδ,ε

Λ (x)

x
,

since for some x1 and all x1 < y < x we have Λ(x)/x ≤ (1 + δ)Λ(y)/y and that
∫ x1

0

exp
{

(β + γ)(2 + δ)β
y

x
Λ (x)− Λ(y)

}
dy

is uniformly bounded for x > x1.
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