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Abstract

We propose a computationally efficient logistic regression estimating function
for spatial Gibbs point processes. The sample points for the logistic regression
consist of the observed point pattern together with a random pattern of dummy
points. The estimating function is closely related to the pseudolikelihood score.
However, unlike common implementations of maximum pseudolikelihood, our
approach does not suffer from bias due to numerical quadrature. The devel-
oped method is implemented in R code and will be added to future versions of
the package spatstat. We demonstrate its efficiency and practicability on a
real dataset and in a simulation study. Finally, focusing on stationary models,
we prove that the estimator derived from the estimating function is strongly
consistent and satisfies a central limit theorem. Moreover, we provide a consis-
tent estimate of the asymptotic covariance matrix which allows to construct
asymptotic confidence intervals.

Keywords: confidence intervals, estimating functions, exponential family mod-
els, Georgii-Nguyen-Zessin formula, logistic regression, pseudolikelihood.

1 Introduction

Spatial Gibbs and Markov point processes form major classes of models for spatial
dependence in point patterns. For such models, popular options for parameter es-
timation include maximum likelihood (e.g. Ogata and Tanemura, 1981; Møller and
Waagepetersen, 2004), maximum pseudolikelihood (e.g. Besag, 1977; Jensen and
Møller, 1991; Baddeley and Turner, 2000; Billiot et al., 2008) and Takacs-Fiksel
(e.g. Takacs, 1983; Fiksel, 1984; Billiot, 1997; Coeurjolly et al., 2012) estimation.
For all three methods, the associated estimating functions are unbiased.
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However, in practice, approximate versions of these estimating functions are
almost always used. In the likelihood function the normalizing constant is not avail-
able in a tractable form and it is typically approximated by stochastic methods
like Markov chain Monte Carlo (MCMC) (Ripley, 1979; Huang and Ogata, 1999;
Geyer, 1999; Møller and Waagepetersen, 2004). The score of the pseudolikelihood
and the Takacs-Fiksel estimating function contain an integral over the (typically two
or three-dimensional) spatial domain where the point process is observed, and this
must usually be approximated using numerical quadrature.

Maximum pseudolikelihood and Takacs-Fiksel methods offer enormous savings
in computation time, compared to MCMC maximum likelihood estimation. An-
other advantage is that they can often be implemented using standard software for
Generalized Linear Models (GLMs), with all the attached benefits of numerical sta-
bility, efficient optimisation procedures, and flexible model specification by the user.
However, lingering doubts remain about the bias inherent in these methods, due
to the numerical approximations. Indeed, experiments suggest that the bias can be
substantial.

One strategy for numerical approximation is to discretise the spatial domain
onto a fine grid of pixels (Tukey, 1972) and to consider the random field of binary
variables indicating presence or absence of points in the pixels. This is used ex-
tensively in Geographical Information Systems (GIS) to fit spatial Poisson process
models (Agterberg, 1974; Bonham-Carter, 1995; Baddeley et al., 2010; Warton and
Shepherd, 2010). The discrete approximation to the Poisson process likelihood is a
binomial regression based on the binary presence/absence variables, making it possi-
ble to rely on standard software. Approximation error can be controlled using a fine
discretisation, but this leads to numerical instability, arising because the overwhelm-
ing majority of pixels do not contain a data point. In practice, the approximation
is further modified by using only a randomly-selected subset of the absence pixels.
The pixel discretisation approach can be extended to Gibbs processes (Clyde and
Strauss, 1991), although this has not been widely used in practice. For a given choice
of grid the binary random field pseudolikelihood again takes the form of a logistic
regression likelihood. The spatial point process pseudolikelihood function may be
viewed as a limit of binary random field pseudolikelihood functions (Besag, 1975,
1977; Besag et al., 1982; Clyde and Strauss, 1991).

Another popular strategy for numerical approximation is the sparse quadrature
approximation pioneered by Berman and Turner (1992) for maximum likelihood es-
timation of spatial Poisson processes and extended to maximum pseudolikelihood
estimation of Gibbs processes by Baddeley and Turner (2000). The approximate
pseudolikelihood is equivalent to a Poisson loglinear regression likelihood which can
be implemented using standard GLM software. The sparse quadrature approxima-
tion involves a sum over the observed data points together with a set of “dummy”
points. While it was originally envisaged that the dummy points might be generated
at random (Berman and Turner, 1992; Baddeley and Turner, 2000), the standard
software implementation in the spatstat package (Baddeley and Turner, 2005) gen-
erates a regular grid of dummy points if no dummy points are provided by the user.

When unbiased estimating functions are approximated using deterministic nu-
merical approximations, the resulting estimating functions are not in general unbi-
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ased, and it may be difficult to quantify the error due to the approximations. It can
therefore be advantageous to replace deterministic numerical quadrature with Monte
Carlo approximations which can provide both unbiased results and the possibility
of quantifying the Monte Carlo error. Rathbun et al. (2007) and Waagepetersen
(2007) introduced Monte Carlo approximation based on random dummy points for
the cases of maximum likelihood estimation of Poisson processes and composite
likelihood for Neyman-Scott point processes, respectively. The estimating function
in Waagepetersen (2007) obtained with so-called ‘Dirichlet’ weights (Baddeley and
Turner, 2000) takes the form of a conditional logistic regression, equivalent to the
case-control conditional likelihoods considered for epidemiological data in Diggle
and Rowlingson (1994), and closely related to logistic regression in GIS where the
absence pixels are subsampled (Bonham-Carter, 1995).

In this paper we introduce a logistic regression estimating function for the wide
class of Gibbs point processes and we provide a detailed study of its properties both
from a practical and a theoretical point of view. The logistic regression estimating
function has several advantages. First, the estimating function is unbiased. Second,
since the estimating function takes the form of a logistic regression score, parameter
estimates can easily be obtained using existing software for GLMs. Third, due to a
decomposition of variance it is possible to quantify the proportion of variance due to
using random dummy points. By the third property, the user can establish how large
a dummy point sample is needed in order to achieve a certain level of accuracy (e.g.
that variance due to random dummy points does not exceed a certain percentage
of the total variance). Apart from being attractive in its own right, our estimating
function can be further motivated by its close relation to pseudolikelihood and a
time-invariance estimating function obtained from Barker dynamics.

A brief background on spatial point processes in Section 2 is followed in Section 3
by an introduction and discussion of our logistic regression estimating function.
Section 4 presents our asymptotic results while Section 5 contains simulation studies
and a data example. Proofs and technical details are deferred to the appendices.

2 Background on spatial point processes and
notation

Let Λ be a Borel subset of Rd and let M be an arbitrary space (e.g. a countable set
or a Borel subset of Rk for some k ≥ 1). A marked point is a pair u = (u,m) where
u ∈ Λ and m ∈M represent respectively the location and some other characteristic
of an object observed in Λ. For example u might be the spatial location of a tree,
and m its diameter at breast height. A marked point process Y on S = Λ × M
is a locally finite random subset of Λ × M meaning that Y ∩ (W × M) is finite
whenever W is a bounded subset of Λ. The set of all locally finite marked point
configurations is denoted by Ω. We equip Λ×M with the product measure Ld ⊗ µ
where Ld is the Lebesgue measure on Rd and µ is a probability distribution on the
mark space M that serves as the reference measure on M. For simplicity we write
du = Ld(du)⊗ µ(dm) for a marked point u = (u,m).

The region Λ can be bounded or unbounded depending on the application. How-
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ever, we consider Λ = Rd in Section 4 to derive asymptotic results. The notation
W will be reserved for a bounded Borel set of Rd. For a marked point configuration
y ∈ Ω, yW = y ∩ (W ×M), i.e. the subset of marked points where the ‘location
part’ falls in W . Finally, | · | will be used to denote, depending on the context, either
the cardinality of a finite set or the volume of a bounded Borel set or the supre-
mum norm of a vector. We let n(y) denote the (possibly infinite) number of points
in y ∈ Ω. We only consider the case of a locally finite Y which has an intensity
function α with respect to Ld⊗µ. Then Campbell’s Theorem holds (e.g. Møller and
Waagepetersen (2004)):

E
∑

u∈Y
h(u) =

∫
h(u)α(u) du (2.1)

for any real Borel function h defined on S such that hα is absolutely integrable (with
respect to Ld ⊗ µ).

2.1 Marked Gibbs point processes

Let λθ(u,X) be the Papangelou conditional intensity of a spatial marked Gibbs point
processX on S parametrized by θ ∈ Θ ⊂ Rp (for some p ≥ 1). Intuitively, λθ(u,X)du
is the conditional probability that a marked point u occurs in a small ball of volume
du around u given the rest of the point process X. Implicitly, we assume that the
conditional intensity exists in the sense that the fundamental Georgii-Nguyen-Zessin
equation (GNZ formula), which also characterizes the distribution of X, is satisfied:

E
∑

u∈X
f(u,X \ u) = E

∫
f(u,X)λθ(u,X)du (2.2)

for non-negative functions f : S × Ω → R (see Georgii, 1976, for a general presen-
tation). We therefore exclude in our study certain non-hereditary Gibbs processes
(Dereudre and Lavancier, 2009) as well as deterministic point patterns. For further
background material and measure theoretical details on point processes, we refer to
Daley and Vere-Jones (2003) and Møller and Waagepetersen (2004).

We will consider the case of a log-linear conditional intensity,

λθ(u,X) = H(u,X)eθ
>t(u,X), (2.3)

where t(u,X) = (t1(u,X), . . . , tp(u,X))> for functions ti : S × Ω → R, i = 1, . . . , p
and where H : S × Ω → [0,∞) is a fixed, known function which may serve as a
model offset or may be used to model a hard-core effect.

Remark 2.1 (Multitype point processes). In the important special case of a multi-
type point process where M is a finite discrete set of K elements, say, µ is typically
the uniform distribution on M. However, we could also have used counting measure
as a reference mark measure in which case the intensity function αc with respect to
Lebesgue-counting product measure would become αc(u) = α(u)/K.
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3 An unbiased logistic regression estimating
function

Let W denote the bounded observation window of X. In this section, we assume
Λ = W implying that X is a finite point process.

3.1 Estimating function

Our logistic regression estimating function involves a ‘dummy point process’ D on
S independent of X, with positive intensity function ρ. The estimating function is

sW (X,D; θ) =
∑

u∈XW

ρ(u)λ
(1)
θ (u,X \ u)

λθ(u,X \ u)[λθ(u,X \ u) + ρ(u)]
−
∑

u∈DW

λ
(1)
θ (u,X)

λθ(u,X) + ρ(u)

(3.1)
where λ(1)

θ denotes the p-dimensional gradient vector of λθ with respect to θ.
By the GNZ formula (2.2) for X and the Campbell formula (2.1) for D given X,

respectively, we obtain

E
∑

u∈XW

ρ(u)λ
(1)
θ (u,X \ u)

λθ(u,X \ u)[λθ(u,X \ u) + ρ(u)]
= E

∫

W×M

ρ(u)λ
(1)
θ (u,X)

λθ(u,X) + ρ(u)
du (3.2)

and

E
[ ∑

u∈DW

λ
(1)
θ (u,X)

λθ(u,X) + ρ(u)

∣∣∣X
]

=

∫

W×M

ρ(u)λ
(1)
θ (u,X)

λθ(u,X) + ρ(u)
du. (3.3)

It follows that sW (X,D; θ) is an unbiased estimating function (where the expectation
is taken over both X and D).

The score (3.1) is the derivative of the function LRLW (X; θ) (where LRL stands
for the logistic regression likelihood) given by

LRLW (X; θ) =
∑

u∈XW
log

λθ(u,X \ u)

λθ(u,X \ u) + ρ(u)
+
∑

u∈DW
log

ρ(u)

λθ(u,X) + ρ(u)
(3.4)

which conditional on X ∪D is formally equivalent to the log-likelihood function for
Bernouilli trials Y (u) = 1[u ∈ X] with P (Y (u) = 1) = λ(u,X \u; θ)/[λθ(u,X \u) +
ρ(u)]. Note in this connection that λθ(u,X) = λθ(u,X \ u) for u /∈ X. If the Papan-
gelou conditional intensity is log-linear (2.3), then our estimating function precisely
takes the form of the score of a logistic regression with − log ρ(u) as an offset term.
This means that estimation can be implemented straightforwardly using standard
software for GLMs. Further, for log-linear models, (3.4) is a concave function of θ
since

d
dθ>

sW (X,D; θ) = −
∑

u∈(X∪D)W

t(u,X \ u)t(u,X \ u)>
ρ(u)λθ(u,X \ u)

[λθ(u,X \ u) + ρ(u)]2
(3.5)

is negative-semidefinite.
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Note that (3.1) is applicable both for homogeneous and inhomogeneous Gibbs
point processes. We also emphasise that (3.2) and (3.3) are true if W ⊂ Λ (and even
if Λ = Rd) but in such a case the score (3.1) cannot be computed since it depends
on XΛ\W , and an edge correction such as the border correction should then be
applied. This is done in Section 4 where we focus on stationary Gibbs models and
stationary dummy point processes in order to derive the asymptotic distribution
of the logistic regression estimate θ̂ obtained from (3.1) and an estimate of the
asymptotic covariance matrix for θ̂.

3.2 Relation to existing methods

Below we comment on the relation between our logistic regression estimating func-
tion and various existing alternatives.

3.2.1 Pseudolikelihood

If we rearrange (3.1) as

sW (X,D; θ) =
∑

u∈XW

λ
(1)
θ (u,X \ u)

λθ(u,X \ u)
−

∑

u∈(X∪D)W

λ
(1)
θ (u,X \ u)

λθ(u,X \ u) + ρ(u)
(3.6)

and apply the GNZ formula and (3.3) to the last term in (3.6), we obtain

E
∑

u∈(X∪D)W

λ
(1)
θ (u,X \ u; θ)

λθ(u,X \ u) + ρ(u)
= E

∫

W×M
λ

(1)
θ (u,X)du. (3.7)

Thus, if the last term in (3.6) is replaced by its integral compensator
∫
W×M λ

(1)
θ (u,X)du,

the score
∑

u∈XW

λ
(1)
θ (u,X \ u)

λθ(u,X \ u)
−
∫

W×M
λ

(1)
θ (u,X)du (3.8)

of the pseudolikelihood is obtained (Jensen and Møller, 1991). Hence our estimating
function may be viewed as a Monte Carlo approximation of the pseudolikelihood
score to which it converges (in mean square) when infu∈W ρ(u)→∞. Similarly, the
logistic regression log-likelihood (3.4) is equivalent to

∑

u∈XW
log λθ(u,X \ u) +

∑

u∈(X∪D)W

log
ρ(u)

λθ(u,X) + ρ(u)

which converges (in mean square) to the log-pseudolikelihood as infu∈W ρ(u)→∞.

3.2.2 Time-invariance estimating functions

As detailed in Appendix A the following unbiased estimating function can be derived
as a time-invariance estimating function (Baddeley, 2000) associated with Barker
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dynamics (Barker, 1969):

bW (X; θ, B) =
∑

u∈XW

B(u)λ
(1)
θ (u,X \ u)

λθ(u,X \ u)[λθ(u,X \ u) +B(u)]
−
∫

W×M

B(u)λ
(1)
θ (u,X)

λθ(u,X) +B(u)
du

(3.9)
where B(·) is a positive function. Asymptotic results for time-invariance estimators
are available (Qi, 2008). If infu∈W B(u) → ∞ then (3.9) converges (a.s.) to the
pseudolikelihood score (3.8).

If the integral is replaced by a Monte Carlo approximation, the approximate
Barker estimating function

∑

u∈XW

B(u)λ
(1)
θ (u,X \ u)

λθ(u,X \ u)[λθ(u,X \ u) +B(u)]
−
∑

u∈DW

B(u)λ
(1)
θ (u,X)

ρ(u)[λθ(u,X) +B(u)]
(3.10)

takes the form of a logistic regression score and coincides with (3.1) if B = ρ.
Simulation results in Section 5.1 indicate in the stationary case that for a given ρ
it is optimal to let B = ρ. This is further supported by an analogy to results by
Rathbun (2012) which imply that B = ρ is optimal in the case of an inhomoge-
neous Poisson point process. This also suggests that it is sub-optimal to approxi-
mate (3.8) by replacing the integral term by the simple Monte Carlo approximation∑

u∈DW λ
(1)
θ (u,X)/ρ(u) since this corresponds to (3.10) with B(u) =∞.

3.2.3 Berman-Turner device

Baddeley and Turner (2000) extended the Berman and Turner (1992) device for
spatial Poisson processes to the case of Gibbs processes. They approximated the
integral on the right hand side of (3.7) using numerical quadrature with quadrature
points given by the union of data points and (possibly random) dummy points Q.
For each u ∈ X ∪ Q we denote the associated quadrature weight w(u). Then (3.8)
is approximated by

∑

u∈XW

λ
(1)
θ (u,X \ u)

λθ(u,X \ u)
−

∑

u∈XW∪QW
λ

(1)
θ (u,X \ u)w(u)

=
∑

u∈(X∪Q)W

w(u)
[
Y (u)

λ
(1)
θ (u,X \ u)

λθ(u,X \ u)
− λ(1)

θ (u,X \ u)
]

(3.11)

where Y (u) = 1[u ∈ X]/w(u). This is formally equivalent to the score function
of weighted Poisson regression with log link. In general, for u ∈ X, λθ(u,X) 6=
λθ(u,X \ u). This ‘discontinuity’ (Baddeley and Turner, 2000) can lead to consid-
erable bias if the number of dummy points is not high (see Section 5). The ppm
function in the R package spatstat (Baddeley and Turner, 2005, 2006) implements
the above approach to approximate maximum pseudolikelihood estimation.

3.2.4 Advantages of the logistic likelihood

Apart from the fact that it is unbiased and is easy to implement using GLM software,
the logistic regression estimating function (3.1) has other advantages over methods
that require numerical integration.
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A powerful advantage is that the logistic regression estimating function typically
requires fewer evaluations of the conditional intensity as demonstrated in the practi-
cal examples in Section 5. In higher dimensions (including higher spatial dimensions,
space-time, and marked point patterns) numerical integration becomes increasingly
costly due to the ‘curse of dimensionality’. Even in two dimensions there are mod-
els such as the area-interaction process (Baddeley and Lieshout, 1995) for which
the evaluation of the conditional intensity is so costly that there is a substantial
advantage in using the logistic regression estimating function.

Even if we did have sufficient computing resources to perform numerical integra-
tion with a high density of quadrature points, this might still be unsatisfactory: it can
cause computational and numerical problems such as overflow/underflow, numeri-
cal instability, and the failure of the Taylor approximation underpinning statistical
procedures (Hauck and Donner, 1977).

In a field experiment in forestry or ecology, the data required for the logistic re-
gression approach may be easier to collect. Following a remark by Comas and Mateu
(2011) in case of Takacs-Fiksel estimation, to fit (for example) a stationary Strauss
process with interaction radius R (see Section 5.1) using logistic regression, we only
need to count the number of R-neighbours of each data or dummy point, which could
be performed in the field. To fit the same model using maximum pseudolikelihood
we would need to compute the same information for a fine grid of dummy points,
which would typically not be feasible in the field. Instead we would have to record
the exact spatial location of each data point, and perform the equivalent calculation
in software.

3.3 Choice of dummy point distribution

For ease of implementation the dummy point process D should be both easy to
simulate and also mathematically tractable. Obvious choices are marked versions of a
homogeneous Poisson point process, a binomial point process or a stratified binomial
point process on W . A stratified binomial point process is obtained by partitioning
W into a regular grid and then generating independent binomial point processes
within each of the grid cells. In particular, each of these binomial point processes
might consist of just one random point. In the following we refer for convenience
to a stratified single point binomial point process as a stratified point process. We
typically assign independent random marks with a common density q with respect to
the reference mark distribution µ. The intensity function of the marked dummy point
process then becomes q times the constant intensity of the unmarked dummy point
process. In particular, if q = 1 the mark distribution coincides with the reference
mark distribution and the constant intensity ρ of the marked dummy point process
then equals the intensity of the unmarked dummy point process. We discuss the
choice of D in more detail in Section 4 and Section 5.

As a rough rule of thumb inspired by an analogous rule of thumb in spatstat
we suggest to use ρ = 4n(XW )/|W |. In our simulation studies this usually resulted
in moderate additional variance due to using random dummy points. Moreover, this
choice can be used as a starting point for a data driven approach to determine ρ
(see next section and Section 5.4).
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3.4 Variance decomposition

The score (3.1) can be rewritten as the sum of two random vectors T1,W (X) and
T2,W (X,D) where T1,W (X) is given by (3.9) with B(u) = ρ(u) and

T2,W (X,D) = sW (X,D; θ)− T1,W (X)

=

∫

W×M

ρ(u)λ
(1)
θ (u,X)

λθ(u,X) + ρ(u)
du−

∑

u∈DW

λ
(1)
θ (u,X)

λθ(u,X) + ρ(u)
. (3.12)

Under appropriate conditions (to be formalized in Section 4), the variance of |W |1/2θ̂
can be approximated by S−1GS−1 where G = |W |−1 Var sW (X,D; θ) and the sensi-
tivity matrix S is the expected value

S = −|W |−1 E
d

dθ>
sW (X,D; θ)

of the negated and normalized version of the derivative given in (3.5). Since T1,W is
a centered random vector depending only on X and since the expectation of T2,W

given X is zero, T1,W and T2,W are uncorrelated. Hence the variance of |W |1/2θ̂ can
be decomposed into the sum of

Σ1 = S−1G1S
−1 and Σ2 = S−1G2S

−1

where G1 = |W |−1 VarT1,W (X; θ) and G2 = |W |−1 VarT2,W (X,D; θ). In the case
where ρ is constant, asymptotic results in Section 4 and simulation studies in Sec-
tion 5 suggest that Σ2 is approximately proportional to 1/ρ. Furthermore, in the
simulation studies the estimated Σ1 is close to the covariance matrix of the MPLE.
We can thus quantify the increase in estimation variance due to the use of the ran-
dom dummy points D relative to the estimation variance of the exact MPLE. This
also allows us to determine how large a ρ should be used in order to achieve a certain
accuracy relative to the variance of the MPLE (see Section 5.4).

4 Theoretical results for stationary models

In this section we focus on exponential family models of stationary marked Gibbs
point processes that are defined on S = Rd×M (Λ = Rd) and we derive asymptotic
properties for the logistic regression estimate.

By stationarity, the conditional intensity is translation-equivariant, i.e.

λθ(u, x) = λθ(0, τux) (4.1)

where τux = {(v − u,m) | (v,m) ∈ x} is the translation of the locations of x by the
vector −u. We assume that λθ has finite interaction range R ≥ 0, i.e.

λθ(u, x) = λθ(u, xB(u,R)) (4.2)

where B(u,R) is the Euclidean ball centered at u with radius R. We further assume
that X is observed in a sequence of bounded observation windows W+

n ⊂ Rd, n ≥ 1.
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Under the assumption (4.2) of finite range, a logistic regression estimate θ̂n of θ is
obtained for each n by maximizing LRLWn(X; θ), whereWn = W+

n 	R is the erosion
of W+

n by R:
Wn = {v ∈ W+

n | B(v,R) ⊆ W+
n }. (4.3)

This corresponds to using minus sampling to correct for edge effects (Miles, 1974).
We assume that (Wn)n≥1 is a sequence of increasing cubes such that Wn → Rd

as n → ∞. Appendix C lists some further technical assumptions. None of these
are very restrictive and they are satisfied by a large class of models including the
Strauss process, its multiscale and multitype generalizations, Geyer’s triplet process,
the area-interaction process and Geyer’s saturation process.

In the following we consider three different choices of the stationary marked
dummy point process D of constant intensity ρ > 0. In all cases the marks are
assigned independently of the locations of the points according to the reference
mark distribution µ. First, for the homogeneous marked Poisson process P(Rd, ρ)
the locations constitute a homogeneous Poisson process. Second, for the marked
binomial point process we assume that ρ|Wn| is integer. The marked binomial point
process Dn on Wn then consists of ρ|Wn| uniform and independent marked points
with locations in Wn. In case of marked binomial dummy points, we abuse notation
and let D = ∪∞n=1{Dn} ∼ B(Rd, ρ) and DWn = Dn. Finally, the marked stratified
point process on S requires a more detailed definition:

Definition 4.1. Let Rd be decomposed as ∪k∈ZdCk where the cells Ck are disjoint
cubes centered at k/ρ1/d with volume 1/ρ. For k ∈ Zd let Uk = (Uk,Mk) where the
random point Uk is uniform on Ck, Mk ∼ µ and all Uk and Mk are independent.
Then D = ∪k∈Zd{Uk} is referred to as a marked stratified binomial point process
SB(Rd, ρ) on S.

The following result is required in our proofs.

Proposition 4.2. The second order product density ρ(2) of the marked stratified
binomial point process exists and is given for any u, v ∈ S by

ρ(2)(u, v) = ρ2
∑

k∈Zd
1(u ∈ Ck, v ∈ Rd \ Ck) (4.4)

= ρ2 1(u and v not in the same cell)

Let θ? denote the true parameter vector. The score sWn(X,D; θ?) evaluated at
θ? is the sum of T1,Wn(X) and T2,Wn(X,D) given by (3.9) and (3.12) with θ = θ?

where now the intensity function ρ is just a constant, that is

T1,Wn(X) =
∑

u∈XWn

wθ?(u,X \ u)−
∫

Wn×M
wθ?(u,X)λθ?(u,X)du (4.5)

T2,Wn(X,D) =

∫

Wn×M
wθ?(u,X)λθ?(u,X)du−

∑

u∈DWn

wθ?(u,X)λθ?(u,X)

ρ
(4.6)

where for any θ ∈ Θ, u ∈ S and x ∈ Ω

wθ(u, x) =
ρ t(u, x)

λθ(u, x) + ρ

10



with t(u, x) as given in (2.3). Each component of the vector T1,Wn(X) is a special case
of innovations for spatial Gibbs point processes introduced by Baddeley et al. (2005)
with variances studied by Baddeley et al. (2008) and asymptotic results provided by
Coeurjolly and Lavancier (2012) and Coeurjolly and Rubak (2012). Based on these
tools, we show in Appendix D.2 that as n→∞

|Wn|−1/2T1,Wn(X)
d−−→ N (0, G1) (4.7)

where G1 =
∑3

i=1 Ai(wθ? , wθ?) and where for i = 1, 2, 3 the p× p matrix Ai(g, h) is
defined for two functions g, h : S× Ω→ Rp by

A1(g, h) = E
[
g(0M , X)h(0M , X)>λθ?(0

M , X)
]

A2(g, h) = E

∫

B(0,R)×M
g(0M , X)h(v,X)>(λθ?(0

M , X)λθ?(v,X)− λθ?({0M , v}, X))dv

A3(g, h) = E

∫

B(0,R)×M
∆vg(0M , X)∆0Mh(v,X)>λθ?({0M , v}, X)dv

where 0M = (0,M) with M ∼ µ and where for θ ∈ Θ, u, v ∈ S,

λθ({u, v}, X) = λθ(u,X ∪ v)λθ(v,X) = λθ(v,X ∪ u)λθ(u,X)

∆vg(u,X) = g(u,X ∪ v)− g(u,X).

Regarding the term T2,Wn which involves the point process D, conditional on X, a
Lindeberg central limit theorem is available. Using this we show in Appendix D.2
that given X,

|Wn|−1/2T2,Wn(X,D)
d−−→ N (0, G2) (4.8)

where G2 is given by

G2 =





Gp
2 = 1

ρ
E[wλθ?(0

M , X)wλθ?(0
M , X)>] if D ∼ P(Rd, ρ)

Gb
2 = 1

ρ
Var[wλθ?(0

M , X)] = 1
ρ

Var[wλθ?(U0, X)] if D ∼ B(Rd, ρ)

Gsb
2 = 1

ρ
E Var[wλθ?(U0, X) |X] if D ∼ SB(Rd, ρ)

(4.9)

where for θ ∈ Θ, u ∈ S and x ∈ Ω we write wλθ,j(u, x) for wθ,j(u, x)λθ(u, x), and
U0 is as in Definition 4.1. We can easily check that Gsb

2 ≤ Gb
2 ≤ Gp

2 where for two
square matrices A and B, A ≤ B means that B−A is a positive-semidefinite matrix.
Therefore, among the three choices of random dummy points, the marked stratified
point process seems to be the optimal choice.

The following almost sure convergence is also proved to hold as n→∞

−|Wn|−1 d
dθ>

sWn(X,D; θ?)→ S = E

[
ρt(0M , X)t(0M , X)>

λθ?(0M , X) + ρ
λθ?(0

M , X)

]
(4.10)

=
1

ρ
A1

(
wθ?
√
λθ? + ρ, wθ?

√
λθ? + ρ

)

where S is the sensitivity matrix.
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We also define for two functions g, h : S × Ω → Rp the computationally fast
empirical estimates (Coeurjolly and Rubak, 2012) of Ai(g, h) for i = 1, . . . , 3 by

Â1(X,D, g, h) =
1

|Wn|
∑

u∈(X∪D)Wn

g(u,X \ u)h(u,X \ u)>
λθ̂(u,X \ u)

λθ̂(u,X \ u) + ρ
(4.11)

Â2(X, g, h) =
1

|Wn|
∑

u,v∈XWn
u6=v,‖u−v‖≤R

g(u,X \ {u, v})h(v,X \ {u, v})>

×
(
λθ̂(u,X \ {u, v})λθ̂(v,X \ {u, v})

λθ̂({u, v}, X \ {u, v})
− 1

)
(4.12)

Â3(X, g, h) =
1

|Wn|
∑

u,v∈XWn
u6=v,‖u−v‖≤R

∆vg(u,X \ {u, v})∆uh(v,X \ {u, v})>. (4.13)

Combining the above results in a standard fashion we obtain the following main
result where we denote by θ̂ = θ̂n(X,D) the logistic regression score estimate based
on the observation of X on W+

n .

Theorem 4.3. As n → ∞, θ̂ is a strongly consistent estimate of θ?. Assume that
G1 and G2 are positive-definite matrices, then |Wn|1/2(θ̂ − θ?) tends to a Gaussian
distribution with covariance matrix Σ = S−1(G1 + G2)S−1 which is consistently
estimated by Σ̂ = Ŝ−1(Ĝ1 + Ĝ2)Ŝ−1 specified below. In other words, as n→∞

|Wn|1/2Σ̂−1/2(θ̂ − θ?) d−−→ N (0, Ip).

The matrices Ŝ and Ĝ1 are defined by

Ŝ =
1

ρ
Â1

(
X,D,wθ̂

√
λθ̂ + ρ, wθ̂

√
λθ̂ + ρ

)
(4.14)

Ĝ1 = Â1(X,D,wθ̂, wθ̂) + Â2(X,wθ̂, wθ̂) + Â3(X,wθ̂, wθ̂). (4.15)

The matrix G2 is consistently estimated as follows:

(i) if D ∼ P(Rd, ρ) the estimate Ĝp
2 is defined by

1

ρ
Â1(X,D,wθ̂

√
λθ̂, wθ̂

√
λθ̂). (4.16)

(ii) if D ∼ B(Rd, ρ) the estimate Ĝb
2 is defined by

1

ρ

{
κnÂ1(X,D,wθ̂

√
λθ̂, wθ̂

√
λθ̂)

− Â1(X,D,wθ̂
√
λθ̂,
√
λθ̂)Â1(X,D,wθ̂

√
λθ̂,
√
λθ̂)

T

} (4.17)

where κn = |Wn|−1
∑

u∈(X∪D)Wn
(λθ̂(u,X \ u) + ρ)−1.
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(iii) if D ∼ SB(Rd, ρ) the estimate Ĝsb
2 is defined by

1

2ρ2|Wn|
∑

`∈Zd:
C`∩Wn 6=∅

(
wλ
θ̂
(U`, X)− wλ

θ̂
(U ′`, X)

)(
wλ
θ̂
(U`, X)− wλ

θ̂
(U ′`, X)

)> (4.18)

where D′ = ∪k∈Zd{U ′k} is a marked stratified point process independent of D,
observed in Wn.

Remark 4.4 (Ergodicity). We point out that Theorem 4.3 does not require the
assumption that Pθ? is ergodic and thus can be applied even if the Gibbs measure
is not unique and exhibits a phase transition.

Remark 4.5 (on κn). The variable κn in (4.17) converges to 1 as n → ∞. It has
been introduced to ensure that the estimate Ĝb

2 is a positive-semidefinite matrix.
This can be checked easily using the Cauchy-Schwarz inequality. By definition, Ĝp

2

and Ĝsb
2 also fulfill this property.

Remark 4.6 (On the definition of Ŝ). If we had followed the strategy proposed
in Coeurjolly and Rubak (2012), the estimate of A1(wθ? , wθ?) would have been
based only on X. We include the dummy point pattern D to get a more accu-
rate estimate and we emphasize that no new numerical computations are required
since Ŝ, using (4.11), depends only on the quantities tj(u,X \u) for j = 1, . . . , p and
u ∈ (X∪D)Wn which have already been stored when computing the estimate θ̂. The
estimates (4.12) and (4.13) involve second order characteristics which have not been
computed before and are therefore defined using only the data point pattern X.

Remark 4.7 (On the definition of Ĝ2). Following the previous remark, we have
proposed, in the Poisson case and the binomial case, estimates of G2 based on X∪D.
As for Ŝ, the estimates Ĝp

2 and Ĝb
2 do not involve new numerical computations. The

estimate of Gsb
2 is more awkward to handle and requires an extra dummy point

process D′. As pairs of points are involved in (4.18), we could not include the data
points without adding second order characteristics computations for X and this has
not been investigated.

As D′ is required to define (4.18), we may also use this point process to improve
the accuracy of the logistic regression estimate in the stratified case. An aggregated
estimate is

θ̂agg = 1
2

(
θ̂n(X,D) + θ̂n(X,D′)

)
(4.19)

and we obtain the following result.

Corollary 4.8. As n → ∞, the aggregated estimate θ̂agg is a strongly consis-
tent estimate of θ? and |Wn|1/2(θ̂agg − θ?) tends to a Gaussian distribution with
covariance matrix Σagg = S−1(G1 + G2/2)S−1 which is consistently estimated by

13



Σ̂agg = (Ŝagg)−1(Ĝagg
1 + Ĝsb

2 /2)(Ŝagg)−1 where Ŝagg and Ĝagg
1 are the p× p matrices

Ŝagg =
1

2ρ

(
Â1(X,D,wθ̂agg

√
λθ̂agg + ρ, wθ̂agg

√
λθ̂agg + ρ)

+ Â1(X,D′, wθ̂agg
√
λθ̂agg + ρ, wθ̂agg

√
λθ̂agg + ρ)

)

Ĝagg
1 = 1

2

(
Â1(X,D,wθ̂agg , wθ̂agg) + Â1(X,D′, wθ̂agg , wθ̂agg)

)
+

3∑

i=2

Âi(X,wθ̂agg , wθ̂agg).

5 Simulation studies and data example

In this section we use simulations to study the performance of our logistic regression
estimating function using different dummy point distributions. We also study the
variance decomposition discussed in Section 3.4 and compare with the spatstat ppm
implementation of the Berman-Turner device, c.f. Section 3.2.3 and equation (3.11),
using the default settings of ppm. The performance of (3.10) with varying B is con-
sidered briefly. We further consider an application to an inhomogeneous multitype
point pattern of cell centres from the mucous membrane of a rat. Finally we con-
sider coverage properties of asymptotic confidence intervals and how asymptotic
covariance matrix estimates may be used to determine a suitable value of ρ.

In the simulation study W = Λ is the unit square and we specify the intensity of
points using a parameter nd. The default behaviour of ppm is to use a deterministic
grid of dummy points where a one-dimensional nd specifies the dimension of the grid
in each spatial direction while a two-dimensional nd specifies different dimensions
of the grid in each direction. That is, the total number of dummy points is nd2.
We have implemented the logistic regression estimate as an option for ppm and then
nd

2 specifies the expected number of dummy points in case of Poisson or binomial
dummy points while nd specifies the grid dimensions in case of stratified dummy
points. The rule of thumb mentioned in Section 3.3 then corresponds to choosing
the ppm default value nd= 2

√
n where n is the observed number of points.

In general one may expect that random dummy points lead to less bias. To enable
a more fair comparison between ppm and the logistic regression estimating function
we have therefore chosen to use stratified dummy points instead of a deterministic
grid for ppm. However, we stress that very similar results were obtained using a
deterministic grid. In the following we for ease of presentation refer to the described
version of ppm as ‘default’ ppm.

5.1 Simulation study

In the simulation study we generate simulations of a Strauss process specified by
a conditional intensity of the form (2.3) with t(u,X) = (1, nR(u,X)) and θ =
(θ1, θ2) where nR(u,X) is the number of neighbouring points in X of distance from
u less than or equal to R. The parameter values used for the simulations are θ1 =
log 1000, θ2 = log 0.5 and R = 0.01. The interaction distance R is treated as a
known parameter. We generate 1000 simulations of the specified Strauss process and
estimate θ using Poisson, binomial or stratified dummy points as well as with default
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ppm and with nd equal to 10, 20, 40, 80 or 160. In the particular case of a homogeneous
Strauss process it is also possible (Baddeley and Turner, 2000) to obtain the exact
maximum pseudolikelihood estimate (MPLE) which we also consider for comparison
(see Baddeley and Turner, 2013, for details on the implementation and properties
of the exact MPLE).

Figure 1 shows boxplots of the parameter estimates for the different estima-
tion methods. It is obvious that the default ppm estimate is strongly biased even
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Figure 1: Boxplots of parameter estimates for increasing values of nd for the different
estimation methods. Horizontal lines show true parameter values. For comparison the exact
MPLE is included as the rightmost box (nd=∞) in both subfigures.

with nd=80 while the logistic regression estimate is essentially unbiased for all nd.
Moreover with nd equal to 80 or 160 the variance of the logistic regression estimate
seems very close to that of the exact MPLE. For small values of nd the variance
for default ppm is much smaller than for the logistic regression estimate. However,
the strong bias means that the root mean square error (RMSE) is always largest
for the ppm estimate, see Table 1. Table 1 also shows that for each nd, the lowest
estimation variance is obtained with stratified dummy points. With nd equal to 80
or 160 and considering θ2, the increase in RMSE relative to exact MPLE is just
0.9% respectively 0.07% when stratified dummy points are used. In the remainder
we only consider stratified dummy points.

As mentioned in Section 3.4, the variance of the logistic regression estimator can
be decomposed into two terms Σ1 and Σ2 where the last term is due to the use of
the random dummy points. To investigate this we considered 500 simulations from
the Strauss model and for each simulation we refitted the model 10 times using
independent realizations of the dummy process. A one-way analysis of variance can
then be used to partition the total estimation variance into Σ1 and Σ2. Results
from the analysis of variance are given in Table 2. Here we use the generic notation
σ2 = σ2

1 +σ2
2 for the variance of a univariate parameter where σ2

1 and σ2
2 are extracted

from the diagonals of Σ1 and Σ2. For nd greater than or equal to 40 the relative
increase in estimation standard deviation (σ − σ1)/σ1 due to using random dummy
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Table 1: Percentage increase of the root mean squared errors of each estimator relative
to the exact maximum pseudolikelihood estimate.

θ1 θ2

nd ppm pois bin strat ppm pois bin strat

10 373.53 196.76 75.01 74.99 713.24 87.61 88.59 86.50
20 318.52 69.77 21.80 21.66 551.25 25.16 26.51 25.16
40 216.45 21.62 6.09 5.06 328.73 7.25 6.97 5.30
80 100.87 6.05 1.76 0.53 140.83 2.09 1.77 0.90

160 16.48 1.80 0.52 0.08 19.57 0.62 0.54 0.07

Table 2: Decomposition of variance for the logistic estimator using stratified dummy points
with increasing values of nd. The columns show the standard deviation of the estimator σ
and the two contributions σ1 and σ2 as well as the percentage of variance increase due to
random dummy points. For the exact MPLE the standard deviations are 0.042 and 0.136
for θ1 and θ2.

θ1 θ2

nd σ σ1 σ2
σ−σ1
σ1

(%) σ σ1 σ2
σ−σ1
σ1

(%)

10 0.074 0.044 0.059 66.283 0.251 0.139 0.209 79.991
20 0.052 0.043 0.028 19.212 0.171 0.138 0.100 23.207
40 0.045 0.043 0.013 4.350 0.144 0.136 0.046 5.483
80 0.043 0.043 0.005 0.630 0.137 0.136 0.018 0.837

160 0.043 0.043 0.002 0.085 0.136 0.136 0.006 0.113

points is less than 5.5%. For both parameters the standard error σ1 quickly converges
to a constant value (the standard error of the MPLE) as nd increases. The reduction
in variance as nd increases thus mainly occurs for the σ2

2 term. This justifies regarding
σ2

2 as the increase in variance additional to the MPLE variance due to using the
random dummy points. Note also that σ2 is approximately halved each time nd is
doubled.

We finally apply (3.10) with ρ corresponding to nd=10 and B(u) constant equal
to cρ where c is 0.1, 0.5, 1, 10 or 100. Recall that c = 1 corresponds to our logistic
regression estimating function. Based on the previous 1000 simulation of the Strauss
model, Figure 2 shows the estimation variance for the varying values of c relative to
the estimation variance for c = 1. The smallest estimation variance is obtained with
c = 1.

5.2 Data example

We consider the mucous membrane data shown in Figure 1.3 in Møller andWaagepetersen
(2004) and our analyses are inspired by Example 9.3 and Example 9.5 therein. The
dataset used is a subset of the mucosa dataset available in spatstat and consists
of the locations of two types of cells in an observation window W = [0, 1]× [0, 0.7].

16



●

●

●

●

●

θ1

B ρ

V
ar

ia
nc

e

0.1 0.5 1 10 100

0.
00

56
4

0.
00

56
8

0.
00

57
2

●

●

●

●

●

θ2

B ρ

V
ar

ia
nc

e

0.1 0.5 1 10 100

0.
06

80
0.

06
85

0.
06

90
0.

06
95

Figure 2: Variance of parameter estimates when using Barker dynamics with fixed ρ and
different values of B/ρ.

There are 87 points of type 1 and 806 points of type 2. We fit an inhomogeneous
multitype Strauss process with conditional intensity

λθ(u,X) = exp[qm(y, θ) + θ11nR(u,X)]

where u = (x, y,m), m = 1 or 2 denotes the cell type, qm(y, θ), m = 1, 2, are fourth
order polynomials with coefficients depending on the type of points and θ ∈ R11

consists of the 10 polynomial regression coefficients and the interaction parameter
θ11 ≤ 0. Notice that the polynomials only depond on y since the point pattern is con-
sidered homogeneous in the x-direction. As before nR(u,X) denotes the total num-
ber of neighbouring points and we use R = 0.008 as in Møller and Waagepetersen
(2004). One question of interest is whether the two types of points share the same
large scale polynomial trends, which is equivalent to that the two polynomials q1

and q2 only differ by a constant.
Recall that the logistic regression estimate requires a marked version of the strat-

ified point process, which is generated by assigning a uniformly sampled random
mark (1 or 2) to each point where each mark is independent of all other variables.
In spatstat multitype point processes are specified with respect to counting mea-
sure on the mark space. To comply with this choice and following Remark 2.1 we
therefore specify the dummy point intensity as 0.5 times ρ = n2

d/0.7 in our imple-
mentation of the logistic regression estimating function, where we for this dataset
use nd = 60 according to the rule of thumb.

To obtain confidence intervals for the fitted polynomials and the interaction
parameter we use a parametric bootstrap based on 1000 simulations generated under
the fitted model (still using nd=60 when estimating parameters for each simulation).
Furthermore, to enable empirical decomposition of estimation variance we use two
replications of the dummy point process for each simulated dataset.

The estimated coefficients of the fourth order polynomials vary considerably but
this is not so for the values of the resulting polynomials. We have therefore chosen
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to focus on estimated values of the polynomial for distinct y values in the range
[0, 0.7]. Figure 3 shows the estimated polynomials without the constant term as well
as bootstrap confidence intervals at the selected set of y values. This plot gives some
indication that the two trends are significantly different.
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Figure 3: Fitted fourth order polynomials for the mucous membrane data without the
constant term. Bootstrap confidence intervals are given at selected values.

The first column in Table 3 shows the estimated values of the polynomials for
the selected y values and the estimate of the interaction parameter. The three next
columns show the standard deviation σ of the parameter estimates, the standard
deviation σ1 due to T1, the standard deviation due to T2 and the relative increase
(σ− σ1)/σ1 in standard deviation due to T2. Comparing the fitted polynomials, the
smallest standard deviations are obtained for the more abundant type 2 cells. For this
reason also the largest relative increases (up to 16%) in estimation standard error
due to the random dummy points are obtained for the type 2 cells. We also applied
our logistic regression estimate with nd=120 to the simulated bootstrap datasets
(see the three columns labeled nd = 120 in Table 3) and this brings the maximal
relative increase in standard deviation down to 4%. Note again that doubling nd
leads to approximately halving σ2.

To test the hypothesis of equal polynomials more formally we fitted the null
model with a common (up to a constant) fourth order polynomial. We then gener-
ated 1000 simulations under the fitted null model and calculated for each simulation
−2 logLR where LR is the ratio of the likelihoods for the logistic regressions cor-
responding to the null model and the original model. The 1000 values of this test
statistic were between 0.1 and 16.3. The observed value of 28.6 is thus highly signif-
icant.

As a supplement to the simulation study in Section 5.1 we also applied default
ppm with nd=60 to the simulated bootstrap data sets generated previously under the
fitted multitype Strauss model. Note that default ppm actually uses 2 times 3600
dummy points since each unmarked dummy point appears both with the mark 1 and
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Table 3: The first five columns show estimated values of the two polynomials and the
interaction parameter with decomposed standard deviations and relative increases for the
logistic regression estimator with nd = 60 based on 1000 simulations from the fitted model.
The next three columns show the decomposition of the standard deviations and relative
increases when nd = 120 based on the same 1000 simulations. The final three columns show
a decomposition of the standard deviations for nd = 60 based on a Taylor approximation
as well as the predicted relative increases for nd = 120 (see Section 5.4 for details). All
relative increases are given in percent.

nd = 60 nd = 120 Taylor

est. σ σ1 σ2
σ−σ1
σ1

σ1 σ2
σ−σ1
σ1

σ1 σ2
σ−σ1
σ1

q1(0.1) 6.00 0.20 0.19 0.05 3.61 0.19 0.02 0.81 0.21 0.05 0.72
q1(0.2) 5.22 0.20 0.20 0.04 2.03 0.20 0.02 0.48 0.19 0.04 0.52
q1(0.3) 4.53 0.27 0.26 0.04 1.33 0.26 0.02 0.30 0.26 0.04 0.30
q1(0.4) 4.16 0.29 0.29 0.04 0.84 0.29 0.02 0.19 0.28 0.04 0.23
q1(0.5) 3.99 0.41 0.40 0.04 0.56 0.40 0.02 0.15 0.37 0.04 0.16
q1(0.6) 3.53 0.74 0.74 0.07 0.41 0.75 0.03 0.09 0.47 0.04 0.11
q2(0.1) 7.80 0.09 0.08 0.05 15.62 0.08 0.02 3.80 0.08 0.05 4.18
q2(0.2) 7.52 0.08 0.07 0.04 13.67 0.07 0.02 3.76 0.07 0.04 3.72
q2(0.3) 7.20 0.08 0.08 0.04 10.92 0.07 0.02 2.59 0.07 0.04 2.95
q2(0.4) 7.07 0.08 0.08 0.04 10.41 0.07 0.02 2.56 0.07 0.04 2.93
q2(0.5) 7.12 0.09 0.08 0.04 10.56 0.08 0.02 2.82 0.07 0.04 2.89
q2(0.6) 7.14 0.10 0.09 0.04 11.36 0.09 0.02 2.65 0.09 0.04 2.69
θ11 −2.59 0.34 0.34 0.05 0.97 0.34 0.02 0.20 0.31 0.05 0.30
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Table 4: Comparison of root mean squared error (RMSE) and bias relative to RMSE (in
percent) for the four estimators.

RMSE Relative bias (%)

logistic ppm logistic ppm

nd=60 nd=120 nd=60 nd=120 nd=60 nd=120 nd=60 nd=120

q1(0.1) 0.20 0.19 0.20 0.18 −0.21 −1.00 −37.13 4.49
q1(0.2) 0.21 0.20 0.21 0.20 −15.13 −14.80 −36.30 −10.48
q1(0.3) 0.27 0.27 0.26 0.27 −16.26 −16.06 −11.70 −21.36
q1(0.4) 0.29 0.29 0.29 0.29 −7.71 −7.73 −6.73 −10.62
q1(0.5) 0.41 0.41 0.43 0.40 −11.56 −11.81 −24.34 −6.95
q1(0.6) 0.80 0.81 0.77 0.83 −36.50 −36.40 −40.64 −34.91
q2(0.1) 0.09 0.08 0.21 0.09 1.07 0.29 −94.33 −55.89
q2(0.2) 0.08 0.07 0.18 0.08 −1.54 −2.89 −93.73 −49.12
q2(0.3) 0.08 0.08 0.13 0.08 −1.99 −4.61 −84.55 −51.62
q2(0.4) 0.08 0.08 0.11 0.08 −1.49 −3.58 −80.69 −45.91
q2(0.5) 0.08 0.08 0.15 0.08 −1.98 −1.67 −87.02 −28.23
q2(0.6) 0.10 0.09 0.15 0.09 −5.58 −3.96 −84.52 −33.64
θ11 0.35 0.35 0.56 0.35 −19.72 −19.44 79.22 20.64

the mark 2. The ppm estimate with nd=60 is strongly biased and to reduce the bias
we also used standard ppm with nd=120. Table 4 compares the different estimators
in terms of root mean square error (RMSE) and bias (relative to the RMSE). The
RMSEs for the logistic regression estimate with nd equal to 60 and 120 and default
ppm with nd=120 are quite similar and in case of q2 and θ11 much smaller than for
ppm with nd=60. However, for both versions of default ppm the proportion of RMSE
due to bias is in general much larger than for the logistic method. For nd equal to
120 this is especially the case for the estimated values of the q2 polynomial where
the RMSE is smallest.

The main drawback of using the default ppm is that it is not a priori clear how
large nd must be used to avoid severe bias and sometimes the required value of
nd may even be computationally prohibitive. In the present example we obtained
reliable results for the logistic estimator with nd=60 and the estimation for 1000
datasets took 2 minutes. For default ppm we need nd=120 to avoid strong bias and
in this case the 1000 estimations required over 20 minutes of computing time.

5.3 Coverage of approximate confidence intervals

In this section we study finite sample coverage properties of approximate confidence
intervals based on the asymptotic normality demonstrated in Theorem 4.3. Simula-
tions are generated from Strauss processes (see Section 5.1), multiscale (or piecewise)
Strauss processes and Geyer’s saturation processes with saturation threshold 1. The
two latter classes of point processes are specified by conditional intensities of the
form (2.3) with respectively t(u,X) = (1, nR1(u,X), nR2(u,X) − nR1(u,X)) and
t(u,X) = (1,

∑
v∈X∪u 1(d(v,X ∪ u) ≤ R) −∑v∈X 1(d(v,X) ≤ R)) where d(v,X)
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Table 5: Coverage rates for the logistic estimator using stratified dummy points with
increasing values of nd when W is a square with sidelength `. The first column contains
the average empirical intensities for the models. The results are based on 1000 realizations
from each of the models.

` = 1 ` = 2

n/|W | nd = 20 nd = 40 nd = 80 nd = 20 nd = 40 nd = 80

S1 87.5 93.9 95.5 94.7 94.7 95.7 95.8
S2 65.0 94.8 94.5 95.1 95.9 95.3 95.3
M1 52.9 93.8 93.6 94.3 94.7 94.4 95.1
M2 40.8 92.6 93.9 92.1 94.4 95.2 95.2
G1 56.8 94.3 94.8 95.8 95.0 94.8 94.7
G2 44.8 96.2 95.1 95.1 94.6 94.8 95.8

denotes the distance from v to the nearest point in X without v. More specifically
we consider two Strauss processes with R = 0.05 and θ1 = log(100), where models
S1 and S2 respectively have θ2 = log(0.8) and θ2 = log(0.2), two multiscale Strauss
processes with R1 = 0.05, R2 = 0.1, and θ1 = log(100), where models M1 and M2
respectively have (θ2, θ3) = (log(0.2), log(0.8)), and (θ2, θ3) = (log(0.8), log(0.2)),
and two Geyer’s saturation processes with saturation parameter s = 1, R = 0.05
and θ1 = log(50), where models G1 and G2 respectively have θ2 = log(1.2) and
θ2 = log(0.8). For all models we use relatively small values of θ1 to illustrate that
the asymptotic results can be applied even for point pattern data with small numbers
of points.

For all the models the observation window is W+ = [−R, ` + R]2, ` = 1, 2,
where R is the interaction range of each model. Note that due to edge effects, the
simulations of XW+ are in fact not realizations of stationary processes. To obtain ap-
proximate realizations of stationary processes we use the spatstat default settings
and simulate a finite process on W+ expanded by a border of size 2R and consider
the restriction to W+. For each simulation we obtain parameter estimates using the
logistic regression estimating function with stratified dummy points with nd = 20,
nd = 40 and nd = 80. Subsequently we record whether or not the parameter vector
falls within the approximate 95% ellipsoidal confidence region

{θ | ‖|W |1/2Σ̂−1/2(θ̂ − θ)‖2 ≤ χ2
0.95(p)}.

The results given in Table 5 show that the coverage rates are in general close to
the nominal 95% for all the models. Model M2 is one exception where the coverage
rates are consistently too low when ` = 1 suggesting that there are too few points
to rely on asymptotic results. This agrees with the fact that M2 has the lowest
empirical intensity. The estimated Monte Carlo errors are of the order 0.5%–1% so
the remaining deviations from the nominal 95% are not not worrying. As can be
expected, the closeness to the nominal level does not appear to depend on nd.
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5.4 Determination of ρ

As mentioned in Section 3.4, the variance σ2 of a parameter estimate is the sum
of a term σ2

1 which is roughly constant as a function of ρ and a term σ2
2 which is

roughly proportional to ρ, σ2
2 = σ̄2

2/ρ, say. For a given choice of ρ (e.g. using the rule
of thumb) our asymptotic results provide estimates σ̂2

1 and ˆ̄σ2
2 of these quantities.

Suppose now that we wish to find a ρp so that the dummy point additional variance
σ̄2

2/ρp is less than a specified fraction p of σ2
1. Then we may approximately determine

ρp as ρp = ˆ̄σ2
2/(σ̂

2p). Alternatively, this relation can also be used to approximately
determine pρ = ˆ̄σ2

2/(σ̂
2ρ) for a given value of ρ. In practice we may rewrite these

relations in terms of standard deviations such that p gives the relative increase of the
standard deviation (and thereby of the confidence interval length) due to random
dummy points.

To exemplify this procedure we return to the mucous membrane data of Sec-
tion 5.2 . Our Theorem 4.3 only covers stationary models but here we never-
theless still apply the Taylor series approximation of the variance of θ̂ given by
S−1[G1 + G2]S−1/|W |, see Section 3.4. We next replace S, G1 and G2 by their un-
biased estimates (4.14), (4.15) and (4.18) (using nd = 60) and obtain the estimated
standard deviations in the second and third columns from the right in Table 3. These
estimates agree very well with the bootstrap estimates for nd = 60 (columns 3 and
4 from the right) except for q1(0.6). The disagreement for q1(0.6) may be explained
by the fact that there is a low number of type 1 points for large y values. The right-
most column shows the approximate value of p (in percent) for nd = 120 which was
determined based on the variance matrices estimated with nd = 60. The agreement
with the bootstrap results for nd = 120 (column 4 from the left) is very good.
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Appendices

A Estimating equation from Barker dynamics

This appendix is based partly on discussions with Prof. Antonietta Mira and Dr.
Pavel Grabarnik.

As in Section 3 we consider the case of a bounded Λ = W and construct a spa-
tial birth-and-death process (Preston, 1977) (Yt)t>0 whose equilibrium distribution
coincides with the distribution of X. Such a process is a continuous-time Markov
process, whose states are point patterns x, and whose only transitions are instanta-
neous deaths x 7→ x \ {xi} and instantaneous births x 7→ x ∪ {u}.

We start with a proposal mechanism. The proposals are instantaneous deaths
with rate q(x 7→ x \ {xi}) = 1 for each existing point xi ∈ x, and instantaneous
births with rate q(x 7→ x ∪ {u}) = B(u) for u ∈ W , with respect to Lebesgue
measure on W , where B(u) > 0 and

∫
W
B(u)du <∞.

Barker dynamics (Barker, 1969) are defined to have acceptance probabilities

A(x 7→ x∪{u}) =
λθ(u, x)/B(u)

1 + λθ(u, x)/B(u)
and A(x 7→ x \ {xi}) =

1

1 + λθ(xi, x)/B(u)

so that the transition rates are

r(x 7→ x∪{u}) = B(u)
λθ(u, x)/B(u)

1 + λθ(u, x)/B(u)
and r(x 7→ x\{xi}) =

1

1 + λθ(xi, x)/B(u)
.

It can easily be checked that the birth-death process (Yt)t>0 with these transition
rates is in detailed balance with equilibrium distribution given by the distribution
of X.

The so-called infinitesimal generator of (Yt)t>0 is given by

(Aθf)(x) = lim
t→0

1

t

[
E[f(Yt)|Y0 = x]− f(x)

]

for real functions f on Ω. The infinitesimal generator yields a class of time-invariance
estimating functions (Baddeley, 2000) which are unbiased

E[(Aθf)(X)] = 0

for any choice of f .
Assume that t(u, x) = w(x ∪ {u}) − w(x) for some statistic w(x). Then in case

of the spatial birth-death process with Barker dynamics we obtain the estimating
function

(Aθw)(x) = −
∑

i

t(xi, x \ xi)
1 + λθ(xi, x \ xi)/B(u)

+

∫

W

t(u, x)λθ(u, x)

1 + λθ(u, x)/B(u)
du (A.1)

which negated corresponds to (3.9) in case of a log-linear conditional intensity.
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B Proof of Proposition 4.2

For A,B ⊆ Rd ×M we have

E

6=∑

u,v∈D
1(u ∈ A, v ∈ B) =

∑

k,k′∈Zd,k 6=k′
E1(Uk ∈ A,Uk′ ∈ B)

=
∑

k,k′∈Zd,k 6=k′

∫

Ck×M

∫

Ck′×M
1(u ∈ A, v ∈ B)ρ2du dv

=
∑

k∈Zd

∫

A

∫

B

1(u ∈ Ck, v ∈ Rd \ Ck)ρ2du dv

= ρ2

∫

A

∫

B

∑

k∈Zd
1(u ∈ Ck, v ∈ Rd \ Ck)du dv

which leads to the stated result.

C Conditions for asymptotic results

In addition to stationarity and finite range, we need the further conditions below
in order to verify Theorem 4.3. These conditions have already been considered in
Billiot et al. (2008) and are not very restrictive.

Let Pθ denote the distribution of a (well-defined) stationary hereditary marked
Gibbs point process with Papangelou conditional intensity λθ, and let X ∼ Pθ?
where θ? denotes the true parameter. We will assume

(i) Θ ⊂ Rp is an open convex set.

(ii) For any θ 6= θ?, the following (identifiability) condition holds

Pθ?
(
(θ − θ?)>t(0M , X)1(H(0M , X) > 0) 6= 0

)
> 0. (C.1)

(iii) For all u ∈ S, x ∈ Ω and i = 1, . . . , p there exists a constant κ ≥ 0 such that
H(u, x) ≤ κ and at least one of the following two assumptions is satisfied:

θi ≤ 0 and − κ ≤ ti(u, x) ≤ κn(xB(u,R)) (C.2)
or

−κ ≤ ti(u, x) ≤ κ (C.3)

where R is the range of interaction defined in (4.2).

D Proof of Theorem 4.3

We present the proof when D corresponds to a marked stratified point process with
intensity ρ, which seems to us the most interesting and challenging case. We claim
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that Theorem 4.3 remains true whenD ∼ P(Rd, ρ) orD ∼ B(Rd, ρ). Before detailing
the proofs, we let

Kinf
n =

{
k ∈ Zd : Ck ⊆ Wn

}
and Ksup

n =
{
k ∈ Zd : Ck ∩Wn 6= ∅

}

where the cells Ck are described in Definition 4.1. We denote for • = inf, sup by
W •
n the bounded domain ∪k∈K•nCk. We point out that W inf

n ⊆ Wn ⊆ W sup
n , that as

n→∞ |W •
n | ∼ |Wn| and that n(DW •n ) = |K•n|. In the following proofs c stands for a

generic positive constant (which may depend on ρ) that may be different from line
to line and Uk is a marked point distributed as described in Definition 4.1. Finally,
we recall that the notation 0M stands for a marked point at location 0 with mark
distribution µ and that du is short for Ld(du)⊗ µ(dm).

D.1 Consistency of the logistic regression estimate

Lemma D.1. For any θ, θ′ ∈ Θ, any j = 1, . . . , p and any q ≥ 1

E[ |tj(0M , X)|qλθ(0M , X)] <∞ and E[ |wθ′,j(0M , X)|qλθ(0M , X)] <∞.

Proof. Using (C.2) and (C.3), we can show that the Gibbs point process is locally
stable, i.e. there exists a constant c such that for any θ ∈ Θ, u ∈ S and any
x ∈ Ω, λθ(u, x) ≤ c. Furthermore, the largest expectation to control is of the form
En(XB(0,R))

qecn(XB(0,R)). Now, we can invoke Proposition 9 in Bertin et al. (2008)
which proves that such expectations are finite under the local stability property.

Since any stationary Gibbs measure can be represented as a mixture of ergodic
measures (see Preston, 1976), it is sufficient to prove the consistency for ergodic
measures. We therefore assume that Pθ? is ergodic. From (3.5), θ 7→ −LRLWn(x, θ)
is a convex function for every x ∈ Ω. Therefore from Guyon (1995, Theorem 3.4.4),
we only have to prove that almost surely

lim
n→∞

Kn(θ, θ?) := lim
n→∞

|Wn|−1
(
LRLWn(X; θ?)− LRLWn(X; θ)

)
= K(θ, θ?)

where θ 7→ K(θ, θ?) is a non-negative function which vanishes only at θ = θ?.
Let W0 = [0, 1]d and let θ ∈ Θ. From (4.1) and Lemma D.1, the general ergodic

theorem for spatial point processes obtained by Nguyen and Zessin (1979) and the
GNZ formula can be combined to prove the following almost sure convergence as
n→∞

1

|Wn|
∑

u∈XWn

log
λθ(u,X \ u)

λθ(u,X \ u) + ρ
→ |W0|−1 E

∫

W0×M
λθ?(u,X) log

λθ(u,X)

λθ(u,X) + ρ
du

= E

[
λθ?(0

M , X) log
λθ(0

M , X)

λθ(0M , X) + ρ

]
(D.1)

where to take into account the possible hard-core component (which could appear
when H(u, x) = 0) we take the convention 0 log 0 = 0.

For any bounded domain W we let VW (X,D) denote the right term of (3.4),
i.e. VW (X,D) = −∑u∈DW log λθ(u,X)+ρ

ρ
. Since D is an ergodic process, (X,D) is
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ergodic. Now since VW (X,D) is additive and translation invariant (i.e. for any y ∈ Rd

VτyW (τyX, τyD) = VW (X,D)), then using Lemma D.1 we can still apply the ergodic
theorem from Nguyen and Zessin (1979) to the process |Wn|−1VWn(X,D). Combined
with Campbell’s theorem and the stationarity of X, we obtain that almost surely
as n→∞

1

|Wn|
VWn(X,D)→ −|W0|−1 E

∑

u∈DW0

log
λθ(u,X) + ρ

ρ

= −|W0|−1 E

∫

W0×M
ρ log

λθ(u,X) + ρ

ρ
du

= −E

[
ρ log

λθ(0
M , X) + ρ

ρ

]
.

Combining this with (D.1), we derive that θ 7→ K(θ, θ?) is a well-defined function
given by

K(θ, θ?) = E

[
λθ?(0

M , X) log
λθ?(0

M , X)

λθ(0M , X)
−
(
λθ?(0

M , X) + ρ
)

log
λθ?(0

M , X) + ρ

λθ(0M , X) + ρ

]

= E

[
λθ(0

M , X)

(
A logA− (A+B) log

A+B

1 +B

)]

where A := 1(H(0M , X) > 0)e(θ?−θ)>t(0M ,X) and B = ρe−θ
>t(0M ,X) 1(H(0M , X) > 0).

For every b > 0, the function a 7→ a log a − (a + b) log(a + b/1 + b) is always non-
negative for a > 0 and equals 0 if and only if a = 1. Therefore, if P (A 6= 1) > 0
which is implied by (C.1) then K(·, θ?) vanishes only at θ = θ?.

D.2 Asymptotic normality of the logistic regression estimate

The asymptotic normality of θ̂ will be achieved by applying Guyon (1995, Theorem
3.4.5) which is a general result on asymptotic normality for minimum contrast es-
timators. By arguments similar to those in Appendix D.1 and using Lemma D.1,
we can show that the renormalized negative score −|Wn|−1sWn(X,D; θ) ((3.5) with
ρ(·) = ρ) converges almost surely towards a matrix depending on θ (and ρ) and that
(4.10) holds when θ = θ?. Therefore, according to Guyon (1995, Theorem 3.4.5),
Theorem 4.3 will be proved if we can prove that as n→∞

(i) |Wn|−1/2sWn(X,D; θ)
d−−→ N (0, G1 +Gsb

2 ).

(ii) Ĝ1, Ĝ
sb
2 and Ŝ are consistent estimates of G1, Gsb

2 and S respectively.

The point (ii) will be examined in Appendix D.3. To prove (i) we assume that Pθ?
is an ergodic measure, we consider the decomposition of the score as the sum of the
vectors T1,Wn(X) and T2,Wn(X,D) defined by (4.5) and (4.6) and proceed in three
streps.
Step 1. Central limit theorem for T1,Wn(X): proof of (4.7).
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We note that the jth component of T1,Wn(X) corresponds to the (wθ?,j)-innovations
of a spatial point process, a notion defined by Baddeley et al. (2005) which we now
recall: the h-innovations of a spatial point process (for a function h : S × Ω → R)
computed in a bounded domain W is the centered random variable defined by

IW (X;h) :=
∑

u∈XW
h(u,X \ u)−

∫

W×M
h(u,X)λθ?(u,X)du. (D.2)

Asymptotic properties for innovations have been considered in Coeurjolly et al.
(2012) and Coeurjolly and Lavancier (2012). In particular, Coeurjolly et al. (2012,
Lemma 3) gives conditions ensuring the asymptotic normality. For every j = 1, . . . , p
and any bounded domain W it is required that (a) IW (X;wθ?,j) depends only on
XW⊕R and (b) E |IW (X;wθ?,j)|3 < ∞. The condition (a) is implied by (4.2) and
(b) follows by (C.2), (C.3) and Lemma D.1. Finally, the form of the matrix G1 is
obtained by applying Coeurjolly and Rubak (2012, Proposition 3.1).

Step 2. Central limit theorem for T2,Wn(X,D): proof of (4.8).
Using the Cramér-Wold device, this step is achieved if we prove that given X and

for any y ∈ Rp \ {0}, we have |Wn|−1/2 y>T2,Wn(X,D)
d−−→ N (0, y>Gsb

2 y) as n→∞.
For θ ∈ Θ, u ∈ S and x ∈ Ω, we recall the notation wλθ (u, x) = wθ(u, x)λθ(u, x)
and we define Z(Uk, x; y) =

∫
Ck×M y

>wλθ?(u, x)du− 1
ρ
y>wλθ?(Uk, x). We start with the

following decomposition

y>T2,Wn(X,D) = y>T2,W inf
n

(X,D) + y>T2,Wn\W inf
n

(X,D) (D.3)

where we recall that W inf
n is such that n(DW inf

n
) = |Kinf

n |. Then, y>T2,W inf
n

(X,D) =∑
k∈Kinf

n
Z(Uk, X; y). We let s2

n =
∑

k∈Kinf
n

Var[Z(Uk, X; y)|X] and state the following
lemma.
Lemma D.2. For any bounded domain W ⊂ Rd

Var[T2,W (X,D)|X] =
1

ρ2

{∫

W×M
wλθ?(u,X)wλθ?(u,X)>ρdu

−
∑

k∈Zd

(∫

(W∩Ck)×M
wλθ?(u,X)ρdu

)(∫

(W∩Ck)×M
wλθ?(u,X)ρdu

)>}
.

Proof. Using standard results on the variance of functionals for point processes and
Proposition 4.2, we get

Var[T2,W (X,D)|X] =
1

ρ2

{∫

W×M
wλθ?(u,X)wλθ?(u,X)>ρdu

+

∫

W×M

∫

W×M
wλθ?(u,X)wλθ?(v,X)>(ρ(2)(u, v)− ρ2)du dv

}
.

Rearranging the second integral leads to the result.

Using Lemma D.2 with W = W inf
n we have that s2

n = y>Gn(X)y where

Gn(X) =
1

ρ2

{∫

W inf
n ×M

wλθ?(u,X)wλθ?(u,X)>ρdu

−
∑

k∈Kinf
n

(∫

Ck×M
wλθ?(u,X)ρdu

)(∫

Ck×M
wλθ?(u,X)ρdu

)>}
.
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As n→∞, using the ergodic theorem from Nguyen and Zessin (1979) we have that

|W inf
n |−1 1

ρ2

∫

W inf
n ×M

wλθ?(u,X)wλθ?(u,X)>ρdu

a.s.−−−→ 1

ρ
E

∫

C0×M
wλθ?(u,X)wλθ?(u,X)>ρdu

=
1

ρ
E E

[
wλθ?(U0, X)wλθ?(U0, X)> |X

]
(D.4)

and using the mean ergodic theorem Guyon (1995, Theorem 3.1.1) we have

|Kinf
n |−1

∑

k∈Kinf
n

(∫

Ck×M
wλθ?(u,X)ρdu

)(∫

Ck×M
wλθ?(u,X)ρdu

)>

a.s.−−−→ E
[(∫

C0×M
wλθ?(u,X)ρdu

)(∫

C0×M
wλθ?(u,X)ρdu

)>]

= E
[
E
[
wλθ?(U0, X)|X

]
E
[
wλθ?(U0, X)|X

]>] (D.5)

Since |Kinf
n | = ρ|W inf

n | and since X is stationary, we assert that combining (D.4)
and (D.5) leads to

|W inf
n |−1Gn(X)

a.s.−−−→ 1

ρ
E Var[wλθ?(U0, X)|X] = Gsb

2 . (D.6)

Since for any y ∈ Rp, y>Gsb
2 y ≥ 0 we get in particular that almost surely for n large

enough

|W inf
n |−1s2

n − y>Gsb
2 y ≥ −

1

2
y>Gsb

2 y

which leads to

|W inf
n |−1s2

n ≥
1

2
y>Gsb

2 y ≥ ‖y‖2 1

2
inf

y∈Rp\{0}
y>Gsb

2 y/‖y‖2 = ‖y‖2 1

2
νmin > 0 (D.7)

where νmin is the smallest eigenvalue of Gsb
2 (assumed to be positive-definite). Fur-

thermore, for any k ∈ Kinf
n we have from (C.2) and (C.3)

Z(Uk, X; y)4 ≤ c‖y‖4
∞

(
1 + n(XB(Uk,R)) +

∫

Ck×M
n(XB(u,R))du

)4

.

By the Cauchy-Schwarz inequality (|z1| + |z2| + |z3|)4 ≤ 27(z4
1 + z4

2 + z4
3) for any

z = (z1, z2, z3)> ∈ R3. Hence,

Z(Uk, X; y)4 ≤ 27c‖y‖4
∞

(
1 + n(XB(Uk,R))

4 +
(∫

Ck×M
n(XB(u,R))du

)4)

which allows us to write

E[Z(Uk, X; y)4|X] ≤ c
(

1 +

∫

Ck×M
n(XB(u,R))

4ρdu+
(∫

Ck×M
n(XB(u,R))du

)4)
.
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Now, we can invoke the mean ergodic theorem from Guyon (1995, Theorem 3.1.1)
to assert that there exists κ = κ(ρ, y) such that

|Kinf
n |−1

∑

k∈Kinf
n

E[Z(Uk, X; y)4|X] ≤ κ. (D.8)

From (D.7) and (D.8), we derive that almost surely for n large enough

1

s4
n

∑

k∈Kinf
n

E[Z(Uk, X; y)4|X] ≤ 4κ

ν2
min‖y‖4

|Kinf
n |

|W inf
n |2

= O(|W inf
n |−1).

Therefore, we can apply the Lindeberg-Feller theorem with Lyapunov’s condition to
get that given X,

y>T2,W inf
n

(X,D)

(y>Gn(X)y)1/2

d−−→ N (0, Ip)

which from (D.6) leads to |W inf
n |−1/2y>T2,W inf

n
(X,D)

d−−→ N (0, y>Gsb
2 y). Now, since

given X T2,W is a centered vector for any W , we leave the reader to show that using
essentially Lemma D.2 applied with W = Wn \W inf

n there exists some constant c
such that

Var
[
y>T2,Wn\W inf

n
(X,D)

]
= E Var[y>T2,Wn\W inf

n
(X,D)

∣∣X] ≤ c|Wn \W inf
n |.

Since |Wn \W inf
n | ≤ |Wn| − (|Wn|1/d − 1/ρ1/d)d = o(|Wn|), we get by Chebyshev’s

inequality that |Wn|−1/2y>T2,Wn\W inf
n

(X,D) tends to zero in probability as n → ∞.
So from (D.3) and Slutsky’s lemma

|Wn|−1/2y>T2,Wn(X,D)
d−−→ N (0, y>Gsb

2 y)

which proves (4.8).

Step 3. Central limit theorem for the score function.
We denote by T̃1,n (resp. T̃2,n) the normalized vector |Wn|−1/2T1,Wn(X) (resp.

|Wn|−1/2T2,Wn(X,D)). Let z ∈ Rp and let Φi(z) for i = 1, 2 be the characteristic
function of a Gaussian vector with covariance matrix Gi. We now prove that the
characteristic function of T̃1,n + T̃2,n, say Φ(n)(z), tends to the one of a Gaussian
vector with covariance matrix G1 + Gsb

2 , that is towards Φ(z) := Φ1(z)Φ2(z) as
n→∞. We have

Φ(n)(z)− Φ(z) = E
[
eiz
>T̃1,n

(
eiz
>T̃2,n − Φ2(z)

)]
+ Φ2(z)

(
E[eiz

>T̃1,n ]− Φ1(z)
)

= E
[
eiz
>T̃1,n E

[
eiz
>T̃2,n − Φ2(z)|X

]]
+ Φ2(z)

(
E[eiz

>T̃1,n ]− Φ1(z)
)
.

Using in particular the fact that |eiz>T̃1,n| < 1 and |Φ2(z)| ≤ 1 we derive
∣∣Φ(n)(z)− Φ(z)

∣∣ ≤ E
∣∣∣E
[
eiz
>T̃2,n − Φ2(z)|X

]∣∣∣+
∣∣E[eiz

>T̃1,n ]− Φ1(z)
∣∣.

The proof is finished since from (4.7) and (4.8), both terms of the right-hand side
of the last inequality converge to 0 as n→∞ for any z ∈ Rp.
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D.3 Consistency of the asymptotic covariance matrix
estimates

The consistency of Ĝ1 follows from the consistency of Â1(X,D,wθ̂, wθ̂)

(resp. Â`(X,wθ̂, wθ̂) for ` = 2, 3). To show that Â1(X,D,wθ̂, wθ̂) (resp. Â`(X,wθ̂, wθ̂)
for ` = 2, 3) converges towards A1(wθ? , wθ?) (resp. A`(wθ? , wθ?) for ` = 2, 3), we need
to verify that for some neighbourhood V(θ?) of θ?, the variables I`(wθ?,j, wθ?,k) for
` = 1, 2, 3 and j, k = 1, . . . , p defined by (3.3)-(3.5) in Coeurjolly and Rubak (2012)
have finite expectations. This follows from (C.2) and (C.3) and Lemma D.1. The
consistency of Ŝ follows analogously.

We now focus on Ĝsb
2 . We define for any θ ∈ Θ and any bounded domain W

Gsb
2,W (X,D; θ) =

1

2ρ2|W |
∑

u∈DW

∑

v∈D′
1(u and v in the same cell)g(u, v,X; θ)

where for u, v ∈ S, for any x ∈ Ω and any θ ∈ Θ, we define g as follows

g(u, v, x; θ) = (wλθ (u, x)− wλθ (v, x))(wλθ (u, x)− wλθ (v, x))>.

We note that Ĝsb
2 defined by (4.18) is nothing else than Gsb

2,Wn
(X,D; θ̂).

By ergodicity, Lemma D.1 (which ensures finite expectation) and Campbell’s
Theorem,

Gsb
2,Wn

(X,D; θ)→ 1

2ρ2

1

|C0|
E
[ ∑

u∈DC0

∑

v∈D′C0

g(u, v,X; θ)
]

=
ρ

2
E

∫

(C0×M)2
g(u, v,X; θ)du dv

almost surely as n→∞.
Since θ̂ is a strongly consistent estimate of θ? and since θ 7→ wλ(u, x; θ) is a

continuous function for every u ∈ S and x ∈ Ω, we derive

Gsb
2 (θ̂)→ ρ

2
E

∫

(C0×M)2
g(u, v,X; θ?)du dv

almost surely as n→∞. Now we can check that

ρ

2
E

∫

(C0×M)2
g(u, v,X; θ?)du dv =

1

ρ
E

∫

C0×M
wλθ?(u,X)wλθ?(u,X)>ρdu

− 1

ρ
E
[(∫

C0×M
wλθ?(u,X)ρdu

)(∫

C0×M
wλθ?(u,X)ρdu

)>]
.

In other words,

Ĝsb
2 →

1

ρ
E
(
E
[
wλθ?(U0, X)wλθ?(U0, X)>|X

])

− 1

ρ
E
(

E
[
wλθ?(U0, X)|X

]
E
[
wλθ?(U0, X)|X

]>)

=
1

ρ
E Var[wλθ?(U0, X)|X].
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As a conclusion, we have proved that under the assumption that Pθ? is an ergodic
measure, there exists an empirical matrix Ĝ such that Ĝ−1/2(θ̂ − θ?) d−−→ N (0, Ip).
We now use an argument developed in Jensen and Künsch (1994). If Pθ? is not an
ergodic measure, it can be decomposed as a mixture of ergodic measures, see Preston
(1976). Since any mixture of standard Gaussian distributions is a standard Gaussian
distribution the result is true for non ergodic Gibbs measures.

D.4 Proof of Corollary 4.8

We begin by the following result establishing a Bahadur type representation for the
logistic regression estimate.
Lemma D.3. If Pθ? is ergodic

S(θ̂ − θ?) = |Wn|−1sWn(X,D; θ?) + oP (|Wn|−1/2).

Proof. Under the setting of Section 4 and since θ̂ minimizes the score function, we
can write the following Taylor expansion

sWn(X,D; θ?)

|Wn|
=
sWn(X,D; θ̂)

|Wn|
+
(∫ 1

0

d
dθ>

sWn(X,D; θ? + t(θ̂ − θ?))
|Wn|

dt
)

︸ ︷︷ ︸
:=FWn

(θ̂ − θ?)

Therefore, since sWn(X,D; θ̂) = 0

|Wn|1/2(S(θ̂ − θ?)− |Wn|−1sWn(X,D; θ?)) = (S − FWn)|Wn|1/2(θ̂ − θ?).
By the strong consistency of θ̂, we have almost surely as n→∞

FWn − |Wn|−1 d
dθ>

sWn(X,D; θ?)→ 0 and |Wn|−1 d
dθ>

sWn(X,D; θ?)→ S.

Since |Wn|1/2(θ̂ − θ?) tends to a Gaussian vector, the result follows from Slutsky’s
Theorem.

Assume Pθ? ergodic. LetD,D′ ∼ SB(Rd, ρ) be independent. Then using Lemma D.3
we derive

S(θ̂agg − θ?) = 1
2

(sWn(X,D) + sWn(X,D′)) + oP (|Wn|−1/2)

= T1,Wn(X) + 1
2

(T2,Wn(X,D) + T2,Wn(X,D′)) + oP (|Wn|−1/2). (D.9)

Let T̃2,Wn(X,D,D′) = (T2,Wn(X,D) + T2,Wn(X,D′)) /2. Given X, T2,Wn(X,D) and
T2,Wn(X,D′) are independent and (normalized by |Wn|−1/2) both tend to a Gaussian
vector with covariance matrix Gsb

2 . Therefore as n→∞, we have that given X

|Wn|−1/2T̃2,Wn(X,D,D′)
d−→ N (0, Gsb

2 /2).

Then, following Step 3 of D.2 we can prove that |Wn|−1/2(T1,Wn(X)+T̃2,Wn(X,D,D′))
tends to a Gaussian vector with covariance matrix G1 +Gsb

2 /2. Thus, from (D.9)

|Wn|1/2(θ̂agg − θ?) d−−→ N
(
0, S−1(G1 +Gsb

2 /2)S−1
)
.

Following the proof of D.3, Ŝagg is a consistent estimate of S. This leads to the
statement |Wn|1/2(Ĝagg)−1/2(θ̂ − θ?) d−→ N (0, Ip). And we apply the same argument
as previously to assert that the same result holds for non ergodic Gibbs measures.
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