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Abstract

In this paper, we present a new surface area estimator in local stereology.
This new estimator is called the “Morse type surface area estimator” and is
obtained using a two-stage sampling procedure. First a plane section through a
fixed reference point of a three-dimensional structure is taken. In this section
plane a modification of the area tangent count method is used. The Morse
type estimator generalizes Cruz-Orive’s pivotal estimator for convex objects to
non-convex objects. The advantages of the Morse type estimator over existing
local surface area estimators are illustrated in a simulation study. The Morse
type estimator is well suited for computer assisted confocal microscopy and
we demonstrate its practicability in a biological application: the surface area
estimation of the nuclei of giant-cell glioblastoma from microscopy images. We
also present an interactive software that allows the user to efficiently obtain
the estimator.

Keywords: surface area, local stereology, area tangent count, invariator prin-
ciple, Morse type surface area estimator

1 Introduction

In local stereology, statistical inference about geometric characteristics like volume
and surface area is made by taking random sections through a fixed reference point
of a spatial structure of interest. This branch of stereology is tailor-made for applica-
tions e.g. in biology, where a typical example is optical sectioning of a cell through
its nucleus; see the monograph by Jensen (1998) on local stereology. The nucle-
ator derived by Gundersen (1988) is a well-established local stereological estimator
for volume. Until recently, the surfactor was the only local stereological estimator
available for estimating surface area; see Jensen and Gundersen (1987) and Jensen
(1998, Section 5.6). Unlike the nucleator, the surfactor has not become a standard
estimation tool. This might be due to the fact that the surfactor requires measuring
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angles in a section of the object and angle measurements can be rather cumbersome
in practice.

Cruz-Orive (2005) derived a new surface area estimator, the invariator estima-
tor. It is an unbiased estimator for the surface area of the boundary of a spatial
structure that only requires counting in a two-dimensional isotropic random plane.
The estimator is obtained by combining the classical Crofton formula with the in-
variator principle. The invariator principle states how a line in an isotropic random
plane must be chosen such that it is IUR in three-dimensions. The principle has
been applied widely and we refer to Thórisdóttir and Kiderlen (Submitted, 2013)
for an overview of invariator related results. An unbiased estimator for volume is
also obtained by combining the invariator principle with Crofton’s formula but the
invariator estimator for volume does not seem to enjoy any advantages over the
nucleator. We therefore restrict attention to surface area estimation.

When the spatial structure is convex, improved versions of the invariator esti-
mator have been suggested: the flower estimator and a discretization of it called
the pivotal estimator; see Cruz-Orive (2005) and Cruz-Orive (2011). These estima-
tors require more workload than the invariator estimator but adding this extra ef-
fort results in considerable variance reduction. Some clinical experts convey concern
about the convexity assumption and claim that not many objects in practice can
be assumed to be convex in shape. The new rotational Crofton formulae derived in
Thórisdóttir and Kiderlen (Submitted, 2013, Theorems 6 and 7) tackle this problem.
They present an unbiased estimator for surface area, which is better (with respect
to variance) than the invariator estimator but still works for non-convex objects.
The aforementioned convex estimators, the flower estimator and discretizations of
it, are special cases of this new estimator. The new estimator can be obtained using
a modification of the area tangent count method by DeHoff (1967) on a section of
the structure. For a given section profile and a given direction in the section plane,
a sweeping line is used and all tangents to the section profile are recorded, together
with their type (if they represent a positive or a negative tangent) and their dis-
tance from the origin. We call the distance of a tangent from the origin a critical
value and the type an index. The new estimator can be written entirely in terms of
these indices and critical values. The estimator was originally derived using classical
Morse theory and is therefore called the Morse type surface area estimator. It is well
suited for computer assisted confocal microscopy and the main goal of this paper is
to illustrate its feasibility using an expert-assisted procedure.

After introducing some notation in Section 2 we give a detailed overview of the
sampling designs for the different surface area estimators discussed in this paper.
The motivation for deriving the new rotational Crofton formulae came from study-
ing the variance of the invariator estimator. The estimator is obtained by choosing
three random variables: an IR section plane and both of the polar coordinates (a
direction and a distance) of a uniformly distributed point in the section plane. In
Section 3.1 we show how the variance of the invariator estimator can be decomposed
according to these three different variables. These different variance contributions
are calculated numerically when the object of interest is an ellipsoid as discussed in
Section 3.2. It turns out that the variance from choosing the distance of the uni-
formly distributed point from the origin is by far the biggest variance contributor.
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This variance contribution is not present in the new Morse type surface area esti-
mator which is what makes it much more efficient than the invariator estimator.
Instead of choosing a uniformly distributed point, only a uniform direction in the
plane is chosen and all tangents are found at this direction. A further variance re-
duction is achieved by applying angular systematic sampling in the section plane,
that is, by not only finding tangents for one direction but for several, as discussed
in Section 3.3.

In Section 3.4 we give recommendations concerning the implementation of the
Morse type estimator and compare it in a simulation study to the invariator grid
estimator in Cruz-Orive (2005, Section 3.1). Finding tangents for four directions in
the section plane gives a very precise estimator but using only two directions also
results in a good estimator. The Morse type estimator should always be preferred
to the invariator grid estimator, at least when the expert-assisted approach, derived
in this paper, is used. The application of the Morse type surface area estimator is
illustrated in a study of giant-cell glioblastoma in Section 4. We present an expert-
assisted procedure to obtain the estimator and use the procedure to estimate the
surface area of the nuclei of giant-cell glioblastoma from microscopy images. The
results are presented in Section 4.4. We conclude the paper with a brief discussion.

2 Theoretical background

Before giving an overview of the different surface area estimators, we introduce
the notation and recall some important concepts. Throughout, Rn denotes the
n-dimensional Euclidean space, O its origin, ‖ · ‖ the Euclidean norm and 〈·, ·〉
the Euclidean scalar product. We restrict consideration to three-dimensional space
although many of the results can be generalized to arbitrary dimension. We let
RB3 = {x ∈ R3 | ‖x‖ ≤ R} be the 3-dimensional ball of radius R, centered at O,
and S2 = {x ∈ R3 | ‖x‖ = 1} be the unit sphere. For z ∈ R2 we write z⊥ for the line
through O that is orthogonal to the axis joining z with O and Fz = z + z⊥ for the
line that is parallel to z⊥ and passes through the point z.

We use K for the family of all convex bodies (compact, convex sets with nonempty
interior) of R3. A non-degenerate ellipsoid is an example of a convex body. If the
axes of an ellipsoid E3 ⊆ R3 are parallel to the usual coordinate axes it is of the
form

E3 =
{
x ∈ R3

∣∣∣
3∑

i=1

(xi − zi
ai

)2
≤ 1
}
, (2.1)

where a1, a2, a3 > 0 are the lengths of the semiaxes and z = (z1, z2, z3) ∈ R3 is its
center. For X ∈ K its support function, hX , is given by

hX(u) = max
x∈X
〈u, x〉 , u ∈ S2.

The value hX(u) is the signed distance from O to the supporting hyperplane to X
with outer unit normal vector u.

We let L2 be the family of all two-dimensional linear (passing through O) planes.
A random plane L2 ∈ L2 is called isotropic random (IR) if its distribution is rotation
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invariant on L2. We introduce the surface area estimators for a fixed spatial structure
X ⊆ R3. The spatial structure can either be a polyconvex set (composed of a finite
union of convex bodies) or a compact set with smooth boundary. If X is a compact
set with smooth boundary we have to add the technical requirement that X∩L2 has
again a smooth boundary, for almost all L2 ∈ L2. This assumption is discussed in
Thórisdóttir and Kiderlen (Submitted, 2013) and typically imposes no restrictions
in practice. In Section 4 we extend the setting to a random particle X. We write
∂X for the boundary of X, S(∂X) for the surface area of its boundary, V (X) for
its volume and χ(X) for its Euler characteristic. If X ⊆ R1 is compact, χ(X) is the
number of connected components of X. An overview of the notation of the different
surface area estimators that will be discussed, their name and where they originate
from can be found in Table 1.

Table 1: An overview of the surface area estimators relevant for the present paper.

Notation Name Reference

Ŝinv invariator estimator Cruz-Orive (2005)
Ŝgrid invariator grid estimator Cruz-Orive (2005)
Ŝ+
N pivotal estimator Cruz-Orive (2005)

Ŝflo generalized flower estimator Thórisdóttir and Kiderlen (Submitted, 2013)
ŜN Morse type estimator Thórisdóttir and Kiderlen (Submitted, 2013)

All these estimators are unbiased and are based on measurements of X in central
two-dimensional sections. In a typical application X could be a biological cell with a
reference point (for instance a nucleus or nucleolus) which we identify with the origin.
The data necessary for the estimators is obtained from an isotropic two-dimensional
section through X.

2.1 The invariator estimator for surface area

Combining the classical Crofton formula and the invariator principle, the surface
area of ∂X can be written as

S(∂X) = E
[
4

∫

L2

χ(X ∩ L2 ∩ Fz)dz2
]

(2.2)

where the expectation is with respect to the IR distribution of the section plane
L2 ∈ L2; see Cruz-Orive (2005, first eq. (2.10)). Recall that Fz is the line in the
section plane passing through z and orthogonal to the axis connecting z with O.
Introducing polar coordinates in the section plane, we have

S(∂X) = E
[
4

∫

S2∩L2

∫ ∞

0

χ(X ∩ L2 ∩ Fru)rdrdu
]
. (2.3)

The line Fru, where r is its distance from O, is referred to as an r-weighted line in
Cruz-Orive (2005).
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We assume now that X is contained in a known reference set, which we take to
be a ball RB3 of radius R > 0. The invariator estimator for surface area proposed
by Cruz-Orive (2005, first eq. (2.12)) can be expressed as

Ŝinv = 4πR2χ(X ∩ L2 ∩ FZ), (2.4)

where L2 ∈ L2 is an IR plane and Z ∼ unf(RB3 ∩ L2) is a uniformly distributed
point on the disk RB3 ∩L2. From (2.2) it follows that Ŝinv is an unbiased estimator
for S(∂X). It can be obtained using the following sampling procedure:

1. Choose R > 0 such that X ⊆ RB3.

2. Choose an IR L2 (for instance by parametrizing S2 and choosing an isotropic
unit vector V ∈ S2, being a unit normal of L2).

3. Choose a uniformly distributed point Z on the disk RB3 ∩ L2.

4. Determine the estimator by counting the number of connected components of
X ∩ L2 ∩ FZ .

It is important to notice that the estimator is unbiased for any given reference set
containing the object.

2.1.1 Invariator grid estimator

To reduce the variance of the invariator estimator, it was suggested in Cruz-Orive
(2005, Section 3.1) to use systematic random sampling in the IR section plane as
described in the following. Apply the first two steps in the sampling procedure
described in Section 2.1. For a given IR section plane L2 a twice periodic point grid
of grid distance d > 0, with O chosen uniformly at random in a square of area d2,
is thrown onto the section plane; see Cruz-Orive et al. (2010, Fig.1) for illustration.
For any grid point z in the reference space RB3 consider the test line Fz. Then

Ŝgrid = 4d2
∑

z

χ(X ∩ L2 ∩ Fz), (2.5)

where the sum is over all grid points z in the reference space, is an unbiased estimator
for S(∂X). The application of this estimator was illustrated by Cruz-Orive et al.
(2010) on a group of rat brains.

2.2 Morse type surface area estimator

In this paper we promote another improvement of the invariator estimator, which
also reduces variance. It uses the fact that the Euler characteristic in (2.3) only
changes value (for u ∈ S2 ∩ L2 fixed and r ∈ [0,∞) varying), if the line Fru is
tangent to the section profile X∩L2. We call the distance r of a tangent line from O
a critical value. The innermost integral in (2.3) can be calculated explicitly in terms
of the critical values of the section profile. This presents surface area estimators that
can be written entirely in terms of critical values in a section plane. These estimators
were derived by Thórisdóttir and Kiderlen (Submitted, 2013) in arbitary dimension
using Morse theory. Morse theory studies the topology of manifolds in terms of
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functions defined on the manifolds; see the famous monograph by Milnor (1963).
In our setting, the manifold is the boundary of the object of interest. Here we will
not discuss Morse theory but rather give an intuitive explanation of critical values
based on a procedure that is known in stereology under the name of area tangent
count ; see DeHoff (1967). We refer to Thórisdóttir and Kiderlen (Submitted, 2013)
for a more mathematically rigorous derivation of the estimators.

2.2.1 A modification of the area tangent count method

For an IR section plane L2 ∈ L2 let Y = X∩L2 be the section profile and u ∈ S2∩L2

a given direction in the section plane. The idea of the area tangent count method
is to sweep the line u⊥ through the section profile and find all translates of the line
that are tangent to Y . We distinguish between positive tangents (+) and negative
tangents (-). When the sweeping line passes a tangent there is either an increase
or a decrease in the number of connected components (of the sweeping line section
with the profile). If the tangent represents an increase in the number of connected
components we say that it is a positive tangent and a negative tangent if it represents
a decrease in the number of connected components.

In the classical use of the area tangent count method, e.g. in DeHoff (1967)
where the integral mean curvature in a structure is estimated, only the number
of tangents and their type are registered. As we are interested in calculating the
weighted integral in (2.3), we also record the distance of each tangent from O. If
the line ru + u⊥ is tangent to Y we call the distance r = r(u) a critical value
of Y . Moreover we let ιu(r) ∈ {−1, 1} be the type of the tangent, which we also
call its index. A positive tangent (a tangent with index 1) can occur in two ways:
either the sweeping line enters a new connected component of Y , like for the lowest
critical value r1 of Figure 1, or a connected component splits up, like for the critical
value r2 in Figure 1. A negative tangent (a tangent with index −1) indicates that
the sweeping line leaves a part of Y , like for the remaining two critical levels in
Figure 1, or that two components of Y intersected with the line melt together (not
represented in Figure 1).

The above interpretation of critical values also leads to an intuitive protocol for
finding them. Given a direction u in the section plane, find all tangents to the section
profile Y that are parallel to u⊥. For each of these tangents with critical value r0, say,
determine its index by checking if the number of connected components χ(Y ∩ Fru)
is increasing or decreasing when sweeping over value r0.

A positive tangent is sometimes referred to as a “convex” tangent and a negative
one as a “concave” tangent, see e.g. Baddeley (1984). Baddeley (1984) remarked
that tangent counting is derived for ideal smooth objects and that it can therefore
be unstable when it is applied to blurred images. This is not a severe practical
limitation in our setting as we do not only use the number of tangents for a given
section profile in a given direction, but rather their distances from O, the critical
values.
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Figure 1: Critical levels and indices for a given direction u in a section profile. Positive
tangents are colored red while negative tangents are colored blue.

2.2.2 Surface area in terms of critical values

If m = m(u) is the number of critical values of a section profile Y in direction u,
enumerated such that r1 < r2 < · · · < rm, the Euler characteristic in (2.3) can be
written as

χ(Y ∩ Fru) =
∑

i:ri≤r
ιu(ri) (2.6)

for almost all r; see Thórisdóttir and Kiderlen (Submitted, 2013, Section 4.3). This
says that the number of connected components can be given entirely in terms of the
tangents. For instance, for the example in Figure 1, we have

χ(Y ∩ F2u) = 1 + 1 = 2, χ(Y ∩ F4u) = 1 + 1− 1 = 1.

Inserting the expression for the Euler characteristic into (2.3), the innermost integral
can be calculated explicitly, and we obtain

S(∂X) = E
[ ∫

S2∩L2

M(X ∩ L2, u)du
]

(2.7)

where

M(Y, u) =
m∑

k=2

(rk|rk| − rk−1|rk−1|)
k−1∑

i=1

ιu(ri) (2.8)

depends on all the critical values r1 < r2 < · · · < rm of Y = X ∩ L2 in direction
u ∈ S2∩L2. The functionM may look complicated but it is only a linear combination
of the squared critical values. For the example in Figure 1,

M(Y, u) = (r22 + r21) + (r23 − r22)2 + (r24 − r23) = r21 − r22 + r23 + r24.
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It follows from (2.7) that the estimator

Ŝ1 = 2πM(X ∩ L2, U), (2.9)

where L2 ∈ L2 is IR and U ∼ unf(S2 ∩L2), is an unbiased estimator for the surface
area of ∂X. The estimator can be obtained using the following sampling procedure:

1. Choose an IR L2.

2. Choose a uniformly distributed direction U ∼ unf(S2 ∩ L2) in the section
plane.

3. For a given direction U = u find all tangents of the section profile and record
their critical values and indices.

4. Calculate the linear combination given by (2.8).

When X ∈ K, there are only two critical values for every given direction and using
the definition of the support function, the function M simplifies

M(Y, u) = hY (u)|hY (u)|+ hY (−u)|hY (−u)|. (2.10)

If furthermore O ∈ X, the support function is non-negative and

M(Y, u) = h2Y (u) + h2Y (−u), (2.11)

so then the estimator given by (2.9) becomes

Ŝ1 = 2π(h2X∩L2
(U) + h2X∩L2

(−U)).

2.2.3 Generalized flower estimator

If it is possible to find tangents for all directions in the section plane, the unbiased
estimator for surface area

Ŝflo =

∫

S2∩L2

M(X ∩ L2, u)du, (2.12)

where L2 ∈ L2 is IR, can be obtained. In other words

Ŝflo = E[Ŝinv|L2]. (2.13)

When X ∈ K and O ∈ X, equation (2.12) can be written as

Ŝflo = 2

∫

S2∩L2

h2X∩L2
(u)du, (2.14)

where the reflection invariance of the Hausdorff measure has been used. This is the
flower estimator given in Cruz-Orive (2005).

As shown by Cruz-Orive (2005, (2.19)), the flower estimator can also be written
as four times the area of a so-called flower set, which is the set whose radial function
is the support function of Y = X∩L2; see also Thórisdóttir and Kiderlen (Submitted,
2013, p. 3). When Y is a planar polygon, the flower set is a union of finitely many
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disks and resembles slightly a flower, which explains the terminology; see the figure
by Cruz-Orive (2011, Fig.5). The estimator Ŝflo in (2.12) can be referred to as the
generalized flower estimator. There exists a simple computational formula for the
generalized flower estimator when X is a simply connected polytope with interior
points. The formula can be found in Thórisdóttir and Kiderlen (Submitted, 2013,
Corollary 10) and only requires a list of the vertices of the polygon Y = X∩L2, where
L2 ∈ L2 is IR. When X is a convex polytope containing O, alternative formulae can
be found in Cruz-Orive (2011, Proposition 3) and Cruz-Orive (2012, Corollary 2).

2.2.4 Morse type surface area estimator

When X is not a polytope, a good compromise between accuracy and effort might
be cyclic systematic sampling of finitely many unit vectors in S2 ∩ L2 for a discrete
approximation of the integral in (2.12). Let N ∈ N be the number of directions to
be sampled. Then the following unbiased estimator is obtained

ŜN =
2π

N

N−1∑

l=0

M(X ∩ L2, uα0+l
π
N

), (2.15)

where L2 ∈ L2 is IR, α0 ∼ unf[0, π/N) and uα is the unit vector in L2 making
an angle α with a fixed axis in the section plane. This estimator is referred to as
the Morse type surface area estimator as, like already mentioned, it was originally
derived using the theory of Morse. When N = 1, the estimator (2.9) is obtained.
For convex X

ŜN =
2π

N

N−1∑

l=0

(h2X∩L2
(uα0+l

π
N

) + h2X∩L2
(−uα0+l

π
N

)). (2.16)

For N = 2, equation (2.16) can be found in Cruz-Orive (2005, Eq. (3.2)). Dvořák and
Jensen (2013) showed that Ŝflo and Ŝ2 are identical when X is a three-dimensional
ellipsoid with O in its interior. To avoid confusion we remark that the number of
sampled directions N in (2.16) equals half the number of sampled rays in Dvořák
and Jensen (2013, Eq. (8)). More specifically, if rays are used and O is contained in
the interior of X, the estimator

Ŝ+
N =

4π

N

N−1∑

l=0

h2X∩L2
(uα0+l

2π
N

), (2.17)

where now α0 ∼ unf[0, 2π/N), is an unbiased estimator for the surface area of the
boundary of X. This estimator is referred to as the pivotal estimator in Cruz-Orive
(2008) and Dvořák and Jensen (2013, Eq. (8)). We note that ŜN = Ŝ+

2N . In practice
it is more natural to sweep a line at a given direction through the whole section
profile and not stop when the line hits O. Therefore we introduced the Morse type
estimator (2.15) using the M function given by (2.8) instead of using 2M+ given by

M+(Y, u) =
∑

k:rk>0

(r2k −max(0, rk−1)
2)

k−1∑

i=1

ιu(ri), (2.18)

where M+(Y, u) = 0 if rk < 0 for all k.
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3 Variance

The variance of the surface area estimators in Table 1 has only been studied to a
very limited extent and the purpose of this section is to analyse the variance in
greater detail. The main result is a decomposition of the variance of the invariator
estimator Ŝinv. As these different variance contributions cannot be evaluated easily
for general sets, we discuss the different variance contributions for ellipsoids. The
decomposition can be used to express the variances of the Morse type- and the
generalized flower estimator. A recommendation concerning the choice of N when
applying ŜN is given and it is compared to the invariator grid estimator Ŝgrid in a
simulation study.

3.1 Variance decomposition

To evaluate the quality of the invariator estimator Ŝinv, we studied the different
sources of variation separately. The variance of the estimator can be decomposed
into three different contributions according to the integration variables in (2.3):

Vdist = EVar(Ŝinv|L2, u), (3.1)

which is the variance contribution from choosing the distance of the line Fz from O,

Vorient = EVar(E[Ŝinv|L2, u]|L2), (3.2)

which is the variance contribution from choosing the orientation of the line Fz and

Vplane = VarE[Ŝinv|L2], (3.3)

which is the variance contribution from choosing the IR section plane L2. This is
made more explicit in the following proposition.

Proposition 3.1. The variance of Ŝinv in (2.4) can be decomposed into three parts

Var(Ŝinv) = Vdist + Vorient + Vplane, (3.4)

where

Vdist = 16π2E
[
M+(X ∩ L2, u)(R2

∑

k:rk>0

k−1∑

i=1

ιu(ri)−M+(X ∩ L2, u))
]
, (3.5)

Vorient = 16π2EVar(M+(X ∩ L2, u)|L2), (3.6)
Vplane = 4π2 VarE[M(X ∩ L2, u)|L2]. (3.7)

Here the function M is given by (2.8) and M+ by (2.18).

Proof. The variance of Ŝinv is finite and hence, by the law of total variance

Var(Ŝinv) = EVar(Ŝinv|L2) + VarE[Ŝinv|L2].
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Let L2 ∈ L2 be a given IR section plane and (r, u) be the polar coordinates of a
uniformly distributed point in RB3∩L2, with r ∈ [0,∞) and u ∈ S2∩L2. Using the
conditional version of the law of total variance in Bowsher and Swain (2012), we get

Var(Ŝinv|L2) = E[Var(Ŝinv|L2, u)|L2] + Var(E[Ŝinv|L2, u]|L2).

The variance of Ŝinv can therefore be decomposed into the three contributions given
in (3.1)–(3.3). In the following we calculate these different contributions. Inserting
the estimator Ŝinv into (3.3), introducing polar coordinates in the section plane and
then using the expression (2.6) for the Euler characteristic we find

Vplane = Var
(

4πR2 1

πR2

∫

L2∩RB3

χ(X ∩ L2 ∩ Fz)dz2
)

= 16π2 Var
(
R2 1

2π

∫

S2∩L2

1

R2

∫ ∞

−∞
χ(X ∩ L2 ∩ Fru)|r|drdu

)

= 16π2 Var
( 1

2π

∫

S2∩L2

m∑

k=2

k−1∑

i=1

ιu(ri)

∫ rk

rk−1

|r|drdu
)
.

Integrating the inner integral explicitly and using the notation (2.8), we find

Vplane = 4π2 VarE[M(X ∩ L2, u)|L2].

By applying similar arguments and the notation (2.18), we obtain

Vorient = 16π2EVar
(

2

∫ ∞

0

χ(X ∩ L2 ∩ Fru)rdr | L2

)

= 16π2EVar(M+(X ∩ L2, u)|L2).

Furthermore, using that

Vdist = E[Ŝ2
inv]− E[E[Ŝinv|L2, u]2]

we get from (2.6) and (2.18) that

Vdist = 16π2E
[
R2M+(X ∩ L2, u)

∑

k:rk>0

k−1∑

i=1

ιu(ri)
]
− 16π2E[(M+(X ∩ L2, u))2],

which simplifies to (3.5).

Proposition 3.1 implies in particular, that only the variance contribution (3.5)
depends on the size R of the reference set, and it is increasing with R. More impor-
tantly, (2.13) and (3.3) show that

V plane = Var(Ŝflo)

is the variance of the generalized flower estimator. Moreover, as all the surface area
estimators Ŝ in Table 1 satisfy E[Ŝ|L2] = Ŝflo a variance decomposition similar to
(3.4) for Var(Ŝ) implies that Ŝflo has the lowest possible variance among them all.
This is discussed further in Section 3.3.
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3.1.1 Variance decomposition for convex bodies

In view of (2.10) the different variance contributions in Proposition 3.1 simplify
when the particle X is convex. Using (2.11) and the rotation invariance of the
Hausdorff measure, the expressions are particularly simple when the reference point
is contained in X.

Remark 3.2. When X ∈ K and O ∈ X the variance contributions (3.5)–(3.7)
simplify to

Vdist = 16π2E[h2X∩L2
(u)(R2 − h2X∩L2

(u))],

Vorient = 16π2EVar(h2X∩L2
(u)|L2),

Vplane = 16π2 VarE[h2X∩L2
(u)|L2].

When X is a three-dimensional ellipsoid, the section profile Y = X ∩ L2 is an
ellipse that can be expressed with respect to an orthonormal basis of the section plane
L2 as shown by Thórisdóttir (2010, Proposition 10). Hence, the support function of Y
can be obtained and using elementary but tedious calculations the different variance
contributions in Proposition 3.1 can be made more explicit. As the expressions are
quite involved they are deferred to Proposition A.1 in the appendix. For illustration
we give explicit analytic expressions for the different variance contributions when X
in Proposition 3.1 is a three-dimensional ball of radius r. We assume without loss
of generality that the ball is centered at O′ = (0, 0, z), z ≥ 0, and assume that the
ball contains O.

Proposition 3.3. Let X = O′ + rB3, with r > 0, O′ = (0, 0, z), z ∈ [0, r], and
assume that X ⊆ RB3. Then the different variance contributions (3.5)–(3.7) in
Proposition 3.1 can be expressed as

Vdist = 16π2r2
(
R2 − r2 − 4

3
z2
)
,

Vorient = 16π2z2
(
4
3
r2 − 1

5
z2
)
,

Vplane =
16π2z4

5
.

The proof uses Pythagoras’ theorem and elementary but tedious calculations
and can be found in Thórisdóttir (2010, p. 36–38). Adding up the different variance
contributions in Proposition 3.3, we obtain the total variance of the estimator when
X is a ball of radius r

Var(Ŝinv) = 16π2r2(R2 − r2); (3.8)

see also Cruz-Orive (2008).

3.2 Numerical results for ellipsoids

As mentioned earlier, Proposition A.1 in the appendix gives more explicit expres-
sions for the different variance contributions of the estimator Ŝinv when X is a
three-dimensional ellipsoid. It is quite involved, if at all possible, to derive explicit
analytic formulas for these expressions. We therefore turned to numerical methods
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in the language and interactive environment Matlab for calculating the different
contributions (A.2)–(A.4). At the home page home.imf.au.dk/olofth programs
for calculating the variance contributions in Matlab can be found. In the following
we briefly describe the most important modules of this implementation.

We assume without loss of generality that the ellipsoid is of the form (2.1). In
calculations.m the user reports the center (z1, z2, z3) of the ellipsoid under study,
the lengths, a1, a2 and a3, of the ellipsoidal axes, and the radius R of the reference
ball. The output are numerical estimates of the respective variance contributions
Vdist (the variance from choosing the distance of the line Fz from O), Vorient (the
variance due to the choice of the orientation of the line), Vplane (the variance due to
choosing the IR section plane L2), the total variance obtained by adding up the dif-
ferent contributions Total variance = Vdist +Vorient +Vplane, and the total variance
obtained from implementing the theoretical expression (A.6). We used the theoret-
ical expression for the total variance (A.6) involving elliptic integrals to compare
with the total variance obtained by adding up the different variance contributions.
The comparison study included numerous different values of the parameters and
implied that the algorithm is very stable and precise.

The function dblquad in Matlab was used to calculate numerically the double
integrals in (A.2)–(A.4) and the program elliptic12.m, written by Moiseev Igor1,
was used to calculate the incomplete elliptic integrals of first and second kind to
obtain (A.6). In Figure 2 the contribution Vdist (dashed curve), Vorient (dashed-dotted
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Figure 2: The different variance contributions for ellipsoids centered at (0.4, 0.2, 0.2), with
axes of lengths a1 = 5, a2 = 4 and a3 varying from 0.2 to 10.

curve), Vplane (dotted curve) and the total variance T = Vdist + Vorient + Vplane (solid
curve) can be seen for ellipsoids embedded in a ball of radius 10.5 and given by

{
x ∈ R3

∣∣∣ (x1 − 0.4)2

52
+

(x2 − 0.2)2

42
+

(x3 − 0.2)2

a23
≤ 1
}
, (3.9)

where a3 varies from 0.2 to 10.
1The Matlab program was downloaded from: http://www.mathworks.com/matlabcentral/

fileexchange/8805-elliptic-integrals-and-functions.
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Further discussion on the different variance contributions for ellipsoids can be
found in Thórisdóttir (2010, Section 3.5), where the shapes of the different curves,
comparison between them and the role of the size of the reference space are dis-
cussed. The general conclusion is that the variance contribution Vdist (the variance
contribution from choosing the distance of the closest point on the line Fz from O),
is very large relative to both Vorient and Vplane. Hence, to improve the estimator it is
most efficient to concentrate on reducing Vdist.

3.3 Variance of the Morse type surface area estimator

The study of three-dimensional ellipsoids suggests strongly that the variance of Ŝinv

primarily comes from choosing the distance of the line Fz in (2.4) from O. We believe
this to hold for more general sets, too. As this variance contribution is not present
in the Morse type estimator ŜN , it is highly recommended to add the extra effort
needed to find tangents, as a dramatic variance reduction is obtained.

As an example of the variance reduction obtained, the standard error is reduced
by a factor of 2.9 for the ellipsoid given by (3.9), with a3 = 10 and R = 10.5, when
the pivotal estimator Ŝ+

1 is used instead of the invariator estimator Ŝinv. When X
is a ball of radius r > 0, centered at (0, 0, z), we obtain from Proposition 3.3 that
the coefficient of variation of Ŝ+

1 is

CV (Ŝ+
1 ) =

√
Var(Ŝ1)

EŜ1

=
2z√
3r
. (3.10)

This has been reported earlier by Cruz-Orive (2008, Eq. (6)) when X is a unit ball.
Cruz-Orive (2008) compared this coefficient of variation to the one obtained for the
surfactor estimator derived by Jensen and Gundersen (1987). For the unit ball, Ŝ+

1

had smaller coefficient of variation than the surfactor.
As already mentioned after Proposition 3.1, the law of total variance immediately

gives Var(Ŝflo) ≤ Var(ŜN) for all N ∈ N but as Ŝflo requires finding tangents in all
directions in the section plane it is usually not feasible in practice (unless the section
profile is a polygon or if its boundary can be approximated by a polygon using
automated segmentation as briefly discussed in Section 5.2). We therefore restrict
attention to ŜN in what follows.

Let Y = X ∩ L2, L2 ∈ L2, be the section profile. Applying systematic sampling
in the section plane typically reduces the variance. More specifically, using that
M(Y, U) = M(Y, U + π), U ∼ unf(S2 ∩ L2), and Cauchy-Schwarz inequality, we
obtain

Var(Ŝ2N) ≤ Var(ŜN) ≤ Var(Ŝ1) (3.11)

for all N ∈ N. This was shown for X ∈ K in Dvořák and Jensen (2013, Section 2.2).
We only mention here that using a result of Gual-Arnau and Cruz-Orive (2000,
Eq. (2.4)), the variance of the Morse type estimator ŜN can be expressed as

Var(ŜN) = V plane + E
[2π

N

N−1∑

l=0

g(ul π
N

)−
∫

S2∩L2

g(ω)dω
∣∣∣ L2

]
,
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where the function g is the circular covariogram of M on the section profile

g(ω) =

∫

S2∩L2

M(Y, u)M(Y, u+ ω)du, ω ∈ S2 ∩ L2.

3.4 Efficiency of the Morse type surface area estimator

We now discuss how the number N of directions in L2 should be chosen so that
the variance of ŜN becomes small while still keeping a reasonable workload of the
sampling procedure in L2. As the variance contribution Vplane is common for all
surface area estimators considered here, we ignore this contribution in the following
discussion and consider the variance of ŜN given L2. Clearly, the function f(N) =
Var(ŜN |L2) depends crucially on the shape of the underlying object. We therefore
carried out a simulation study with a variety of different shapes shown in Figure 3.
The simulations were done using R.

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

Shape 6 Shape 7 Shape 8 Shape 9 Shape 10

Figure 3: Polygons and half-circles.

In the next section, we determine the empirical CV’s of ŜN , N ∈ {1, 2, 3, 4, 5},
from independent Monte Carlo replications and derive an empirical recommenda-
tion for the choice of N . In Section 3.4.2 we compare empirically the precision and
workload required for the new estimator ŜN and the well-known estimator Ŝgrid.

3.4.1 Choice of N

Although the variance of ŜN for a given section profile does not increase when the
number of orientations sampled is doubled, as shown in (3.11), it is not a non-
increasing function of N . Table 2 presents estimates of the CV’s for the shapes in
Figure 3, which are all contained in a reference disk of radius one, centered at O. To
recommend a value of N , we suggest that a CV of not more than 2.5% is acceptable.
Hence, the smallest N for a given shape where the empirical CV is 2.5% or less,
is our recommendation for the choice of N . We only need to find tangents in two
directions for shapes 1, 5, 6 and 9, in three directions for shapes 2, 3 and 4 and in
four directions for shapes 7, 8 and 10. For all simulated ellipses, two orientations give
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Table 2: CV for the shapes in Figure 3.

CV N = 1 N = 2 N = 3 N = 4 N = 5

Shape 1 0.6388 0.0242 0.0151 0.0085 0.0055
Shape 2 0.3410 0.0848 0.0146 0.0141 0.0123
Shape 3 0.2652 0.1048 0.0249 0.0087 0.0120
Shape 4 0.2587 0.1487 0.0246 0.0149 0.0090
Shape 5 0.1376 0.0188 0.0239 0.0084 0.0049
Shape 6 0.1970 0.0228 0.0065 0.0080 0.0029
Shape 7 0.2217 0.0747 0.0456 0.0167 0.0072
Shape 8 0.3025 0.0422 0.0331 0.0204 0.0082
Shape 9 0.2783 0.0129 0.0037 0.0023 0.0013
Shape 10 0.2542 0.0908 0.0255 0.0162 0.0091

a CV of less than 2.5%. This is even true for ellipses not containing the reference
point O. This is not surprising as it follows from Dvořák and Jensen (2013) that Ŝ2

and Ŝflo are identical when Y is an ellipse with O in its interior, as already mentioned
at the end of Section 2.2 for three-dimensional ellipsoids. When the reference point
is moved away from the center of an ellipse, the CV increases. This is evident for
a disk from (3.10). The elongation of the ellipse does not seem to influence the CV
when N > 1. For N = 1, the CV increases slightly for increased elongation of the
ellipse.

A number of simulations were carried out and they suggest strongly that taking
N = 4 is sufficient for obtaining a CV of less than 2.5% for a large class of shapes.
Although the CV can increase as N increases, as is the case for Shape 5 with N = 2
and N = 3, it is our experience that this increase is rare, and, when it occurs, it
is not substantial. Therefore taking N = 4 instead of N = 3 should typically not
decrease the precision of the estimator. When the object of interest resembles an
ellipse, we recommend using N = 2. We note that these recommendations are only
based on the variance of the sampling procedure. When there are other sources of
variation that are much larger than the variance due to the sampling procedure,
N = 2 is typically adequate, see Section 4.4.

3.4.2 Comparison of ŜN and Ŝgrid

We still consider a given section profile Y = X ∩L2 and fix L2 ∈ L2. An alternative
to the Morse type estimator ŜN is the invariator grid estimator Ŝgrid given by (2.5).
We compare the efficiency of these two estimators by finding the amount of workload
needed to estimate E[Ŝflo|L2] at a given precision. Define the complexity numbers

CŜN = total number of tangents for the N directions,

CŜgrid
= 2

∑

z

χ(Y ∩ Fz) +
∑

z

1{(Y ∩Fz)=∅} .

Hence, CŜgrid
is the total number of points in the intersection of the boundary of

the section profile with the test lines plus the number of test lines that do not hit
the section profile. Both complexity numbers are motivated by the number of mouse
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clicks in an interactive microscopy software to determine the estimator; see also
Section 4.3. The workload in obtaining these numbers is typically not equivalent,
as determining a critical point is most likely more difficult than to determine if a
line hits the boundary of the object or not. But given the ratio Q = CŜgrid

/CŜN , a
clinical expert can decide if it is more feasible to use ŜN or Ŝgrid. The simulation
study shows strong evidence for that ŜN should be preferred to Ŝgrid, at least when
N > 1.

For a given polygon we generated 1000 independent replications of ŜN for a given
N and of Ŝgrid for a given grid distance d. From these observations we calculated
an empirical estimate for the variance of ŜN , Ŝgrid, respectively, and recorded the
complexity constants CŜN . We then used a normal kernel with smoothness parameter
s to smooth V̂ar(Ŝgrid) as a function of the grid distance d. We denote the smoothed
estimate of the variance by V̂ars(Ŝgrid). For a given N we found d such that Ŝgrid

has essentially the same precision as ŜN , that is, such that

|V̂ars(Ŝgrid)− V̂ar(ŜN)| ≤ 10−6.

Given this d we then again generated 1000 independent replications of Ŝgrid and
calculated CŜgrid

. For a given N and the corresponding d we obtained an unbiased
estimate of the ratio Q

Q̂ =
1

1000

1000∑

i=1

CŜgrid

CŜN
.

In Table 3 results for the shapes in Figure 3 can be seen, where the smoothness
parameter s = 0.1 has been used. When N > 2, d is close to zero and Q̂ very large
(much greater than 100) for all the shapes in Figure 3. This means that Ŝgrid only
attains the efficiency of ŜN when unrealistically many test lines are used, making
the complexity number of Ŝgrid large compared to the one of ŜN . For ellipses we find
that Q̂ > 2 when N = 1 and that it is very large when N = 2. The ratio Q typically
decreases with increased elongation of an ellipse.

The simulations imply that Q is always greater than 2. Hence, ŜN should at least
be preferred to Ŝgrid if the workload needed to identify a tangent, as well as its type
and critical value, is not more than twice of that needed to determine if a line hits
the boundary of an object or not. It should be noted that this factor 2 is a worst-case
scenario. The ratio Q can be much larger than two even when N = 1, as can be seen
in Table 3. When the software, described in Section 4.3, is used, the estimator ŜN
can be obtained very efficiently and should therefore always be preferred to Ŝgrid.

3.4.3 Convex hull

Rather surprisingly it is not necessarily better (with respect to variance) to find
ŜN for the convex hull of an object than for the true object. We show this by an
example. The object in Figure 4 to the left is a disk of radius r, where one fourth
has been cut off, and the one to the right is its convex hull. In Table 4 estimates for
the CV’s based on 1000 independent replications of ŜN for N ∈ {1, 2, 3} and each
of the two objects can be seen.
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Table 3: Comparison for the shapes in Figure 3.

Var d Q̂

Shape 1 N = 1 3.52 0.81 2.9
N = 2 4.8 · 10−3 ' 0 �100

Shape 2 N = 1 6.7 · 10−2 0.64 4.9
N = 2 7.2 · 10−3 0.21 22.6

Shape 3 N = 1 2.56 · 10−1 0.65 3.7
N = 2 3.84 · 10−2 0.32 7.9

Shape 4 N = 1 2.08 · 10−1 0.68 4.9
N = 2 7.2 · 10−2 0.46 5.3

Shape 5 N = 1 1.23 0.48 5.0
N = 2 2.08 · 10−2 ' 0 �100

Shape 6 N = 1 1.47 0.51 3.2
N = 2 1.6 · 10−2 ' 0 �100

Shape 7 N = 1 5.92 · 10−1 0.36 8.6
N = 2 6.72 · 10−2 0.10 52.1

Shape 8 N = 1 1.33 0.58 4.4
N = 2 1.34 · 10−2 0.04 �100

Shape 9 N = 1 4.06 · 10−1 0.43 10.0
N = 2 8.30 · 10−4 ' 0 �100

Shape 10 N = 1 4.19 · 10−1 0.40 12.0
N = 2 5.41 · 10−2 0.16 35.0

Figure 4: A disk of radius r, where one fourth has been cut off, and its convex hull.

Table 4: CV for the objects in Figure 4

CV N = 1 N = 2 N = 3

Fig. 4 left 0.001140 0.000165 0.000357
Fig. 4 right 0.075878 0.040691 0.020190
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We note that the CV’s for the convex hull, the object to the right in Figure 4,
are considerably larger than those for the object to the left. This can be explained
by considering the integrand in the generalized flower estimator, the function M .
The true value E[Ŝflo|L2] can be written as

E[Ŝflo|L2] = 2

∫ 2π

0

f(α)dα.

where for the object to the left the function f is a constant, f(α) = r2 for all
α ∈ [0, 2π), while for the convex hull

f(α) =





r2, α ∈ [0, 3π/2)

r2 sin2 α, α ∈ [3π
2
, 7π

4
)

r2 cos2 α, α ∈ [7π
4
, 2π).

This explains the greater variance of ŜN for the convex hull.

4 Application of the Morse type surface area
estimator to giant-cell glioblastoma

We illustrate the application of the Morse type estimator ŜN in a study of giant-cell
glioblastoma. The goal is to estimate the average surface area of the nucleus of giant-
cell glioblastoma from microscopy images. Giant-cell glioblastoma is a rare brain
neoplasm which accounts for 1% of glioblastomas. It is formerly known as monstro-
cellular brain tumour. Histologically, the tumour is characterized by bizarre-looking,
variable sized and shaped multinucleated giant-cells with abundant eosinophilic cyto-
plasm; see Ohgaki et al. (2000). Giant-cell glioblastoma is a subtype of glioblastoma
multiforme, however the rarity of giant-cell glioblastoma has prevented further char-
acterization. Giant-cell glioblastoma is more prevalent in young-male patients and
tends to occur more in parietal and temporal lobe of brain. We chose to illustrate the
estimator for the nuclei of giant-cell glioblastoma as they are typically non-convex
in shape, see Figure 5.

Figure 5: Section profiles through a nucleoli of the nuclei of two giant-cell glioblastoma.
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4.1 Model-based setting

In the preceding sections we have assumed that the structure of interest is deter-
ministic and the section plane is random, that is we have worked in a design-based
setting. We will now adopt the common model-based approach, where the parti-
cles, here nuclei of giant-cell glioblastoma, are random isotropic and the plane is
deterministic. This isotropy assumption allows us to avoid a complicated, time con-
suming protocol, where each particle is sectioned physically or optically by a new
isotropically generated plane. Hence we assume that the nuclei are realizations of
an ergodic isotropic random process, meaning that nuclei far away from each other
have independent orientations. We then can apply a model-based version of the esti-
mator ŜN . The estimator is identical to the one given by (2.15), but now the particle
X is assumed to be random and the section plane L2 fixed. For all random nuclei X
we assume that ES(X) = S̄, where the expectation is with respect to the random
particle process and S̄ is the average surface area of the typical particle. S̄ is the
target quantity. The unbiasedness of the model-based version of the estimator then
follows from the unbiasedness of the design-based estimator and the strong law of
large numbers.

4.2 Materials and preparation methods

From ten small pieces of tissue biopsies sized 1mm3 to 2mm3, one piece was ran-
domly chosen, embedded in glycol methacrylate (GMA) for preparation of a plas-
tic block. Two 40 µm-thick plastic sections were serially sectioned on a microtome
(HM355, Microm, DMK & Michelsen, Denmark) and stained with hematoxylin and
eosin stain for light microscopy. Data-acquisition was performed using a stereological
microscopy system (BX-51 microscope, Olympus, Denmark) equipped with the New-
Cast Version 4.1 software package (Visiopharm, Hoersholm, Denmark) and mounted
with a digital camera (Olympus DP72) on top of the microscope to project live views
of tissue sections on a monitor. The z-axis of the microscope was monitored with a
Heidenhain electronic microcator and the x-y position was monitored by motorized
stage system (ProscanTM, Prior Scientific Instruments Ltd., Cambridge, U.K).

The image of the tumour region was captured and delineated by navigator tool of
NewCast with 4× objective. An unbiased counting frame (X×Y, 15×13 = 195 µm2)
was used to sample randomly a total of n = 51 nuclei. The red and green “rectangle”
on the images in Figure 6 is a counting frame. The images of nuclei were captured
by optical disector with an oil objective (100×, NA: 1.25).

As already mentioned in Section 2, any point in the nucleus can serve as reference
point as long as it is easily identifiable in any section direction. We chose the nucleoli
in the selected nuclei as reference points. If a nucleus contained several nucleoli, we
chose one out of all the admissible nucleoli (with respect to the counting frame) with
uniform probability. In order to decrease the variance of the estimator systematic
sampling was applied in the tissue by using a counting frame with a step-length of
400 µm in both x and y direction. This assures that the nuclei can be assumed to have
independent orientations. In other words, we can assume that the n sampled nuclei
are realizations of independent, isotropic random particles X1, X2, . . . , Xn satisfying
ES(Xi) = S̄ for i = 1, . . . , n.
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4.3 Implementation of the Morse type surface area
estimator

The estimator ŜN was used to estimate the surface areas of the sampled nuclei. In
Section 3.4.1 we recommended to use N = 4, that is to find tangents for four direc-
tions in the section plane (N = 2 when the object of interest resembles an ellipsoid),
to obtain a good precision of the surface area. In the present implementation we
used one, two and four directions in the section plane in order to be able to compare
the performance of the estimators. The estimation was done using an expert-assisted
procedure which was implemented using Matlab. It is based on a program derived in
Kallemose (2012) for estimating the perimeter of planar geometric structures. The
interactive software is available at the home page home.imf.au.dk/olofth. We give
a brief description of it in the following.

The present implementation is an off-line expert-assisted procedure, where the
sampled section profiles – microscopy images in JPEG format – are used as input.
The user, preferably a clinical expert, can choose the number N of directions that
are to be sampled. As previously stated we recommend using N = 4 (N = 2 for
ellipsoids) but we describe the procedure for an arbitrary N . Microscopy images are
often stored with a scale, see for instance Figure 5 to the left. If this is the case, the
user should indicate the scale before running the procedure. If a scale is reported,
the calculated surface area estimate is given on this scale, otherwise it is given in
pixel units. We assume in the following that a scale is given.

When the procedure is run, the image pops up with a short explanation of what
the user should do next. The measurement procedure consists of three steps which
are illustrated in Figure 6.

Scale The user left clicks on the endpoints of the scale, see the image in the upper
left corner in Figure 6. This tells the program that the length of the red
“measure” line segment is 10.706 µm.

Reference point The user left clicks on the reference point, see the image in the
upper right corner in Figure 6.

Tangents The computer generates a random unit vector U in the section plane
including an angle α0 with the x-axis that is uniform in [0, π/N). In the image
in the lower left corner in Figure 6, this vector is indicated as a short black
line segment attached to the red line orthogonal to U , passing through the
position of the mouse cursor. The line can be translated using the mouse. The
user now marks all tangent positions of this line to the section profile, clicking
left whenever a positive tangent is located, and clicking right for every negative
tangent. If N > 1 this step is repeated with all N − 1 lines with associated
angles α0 + lπ/N , l ∈ {1, 2, . . . , N − 1}.

When these three steps are completed and the user has found all tangents for the
N sampled directions an estimate ŜN of the surface area is calculated. The number
of tangents that need to be placed gives the complexity number CŜN defined in
Section 3.4.2. It should be noted again that it certainly is more time consuming
to place tangents at a given direction than just counting intersection points of the
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Figure 6: An illustration of the expert-assisted procedure on one section profile through a
nucleolus of the nucleus of a giant-cell glioblastoma. The short black line segment indicates
the sampled direction. Positive tangents are colored red while negative tangents are colored
blue.
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profile boundary with a given line, as is the case for the invariator estimator. But for
an experienced user of the software, the Morse type estimator ŜN can be obtained
very efficiently and should be preferred to the alternative invariator grid estimator
Ŝgrid.

As biological images are blurred, there might be tangents that appear to pass
through a point of inflection of the boundary (although this event has probability
zero with idealized mathematical particles). The easiest solution is to ignore these
tangent lines, and neither left- nor right click at these positions. This is in correspon-
dence with the theory, as a sweeping line passing through this tangent will neither
increase nor decrease the associated Euler characteristic. It can also happen in prac-
tice, that the sweeping line appears to be tangent to the section profile at more than
one point for certain critical values. As the images are blurred, it could for exam-
ple appear that the sweeping line enters more than one new connected component
at a critical value or that it enters a new connected component and leaves a part
of the section profile at the same critical value. These events also have probability
zero with idealized mathematical particles. To deal with these tangents, we simply
suggest making a left- or a right mouse click for every change, without translating
the line.

4.4 Results

We used the expert-assisted procedure to obtain estimates of the surface area of the
n = 51 section profiles. We did this for N = 1, 2 and 4. An unbiased estimator for
the average surface area of the nucleus X of a giant-cell glioblastoma is then given
by

Ŝave
N (X) =

1

51

51∑

i=1

ŜN(Xi ∩ L2),

where L2 is a fixed plane and ŜN is the Morse-type estimator given by (2.15).
Empirical estimates for the average surface areas can be found in Table 5.

Table 5: Empirical estimates for the average surface area of the nucleus of a giant-cell
glioblastoma, depending on the number N of systematic directions used in the section
plane.

N = 1 N = 2 N = 4

Ŝave
N (X) 675.0 µm2 597.8 µm2 599.3 µm2

In Figure 7 boxplots for the surface area estimates of the nuclei for N = 1, 2
and 4, respectively, can be found. The red lines in Figure 7 are the medians, the
bottom and the top of the boxes represent the lower quartiles (25th percentiles) and
the upper quartiles (75th percentiles), respectively, and the red “pluses” are outliers
(more than 1.5 IQR from the upper quartiles). The boxplots in Figure 7 do not
suggest that sampling with a higher number N of directions gives a more precise
estimator. This seemingly counter-intuitive result can be explained by looking at the
different sources of variation of Ŝave

N (X). The variance of Ŝave
N (X) can be decomposed
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Figure 7: Boxplots for the surface area estimates of the 51 nuclei for N = 1, 2 and 4,
respectively.

into the true population variance, that is the variation in surface area among the
nuclei, and the mean variance due to the estimation procedure within each nucleus.
The variance due to the estimation procedure within each nucleus can then again be
decomposed into Vplane and Vorient, as shown in Proposition 3.1. The true population
variance is unknown and as the data only consist of one section profile for each
sampled nuclei we can not assess Vplane. For a given nucleus, Vorient can be estimated
from the section profile. This was done for each of the estimators in Table 5 for a few
of the section profiles. A large decrease in Vorient was observed for each of the studied
nuclei when N was increased. This decrease in Vorient was much more pronounced
when N was increased from one to two than when it was increased from two to four.
However, this variance contribution is very small compared to the sum of the true
population variance and the mean variance due to choosing the plane within each
nucleus. This explains why there is no noticeable precision gain in Figure 7 when N
is increased. In the present application the choice N = 1 led to an extreme outlier
and Vorient that is much larger than when N = 2. As a conclusion, this example
suggests that the choice N = 2 is preferrable in situations where a relatively large
population variance is present. The workload for the choice N = 2 is not very high.

5 Discussion

5.1 Account of main results

We have presented the Morse type surface area estimator and an expert-assisted
protocol to apply it in practice. The Morse type estimator is a generalization of the
surface area estimator for convex objects given by Cruz-Orive (2005, Eq. (3.2)) (see
also (2.16) with N = 2) to non-convex objects.

The surfactor is an alternative surface area estimator. The surfactor does not
only require measuring distances in an IR section plane but also angles of the sec-
tion profile with certain test rays. It was implied by Cruz-Orive (2005) that this
requirement to perform angle measurements might be difficult in practice and yield
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inaccurate estimates due to the singularity in its representation. In light of this be-
lief and the simplicity of the estimator (2.16) it was claimed by Cruz-Orive (2005)
that (2.16) was the only reasonably efficient surface area estimator available at that
time.

As mentioned in Section 3.3, the surfactor was compared to the one-ray pivotal
estimator, (2.17) with N = 1, by Cruz-Orive (2008). This variance comparison was
extended to ellipsoidal particles by Dvořák and Jensen (2013). The results obtained
in Dvořák and Jensen (2013) show that the surfactor performs better than previously
thought. In a simulation study involving ellipsoids, the surfactor was shown to be
neither much affected by the singularity in its representation nor by inaccuracies in
the necessary angle measurements. Dvořák and Jensen (2013) also showed that the
surfactor with two orthogonal directions (four rays) sampled in the section plane
needs twice as much workload to obtain similar precision as (2.16) with N = 2.
Hence, although the surfactor is a better competitor to (2.16) than previously ex-
pected, (2.16) is more efficient and should be preferred when the object of interest
is convex. This recommendation can be transferred to the Morse type surface area
estimator, which we showed to be the preferred surface area estimator available.

We have shown in Section 3.1 that the variance of the invariator estimator Ŝinv

decomposes into three parts Vplane, Vorient and Vdist according to the randomization
of the section plane, and the orientation and position of the test line, respectively.
Among all estimators considered in the present paper, the generalized flower es-
timator has the lowest variance, as this variance coincides with Vplane. However,
this estimator requires exact knowledge of the boundary of the section profile. We
therefore also considered estimators derived from Ŝinv that still have a reasonable
workload but a better variance than Ŝinv. The detailed analysis of the three variance
contributions in Section 3.2 in the case of ellipsoidal particles showed that Vdist is by
far the largest variance contribution. We therefore suggested the Morse type surface
area estimator ŜN for which this variance contribution vanishes. By choosing the
number N of systematic random test directions, also the variance contribution due
to the randomization of the direction can be decreased. However, we have seen that
only small values of N have to be considered, and that values N = 2 or N = 4
are theoretically advisable depending on the regularity of the objects. This also is
in agreement with Figure 2 that shows that Vorient is a relatively small variance
contribution (in the case of ellipsoids).

The application example of giant-cell glioblastoma showed that other sources of
variation, such as the population variance or the uncertainty of measurements due to
blurred or ambiguous images can be of the same order or larger than the theoretical
variance contribution of the estimator. This indicates that the choice N = 2 appears
to be appropriate in real-world applications.

5.2 Automatic and semi-automatic estimation of surface
area

Inspired by Cruz-Orive (2012) it was shown by Thórisdóttir and Kiderlen (Sub-
mitted, 2013) that the generalized flower estimator Ŝflo given by (2.12) and the
integrated surfactor in Cruz-Orive (2012, Eq. (24)) coincide. The generalized flower
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estimator is the optimal estimator with respect to variance (among all the estima-
tors considered in this paper) but as mentioned in Section 3.3 it can typically not
be calculated in practice if the section profile is not a polygon. However, if it is
possible to identify the boundary of a given section profile by automated segmen-
tation, the boundary can be approximated by a polygon. Using this approximation
the generalized flower estimator Ŝflo, with the true section profile Y = X ∩ L2 re-
placed by its estimate, can be obtained using Thórisdóttir and Kiderlen (Submitted,
2013, Corollary 10), as mentioned in Section 2.2.3. If the segmentation is flawless,
this automatic estimator is unbiased. However, if it is of poor quality, the estimator
can be heavily biased. To deal with this problem a semi-automatic procedure for
estimating surface area was proposed in Dvořák and Jensen (2013), based on a sim-
ilar approach for volume estimation in Hansen et al. (2011). In the semi-automatic
procedure, a clinical expert supervises the process and determines if the automated
segmentation of the boundary of a given section profile is satisfactory or not. If it
is determined to be satisfactory the surface area is obtained using Ŝflo with Y being
the estimate obtained by the automated segmentation. If it is unsatisfactory, the
clinical expert intervenes and performs the necessary measurements in the section
plane. Dvořák and Jensen (2013) suggested to use (2.16) in the case where all parti-
cles are convex. We suggest to use the Morse-type estimator, which does not require
any convexity assumption and reduces to (2.16) when the particles are convex. This
semi-automatic procedure can reduce the workload substantially.
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A Appendix: Variance decomposition for ellipsoids

The following proposition gives the different variance contributions in Proposi-
tion 3.1 more explicitly when X is a three-dimensional ellipsoid containing O. A
proof can be found in Thórisdóttir (2010, Theorem 25). As the reference set RB3 is
trivially invariant under all rotations at the origin, and as the sampling procedure
is rotation invariant, we may assume without loss of generality that the ellipsoid’s
main axes are parallel to the standard coordinate axes.

Proposition A.1. Let E3 ⊆ RB3 be a non-degenerate ellipsoid given by

E3 =
{
x ∈ R3

∣∣∣
3∑

i=1

(
xi − zi
ai

)2

≤ 1
}
, (A.1)

where a1, a2, a3 > 0 and (z1, z2, z3) ∈ R3. If O ∈ E3, the variance of Ŝinv given by
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(2.4), can be expressed as

Var(Ŝinv) = Vdist + Vorient + Vplane,

where

Vdist = 4π
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Vorient = 4π
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Vplane = 2π
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. (A.4)

Here λ−1/21 and λ−1/22 are the lengths of the semiaxes of the ellipse E3 ∩ L2, u′ =
(u′1, u

′
2)
t, u′′ = (u′′1, u

′′
2)t its corresponding principal axes and (z′1, z

′
2)
t its center, all

written with respect to a suitably chosen orthonormal basis of the IR plane L2.

Although the decomposition formulae for ellipsoids are quite complicated it is
not difficult to derive a theoretical formula for the total variance of Ŝinv when X
is an ellipsoid. When X is a convex body, χ(X ∩ L2 ∩ Fz) is a Bernoulli random
variable and hence using the unbiasedness of Ŝinv

Var(Ŝinv) = S(∂X)(S(∂(RB3))− S(∂X)). (A.5)

As a side note, this immediately gives the coefficient of variation of the estimator,
which is

CV (Ŝinv) =
( 4πR2

S(∂X)
− 1
)1/2

,

in accordance to Cruz-Orive (2008, Eq. (18)), as well as the total variance (3.8) of
the estimator when X is a ball.

Let now E3 be a non-degenerate ellipsoid given by (A.1). Assume without loss
of generality that a1 ≥ a2 ≥ a3. Then the surface area of E3 is given by

S(∂E3) = 2π
(
a23 +

a2a
2
3√

a21 − a23
F (σ,m) + a2

√
a21 − a23E(σ,m)

)
,
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where

σ = arcsin

√
a21 − a23
a21

, m =
a21(a

2
2 − a23)

a22(a
2
1 − a23)

and F (·, ·) and E(·, ·) are the incomplete elliptic integrals of the first kind and of
the second kind, respectively; see Eagle (1958, (12) on p. 281). Inserting this into
(A.5), we find

Var(Ŝinv) = 4π2
(

2R2
(
a23 +

a2a
2
3√

a21 − a23
F (σ,m) + a2

√
a21 − a23E(σ,m)

)

−
((
a23 +

a2a
2
3√

a21 − a23
F (σ,m) + a2

√
a21 − a23E(σ,m)

))2)
. (A.6)

For an oblate ellipsoid (that is when a1 = a2 > a3), the surface area has an explicit
form and the total variance becomes

Var(Ŝinv) = 4π2
(

2R2
(
a21 +

a1a23√
a21−a23

log
(√

a21−a23+a1
a3

))

−
(
a21 +

a1a23√
a21−a23

log
(√

a21−a23+a1
a3

))2)
;

see Thórisdóttir (2010, p. 34) for a derivation. When X is an oblate or a prolate
ellipsoid, explicit analytic expressions for V plane can be found in Dvořák and Jensen
(2013, Eq. (2.5) and (2.6)).
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