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Preface

This dissertation presents the outcome of the research I have per-
formed during the four years of my PhD programme at the Depart-
ment of Mathematics at Aarhus University. The aim of the research
was to develop suitable solution methods for a special Danish ver-
sion of the nurse rostering problem. As proposed by my supervisor,
a hybrid integer programming / constraint programming (IP/CP)
method was first developed to handle the particular problem. The
reasoning behind this decision was that hybrid IP/CP methods per-
formed well on similar problems in the literature and that the CP is
generally a flexible instrument allowing to address different types of
(complex) constraints.

An early extended abstract, which presented the basic ideas of
this method is published in the Proceedings of the 2nd International
Conference on Applied Operational Research (ICAOR’2010) [9]. A
paper describing the actual hybrid method and some experimental
computational results has been submitted to the Annals of Opera-
tions Research; a revised version paper (“minor revision”) is currently
under revision [8]. Chapter 5 and 7 are based on this paper, but
present the different methods in much deeper detail; also more in-
depth computational experiments are presented there. The focus is
on solving nurse rostering instances to optimality with a two week
planning period.

After realising that the pure size of the considered real life roster-
ing problem prevents the use of exact methods, two heuristic meth-
ods were developed. A variable neighbourhood search and a scatter
search were designed, where both methods use the IP/CP method as
a subroutine. A paper on these methods is on its way, and will later
this year be submitted to an international journal.

The reader is assumed to be familiar with the basic concepts
from linear and integer programming as well as algorithmic com-
puter science; although, Section 2.1 gives a short introduction to
integer programming and the standard methods for solving integer
programming problems.

Parts of the outcome of the research presented in this dissertation
have been presented at the following conferences:

— 23rd European Conference on Operational Research (EURO),
Bonn, Germany, July 2009
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— International Workshop on Scheduling in Healthcare Systems
(SCHEAL10), which was a part of the 2nd International Con-
ference on Applied Operational Research (ICAOR’2010), Turku,
Finland, August 2010

— 4th Nordic Optimization Symposium, Aarhus, Denmark, Oc-
tober 2010

— INFORMS Healthcare 2011, Montreal, Canada, June 2011
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English summary

This thesis addresses the nurse scheduling problem of finding a duty
roster for a set of nurses such that the rosters comply with work
regulations and meet the management’s requests. This problem is
usually referred to as nurse rostering. For today’s hospitals, personal
in general but in particular nurses are becoming more and more a
scarce and expensive resource. Accordingly, a careful nurse schedul-
ing that at the same time matches economic needs as well as nurses’
preferences is of increasing importance.

The nurse rostering problem is a complex combinatorial optimisa-
tion problem and generally very difficult so solve. No general model
describes all nurse rostering problems, because there are so many
differences between the specific problems encountered at the differ-
ent wards around the world. The problem confronted in this thesis
is from a ward at Aarhus University Hospital Skejby in Denmark.
However, the solution methods proposed are general enough, so the
methods would probably generalise to other wards in Denmark.

A branch-and-price method for solving the problem exactly is
proposed. The master problem is to assign schedules to the nurses,
and its linear relaxation is solved by means of column generation.
The pricing sub-problem is to generate feasible schedules for the
nurses and is solved by constraint programming. A number of spe-
cific algorithms for handling the constraints in the sub-problems are
proposed. Computational tests show that optimal solutions can be
found for instances with a two weeks planning period in a reasonable
amount of computing time.

For instances with a longer planning period, two heuristics are
proposed. The methods are a variable neighbourhood search and a
scatter search. Both methods use the exact branch-and-price method
as a sub-routine for performing the search in the heuristics. The ex-
perimental results show that the scatter search outperforms the vari-
able neighbourhood search when more than an hour of computation
time is allocated. The scatter search seems to find solutions of high
quality, and it generally returns a set of high quality solutions. A set
of high quality solutions — instead of just a single solution — is from
a practical point of view a valuable feature.

vii






Dansk sammenfatning

Denne afhandling omhandler metoder til at udfgre vagtplanlaegning
for sygeplejersker. Vagtplanleegningen gar ud pa at finde en vagtplan
for sygeplejerskerne pa en afdeling, saledes at vagtplanen overholder
overenskomster, regulativer og opfylder ledelsens gnsker.

For nutidens hospitaler bliver personale i almindelighed, men isaer
sygeplejersker, en mere og mere begraenset og kostbar ressource. Af
denne grund er en omhyggelig vagtplanleegning for sygeplejersker,
som samtidig matcher de gkonomiske krav samt sygeplejerskernes
praeferencer, af stigende betydning.

Vagtplanlaegning for sygeplejersker er et komplekst kombinatorisk
optimeringsproblem, der generelt er meget sveert at lgse. Grundet
de sa vidt forskellige betingelser pa de forskellige afdelinger rundt
omkring i verden, findes der ikke nogen generel matematisk model
for vagtplanleegning for sygeplejersker. Det specifikke problem som
bliver behandlet i denne afhandling stammer fra en afdeling pa Arhus
Universitetshospital Skejby. Lgsningsmetoderne som bliver foreslaet
er dog sa generelle at de sandsynligvis kan bruges pa andre afdelinger
pé sygehuse i Danmark.

Der foreslas en branch-and-price metode til at lgse problemet ek-
sakt. Master problemet er at tildele tidsplaner til sygeplejerskerne,
og dens linesere relaksation er lgst ved hjeelp af sgjle generering. Sub-
problemet, som er at generere mulige tidsplaner for sygeplejerskerne
foreslas lgst ved hjeelp af constraint programming. En reckke spe-
cifikke algoritmer til handtering af betingelserne i sub-problemerne
er beskrevet. De beregningsmaessige resultater viser at den optimale
lpsning kan findes, indenfor rimelig tid, for problemer med en plan-
laegningsperiode pa to uger.

To heuristikker er foreslaet for problemer med en lsengere plan-
leegningsperiode. Heuristikkerne er en variable neighbourhood search
og en scatter search. Begge metode bruger den foreslaede branch-and-
price metode som en del-rutine. De beregningsmaessige resultater vi-
ser at scatter search er bedre end wvariable neighbourhood search, nar
de far tildelt mere end én times beregningstid. Scatter search meto-
den virker til at finde lgsninger af hgj kvalitet, og desuden returnerer
den typisk en meengde af lgsninger med hgj kvalitet. I praksis er det
en nyttig egenskab at ikke bare én lgsning af hgj kvalitet findes men
at adskillige af sddanne bliver fundet.

1X






Chapter 1

Introduction

Combinatorial optimisation problems have been the subject of an
enormous amount of research in the literature of the last 6 decades.
The problems considered in the literature are often simplified models
of real world applications, and mostly these models include integer
variables. The interest of researchers in these types of optimisation
problems can be explained by, first, the variety of applications and,
second, the fact that they are generally very hard to solve.

Two different communities have in particular conducted research
on appropriate models and solutions methods for these problems.
The Operations Research community mainly used integer program-
ming techniques, in particular branch-and-bound and branch-and-cut
methods. In the Computer Science community, however, the most
dominating technique for complex combinatorial optimisation prob-
lems has been constraint programming. These two methods have
been developed pretty independently for many years, but during the
last decade several attempts on combining the two techniques for dif-
ferent applications have been proposed. One of the main pioneers of
the field of combining these methods is John Hooker from Carnegie
Mellon University.

For today’s hospitals, personal in general but in particular nurses
are becoming more and more a scarce and expensive resource. Ac-
cordingly, a careful nurse scheduling that at the same time matches
economic needs as well as nurses’ preferences is of increasing import-
ance. Nurse scheduling has received considerable attention in the
research community during the last 45 years. It is a highly complex
planning problem and as such usually decomposed into the interre-
lated sub-problems of nurse staffing, nurse rostering, and nurse rero-
stering [51]. Nurse staffing is the long term planning that determines
the required number of nurses of different qualification levels. Nurse
rostering can be described as the task of finding a duty roster for a set
of nurses such that the rosters comply with work regulations and meet
the management’s requests. The day to day planning where nurses
that call in sick and other day to day changes have to be considered,
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is referred to as nurse rerostering. The objective of rerostering is to
create a duty roster for all nurses such that all required shifts are still
covered and the new rosters are as close to the preplanned rosters as
possible. The topic of this thesis is nurse rostering.

In Chapter 2, a short introduction to the standard solution meth-
ods of combinatorial optimisation is given. The basic concepts of
integer programming (IP), constraint programming (CP) and hybrid
IP /CP approaches are presented. The basic ideas of heuristics is also
described with a focus on variable neighbourhood and scatter search.
The presented approaches are those used in this thesis for solving the
nurse rostering problem.

Chapter 3 describes the general nurse rostering problem and the
methods which have been proposed in the literature for solving it.
A distinction is made between modelling the problem as a “direct”
integer model and a set covering type model.

The Danish model and how it differs from the typical nurse ros-
tering problem is presented in Chapter 4. The described problem is
the one confronted in this thesis.

Chapter 5 is the main chapter of this thesis and presents a hybrid
IP/CP method. The method combines IP and CP in a branch-and-
price context where the sub-problems are solved with CP.

In Chapter 6, an integer programming model for the complete
nurse rostering problem is proposed. Besides this model, a branch-
and-price model where the sub-problems are solved with an IP solver
is also presented. Both solution methods are basically used for the
purposes of a comparison with the IP/CP method described in chap-
ter 5. Computational results of the methods are given in Chapter 7.
The tests were executed on two week instances, as this was the longest
planning period for which any of the methods could solve all instances
to optimality.

Chapter 8 and 9 describe two heuristics for solving instances with
a longer planning period. A variable neighbourhood search is presen-
ted in Chapter 8 and in Chapter 9 a scatter search is described. Both
methods use the IP/CP as a basis for their heuristic search. The res-
ults of a comparison between the two heuristic methods are given in
Chapter 10.
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Chapter 2

Solution Methods

Four of the basic methods used for solving combinatorial optimisation
problems are introduced in this chapter. The introductions focus on
what is relevant for the research described in this thesis. The meth-
ods introduced are integer programming (IP), constraint program-
ming (CP), a combined IP/CP method and some relevant heuristics.

2.1 Integer programming

In the operational research community the standard way of model-
ling and solving combinatorial optimisation problems is integer pro-
gramming. In the literature, IP generally refers to integer linear
programming. A given linear objective function has to be optimised,
given that the variables obey a set of linear constraints and that the
variables need to attain integer values. Let cj, a;; and b; be rational
constants, then a general IP problem can be stated as:

min E Cj:L’j

jeX
s.t. Zaijxj:bi Vi=1,...m
jeX
0 <z Vie X
z; €L VieX

The last constraint set is referred to as the integer requirement, and
when creating a linear relaxation of an IP problem, this is the con-
straint set which is removed.

In the next section, the branch-and-bound method for solving
general integer programming problems is explained. In Section 2.1.2,
a method for solving a linear programming problem is described,
this method is combined with the branch-and-bound method in Sec-
tion 2.1.3.
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2.1.1 Branch-and-Bound

In the operational research community, the branch-and-bound frame-
work is the standard way of solving integer programming problems.
The method was originally proposed by Land and Doig [36] and it is
today still one of the most effective methods for solving general IP
problems.

The branch-and-bound method for minimisation problems cre-
ates a search tree where each node represent an associated IP prob-
lem. The root node of the tree is associated with the complete IP
problem. In each search tree node, the method solves the linear re-
laxation of the IP problem associated with the node; if the solution is
not integer, the IP problem is divided into at least two sub-problems.
The division is made in such a way that the union of the solution
spaces of the sub-problems includes all feasible solutions of the parent
IP problem, but excludes the parent’s optimal non-integer solution.
Reapplying this principle again and again creates the IP problems
which are associated with the nodes of the search tree. Whenever
an integer solution is found, it gives an upper bound on the solution
value (when minimising). The optimal objective value of the prob-
lem’s linear relaxation of an IP problem yields a lower bound on the
optimal value of a solution in the sub-tree rooted at the associated
node. So, if a node has a lower bound not smaller than the global
upper bound, the node can be pruned, as the sub-tree cannot yield
an improved solution.

The standard way of dividing the IP problems is to choose a
variable x; attaining a fractional value in the optimal solution of the
linear relaxation. Let its value in the optimal solution be . Two child
nodes are created; the first node is created by adding the constraint
x; < |Z] to the IP problem of the parent; the other node is obtained
by adding: z; > [Z].

The order in which the nodes of the tree are solved is controlled
through a node selection strategy; and how to divide the IP problem
is controlled by a branching strategy. For more on the topic of node
selections strategies see Linderoth and Savelsbergh [39]; for more on
branching strategies see Achterberg et al. [1]; and for for more on the
general IP approach see Nemhauser and Wolsey [46].

2.1.2 Column generation

Column generation is a method for solving linear programming prob-
lems with a huge number of variables or where a reformulation of the
original IP problem results in a large number of variables.
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The general idea of column generation is to divide the problem
into a master problem — consisting of a part of the original constraints
— and a sub-problem for generating feasible columns. Column gener-
ation is sometimes in the literature denoted as delayed column gen-
eration, and it was first described by Dantzig and Wolfe [13] together
with the Dantzig-Wolfe decomposition method. The Dantzig-Wolfe
decomposition method reformulates a problem into one that can be
solved by column generation.

Let a linear programming problem be given in the following form:

min E ijj

JjeX

s.t. Zaij:vj :bl Vz:l,m
jeX
0 < VjeX

where X is a very large set. If this is solved with the simplex algorithm
in tableau form, the following table would be stored at each iteration:

TB TN RHS
0 cn—cgB 'N ¢gB~'b Objective
rg: 1 B7IN B~'»  Constraints

where B is the columns of the basic variables and cg is the cost of
the basic variables with a corresponding set of variables zg. The
matrix N comprises the columns N; of the non-basic variables with
costs ¢y and variables xy. When using the simplex method, a huge
amount of information is saved and recalculated at each iteration.
Due to the immense size of the set X compared to xp, the major
part of the information belongs to the non-basic columns. In each
iteration of the simplex method, a column of negative reduced cost
(¢cj — egB7IN;) is found and the corresponding variable is made
basic.

In each iteration only one column of the matrix B~'N is used,
and due to the immense size of IV, an enormous amount of time is
used to recalculate this matrix.

With the column generation method, the matrix B~'N and the
vector ¢y — cgB7IN are hidden in a sub-problem that generates
columns of negative reduced costs or proves that no such one exists.
Let H be the set of all columns of the problem. The sub-problem
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can be stated as the following optimisation problem:

min ¢, — CBB_lw

st. weH

where ¢, is the cost of column w. Remark that cgB~! is the row
vector of dual variables of the current basic solution. For the column
generation method to be relevant the set H should not be given ex-
plicitly, but implicitly as the set of all solutions to a set of further
constraints. Very often, this constraint set obeys a special structure
that allows to apply specialised and efficient algorithms for solving
the sub-problem.

The master problem is often called the restricted master problem,
since it only contains a subset of the complete set of columns. When
the sub-problem concludes that no column with negative reduced
cost exists, the last solution to the restricted master problem is the
optimal solution to the complete problem.

Column generation searches for the optimal solution in almost
the same way as the usual primal simplex method; the only change
is that the non-basic columns are not kept explicitly but generated
when needed.

The set of columns (H) for the problem can often be generated
from a set of independent sub-problems. In an iteration where any
of the sub-problems finds a negative reduced cost column, at least
one such column should be added to the restricted master problem.
This is a necessary condition for the column generation to solve the
problem to optimality. When a negative reduced cost column (not
necessary optimal) for one of sub-problems has been found, it is not
necessary to solve any of the sub-problems to optimality. Often it is
beneficial to generate more than one column and to generate those
with the lowest reduced cost. Any subset or all of the columns gen-
erated can be added to the restricted master problem.

If a lower bound for the LP problem is required, it is necessary
to calculate a lower bound on the objective of all sub-problems. If
a sub-problem is solved to optimality, then the optimal value is the
best lower bound for that sub-problem. The lower bound is then the
sum of the objective value of the restricted master problem and all
lower bounds on the objectives of the sub-problems.

The efficiency of the column generation highly depends on the
availability of efficient procedures for solving the sub-problems. Fig-
ure 2.1 illustrates the column generation principle when used as a
part of a branch-and-price method (The column generation is the
part inside the dashed line).
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2.1.3 Branch and Price

Branch and price is a generalisation of branch and bound, where the
linear programming relaxations are solved using column generation.
Problems where the branch and price method could be efficient are
problems with a huge number of variables or where a reformulation
of the problem results in a model with a huge number of variables.

The branch and price method is illustrated in Figure 2.1. The
area inside the dashed line is the column generation; UB is the upper
bound for the complete integer problem; it always equals the solution
value of the best integer solution found so far. LB always refers to
a node and is the lower bound on the solution value of all integer
solutions that could be found in the sub-tree rooted at the corres-
ponding node. As it is not necessary to solve the relaxed problems to
optimality, an option to do early branching is included in Figure 2.1.

When choosing the branching strategy for a branch an price al-
gorithm, the two main concerns are to obtain a balanced search tree
and to keep the special structure of sub-problems. The special struc-
ture of the column generation sub-problems is required, as the effi-
ciency of the column generation highly depends on having efficient
solvers for the sub-problems available. The standard way of branch-
ing in a branch and bound method would usually destroy the special
structure of the sub-problem and create an unbalanced search tree
as well. The unbalanced search tree arises, because forcing a column
not to be in a solution generally shows small impact as there are a
huge number of different columns, whereas forcing a column to be
in the solution contributes to a substantial problem reduction and
thereby usually strongly affects the lower bound.

Instead, branching in a branch and price method is often based
on branching on constraints or “indirect” variables. Branching on a
constraint means to find a constraint for a sub-problem, whose left-
hand side should be be integral in an integer solution to the complete
problem, but is fractional in the current fractional solution. The
branching is created by enforcing this constraint to be greater or
equal to the current value rounded up in the first child, and to be
not larger than the rounded down value in the other child. The set of
constraints considered should be large enough to ensure integrality of
the variables that are required to be integer. The constraints should
also be selected such that the special structure of the sub-problems
is kept.

An “indirect” variable is a variable that is not visible in the model,
but can be calculated from a given solution. When solving a problem
resulting from a reformulation with Dantzig-Wolfe decomposition,
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Create Add nodes
root node to B&B tree
Select node to solve
from B&B tree
| Add i
! Restricted master columns !
: problem (RMP) :
Remove : |
nodes from | - - |
! Solve linear relaxation I
B&B tree ' '
with ! of RMP !
UB < LB | l |
\ Solve pricing !
| sub-problems |
| v |
\ Calculate LB. Is LB > |
' Yes UB? E
| l No |
Save solution | ! Negative reduced cost E
as UB X columns generated? !
No ! Yes X
Is solution Do you want to | | E
Yes | integral? branch? C
No Yes . | No E
[

| Create branch |

Figure 2.1: The branch and price method. The area inside the
dashed line is the column generation part of the method. UB is the
global upper bound and LB is the lower bound for the given node.
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the “indirect” variables could correspond to the original variables of
the model before the reformulation. An “indirect” variable can also
be a variable of a sub-problem.

Some branching strategies are enforced through extra constraints
in the master problem, others through the sub-problems.

A more soft type of branching can be performed if some left-hand
sides of the constraints of the restricted master problem are fractional
(if the constraints only include integer constants). By bounding the
constraint, a branch can be created. This would not change the sub-
problems, but in general it is not enough to ensure integrality.

For more on the general branch-price method see Liibbecke and
Desrosiers [40], Barnhart et al. [2] and Vanderbeck [50|. For practical
applications see Table 1 in Liibbecke and Desrosiers [40] for a list of
papers.

2.2 Constraint programming

Constraint programming (CP) is in its basic form a method for find-
ing a feasible solution for a set of bounded integer variables, given a
set of constraints. The constraints can be mathematical equations,
logical propositions or implicitly given as an algorithm that concludes
if a solution is feasible or not. Even an enumeration of the feasible
combinations of values for a subset of the variables can be used as a
constraint.

In this thesis the distinction that is sometimes performed between
constraint satisfaction, constraint logical programming and constra-
int programming is not kept. Problem solving originating from any of
these areas are placed under the umbrella of constraint programming.

The general idea of CP is to build a search tree, and use logical
implications of the constraints to reduce the size of the tree.

In each node of the search tree, the search keeps track of the
variables’ domains. Logical implications of the constraints are used
to reduce the domains of the variables.

The standard way of creating the search tree is first to reduce the
domains of the variables by logical implications. If not all variables’
domains have been reduced to singletons, a branching is performed by
creating at least two sub-problems. In each sub-problem a domain
reduction of at least one domain is performed. The union of the
solution spaces of the sub-problems should be equal to the solution
space of the current node. The most common way of branching is to
assign a value to a variable in one sub-problem and to remove this
value from the variable’s domain in the other sub-problem.
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This method for creating the search tree is reapplied in all nodes
until either all variables have their domain reduced to singletons or a
variable has its domain reduced to the empty set. If all variables have
a domain size of one, a feasible solution has been found. If a variable
has a domain size of zero, then there does not exist a feasible solution
in the current node or in the tree rooted at this node. When this
happens, the node is pruned and the search backtracks to another
node that has not been solved previously.

For a thorough introduction into CP, see Hentenryck [27] and
Marriott and Stuckey [42]. A major contribution to the foundation
of CP are due to Jaffar and Lassez [32]. An early application of CP is
found in Dincbas et al. [16], and Hentenryck and Saraswat [26] give
an introduction to the development of CP and its use in different
areas.

2.2.1 Variables

The most common variables used for CP are binary and finite integer
variables. In the solver the values that a variable can attain are often
stored in an array of possible values. If the variable can attain a huge
number of different values, its domain might be stored with just an
upper and lower bound. This could reduce the logical implications
that can be inferred from the variable, but it reduces the memory
required to represent the domain.

Continuous variables can be included in a CP method, but not
all constraints can be used for such variables. The most common
method is to store the domain of such a variable as an interval. The
representation of domains as intervals reduces the number of different
constraints and logical implication methods that can be applied for
such a variable. The standard branching strategy for such a variable
would be to split the domain on the middle.

2.2.2 Constraints

Constraints in a CP-model can be stated in many ways, but to actual
use them, it is necessary to create a method for handling them. The
method should preferable create some logical implications from the
constraint which will reduce the domain of some variables, if this is
not possible it should at least be able to conclude if the constraint is
fulfilled when all variables have their domains reduced to singletons.

Logical implications, often called domain reduction mechanisms
or constraint propagation mechanisms in the CP literature, are the
most important aspect when implementing a CP model. If no domain
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reductions are performed, a CP search would create a full enumer-
ation of the variables. A small example of how constraint propaga-
tion mechanisms can be designed is given below and an example of
how different constraint propagation mechanisms can perform with a
given constraint and how this influences the solution time is given in
Section 5.3.2. When deciding between different domain propagation
mechanisms, it is the problem of choosing the right balance between
using time for the search or using time for finding domain reductions.
But it seems that the effort spend on using more advanced domain
reduction mechanisms often pays off, even if the mechanism requires
some computation time.

As an example of how domain propagation mechanisms can be
designed, lets look at the constraint:

B =2x1 + a9, (21)

where B, 1 and x9 are integer variables. For notation purposes let
D(-) define the domain of a given variable, let max and min of a
variable be respectively the largest and smallest value in its domain.
Let the domain of the variables be:

D(B)=1{0,1,2,3,4}, D(z1)=1{0,2,4}, D(z2)=1{2,4}. (2.2)

The classical domain propagation mechanisms for a constraint like
this is to restrict the domain to obey the following bounds:

B < maxx; + max w2, (2.3)
B > min 1 + min z», (2.4)
z1 < max{B — z2} = max B — min zy, (2.5)
x1 > min{B — x2} = min B — max x, (2.6)
x9 <max{B — x1} = max B — minx, (2.7)
9 > min{B — 1} = min B — maxx;. (2.8)

The domain propagation mechanism given in equation (2.4) would
in the example remove the values 0 and 1 from the domain of B
and mechanism (2.5) would remove the value 4 from the domain of
1. No other domain reductions can be made by any of the given
mechanisms. The value of 3 from the domain of B is not removed,
even though it is easily seen that it cannot be assigned to B in a
feasible solution. More extensive propagation mechanisms could be
designed that removed the value, but they would also require more
calculations. Depending on the given problem to be solved this could
be beneficial or not. The given mechanisms are the ones that are
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usually implemented in modern constraint programming solvers, such
as IBM ILOG CP solver, Choco, CHIP.

The importance of domain reductions of the variables stems from
the fact, that if a value of a variable is removed, the whole sub-tree
of branching on this variable would be removed. In the top of the
tree this can have an enormous impact on the size of the tree, and
thus the time to solve the problem. The following simple example
underpins the importance of performing domain reductions as early
as possible. Let x1,...,x, be a set of variables. Let a node in the
search tree be given where all combinations of values in the domains
of variable x; and x, are infeasible. Let the domain propagation
mechanism of the constraint creating this infeasibility not be able
to detect this infeasibility until both variables have been fixed. The
search starts by fixing x;, then x2 and so on, creating a big search
tree. The infeasibility of the whole sub-tree is first recognised when
all combinations of all values in the domains of the variables have
been tried. If the domain reduction mechanism of the constraint
was capable of figuring out this infeasibility in the start node, the
whole sub-tree would newer have been created or searched. If several
other variables were fixed previously to this sub-tree, similar sub-
trees would probably be found at several other places in the search
tree, requiring an enormous amount of search time in these infeasible
sub-trees.

Every domain propagation mechanism may be checked more than
once in each search tree node, as if one mechanism reduces a domain
of the variable, then other mechanisms might be able to reduce the
domains of some other variables. The general idea is to check all
domain propagation mechanisms until no further domain reductions
can be found. When applying constraint programming in practise,
this introduces the questions of when a propagation mechanisms is
necessary to be reapplied and in which order should they be applied.

2.2.3 Search order and branching strategy

The order in which the nodes are solved and the choice of the branch-
ing strategy is also very important. The most common way of choos-
ing the order of the nodes is to use a depth first search strategy. The
choice of a branching strategy can have a huge impact on the size of
the tree. Which branching strategy works the best depends strongly
on the specific problem. Examples of branching strategies are:

— Choose the first non-fixed variable and assign the smallest do-
main value to it.
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— Choose the variable with the smallest domain larger than two,
and assign one of the values to it.

— Split the domain of a variable into two parts, one for each sub-
problem.

— Assign values for the most constrained variables first.

2.2.4 Adding an objective

CP can also be used for optimisation problems. This is performed by
introducing a variable representing the objective value. The following
is a short description of how this variable should be treated in a
minimisation problem:.

At each node, a lower bound of the objective value of any feasible
solution reachable from the current node is calculated. This lower
bound is set as the minimal value for the variable representing the
objective. If the domain of the variable representing the objective
becomes empty, the node is pruned and the search backtracks. When
a feasible solution is found, the objective value is calculated and this
value is enforced as a global upper bound for the variable representing
the objective in all nodes of the tree. This ensures that the next
solution found is at least as good as the current best solution. If
only one optimal solution is required an epsilon value is subtracted
from the global upper bound to ensure that the next solution found
is strictly better than the current best solution.

Handling an objective introduces a new important aspect, that is
to choose how to calculate a lower bound and how much time to use
finding better lower bounds.

Depending on the method used for calculating the lower bound,
it might be possible to infer that a domain value of a variable cannot
be assigned to it in an optimal solution. Such values should be re-
moved from the domain, as the removal could lead to more domain
reductions and thereby to a smaller search tree and perhaps to a
better lower bound at the current node.

Standard domain propagation mechanisms only remove domain
values that are infeasible in a solution whereas the above also removes
values that could exist in a feasible solution but would result in a sub-
optimal solution.

2.3 Combining IP and CP

Integer programming models and optimisation methods for solving it
have been developed in the operational research area, whereas con-
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straint programming and the underlying logical inference techniques
emerged in the artificial intelligence community. One of the pioneers
in combining these two areas is John Hooker [28§].

In the operational research community, the focus has been on de-
veloping better formulations, in particular by means of cutting planes
methods for tightening the linear relaxation. The artificial intelli-
gence community, by the absence of an objective, focused on develop-
ing logical inference methods. What Hooker, among others, suggests,
is to unify the two methods into a combined improved method.

The standard branch-and-bound framework and the standard
framework for constraint programming are quite fixed, so over the
years many different generalisations have been proposed. For the
branch-and-bound framework, the best known generalisations are the
branch-and-cut, branch-and-price and branch-cut-and-price frame-
works. For the constraint satisfaction framework, generalisation al-
lowing the inclusion of an objective and continuous variables have
been proposed, among others. Both solution methods can be gen-
eralised to the same general branch-and-bound framework. A linear
integer programming problem is introduced for describing this gener-
alised method. Let b and ¢ be one-dimensional vectors of constants;
A is a matrix of constants and x the variable vector of the problem:

min  f(x)

st. re X,

where

fla)=c"a,

X ={zx|Az<bAz>0Azxze€Z"}

In the generalised framework, each node i of the branch-and-
bound tree is associated with a problem (X}):
The framework is initialised in the following way:

— Set the global upper bound equal to infinity (UB = o).
— Initialise the problem associated with the root node to be equal
to a relaxation of the original problem (X}°" = relax(X)).
For each node i of the search tree, the following steps are performed:
1. If wanted, calculate 2}, = min{f(z) | z € relax(X5 N X)},
and let 2%, be the corresponding solution, if it is found.

2. If a feasible solution for the original problem is found this way,
update the upper bound. (If 2}, € X : UB := min(z}, UB)).



2.3. Combining IP and CP 17

3. If desired, calculate a lower bound on the objective of the as-
sociated problem. (If 2}, is calculated, it could be used).

— If the lower bound (LB) is not lower than the global upper
bound, prune the node (LB > UB = prune current node).

4. If the node is not pruned: create sub problems X}%, e ,X}%
associated with the child nodes, such that:
XrnXx c b, ag.

5. Repeat from step 1 until all nodes have been searched.

The relaxations used for the initialisation of the root node and in
step 1 of the framework are not required to be the same.

This generalised framework incorporates both the branch-cut-
and-price framework as well as the constraint programming frame-
work, where an objective is included. The cut-and-price and domain
propagation mechanisms are hidden in the selection of how to re-
lax Xr N & in step one of the framework. So depending on which
cutting planes method are applied, it creates different relaxations in
step 1. The cuts in the IP method correspond to the domain propa-
gation mechanisms of the CP framework. When domain propagation
is performed due to the objective, it corresponds more directly to the
logical fixing of variables in an IP setting. The requirements of how
to do the branching are not specified in detail. Also more details
have to be included to ensure that the framework will terminate.

The relaxation used in step one of the framework is for the stand-
ard IP method the linear relaxation, whereas for the CP model the
relaxation used is based on the domains of the variables. The do-
mains of the variables in a CP model is the set of all possible values
they attain inside the feasible region. The relaxation is all com-
binations, where each variable attains values from their particular
domain. Tighter relaxations can be used for both methods, and are
usually a result from some inference methods (cuts or domain pro-
pagation).

The lower bound in an IP setting is usually the optimal value
of the linear relaxation whereas for a CP it is usually calculated
as y ., min(¢; min(x;), ¢; max(x;)), where min(z;) and max(z;) are
respectively the minimal and maximum value in the domains of the
variable. The differences between the two methods are summarised
in Table 2.1.

As the above generalised framework shows, the methods used for
IP and CP problems are not that different. The above framework
may be usual for finding way of how to combine the two methods.
The domain propagation of CP could be used to create some bounds



18 Chapter 2. Solution Methods

Table 2.1: Comparing the methods for integer and constraint pro-
gramming.

P Cp
Inference Llnez.lr programming Domaln-ﬁlterlng .
Cutting-planes Constraint propagation
Search Branch-and-Bound Branch-and-Bound
(Removes z75)7 (Split a domain)¥
Bounds on UB by best solution UB by best solution
the objective LB by chl*L2 LB might be calculated®
Variables 7+ Finite domain
Constraints Linear inequalities Arithmetic constraints
and equations Global constraints
ﬂ

Usual implementation
T If linear: 3. | min(c;min(x;), c;max(x;))

for the linear relaxation, or a linear relaxation of a CP problem could
be created to calculate a lower bound.

Another idea for combining the methods is to use the CP method
for solving the sub-problems in a branch-and-price framework. This
method is used later in this thesis for solving the nurse rostering
problem. This idea has earlier been used for the airline crew assign-
ment problem [49, 18|; the employee timetabling problem [14]; and
urban transit crew management problems [53].

2.4 Heuristics

For many, in particular NP-hard optimisation problems an exact
method is not feasible, as it will require too long computation time
or memory usage. When such problems are encountered, a common
method is to apply some kind of heuristic. A heuristic is an algorithm
that tries to find a solution close to the optimal one.

One of the most basic heuristics for combinatorial optimisation
problems is local search. Let X be the set of feasible solutions and
f() be the objective function to a combinatorial optimisation prob-
lem. The neighbourhood of a solution x € X is a set of solutions
from X typically generated by applying small modifications to x.

The local search algorithm is an iterative search procedure mov-
ing from a starting solution z to a solution in the neighbourhood of z
showing a better objective value. This neighbouring solution is then
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used as the starting solution for the next iteration. The algorithm
stops, when no solution with a better objective value exists in the
neighbourhood of the current solution. The final solution’s objective
value is thus local optimum with respect to the neighbourhood. Two
common methods for selecting the next solution are either to select
the first solution improving the current objective value (first-accept)
or to select the solution with the best objective value in the neigh-
bourhood (best-accept). Pseudo code for a local best accept search
algorithm is presented as Algorithm 1 below.

Local search and a multi start variant hereof have been discussed
as early as in Lin [38] and earlier.

Algorithm 1 Local search
procedure LOCAL-SEARCH(x , Neighbourhood)
while True do
let XV := Neighbourhood(x)
let z:==x
for all y € X” do
if f(y) < f(z) then
z:=y
end if
end for
if f(z) < f(x) then
T:i=2z
else
Return z
end if
end while
end procedure

A severe disadvantage of local search is that it often gets caught
in a local optimum far away from the optimal solution. Several meth-
ods have been proposed in the literature to overcome this weakness,
for instance; adjusting the size of the neighbourhood, to repeat the
algorithm with a different initial solution each time a local optimum
has been found, or to permute the local optimum and then to use
the permutation’s outcome as a new initial solution. An overview
of more advanced heuristics methods, that in different ways trie to
avoid getting stuck in a local optimum can be found in the collection
Gendreau and Potvin [19].
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2.4.1 Variable Neighbourhood Search

Variable neighbourhood search is another method to avoid that a
local search gets stuck early in a local optimum. The idea is to select
the initial solution for a local search from a set of different neigh-
bourhoods. When the local search finishes in a local optimum, a new
initial solution is selected from a set of different neighbourhoods, un-
til some stopping criteria is met. The neighbourhoods can be selected
either in sequence, at random or with any other method. To select
the initial solution from a set of different neighbourhoods is a kind
of a shaking mechanism. The shake is performed to get away from
the current local optimum. The local search uses the same neigh-
bourhood for its search, and it could use the same as one of the
neighbourhoods used for selecting the initial solution.

A version of the variable neighbourhood search with sequential
selection of neighbourhoods is presented in Algorithm 2. This version
is denoted as basic variable neighbourhood search(BVNS) in Hansen
et al. [23].

Algorithm 2 Variable Neighbourhood Search
procedure VARIABLE-NEIGHBOURHOOD-SEARCH(x)
Initialise k£ :=0
while k < ky.x do
Choose y € Neighbourhood,, ()
let z := SEARCH-PROCEDURE(y,Neighbourhood)
if f(z) < f(x) then
let x :=zand k:=0
else
k=k+1
end if
end while
Return z
end procedure

See Hansen and Mladenovi¢ [24], Hansen and Mladenovi¢ [25]
or Hansen et al. [23] for a discussion of the variable neighbourhood
search technique and how to use the neighbourhoods in the search.
For some applications of the VNS technique see Carrabs et al. [10]
or Ribeiro and Souza [48].

The Search-procedure in Algorithm 2 could be the local-search
from Algorithm 1 or just a single iteration of the local-search or any

other search algorithm that in some way searches the given neigh-
bourhood.
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Usually the algorithm will be stopped when it reaches a given
number of iterations without improvement or a time limit.

2.4.2 Scatter Search

Whereas local and variable neighbourhood search relies on iteratively
improving a single solution, scatter search operates on a population
of solutions.

Similar to genetic algorithms, scatter search combines solutions
into new ones which then replaces other solutions from the popula-
tion.

The version of scatter search presented here is first described in
Glover [20] and more thoroughly in Marti et al. [43], and it can be
described with the following methods:

— A diversification method.

— An improvement method.

— A reference set update method.
— A subset generation method.

— A solution combination method.

The diversification method has as input a set of solutions for the given
problem and should generate at least one solution that is different
from the given solutions. The aim of the method is to generate
solutions in all areas of the search space. Often the method relies
on randomness or some kind of memory to ensure that solutions are
different from those previously generated.

The improvement method should as the name suggests, improve
a solution. Most often, some type of local search is applied to this
end. If the given solution is infeasible, the method should be able to
search for feasibility besides searching for a better solution value. If
no improved solution can be found, the initial solution is returned.

Updating of the population (which in the scatter search is called
the reference set) is performed with the reference set update method.
The input to this method depends on a choice of when to update the
reference set. With dynamic update, the method is called each time
a new solution is generated, whereas if the static update option is
chosen, a set of new solutions is created before this method is called.
The method should from the given input select the new reference
set. Several criteria can be useful for selecting the new set, and the
solution value is always an important criterion. Other criteria used
can be that the solutions should be diverse. Typically the reference
set is chosen to be of a fixed size.
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The subset generation method should generate subsets of the ref-
erence set, which are used for generating new combined solutions
in the solution combination method. The subsets generated can be
chosen in a various of ways, but it is important to avoid duplicates.

Given a set of solutions, the solution combination method should
create at least one new solution. The idea of this method is to select
good parts from the given solutions and to combine them into a
better solution. The method may rely on randomness and it may
output more than one solution. Often it is the case that this method
will return an infeasible solution; if feasibility cannot be guaranteed
the improvement method should be able to start from an infeasible
solution.

The design of the reference set update method and the subset
generation method can be performed quite independent of the prob-
lem to be solved, whereas the other methods highly depend on the
problem. For a more in depth discussion and rules of thumbs for
designing the different methods see Laguna and Armentano [35].

The scatter search can be described by two phases; an initial
phase that creates a reference set and a search phase that searches
from the initial set.

Initial phase:

1. Create one or more initial solutions, from which all other solu-
tions are created.

2. Generate solutions by the diversification method.
3. Improve the solutions with the improvement method.

4. Repeat from 2; until a given number of solutions have been
generated.

5. Select the reference set from the solutions generated.

Search phase:

6. Generate subsets with the subset generation method

7. Generate solutions from one of the subsets with the solution
combination method.

8. Use the improvement method on the solutions.
9. If static update repeat from 7, until no more new subsets.
10. Update reference set with the reference update method.

11. If the reference set has changed, repeat from 6. Otherwise
from 7.
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The algorithm finishes when there are no more new subsets to
choose in step 7. Usually a time or iteration limit is also enforced.

It is possible to use the algorithm in an iterative fashion by using
the generated reference set or a subset hereof as the initial set of
solutions for step 1 in the initial phase. This could be repeated until
either a time or iteration limit is reached.






Chapter 3

Nurse rostering

For today’s hospitals, personal in general but in particular nurses
are becoming more and more a scarce and expensive resource. Ac-
cordingly, a careful nurse rostering that at the same time matches
economic needs as well as nurses’ preferences is of increasing import-
ance. The difficulties in planning these duty rosters arises from the
fact that the demand for nurses varies during the day, and that the
wards should be staffed around the clock. Nowadays also the nurses’
preferences for shifts and special requests for days off should be taken
into account when creating the schedules. The quality of the rosters
has a great impact on the nurses’ job satisfaction and well-being.

In general, nurse rostering is the task of finding a duty roster for
a set of nurses such that the rosters fulfil work regulation and the
management’s requests.

The work regulations are often defined both in general union con-
tracts and in local agreements between each single nurse and the hos-
pital. Besides this, the nurses often have the right to request days
off and which shift pattern they would like to work. So each nurse
is different and should be treated in that way, when the rosters are
created.

A duty roster consists of a set of shifts that the nurses should
work. The possible working shift types typically include a night,
evening and day shift, besides these several other shift types can be
defined. A shift type is a hospital duty with a usually well defined
start and end time. Almost all problems considered in the literature
include some sort of coverage constraints, which is a requirement of
having at least (or exactly) a given number of nurses working a spe-
cific shift or during a given time period. Sometimes these constraints
are defined for specific qualification levels of the nurses. These con-
straints may also stipulate both a required as well as a desired number
of nurses to work a given shift. A lot of other types of management
requests are also often included.

25
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The duty roster that is generated should fulfil these requirements
and in some way be optimal. The length of the requested duty roster
is normally between 1 and 6 weeks.

Two different types of duty rosters are distinguished, cyclic duty
and non-cyclic duty rosters. A cyclic duty roster is a roster where
each nurse cycles through all the different schedules of the complete
roster. The “fairness” of this type of duty roster is deemed to be high.
The disadvantage is that no personal request can be incorporated
since all nurses have to work all different rosters. The big advantage
is the fairness and that the nurses would know their work schedules
many months in advance. The cyclic roster is generated once and is
first regenerated when external changes occur. On the other hand,
the non-cyclic roster is generated every period and can handle per-
sonal preferences and requests. The “fairness” is in general not as
good as with a cyclic schedule, but can be handled by introducing
some “fairness” constraints or as an optimisation criteria. A non-
cyclic duty roster can include planning of official holidays, planned
vacation, and other time dependent constraints. In a modern hos-
pital, the cyclic schedule seems to be a leftover from the past, since
demands and preferences are quickly changing.

3.1 Usual models

In the literature about nurse rostering there is no general model that
describes all of the nurse rostering problems. This is due to fact
that there are so many differences between the specific problems en-
countered at the different wards around the world. The modelling of
a problem also has a big impact on which solution procedure can be
used for solving the problem.

The literature does not provide a complete mathematical descrip-
tion of all aspects of a real-world problem, but there are two compact
models which capture big parts of the real world problem. A lot of
the constraints to be taken into account are nonlinear and in general
hard to describe mathematically. One of these models describes the
feasibility constraints for each nurse indirectly using a set of feas-
ible schedules. The other model is used when column generation is
applied to solve the problem.

3.1.1 Direct model

In this model, every day is divided into a set of shifts that a nurse can
work. The decision variables vy, are binary and indicate if nurse
n should work shift r» on day m or not. Let V,, indicate the matrix
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of decisions variables for each nurse, that is V;, = {vnrm }rm. The
problem may then be written as the integer program:

N
min Z Crn (Vi) (3.1)
n=1
R
s.t vam—l Ym,n (3.2)
r=1
N R M

V€ Sy n (3.4)
Unrm € {0, 1} Vn,r,m (3.5)

In this model C),(+) is the cost arising when nurse n works the sched-
ule given by the decision variables. Constraint set (3.3) is the cover-
age constraints. A coverage constraint is a constraint on how many
nurses of a given qualification level are required to work some given
shifts. The minimal requirement of a constraint is denoted by d;
and is often called the demand of the constraint. The zero-one para-
meter a.m,; i equal to one if shift r of day m is one of the given
shifts in coverage constraint 7. The zero-one parameter e,; is equal
to one if nurse n is of a qualification level required in coverage con-
straint . The set S, is the set of feasible schedules for nurse n, the set
can be given either explicitly or by constraints defining the feasible
schedules. Constraint (3.2) states that each nurse should only work
one shift each day, and the last constraints set (3.4) models that all
schedules should be feasible.

This model is a very simple model, ignoring a number of con-
straints that usually have to be taken into account. But it captures
some key aspects of many nurse rostering problems.

3.1.2 Set-covering type model

This model is used when the proposed solution method is a column
generation approach, where a column corresponds to a full schedule
for one nurse.

For each nurse there is a set of feasible schedules S,, and associ-
ated binary decisions variables v,s. The variable is equal to one if
nurse n works schedule s.
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DN ansivns = di Vi (3.8)

Uns € {0,1} Vn Vs € S, (3.9)

The constant ¢, is the cost of nurse n working schedule number s.
The parameter a,s is a zero-one constant that is equal to one if
assigning nurse n to schedule s contributes to meet the demand of
coverage constraint ¢. The first constraint set is the constraint that
each nurse should work exactly one schedule. The constraints (3.8)
ensures that all coverage constraints should be fulfilled.

This model is also very simple, and in real worlds applications
there are always a number of extra constraints that needs to be in-
cluded.

3.2 Standard constraints

Different hospitals around the world need to take different sets of
constraints into account when planning their nurses’ duty rosters.
The literature accordingly distinguishes a number of different con-
straint sets when describing these problems. Some constraints even
stem from single nurses having local contracts with the ward. Some
of the constraints often encountered are the following:

Coverage constraints describe how many nurses of different qual-
ification are supposed to work at a given time period or shift type.
These constraints can be expressed as a minimum, maximum or ex-
act requirement, sometimes it is given as a desired and a required
level.

Workload constraints restrict the number of hours a nurse should
work during the planning period. During shifts on holidays and dur-
ing weekends the nurse often receives a time bonus. The time bonus
is included in the calculations of the nurse’s work hours. These con-
straints can be expressed as a minimum, maximum, range or exact
number of hours.
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Shift pattern constraints are constraints on how different shifts
can be combined. These constraints can be given as strict constraints
when a certain pattern is not allowed or as soft constraints when
the pattern should be avoided if possible. These constraints include
constraints such as: minimum number of hours between two shifts,
at least two consecutive night shifts and not more than 4 consecutive
night shifts.

Consecutive work / free day constraints are often both given
as a maximum and minimum number of consecutive work days a
nurse can have. The minimum number of consecutive free days is
also often restricted.

Complete weekends constraints state that the nurse should either
work the whole weekend or have a no weekend shift in that weekend
at all. It is most common that nurses working a complete weekend
are working two shifts during that weekend.

Holidays and requested free days should also be taken into ac-
count when handling real world problems. Holidays and requested
free days are often planned long time before the actual planning takes
place, and these can of course not easily be changed.

Shift preferences are in particular, a nurse’s personal preferences
for having specific days off. Some nurses also like to work night
shifts. Such preferences should also be considered when creating the
schedule.

Number of shift types constraints limits the number of different
shift types a nurse should work during the planning period. A con-
straint on the number of night shifts is common, but these constraints
can be on any shift type and be given as a minimum, maximum, range
or exact value.

3.3 “Optimal” schedule

Defining how an optimal solution should look like, or even just com-
paring two given schedules is not always easy. The big difficulties
when defining how an optimal schedule should look like arises due
to the fact that all the different nurses and the management have an
opinion on which criteria to apply.

From the management point of view, criteria like minimising un-
der coverage of shifts and minimising the cost of overtime payments
and payments to auxiliary nurses is often most important. But even
when trying to handle only two criteria, an optimal solution is in
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general not defined. In some way the criteria should be melted to-
gether in a single objective. Doing this is not easy, and there is no
general applicable method that always works. The most common
way of handling several criteria is to multiply them by a weight and
to add them together.

From the nurses point of view other objectives are as important
as those of the management. Often used objectives are the following;:
maximise fulfilment of nurses’ preferences and personal wishes, max-
imise the “fairness” of the generated schedule. These two objectives
are hard to define on their own, combining them with others makes it
even harder. The maximisation of nurses preferences causes further
problems as to figure out which preferences are most important. For
instance should the importance of a nurse getting a shift off due to
a 50 years birthday be more important than a nurse not being able
to go to football practice once, and what about if it were a 50 years
birthday compared to five missed football practices.

The fairness of a schedule is also difficult to define, but it often
involves criteria like: equal number of night shifts, equal number of
evening shifts, equal number of work weekends, and equal amount of
preferences fulfilled.

All these different criteria should in some way be combined into
an objective and perhaps also some constraints. But for doing this
there is no brilliant solution and handling the problem as a multi-
criteria problem with so many criteria is not realistic.

3.4 Solutions methods from the literature

Many different solution approaches for solving nurse rostering prob-
lems have been proposed in the literature, varying from exact solution
methods as integer and constraint programming to a huge variety of
heuristics.

Warner [51] describes an early approach that combines manual
planning and integer programming. The method is most suited for
instances where the nurses work some sort of rotational profile with a
manually fixed weekend work pattern. The planning period is divided
into two week periods, which are planned almost independently in
order to reduce the problem size. The simplifications and the use
of rotational profiles make the solution procedure unsuitable for the
needs of modern hospitals.

Jaumard et al. [33] propose an integer programming model that
is solved exactly by means of column generation/branch-and-price.
The pricing sub-problem is to generate feasible duty rosters for each
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nurse and the master problem is to combine these rosters into a com-
plete schedule. The pricing sub-problem is solved as a resource con-
strained shortest path problem with a pseudo-polynomial two phase
algorithm. This method is pretty flexible, but the sub-problem is
very sensible to the number and types of constraints that are added.
Many constraints are also difficult to state as resource constraints.

Also constraint programming has been proposed as a solution
method for the nurse rostering problem. Okada [47] proposes a con-
straint satisfaction problem (CSP). The model is very flexible re-
garding the constraint set, but no soft constraints or objective is
included. The search strategy of the CSP selects the variable and
value to branch on according to the nurses’ preferences, and the al-
gorithm terminates with the first feasible solution found. Wong and
Chun [52| suggest another constraint programming method. They
reduce the size of the search tree by adding redundant constraints.
The problem instances considered are one week instances. This ap-
proach neither includes an objective nor does the method account for
preferences for shifts or shift patterns.

Some papers combine a constraint programming model with local
search or other non-exhaustive search procedures. Meisels et al.
[44] and Meyer auf'm Hofe [45] both describe constraint program-
ming models, which have been implemented in software packages
and used in several different hospitals. Meisels et al. [44] use an or-
dering heuristic to implement the nurses personnel preferences and
by this hope to find a solution that obeys most of the preferences.
The ordering heuristic is used when branching in the search tree
should be performed. The search terminates when a feasible solution
is found. Meyer auf'm Hofe [45]|, on the other hand, combines the
usual branch-and-bound search with a local search procedure. For
comparing solutions, the local search applies a combination of a lex-
icographic ordering of the constraints and a weighted sum over the
violated constraints. The article also introduces fuzzy constraints
which are constraints that can be partly violated.

Li et al. [37] suggest a similar approach. They propose to soften
some of the hard constraints in a constraint programming model,
where all preferences and costs are ignored. After a solution to the
model is found, a tabu search is applied to search for a feasible solu-
tion for the unrelaxed problem and to improve the objective of the
generated solution.

Tabu search has been proposed in several articles; Burke et al.
[6] discuss a hybrid tabu search with human inspired improvement
techniques. This approach has been implemented and used in over
40 Belgian hospitals. The system is quite flexible and produces solu-
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tions that are almost impossible to improve manually. Dowsland
and Thompson [17] also describe a tabu search. A knapsack model
is used for pre-processing and an integer flow model is used for post-
processing of the solution. Bellanti et al. [3| suggest a pure tabu
and an iterative local search procedure for solving a nurse rostering
problem from an Italian hospital. Burke et al. [5] propose and com-
pare several genetic, memetic, tabu search and hybrid approaches.
All these procedures restrict the search to the feasible region of the
search space.

Goodman et al. [22] discuss a greedy randomised adaptive search
procedure. The search space of the method includes parts of the
infeasible region, but an additional surrogate knapsack constraint is
included to ensure that an infeasible solution is easy to repair.

Heuristics for nurse rostering problems are generally designed for
a particular objective function and a specific set of constraints. The
methods are thus very inflexible towards changes of the problem set-
ting. Moreover, difficult instances of the nurse rostering problem
generally show only a few feasible solutions that can be hard to find
by heuristics. Moreover, even if additional meta-heuristics search
principles are applied, heuristic search procedures often get caught
in a local optimum, in particular, if just few solutions are feasible
and the heuristic search is restricted to the feasible region.

More references and a comprehensive discussion of nurse roster-
ing and solution approaches for it considered in the literature can be
found in Burke et al. [7|. A bibliographic overview without a discus-
sion of the proposed methods can be found in Cheang et al. [11].
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The Danish model

The problem confronted in this thesis is described in a master thesis
by Anne Kirstine Andersen [41]|. She presents a nurse rostering prob-
lem from a ward at Aarhus University Hospital Skejby in Denmark.
Most of the problem’s constraints stem from union contracts or are
constraints commonly imposed from the management. A solution
approach for this particular problem would thus probably generalise
to other wards in Denmark. In her master thesis, the problem and
a solution method for a strict subset of the constraint are described.
The solution method is not capable of handling all the constraints
and thus not the actual problem to be solved.

The problem is described in the following three sections. Sec-
tion 4.1 gives information about the size of the problem and the more
commonly used constraints. Regulations that distinguish this prob-
lem from other problems addressed in the literature are described
in Section 4.2, and Section 4.3 discusses how to characterise a good
solution for this problem.

4.1 The confronted problem

The confronted problem is to plan the schedules for 28 nurses for
a planning period of one month. The nurses are divided into three
qualification levels. The levels are ordered such that a nurse with a
higher qualification level always can do the work of lower qualified
nurses.

There are in general three working shifts each day, except Sunday
with five and Saturday and Monday both with four. Besides this,
some nurses have to have office days during the planning period,
and these should also be included in their schedule. Three of the
working shifts take eight hours (night, day, evening). The others are
twelve hours shifts and only used during the weekend. The week-
end is defined to start Saturday after the night shift between Friday
and Saturday and to end after the night shift between Sunday and
Monday. The two types of 12 hours shifts are a long day starting the
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same time as a normal day shift and a long night shift starting when

the long day shift ends.

Some shifts start at one day and end the day thereafter. Such
shift are considered to be at the day where most of the working
hours is located. For example the night shift which starts at 23:15 is

considered to be a working shift of the next day.

The constraints that are very commonly used are listed below.

Problem specific constraints are described in Section 4.2:

Minimum time between shifts. In this problem, the min-
imal time between two working shifts is 11 hours.

Minimum consecutive workdays. There must be at least
two consecutive workdays, that means a pattern like “free day
— work day — free day” is forbidden.

Maximum work hours per week. Each nurse should have
a maximum of 48 work hours each week. A week starts on a
Monday and ends on a Sunday.

Shift type limits. There is a limit on how many and how few
night and evening shifts a nurse can work during the planning
period. Imposing this constraint is a mean of more evenly
dividing the “bad” shifts between the nurses.

Office days. Some of the nurses have office days. These
are not fixed, but given as a demand of a fixed number of
shifts in a given period. A nurse working an office shift is not
considered to be included in the staffing at the ward.

Consecutive work weekends. A nurse is not allowed to
have two consecutive work weekends.

Recorded work hours. Each nurse has a number of con-
tracted work hours she should work on average in each week.
These hours are often called recorded work hours, since week-
end shifts and shifts at official holidays earn extra hours. A
weekend shift gives an extra of 40% and shifts during an
official holiday gives 50 % extra time. For each nurse, the re-
corded work hours should hit the average every twelfth week,
otherwise the nurse get paid for her overtime or the ward just
loses the hours not worked. These twelve week periods starts
when the nurse is hired so they are not the same for all nurses
and they do in general not fit with the planning period. The
management has decided to set a range around the contracted
number of hours. The recorded number of hours should then
be inside this range at the end of the planning period.

(C1)

(C2)

(Cs)
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Preassigned shifts. Preassigned holidays and non-working
days should be respected.

4.2 Distinguishing features
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(Cs)

Below is a list of the constraints that differ from the ones generally

found in the literature:

Day off / free day. In a Danish ward, the days in which a
nurse does not work can be divided into three different types:
holidays, days off and free days.

Holidays are preplanned spare time, and these cannot be
changed in reality. The reason is that the union agreements
charges a large penalty if a nurse gets her holidays changed.

A day is called a day off if the nurse should not work any shift
that day and if the day is in a period of at least 35 hours of
spare time. A day off thus depends not only on the fact if the
nurse works the corresponding day, but also which shifts the
nurse should work the following and preceding day.

A free day is defined as a day with no shifts that is not a day
off.

Maximum consecutive workdays. There are two different
constraints on the maximum number of consecutive workdays
depending on a local agreement between the nurse and the
management.

The standard constraint is that a nurse should have a max-
imum of six work days between two days off. This is the same
as having a maximum of six consecutive workdays where a
free day is considered as a workday.

If a nurse has accepted, the constraint can be weakened such
that a nurse can work a maximum of seven days between two
days off, if there is a free day in between. If there is no free
day in between, the limit of days between a day off is still six.

Complete weekends. All nurses that have to work during a
weekend have to work a complete weekend. A weekend shift
does, however, not mean to work the same shift type on a
Saturday and the Sunday. Instead the weekend is shifted a
bit and covers the first shifts of the Monday, but not the first
shifts of the Saturday. However, working a complete weekend
still consists of working two shifts of the same type.

(Co)

(C1o)

(Cn)
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12 hours weekend shifts. If a nurse has accepted to work
12 hours shifts, then it should be ensured that the first work
weekend after a work weekend with 12 hours shifts is one with
8 hours shifts.

Overlap of nurses. The management has a request for an
overlap of at least one nurse from one shift of a day to the
same shift of the next day. This is because they want the
patients to feel some continuity regarding the nurses which are
on duty and also to have a nurse that knows what happened
the previous day. This request of an overlap is on both night,
day and evening shifts, however the twelve hours shift is in this
constraint considered as its corresponding eight hours shift.
So, if a nurse works the twelve hours night shift on a Monday
and an eight hours night shift on Tuesday, the constraint is
fulfilled for the night shift between Monday and Tuesday.

Coverage constraints. Coverage constraints on how many
nurses should work each shift are very common. In this prob-
lem the constraints require that certain shift combinations are
covered by a minimum or best a desired number of nurses hav-
ing certain qualifications. This differs from the most standard
way of stating the constraints, as it restricts shift combina-
tions, accounts for both a minimum and desired number of
nurses working and includes only nurses with certain qualific-
ations.

4.3 Objectives

(Ci2)

(C13)

(Ci4)

Several different criteria have to be considered in the objective func-

tion, in particular the following ones:

Minimise under-staffing. Under-staffing arises when a cov-

erage constraint is not covered by the desired number of nurses.

When under-staffing occurs, a penalty is included in the ob-
jective.

Ensure overlap. Penalties are included if the overlap con-
straints are not met and treated as soft constraints.

Nurses preferences. Fulfilment of the nurses’ request and
preferences is an important criterion. If not fulfilled a penalty
cost is included. Examples of preferences are: A nurse would
like to have free a specific date, or a nurse that would like to
work only night shifts.

(O1)

(02)

(O3)
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Shift change cost. If two consecutive days have been as- (Oy)
signed two different work shift types, a penalty cost is added.
The value of the cost depends on which shifts are assigned.

Recorded work hours. If a nurse is at the end of her 12 (Os)
weeks period, then the recorded work hours are compared

to the figure fixed in the nurse’s contractual agreement, and
overtime payments are paid if there is an excess. If the re-
corded hours are below the assigned level, the hours are lost

and an opportunity cost is included to account for the unused
working hours.

The objective of the problem is defined as the weighted sum of
the different terms above.
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Chapter 5

IP/CP model

5.1 The solution method

In the following sections the main solution approach developed in
this thesis is described. The solution method is a branch-and-price
algorithm which can be used to determine optimal schedules. The
master problem is to select individual schedules for the nurses such
that the constraints Ci4 and C;3 are observed while the sum of the
objective terms O1 to Oz is minimised. We use the “Branch and Cut
and Price” project (BCP), version 1.3.3 COIN-OR [12], of COIN-OR
to implement the branch-and-price method and CPLEX 12.2 IBM
[29] for solving the restricted master problem’s linear relaxation.

The pricing sub-problem is to generate feasible schedules with
negative reduced cost for each nurse or to show that no such column
exist. It includes the constraints C; to Cio, with the objective con-
sisting of the terms O3 to O3 as well as the “shadow prices” associ-
ated with the coverage and overlap constraints C14 and Cy3, respect-
ively. Additionally, branching constraints imposed in the branch-
and-bound search need to be taken into account. The sub-problem
is solved by constraint programming, because of its flexibility and
because it allows to implement all the constraints in a straightfor-
ward manner. The constraint programming model is implemented
in the IBM ILOG solver 6.7 IBM [31], with the use of only a few of
the built-in constraints. The major part of the constraints has been
implemented using the built-in C++ interface IBM [30].

The master problem is further discussed in Section 5.2, and the
sub-problem with descriptions of how the different constraints are
implemented are described in Section 5.3.

5.2 The master problem

The master problem is based on the model (3.6) — (3.9) given in
Section 3.1.2 on page 28. Besides the coverage constraints, which are
already a part of the base model, this model also includes constraints
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that handle the overlap requirements. The possibility of having soft
covering constraint with a required and a desired level of demand is
also included in the model.

Let the set of nurses to be scheduled be N, and let S,, be the
set of feasible schedules for nurse n. The constant ¢, is the cost of
having nurse n work schedule s.This cost includes both direct (Os),
opportunity (Os) and preference cost (O4 and Og).

Let vy,s denote a binary decision variable that equals one if and
only if nurse n works schedule s.

Let CC be the set of coverage constraints Ci4 and let for each
coverage constraint ¢ € C'C, a desired demand level d; be specified.
The constant d; is the difference between the desired and required
demand level. This constant is zero if the coverage constraint is strict.
Otherwise the decision variable y;, being the difference between the
desired and actual staffing level of the current roster, may attain a
positive value and a corresponding linear penalty p; is included in
the objective function.

The parameter a,s; is a binary constant that is equal to 1 if and
only if nurse n contributes to meet the demand of coverage constraint
1 by working schedule s.

The overlap constraints Ci3 are collected in the index set OC.
If a constraint j € OC' is considered a soft constraint, then the cor-
responding binary variable z; indicates if the constraint is fulfilled
or not. If the constraint is violated, a penalty of g; is added to
the objective. The 0-1 constant Z; is 1 if the corresponding overlap
constraint is a soft and 0 if it is a strict constraint. If an overlap
constraint is strict, the corresponding variable can be dropped from
the model. The parameter o,; is equal to one if nurse n in schedule s
covers the overlap requirement of overlap constraint j. For instance,
given an overlap requirement between two shifts of two consecutive
days, we have o,,; = 1 if nurse n works both shifts in schedule s.

The nurse rostering problem may then be formulated as the fol-
lowing huge integer program:
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min Z Z CnsUns + Z PiYi + Z q5%j

neN seSy, i€CC jeoc
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(5.1)
Vn € N, (5.2)
Vie CC, (5.3)
Vi e O0C, (5.4)
Vn € NVs e S,
(5.5)

Vie CC, (5.6)
VjeoC. (5.7)

The first constraint set (5.2) ensures that each nurse only works
one schedule. The set (5.3) is the coverage constraints, and (5.4) is

the overlap constraints.

5.2.1 Restricted master problem

The linear relaxation of the restricted master problem that is solved

by CPLEX is the following:

min Z Z CnsUns + Z piyi + Z 45%j

neN 53, ieCC jeoc

s.t. Z Upns = 1

Segn

Z Z GnsiVns T Yi > dz

neN Segn

Z Z OnsjUns + 25 2 1

neN Segn
0 < vps

Yi
Zj

BN

0
0

VANVA
INA A

.

(5.8)

VYn € N (5.9)

Vie CC  (5.10)

VjieoC (5.11)
VneNVseS,

(5.12)

Vie CC  (5.13)
VjieOoC (5.14)

Where S, is a subset of all the feasible schedules for nurse n, that is

S, CS,.
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After the restricted master problem has been solved, the dual
values of the constraints are passed to the sub-problem. The sub-
problem is to generate negative reduced cost columns or to prove
that no such column exists for any nurse. If at least one negative
reduced cost column is found, it is added to the restricted master
problem and the restricted master problem is re-optimised.

5.2.2 Lower bound for the master problem

In each node of the branch-and-bound tree created by branching in
the master problem, a lower bound for the linear master problem,
that is, the linear relaxation of (5.1) — (5.7), can always be obtained
by adding the negative reduced cost for each pricing sub-problem
to the linear relaxation of the restricted master problem’s objective.
The lower bound found is valid for all nodes in the sub-tree rooted
at the current node.

As all costs are integer-valued, this lower bound value can be
rounded up, to obtain a valid lower bound for the integer master
problem in the same node. Of course this rounded lower bound is
not a valid lower bound for the linear master problem, and hence
the solution value to the restricted linear master problem might fall
below this lower bound.

Some initial testing of the algorithm showed that solving all the
sub-problems to optimality generally resulted in smaller search tree
and lower computation times. Thus all sub-problems are solved to
optimality in all iterations of generating schedules for the restricted
master problem. The reason for the lower computation time is that
the lower bound is very important for pruning nodes in the search
tree.

5.2.3 Branching in the master problem

Branching in the master problem is performed after terminating the
column generation procedure for solving the master problem’s linear
relaxation. The column generation stops as soon as the restricted
master problem’s objective equals or, due to the rounding, drops
below the lower bound. In order to escape the well-known tailing
off effect, the column generation is also stopped when the restricted
master problem’s objective does not improve after a given number
of subsequent iterations (provided the solution to the current linear
master is not integer).

Branching on the w,s variables would give a very unbalanced
search tree. Forcing a value of one to such a variable would fix
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the nurse’s schedule totally, but forcing a value of zero would have
an extremely small impact. Instead branching is performed on some
auxiliary binary variables defined below.

Let S% C S, be the set of schedules that assign nurse n to
shift o on day 0. All non-working shifts are in this combined into
a single shift type. Branching is then performed on the auxiliary

binary variables
Vnso 1= Z Uns
865'2(’

which attain a value of one if nurse n works shift o on day §. When
all the variables Vs, are integer, all schedules s € S,, where v,s > 0
comprise the same sets of working shifts. Given all working shifts
for a nurse n, the free shift types allocated to nurse n in schedules s
with v,s > 0 are easily deduced. Thus, also all schedules s € S,, with
vps > 0 are identical. But, as all generated schedules are different,
only one such variable v,s > 0 can exist and the solution v, is
therefore integer.

For any given (nurse, day) pair, we select the variable V,,5,+ with
a value closest to 0.5 in the current LP solution for branching. This
leaves only the particular (nurse, day) pair to be selected for deciding
on the branching variable. For this purpose, we use a strategy re-
sembling the “strong branching strategy” of LP-based branch-and-cut
procedures often used to solve “difficult” integer programs (cf., for in-
stance, Achterberg et al. [1]). First we build a set of candidate (nurse,
day) pairs by sweeping through the work days ¢, starting with the
Sundays, and selecting all nurses n such that [{o : V5, > 0} > 1
until a given number of pairs is found. For each candidate pair,
each branch (Vso+ = 0 vs. V50« = 1) is investigated and the lin-
ear master problem re-optimised, however, without generating ad-
ditional columns. The branching candidate variable’s degradation
is then measured as the average objective value on both branches
(only when branching was performed because the master problem’s
objective dropped below the lower bound, the degradation is defined
by the smallest objective value observed on the two branches). The
candidate variable showing largest “degradation” is then selected for
branching.

5.2.4 Exploring the branch-and-bound tree

The order of exploration of the branch-and-bound tree created by
the above branching has a large influence on the computation time
required for solving a problem instance. Several different orders have
been investigated:
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BB Best bound search.

BF Breadth first search.

DF Depth first search.

BBR  Best bound, with random selection between equal.
DFR  Depth first until pruning, then random selection.
SA Simulated annealing inspired selection.

The three first methods for selecting the next node to explore
are standard methods from the literature. The other three methods
are described below. Some preliminary tests performed with the
three standard methods showed that sometimes the search gets stuck
in an area of the search tree where no improved integer solution
exists or where the lower bound cannot be improved. This is a usual
issue with the depth first search, but it was also seen with the best
bound search. The reason behind this is that the lower bound for
many nodes were the same and that the nodes added last with the
best bound were searched first. To overcome this issue the three
new methods were implemented; the three standard methods were
re-implemented, because some major bugs were found in the BCP-
implementation.

The idea behind the three new methods is to do a depth first
search, but to select another area of the search tree each time the
depth first search does not seem to be able to find a feasible integer
solution.

Best bound, with random selection between equal. It is very
similar to “best bound search”, the only difference is that the node se-
lected for exploration is randomly chosen between the nodes showing
the best bound. In the “best bound search” the node that is created
first is selected. The rounding used for finding the lower bound for
the nodes results in many nodes with the same bound. Hence quite
often this order of exploration will differ from the best bound search.

The reason this has an influence for these instances is that the
bound is found by rounding, thus resulting in many nodes with the
same bound.

Depth first until pruning, then random selection. Sometimes
the “depth first search” got caught in sub-tree of the search tree
where no feasible integer solutions existed. The algorithm ended up
searching in this part of the feasible region until the time limit was
exceeded.

The search selection is quite simple: If exploration of a node leads
to the need for branching then the first child is explored as the next
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node. That is the child where a nurse is forced to work a specific
shift of a specific day. If no branching is needed, the next node to
explore is selected uniformly at random from the whole search tree.

This method leads to a search that dives down the search tree
until it reaches an integer feasible solution or the node is pruned.
Then it chooses a node at random and dives from that node. The
method seems to find integer solutions quite quickly and it seems to
explore different parts of the search tree instead of just looking in
the same area.

Simulated annealing inspired selection. This method works sim-
ilar to the “depth first until pruning, then random selection” method.
The difference is that it might stop the diving before an optimal in-
teger solution has been found or the node has been pruned. The cri-
terion that determines if the diving should be stopped early is similar
to the acceptance criterion normally used in simulated annealing:

P(T) =al,

where T' is the number of dives since a node was randomly selected
the last time, and « €]0,1[ is a constant. A dive is accepted with a
probability of P(T).

Computational comparison

The different search strategies described above have been tested on 15
different instances with a planning period of 14 days. As parts of the
algorithm and some of the search strategies rely on randomness, all
instances have been tested with 10 different seed corns. The instances
are those also used for the comparison of methods for solving the
sub-problems in Section 5.3 and for the comparison of the solution
methods in Section 7.2.
The tested search strategies are:

BB  Best bound search.

BF  Breadth first search.

DF  Depth first search.

BBR Best bound, with random selection between equal.
DFR Depth first until pruning, then random selection.

SA  Simulated annealing inspired selection.

Table 5.1 summarises the results of the comparison. The first
column shows the instance number and the second the number of
nurses to be scheduled in the instance. The column below “Min.
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Table 5.1: Comparison of search strategies for the branch and bound
tree of the master problem. (Averages over 10 runs.)

Ins. Nurses Min. time BB BF DF BBR DFR SA
Seconds Extra computation time spend in % of the min. time.®
1 20 45.03 3,482.1  2,573.9 0.00 2,296.9 6.79 53.43
2 20 680.58 49.2 84.1  0.00 1.0 34.48 15.48
3 20 41.59 444 .4 233.8  4.68 390.6 0.00 5.36
4 28 122.53 464.1 325.6  0.00 303.6 15.52 63.85
) 28 29.19 1,0104 2,928.1 0.65 2,415.0 0.00 57.11
6 28 33.15 1,868.4  3,205.5 0.00 971.0 3.14 27.45
7 28 19.21 64.3 56.0  0.00 96.2 0.98 14.99
8 28 73.10 38.1 47.2  0.00 225 426  3.22
9 28 18.73 196.8 480.2  4.52 190.2  0.00 12.51
10 38 34.46 7,024.3 6,586.6 2.3 4,203.5 0.00 45.17
11 38 22.51 751.2 559.9 10.86 3771 0.00 3.55
12 38 34.62  34,594.7 25962.011 11.21 12,567.7 0.00 67.67
13 38 36.86 1,826.5 1,230.7 0.00 1,162.3 2.27 31.86
14 38 29.07 586.1 870.5 0.00 405.2 539 7.69
15 38 30.32 236.3 591.7 26.11 217.4  0.00 63.01
Average: 3,009.1  3,049.0 4.04 1,708.0 4.85 31.49

# The extra computation time is calculated as the extra time used with the given

search strategy compared to the one using the minimal; e.g., for the best bound
(BB) search strategy, it is calculated as: (Timepp — min; Time;)/(min; Time;) -
100%

' One run did not return any solution before the time limit of 20.000 seconds.
The time limit of 20.000 second was used as the solution time of that run.

time” is the smallest computation time obtained with any of the
above search strategies for solving the instance. Remark that all com-
putation times are the averages of 10 runs. The rest of the columns
are the relative extra time required for the given search strategy com-
pared to the one using minimal computation time. E.g., for the best
bound (BB) search strategy, it is calculated as:

(Timepp — min Time;)/(min Time;) - 100%. (5.15)
7 K3

Because the minimum is not over the single run, but over the aver-
ages, there is at least one 0.00 in each row.

The results show that the DF and DFR search strategies are the
ones that on average use the least computation time. The DF search
uses around 4.0 % more computation time than the strategy using
the least computational effort, whereas the DFR uses around 4.8 %
more time. The DF search did not get caught in an area where
no improvement could be found, as it did in the preliminary tests.
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Even though the DF search was slightly faster, the DFR search was
selected for the final algorithm. This was done because it usually
cannot get caught in a small area of the search space.

The good performance of the DF and DFR search strategies is
probably due to the fact that the lower bound found in the root
node of the restricted master problem is usually very close to, if not
equal, to the optimal objective value. Thus, finding a integer feasible
solution quickly is more important than improving the lower bound.

The two other standard search strategies showed extremely poor
performance. The best bound (BB) search strategy used on average
3,509.1 % more computation time than the strategy using the least,
and the breath first (BF) used an average of 3,049.0 % more com-
putation time. The BBR method is the BB method where the node
to search is selected randomly between those having the best lower
bound. The BBR showed a better performance than the BB by using
around half of the extra time than the BB method. Thus it looks
like the BB search strategy sometimes got caught in an area of the
search space where no improvement could be found.

The SA method did quite well compared to the standard BB and
BF method, but it could not match the computation times of the
DF and DFR methods. The computation times reported for the SA
method refer to the value of the parameter o showing the lowest
computation times (5 different settings were tested). On average,
the SA method used 31.49 % more time than the one using the least.

5.3 The pricing sub-problem

The pricing sub-problem is the problem of generating feasible sched-
ules with negative reduced costs or proving that no feasible schedule
with negative reduced cost exists.

The method used for this problem should be general enough to
include all the constraints described in Section 4. It would also be
preferable, if the method can handle changes in the constraint set
such that the solution method generalises to more than this particular
ward.

We have chosen to use constraint programming for solving the
sub-problem. One of the main reasons for this choice is that all
constraints can this way be implemented in a straightforward manner
and it is easy to add new ones.

Besides the constraints given in Section 4, the solution procedure
should also handle the reduced cost calculation, which include direct
cost, preference cost, and dual values from both the coverage and



50 Chapter 5. IP/CP model

the overlap constraints. The sub-problem should also handle the
branching constraints imposed in the branch-and-bound tree of the
master problem.

The following sections describe how the different constraints are
exploited within the constraint programming approach for perform-
ing domain reductions, computing lower bounds on the reduced cost
of sub-problem and to early prune the search tree.

Section 5.3.1 introduces the general variables which are used to
model the constraints. As an introduction to domain propagation
mechanisms, Section 5.3.2 includes several different domain propaga-
tion mechanisms for the constraint on the minimal time span between
shifts, including the one used for solving the instances. Propagation
mechanisms for most of the other constraints are described in Sec-
tion 5.3.3 to Section 5.3.10.

Combining different domain propagation mechanisms into one
can often yield a stronger mechanism, by that it is meant that the
mechanism can yield some extra domain propagation mechanism that
can be used to reduce the domains or prune the nodes earlier in the
tree.

Section 5.3.11 is an example of how to combine two domain pro-
pagation mechanisms into one, keeping the full domain reduction
capability of the individual constraints. Whereas Section 5.3.12 is an
example of a domain propagation mechanism that should be used in
conjunction with the individual domain propagation mechanisms.

How to calculate a lower bound on the reduced cost is described
in Section 5.3.13 and how to use this lower bound to do some domain
propagation is shown in Section 5.3.14.

The search strategy used for creating the CP search tree can be
found in Section 5.3.15.

5.3.1 The CP model

There are two natural ways of modelling the decisions to be made in
the sub-problem. The first way is to use binary decision variables for
each shift type, and the second is to use an integer variable for each
day indicating which shift the nurse should work.

The set of shift types is expanded from being just actual working
shifts to also include a shift type for holiday, a free day and a day
off. By doing this it becomes easier to express constraints.

The advantages of the model with binary variables is that some
constraints only depend on a small subset of the variables, and that
some variables can be merged into a single variable. The first ad-
vantage makes it easier to implement the constraints and it reduces
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the computational effort to perform the domain propagation mech-
anisms, as they are called fewer times. Reducing the number of
variables by merging them can, for instance, be performed with the
binary variables of the weekend shifts. The constraint on working
complete weekends enforces that the binary variable for a night shift
on a Saturday will always have the same value as the binary value
for the night shift of the following Sunday.

When using integer variables to model the problem, there should
be one integer variable for each day and it represents which shift
type the nurse should work the corresponding day. The advantage
of this model is that the constraint that a nurse only can work one
shift each day is implicitly fulfilled. An other advantage compared
to the other model is that branching or when domain propagation
removes several shift types from one day, the domain propagation
mechanisms are only called once, whereas the other model calls the
algorithm for each value that is removed.

Here, the second approach is applied and the model is built
around a single integer variable xj for each day k = 1,..., M of
the planning period. The variable z; equals the identifier of the shift
(work or non-work shift) assigned to the particular day k. To re-
duce the number of checks necessary in the propagation mechanism
of some of the constraints, the shifts are ordered such that the non
working shifts are the first shifts, followed by the 8 hours working
shifts and ending with the 12 hours working shifts. The ordering
makes a difference, when it is necessary to figure out if a day is a
working or a non-working day, when the shifts are ordered this way
the only information needed is the maximal and minimal value of the
variable.

The model is implemented in the ILOG CP solver. The solver in-
cludes some different variable types and the only one appropriate for
modelling the variables is the standard integer variable implement-
ation. The variable is implemented for the use of describing a size
of some measure and not for stating choices. If a constraint depends
on a variable, the constraint should be noticed when the variable
changes, so that domain propagation will be performed. There are
three different types of actions a constraint can “listen” to. The first
is that the constraint is noticed when the variable is fixed to a value,
the second is when the variable’s upper or lower bound changes, and
the last is when the domain is changed. When the variable is used
as a choice indicator, a fourth option is needed: The constraint is to
be noticed if either a variable needs to lie in a specific subset of its
domain or when it needs to lie outside this subset.

An example is the constraint on office days. This constraint
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should ensure that a given number of office days are planned. For
this constraint, only the information about if a variable is fixed to
an office day or when the office day is removed from the domain can
lead to new domain reductions.

Instead of using the implemented variable type directly, a layer in
between has been implemented, which adds the above fourth option
of listening to a variable. This extra layer also adds the possibility
of deciding in which order the different domain propagation mech-
anisms are called. This additional way of listening to a constraint
makes it easier to implement new constraints, but also the computa-
tional effort reduces as less redundant domain propagation methods
are called. This implementation enhances the model with the bin-
ary model’s advantage of only calling relevant domain propagation
mechanisms.

This fourth option is divided into three different cases depending
on the properties of the subset to be “listened” to. The division is
performed due to speed considerations. The general case handles
everything which does not fit into the other two cases, but it requires
a counter to keep track of when to call the propagation mechanisms.
The second case applies when the subset is a single value which does
not require a counter. The third case applies when the subset is
either the first or the last elements of the domain, the counter can
also be avoided here by keeping track of the minimum and maximal
value of the domain.

The last feature added is the possibility of having two different
propagation mechanism called, when either a variable need to be in a
certain subset or when it must lie outside of this subset. This reduces
the number of checks required in some propagation mechanisms and
it sometimes reduces the complexity of the implementation of the
propagation mechanisms.

The branching decisions and the preassigned shifts constraint (Cg)
are handled very easily in the constraint programming model, since
they correspond directly to reducing some of the domains of the vari-
ables.

5.3.2 Minimal time between shifts (C;)

Domain reductions for a constraint can often be performed in differ-
ent ways. For most constraints it is an advantage to use the method
that yields the most extensive domain reductions, even though it
takes some time to calculate this. In this section three different pro-
pagation mechanisms for the minimal time between shifts constraint
are described.
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The minimal time between shifts is the minimal number of hours
between the end time of a work shift and the start time of the next
work shift. Using a single integer variable z; to model each day
ensures that the minimal time between two shifts of the same day is
satisfied, so the constraint should handle the minimal time between
shifts of two consecutive days. As the minimum time span between
two shifts is 11 hours, there is no restriction regarding shifts of days
that are not consecutive.

The first approach does not really perform domain reduction, but
prunes the node when the constraint is violated. Two shifts of two
consecutive days are said to be incompatible, if a nurse working both
shifts would not have the required number of hours between the two
shifts. Let r be a value of x; that is incompatible with value [ of
Zk+1, then add the following domain propagation mechanism:

=1 N Tpp1 =1 = Tfail” (5.16)

The equation should be understand as follows: If during the search
xg is fixed to shift r and 41 is fixed to shift [ then the mechanism
would prune the node, because the assignment is infeasible. The
second approach is similar, but this method reduces the domains
of the variables instead of pruning the nodes. Let the variables be
defined as above, then the following mechanisms should be added:

Tp=1r = Tp4 #l, (5.17)
Tl = l = T 75 T. (518)

Here the right part should be understood as a domain reduction,
where either [ or r is removed from the domain of the corresponding
variable.

In the first two approaches at least one of the variables should
be fixed before any domain reductions can be performed. But it is
possible to do domain reductions prior to this and the third method
takes this into account. This approach removes values earlier in the
search tree and is thus a theoretical stronger constraint than the two
other approaches. Let ET(l) denote the end time of shift type [,
ST(r) be the start time of shift type r and MTB denote the minimal
time between shifts. The constraint can then be stated as:

ET(z) + MTB < ST(z41). (5.19)

This constraint can be converted into the following domain propaga-
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Day k Day k+1
D D
E
N
O
—
. MTB
MTB
min ET(r) max ST(I)
reD(xy,) l€D(wp+1)

Figure 5.1: Illustration of the implemented domain propagation
mechanisms for the minimal time between shifts constraint. D is a
day shift, E is an evening shift, N is a night shift and O is an office
shift.

tion mechanisms:

l IB%H ])ET(Z) + MTB > ST(r) = g1 #rVr € D(xgsq), (5.20)
€ T

ET(l) > max ST(r) — MTB = x,#1 Vi€ D(z;). (5.21)
r€D(Tg41)

Figure 5.1 illustrates the domain propagation mechanisms. The
night shift N of day k& + 1 in this figure can be removed from con-
sideration, because none of the shifts of day k£ end early enough to
ensure a sufficient spare time of MTB hours before the night shift
starts. By a similar argument the evening shift E of day k can be
removed.

Updating the smallest end time and largest start time and thereby
finding which domain values are to be removed, can be done very
efficiently by creating two lists: one that sorts the domain values
according to the end times and one that sorts them according to the
start times. The start times and end times of the non-working shifts
are defined such that, when they are in the domain no other domain
values can be removed. The number of calls to the propagation
mechanisms of this constraint is reduced by collapsing shifts with
either the same end time or start time; for each of such collapsed
shifts the propagation mechanism is called once, when all shifts of a
collapsed shift have been removed from the corresponding day.
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Table 5.2: Comparison of domain propagation mechanisms for the
minimal time between shifts constraint on CP sub-problems for 14
days instances in 10 runs. Deduced information from the minimal
time between constraint is not used for calculating the reduced cost
of the new column.

Ins. Nurses Sub-prob. C++3 C++2 C++1 ILOG3 ILOG2 ILOG2B

Average In seconds Deviation in %?* from C++3
1 20 310.0 21.55 —4.60 70.04 19.49 3.88 17.01
2 20 9,732.0 740.16 —2.57 53.33 18.15 4.80 18.15
3 20 320.0 33.29 —4.87 225.56 13.60 2.95 15.71
4 28 744.8  128.75 —7.41 89.71 11.08 0.38  10.95
5 28 288.4 16.08 —5.91 45.01 18.25 2.63 15.75
6 28 453.6 25.24 —5.67 56.47 13.14 1.93 14.81
7 28 392.0 11.24 —2.57 137.73 22.90 5.02  20.83
8 28 756.0 66.57 —5.46 152.67 12.45 1.74  13.53
9 28 364.0 10.28 —2.03 91.77 23.01 5.63  21.52
10 38 349.6 1543 —1.40 107.18 22.67 7.21  21.94
11 38 345.8 13.87 —1.32 99.65 23.44 7.37  22.67
12 38 395.2 15.70 —0.59 103.63 23.76 8.58  24.12
13 38 433.2 17.63 2.26 147.14 22.99 10.71  25.39
14 38 463.6 9.47 0.46  78.99 29.93 8.92  27.20
15 38 456.0 8.87 1.46 9520 31.62 9.90 28.42
Average: —2.68 103.61 20.43 5.48  19.87

& Positive deviations means longer computation times.

Computational comparison

The following mechanisms were implemented to compare the domain
propagation mechanisms for the minimal time between shifts con-
straint:

C++1 The first approach from above with the described domain
propagation mechanism.

C++2  The second approach from above with the described domain
propagation mechanisms.

C++3  The third approach from above with the described domain
propagation mechanisms.

ILOG2 The second approach with the use of the built-in constraint
“IloIfThen”.

ILOG3 The third approach with the use of the built-in “IloTable”
constraint, which is used as what would in the literature
often be called an element constraint.
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For the C++1 — C++3 mechanisms the domain propagation mechan-
isms are implemented in C++ without the use of any of the built-in
constraints. The ILOG2 and ILOG3 on the other hand are created
only width built-in constraint types.

One mechanism seems to be missing and that is the first idea im-
plemented with the built-in functions. The reason is that the solver
in the preprocessing phase will anyway deduce the propagation mech-
anisms of the second approach from the added constraint of the first
approach.

When using the built-in functions, it is important to note that
when adding the mechanism from equation (5.17), the mechanism
from equation (5.18) is automatically deduced. Adding both results
in a lot of redundant calculations which significantly increases the
computation time. The inclusion of both mechanisms with the built-
in “IlolfThen” function is denoted by “ILOG2B” in Table 5.2.

The CP sub-problems used for testing the different mechanism
were those that have to be solved, when solving the two-week in-
stances used in Chapter 7. All instances were solved with 10 different
seed corns, because some parts the IP/CP method relies on random
selections. The method for calculating the reduced cost for the gener-
ated schedule uses the incompatibilities between shifts on consecutive
days for speeding up the calculations (see Section 5.3.13). Table 5.2
summarises the results of the computations, where the method for
calculating the reduced cost does not make use of the incompat-
ible pairs of shifts on consecutive days enforced by this constraint.
This is a more fair direct comparison of the methods. For all other
constraints in the sub-problems, the methods chosen for the final
algorithm were used. The first column states the instance number,
the second is the number of nurses in the instance and the third is
the number of sub-problems solved as an average over the 10 runs.
The column below C++3 shows the accumulated time spend on solv-
ing the sub-problems as an average over the 10 runs with the use of
the mechanisms corresponding to C++3. The other columns show
the percentage deviation in solution time from the time shown in
the C++3 column, when using the corresponding domain reduction
mechanisms. The table shows that the C++2 method outperforms
all the other methods on the first 12 instances, however on the last
three instances the C++3 method was slightly faster. The signific-
ant difference between C++2 and ILOG2 is quite surprising, as they
rely on the same approach and that the added built-in constraints
are used without any extra variable or anything else that should in-
crease the computation time. The big difference between C++3 and
ILOGS3 is less surprising, because to implement the third approach



5.3. The pricing sub-problem 57

with the built-in constraints a couple of extra variables for each day
are required. As expected the C++1 showed a very bad performance
requiring more than double the time for solving the sub-problems.

Table 5.3: Comparison of domain propagation mechanisms for the
minimal time between shifts constraint on CP sub-problems for 14
days instances in 10 runs.

Ins. Nurses Sub-prob. C++3 C++2 C++1 ILOG3 ILOG2 None

Average In seconds Deviation in %* from C++3
1 20 310.0 21.28 —5.12 —1.37 19.81 3.53 —4.97
2 20 9,732.0 713.01 —-4.69 -—-1.22 1843 343 534
3 20 320.0 30.27 —-5.81 —1.31 13.43 257 —6.10
4 28 744.8 116.20 —-7.53 —5.25 11.01 0.64 —6.72
) 28 288.4 15.66 —6.48 —4.97 1841 210 —7.92
6 28 453.6 23.84 —6.37 —4.83 12.79 1.67 -7.63
7 28 392.0 10.55 —2.55 0.87 23.30 5.58 —5.99
8 28 756.0 61.03 —-5.68 —1.35 1233 1.77 —=5.27
9 28 364.0 9.59 -2.01 197 2359 5.61 —5.62
10 38 349.6 12.04 —-2.75 1.34 2528 5.54 —4.52
11 38 345.8 10.61 —2.43 2.15 26.90 6.21 —4.50
12 38 395.2 12.04 —2.38 2.08 26.87 6.28 —4.46
13 38 433.2 14.82 —-3.21 3.00 25.69 5.14 —5.16
14 38 463.6 8.84 —0.65 2.87 3081 791 584
15 38 456.0 8.14 0.35 6.15 32.83 880 —6.43
Average: —-3.82 0.01 2143 445 —5.76

#  Positive deviation means longer computation times.

For testing which method should be used in the final CP al-
gorithm, the complete algorithm was tested with the different im-
plementations of the minimal time between shifts constraint. The
ILOG2B method were excluded for this comparison. A method was
introduced where the minimal time between shifts constraint was
handled indirectly by the method for determining the reduced cost of
the schedule, as described in Section 5.3.13 and 5.3.14. This method
is denoted by “None”. The results of these tests are summarised in
Table 5.3.

According to Table 5.3, the method using the least computational
time is the “None” method. The reason behind this is that the method
for calculating the reduced cost removes the same domain values as
the C++3 and ILOG3 methods does. The results of this table does
not really show how well they are at removing domain values but on
how much computation time is spend on checking the mechanisms.
The reason that C++1 does not outperform the others is that the
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algorithm for calculating the reduced cost is computational heavy,
and the more domain values are removed before the algorithm is
called, the less calculations are necessary.

The method corresponding to “None” is used for solving the in-
stance, but on other problem instances where the calculation of the
reduced cost could not indirectly handle the minimal time between
shifts constraint, either method C++2 or C++3 could be useful. The
C++2 method is used in the part on heuristics approaches, where
some of the heuristics relies on the same CP model as here, but with
the exception that it does not include the calculation of the reduced
cost.

5.3.3 Day off / free day (Cy)

The day off / free day constraint should ensure that if a variable is
assigned a day off, it is in a period of 35 hours of free time and if it is
assigned a free day it should be in a period with less than 35 hours
of free time.

Let DO be the day off shift, F be the free day shift and let the
constant T" be defined as T' = 35. Let ST(z) and ET(xy) be defined
as the start and end time of the shift scheduled on day k; then the
constraint can be specified as:

rz,=DO = ST(l'k.H) > ET(:Uk_l) + T (5.22)
rzp =F = ST(karl) < ET(xkfl) +T (523)

The first constraints can be converted into the following domain
propagation mechanisms:

xp =DOAST(r) =T < min ET(l) = x4 #r Vr € D(zky1),

leD(zp—1)
(5.24)
xzp =DOA max ST(r) =T <ET(l) = axp_1#1 Vi€ D(zk_1),
r€D(Tp41)
(5.25)
max ST(r) — T < min ET(]) = x5 # DO. (5.26)

r€D(Tp41) leD(z—1)



5.3. The pricing sub-problem 59

The second constraint (5.23) can in a similar way be converted into:

2 =FAST(r) =T > min ET(l) = xg1#r Vre€ D(zpy1),

~leD(zg-1)
(5.27)
zp =FA max ST(r) —=T >ET(l) = xx1#!0 Vi€ D(xp_1),
r€D(Tk41)
(5.28)
max ST(r) — T > min ET(I = F. 5.29
TGD(%H)( ) T leD(zk_1) 0 s ( )

Keeping track of the smallest and largest start and end time is
performed in a similar fashion as in case of the minimal between shift
constraint.

Computational comparison

The domain propagation mechanism for the day off / free day con-
straint given in equations (5.24) — (5.29) were implemented through
the C++ interface to the solver without any use of the built in con-
straint types (C++). As a comparison the constraint (5.22) and (5.23)
were added directly with the use of the built in constraint types “Ilo-
Table” and “IlolfThen” (ILOG).

The comparison of the two methods were performed on all the
same CP sub-problems as used for comparing the mechanisms of
the minimal time between constraint. The propagation mechanisms
used were the one chosen for the final algorithm, except that the given
mechanism were used for the day off / free day constraint. The results
of the comparison are summarised in Table 5.4. The fourth and fifth
columns are the average time spent solving sub-problems for the given
instance and method. The results shows that the C++ method uses
around 42 % less computation time than the ILOG method. The
ILOG method is outperformed on all instances and it is using at least
26 % more time on any instance. One reason for the poor performance
of the ILOG method is the necessity of including some extra variables
when using the built in constraints. The C++ method is of course
selected to be used in the final algorithm.

5.3.4 Minimum consecutive workdays (C,)

This constraint should ensure that there are at least two consecut-
ive workdays, that is patterns like “free day — work day —free day”
are forbidden. Here a free day is meant to cover all three types of
non-working shifts. Let WS be the set of all shifts that have to be
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Table 5.4: Comparison of domain propagation mechanisms for the
day off / free day constraint on CP sub-problems for 14 days instances
in 10 runs.

Ins. Nurses Sub-prob. C++ ILOG ILOG
Average In seconds Dev. in %?* from C++

1 20 310.0 20.90 26.71 27.79

2 20 9,732.0 716.85 1,097.49 53.10

3 20 320.0 29.64 44.34 49.58
4 28 744.8 115.83 146.88 26.80
5 28 288.4 15.72 21.44 36.35

6 28 453.6 23.18 29.43 27.00
7 28 392.0 10.17 14.31 40.78

8 28 756.0 61.14 77.36 26.54

9 28 364.0 9.60 13.02 35.65
10 38 349.6 12.20 18.27 49.68
11 38 345.8 10.29 15.55 51.17
12 38 395.2 11.74 18.14 54.47
13 38 433.2 15.42 22.88 48.39
14 38 463.6 9.22 13.19 43.07
15 38 456.0 7.98 12.77 60.05
Average: 42.03

&  Positive deviation means longer computation times.

considered as working shifts in this constraint, then the constraint
can be stated as:

€ WS = x4 € WS or xp_; € WS. (5.30)

This constraint is transformed into the following domain propagation
mechanisms, which are checked when the domain of a variable is
either reduced to be a subset of WS or when it is reduced to contain
no shifts from WS:

2 € WS and x5 € WS = x4_1 € WS, (5.31)
2 € WS and z5_1 € WS = x5 € WS, (5.32)
Tpr1 € WS and zp1 €WS = x5 ¢ WS (5.33)

Computational comparison

The mechanisms given in equations (5.31) — (5.33) (C++) are com-
pared to a method that only uses the built-in constraints to im-
plement constraint (5.30) (ILOG). The same sub-problems as used
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for comparing the mechanisms for the minimal time between shifts
constraint are used for comparing the two methods. The algorithm
used for solving the instances is the final algorithm, except that the
method used for the minimum consecutive workdays constraint is the
ones given.

The results are summarised in Table 5.5, and shows that the
C++ method on all instances uses slightly less computation time than
the ILOG method. The ILOG method uses on average 0.82 % more
computation time than the C++ method. Thus, the C++ is chosen
to be used in the final algorithm.

Table 5.5: Comparison of domain propagation mechanisms for the
minimum consecutive workdays constraint on CP sub-problems for
14 days instances in 10 runs.

Ins. Nurses Sub-prob. C++ ILOG ILOG
Average In seconds Dev. in %* from C++
1 20 310.0 20.90 21.06 0.77
2 20 9,732.0 716.85 723.54 0.93
3 20 320.0 29.64 30.09 1.50
4 28 744.8 115.83 116.17 0.29
5 28 288.4 15.72 15.93 1.29
6 28 453.6 23.18 23.29 0.50
7 28 392.0 10.17 10.24 0.77
8 28 756.0 61.14 61.79 1.07
9 28 364.0 9.60 9.67 0.72
10 38 349.6 12.20 12.33 1.03
11 38 345.8 10.29 10.39 1.03
12 38 395.2 11.74 11.85 0.91
13 38 433.2 15.42 15.52 0.66
14 38 463.6 9.22 9.29 0.70
15 38 456.0 7.98 8.04 0.70
Average: 0.86

& Positive deviation means longer computation times.

5.3.5 Maximum consecutive workdays (Cy)

Depending on the contractual agreement of the nurse, this constraint
is defined in two different ways. The standard constraint is that the
nurse should have a maximum of 6 days between two days off (holiday
shifts are also considered as days off, but free shifts are not). Let H
be the holiday shift, DO the day off shift and F the free shift. The
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constraint can be stated as:

m—+6
< =-=5,... — .
> 1{mk¢{H7DO}} <6 Vm=-5,...,M—6, (5.34)
k=m
where x_5, ..., zo are predetermined by the schedule from the previ-

ous planning period. The function 1, is the indicator function for
the condition a (One if true, zero if false).

If the nurse has accepted, the constraint can be loosened such
that the nurse can work up to 7 days between two days off, if at least
one of the days in between is a day with the free shift. If there is
no free shift in between the maximum is still 6 days. This constraint
can be stated as:

m—+T7
k=m
m+6
kz Yogmpom) S6 Vm==5....M=6. (5.36)
=m

To handle these different but quite similar constraints, a domain
propagation mechanism handling the following constraint has been
implemented:

m+
Y lazay B Ym=01,...,6, (5.37)

k=m

where o, 8, 61 and Jo are given integer constants. Due to the used
ordering of the shifts in the domain of the xj, variables this constraint
covers the constraints (5.35), (5.36) and (5.37).

The implemented domain propagation mechanism keeps a counter
for the minimal value of the left side of each constraint. This counter
is increased each time, one of the indicator functions are proven to
be true. If the counter equals 8, the variable that has not yet been
proven to be less or equal «, has its domain reduced to values larger
than or equal to o + 1.

Computational comparison

The method that uses the implementation of (5.37) for the maximum
consecutive workdays constraint is denoted by C++. A method which
relies on only built-in constraint types was created as a comparison,
and is denoted as ILOG. The built-in method is based on the “Ilo-
Table” constraint to calculate the value of the indicator functions of
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the constraints (5.34)—(5.36). When a nurse is to have a maximum of
6 days between two days off, an extra variable for each day is needed
when using the built-in constraints types, and when the maximum is
7 days, two variables are needed for each day.

The same CP sub-problems as used for comparing the methods
for the minimal time between shifts constraint are used for comparing
the C++ and ILOG methods. The algorithm used for the CP sub-
problems is the final algorithm, expect that the given method is
used for the maximum consecutive workdays constraint. Table 5.6
summarises the results of the comparison, and shows that the C++
on average uses 8.31 % less computation time.

Table 5.6: Comparison of domain propagation mechanisms for the
maximum consecutive workdays constraint on CP sub-problems for
14 days instances in 10 runs.

Ins. Nurses Sub-prob.  C++ ILOG ILOG
Average In seconds Dev. in %* from C++

1 20 310.0 20.90 22.93 9.71

2 20 9,732.0 716.85 781.40 9.01

3 20 320.0 29.64 32.44 9.43
4 28 744.8 115.83 123.91 6.97

5 28 288.4 15.72 17.15 9.07

6 28 453.6 23.18 25.17 8.58
7 28 392.0 10.17 10.90 7.25

8 28 756.0 61.14 65.51 7.16
9 28 364.0 9.60 10.27 6.94
10 38 349.6 12.20 13.22 8.30
11 38 345.8 10.29 11.17 8.58
12 38 395.2 11.74 12.84 9.32
13 38 433.2 15.42 16.85 9.33
14 38 463.6 9.22 9.95 7.93
15 38 456.0 7.98 8.54 7.05
Average: 8.31

& Positive deviation means longer computation times.

5.3.6 Shift type limits (C,)

The number of evening shifts (E), night shifts (L) and long night
shifts (LN) are restricted to be in a certain range. The limits on
night and long night shifts are on the sum of the number of night
and long night shifts during the planning period.
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Let 61 < d2 be two day indexes, let A be a set of shifts and let B be
a variable indicating the number of shifts from the set A scheduled in
the planning period. The following constraint generalises the above

constraints:
02

> lppeay =B (5.38)
k=061

Domain propagation mechanisms for this constraint have been im-
plemented using two counters, one for the number of days that have
been proven to be in A and one for the number of days still containing
shifts from A. That is:

02
Gi =Y Upgycap (5.39)
k=01
02
Go=(02—01+1)— Z L{D(xy)na=0}- (5.40)
k=01

Both counters are updated when the relevant part of the domains of
the xj variables changes. When either G is increased or when the
upper bound of B is decreased such that G becomes equal to the
upper bound on B, then all variables not already proven to be in A
have all shifts in A removed from their domains, that is:

Gi=maxB A D(xp)NA#0D
= D(wk)ﬂA:@ szél,...,ég, (5.41)

where setting D(x) N A to the value of () should be understood as
that all shifts in A are removed from the domain of .

Similar when G is decreased or the lower bound of B is increased
such that Gy becomes equal to the lower bound, then all variables
not proven not to be in A have all shifts not in A removed from their
domains:

Go=minB A D(zp)NA°#0
= D(xk)gA Vk=01,...,00, (542)

where D(zg) C A should be understood such that all shifts in the
domain of xj that are not in A are removed from the domain of xy.

The limits could have been handled with a simpler constraint,
that is constraint (5.38) but where A is restricted to a single shift.
The constraint on night and long night shifts could then be handled
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with the following constraints:

02
> 1{ae—ny = B, (5.43)
k=61
d2
> {ae—1ny = Bun, (5.44)
k=61

This would be valid but could in some cases result in that some
domain reductions would be performed later in the search and thus
leading to longer computation time.

Computational comparison

The two methods proposed for handling the shift type limits are
compared to two methods using the built-in constraints of the ILOG
solver. The method using the domain propagation mechanisms of
equation (5.41) and (5.42) is denoted by C++ and the method using
constraints (5.43) — (5.45) is denoted by C++B. As a comparison a
method based on constraint (5.38) using the built-in functions “Ilo-
Table” and “IloSum” was created. The method is denoted by ILOG
and it has the same strength as the C++ method for reducing domains
of the variables. Another method which has the same strength as the
C++B method was also implemented; this method uses the “IloDi-
stribute” function and it is denoted by ILOG-B. The “IloDistribute”
function cannot handle the propagation mechanisms for constraint
(5.38), thus the implementation is based on implementing the con-
straints (5.43) — (5.45).

The CP sub-problem instances that are used for testing are those
already used for comparing the methods for the minimal time between
shifts constraint. The propagation mechanisms used for all expect
the shift type limits constraints are those of the final algorithm.
Table 5.7 summarises the results of the comparison. The C++B is
outperformed by the C++ method, as it spends on average 2.83 %
more computational time. Yet for three of the instances, the C++B
method is very close to C++ using less than 1% more time. The
ILOG method spends on three instances almost the same time as the
C++ method, but on the rest it requires at least 4.5 % more compu-
tation time; on average it spends 6.16 % more computation time. On
average the ILOG-B method is better than the ILOG method, but
on four of the instances the ILOG method is significantly faster. One
reason for the inferior performance of the ILOG method is that the
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implementation requires a large set of extra variables, which are not
needed for the ILOG-B method. As the C++ method outperforms
the others on all except one instance where the methods spend al-
most the same computation time, the C++ method is used for the
final algorithm.

Table 5.7: Comparison of domain propagation mechanisms for the
shift type limits constraint on CP sub-problems for 14 days instances
in 10 runs.

Ins. Nurses Sub-prob. C++ C++B ILOG ILOG-B

Average In seconds Deviation in %* from C+-+

1 20 310.0 20.90 0.75 4.58 4.07
2 20 9,732.0 716.85 7.68 7.20 10.48
3 20 320.0 29.64 0.93 5.51 3.18
4 28 744.8 115.83 3.06 —-041 4.83
5 28 288.4 15.72 3.73 0.53 5.33
6 28 453.6 23.18 4.40 0.51 5.66
7 28 392.0 10.17 2.01 7.03 4.84
8 28 756.0 61.14 1.82 6.94 3.58
9 28 364.0 9.60 3.20 7.92 4.35
10 38 349.6 12.20 2.95 9.69 6.67
11 38 345.8 10.29 3.78 9.64 7.29
12 38 395.2 11.74 1.68 9.22 5.16
13 38 433.2 15.42 3.71 8.35 7.45
14 38 463.6 9.22 0.84 6.99 4.05
15 38 456.0 7.98 1.95 8.74 4.66
Average: 2.83 6.16 5.44

&  Positive deviation means longer computation times.

5.3.7 Office days (Cs)

Some nurses are required to have some office days during the planning
period. These are not fixed to specific days, but given as a demand
during a given period, for example: two days during the planning
period, or one day every second week. Let d; and ds be the two end
days for the period in which the office days should be placed and let
b be the number of office days to be scheduled in that period, then
the constraint can be stated as:

62

> a0y =0 (5.46)
k=01
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This constraint could be handled with the same propagation
mechanisms as used for the constraint (Cy) on shift type limits, which
were described in Section 5.3.6. A special version of the propagation
mechanisms used for the shift type limits was however implemented.
This version only handles constraints, where B is a constant and A
is a single shift type. The propagation mechanisms are the same, but
the implementation is simpler.

Computational comparison

The mechanisms described above are compared to a method that ex-
clusively based on the built-in constraints. The method using only
built-in constraints is denoted by ILOG and is based on the “Ilo-
Table” constraint. The mechanism that uses the special version of
the implementation is denoted by C++1 and the one that uses the
mechanism described in Section 5.3.6 is denoted by C++2.

Table 5.8: Comparison of domain propagation mechanisms for the
office days constraint on CP sub-problems for 14 days instances in
10 runs.

Ins. Nurses Office days Sub-prob. C++1 ILOG C++2
Average Average In seconds Dev. in %?* from C++1
1 20 1 31.0 1.16 1.07 0.23
4 28 1.25 106.4 58.41 3.93 0.90
5 28 1.86 72.1 8.50 8.09 4.85
6 28 2 113.4 20.51 8.66 4.75
7 28 1 28.0 1.44 7.04 4.07
8 28 1 81.0 24.79 5.16 2.97
9 28 1 26.0 2.48 4.91 1.92
13 38 1 114 0.79 4.84 1.92
14 38 1 48.8 3.84 4.71 2.13
15 38 1 48.0 1.72 4.41 2.04
Average: 5.28 2.58

#  Positive deviation means longer computation times.

The CP sub-problems are the same as the ones used for com-
paring the methods for the minimal time between shifts constraint,
except that only instances where office days had to be planned were
included. Table 5.8 summarises the results. The third column is the
average number of office days that had to be planned in each CP
sub-problem; the fourth column is the number of CP sub-problems
solved on average over the 10 runs for the given nurse rostering in-
stance. The results show that the ILOG method uses an average of
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5.28 % more time than the C++1 method, whereas the C++2 method
only uses an average of 2.58 % more time. Again the poor perform-
ance of the ILOG method is probably due to the fact that some extra
variables are required to implement the constraint using only built-in
constraint types.

5.3.8 Maximum work hours per week (C;)

The restriction on the maximum working hours can be stated as the
following constraint for each week in the planning period. Let d; and
d2 be the first and last day of the week respectively; let WH(zy) be
the number of work hours worked if shift zj is assigned to day k£ and
let MWH be the maximum working hours of that week:

d2
> WH(zp) < MWH. (5.47)
k=61

Instead of creating propagation mechanisms for this constraint type
directly, it was generalised such that it also can be used for the con-
straint on recorded hours (C7), as well, The generalised constraint
can be expressed as:

02
> Ap(zy) = B, (5.48)

k=61

where A, are vectors of numbers and B is a variable.

The propagation mechanisms that removes values from the do-
main of the zj variables are as follows:

min B — Z lenl%aéflk ) > Am(r) = oy #1y (5.49)
k;ém
D)

max B — min A (1) < A (r) = zm #r (5.50)
s, leD(xy)
k;ﬁm

Vre D(mm)szél,...,6g.

It is required to keep track of the inequality’s left side. Since a change
in a domain would lead to an update of 2(dy — d1) of the left sides
(two for each m except for k = m), the mechanisms were instead
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transformed to the following:

min B — Zzglg);,:?k +lg)f%§$m(l) > Ap(r) = xym #r, (5.51)

max B — ZlénDH;,fl (1) —f—ler%l(réﬁ m(l) <Ap(r) = xm#r  (5.52)

Vre D(xy,)Vm=4d,...,0.

It should be noted that the second term of both inequalities is inde-
pendent of m and hence there are now only two more terms to keep
track of than with the other mechanisms. With these mechanisms
only up to four terms would have to be updated when a domain of a
variable changes.

In order to avoid a lot of unnecessary checks of the inequalities,
some extra conditions are checked. As long as these conditions are
not met, only updates of the different terms are calculated. The
following constant is calculated at the root node of the CP-search:

Diftf = Ap(l) — min Ag(1) . .
mexDif = e, { xS mindu0}. 659

The condition that has to be fulfilled before any propagation mech-
anisms (5.51) are checked is:

min B — Z lénDa}éfk > —maxDiff. (5.54)

If the above condition is true, the following condition is checked for
each m and only if it is true, mechanism (5.51) is checked for the
corresponding m.

02

Similar, the conditions for propagation mechanism (5.52) are:

max B — Z lénDH;;flk ) < maxDiff. (5.56)
P
max B — min Ag(l) < max A,,(l) — min A4,,(1). (5.57)

leD(zy,) l€D(xm,) 1€D(xm)
k=61
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The mechanisms to remove values from the domain of the B variable
are:

P
Z (5.58)
:5
P

min Ag( 5.59
Zg leD(xg) k ( )

Here, this should be understood the way, that all values in the domain
of B not obeying the above constraints are removed. The right side
of both constraints are the same as the ones used for the mechanisms
to remove values from the x; variables, so no extra terms to keep
track of them are required.

Computational comparison

The propagation described above is compared to two different meth-
ods using only built-in constraints. The first method is denoted by
ILOG1 and is based on the “IloDistribute” and The “IloScalProd”
constraints. The second method is based on the “IloTable” and the
“lloSum” constraint and is denoted by ILOG2. The ILOG2 method
is based on the same idea as the propagation mechanism for C++.
The ILOG1 method is on the other hand based on getting bounds on
the number of times each type of work shift can be assigned during
the week. The numbers are then multiplied by the number of work
hours for the corresponding shifts; the sum of these is then restricted
to be less than the maximal number of work hours during a week.
The strength of the propagation mechanism for ILOG1 is less than
ILOG2, but ILOG2 requires more extra variables than ILOGI1.

The CP sub-problem instances used for comparison are the same
as the ones used for comparing the methods for the minimal time
between shifts constraint. The propagation mechanisms used for all
other constraints than the maximum work hours per week constraint,
are those used in the final algorithm. Table 5.9 summarises the res-
ults of the comparison; the ILOG2 method clearly outperforms the
ILOG1 method, only on a single instance the ILOG1 method uses
slightly less time than the ILOG2 method. On seven of the instances,
the ILOG2 and C++ methods spend almost the same computation
time; on the other eight instances the ILOG2 method spends between
2.10% and 4.40 % more computation time. Thus the C++ method is
selected for the final algorithm.
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Table 5.9: Comparison of domain propagation mechanisms for the
maximum work hours per week constraint on CP sub-problems for
14 days instances in 10 runs.

Ins. Nurses Sub-prob. C++ ILOG1 ILOG2

Average In seconds Dev. in %?* from C++

1 20 310.0 20.90 3.21 0.12
2 20 9,732.0 716.85 3.77 0.10
3 20 320.0 29.64 4.15 —0.68
4 28 744.8 115.83 3.86 —0.28
5 28 288.4 15.72 3.85 0.64
6 28 453.6 23.18 4.41 —0.44
7 28 392.0 10.17 3.24 2.73
8 28 756.0 61.14 2.95 —0.43
9 28 364.0 9.60 3.56 2.34
10 38 349.6 12.20 3.99 2.23
11 38 345.8 10.29 4.17 2.67
12 38 395.2 11.74 4.06 2.37
13 38 433.2 15.42 4.11 2.10
14 38 463.6 9.22 3.84 3.70
15 38 456.0 7.98 3.84 4.40
Average: 3.80 1.44

#  Positive deviation means longer computation times.

5.3.9 Recorded work hours (Cy)

The constraint on the number of recorded work hours should besides
handling the constraint, also make it possible to handle the object-
ive 05.

If the planning period does not include the end of a nurse’s twelve
weeks contract period, then the constraint can be handled with a
single constraint of the type described in Section 5.3.8 for the con-
straint on maximal working hours. Let §; and §3 respectively be the
first and last day in the planning period. Let RHy(x) be the recor-
ded hours of day k& and let B be an integer variable that has been
limited to the allowed range around the contracted number of hours
for the given nurse. Then the constraint can be stated as:

03
> RHg(xx) = B. (5.60)
k=61

If the planning period includes the end of a nurse’s twelve weeks
contract period, then the constraint also needs to handle some vari-
ables that indicate, how much the recorded hours deviate from the
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contracted number of hours. Let CRH be the contracted number
of hours for the twelve weeks period minus the number of recorded
hours worked before the current planning period and let §o be the
last day in the twelve weeks contract period. Bactual iS a variable
that takes the value of the number of recorded hours from the be-
ginning of planning period up until the last day in the twelve weeks
contract period. Bpejow and Bgpoye are variables that indicate how
many hours the actual number of recorded hours are below or above
the contracted number of hours. The rest of the planning period
is constrained by the same way as for the case when the planning
period does not include the last day of the twelve weeks period:

02
Z RHk($k) = BActuals (5.61)
k=61
03

> RHy(z4) = B, (5.62)

k=d2+1
CRH = BActual + BBelow - BAbove- (563)
BActual > 0 (564)
BBelow > 0 (565)

The first two constraints are handled by the constraint propagation
mechanisms described in Section 5.3.8 and the third is handled with
the standard built-in mechanisms which are similar to the mechan-
isms described in Section 2.2.2.

Computational comparison

A comparison between the above method (C++) and one that is based
only on built-in constraints (ILOG) is described in this section. The
difference between the methods is that in the C++ method the propa-
gation mechanisms from Section 5.3.8 are used for equations (5.60),
(5.61) and (5.62), whereas the ILOG method is based on the “Ilo-
Table” and the “IloSum” constraints. The ILOG method is the same
as the one denoted by ILOG2 in the computational comparison part
of Section 5.3.8.

The CP sub-problem instances used for comparing the methods
are the same as for comparison of the methods for the minimal time
between shifts constraint. The propagation mechanisms for all other
constraints are the ones used in the final algorithm.

The results of the tests are listed in Table 5.10 which and shows
that the ILOG method uses an average of 5.21 % more computation
time than the C++ method.
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Table 5.10: Comparison of domain propagation mechanisms for
the recorded work hours constraint on CP sub-problems for 14 days
instances in 10 runs.

Ins. Nurses Sub-prob. C++ ILOG ILOG
Average In seconds Dev. in %* from C++
1 20 310.0 20.90 21.90 4.78
2 20 9,732.0 716.85 739.98 3.23
3 20 320.0 29.64  30.51 2.93
4 28 744.8  115.83 121.85 5.20
) 28 288.4 15.72  16.48 4.77
6 28 453.6 23.18  23.87 2.98
7 28 392.0 10.17  10.88 7.04
8 28 756.0 61.14  63.33 3.59
9 28 364.0 9.60 10.26 6.83
10 38 349.6 12.20 12.86 5.42
11 38 345.8 10.29  10.89 5.86
12 38 395.2 11.74  12.40 5.56
13 38 433.2 15.42 16.17 4.86
14 38 463.6 9.22 9.80 6.33
15 38 456.0 7.98 8.68 8.73
Average: 5.21

#  Positive deviation means longer computation times.

5.3.10 Complete weekends (Cy;)

Working a complete weekend at this particular ward means that the
nurse works two shifts of the same type during a weekend. The
shifts that are defined as weekend shifts consist of exactly two of
each type. Let SatSun and SunMon be the set of shifts that are have
to be worked on Saturday and Sunday and on Sunday and Monday;,
respectively.

The constraint can for all days k£ that are Sundays be formulated
as:

Lap 1=r} = Yap=r} V7 € SatSun (5.66)
Lp=ry = o=} V7 € SunMon. (5.67)

The implemented domain propagation mechanisms are for the gen-
eralised constraint:

l{xk:T} = 1{1rm:l}7 (568)

where k and m are two days and r and [ are the two shifts which
should either both be worked or none of them. The domain propa-
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gation mechanisms of this constraint are then:

T =7 = Tym=I1
= Tm # 1,
THET Z Tm P (5.69)
Im =1 = x =7,
Tm #El = xp #.

The above propagation mechanisms are sufficient to ensure that the
constraints are fulfilled. To create a more extensive propagation
mechanism, the following implication can be used for all days k that
are Sundays.

1{xk_1ESatSun} = 1z € SatSun

1{a:k€SatSun} = 1xp_1 € SatSun (5'70)
Yap 1eSunMony = Tk € SunMon

LopesunMony = k1 € SunMon

The mechanisms described in equation (5.70) are not used in the
final algorithm, as they did not improve the overall computation
time. The section below depicts a computational comparison of the
performance of the additional propagation mechanisms (5.70).

Computational comparison

The two propagation mechanisms described above are compared to a
method, which uses only the built-in constraint types. This method is
based on the “IlloAbstraction” constraint and denoted by ILOG. The
method that implements constraints (5.66) and (5.67) with the use of
the propagation mechanisms of equation (5.69) is denoted by C++1.
To test the mechanisms of equation (5.70), a further method (C++2)
was included. The method is similar to C++1, but additionally uses
the mechanisms of equation (5.70).

The comparison of the two methods were performed on the same
CP sub-problems used for comparing the mechanisms of the minimal
time between shifts constraint.

As with the minimal time between shifts constraint, the set of
incompatible pairs of shifts on consecutive days that can be deduced
from the complete weekend constraint are used in the method for cal-
culating the reduced cost. For a direct comparison of this method,
the reduced cost calculation is restrained from using this set of incom-
patible pairs. This seems to be a more fair comparison. Later in this
section, another comparison for selecting one of these methods for
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the final algorithm is presented. The propagation mechanisms used
for all other constraints were the ones chosen for the final algorithm.

Table 5.11 summarises the results of the comparison. The C++2
method outperforms both the C++1 and ILOG method. The C++1
and ILOG methods use almost the same computation time, on four
instances the ILOG method is slightly faster, whereas otherwise the
C++1 method uses less computation time. On average, the ILOG
method uses 0.51 % more time than the C++1 method.

Table 5.11: Comparison of domain propagation mechanisms for
the complete weekend constraint on CP sub-problems for 14 days in-
stances in 10 runs. Deduced information from the complete weekend
constraint is not used for calculating the reduced cost of the new
column.

Ins. Nurses Sub-prob. C++1 C++2 ILOG

Average In seconds Dev. in %® from C++1

1 20 310.0 26.45 —0.02 1.72
2 20 9,732.0 958.27 —0.97 0.07
3 20 320.0 49.97 —3.33 —1.27
4 28 744.8 141.79 —0.94 1.33
5 28 288.4 21.61 -1.30 0.54
6 28 453.6 25.33 —0.94 0.16
7 28 392.0 12.80 —2.93 —1.73
8 28 756.0 78.45 —0.96 —0.19
9 28 364.0 17.56 —0.95 2.13
10 38 349.6 14.37 —0.84 1.13
11 38 345.8 12.76 0.09 1.19
12 38 395.2 14.42 —0.28 1.06
13 38 433.2 20.09 —2.13 —0.22
14 38 463.6 13.95 —0.75 1.17
15 38 456.0 12.07 —1.11 0.77
Average: —1.16 0.52

#  Positive deviation means longer computation times.

For testing which method should be used in the final CP al-
gorithm, a comparison was made using the full CP algorithm, except
that the given method was used for the complete weekend constraint.

The reduced cost calculation of the CP algorithm are described in
Section 5.3.13 and 5.3.14. It deduces a set of incompatible shifts on
consecutive days from the complete weekend constraint, which is used
for speeding up the calculations. As the set of incompatible shifts can
fully describe the constraint and the reduced cost calculation ensures
that no pair of incompatible shifts is selected, no special propagation
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mechanism is actually needed. Let “None” denote the method where
no extra domain reduction mechanism is used.

The results of the comparisons are summarised in Table 5.12.
They show that the C++1 method uses the least computation time
on all except one instance. On this instance the C++1, uses almost
the same time as the one that uses the least computation time. As
opposed for the minimal time between shift constraint, the “None”
method performs worse than the other methods. The performance
is probably due to the fact that the computational effort required in
the C++1 method is very low and that the inclusion of the C++1 do-
main reduction mechanisms ensure that the reduced cost algorithm
has to be recalculated fewer times. As opposed to the comparison
in Table 5.11, the C++2 uses more computation time than the C++1
method. A reason for this is that the extra domain reductions of the
C++2 method are indirectly performed by the method for calculating
the reduced cost. So the time spend for checking the extra mechan-
isms for C++2 is larger than the time saved with fewer recalculations
of the reduced cost. As before, the ILOG method uses on average
more computation time than the C++1 and C++2 method. Thus the
C++1 method is chosen for the final CP algorithm.

Table 5.12: Comparison of domain propagation mechanisms for
the complete weekend constraint on CP sub-problems for 14 days
instances in 10 runs.

Ins. Nurses Sub-prob. C++1 C++2 ILOG None

Average In seconds Dev. in %?* from C++1

1 20 310.0 20.67 0.16 0.62 3.36
2 20 9,732.0 757.89 0.62 0.55 2.70
3 20 320.0 30.69 0.57 0.73 3.83
4 28 744.8 124.79 0.44 1.09 5.29
5 28 288.4 15.15 0.81 1.30 1.45
6 28 453.6 25.04 —0.21 —0.39 1.85
7 28 392.0 10.43 0.93 1.52 6.49
8 28 756.0 65.81 1.01 0.82 5.40
9 28 364.0 9.75 1.05 0.64 4.03
10 38 349.6 12.23 0.95 1.31 5.42
11 38 345.8 10.77 0.97 1.25 5.66
12 38 395.2 12.70 0.94 0.89 5.38
13 38 433.2 15.72 0.70 0.99 4.15
14 38 463.6 9.14 0.83 0.68 3.65
15 38 456.0 7.80 0.80 1.34 4.57
Average: 0.71 0.89 4.22

& Positive deviation means longer computation times.
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5.3.11 Constraints on weekends (Cg, C;; and Cys)

The weekends are more constrained than the weekdays. Finding
infeasible combinations early is thus very important. For the given
problem, there are three different constraints referring to weekends:

1. Work complete weekends (Cy).
2. Consecutive work weekends (Cg).

3. 12 hours weekend shifts (Cy2).

The second and third constraint sets are not independently ad-
dressed but combined into a single, possibly stronger combined con-
straint, which should allow more domain reductions. The first con-
straint is treated by it self, and the mechanism has been presented
earlier in Section 5.3.10.

The designed mechanism is a graph algorithm, where the feasible
combinations of weekend shifts corresponds to a path in the graph.

Because a nurse has to work complete weekends (constraint Ci1),
a nurse may on a weekend either work two eight hours shifts, two
twelve hours shifts or no work shift at all. Since all shifts dur-
ing Sundays are weekend shifts, the variables that correspond to
a Sunday are used to represent the weekends. The set of shifts of
each weekend is divided into three sets: the first set is free shifts,
the second is eight hours work shifts and the third is twelve hours
work shifts. The domain propagation mechanism is called each time
a domain for a Sunday is proven not to be in one of these sets. For
each of these sets there is a set of corresponding arcs in the graph.
The nodes of the graph correspond to the different states the nurse’s
schedule can attain. The state indicates if the nurse worked the pre-
vious weekend or not and which type of shift (8 hours or 12 hours)
the nurse worked last time she had a work weekend. Figure 5.2 shows
the states and the graph, where the node to the left is the state of
the nurse in the previous planning period and the node to right and
the arcs connected to it are artificial and represent the future.

Feasible combinations of shifts during the weekends correspond
to a path connecting the two end nodes. Accordingly, any other
node showing an in-degree or out-degree of zero can be removed.
This is done using a forward and backward search through the graph
removing all nodes of zero in-degree or out-degree together with their
incident arcs.

When all arcs corresponding to one of the sets of shifts are re-
moved, the corresponding domain values are removed. During the
search, the domains of the weekend variables are reduced. When one
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Weekend nr: 1 2 3 4
Work, 12h. | | |

Free, 12h.

Free, 8h. O _I;

Work, 8h.

Free shifts: —  8h. shifts: - >

Figure 5.2: Graph of the domain propagation model for constraint
(CG) and (012).

of the sets is made empty, the corresponding arcs are removed and
the forward and backward search is reapplied.

Computational comparison

The above graph algorithm (C++) is compared to a method where
the constraints have been implemented using only built-in constraints
(ILOG). The ILOG method handles the two constraints individually
by means of the “IloTable” and the “IloIfThen” constraints.

The CP sub-problem instances used for testing are again those
used for testing the methods for the minimal time between shifts
constraint. The propagation mechanisms employed for all the other
constraints are the ones used in the final algorithm. Table 5.13 sum-
marises the results of the tests. On average the ILOG method uses
3.50 % more computation time than the C++ method, but on three
instances it uses up to 1.39% less computation time. The reason
that the C++ does not show much lower computation time than the
ILOG method is probably that the instances are two week instances
so that the planning period only covers two weekends. The strength
of the C++ method would probably be more visible for instances with
a longer planning period.

5.3.12 Combining maximum work hours per week
and minimum recorded work hours

Some initial tests of the algorithm led to the observation that time
consuming and ineffective searches resulted when a number of the
days were assigned as days with no work shift. In order to reduce
this part of the search tree, an additional propagation mechanism
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Table 5.13: Comparison of domain propagation mechanisms for
consecutive work weekends and 12 hours weekend shifts constraints
on CP sub-problems for 14 days instances in 10 runs.

Ins. Nurses Sub-prob. C++ ILOG ILOG
Average In seconds Dev. in % from C++
1 20 310.0 20.90  20.75 —0.72
2 20 9,732.0 716.85 732.47 2.17
3 20 320.0 29.64  31.16 5.12
4 28 744.8 115.83 114.21 —-1.39
) 28 288.4 15.72  15.81 0.51
6 28 453.6 23.18  23.46 1.23
7 28 392.0 10.17  10.73 5.51
8 28 756.0 61.14 62.89 2.85
9 28 364.0 9.60 9.60 —0.05
10 38 349.6 12.20  12.90 5.67
11 38 345.8 10.29  10.92 6.10
12 38 395.2 11.74  12.82 9.08
13 38 433.2 15.42 16.11 4.49
14 38 463.6 9.22 9.39 1.81
15 38 456.0 7.98 8.79 10.08
Average: 3.50

#  Positive deviation means longer computation times.

was developed combining the constraint on maximum work hours per
week (Cg) and the minimal number of recorded hours (C7). After
testing this extra propagation mechanism with the search strategy
that showed the best performance for the final algorithm, this mech-
anism was however not included for the final algorithm.

The idea underlying the mechanism is to determine the maximal
number of recorded hours that can be attained each week subject
to the constraint on the maximum actual number of work hours.
The sum of these upper bounds for each week is an upper bound
for the complete planning period. If this upper bound falls below
the minimum requirement, the current node of the CP-search tree is
pruned.

Let 01 and 65 respectively denote the index of the first and last
day in the week. Let MWH be the maximum number of work hours
allowed per week, and RHy(r) and WHy(r) respectively denote the
number of recorded and worked hours that result if shift r is assigned
to day k. An upper bound on the number of recorded hours during
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Day: [1[2|3]4[5]6]|7]8[9]10[11][12]13]14] --- [28]29]30[31]

~

Week 1 Week 2 Week W

Calculated work hours

Figure 5.3: Illustration on which days the constraints depend.

a week is then obtained by solving the program:

02
max Z RHg (%)
k=41
52 (5.71)
st. Y WH(ry) < MWH,
k=41
ri € D(xy) for k= 01,...,09.

The above program is equivalent to a multiple choice knapsack prob-
lem [34] and solved by the standard backward dynamic programming
algorithm with some improvements. The algorithm starts by calcu-
lating the optimal choice for the last variable given an amount of
remaining work hours. This optimal choice is calculated for all val-
ues between zero and MWH of remaining work hours. The optimal
solution for the two last variables can then be calculated for each
value of remaining work hours, and so forth. In order to avoid that
these optimal solution values are calculated for values of remaining
work hours that cannot be attained in any feasible solution; the al-
gorithm starts with a forward search to find the possible values of
remaining work hours at each state; the result of a forward search
for a standard week is shown in Figure 5.4. This contributes to a
substantial reduction in the computational effort required for solving
the program (5.71).

A further substantial reduction in the size of the program (5.71) is
obtained as follows. In a usual week without official holidays, most of
the shifts during a day have both the same actual work and recorded
work hours. Shifts that are equal in both parameters RHy(7x) and
WHj (r) can be combined into a single domain value. This does on
average more than halve the size of the program (5.71).

When domain reductions occur, the problem for the correspond-
ing week is re-optimised. Instead of starting from scratch, the dy-
namic programming algorithm starts with the previous optimal solu-
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Figure 5.4: Feasible remaining work hours for each variables in a

standard week.
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tion, re-optimising nodes where either the optimal choice has been
removed or where the value of the dependent node of the optimal
choice has changed.

Computational comparison

As the above mechanism is an extra propagation mechanism that
is not necessary for the model, it is tested against the CP model
where it is not included. The CP sub-problems used for the tests
are, as usual, the ones used for testing the methods for the minimal
time between shifts constraint. The mechanisms employed for the
constraints are the ones used in the final algorithm. The results
are shown in Table 5.14, which indicates that the model where the
mechanism is used spends on average 16.48 % more computation time
than when it is not included.

If a different search strategy is used, in particular one based on
selecting an unbound variable and fixing it to the smallest domain
value first, this mechanism might be useful. Note that this is a stand-
ard way of doing branching in a CP model.
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Table 5.14: Comparison of domain propagation mechanisms for
the recorded work hours constraint on CP sub-problems for 14 days
instances in 10 runs.

Ins. Nurses Sub-prob. Without Included Included
Average In seconds Dev. in % from C++

1 20 310.0 20.90 24.08 15.25

2 20 9,732.0  716.85  835.39 16.45

3 20 320.0 29.64 34.10 14.99

4 28 744.8 115.83  139.62 20.36

5 28 288.4 15.72 18.25 15.87

6 28 453.6 23.18 25.76 11.12

7 28 392.0 10.17 12.28 20.61

8 28 756.0 61.14 73.82 20.59

9 28 364.0 9.60 11.26 17.07
10 38 349.6 12.20 14.34 17.34
11 38 345.8 10.29 11.99 16.45
12 38 395.2 11.74 13.58 15.53
13 38 433.2 15.42 18.02 16.77
14 38 463.6 9.22 10.38 12.53
15 38 456.0 7.98 9.29 16.25
Average: 16.48

#  Positive deviation means longer computation times.

5.3.13 Pricing the new column

Calculating the reduced cost of a given schedule is easy, but if the
reduced cost is first calculated when all variables are fixed, then the
constraint programming search would enumerate all feasible solutions
to determine the one of least reduced cost. Therefore, instead of first
calculating the reduced cost in the leaves of the search tree, a lower
bound on the reduced cost is computed at every node of the search
tree. This way, the search should be able to early prune a substantial
number of branches.

The calculation of the lower bound is based on the domains of the
variables xp. Besides the domains of the variables in the given CP
search tree node, only the following constraints are taken into account
for computing the lower bound: The constraint C; on the minimum
time span between shifts, the constraint C;; regarding complete work
weekends, and some structural constraints on the combination of non-
working shifts. These constraints restrict combinations of shifts on
consecutive days and can thus be used for improving the lower bound.

The lower bound can be used when searching for any schedule
with negative reduced cost, or when searching for an optimal sched-
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ule, that is, one of smallest reduced cost. The lower bound calcu-
lation should include: the penalty cost of shifts (O3), the penalty
for connections of shifts on consecutive days (O4), the direct and
opportunity cost of diverging from the contracted number of work
hours(Os), the dual values from the coverage (5.3) and the overlap
constraints (5.4) and the dual value for the constraint ensuring one
schedule per nurse (5.2).

To determine the lower bound, a graph as shown in Figure 5.5
is created. The lower bound results as the length of a shortest path
between its two end nodes. The graph shows a node for each shift
type of each day, a single node representing the shift type of the
last day in the previous planning period and a node representing
the future. Each arc represents a combination of two shifts on two
consecutive days. In case that such a combination is infeasible, the
length of the corresponding arc is set to a sufficiently large value.
Otherwise the arc length is obtained as follows.

Day nr: 0 1 2 3 4 e M

Holiday shift

Free shift

12 h. day shift

Office shift

Figure 5.5: Graph for the shortest path algorithm.

Let &° be the preference cost (O3) for nurse n working shift o on
day d. Let 7% he the preference cost (Oy4) for nurse n working
shift o on day ¢ and shift ¢’ on day §’.

Let @2’5 be the set of all coverage constraints ¢ € C'C' for which
nurse n contributes to its adherence if she works shift o on day 6. Let
moreover @Z’Ml’y be the set of those overlap constraints j € CO
where nurse n contributes to their adherence if she works shift o on
day ¢ and shift ¢’ on day ¢’ = 6 + 1. The current dual multipliers of
the constraints (5.9), (5.10) and (5.11) are respectively denoted by
IL,, p; and A;.
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The length of an arc emanating from a node that corresponds to
shift o on day ¢ and ending in a node corresponding to shift o’ of
day ¢’ for nurse n is given as:

6%76 + 527570—/76/ _ Z Wi — Z )\] (572)

ccc?? L omnes
i€cCC, jecoy™?

For the nurses where the objective (O3) should be included; let cBelow
be the opportunity cost for each hour of lost work, let cﬁbo"e be the
cost of overtime payment, let Bpelow and Bapove be as defined in
Section 5.3.9 and let SP be the length of the shortest path in the
graph. The lower bound on the reduced cost can then be calculated
as:

SP + c}?el"w min BRelow + cﬁbo"e min Bapove. — 1. (5.73)

For the nurses where the objective (Os) is not to be included, the
lower bound on the reduced cost is attained by subtracting the dual
value II,, from the shortest path length.

The shortest path is found by backward calculating the optimal
path from the nodes to the start node. As the problem is re-optimised
in each node of the search tree, the optimal choice for each node in
the graph is stored. When a value in a domain is removed, the corres-
ponding node is removed from the graph including all arcs incident
to the node; only paths to nodes left of the domain reductions have
to be re-optimised in order to find the (new) shortest path.

When solving the pricing sub-problem, some variables are often
fixed to a single value due to domain reductions. When this happens,
all paths need to pass a particular node in the graph as illustrated
in Figure 5.6, where day no. 3 is fixed to be a day off. As all paths
then include the corresponding node, the shortest path problem de-
composes into the problem of finding a shortest path from the start
node to the fixed day and of finding a shortest path from the fixed
day to the end node. When a domain reduction the next time only
affects the second half of the graph, only this part of the graph needs
to be re-optimised. This decomposition of the problem is performed
until all problems consist of a single node.

The performance of this method is compared to other methods
in the computational comparison section of the next section(5.3.14).
The effect of including the restrictions on combinations of shifts from
the other constraints is also shown.
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Day nr: 0 A1 2 3 4 ooc M
Holiday shift

Day off shift /()

Free shift

12 h. day shift

Office shift

Problem 1 Problem 2

Figure 5.6: Illustration of how to split the graph into two smaller
problems.

5.3.14 Using lower bound to reduce domain

The above algorithm to solve the shortest path problem calculates
a shortest path tree in the graph. This tree gives the shortest path
from the start node to all other nodes. By reversing all arcs and using
the same algorithm with the same length on all arcs, another shortest
path tree can be computed. This tree gives the shortest path from
the end node to all nodes of the tree. The shortest path through a
particular node is then given as the union of the shortest paths to
the node in the two trees, and its length provides a lower bound on
all paths through this node. If this lower bound is non-negative, the
node and the corresponding domain value can be removed. When
considering this lower bound, costs from the objective O3 as well as
the constant II,, need to be included.

In Demassey et al. [15] a similar procedure as the one described
in this and in the previous section for finding bounds on the object-
ive within the CP-model and using it to perform domain reductions
is used. In this thesis, however, a number of problem specific im-
provements are included, which contribute to a significant reduction
in computation time.
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Computational comparison

This sub-section analyses the computational effects of the methods
mentioned in the two last sections. The methods are also compared
to a method that only uses built-in constraints.

Let C++ denote the method that includes all the ideas presented
in the previous two sections on calculating a lower bound and using it
for domain reductions. The effect of including the restriction on com-
binations of shifts from the constraint C; on the minimum time span
between shifts, the constraint C;; regarding complete work weekends,
and some structural constraints on the combination of non-working
shifts has also been tested. The method C++A is the same as C++,
except that the restrictions on combinations of shifts are not included
in the calculations. As the propagation mechanism for the minimal
time between shifts constraint relies on this, the propagation mech-
anism called C++2 from Section 5.3.2 on the minimal time between
shifts constraint is included.

The effect of using the lower bound to reduce domains are demon-
strated by including a method, C++B, that only includes the methods
described in Section 5.3.13. For this method it is also necessary to
include the C++2 method for the minimal time between shifts con-
straint.

The instances used for testing are again the same as used for com-
paring the methods for the minimal time between shifts constraint.
The propagation mechanisms used for all the other constraints are
those employed in the final algorithm.

The results are summarised in Table 5.15, which shows that on
average the C++A method uses 62.33 % more time than the C++
method. Not including the domain reductions described in the sec-
tion above gives an increased computation time of more than 185 %.
Thus including both the restrictions on combinations and the domain
reductions are very useful for solving all the instances.

Comparing the given mechanisms with one that is based only on
built-in constraints is more difficult, because the search strategy —
that will be described in Section 5.3.15 — relies on the shortest path
through the described graph. Two different comparisons have been
made. The first comparison is performed using a different search
strategy that does not rely on the shortest path through the graph.
The search strategy used branches on the shift and day with the low-
est cost(éf;(s ). The first child is created by fixing the day to the shift,
and the second by removing the shift from the domain of the selected
day. The computational results of this search strategy together with
the methods described in the previous two sections are denoted by
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Table 5.15: Effect of including different ideas for the pricing of the
schedule in the CP sub-problems for 14 days instances in 10 runs.

Ins. Nurses Sub-prob. C++ C++A C++B
Average In seconds Deviation in %?* from C++
1 20 310.0 21.50 49.34 90.89
2 20 9,732.0  728.80 57.34 105.97
3 20 320.0 29.90 49.60 191.41
4 28 744.8  113.21 36.79 86.91
5 28 288.4 15.28 46.87 194.79
6 28 453.6 23.07 18.73 127.89
7T 28 392.0 10.75 52.48 346.46
8 28 756.0 66.50 47.66 178.24
9 28 364.0 10.65 111.56 444.83
10 38 349.6 13.05 73.12 161.67
11 38 345.8 10.84 64.34 141.80
12 38 395.2 12.61 70.42 130.40
13 38 433.2 15.99 72.20 155.50
14 38 463.6 9.79 75.86 192.80
15 38 456.0 8.62 108.70 234.54
Average: 62.33 185.61

#  Positive deviation means longer computation times.

C++2. The method using only built-in constraints and that uses the
same search strategy as C++2 is denoted by ILOG2.

The second comparison is performed with the search strategy
described in Section 5.3.15. As the search strategy relies on the
shortest path through the graph, an extra mechanism that calculates
this shortest path was added to both methods. This extra mechan-
ism does not perform any domain reductions, it only calculated the
shortest path. The method described in the previous two sections
including the additional mechanism is denoted by C++1; the method
based on the built-in constraints with the additional mechanism is
denoted by ILOG1. The additional mechanism is redundant for the
C++1 method, as it is already calculating the shortest path, but for
comparison of the computation times it has to be included.

Table 5.16 summarises the results of the two comparisons for the
same instances as for the comparison of C++, C++A and C++B. Both
comparisons show that the ILOG method uses on average of at least
500 % more time on solving the instances than the C++ methods.
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Table 5.16: Comparison of domain propagation mechanisms for the
pricing of the schedule in the CP sub-problems for 14 days instances
in 10 runs.

Ins. Nurses Sub-prob. C++1 ILOG1 C++2 ILOG2

Average In Dev. in %* In Dev. in %*

seconds from C++1 seconds from C++2
1 20 310.0 29.54 473.42 6.99 2,171.07
2 20 9,732.0 993.34 569.21 312.46 618.32
3 20 320.0 41.24 635.43 81.12 207.34
4 28 744.8  155.37 308.29 485.71 121.40
5 28 288.4 21.10 331.88 6.83 2,723.50
6 28 453.6 32.35 307.29 45.33 294.42
7 28 392.0 14.88 1,408.04 14.11 394.27
8 28 756.0 90.69 489.81 214.67 189.31
9 28 364.0 14.51 1,380.61 10.75 334.22
10 38 349.6 18.10 420.59 4.25 171.52
11 38 345.8 15.08 348.41 4.03 183.74
12 38 395.2 17.55 332.68 4.14 187.11
13 38 433.2 21.91 544.96 6.28 313.04
14 38 463.6 13.49 944.09 7.53 259.95
15 38 456.0 11.90 1,253.30 6.30 376.50
Average: 649.87 569.71

#  Positive deviations means longer computation times.

5.3.15 Search in the CP model

The search of the CP search tree is performed as an depth first search
where the first child is always searched first.

The CP search tree is created by branching on the shift of a day
0 that is on the shortest path between the end nodes in the graph
discussed in Section 5.3.13. In the branch that is selected to be
searched first, the day is forced to this shift and in the other the shift
is removed from the domain of the day.

Let SP(d,0) be the length of the shortest path through the node
that corresponds to day § with shift o as given in Section 5.3.13 and
let IMP(d) be the importance factor of day d. This factor is equal to
one for weekdays and larger than one for weekend days. The following
criteria are then applied in a lexicographic manner to select the day
0 for branching:

1 — Smallest domain size:

| D(25)]
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2 — Largest squared deviation from best choice:

2
SP(6,0) — min SP(9, o’
UG%%;ég (9,0) aJGEng)( ))

D (xs)]

IMP(5)

3 — Largest average path length:

S SP(8,0)

O'ED(.'L'[;)
———F— IMP(6
|D(x5)] ©)

4 — Longest maximal path length:

max SP(d,0) IMP(6)

oc€D(xs)

The reason for including the importance factor is that weekend days
are more restricted and hence should lead to more domain reductions.
So branching on weekend days early should often lead to smaller
search trees.

The motivation behind the first criterion is that smaller domains
require fewer branches until the variable is fixed; smaller domains
also lead to more balanced search trees as the impact of fixing and
removing a value is more equal. Branching on the variable with the
smallest domain is one of the standard ways of performing branching
and it often leads to smaller search trees. The other criteria are based
on the idea of early pruning of assignments that have a low cost. If a
solution is found, it has a low reduced cost, and if not then the lower
bound on the reduced cost can often be improved.

The reasoning behind branching towards shifts that are on the
shortest path is to early find a solution with a very low reduced cost.
The reduced cost of this solution can then be used as an upper bound
on the reduced cost, which would often lead to domain reductions and
pruning of nodes in the rest of the search tree.






Chapter 6

IP model

6.1 Pure IP model

The nurse rostering problem considered in this thesis may also be
formulated as an IP model. The IP model is used for the purpose of
a numerical comparison to the suggested IP/CP solution method. It
can be solved immediately by any suitable MILP solver. The model
was implemented by means of the C++ Concert interface to CPLEX
12.2 IBM [29]. Several different ways to formulate the problem were
investigated and the one showing shortest average computation times
on a set of smaller instances was selected.

The following notation is used for describing the IP model:

M s the set of days in the planning period,

N is the set of nurses to be scheduled,

R, is the set of possible shifts for nurse n € N on day m € M.
The shift types include both the fixed holiday shift, the free
shift and the day-off shift, besides all the work shifts.

Moreover, the model uses the following binary decision variables:

Unmr €quals one, if nurse n € N works shift » € Ry, on day

me M,
Upmel  €quals one, if nurse n € N works shift r € R,,, on day
m € M, and shift [ € R, ,,,11 on day m +1 € M.
The second set of binary variables are used to model the shift change
cost (O4) and the overlap constraints (Ci3).

Section 6.1.1 describes the constraints, which include several dif-
ferent nurses; whereas Section 6.1.2 describes the constraints that
only affect the nurses schedules individually. Section 6.1.3 describes
the objective.

6.1.1 Connecting constraints
Coverage constraints (Ciy4)

The following constants and sets are used to define the coverage con-
straints:

91



92 Chapter 6. IP model

cc is the set of coverage constraints,

NCCi is the set of nurses with a qualification level required by
coverage constraint ¢,

MCC s the day for which coverage constraint i has to be observed,

RCEC s the set of shifts that contribute to the adherence of cov-
erage constraint 7, if worked on day M,

d; is the desired demand level for coverage constraint i,

d; is the difference between the desired and required demand

level of coverage constraint 1.

The sets and constants are defined in such a way that a nurse n
contributes to the adherence of coverage constraint ¢ € C'C only if
n € N¢Ci and nurse n works a shift from the set R““# on day M.

For each constraint for which the desired demand level is not equal
to the required level, the variable y; represents the undershoot of the
demand level from the desired demand level for coverage constraint
1. Each coverage constraint can then be stated as the following linear
constraint:

Z Zvnmr + Yi > dz Vi € CC, m = Mcci, (61)
neENCCireRC

0<y;<d; VieCC. (6.2)

Overlap of nurses (Cj3)

Defining the constraints on overlapping duty periods requires two
additional sets of shifts; one set of shifts for the first and another for
the following day.

ocC be the set of overlap constraints,

MOCi s the first day for which the overlap constraint j has to be
observed (overlap constraint j ensures an overlap between
day M€ and MO% +1),

R?Ci is the set of shifts that would contribute to the adherence
of overlap constraint j if worked on day M©9%i and if a shift
of R2OCj is worked on day M©9Ci +1,

RQOCj is the set of shift that would contribute to the adherence of
overlap constraint j if worked on day M€ + 1 provided a
shift of R?Cj is worked on day M©C

Z; equals one if overlap constraint j is a soft constraint, and
zero if it is a hard constraint.

Only if a nurse works a shift r € Rlocj on day M©Y and a shift

le Rgcj on day M©Ci 4 1, the overlap constraint j is fulfilled. The

following variable is introduced to handle the case of a soft overlap

constraint:
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Zj is a continuous variable equal to one if overlap constraint j
is not fulfilled, and zero otherwise.
The following constraint can then be added to ensure the required
overlap of nurses:

N D Btz 1 Vje0C, m=M%  (6.3)

oC; OoC;
neN Ry 1eR)

0< Zj < 2]' VJ e OC (64)

When the overlap constraints are hard constraints the z; variables
will be removed by the solver’s preprocessor.

6.1.2 Constraints for each nurse

For all nurses n € N the following constraints have to be added.

One shift per day

Only one shift per day has to be assigned to a nurse, that is:

> Vpmr=1  VYmeM. (6.5)

T‘Gan

Connecting the two sets of binary variables

To ensure the connection between the v, and the vy,,,; variables
the following constraints are added. The v, variables might be sub-
stituted by a sum of the vy,,,,; variables as shown in the constraints
below:

> Bmrt = Ve Vm,m+1€ M, r € Ry, (6.6)
leRn,m+1

Z Unmrl = Un,m+1,1 Vm,m+1eM,l € Rymi1- (6.7)
r€Rnm

Minimum time between shifts (C;)

The constraint on the minimum time span between shifts can be
expressed as a set of pairs of incompatible shifts, where the first shift
of the pair is of day m and the second of the following day (m + 1).
For all possible pairs (7, [) of incompatible shifts, the corresponding
connection variable Uy, is then fixed to zero for all days m.
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Day off / free day (Cy)

To define the constraint ensuring that a day off shift lies in a period
of 35 hours of free time, the following notation is introduced:

ST(r) is the start time of shift r,

ET(r) is the end time of shift r,

T is the minimal amount of free time for a day off (T' = 35
hours).

Let DO be the day off shift, then the constraint can be formulated
as:

> ST vnmite — ) ET(r) vpm-1, > Tpmpo Vm € M. (6.8)

TERn7m+1 TGRn,mfl

To ensure that a day is not selected as a free day shift if it should
be a day off shift, the following constraint is added:

Z ST(r) vpm+1,r — Z ET(r) vpm-1,r < T+ (1 — vpmr) K Vm,
rE€ERL m+1 T€ERp m—1
(6.9)
where F is the Free shift and K is a big constant selected to be equal
to max ST(-) —min ET(-) — T.

Maximum consecutive workdays (Cjo)

Two different sets of constraints should be added depending on the
contractual agreement of the nurse. The standard constraint set is
the following which restricts the number of days between two days
off to be less than or equal to 6. Let H be the holiday shift and DO
the day off shift, then the constraint can be expressed as:

m—+6
S (arpo + Vi) 21 ¥m=—6,-5,...,|M| 6. (6.10)

k=m

The other case applies if the nurse has accepted that the constraint
can be loosened such that the nurse is allowed to have a maximum
of 7 days between two days off, if at least one of the days in between
is assigned a free shifts. If there is no assigned free shift in between,
the maximum is still 6 days. These restrictions can be formulated as
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the following constraints:

m+7
Z(UnkDo+vnkH) >1 Vm=-7,-5,...,|[M|—T1,
k=m

(6.11)
m+6
> " (UnkDO + Vnk + Vpkp) =1V m = —6,-5,...,|M| -6,
k=m

(6.12)

where F is again the free shift.

Minimum consecutive workdays (Cz)

Let WS,,,,, be the set of work shifts for nurse n € N on day m € M.
To ensure a minimum of two consecutive workdays, the following are
introduced:

Zvnmr < Z Unm—1,r + Z Un,m+1,r Vm € M. (613>

r€EWSnm reEWSn m—1 reEWSn ma1

Shift type limits (C,)

For each restricted set of shifts the following notation is used:
A is the set of shifts to be restricted,
maxA is the upper limit on the number of shifts in A during the
planning period,
minA is the lower limit on the number of shifts in A during the
planning period,
B is a continuous variable.
Then the constraint below can be added to the model to enforce the
limit:

> ) vnmr — B = minA, (6.14)

meM reA
0 < B < maxA — minA. (6.15)

Complete weekends (Cy;)

As a consequence of the restrictions at this ward that complete week-
ends has to be worked, the weekend shifts are divided into pairs of
shifts, which either both have to be worked or not at all. All the pairs
consist of two shifts with the same shift type on two consecutive days.



96 Chapter 6. IP model

Let SatSun be the shifts, which are restricted between Saturday and
Sunday, and let SunMon be the shifts, which are restricted between
Sunday and Monday.

The constraint can for all days m that are Sundays be formulated
as:

Unmr = Unm—1,r Vr € SatSun, (6.16)
Unmr = Unm+1,r Vr € SunMon. (6.17)
(6.18)

Because of variable substitutions, these constraint will be removed,
when the model is preprocessed.

Consecutive work weekends (Cg)

For all Sundays m in the planning period the following constraint is
added to ensure that no nurse has two consecutive work weekends:

Z'Unmr + Z Un,m~+T7,r <L (619)

reWS,m TGWSn,m+7

Recall that the WS,,,,, is the set of work shifts for nurse n € N on
day m € M.

12 hours weekend shifts (Ci2)

This constraint should ensure that if a nurse has accepted to work
12 hours shifts, then the first work weekend after a weekend of 12
hours shifts has to be one with 8 hours shifts. The following two sets
of shifts are needed to define this constraint:

WS12,,,, 12 hours work shifts of nurse n on day m.

WS8,.,» 8 hours work shifts of nurse n on day m.

For all sets A of consecutive Sundays of size greater than or equal

to three, add the following constraint:

S v = > D vame < 1. (6.20)

meA reWS12,m, meA reWS8,m

Maximum work hours per week (Cjs)

This constraint imposes an upper limit on the number of work hours
for each week (a week starts on Mondays). For ease of notation let:
WH(r)  be the work hours of shift r and

MWH denote the maximum work hours per week.
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For all m that are Mondays, the following constraint can be added
to enforce this upper limit:

m~+6
> > WH(r) vpgye < MWH (6.21)

k=m r€R,

Office days (Cs)

For the nurses, for which office days should be planned, some con-
straints to ensure that the right number of office shifts are assigned,
have to be included. The demand for office days is given as a number
of shifts during a period. Let 1 and d5 be the first and last day in
this period respectively, let b be the given demand and let O be the
office day shift, then the constraint

02

> vmo =0 (6.22)

m=0d1

is added.

Recorded work hours (Cr7)

If the planning period does not include the end of the nurse’s twelve
weeks contract period, then this constraint can be handled with a
single linear inequality. Let maxRH and minRH respectively be the
lower and upper bound for the number of recorded work hours during
the planning period and let RH,, (r) be the number of recorded hours
for shift » on day m. The constraint added is then the following:

minRH < Y~ > RHpp (r)vpmy < maxRH (6.23)

meM rErnm

If the planning period includes the end of the nurse’s twelve weeks
contract period, then a couple of constraints are required. The fol-
lowing constants and variables are used to define these constraints:

RH,,(r) as above; the number of recorded hours for shift r on

day m.
0 Last day in the twelve weeks contract period.
CRH The number of contracted recorded hours for the twelve

weeks period minus the number of contracted hours that
has been worked before the current planning period.

minRH  The lower bound on the number of recorded hours for the
days after day 9.
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maxRH The upper bound on the number of recorded hours for

the days after day 4.

Bactual A continuous variable representing the actual number of

recorded hours.

Bpelow A non-negative continuous variable representing the num-
ber of recorded hours, the nurse works less than her con-

tracted number.

Babove A non-negative continuous variable representing the num-
ber of recorded hours, the nurse works more than her

contracted number.

Then the constraints added can be defined as follows

Z Z RHm(r)'Unmr = Bactual, (6.24)

mEMreRym
m<d
minRH < Z ZRHm(r)uW < maxRH, (6.25)
meEMreR,m
m>0
BActual + BBelow - BAbove = CRH. (6'26)

Preassigned shifts (Cg)

Preassigning a nurse to work a specific shift or ensuring that she
does not work a specific shift corresponds to fixing some of the vy,
variables to either zero or one.

6.1.3 The objective

The objective function comprises the following cost coefficients:

rm
Cn

677;,777,,l,m—‘,-1

Di

qi

Below
Cn

Above
Cn

is the preference cost (O3) for nurse n of working shift
r on day m,

is the preference cost (O4) for nurse n of working shift
r of day m and shift [ of day m + 1,

is a linear penalty (Op) for not achieving the desired
demand level for coverage constraint .

The penalty (O3) for not fulfilling overlap constraint j,
is the opportunity cost for each hour of lost work for
nurse n(O3),

is the cost of overtime payment for nurse n (Os).
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The objective can then be defined as:

Z Z Zcﬁ’m Vnimr (6.27)

neN meMreR,m

TN S g (6.28)

neEN meMreRyml€ERy m+1
+ ) pwi+ Y gz (6.29)
iecc jeoC
+ ' Baolow + ¢ """ Babove: (6.30)
The last two terms (6.30) are only included if the planning period

includes the last day of the nurse’s twelve weeks period of the con-
tracted number of recorded hours.
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6.2 IP/IP model

In addition to the IP model of the previous section, the IP/CP ap-
proach was also compared to an “IP/IP” approach. This approach
uses the same branch-and-price algorithm as the one applied within
the IP /CP method, but integer programming instead of the proposed
constraint programming method is applied to solve the pricing sub-
problems. So this method is still based on a lot of the work performed
for developing the IP/CP algorithm described in this thesis. The IP
model for the sub-problems consists of all the constraints described
in Section 6.1.2, except that there is a separate model for each nurse.
Additionally, the model has to handle the dual values from the master
problem as well as the branching decisions. The branching decisions
correspond exactly to fixing one of the vy, variables to either zero or
one. Let ci™ and 2™ ! be defined as in Section 6.1.3 and let the
dual multipliers p; , A;, 11, and the sets @;’m and W’m’l’mﬂ be
defined as in Section 5.3.13. Then the objective for the sub-problem
for nurse n can be stated as:

Z Zcﬁm Vnimr (6.31)

meMreRy,m

+ 33 S et g, (6.32)

mEMreERwmlER, m+1
+ CEEIOWBBeIOW + cﬁboveBAbove- (633>

- Z ZvanZNi (634)

mEMTERnm O™
=T D e YA (6.35)
mEMrERwmlERy m+1 jeﬁgm,l,m+1
-1, (6.36)
The two terms (6.33) are only included if the planning period includes

the last day of the nurse’s twelve weeks period of the contracted
number of recorded hours.
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Computational results

7.1 IP/CP vs IP vs IP/IP

The different solution approaches — IP/CP, IP and IP/IP — have been
tested on a number of problem instances with a planning period of
two weeks. All instances use the same set of shifts, with the same
start and end times and include all the constraints to be addressed
for the particular case of the Danish ward underlying this thesis. The
instances differ in both the number of nurses available, the demand
of the coverage constraints and almost all the details of all other
constraints (for instance: number of office days, holidays and shift
preferences). The parameters kept fixed correspond to regulations in
union agreements and parameters regarding the shift types.

All computations were performed on a Sony laptop with 8 GB
of memory and a 2.80 GHz Intel i7 processor on a Linux operating
system with a Gnu 4.7.2 C++ compiler. All algorithms were restricted
to use only a single core. The computation time was limited to at
most 20,000 seconds and the maximal memory usage to be no larger
than 3.5 GB. As some parts of the algorithms rely on randomness,
every instance was solved with 10 different seed corns.

The computation times presented in this chapter cannot be com-
pared to those of the computational comparisons made in Chapter 5,
as those were performed on a Toshiba laptop with 4 GB of memory
and a 1.73 GHz Intel i7 processor. All other settings and restrictions
were the same.

Table 7.1 summarises the computations results. The columns
headed “IP/CP” shows the computation times, the number of times
a master problem was solved and the number of schedules generated
by the IP/CP algorithm described in Chapter 5; columns “IP/IP”
display the results obtained with IP/IP that uses CPLEX’s MIP
solver for solving the pricing sub-problems. The “Dev. in %” column
indicates the relative deviation in computation time from the IP/CP
algorithm; a positive number means that the IP /TP method uses more
computational time. The last columns, “IP”, display the computation
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Table 7.1: Average solution times of 14 days instances of 10 runs. (Times in seconds)

Chapter 7. Computational results

IP/CP IP/IP P
Ins. Nurses. Time Master it. Sch. gen. Time Dev. in %* Master it. Sch. gen. Time Gap in %
1 20 29.4 15.5 1,126.8 31.6 7.64 23.5 876.7 285.8
2 20 534.7  486.6 5,786.1 1,368.7 155.98 495.9 11,623.6  10,657.8" 3.25%
3 20 25.5 16.0 1,238.0 71.2 179.50 27.0 1,012.0  7,344.5" 7.05¢
4 28 86.5 26.6 1,358.3 72.2 —16.52 25.0 1,135.0 14,227.0" 8.05%
5 28 18.7 10.3 1,119.7 19.8 6.08 15.2 774.2 Timeout™ 0.169
6 28 21.1 16.2 891.7 24.6 16.57 22.6 937.1  2,804.5 0.119
7 28 12.0 14.0 1,017.0 39.8 231.31 17.0 848.0  6,008.5" 4.02*
8 28 44.3 27.0 1,034.0 209.5 372.78 66.9 2,261.1 19,304.7° 11.57*
9 28 114 13.0 1,008.0 28.2 147.99 14.0 719.0 87725 6.60%
10 38 20.9 9.2 1,084.8 30.0 43.74 11.9 808.4  5,269.9 0.04f
11 38 14.3 9.1 1,094.1 31.7 121.35 11.3 770.2 13,111.4" 1.36%
12 38 21.1 104 1,083.1 30.1 42.66 11.8 745.9  3,868.5" 0.36*
13 38 21.3 114 1,303.4 28.7 34.63 13.3 8704  6,471.1°  11.92¢
14 38 17.7 12.2 1,252.0 35.9 103.06 18.0 1,032.5 12,724.1" 0.35f
15 38 17.9 12.0 1,210.0 33.3 86.09 15.0 954.0  6,910.9 l
Sum: 896.7 689.5 21,607 2,055.2 788.4 25,368.1
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Deviation in solution time from IP/IP method where positive deviations means longer computation times.
Out of memory (3.5 GB)

Timeout (20,000 second)

Solution with optimal solution value found.

Near optimal solution found.

Integer solution found, but far away from the optimal one.

T No integer solution found.
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times required by CPLEX for solving the integer programming model
as well as the relative gap between the best integer solution found
and the best lower bound found by CPLEX.

All figures for the IP/CP and IP/IP algorithms are averages over
10 runs. The table shows that on instance 1 and 5 the IP/CP and
the IP/IP method uses on average almost the same time, whereas
otherwise the IP/CP outperforms the IP/IP method. Taking the av-
erage, over all instances, of Time(IP/IP)/Time(IP/CP) shows that
the IP/IP method uses 102.19 % more computational time than the
IP/CP method. An even worse computational performance showed
CPLEX’s MIP solver on the integer programming model. Only a
single instance could be solved within the limits of 20,0000 seconds
of computation time and 3.5 GB of memory usage. In case of in-
stance no. 5 and 6, the IP approach finds solutions with the optimal
objective value, but is unable to prove optimality within the time and
memory limits. When solving instance no. 10 and 14, the CPLEX
solver found a solution quite close to the optimal solution value, and
on instance no. 15 no solution was found within these limits. On the
other instances, the best solution found was far away from the op-
timal solution value. The figures in column “Gap in %” are defined as
the best solution value minus the lower bound found divided by the
optimal solution value. Note that these figures should be used with
caution. Generally the coverage constraints (5.3) are met with equal-
ity for all near optimal solutions. Certain cost components can be
increased in value by adding a certain A > 0 to all of them without
any changes in the difference of objective value of any near optimal
solution. Accordingly, the relative GAP can be made arbitrarily
small.

On all except two of the instances, the IP method broke the limit
of 3.5 GB memory usage; the maximal memory usage registered with
the two other algorithms were however just 47 MB.

The IP/CP method spends on average 3.3% of the computa-
tion time by solving the linear relaxation of the restricted master
problem. The time used for selecting which branch to perform are
excluded from that measure. An average of 35.5% of the time is
spend for selecting which branch to perform and the last 61.2 % are
spend solving the sub-problems. The amount of time spend for se-
lecting the branch and for solving the sub-problems varies a lot. The
amount of time spend for solving sub-problems as an average over
the 10 runs varies from 32.7 % to 94.1 %; for selecting the branching,
it varies between 4.6 % and 63.6 %. The amount of time used for
selecting the branching seems quite high, but some preliminary tests
on a subsets of instances showed that the computation time was on
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average reduced by around 38 % by using a candidate list of size 50
compared to using a size of 10. The decision of using a candidate
list with a size of 50 showed the smallest computation time of all
tested settings. The size of the candidate list showed a decrease in
computation time when increasing the size until 50 was reached.

Some preliminary tests on some three weeks instances showed
that all three solution methods described here were incapable of
solving the instances, given the time limit of 20,000 seconds. This
was both due to the increased number of nodes in the branch-and-
bound tree and the increased CPU time required for solving the sub-
problems. In the case that the number of feasible schedules for each
nurse is smaller and the nurses are more different from each other, it
might sometimes be possible to solve some three weeks instances to
optimality. However, from a practical point of view it is not interest-
ing to solve three weeks instances as the requested planning period
is at least four weeks.

For the IP/CP and IP/IP methods it is very important that the
constraints on each nurse’s schedule are quite different from each
other. If several nurse’s have to obey almost the same constraints it
would often lead to a huge search tree for the master problem. The
advantage of having similar nurses is that they could be grouped
together. Schedules generated for a nurse in a group might also
be feasible for the other nurses of the same group. The addition of
extra schedules could reduce the overall computation time. However,
to calculate a lower bound a sub-problem have to be solved for each
nurse. Thus if the constraint sets for two nurses are not exactly the
same, both sub-problems have to be solved.

An extension to the IP/CP method has also been tested. To
this end, the three and four weeks instances were heuristically solved
by splitting the planning period into two parts; each part was then
solved separately with the IP/CP method. An attempt was also
performed by planning the first week, then the second week where
the first week was kept fixed and so on. However these attempts all
failed as there generally did not exist a feasible schedule when the
last part / week had to be planned. Several attempts of dividing
the constraints for the whole planning period into constraints for the
period which is under scheduling were performed, however none of
these trials lead to feasible solutions.

For a longer planning period than two weeks, it seems that it will
be very difficult to solve instances with an exact method. However,
the two weeks instances can be solved within a reasonable computa-
tion time.
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7.2 Comparison of CP and IP
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Figure 7.1: The number of sub-problems solved by the two methods in
intervals of length 0.001 second. Sub-problems showing longer computation
time than 0.5 seconds have not been included; these sub-problems make up
less than 1% of the sub-problems for both methods.

In order to compare the two methods for solving the pricing sub-
problems in more detail, all pricing sub-problems were solved by
both the CP and the IP algorithm. Each time a sub-problem was
encountered, it was solved with both the CP and the IP algorithm.
When solving with the IP/CP algorithm only the schedules gener-
ated with the CP algorithm were added, likewise when the IP/IP
algorithm was used. The solution time and the number of sched-
ules generated for both methods of solving the sub-problem has been
collected by solving all 15 instances with 10 different random seed
corns.

On average, the IP algorithm uses 114.8% more computation
time than the CP and this result could be observed for both search
paths.

Figure 7.2 and 7.1 compares the computation times spent by both
methods on solving the sub-problems. Figure 7.1 shows the number
of sub-problems solved within a give time interval; the intervals are
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Figure 7.2: The accumulated number of sub-problems solved by the two
methods. Sub-problems showing longer computation time than 0.5 seconds
have not been included; these sub-problems make up less than 1% of the
sub-problems for both methods.

all of size 0.001 second. Figure 7.2 shows the accumulated number of
sub-problems solved with each method within a given amount of time.
Thus graphs of Figure 7.2 are approximately the accumulated value of
the graphs of Figure 7.1. Sub-problems showing longer computation
time than 0.5 seconds have not been included; these sub-problems
make up less than 1% of the sub-problems for both methods. It
can be seen that the CP algorithm solves a lot of problems almost
instantly, whereas the IP algorithm requires some time before it is
able to solve any problem. Even after this initial time, the CP method
solves most of the instances faster than the IP method. The CP
method solved 98 % of the instances in 0.204 seconds, whereas the
IP method required 0.432 seconds.

For every master iteration of the two branch-and-price algorithms,
one pricing sub-problem is solved for each nurse. All feasible integer
solutions with negative reduced cost found while solving the sub-
problem are added to the restricted master problem. In total the
sub-problems of the CP method generate around 60 % more schedules
with negative reduced cost than the sub-problems of the IP method.
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In a sub-problem which is not proven to be infeasible, the CP method
generates on average 4.33 schedules, whereas the IP method gener-
ates 2.83 schedule. The number of generated schedules for the two
methods are quite consistent over the different instances and with
both search paths. Creating more schedules will not in general lower
the computation time, as a larger restricted master problem also re-
quires more time to be solved. As the same search strategy was used
for the IP/CP and IP/IP method, one of the main reasons for the
lower number of master iterations in the IP/CP is probably the extra
schedules generated. The number of master iterations for the IP/CP
algorithm were on average 12.5 % lower than the number of master
iterations for the IP/IP algorithm.

7.3 Flexibility of the IP/CP method

In order to investigate the flexibility of the method, we created a few
further instances that include some restrictions not present at the
Danish ward. These restrictions were: A minimal number of con-
secutive night shifts, a maximal number of consecutive night shifts,
a minimal number of off-days after a set of consecutive night shifts,
and a minimal number of non-night shifts between sets of consec-
utive night shifts. The constraints have been added with some “If
Then” statements ensuring that the constraints are not violated. As
an example; the constraint on a minimal number of consecutive night
shifts is added in the following way for all days i:

;1 = night and x; # night = x;_4,...,2;—1 = night,

where d is the minimal number of consecutive night shifts. The others
constraint are implemented in a similar way.

Table 7.2 shows the results obtained when solving the instances
with the extra constraints. Instances 16-21 include the first two
constraints, whereas instances 22—-24 include all four of them. The
computation times are still very reasonable, and all instances are
solved to optimality.
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Table 7.2: Average solution times of 10 runs for the IP/CP method
for 14 days instances with extra constraint. (Times in seconds)

IP/CP
Instance Nurses Time Master it. Schedules generated
16 20 25.7 15.7 974.5
17 20 30.1 22.0 1,062.0
18 20 83.3 43.0 1,305.0
19 28 12.9 13.0 955.0
20 28 39.4 24.0 848.0
21 28 18.0 14.3 919.4
22 28 25.8 12.6 1,013.5
23 28 41.0 28.0 595.0

24 28 42.9 40.1 728.7
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Heuristic approaches






Chapter 8

Variable Neighbourhood
Search

In this chapter a variable neighbourhood search (VNS) designed for
the nurse rostering problem from Chapter 4 is described. The VNS
builds on the VNS method described in Algorithm 2 in Section 2.4.1.
It is designed to handle infeasibility with respect to the coverage and
overlap constraints. All other constraints have to be obeyed in the
starting solution and will also be obeyed in the final and all interme-
diate solutions. The overall VNS algorithm designed is presented in
Section 8.4, after all the sub-methods used have been presented.

The initial solution for the VNS is created by a greedy heuristic
described in Section 8.1. The VNS designed does not use any shaking
of the current solution before the neighbourhood search is applied.
When the current solution is infeasible, a sort of indirect shaking
is applied. This is achieved by defining the costs of the current in-
feasible solution in such a way, that the search result in a different
solution with either the same or smaller degree of infeasibility. How
this is performed is described in Section 8.2.

All of the employed neighbourhoods are based on the same prin-
ciple. A given set of days is ‘“released”, while all others are kept fixed
to the shifts assigned to these days in the current solution. Hence,
the neighbourhood corresponds to all solutions where the nurses on
the non-released days work the shifts as they were supposed to do in
the current solution, whereas the released days can attain any value.
The maximum number of released days is given as a parameter A.
A given neighbourhood can then be described as a set of days to
be released. The neighbourhoods are not selected in sequence; how
they are selected is described in the sections below together with the
descriptions of the neighbourhoods.

The method used for searching the neighbourhoods is the IP/CP
solution approach described in Chapter 5. The neighbourhoods used
are very large, similar to the ones used by Bent and Van Hentenryck
[4] for a pick-up and delivery problem.
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In general; the search completely searches the neighbourhood and
proves that the best solution found is optimal. However, since it is
not necessary to prove optimality in a neighbourhood, the search
is terminated if it requires too much time. Besides the time limit
for a single iteration, the following limits can also be introduced: A
maximum on the number of non-improving iterations, a total time
limit and an iteration limit.

Depending on the feasibility of the current solution different neigh-
bourhoods are used. If the current solution is infeasible the neigh-
bourhoods from Section 8.2 are used, and if feasible those from Sec-
tion 8.3.

8.1 Greedy heuristic

In this section a greedy heuristic is proposed for finding an initial
solution to be used as a starting solution for the other heuristics
presented.

The heuristic is built up around the constraint programming
model that is also used for solving the sub-problem in the IP/CP
model. The CP model is the same, except that the coefficients of the
objective function are changed. The model and the domain reduction
strategies are described in Section 5.3.

The general idea is to use an accelerated constraint programming
search that searches for a schedule for the nurses, one at a time.
The generated schedules are feasible for the constraints which only
depend on the schedule for a single nurse, whereas the coverage con-
straints (C14) and the overlap constraints (Cj3) are not necessarily
fulfilled.

The search is guided towards schedules that might contribute to
the adherence of the coverage and overlap constraints, not fulfilled
by the nurses already scheduled. This way, a solution that is close
to feasibility is hopefully created. This guidance makes the single
schedules dependent on the order in which the nurses are scheduled.

8.1.1 Cost calculations

The costs — which in the CP sub-problem was used for calculating
the reduced cost — are in this heuristic used for guiding the search
towards a schedules that is close to feasibility.

The costs used within the greedy method are determined in the
following way, where the current staffing levels are calculated from
the nurses for which schedules already have been generated: All costs
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&2 and &% are initially set to zero. For all the shifts involved

in a Vlolated coverage constraint (5.3) and where the nurse has the
required qualification level, the difference between the required and
the current staffing level is subtracted from the costs &° (O3). This
is done in order to let the greedy method prioritise the selection of
shifts involved in violated coverage constraints. Similar, for each
violated overlap constraint (5.4), a positive constant is subtracted
from the corresponding overlap costs &% (Oy).

8.1.2 Search in the CP model

For the purposes of the greedy heuristic, the constraint programming
search is based on a static ordering of the days and a greedy dynamic
selection of the shift to be assigned to the given day. The days § are
sorted according to non-decreasing order of

Z (—06+ Z Ea 6— la6+ Z Ea,(?,a’,&-&-l)’ (8.1)

ceD(6) o’'eD(6—1) o’eD(6+1)

where D(0) is the set of all shifts that can be assigned to day §. The
branching is then performed on the days in this given order.

When a day § has been chosen, the shift o to branch on is selected
according to a “score value” defined as the sum of the following three
terms. The first term is the shift cost EZ’(; as defined above. The
second term relates to the overlap costs with the previous day § — 1.
If this day is fixed to a specific shift ¢/, this term equals the overlap

cost cZ =199 If the day before is not fixed, then this term is set to
. 6—1,0,6 —~o'6—1

min  ac?" co 0T 8.2

o'eD(6—-1) + e (82)

where o € [0,1] and 3 € [0, ] are constants. In the similar way, the
third term relates to the overlap costs with the following day. If a tie
in score values appears, a value is chosen at random.

8.2 Infeasibility iterations

An iteration — where the current solution is infeasible — starts with
a random selection of a constraint that is not fulfilled. Because the
VNS is designed only to handle infeasibility with respect to the cover-
age or overlap constraints, the selected constraint is either a coverage
or an overlap constraint.

If an overlap constraint is selected, a neighbourhood around the
days for which the overlap has to be observed is used. The neighbour-
hoods to select between are all sets of A consecutive days including
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the two days for which the overlap has to be observed as well as the
day before and after these two days. The neighbourhood is selected
at random between those that fulfil those requirements.

If a coverage constraint is selected and the day (M“C?) for which
the coverage constraint should be observed is either a Saturday,
Sunday or Monday one of the neighbourhoods listed below are used.
If MCC is between Tuesday and Friday, only the second type of
neighbourhood is used:

Weekend neighbourhoods are a set of consecutive weekends. The
specific neighbourhood to be used are chosen in the following way:
The set of weekends to be released is created by first adding the
weekend in which M©%i is one of the days, then randomly either the
following or previous weekend is added, until |A/3] weekends are
selected. The days that are selected to be in the neighbourhood are
the Saturday, Sunday and Monday of the weekends released.

One period neighbourhoods are all sets of days consisting of A
consecutive days, where M¢%i —1, M and M€ +1 all are mem-
bers. The specific neighbourhood to use is chosen randomly.

The IP/CP method used for searching the neighbourhoods are
not capable of handling infeasible solutions directly. To handle the
infeasibility — which stems from the coverage and overlap constraints
— some artificial columns are added to the restricted master prob-
lem (5.8— 5.14). For each violated coverage or overlap constraint, a
artificial column with a single one in the row that corresponds to
the violated constraint is added. The variable corresponding to this
column is restricted to be between zero and the difference between
the current and required level. The cost of such a column is set to
a large number. In subsequent iterations the cost of the artificial
columns are increased.

For all coverage and overlap constraints that are met with equality
in the given solution an artificial column is also added. The column
has a value of one in the row which corresponds to the constraint,
all others are zero. The corresponding variable is restricted to be
between zero and one. The cost of the column is set to value slightly
higher than for the ones corresponding to infeasible constraints. This
would ensure that if another solution with the same level of infeas-
ibility exist in the neighbourhood, it will have a lower cost than
the starting solution. The solution obtained from the improvement
method will thus be different from the starting one. The change
of solution will lead to other areas of the search space which then
hopefully would contain a feasible solution.
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8.3 Normal iteration

In an iteration where the current solution is feasible; one of three
different types of a neighbourhood is selected with a given probability.

When the optimal solution with respect to a neighbourhood has
been found, it would be a waste of computation time to search it again
as long as the current solution has not changed. Therefore, a history
is kept of neighbourhoods fully explored since a improved solution
was found the last time. When a new improved solution is found,
the history is reduced to include only the current neighbourhood. If
the search is stopped before reaching optimality due to some limit,
the neighbourhood is not saved.

Weekend neighbourhoods are all sets of weekends of size |A/3].
The weekends are not required to be consecutive; both Saturday,
Sunday and Monday of the weekend are released in the neighbour-
hood.

One period neighbourhoods are all sets of A consecutive days
where the planning period is thought of as a cyclic order of days, e.g.
there is the same number of neighbourhoods as the number of days
in the planning period.

Two period neighbourhoods are all sets of days which corres-
ponds to two periods of | A/2| consecutive days where the planning
period is thought of as a cyclic order of days. The two periods are
allowed to be consecutive but not overlapping, e.g. the number of
days released are always 2| A/2].

The specific weekend neighbourhood to release is chosen ran-
domly between the weekend neighbourhoods which have not previ-
ously been released for the current solution. The choice of the specific
one and two period neighbourhoods is more involving. The idea be-
hind the selection is to choose a set of days for resleasing that is
quite different from the previous selections. If a neighbourhood have
already been tried and completely searched for the current solution
it is excluded for consideration. Let “History” denote the sets of days
that have previously been released and where the optimal solution
has been found. A neighbourhood with a corresponding set of days
¢ is selected with a ratio of:

1

MaXxgcHistory ’(b N 0|a ’

(8.3)

where o« > 1 is a constant. Accordingly, the more days it has in
common with a previously tested neighbourhood, the smaller the
probability of selecting the neighbourhood. The reason using the
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days as a cyclic order for generating neighbourhoods is to get a more
even probability of releasing the different days.

Some preliminary tests on a small set of instances showed that
using all three neighbourhoods above was better than using any pair
of the above neighbourhoods. The one period neighbourhoods are
a subset of the two period neighbourhoods, thus it could easily be
thought that the one period neighbourhoods were redundant. How-
ever, the preliminary tests showed that they were not, maybe because
the one period neighbourhoods often lead to more improvements than
the two periods. Yet, the two periods are still needed to make jumps
to other areas of the search space, which are not reachable by the
one period neighbourhoods.

8.4 Overview of the method

An stepwise overview of the VNS designed for the nurse rostering
problem is given below:
1. Create the initial solution by the greedy heuristic from Sec-
tion 8.1.
2. While the current solution is infeasible:.
2a. Select a violated constraint at random.
2b. Select a neighbourhood according to Section 8.2 on the
infeasibility iteration.
2c.  Search the selected neighbourhood with the IP/CP al-
gorithm.
(An iteration time limit is used to this end.)
2d. If a limit has been reached, stop;
2e. If the obtained solution is still infeasible go to step 2a.
3. Create a history of previously searched neighbourhoods.
The last searched neighbourhood from the infeasibility iteration
is added.
4. While no limits have been reached:
4a. Select a neighbourhood according to Section 8.3 on the
normal iteration.
4b. Search the selected neighbourhood with the IP/CP al-
gorithm.
(An iteration time limit is set to this end.)
4c. If an improved solution has been found reset the history
to be the empty set.
4d. If the obtained solution was proven optimal in the neigh-
bourhood, add it to the history.
4e. If a limit have been reached, stop; otherwise go to step 4a.
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The limits used are an iteration limit, a time limit and a limit on the
maximal number of non-improving iterations.

This VNS differs some from the framework described in Sec-
tion 2.4.1; first of all the algorithm has been divided into two parts,
a search used when the current solution is infeasible and one when
it is feasible. Another difference is that instead of using the same
neighbourhood for the local search, different neighbourhoods are se-
lected.






Chapter 9

Scatter Search

A scatter search for the nurse rostering problem from Chapter 4 is
described in this chapter. The scatter search is designed according
to the framework described in Section 2.4.2. The five methods which
connect the framework to the problems to be solved are described in
separate sections below. A overview of the final scatter algorithm is
presented in Section 9.6.

All intermediate and final solutions are feasible with respect to the
constraints that relate to the nurses separately; the only constraints
that are not necessarily fulfilled are thus the coverage and overlap
constraints.

The initial solution is created by the same greedy heuristic as used
for finding the initial solution for the VNS. The greedy heuristic used
is described in Section 8.1.

The scatter search spends most of its computational effort in the
improvement method. Of the three methods that create new solu-
tions, the improvement method is the only one that directly takes the
coverage and overlap constraints into account. The starting solution
for the improvement method is usually infeasible, because this solu-
tion is obtained either by means of the diversification or the solution
combination method.

9.1 The diversification method

The diversification method should generate solutions in different parts
of the search space. In this implementation, the diversification method
takes a single solution as its starting solution.

As suggested in Laguna and Armentano [35], a frequency memory
is used to make the created solutions more diverse. A frequency
memory of all previous assignments of nurses to the different work-
ing shifts is kept. The demand for the different working shifts can
be very different, hence the expected number of assignments of these
shifts will vary. Thus penalising assignments only according to the
number of previous assignments seems not reasonable. A more elab-

119



120 Chapter 9. Scatter Search

orate method thus used to fix assignments according to the difference
between the previously generated and expected number of assign-
ments. To use this method, an estimate of the expected number of
assignments for the different working shifts is needed. For the normal
working shifts, the estimate used is the maximal desired demand for
the shift type on the given day, divided by the number of nurses. The
reason for this is that the qualification levels of the nurses and the
qualification requirements of the coverage constraint are stated such
that the maximal desired demand is the number of nurses needed
to work the shift. For the office days, a different estimate must be
given; the estimate is given as the demand divided by the number of
days it can be assigned to. For all days for which an office day can
not be assigned, the estimate is zero.

The schedules for the nurses are generated independently. The
solution obtained this way does thus usually not meet the coverage
and overlap constraints. The CP method of Section 5.3 is used to
compute a schedule for each nurse; another search strategy is however
used for the purpose of the scatter search.

The CP model is the same as the one employed for solving the
pricing sub-problem, except that no domain reductions can be per-
formed in the calculations of the lower bound for the reduced cost
as described in Section 5.3.14. Hence the propagation method C++2
from for the minimal time between shifts constraint is added. A part
of the search strategy relies on the lower bound on the cost and the
assignment of shifts that corresponds to it, so the cost of a schedule
is still calculated as in Section 5.3.13, but where all dual values are
considered to be zero.

The search strategy in the CP model can be divided into three steps:

1. Branch according to the frequency memory.

2. Branch towards the starting solution.

3. Branch towards the lower bound on the cost of the schedule.
In any path from the root node of the CP search tree to any other
node, the branching is performed in sequence. That means that on
the first part of the path, the branching method of the first step is
used, while the second part is built using the branching method of
the second step, and so on. Note that on some paths it might happen
that some of the branching methods do not find any branches that
they can create. The first feasible solution found is the solution which
is returned as the output from the diversification method.

Branch according to the frequency memory. This branching
strategy is used until a given number of shifts have been fixed accord-
ing to the frequency memory. If all days have been fixed to either
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working shifts or their domains have been reduced to a subset of the
non-working shifts, then the branching strategy is also changed to
the next in the sequence. A day and a shift is chosen to be branched
on; the first child node is created by fixing the day to the shift and
the other child by removing the shift from the domain of the day.
The frequency memory does not account for solutions generated by
the diversification method; only those obtained after improving them
by the improvement method, are used for updating the frequency
memory.

The day to branch on is selected according to the frequency
memory in the following way. All days which have not have their
domains reduced to singletons or a subset of the non-working shifts,
receive a weight. The day to be fixed is selected at random according
to these weights. For each (day, working shift) pair an estimate of
the expected number of assignments is given. Thus an estimate of
the expected number of times this day should be a working day is the
sum over the working shifts of the estimates for the (day, working
shift) pairs; let this estimate for each day be denoted by EAgay. The
number of times a working shift for the given day has been previously
generated as a working shift, is the number of schedules in the fre-
quency memory where a working shift was assigned to the given day;
let this value for each day be denoted by PAgay. Let [FM| denote the
number of solutions registered in the frequency memory. The weight
of a day is given as:

EAg4., — PA
max (a’l + daydaY> ’

[FM]|

where 0 < a < 1 is a constant that defines a minimum weight for a
day. The “14” ensures that the second term of the “max” is between
zero and two; the weight becomes one when the expected and sched-
uled number of working days are the same. The weight becomes
smaller when the number of scheduled working days is larger than
the expected, and larger if opposite.

The shift to branch on is selected the same way as the day. The
weight is not defined on the basis of the difference of the estimate of
the expected and the scheduled number of working shifts, but on the
difference of the expected and the scheduled number of assignments
of the working shift to the selected day.

The motivation behind using this search strategy is to create a
solution that is diverse from the previously generated solutions.

Branch toward the starting solution, This is a simple strategy
that randomly selects a day that has the shift from the starting solu-
tion in its domain and where the day is not already fixed to single
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shift. In the first child; the selected day is fixed to the shift from
the starting solution and in the other the shift is removed from the
domain. When all days have either been fixed or have the value from
the starting solution removed from their domains, the search strategy
advances to the next in the sequence.

As the starting solution is feasible for all the constraints that only
relate to single nurses and is also likely to meet most of the coverage
and overlap constraints, branching towards such a solution should
generally quickly result in a solution that is feasible or at least close
to feasibility.

Branch towards the lower bound on the cost of the sched-
ule. This is the branching strategy used for the CP sub-problems
in the IP/CP method; it is described in Section 5.3.15. The idea of
the strategy is to greedily search towards the solution with lowest
cost. When using this strategy all dual values used in the branching
strategy are equal to zero. This search strategy does not stop until
all days have been fixed.

As opposed to the two other branching strategies, this search
strategy considers the costs of the schedule.

9.2 The improvement method

The variable neighbourhood search described in Chapter 8 is used
as the improvement method. The VNS is chosen because it searches
some very large neighbourhoods efficiently and is able to handle in-
feasible solutions; additional repair heuristics are thus not required.

A smaller subsets of days (A) is used than if the VNS is em-
ployed on its own. Both a time limit on each iteration and a limit
on the number of non-improving iterations are applied. The limits
are important, because some iterations of the VNS might use a lot
of computation time just to prove local optimality of a solution. As
the number of neighbourhoods are large, finding a local optimum for
all of them is too time consuming.

9.3 The reference set
The reference set is the population of solutions from which new solu-

tion are created. The reference set is kept at a constant size after it
has been initialised.
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9.3.1 Initialising the reference set

The reference set is selected from a pool of initial solutions. This
pool is created from the initial solution with the use of the diver-
sification method. The diversification method is given a randomly
chosen solution from the pool and it searches for a new solution. If
a new solution is found it is forwarded to the improvement method.
If the improved solution is not already in the pool it is added.

The reference set is chosen to include besides some of the best
solutions from the pool, also some solutions that are very different
from the other solutions selected. To define which solution to select
for the reference set a measure of diversity has to be defined. Let aq,
ag and ag be constants such that 0 < a; < as < a3. For a given
(day, nurse) pair three cases are distinguished:

1. If the nurse is assigned to different non-work shifts on the given

day in the two solutions, a diversity of «y is assigned.

2. If the nurse is assigned to different work shifts in the two sched-
ules on the given day, a diversity of as is assigned.

3. If the nurse is assigned a work shift in one schedule and a non-
work shift in the other on the given day, a diversity of ag is
assigned.

The diversity between two feasible solutions is the sum over all nurses
and days of the constants above. If one or both of the solutions are
infeasible the measure is adjusted, because the solutions anyway need
to be changed to become feasible. Let the infeasibility of a solution
be the sum of the number of overlap constraints that are not fulfilled
and the difference between the required and actual staffing level of
the coverage constraints that are not fulfilled. Let Infeasibility; and
Infeasibility, be respectively the infeasibility of the first and second
solution; the diversity “measure” is then adjusted in the following
way:

max (0, Measure — a max(Infeasibility,, Infeasibilityy)).  (9.1)

The diversity between a solution and a set of solutions is measured as
the minimal diversity between the solution and each of the solutions
in the set.

The reference set is chosen as suggested in Laguna and Armentano
[35], the first half of the reference set is chosen as the solutions with
the lowest objective value; the other half is chosen iteratively as the
one showing the highest diversity to the current partial reference set.
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9.3.2 Updating the reference set

Both a static and dynamic update method were implemented. The
static update method keeps a pool of the best solutions generated;
the same number of solutions are kept as the size of the reference
set. The pool is initialised with the solutions from the reference set,
and when the reference set has to be updated it is replaced with the
pool.

In the dynamic case, when a new solution has been generated, it
is added if it is better than the worst solution in the reference set. If
it is added the worst solution from the reference set is removed and
the reference set size thus kept constant.

Some initial testing of the scatter method showed quickly that the
dynamic method is superior. One of the main reasons was that usu-
ally only one or two static updates of the reference set was made.
Hence the solutions used for the combination method were only
second or third generation of the initial solution.

9.4 The subset generation method

The subset generation method has to generate all subsets of the ref-
erence set which should be used for the combination method. The
subsets generated are those proposed in Laguna and Armentano [35]:
— All pairs of solutions.
— All pairs with the addition of the solution with best objective
value.
— All pairs with the addition of the two solutions with best ob-
jective values.
— The set of k£ solutions with the best objective values, k =
5,6,...
All sets are generated such that in each set all solutions are different,
besides this only non-duplicate sets are generated.

9.5 The solution combination method

The solution combination method should combine a given set of solu-
tions into at least one new solution. To do this for the given problem
a very simple combination method was implemented. The new solu-
tion is created by choosing a random schedule for each nurse from
the schedules assigned to the nurse in the given solutions. Choosing
the solution this way leads to solutions that are feasible for the con-
straints that relate to each nurse separately, whereas the coverage
and overlap constraints are usually not fulfilled.
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It is very difficult to figure out which parts of a solution are
“good” and which are not. Hence creating a combination method that
selects the good parts of a solution is almost impossible and heavily
depends on the given instance. So instead of trying to create an
elaborate method that is very dependent on the particular problem
instance, a very simple method was chosen. Finding the “good” parts
of the solutions is indirectly performed by means of the improvement
method; good parts of a solution should also be present in the solution
after applying the improvement method, and if the resulting solution
is good enough it will be added to the reference set. More and more
solutions in the reference set should this show properties of high
quality solutions and be selected in turn for the combination method
with an even larger probability.

9.6 Overview of the method

The scatter search for the nurse rostering problem is described in
two phases. In the initial phase the reference set is created and the
second phase is a search phase where the solutions of the reference
set are combined into hopefully better solutions.

Initial phase:
1. Create the initial solution by the greedy heuristic from Sec-

tion 8.1.

Initialise a pool of solutions P to be the empty set.

Initialise the frequency memory.

Add the initial solution to both P and the frequency memory.

While the size of P is less than a given size.

5a. Select a random solution from P.

5b. Generate a solution with the diversification method from
the selected solution according to the frequency memory .

5¢. Use the improvement method to improve the obtained
solution.
Both a time and a limit on the maximal number of non-
improving iterations is enforced.

5d. If the solution attained is not already in P, add it to P
and register it in the frequency memory.

5e. Repeat from 5a until P has reached a given size.

6. Select the reference set from the pool P as given in Section 9.3.1.

Ot N
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Search phase
7. Generate a set of subsets S0 with the subset generation method.

8. While SoS' is not empty.

8a. Select and remove a subset from SoS.

8b. From the selected subset, generate a solution with the
solution combination method.

8c. Use the improvement method to obtain an improved solu-
tion.
Both a time and a limit on the maximal number of non-
improving iteration is enforced.

8d. Update the reference set with the reference update method.

8e. If an iteration or time limit is reached, stop.

8f.  If SoS is not empty go to step 8a.

9. If the reference set has changed since last time step 7 was ex-

ecuted, go to step 7. Stop otherwise.

An iterated version has also been implemented. When the iter-
ated version reaches the stop criterion of step 9, instead of stopping
the reference set is re-initialised. The pool P is set equal to the half
part of the current reference set showing the best objective function
value. The frequency memory is also initialised with this set. The
search is then restarted from step 5. In the computational tests, this
iterated version came, however, rarely into play, as the overall time
limit is often reached before the stop criterion ti be checked in step 9
is reached.
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Computational results

In this chapter, the variable neighbourhood search (VNS) and the
scatter search (SS) are compared on a set of problem instances. The
instances were created with a planning period of four weeks, be-
cause the requested planning period in practise would be around this
length. As with the two weeks instances, all instances use the same
set of shifts, same start and end times and include all the constraints
to be addressed for the particular case of the Danish ward under-
lying this thesis. The instances differ in both the number of nurses
available, the demand of the coverage constraints and almost all the
details of all other constraints. The parameters kept fixed corres-
pond to regulations in union agreements and parameters regarding
the shift types.

The reason why the heuristics are not tested on the two weeks in-
stances for a comparison to the exact methods is that the parameters
had to be changed to work with such a short planning period. Thus
the heuristics would perform very differently on the short instances
compared to how they perform on the longer ones. The number of
days released (A) in the VNS is selected (based on some tests) to 14
days, so the VNS would in each iteration solve the complete problem.
Changing the parameter A would not make a fair comparison as the
strength of the VNS stems from the fact that A is rather large, smal-
ler values of A would not create large enough neighbourhoods to find
better solutions. Thus, the exact and heuristics method are not com-
pared, because the exact methods were not able to solve any of the
4 weeks instances. In the IP/CP and IP/IP method the root node
was often not even solved before the time limit of 20.000 seconds was
reached.

As with the exact method, all computations were performed on a
Sony laptop with 8 GB of memory and a 2.80 GHz Intel i7 processor
on a Linux operating system with a Gnu 4.7.2 C++ compiler. All
algorithms were restricted to use only a single core. The maximal
memory usage was limited to be no larger than 3.5 GB.

As the algorithm rely on randomness, every instance, heuristic
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pair was tested with 6 different seed corns. The computations were
stopped when the computation time reached 10,000 seconds.

As the VNS generally gets caught in a local optimum after some
iterations the scatter search was compared to a multistart version
of the VNS and not to the simple version. The multistart version
of the VNS works as follows: When a given limit on the number
of non-improving iterations has been reached, the VNS is restarted.
The greedy heuristic used for creating the initial solution relies on
randomness, so the starting solution should generally be different
from the previously tested ones. Besides this, the neighbourhoods of
the VNS are selected randomly; even with the same initial solution,
the VNS should thus often search different neighbourhoods and lead
to other solutions. In the rest of this chapter the multistart version
of VNS is the method denoted by VNS.

A lower bound was found by using the IP model from Chapter 6.1.
The model was solved with the use of CPLEX’s MIP solver, which
was terminated after 20.000 seconds. All instances were tested with
both the normal algorithm and when the best known feasible solu-
tion was given as input to the solver. The use of the best known
solution did usually slightly improve the lower bound, but in gen-
eral the returned solution was the same as the one given as input.
Thus, CPLEX was generally not capable of improving the generated
solutions.

For both heuristics several different parameter setting have been
tested on a smaller set of instances. For both methods the para-
meter setting showing the best results is used for the computational
tests. One parameter which is included in both methods and where
they differ is the number of days to released (A). For the VNS, a
setting of 14 days showed the best results, whereas for the SS a A
of 12 days showed the best performance. The reason behind this is
probably that the SS uses the combination method to search other
interesting areas of the search region, whereas the VNS needs larger
neighbourhoods to escape a local optimum.

Table 10.1 summarises the results of the comparison between the
heuristics. The deviations are calculated as the best solution value
found within the given time limit subtracted by the lower bound
found by CPLEX divided by the lower bound. The deviations can-
not be compared between the instances, as the lower bounds are
often quite weak. Additionally, the same caution should be taken
as described for the column “Gap in %” for the experimental results
for the exact methods. For instance, the cost of instance 14 is very
low and hence a small difference in solution value translates into a
huge value in relative difference. It should be noted that the best
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Table 10.1: Comparison of scatter search (SS) and multistart vari-

able neighbourhood search (VNS). (Averages over 6 runs.)

Ins. Nurses Type 1.000s 3.600s 7.200s 10.000s
Relative deviation in % from lower bound.

1 14 SS 0.313 0.275 0.251 0.237
VNS 0.323 0.279 0.273 0.264

2 28 SS 1.424 1.255 1.146 1.092
VNS 1.460% 1.328' 1.247 1.231

3 28 SS 3.924 1.455 1.455 1.455
VNS 1.841 1.455  1.455 1.455

4 28 SS 21.108 4.803 1.897 1.897
VNS 10.283 8.416 3.824 3.824

5 28 SS 0.000  0.000  0.000 0.000
VNS 0.061 0.032 0.019 0.013

6 28 SS 2.809 1.612 1.566 1.517
VNS 2.589 2.328 2.012 1.996

7 28 SS 3.921 1.341  0.966 0.910
VNS 2379 1.842 1.795 1.644

8 28 SS 3.472 1.375 0.945 0.819
VNS 1.8412 1.499  1.328 1.245

9 38 SS 0.000  0.000  0.000 0.000
VNS 0.056  0.006  0.000 0.000

10 38 SS 0.328 0.004 0.000 0.000
VNS 0.194 0.012 0.012 0.012

11 38 SS 1.340 0.832 0.780 0.756
VNS 1.550 0.973  0.938 0.914

12 38 SS 32.795  6.607 5.172 5.112
VNS 17.130' 8.430 8.430 7.085

13 38 SS 35.997 1415 0.541 0.270
VNS 7.491  5.202 2.622 2.538

14 38 SS 104.971 78.898 73.355 70.136
VNS  97.597' 89.020 83.727 81.116

Average: SS 15.172 7.134 6.291 6.014
VNS 10.3426 8.630' 7.692 7.381

1

2+ Number of runs where no feasible solutions have been found.
The runs showing no feasible solution are excluded from the

calculations of the deviations.
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known solution for instance number 14 has a relative deviation from
the lower bound of around 65 %, whereas for all the other instances it
is below 2 %. The deviations are calculated after 1.000, 3.600, 7.200
and 10.000 seconds.

The table shows that the scatter search (SS) performs better than
the variable neighbourhood search (VNS) for time limits of at least
1 hour (3.600 seconds). After just 1.000 seconds, it is a more open
question, as the VNS on most instances found better solutions, how-
ever on 6 out of the 84 runs, it did not find any feasible solution.

Two different statistical methods were used to compare the res-
ults. The first method is based on the assumption that the difference
in solution value between the two heuristics is normally distributed.
When the results were analysed for each instance separately, noth-
ing could generally be concluded as there are only six observations
for each instance. When all results corresponding to at a given time
limit are analysed, it seems reasonable to assume that the difference
in solution value follow a normal distribution. Analysing the absolute
difference compared to a relative difference was chosen, because of
the way the cost of the instances were defined. For the time limits of
3.600, 7.200 and 10.000 seconds, the null hypothesis that the differ-
ence between the objective values equals zero could be rejected. The
test used was a t-test with a significance level of a = 0.05. The values
of the test statistic were respectively t3.go0 = 5.17, t7.200 = 5.94 and
t10.000 = 6.12. For all three limits the scatter method was concluded
to be significant better than the VNS method. The one run where
the VNS method did not find a feasible solution before the time limit
of 3600, was excluded from consideration in the statistical test.

For the time horizon of 1.000 seconds the results were, however,
quite different. If the differences where the VNS did not find any
feasible solution was excluded, the same hypothesis as before could
be rejected, but this time it was the VNS which was significantly
better. Depending on which objective value the infeasible solution
should be assigned, the statistical test would not be able to conclude
that the methods return statistically different results. If a difference
between two solutions, where the one is infeasible was defined to have
a difference of double the value of the maximal difference obtained
for the corresponding instance, then the null hypothesis could barely
not be rejected (It would be accepted for a > 0.069).

The other statistical method used for comparing the heuristics is
the Wilcoxon signed rank test [21]. An advantage of this method,
is that the runs without feasible solutions can be included without
defining a cost for them, provided that only one of the methods
failed to find a solution. The Wilcoxon method ranks the differences



131

in objective value and uses a test statistic that depends only on this
ranking. For the differences where the VNS method did not find a
feasible solution, the difference is set to be a value larger than all
others. For all four time limits, the null hypothesis of equal solution
quality of the two methods could be rejected. Thus, it could be
concluded that after 1.000 seconds the solution quality of the VNS
method is superior, whereas after 3.600, 7.200 and 10.000 seconds
the SS method was superior according to this statistical method.

An illustration of which of the two methods results in a better
solution value within a given amount of CPU time is shown in Fig-
ure 10.1. For a given time, the figure shows for how many of the
84 runs the SS or the VNS respectively found a better solution than
the other. A third line shows on how many instances both meth-
ods found a solution of the same objective function value, or failed
to find any. The figure shows similar performances as the statist-
ical test. The VNS method is superior up to a computation time of
around 1.800 seconds, hereafter the SS is superior. Note that the
figure does not say anything about the absolute difference between
the objective function values.

Number of solutions

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
Time in seconds
Figure 10.1: The number of instances where either the VNS or Scatter

search is the best, or the number of instances where the solution found
has the same objective value, as a function of the computation time.



132 Chapter 10. Computational results

On average, the VNS method was restarted with a new initial
solution 33 times before the time limit of 10.000 seconds was reached.
The number of times a set of days was released and hence the number
of calls to the IP/CP algorithm was an average of 1949 times per run.

The time spend in the initial phase of the scatter search was on
average around 1.000 seconds, hence the time spend in the search
phase was around 9.000 seconds. Of the time spend in the initial
phase, around 4 % was spend in the diversification method and the
rest by the improvement method. The time used for the combination
method could not really be measured as each call took less than
the smallest measurable time. Hence almost all time spend in the
search phase was spend in the improvement method. The solution
combination method was performed, on average, 330.7 times for each
run.

The scatter search generates typically a set of solutions which
are different from each other, but where all are very close in solution
value to the best solution found. From a practical point of view, this
is a very attractive behaviour, as the head nurse could then choose
between, e.g., the 10 best solutions. A set of solutions is also gen-
erated indirectly by the VNS, by saving all feasible solutions found.
However, the objective value span of the first 10 or 100 solutions is
much larger than for the SS. Additionally the diversity of the solution
set of the VNS was not comparably larger.

The scatter search seems to perform very well on all the instances
and significant better than the variable neighbourhood search if at
least one hour of computation time is used. In practise, several hours
of computation time could easily be assigned, as one instance only
have to be solved each 4 weeks. However, using several days is not
really an option, as the time between the requests from the nurses
have been registered and when the scheduling should be finished is
usually not very long.

From an academic point of view it could be very interesting to
see how the scatter search compares to other heuristics that do not
use the IP/CP as a sub-routine. Designing a suitable neighbourhood
for such a heuristic seems to be challenging, if only feasible solutions
may be visited by the search. It seems actually to be necessary to
include infeasible solutions in the search; but this introduces a lot
of difficulties about how to balance solution quality compared to
feasibility. Just finding a measure of infeasibility is difficult when so
many different types of constraints can be violated. Thus designing
such a heuristic would require a big effort, and the outcome will often
be dependent on the constraints to be considered for the instances.
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