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Abstract

This paper discusses the mathematical representation of an empirically ob-
served phenomenon, referred to as Incremental Similarity. We discuss this
feature from the viewpoint of stochastic processes and present a variety of
non-trivial examples, including those that are of relevance for turbulence mod-
elling.

1 Introduction

This paper discusses an empirically observed feature that we refer to as Incremental
Similarity. Its most remarkable manifestation is in turbulence but it is also found,
in a less prononunced form, in finance.

In high frequency recordings of velocities of homogeneous, isotropic and station-
ary turbulence the non-Gaussian and skewed distributions of velocity increments
from different experiments and different lags are essentially identical provided they
have the same variance. Note however that this identification is effectuated lag by
lag and not by a simple common transformation.

The observation of incremental similarity for turbulent velocity time series adds
a new type of universality to the statistical stylised features of turbulent flows. In the
time domain, the term universality traditionally refers to universal scaling properties
of structure functions defined as moments of velocity increments. These scaling laws
are only realised in the limit of very large Reynolds numbers, i.e. strongly turbulent
flows. Even for large Reynolds numbers only approximate scaling is observed and
only for a certain range of time scales, the so-called inertial range, which covers
merely part of the dynamically active scales.

The new stylised feature of incremental similarity points towards a completely
different type of universality. Incremental similarity characterises the distributions
of velocity increments at all dynamically active scales. Furthermore, our empirical
analysis shows that incremental similarity is not restricted to any high Reynolds
number limit. And finally, incremental similarity provides a relatively simple map-
ping that directly connects measurements from different experiments, different in
Reynolds numbers and different in boundary conditions.

The phenomenon of incremental similarity was first noted in the paper [4] which
revealed this trait through a detailed analysis of the recordings of the main compo-
nent of the velocity vector from three different types of experiments, with Reynold’s
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numbers 80, 190, 17000. The collapsibility of the incremental distributions was of ex-
traordinary degree. This type of analysis has since been extended to a much larger
class of experiments, as reported in [5], fully confirming the original observation.
However, up till now a mathematical representation of the phenomenon has not
been given. Such a representation is proposed in this paper.

As stated here the property of incremental (or distributional) similarity is of
nonparametric character but, as demonstrated in [4], the laws of the velocity differ-
ences can be fitted by the normal inverse Gaussian distribution, denoted NIG , to a
high degree of precision. This distribution was introduced in [1] and has since found
a multitude of applications in a variety of fields. Recently the fact that NIG de-
scribes the velocity increments to high precision has found a theoretical counterpart
in studies of Birnir concerning a stochastic version of the Navier-Stokes equations,
see [7, 8, 9].

The empirical evidence for incremental similarity is summarised in Section 2.
Section 3 presents a mathematical definition of incremental similarity – or IS – and
an extended concept – extIS – and a variety of examples of stochastic processes and
fields that meet the definition of incremental similarity exactly are presented there.
For the relation to the statistical theory of turbulence it is crucial to have examples
where the processes considered are stationary, and herein lies the main difficulty.
Section 4 briefly adresses the question of modelling the timewise behaviour of the
main component of the velocity vector in homogeneous turbulence by stochastic
processes embodying the main universal features of this type of dynamics, including
that of incremental similarity.

2 Incremental similarity: empirical evidence

The empirical verification of incremental similarity, presented in [4] and [5] and
briefly outlined here, is based on the analysis of 17 experimental data sets (a wake-
flow experiments, a free-jet experiment, 13 helium jet experiments, one wind tunnel
experiment, one data set from the atmospheric boundary layer) and on one data
set from a direct numerical simulation (DNS) of the Navier-Stokes equation. The
Reynolds numbers covered by these data range from 80 up to 20000. The empirical
data consist of stationary time series of recordings of the main component of the
turbulent velocity vector measured at a fixed position in space. The DNS data are
spatially homogeneous at a fixed point in time. All data are standardised for the
velocities to have a unit variance.

Let v(i)t denote the velocity signal at time t belonging to the data set (i). We
denote by

u(i)s = v
(i)
t+s − v(i)t

the velocity increment at time scale s. Here we skip reference to t since we are
only dealing with stationary time series. (For the DNS data t denotes the spatial
position.)

A key observation related to the densities of velocity increments is depicted
in Figure 1. Each graph corresponds to the densitiy of velocity increments at a
certain time scale s with s increasing from top left to bottom right. These densities
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evolve from heavy tails at small time scales towards a more Gaussian shape at
the large time scales. This evolution across scales is well known in the literature
and sometimes called aggregational Gaussianity. Figure 1 also shows, as solid lines,
the approximation of these densities within the class of normal inverse Gaussian
distributions. The normal inverse Gaussian distributions fit the empirical densities
equally well for all time lags and all amplitudes.

Figure 1 provides one example for the evolution across scales, similar results are
observed for the other data sets we analysed. The larger the Reynolds number the
more the heavyness of the tails. And, different data sets show different distributions
at the same time scale. But the key question that is of interest here is: Do different
experiments show the same distribution of increments just at different time scales?
In other words: Is the evolution across scales exemplified in Figure 1 universal in
the sense that the distributions of u(i)s and u(j)s′ are the same if s′ is properly chosen
given s? Obviously, an affirmative answer requires that the variances at these time
scales are the same

Var(u(i)s ) = Var(u
(j)
s′ ).

Figure 2 shows the corresponding densities of velocity increments for 12 fixed
values of the variance. Each plot corresponds to a different value, increasing from
top left to bottom right. The densities within each plot correspond to different
experiments and different time lags, but the variances are the same. We clearly
observe the collapse of the densities during the whole evolution across scales. In this
sense the evolution across scales is universal.

The shape of the distributions in Figure 2 is, to a good approximation, a universal
function of the variance. For normal distributions, this is trivial. But here we clearly
have distributions that are not normal.

3 Incremental similarity: mathematical
considerations

As theoretical counterpart to the incremental similarity features discussed in Sec-
tions 1 and 2 we introduce the following definition

Definition (Incremental similarity). Let X and Z be two stochastic processes on R.
Then X and Z are said to be incrementally similar, or IS, provided that for any
t ∈ R and any u > 0 there exists a t′ ∈ R and a positive number u′ such that the
law of Z(t′ + u′)− Z(t′) is the same as that of X(t+ u)−X(t).

More generally, if X and Z are two classes of stochastic process on R then X
and Z are said to have the IS property if all pairs X and Z such that X ∈ X and
Z ∈ Z are of IS type. For brevity we will then say that (X ,Z) is IS and that X is
IS if that is the case of (X ,X ). �

There are many trivial examples of increment similarity. For instance, any con-
tinuous Gaussian process is incrementally similar to Brownian motion. Another ex-
ample is where X and Z are stationary processes on R+ with Z equal in law to a
proportional timechange of X, that is Zt = Xct for some c > 0. Various non-obvious

3



examples may be based on the following concept of extended incremental similarity
or extIS.

Definition (Extended incremental similarity). Let R be a class of positive, con-
tinuous and decreasing functions r on [0,∞). Further, let X = {X [r] : r ∈ R} be
a parametrised family of stationary processses X [r] on R with the property that for
any pair of time points (t, t + u) the joint law of X [r]

t and X [r]
t+u is fully determined

by r(u); this in particular implies that the same holds for the law of the increment
X

[r]
t+u−X [r]

t . We furthermore assume that the joint law of X [r]
t and X [r]

t+u is the same
as the joint law of X [r̃]

t and X [r̃]
t+ũ provided r(u) = r̃(ũ) whatever r and r̃ in R. We

then say that, relative to R, X has the property of extended incremental similarity
or that X is extIS.

If X is extIS then it is in particular IS. As a another direct consequence of the
definition of extIS we have

Proposition. Let X1,X2, . . . ,Xn denote independent extIS families relative to the
same index class R. If F is a real (measurable) function on Rn and if Y = {Y [r] :
r ∈ R} is the class of processes given by

Y
[r]
t = F (X

[r]
1t , . . . , X

[r]
nt )

where X [r]
j ∈ Xj, j = 1, . . . , n, then the family Y is extIS, and hence IS. In fact, the

same conclusion holds if F is random, provided it is independent of (X1,X2, . . . ,Xn).

Applications of this result will be discussed in Section 4.
We proceed to present some classes of stationary processes on R having the extIS

property
Let U be the class of stationary Gaussian processes on R of mean 0 and variance 1

such that for any member X of U the autocorrelation function r of X is positive,
continuous and strictly decreasing to 0. Then, as is easily seen, U is extIS.

The concept of trawl processes, introduced in [2], offers a range of extIS classes.
As discussed in [3], the simplest type of trawl processes X on R are of the form

Xt = L(At) (3.1)

where L is a homogeneous Lévy basis on R2 and At = A + (t, 0) for a Borel set A
in R2 with positive Lebesgue measure, points in R2 being denoted by (t, x). In this
case, since for any φ, ψ ∈ R we have

φXt + iψXt+u = φL(At\At+u) + (φ+ ψ)L(At ∩ At+u) + ψL(At+u\At)
= φL(A\Au) + (φ+ ψ)L(A ∩ Au) + ψL(Au\A)

the cumulant function of (Xt, Xt+u) is given by

C{φ, ψ‡(Xt, Xt+u)} = |A\Au|C{φ‡L′}+ |A ∩ Au|C{φ+ ψ‡′}+ |Au\A|C{φ‡L′}
= |A|

[
C{φ‡L′}+ C{ψ‡L′}
+ r(u)(C{φ‡L′}+ C{ψ‡L′} − C{φ+ ψ‡′})

]
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where L′ denotes the Lévy seed of L, | · | indicates Lebesgue measure and

r(u) =
|A ∩ Au|
|A| . (3.2)

Now consider the class A of Borel sets A such that (3.2) is positive for all real u
with r continuous and strictly decreasing on R+ and tending to 0 as u −→∞. Let R
be the corresponding class of functions r. Furthermore, for any c > 0 let Ac be the
subclass of A given by Ac = {A ∈ A : |A| = c}. If X is the class of trawl processes
corresponding to a given seed L′ and a given Ac then X is extIS and hence IS.

We note that

C{φ‡Xt+u −Xt} = |A|(1− r(u))(C{φ‡L′}+ C{−φ‡L′}).

In case L′ is square integrable then r is the autocorrelation function of the pro-
cess Y . In general we will refer to r as the autodependence function of Y . By suitable
choice of A the autodependence function can be selected to show short, middle or
long term dependence.

With reference to Section 2 we note that if the law of L′ is normal inverse
Gaussian and symmetric then Yt and all increments of Y are also normal inverse
Gaussian distributed.

Next, suppose that Xt is a stationary process of the form

Xt =

∫ t

−∞
g(t− s)L(ds) (3.3)

where L is a symmetric α-stable Lévy process on R and the kernel function g satisfies
g(s) = 0 for s < 0 and

Iα(g) =

∫ ∞

0

g(s)αds <∞. (3.4)

for some α ∈ (0, 2). Then the integral (3.3) exists and, since the Lévy seed L′ of L
has cumulant function

C{φ‡X} = −γ|φ|α, (3.5)

we find, for u > 0, that

C{φ, ψ‡Xt, Xt+u} = −γ|φ|α
∫ u

0

g(s)αds− γ
∫ 0

−∞
|φg(u− s)− ψg(−s)|αds. (3.6)

Now, let G be the class of kernel functions g such that g is continuous and strictly
decreasing to 0 and let X be the corresponding class of stochastic processes (3.3).
Suppose that g and h are both members of G and consider the analogue of (3.6), i.e.

C{φ, ψ‡Zt, Zt+u} = −γ|φ|α
∫ u

0

h(s)αds− γ
∫ 0

−∞
|φh(u− s)− ψh(−s)|αds (3.7)

where Z denotes the element of X corresponding to h. Only in quite exceptional
cases will it be possible for every u > 0 to find a v > 0 such that C{φ, ψ‡Zt, Zt+v} =
C{φ, ψ‡Xt, Xt+u}. In other words, in the present setting interesting examples of
extIS do not exist.
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On the other hand,

C{φ‡Xt+u −Xt} = −γ|φ|αĝ(u;α) (3.8)

where
ĝ(u;α) =

∫ u

−∞
|g(u− s)− g(−s)|αds (3.9)

and therefore there are subclasses of X that are IS. Specifically, for a fixed α ∈ (0, 2),
consider the subclass Gα of G of kernels g such that Iα(g) does not depend on g.
Then the processes X in X have the same one-dimensional marginal distribution,
and X is IS. In fact, for any g, h ∈ Gα and any u > 0 there exists a v > 0 such that
the condition |ĥ(v;α)| = |ĝ(u;α)| is met.

From the viewpoint of applications the question now is whether in principle it
is possible, given a class of processes that are known to be of IS type (or suspected
to be so), to determine the transformation that effectuates the collapsibility of the
laws of increments from the different members of the class.

Empirically, given that high frequency and extensive datasets are available from
each of the processes in question and that stationarity of the series is a realistic as-
sumption, the most immediate way is to first standardise the series to have the same
marginal variance and then estimate the variances of the increments for a suitable
range of lags, as was done for the turbulence data discussed in Section 2. However,
in case the data are suspected to come from a fractional regime where second order
moments may not in principle exist, such as the α-stable setting considered above,
one may resort to other methods of lag transformation, for instance resorting to
estimation of fractional moments.

4 Models of BSS/LSS type

In [6] the concept of Brownian semistationary processes – or BSS – processes was
introduced. These are stationary processes of the form

Yt = µ+

∫ t

−∞
g(t− s)σsdBs +

∫ t

−∞
q(t− s)asds (4.1)

where B is Brownian motion, σ and a are stationary processes and the kernels g
and q are deterministic functions. The particular setting

Yt = µ+

∫ t

−∞
g(t− s)σsdBs +

∫ t

−∞
q(t− s)σ2

sds (4.2)

is of particular interest. (It may be seen as a stationary analogue of the BNS model
studied in financial econometrics.) The LSS class is obtained by substitution of B
in (4.1) by a general Lévy process L.

The primary aim of the definitions of BSS and LSS was to model the timewise
behaviour of the main velocity component in a homogeneous turbulent flow, but the
same kind of processes have found many applications elsewhere, see for instance [3],
[12] and references given there.
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BSS processes of type (4.2) have been demonstrated to be capable of modelling
classical stylised features of turbulence very accurately, cf. [11]. And a recent study
[10] of the Helium data discussed in Section 2, based on exponential LSS processes,
has revealed a new type of universality for the energy dissipation.

However, the BSS structure does not have the property of extended increment
similarity and it is therefore natural to ask whether there is a modification of that
structure having dynamic behaviour closely similar to BSS but also exhibiting extIS.

To this end we now introduce the following variant of BSS. Let X be a sta-
tionary Gaussian process such that the one-dimensional marginals of X have mean
0 and variance 1. Let σ be a stationary, cadlag and square integrable process with
autocorrelation function ρ, and let

Yt = µ+ σtXt + βσ2
t (4.3)

for some constant β ∈ R. We shall refer to this type as a BSS ′ process. Colloquially
speaking, the alternative view amounts to moving the volatility process σ in (4.2)
outside the integration signs.

Now, let Y be the class of processes (4.3) obtained by letting the autocorrelation
function r of X vary over the set R for which r is positive, continous and decreasing
on R+ and taking σ2 to vary over a family Σ which in itself is extIS with the same
index set R and such that σ is paired with X so as to have the same index r. Then,
in view of the Proposition presented in Section 3, the class Y is extIS.

For instance, Σ could be chosen to be an extIS class of processes σ2 for which
the log σ2 are trawl process L(A+ (t, 0)), as discussed in Section 3 In particular, L
may be taken to be an NIG basis, as in [10].

As a further example, suppose that Z is an independent copy of X and let
σ2
t = |Zt|1/2. In this case the autovariance function of the corresponding process Y

of (4.3) is given by

E{(Yt − Y0)2}
= 2[E{σ0}2(1− r(t)) + V{σ0}r(t)(1− ρ(t)) + 2β2V{σ2

0}(1− %(t))]

where % is the autocorrelation function of σ2, with

E{(Yt − Y0)2} = 2[(3 + 96β2)− r(t)− 2r(t)3 − 72β2r(t)2 − 24β2r(t)4

which is a monotonely decreasing function of r(t) enabling direct lag identification.
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Figure 1: Logarithmic representation of probability density functions. Red dots: empirical
pdf of the wind tunnel dataset. Solid black: pdf of the corresponding estimated normal in-
verse Gaussian distribution. Dashed black: pdf of the normal inverse Gaussian distribution
fitted from all sixteen data sets pooled into a single one.
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Figure 2: Logarithm representation of the empirical probability density function of the
sixteen datasets, after pairing of variances. The thirteen Helium jet data sets are displayed
using the same color (yellow).The wind tunnel dataset is displayed in red and the data
set from the atmospheric boundary layer is displayed in green. The DNS dataset (blue) is
absent in the case of the largest variance.
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