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Abstract

The Takacs–Fiksel method is a general approach to estimate the parameters
of a spatial Gibbs point process. This method embraces standard procedures
such as the pseudolikelihood and is defined via weight functions. In this pa-
per we propose a general procedure to find weight functions which reduce the
Godambe information and thus outperform pseudolikelihood in certain situ-
ations. The performance of the new procedure is investigated in a simulation
study and it is applied to a standard dataset. Finally, we extend the proce-
dure to handle replicated point patterns and apply it to a recent neuroscience
dataset.

Keywords: Gibbs point processes; Godambe information; optimal estimation;
pseudolikelihood; spatial point processes.

1 Introduction

Spatial Gibbs point processes are important models for spatial dependence in point
patterns (van Lieshout, 2000) with a broad range of applications (e.g. Stoyan and
Penttinen, 2000; Illian et al., 2008). Such processes are specified by a density with
respect to a Poisson point process or, equivalently, by the Papangelou conditional in-
tensity. When the density or Papangelou conditional intensity has a parametric form,
popular options for parameter estimation include maximum likelihood (e.g. Ogata
and Tanemura, 1984; Møller and Waagepetersen, 2004), maximum pseudolikelihood
(e.g. Besag, 1977; Jensen and Møller, 1991; Baddeley and Turner, 2000; Billiot et al.,
2008), maximum logistic regression likelihood (Baddeley et al., 2014) and Takacs-
Fiksel estimation (e.g. Fiksel, 1984; Takacs, 1986; Coeurjolly et al., 2012).

Maximum likelihood estimation for a Gibbs point process requires computation-
ally intensive estimation of an unknown normalizing constant in the density function.
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This explains why alternative estimation methods have been studied. Takacs-Fiksel
estimation is an estimating function method based on the general Georgii-Nguyen-
Zessin integral equation involving the Papangelou conditional intensity and a user-
specified weight function. A particular choice of the weight function allows us to
recover the score of the pseudolikelihood. Pseudolikelihood estimation has an in-
tuitively appealing motivation and is by far the most popular estimation method
in practical applications of Gibbs point processes with a user-friendly implemen-
tation in the spatstat package (Baddeley and Turner, 2005). Logistic regression
likelihood estimation for Gibbs point processes was recently introduced to eliminate
a bias problem coming from the Berman-Turner approximation of the pseudolikeli-
hood (Berman and Turner, 1992; Baddeley and Turner, 2000). The logistic regression
can be viewed as a computationally efficient approximation of the pseudolikelihood.
Hence in the following, we may not differentiate between the pseudolikelihood and
the logistic regression methods. It is not known whether pseudolikelihood is the op-
timal Takacs-Fiksel method in terms of minimizing parameter estimation variance.
The various alternative weight functions for Takacs-Fiksel estimation considered in
Diggle et al. (1994) and Coeurjolly et al. (2012) did for example not outperform
pseudolikelihood.

In this paper our aim is to develop a systematic approach to construct a weight
function that can lead to a more efficient estimation approach than existing methods.
Our approach is motivated by the one considered in Guan et al. (2015) who con-
sidered estimation of the intensity function of a spatial point process and identified
the optimal estimating function within a class of estimating functions based on the
Campbell formula (e.g. Møller and Waagepetersen, 2004). Their optimal estimating
function was derived from a sufficient condition equating the sensitivity matrix for
the optimal estimating function and the covariance between the optimal estimating
function and an arbitrary estimating function.

Extending the ideas in Guan et al. (2015) to Gibbs point processes is not straight-
forward. One problem is that covariances of Takacs-Fiksel estimating functions are
not available in closed forms. For this reason our derived weight function only ap-
proximately satisfies the aforementioned sufficient condition. Nevertheless, we show
in a simulation study that the new weight function may yield better estimation
accuracy and is closer to fulfilling the sufficient condition than pseudolikelihood.
Another issue is that the practical implementation of the new method is more com-
putationally demanding than the pseudolikelihood, especially for point patterns of
high cardinality. On the other hand, fine-tuning the estimation method is more a
concern for small datasets.

The rest of the paper is organized as follows. Section 2 gives background on Gibbs
point processes and Takacs-Fiksel estimation and presents our new methodology. We
discuss implementation issues in Section 3. Section 4 contains a simulation study
and applications to the standard Spanish towns dataset as well as a recent replicated
point pattern dataset from neuroscience.
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2 Background and methodology

2.1 Gibbs point processes

A point process X on Λ ⊆ Rd is a random subset of Λ that is locally finite, meaning
that X ∩W is almost surely finite for every bounded W ⊆ Λ. When Λ is bounded,
then X is a finite point process almost surely, taking values in Ω, the set of finite
point configurations in Λ.

In this paper, we consider parametric inference for a finite Gibbs point processX.
The distribution of X is specified by a density f(·; θ) : Ω → [0,∞) with respect to
the Poisson process of unit intensity. The density is of the form

f(y; θ) ∝ H(y)eV (y;θ)

where θ ∈ Θ ⊆ Rp is a p-dimensional parameter vector, H : Ω→ [0,∞) serves as a
baseline or reference factor, and V : Ω→ R is often called the potential. Assuming
that H is hereditary, i.e. H(y ∪ u) > 0 implies H(y) > 0 for any u ∈ Λ and y ∈ Ω,
the Papangelou conditional intensity of X exists and is defined by

λ(u,y; θ) =
f(y ∪ u; θ)

f(y; θ)
= H(u,y)eV (u,y;θ)

where H(u,y) = 1[H(y) > 0]H(y∪u)/H(y) and V (u,y; θ) = V (y∪u; θ)−V (y; θ).
Note that λ and f are in one-to-one correspondence. Hence the distribution of X
can equivalently be specified in terms of the Papangelou conditional intensity. In-
tuitively, λ(u,x; θ) du is the conditional probability that a point of X occurs in a
small neighbourhood Bu of volume du around the location u, given X outside Bu is
equal to x; see Georgii (1976) for a general presentation and Coeurjolly et al. (2015)
for links with Palm distributions. Gibbs point processes can also be characterized
through the Georgii-Nguyen-Zessin formula (see Georgii, 1976; Nguyen and Zessin,
1979), which states that for any h : Λ×Ω→ R (such that the following expectations
are finite)

E
∑

u∈X
h(u,X \ u) = E

∫

Λ

h(u,X)λ(u,X; θ) du. (2.1)

Conditions ensuring the existence of Gibbs point processes, including the un-
bounded case Λ = Rd, constitute a full research topic (see e.g. Dereudre et al., 2012,
and the references therein). We here restrict our attention to two specific examples.
Let, for R ≥ 0, sR(u,y) denote the number of R-close neighbours of u in y. The
Strauss model is then defined by H(u,y) = 1 and V (u,y; θ) = θ1 + θ2sR(u,y) for
θ1 ∈ R and θ2 ≤ 0. For the Strauss hard core model, V (u,y; θ) is defined as for the
Strauss model while H(u,y) is 1 if all the points of y ∪ u are separated by some
hard core distance δ > 0 and zero otherwise. The Strauss hard core model exists for
all θ1, θ2 ∈ R. Other examples can be found in Møller and Waagepetersen (2004);
see also Section 4.3 for an example of an inhomogeneous model.

In this paper we mainly focus on the case of a bounded Λ and assume W = Λ.
We further assume finite range, i.e. for any u ∈ Λ and y ∈ Ω

λ(u,y; θ) = λ(u,y ∩B(u,R); θ) (2.2)
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where B(u,R) is the ball with center u and radius 0 < R <∞. Thus the conditional
intensity of a point u given y only depends on the R-close neighbors in y. Extensions
to marked Gibbs point processes and/or Gibbs point processes of unbounded range
are possible at the expense of more notation and technicalities. We avoid this to
focus on the new statistical methodology that we propose.

2.2 Takacs-Fiksel estimation

The class of Takacs-Fiksel estimating functions (Fiksel, 1984; Takacs, 1986) consists
of functions of the form

eh(θ) =
∑

u∈X∩W
h(u,X \ u; θ)−

∫

W

h(u,X; θ)λ(u,X; θ) du (2.3)

for weight functions h : Λ × Ω → Rp parameterized by θ. By the Georgii-Nguyen-
Zessin formula (2.1) these estimating functions are unbiased, i.e., E eh(θ) = 0. An
estimate obtained by solving eh(θ) = 0 with respect to θ is called a Takacs-Fiksel
estimate.

When h(u,y; θ) = d log λ(u,y; θ)/ dθ, (2.3) is the score function for the log pseu-
dolikelihood function. The corresponding estimate can be obtained using standard
statistical software and its statistical properties have been deeply studied in the
literature (e.g. Jensen and Møller, 1991; Mase, 1999; Jensen and Künsch, 1994;
Billiot et al., 2008; Baddeley et al., 2014). However, the pseudolikelihood score has
not been shown to be optimal within the class of Takacs-Fiksel estimating functions.
In the following section our aim is to construct a competitor to the pseudolikelihood
in terms of statistical efficiency.

2.3 Towards optimality

For an estimating function eh, two important quantities are the sensitivity matrix
Sh = −E

(
d

dθ> eh(θ)
)
and the covariance matrix Σh = Var(eh(θ)) of the estimating

function. From these the Godambe information matrix is obtained as

Gh = S>h Σ−1
h Sh.

In applications of estimating functions, the inverse Godambe matrix provides the
approximate covariance matrix of the associated parameter estimate. An estimating
function eφ is said to be Godambe optimal in a class of estimating functions eh
indexed by a set C of functions h, if the difference Gφ −Gh is non-negative definite
for all h ∈ C. Following Guan et al. (2015), a sufficient condition for eφ to be optimal
is that for every estimating function eh, h ∈ C,

Cov(eh(θ), eφ(θ)) = Sh. (2.4)

In the context of Takacs-Fiksel estimating functions (2.3),

d

dθ>
eh(θ) =

∑

u∈X∩W

d

dθ>
h(u,X \ u; θ)−

∫

W

d

dθ>
h(u,X; θ)λ(u,X; θ) du

−
∫

W

h(u,X; θ)
d

dθ>
λ(u,X; θ) du.
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So by the Georgii-Nguyen-Zessin formula (2.1),

Sh = E

∫

W

h(u,X; θ)
d

dθ>
λ(u,X; θ) du. (2.5)

The definition of the estimating function eh actually corresponds to the concept
of innovations for spatial point processes (Baddeley et al., 2005). Coeurjolly and
Rubak (2013) investigated the problem of estimating the covariance between two
innovations which here corresponds to the covariance between two estimating func-
tions. Assuming the right hand side below is finite, Coeurjolly and Rubak (2013,
Lemma 3.1) established that

Cov(eh(θ), eg(θ)) = E
[ ∫

W

h(u,X; θ)g(u,X; θ)>λ(u,X; θ) du

+

∫

W

∫

W

h(u,X; θ)g(u,X; θ)> (λ(u,X; θ)λ(v,X; θ)− λ({u, v},X; θ)) du dv

+

∫

W

∫

W

∆vh(u,X; θ)∆ug(v,X; θ)>λ({u, v},X; θ) du dv
]

(2.6)

where for any u, v ∈ W and any y ∈ Ω, the second order Papangelou conditional
intensity λ({u, v},y; θ) and the difference operator ∆uh(v,y; θ) are given by

λ({u, v},y; θ) = λ(u,y)λ(v,y ∪ u; θ) = λ(v,y; θ)λ(u,y ∪ v; θ)

∆uh(v,y; θ) = h(v,y ∪ u; θ)− h(v,y; θ).

Returning to the condition (2.4), we introduce for any y ∈ Ω the operator Ty
acting on Rp valued functions g,

Tyg(u) =

∫

W

g(v)t(u, v,y; θ) dv, (2.7)

where
t(u, v,y; θ) = λ(v,y; θ)

(
1− λ(v,y ∪ u; θ)

λ(v,y; θ)

)
.

The finite range property of the Papangelou conditional intensity implies that for
any v /∈ B(u,R), t(u, v,y; θ) = 0. So the domain of integration in (2.7) is actually
just W ∩B(u,R). From (2.5)-(2.6), (2.4) is equivalent to E(A) + E(B) = 0 where

A =

∫

W

h(u,X; θ)λ(u,X; θ)

{
φ(u,X; θ)− λ(1)(u,X; θ)

λ(u,X; θ)
+ TXφ(u,X; θ)

}>
du

(2.8)

B =

∫

W

∫

W

∆vh(u,X; θ)∆uφ(v,X; θ)>λ({u, v},X; θ) du dv (2.9)

and λ(1)(u,X; θ) = dλ(u,X; θ)/ dθ. The expectation E(B) is very difficult to eval-
uate. Moreover, in the context of asymptotic covariance matrix estimation for the
pseudolikelihood, Coeurjolly and Rubak (2013) remarked that the contribution of
the term (2.9) to the covariance Cov(eh(θ), eφ(θ)) was negligible. In the following
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we will neglect the term (2.9) and call ‘semi-optimal’ a function φ : W × Ω → Rp

(parameterized by θ) such that for any h : W ×Ω→ Rp, E(A) = 0. This holds if for
any y ∈ Ω, φ(·,y; θ) is the solution to the Fredholm integral equation (e.g. chapter 3
in Hackbusch, 1995)

φ(·,y; θ) + Tyφ(·,y; θ) =
λ(1)(·,y; θ)

λ(·,y; θ)
(2.10)

Compared to Guan et al. (2015) the problem of optimal Takacs-Fiksel estimation
poses additional challenges. One is the term B which does not appear in the context
of optimal estimation of the intensity function. Another is that φ is a function of both
u ∈ W and y ∈ Ω which implies additional computational complexity as detailed in
the following section.

Having solved (2.10), the covariance and sensitivity matrices for the resulting
estimating function

eφ(θ) =
∑

u∈X∩W
φ(u,X \ u; θ)−

∫

W

φ(u,X; θ)λ(u,X; θ) du (2.11)

are given by

S = E

∫

W

φ(u,X; θ)λ(1)(u,X; θ)> du

Σ = S + E

∫

W

∫

W

∆uφ(v,X; θ)∆vφ(u,X; θ)>λ({u, v},X; θ) du dv.

Note that for a truly optimal φ, we would have S = Σ. In the simulation studies in
Section 4.1 we assess how close S and Σ are for our semi-optimal φ.

3 Implementation

Let x = {x1, . . . , xn} denote a realization of X. To solve eφ(θ) = 0, we use Newton-
Raphson iterations starting at the pseudolikelihood estimate with the Hessian matrix
estimated by the empirical sensitivity Ŝ =

∫
W
φ(u,x; θ)λ(1)(u,x; θ)> du. To evaluate

eφ and Ŝ we need to solve (2.10) with respect to φ(·;y; θ) for all y = x,x\x1, . . . ,x\
xn.

3.1 Symmetrization

To ease the implementation and in particular the use of Cholesky decompositions,
we symmetrize the operator Ty. This is possible if we assume for any u, v ∈ W and
y ∈ Ω, the ratio λ(v,y∪u; θ)/λ(v,y; θ) is symmetric in u and v. This assumption is
valid for instance for all pairwise interaction point processes. Indeed, the Papangelou
conditional intensity of such processes is given by λ(u,y; θ) = e

∑
w∈y ψ({w,u};θ) where

ψ is a real valued function, whereby λ(v,y ∪ u; θ)/λ(v,y; θ) = eψ({v,u};θ).
We now multiply each term of (2.10) by

√
λ(·,y; θ) and reformulate the problem

to solve

φ̃(·,y; θ) + T̃yφ̃(·,y; θ) =
λ(1)(·,y; θ)√
λ(·,y; θ)

(3.1)
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with respect to the function φ̃(·,y; θ) =
√
λ(·,y; θ)φ(·,y; θ) where T̃y is the operator

with kernel

t̃(u, v,y; θ) =
√
λ(u,y; θ)λ(v,y; θ)

(
1− λ(v,y ∪ u; θ)

λ(v,y; θ)

)
.

Once we have obtained the function φ̃, we obtain the semi-optimal function φ by
φ(u,y; θ) = φ̃(u,y; θ)/

√
λ(u,y; θ).

3.2 Numerical solution using Nyström approximation

The equation (3.1) is solved numerically using the Nyström approximation (Nys-
tröm, 1930). We introduce a quadrature scheme with m quadrature points u1, . . . ,
um ∈ W and associated weights wj, j = 1, . . . ,m, and approximate the operator Ty
for any Rp valued function g by

Tyg(u) ≈
m∑

j=1

g(uj)t(u, uj,y; θ)wj.

Introducing the quadrature approximation in (3.1) and multiplying each term by√
wi we obtain

√
wiφ̃(ui,y; θ), i = 1, . . . ,m, as solutions of the linear equations

√
wiφ̃(ui,y; θ) +

m∑

j=1

√
wiwj t̃(ui, uj,y; θ)

√
wjφ̃(uj,y; θ) =

√
wi

(
λ(1)(ui,y; θ)√
λ(ui,y; θ)

)
,

for i = 1, . . . ,m. These equations can be reformulated as the matrix equation
(
Im + T̃(y; θ)

)√
wφ̃(y; θ) = `(y; θ) (3.2)

where Im is the m × m identity matrix, T̃(y; θ) = [
√
wiwj t̃(ui, uj,y; θ)]ij, i, j =

1, . . . ,m, `(y; θ) is the m × p matrix with rows
√
wiλ

(1)(ui,y; θ)>/
√
λ(ui,y; θ),

i = 1, . . . ,m, and
√
wφ̃(y; θ) is the m × p matrix with rows

√
wiφ̃(ui,y; θ)>. The

symmetric matrix T̃(y; θ) is sparse due to the finite range property. Thus, provided
that Im + T̃(y; θ) is positive definite, the matrix equation can be solved with re-
spect to

√
wφ̃(y; θ) using sparse Cholesky factorization (see Davis, 2006, and the R

package Matrix).
Having solved (3.2) with respect to

√
wφ̃(y; θ), and thus obtaining estimates of√

wiφ̃(ui,y; θ), we obtain estimates φ̂(ui,y; θ) of φ(ui,y; θ) via the relation φ̂(ui,y; θ)

= φ̃(ui,y; θ)/
√
wiλ(ui,y; θ). Letting φ̂(y; θ) be them×pmatrix with rows φ̂(uj,y; θ)>

the Nyström approximation of φ(u,y; θ) for any u ∈ W is

φ̂(u,y; θ) ≈ λ(1)(u,y; θ)

λ(u,y; θ)
− φ̂(y; θ)>(wjt(u, uj,y; θ))mj=1.

In particular we obtain the approximations φ̂(u,x \ u; θ) of φ(u,x \ u; θ), u ∈ x,
which are needed to evaluate the first term in (2.11). Finally, the integral term in
(2.11) and the empirical sensitivity are approximated by

φ̂(x; θ)>(wjλ(uj,x; θ))mj=1 and φ̂(x; θ)>wλ(1)(x; θ)

where wλ(1)(x; θ) is the m× p matrix with rows wjλ(1)(uj,x; θ)>.
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3.3 Some computational considerations

The matrix Im + T̃(y; θ) is not guaranteed to be positive definite. In case of purely
repulsive point processes (Papangelou conditional intensity always decreasing when
neighbouring points are added) all entries in T̃(y; θ) are positive and we did not
experience negative definite Im + T̃(y; θ). However, with models allowing for pos-
itive interaction we occasionally experienced negative definiteness in which case a
solution for φ(·,y; θ) cannot be obtained. In such case we simply returned the pseu-
dolikelihood estimate.

In case of a quadrature scheme corresponding to a subdivision of W into square
cells of sidelength s the computational complexity of one Newton-Raphson update
is roughly of the order (n + 1)m(R/s)2. Thus, the semi-optimal approach is less
feasible for data with a high number n of points. On the other hand, fine-tuning the
estimation method is probably less a concern in data rich situations.

In case of e.g. the Strauss hard core process we may encounter λ(uj,y; θ) = 0.
In this case we use the conventions λ(1)(uj,y; θ)/

√
λ(uj,y; θ) = 0 and λ(uj,y ∪

uj; θ)/λ(uj,y; θ) = 0.

4 Numerical experiments and applications

In this section we consider first a simulation study for the Strauss process followed
by two data examples: the classical Spanish towns data and a recent dataset from
neuroscience.

4.1 Simulation study

The performance of our semi-optimal estimating function relative to the pseudo-
likelihood score is studied by applying both estimating functions to simulations of
a Strauss process (Section 2.1) on the unit square. We use the spatstat (Badde-
ley and Turner, 2005) procedure rStrauss() to generate exact simulations of the
Strauss process for β = exp(θ1) = 100 and all combinations of R = 0.04, 0.08, 0.12
and γ = exp(θ2) = 0.1, 0.2, 0.4, 0.8.

The semi-optimal estimating function is implemented using a 50×50 or a 75×75
grid. For the pseudolikelihood we use the unbiased logistic likelihood implementation
introduced in Baddeley et al. (2014) with a stratified quadrature point process on the
same grids. For both estimation methods, R is assumed known and equal to the value
used to generate the simulations. For the parameters θ1 and θ2, Table 1 shows for
each parameter setting, the root mean square error (RMSE) of the pseudolikelihood
estimates minus the RMSE of the semi-optimal estimates relative to the RMSE of the
pseudolikelihood estimates. For each parameter setting, the RMSEs are estimated
from a sample of 1000 parameter estimates obtained from 1000 simulations. Since
the parameter estimates are close to being unbiased we obtain essentially the same
results by replacing RMSE with the standard error of the simulated estimates. We
omit simulations where all interpoint distances are larger than R and thus neither
the pseudolikelihood nor the semi-optimal estimates exist. The reported relative
differences in RMSE are subject to Monte Carlo error. Table 1 therefore also shows
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Table 1: RMSE for pseudolikelihood minus RMSE for semi-optimal relative to RMSE for
pseudolikelihood (in percent) in case of estimation of θ1 and θ2. Grids of 50×50 or 75×75
quadrature points are considered. Numbers between brackets are bootstrap standard errors
(in percent).

Interaction parameter γ = exp(θ2)

Range
and grid

0.1 0.2 0.4 0.8

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

R = 0.04
(50,50) −1 (0.5) 1 (0.3) −1 (0.4) 0 (0.2) −2 (0.3) 0 (0.3) −2 (0.2) 0 (0.3)
(75,75) −1 (0.4) 0 (0.2) −1 (0.3) 0 (0.2) −1 (0.3) 0 (0.2) −1 (0.2) 0 (0.2)
R = 0.08
(50,50) 3 (1) 1 (0.6) 0 (0.9) 0 (0.6) 5 (0.8) 2 (0.7) 4 (0.5) 2 (0.7)
(75,75) 2 (0.8) 2 (0.5) 3 (0.9) 2 (0.6) 2 (0.8) 1 (0.7) 1 (0.5) 1 (0.6)
R = 0.12
(50,50) 3 (1.2) 5 (0.8) 4 (1.1) 3 (1) 6 (1.3) 4 (1.3) 5 (1) 4 (1.2)
(75,75) 3 (1.3) 5 (0.9) 7 (1.2) 4 (1) 7 (1.3) 5 (1.2) 7 (1.1) 6 (1.4)

Table 2: Relative difference (in percent) between sensitivity and variance of estimating
function, (Sij − Σij)/Σij , ij = 11, 12, 22. Upper three rows: semi-optimal. Lower three
rows: pseudolikelihood. A grid of 75× 75 quadrature points is used.

Interaction
range

Interaction parameter γ = exp(θ2)

0.1 0.2 0.4 0.8

R = 0.04 3 −17 −48 5 −5 −49 2 15 −44 3 −4 −46
0.08 −5 −31 −50 −2 −16 −44 3 −7 −40 1 1 −33
0.12 −10 −38 −45 −10 −36 −49 −7 −23 −41 −5 −10 −26

R = 0.04 41 −4 −46 40 11 −47 27 34 −41 12 4 −43
0.08 87 −4 −46 80 20 −35 71 35 −27 30 27 −20
0.12 119 −3 −37 102 6 −35 87 31 −18 41 32 0

estimated standard errors for these obtained by applying a bootstrap to each Monte
Carlo sample.

In case of R = 0.04, there is no efficiency improvement by using the semi-optimal
estimating function. In fact the semi-optimal approach appears to be sometimes
slightly worse than pseudolikelihood, even when taking into account the Monte Carlo
error of the estimated relative differences in RMSE. However, for R = 0.08 and
R = 0.12 the semi-optimal approach is always better with decreases up to 5 and 7%
in RMSE for semi-optimal relative to RMSE for pseudolikelihood. The results are
fairly similar for the two choices of grids with consistently slightly better results for
the 75× 75 grid in case of R = 0.12.

For an optimal estimating function and at the true parameter value, the covari-
ance Σ of the estimating function coincides with the sensitivity matrix S. Table 2
shows the estimated relative differences (Sij − Σij)/Σij in percent for the pseudo-
likelihood and semi-optimal estimating functions.
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For neither of the estimating functions, the covariance and sensitivity agree.
However, in general the relative deviations are larger for pseudolikelihood than for
semi-optimal.

4.2 Application to the Spanish towns dataset

In this section, we consider the Spanish towns dataset (see Figure 1) which Ripley
(1988) and then Illian et al. (2008) proposed to model using a Strauss hard core
model.
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Figure 1: Left: locations of 69 Spanish towns in a 40 mile by 40 mile region. Right: 95%
confidence ellipses for the parameters (θ1, θ2) for the pseudolikelihood and the semi-optimal
Takacs-Fiksel methods.

We compare results regarding estimation of θ1 and θ2 using respectively the new
method and the pseudolikelihood. For the hard core distance and the interaction
range we use the values δ̂ = 0.83 and R̂ = 3.5 obtained by Illian et al. (2008). As in
the previous section, for the pseudolikelihood we use the unbiased logistic likelihood
implementation with a stratified quadrature point process on a 50 × 50 grid. The
same grid is used for the semi-optimal Takacs-Fiksel estimator.

Pseudolikelihood and semi-optimal estimates are presented in Table 3.

Table 3: Results for Strauss model applied to the Spanish towns dataset. First and sec-
ond row: semi-optimal (SO) and pseudolikelihood (PL) estimates with estimated standard
errors in parantheses. Last row: ratio of semi-optimal standard errors to pseudolikelihood
standard errors.

θ1 θ2

SO −1.88 (0.12) −0.87 (0.08)
PL −1.96 (0.15) −0.89 (0.10)
Ratio se 0.79 0.79
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Standard errors of the pseudolikelihood estimates (respectively the semi-optimal
Takacs-Fiksel estimates) are estimated from 500 simulations of the model fitted using
the pseudolikelihood (respectively the semi-optimal procedure). The standard errors
are clearly reduced with the semi-optimal Takacs-Fiksel method. In addition to these
results, we compute the Frobenius norm of the estimated covariance matrices for the
pseudolikelihood and optimal Takacs-Fiksel estimates (which actually corresponds
to estimate of the inverse Godambe matrices). We obtained approximately the values
0.25 and 0.20 for the pseudolikelihood and the semi-optimal Takacs-Fiksel methods
respectively. Based on the asymptotic normality results established by Baddeley
et al. (2014) and Coeurjolly et al. (2012), we construct 95% confidence ellipses for
the parameter vector (θ1, θ2). The ellipses are depicted in the right plot of Figure 1.
The area of the confidence region for the semi-optimal Takacs-Fiksel method is
81% of the one for the pseudolikelihood. In line with the simulation study, these
empirical findings show that more precise parameter estimates can be obtained with
the semi-optimal Takacs-Fiksel method compared to pseudolikelihood.

4.3 Application to synaptic vesicles

Synapses are regions in the brains where nerve impulses are transmitted or received.
Inside the synapses, neurotransmitters are carried by small membrane-bound com-
partments called synaptic vesicles. Recently Khanmohammadi et al. (2014) studied
whether stress affects the spatial distribution of vesicles within the synapse. The
data used for the study originated from microscopial images of slices of brains from
respectively a group of 6 control rats and a group of 6 stressed rats. The images
were annotated to identify the boundaries of the synapses and possible mitochon-
dria in the synapses, the location of the vesicles, and the extents of the so-called
active zones where the vesicles release their contents of neurotransmitters. Figure 2
shows the annotations of two synapses. In total 7 synapses from the control rats
and 6 synapses from the stressed rats were annotated. For each synapse several im-
ages corresponding to several slices of the synapse were annotated. We restrict here
attention to the middle slice for each synapse. Thus, our data consist of 7 and 6
annotated images for respectively the control and the stressed rats. The side lengths
of enclosing rectangles for the synapses range between 395.6 and 1009.0nm with a
mean of 663.0nm. Further details on the dataset can be found in Khanmohammadi
et al. (2014).

4.3.1 Point process models for locations of vesicles

For the ith image of type t = C, S (control or stressed) we consider the centers of
the vesicles as a realization of a finite spatial point process Xti with observation
window Wti defined by the boundary of the synapse excluding areas occupied by
mitochondria. We further assume that the pairs (Wti,Xti) of the observation win-
dows and the spatial point processes for different images are independent, that the
Wti are all identically distributed and that the Xti of the same type t are identically
distributed. Khanmohammadi et al. (2014) modelled the locations of the vesicles as
an inhomogeneous Strauss hard core process, but noted some evidence of aggrega-
tion of vesicles at a larger scale not accommodated by this model. After considering
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Figure 2: Plots of vesicle locations for a control (left) and a stressed (right) synapse.
The active zone is shown by the red curve while the green curves show the boundary of
mitochondria.

the Strauss hard core model for reference, we therefore extend it to a multiscale
model with an additional interaction term. More precisely, for a location u and a
configuration x of vesicle locations in a synapse of type t, the conditional intensity
is of the form

λt(u,x; θ) = exp[θ0t + θ1td(u) + θ2tsr(u,x) + θ3tsr,R(u,x)]Hδ(u,x) (4.1)

where t = C, S, 0 ≤ δ < r < R, θ0t, θ1t, θ2t, θ3t ∈ R, d(u) is distance to the active
zone, sr(u,x) is the number of points in x with distance to u smaller than r, sr,R(u,x)
denotes the number of points in x with distance to u in the interval [r, R], and the
hard core term Hδ(u,x) is 1 if all points in x∪u are separated by a distance greater
than δ and zero otherwise. The inhomogeneous Strauss hard core model is the special
case with θ3t = 0. As in Khanmohammadi et al. (2014) the hard core distance h is
set to 17.5 nm corresponding to the average diameter of a vesicle and the interaction
distance r is set to 32.5 nm. We further choose the value of R = 107.5 nm to maximize
a profile pseudolikelihood based on the data for all 13 images. We finally scale the
distances d(·) by a factor 10−3 in order to obtain θlt estimates of the same order of
magnitude.

4.3.2 Inference for replicated point patterns

Let eti denote an estimating function (either the pseudolikelihood score or the semi-
optimal) for the tith image and denote by θt the vector of parameters to be inferred,
t = C, S. Then for each group we optimally form a pooled estimating function et as
the sum of the eti’s. Following standard asymptotic arguments for pooled indepen-
dent estimating functions, the variance of the corresponding parameter estimate is
approximated as

Var
√
nt(θ̂t − θt) ≈ (St1)−1 Var et1(St1)−1

(the so-called sandwich estimator, Song, 2007) where nt is the number of replicates
of type t and St1 is the sensitivy matrix associated with et1. In practice we replace
St1 and Var et1 by their empirical estimates replacing the unknown θt with its es-
timate. We conduct the pseudolikelihood estimation for the replicated data using
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the user-friendly mppm procedure in the R package spatstat while using our own
code to evaluate the approximate variances of the pseudolikelihood or semi-optimal
estimates.

4.3.3 Results for synapse data

Table 4 shows parameter estimates and associated standard errors obtained for the
Strauss hard core model with either the pseudolikelihood or the semi-optimal ap-
proach.

Table 4: Results for Strauss hard core process. Semi-optimal (SO) and pseudolikelihood
(PL) estimates with estimated standard errors in parantheses and ratios of semi-optimal
standard errors to pseudolikelihood standard errors. First three rows: control. Last three
rows: stressed.

θ0C θ1C θ2C

SO −6.74 (0.21) −0.68 (0.20) −2.79 (1.00)
PL −6.80 (0.21) −0.66 (0.22) −2.61 (1.00)
Ratio se 1.01 0.80 1.02

θ0S θ1S θ2S

SO −5.51 (0.23) −1.14 (0.47) −0.61 (0.21)
PL −5.63 (0.24) −1.12 (0.49) −0.45 (0.24)
Ratio se 0.93 0.91 0.78

Except for θ2S, the semi-optimal and pseudolikelihood estimates are fairly sim-
ilar. The qualitative conclusions based on the two types of estimates are identi-
cal: negative dependence of conditional intensity on distance and strong repulsion
between vesicles both in the control and the stressed group. The estimated semi-
optimal standard errors are smallest for all parameters in the stressed group and
θ1C in the control groups. For θ0C and θ2C the estimated semi-optimal and pseudo-
likelihood standard errors are very similar.

Due to the aforementioned evidence of large scale aggregation we turn to the
multiscale model for a more detailed comparison of the control and the stressed
group. Parameter estimates and associated standard errors for the multiscale model
are shown in Table 5. The qualitative conclusions based on the pseudolikelihood and
the semi-optimal estimates coincide. All parameters are significantly different from
zero (assuming estimate divided by its standard error is approximately N(0, 1)). In
particular the positive estimates of θ3C and θ3S confirm that there is aggregation at
a larger scale. The negative estimates of θ1t, t = C, S indicate that the conditional
intensity is decreasing as a function of distance to the active zone while there appears
to be a strong repelling interaction between vesicles according to the estimates of θ2t.

To test the hypotheses: Hl: θlS = θlC , l = 0, 1, 2, 3, we consider statistics of
the form (θ̂lS − θ̂lC)/

√
se2
lS + se2

lC where se2
1t denotes the estimated standard er-

ror of the estimate θ̂lt t = S,C and the estimates are obtained either using the
semi-optimal approach or pseudolikelihood. Under the hypothesis this statistic is
approximately N(0, 1). According to these tests, H0 and H2 and H3 are rejected
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Table 5: Results for multiscale process. Semi-optimal (SO) and pseudolikelihood (PL)
estimates with estimated standard errors in parantheses and ratios of semi-optimal stan-
dard errors to pseudolikelihood standard errors. First three rows: control. Last three rows:
stressed.

θ0C θ1C θ2C θ3C

SO −8.87 (0.12) −0.47 (0.11) −3.40 (0.78) 0.45 (0.02)
PL −8.71 (0.13) −0.46 (0.12) −3.35 (0.80) 0.40 (0.02)
Ratio se 0.94 0.93 0.98 1.01

θ0S θ1S θ2S θ3S

SO −7.87 (0.21) −0.48 (0.26) −1.17 (0.18) 0.26 (0.02)
PL −7.84 (0.19) −0.69 (0.27) −1.12 (0.18) 0.24 (0.02)
Ratio se 1.12 0.96 0.97 1.07

while H1 is not irrespective of the estimation method (p-values <0.0001, 0.96, 0.005,
<0.0001 and <0.0001, 0.44, 0.006 and <0.0001 for semi-optimal and pseudolikeli-
hood, respectively). There is thus evidence that the negative interaction between
vesicles is stronger for the control rats than for the stressed rats which means that
the vesicles tend to form more regular patterns for the control rats.

For the control data, the estimated standard errors are smallest with the semi-
optimal approach except for θ3C . For the stressed rats the semi-optimal standard
errors are smallest for θ1S and θ2S but not for θ0S and θ3S. Overall, a clear pat-
tern is not visible. Note also that the ratios of estimated standard errors should be
interpreted with care as they are obviously subject to sampling error.

5 Discussion

In this paper, we have investigated the scope for outperforming the pseudolikelihood
by tuning weight functions for the Takacs-Fiksel estimator. Due to the complicated
nature of moments for Gibbs point processes, the method is less straightforward
than the one proposed by Guan et al. (2015) for estimating the intensity function of
a spatial point process. Therefore our new Takacs-Fiksel method is not guaranteed
to be optimal. It is also computationally more expensive than the approach in Guan
et al. (2015) because the weight function needs to be evaluated for both the observed
point pattern and all patterns obtained by omitting one point at a time.

In the simulation study and the applications we have demonstrated that for
purely repulsive point processes, the new semi-optimal approach can yield better
statistical efficiency than the pseudolikelihood while the picture is less clear for
more complex situations involving both repulsive and attractive interactions. When
comparing the methods the higher computational complexity of the semi-optimal
approach should also be taken into account. Thus, while we have made a signifi-
cant step towards optimal Takacs-Fiksel estimation there is still room for further
improvement.
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