
www.csgb.dk

RESEARCH REPORT 2016

CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Eva B.Vedel Jensen and Markus Kiderlen

Rotation Invariant Valuations

No. 03, February 2016



Rotation Invariant Valuations

Eva B.Vedel Jensen and Markus Kiderlen

Department of Mathematics
Aarhus University

eva@math.au.dk, kiderlen@math.au.dk

Abstract

This paper contains an overview of the results available in the literature, con-
cerning characterization of rotation invariant valuations. In particular, we dis-
cuss the characterization theorem, derived in [1], for continuous rotation in-
variant polynomial valuations on the set Kn of convex bodies in Rn. Next,
rotational Crofton formulae are presented. Using new kinematic formulae for
trace-free tensor valuations, it is possible to extend the rotational Crofton for-
mulae for tensor valuations, available in the literature. Principal rotational
formulae for tensor valuations are also discussed. These formulae can be de-
rived using locally defined tensor valuations. A number of open questions in
rotational integral geometry are presented.

1 Preliminaries

The Grassmannian of q-dimensional linear subspaces of Rn is denoted by G(n, q),
0 ≤ q ≤ n. For L ∈ G(n, q), the set G(L, p) is the family of all p-dimensional
linear subspaces M incident with L, that is, M ⊂ L when p ≤ q and L ⊂ M ,
otherwise. The invariant probability measures on these spaces are denoted by νq
and νLp , respectively. Similarly the space A(n, q) of q-dimensional flats is endowed
with the motion invariant measure µq, normalized in such a way that

µq ({E ∈ A(n, q) : E ∩Bn 6= ∅}) = κn−q,

where κj is the volume of the Euclidean unit ball Bj in Rj. For E ∈ G(n, q) the family
of all p-dimensional flats incident with E is denoted by A(E, p) and endowed with
the invariant measure µEp . When q ≥ p the measure µEp is obtained by identifying E
with Rq and taking the image measure of µp in Rq using this identification. When
q < p and E = L + x with x ∈ L⊥, the measure µEp is the image measure of µL⊥n−q
under the mapping N 7→ N⊥ + x.

The subspace determinant [L,M ] of two flats L and M is defined in [28, Sec-
tion 14.1]. Let Kn be the family of convex bodies, that is, of all non-empty compact
convex subsets of Rn. For E ∈ A(n, q) we let KqE be the family of all convex bodies
in E. The unit normal bundle of a set of positive reach X is ncX.
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We will need a norm on the space Tp of symmetric tensors of rank p ∈ N0 and
define

‖T‖ = sup{|T (v1, . . . , vp)| : ‖v1‖, . . . , ‖vp‖ ≤ 1}
for T ∈ Tp.

We will make use of Gauss’ hypergeometric function

Fα,β;γ(z) =
∞∑

k=0

(α)k(β)k
(γ)k

zk

k!
, (1.1)

α, β, γ ∈ R, −γ 6∈ N0, where (α)k = α(α + 1) · · · (α + k − 1). The series in (1.1)
converges absolutely for z ∈ (−1, 1) and if α + β < γ even for z ∈ [−1, 1]. We will
later use one of Euler’s transformation rules

Fα,β;γ(z) = (1− z)γ−(α+β)Fγ−α,γ−β;γ(z) (1.2)

and the fact that

Fα,α+ 1
2
;2α(z) = (1− z)−1/2

(
1 +
√

1− z
2

)1−2α
, (1.3)

|z| < 1; see, for instance, [7, (8.2.11) and p. 296].

2 Rotation invariant continuous valuations on star
sets

Before describing rotation invariant valuations on the family of convex bodies, we
describe here shortly a theory of rotation invariant tensor valuations for star sets.
With the appropriate definition of star sets, this theory turns out to be rather
complete and can serve as a reference for the convex case that still contains a number
of open questions.

A set S ⊂ Rn is called star shaped if its intersection with an arbitrary line
through the origin o is a (possibly degenerate) line-segment. Clearly, a star shaped
set S is determined by its radial function

ρ(S, u) = sup{α ∈ R : αu ∈ S},

u ∈ Sn−1. Usually one only works with geometrically defined subclasses of the family
of all star shaped sets, and results depend crucially on the subclass chosen. In this
survey we restrict considerations exclusively to star shaped sets containing the origin.
Note that the results on star bodies in Gardner’s monograph [13] do not require this
assumption. We base our review on Klain’s [22] definition of an Ln-star, which is a
star shaped set S ⊂ Rn that contains the origin and has a finite volume, that is,
its radial function is a non-negative element of Ln(Hn−1). The family of all Ln-stars
will be denoted by Sn, and endowed with the topology that is induced by the norm
in Ln(Hn−1) on {ρ(S, ·) : S ∈ Sn}. As usual, one thus identifies Ln-stars when their
radial functions coincide up to a set of Hn−1-measure zero.
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We now discuss examples of continuous SO(n)-invariant valuations on Sn that
take values in the space of tensors of rank p ∈ N0. The first examples that come to
mind are the Euler-Poincaré characteristic

χ(S) = 1, (2.1)

and, of course, the volume

λn(S) =

∫

S

1dx, (2.2)

S ∈ Sn, yielding tensor valued valuations of rank 0. To obtain higher rank tensors,
the constant 1 in (2.1) and in the integrand of (2.2) can be replaced by tensors – in
the second case possibly one that depends on x. To retain the rotation invariance,
this tensor must depend on x only through ‖x‖, so we may put

ϕ(S) = T +

∫

S

f(‖x‖)dx, (2.3)

with some fixed T ∈ Tp and a suitable function f : [0,∞) → Tp. Rewriting (2.3)
using polar coordinates gives

ϕ(S) =

∫

Sn−1

θ(ρ(S, u)) du, (2.4)

where θ : [0,∞)→ Tp must be continuous, as the restriction of ϕ on {αBn : α ≥ 0} is
continuous. Finally, to assure that (2.4) defines a tensor valued mapping on Sn, θ(t)
may not grow faster than tn as t→∞; see [23, Lemma 2.2]. With these conditions
on θ, we have found all rotation invariant continuous valuations on Sn.

Theorem 1 (Klain [23, Theorem 2.8]). For every SO(n)-invariant continuous valua-
tion ϕ : Sn → Tp there is a continuous function θ : [0,∞)→ Tp with ‖θ(t)‖ ≤ atn+b,
t ≥ 0, for some a, b ≥ 0 such that (2.4) holds.

Conversely, for any θ as above, (2.4) defines an SO(n)-invariant continuous val-
uation on Sn with values in Tp.

Klain stated this result only for p = 0 but it can easily be extended to positive
p by pointwise application to the tensors involved. The proof of Theorem 1 relies
on the fact that the family Sn is very large. To illustrate the main idea restrict
considerations to the case where p = 0. For any r > 0 the functional µ given by

µ(A) = ϕ({ta : 0 ≤ t ≤ r, a ∈ A}), (2.5)

for measurable A ⊂ Sn−1, is finitely additive. Continuity and the valuation property
of ϕ imply that µ is σ-additive, and hence µ is a (possibly signed) measure on Sn−1.
The measure µ inherits the rotation invariance from ϕ, so µ must be a multiple
θ(r) of the uniform measure on Sn−1. The proof is concluded by observing that
any element of Sn can be approximated by finite unions of bounded cones with
different r, as defined on the right hand side of (2.5). Concluding, the theory of
invariant measures is the backbone of Theorem 1.
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Consider an SO(n)-invariant continuous valuation ϕ : Sn → Tp with p = 0. If ϕ
is homogeneous of degree α ∈ R, Theorem 1 implies that 0 ≤ α ≤ n. If α = i is an
integer, the associated function θ in (2.4) must be proportional to ti, and hence

ϕ =
ϕ(Bn)

κn
W̃n−i

is proportional to the (n− i)th dual quermassintegral

W̃n−i(S) =
1

n

∫

Sn−1

ρ(S, u)idu,

S ∈ Sn.
Of course, Theorem 1 also applies to valuations ϕL on the subfamily SqL of all

Lq-stars in a fixed subspace L ∈ G(n, q), when we identify L with Rq, where q ∈
{1, . . . , n − 1}. Hence, if ϕL : SqL → Tp is a continuous valuation that is SO(q)-
invariant (with respect to all rotations leaving L fixed), we have

ϕL(S) =

∫

Sn−1∩L
θL(ρ(S, u))du, (2.6)

S ∈ SqL. This opens the door to applications in rotational integral geometry. In many
practically relevant cases, ϕL are given for all L ∈ G(n, q), and are compatible with
rotations in the following sense:

ϕL(S) = ϕϑL(ϑS) (2.7)

for all ϑ ∈ SO(n), L ∈ G(n, q) and sets S ∈ SqL. A family {ϕL : L ∈ G(n, q)} of
mappings ϕL : SqL → Tp that satisfies (2.7) is called SO(n)-compatible. Note that in
this case all ϕL are O(n)-invariant on SqL, and if all ϕL are continuous valuations on
SqL, their associated functions θL in (2.6) all coincide. In the following we use that
when S ∈ Sn, then S ∩ L ∈ SqL for almost all L ∈ G(n, q).

Corollary 2. Let q ∈ {1, . . . , n − 1} and let {ϕL : L ∈ G(n, q)} be a SO(n)-
compatible family of continuous valuations with values in Tp. Let θ = θL be the joint
associated function in (2.6). Then

∫

G(n,q)

ϕL(S ∩ L)νq(dL) =
ωq
ωn

∫

Sn−1

θ(ρ(S, u))du, (2.8)

S ∈ Sn.
Example 3. For fixed q ∈ {1, . . . , n − 1} and i ∈ {0, . . . , q} the family {W̃q−i,L :
L ∈ G(n, q)} of (q − i)th dual quermass integrals

W̃q−i,L =
1

q

∫

Sn−1∩L
ρ(·, u)idu,

is SO(n)-compatible. Equation (2.8) now reads
∫

G(n,q)

W̃q−i,L(S ∩ L)νq(dL) =
κq
κn
W̃n−i(S),

S ∈ Sn. This is the dual Kubota integral recursion essentially due to Lutwak [25].
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Corollary 4. Let q ∈ {1, . . . , n − 1} and assume that ϕ : Sn → Tp is an SO(n)-
invariant continuous valuation on Sn such that the associated function in (2.4) sat-
isfies ‖θ(t)‖ ≤ atq + b for some a, b ≥ 0. Then ϕ can be written as a rotational
Crofton integral with q-planes:

∫

G(n,q)

ϕL(S ∩ L)νq(dL) = ϕ(S), (2.9)

S ∈ Sn, where

ϕL(S ′) =
ωn
ωq

∫

Sn−1∩L
θ(ρ(S ′, u))du, (2.10)

S ′ ∈ SqL.

Note that if {ϕL : L ∈ G(n, q)} is an SO(n)-compatible family of continuous val-
uations satisfying (2.9), it must be given by (2.10), as such valuations are determined
by their values on balls.

It should be mentioned that there are other, more geometrically motivated no-
tions of star sets in the literature. One common class is defined as the family of all
star shaped sets containing the origin and having a continuous radial function. Its
elements are called star bodies in [32]. Let S be the family of all star bodies, en-
dowed with the L∞-topology, which is induced by the supremum norm of the radial
functions. As S ( Sn the above results do not readily apply to valuations on S.
However, Villanueva [32] showed that a real-valued SO(n)-invariant L∞-continuous
valuation ϕ that is in addition non-negative and satisfies ϕ({o}) = 0, can be written
in the form (2.4) with a non-negative continuous function θ satisfying θ(0) = 0.
The converse being obvious, this gives a strengthened version of Theorem 1 for star
bodies and p = 0, but only for non-negative valuations with ϕ({o}) = 0. If the latter
two conditions are necessary is an open question.

Example 5. The associated function of the real-valued continuous SO(n)-invariant
valuation ϕ(S) = λn(S) is θ(t) = tn/n. For q < n there cannot be an SO(n)-
compatible family {ϕL : L ∈ G(n, q)} of continuous valuations satisfying (2.9), as
the joint associated function θ would be (ωn/(nωq))t

n, which increases faster than
tq as t→∞. We thus consider ϕ only on the class of star bodies.

With the same arguments that led to Corollary 4, we have for any q ∈ {1, . . . ,
n− 1} that ∫

G(n,q)

ϕL(S ∩ L)νq(dL) = λn(S),

for any star body S, where

ϕL(S ∩ L) =
ωn
nωq

∫

Sn−1∩L
ρ(S, u)ndu =

ωn
ωq

∫

S∩L
‖x‖n−qdx.

This is a special case of the rotational Crofton formula for intrinsic volumes in [5].
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3 Rotation invariant continuous valuations on
convex bodies

We now turn to rotation invariant continuous valuations on the family of convex
bodies, endowed with the Hausdorff metric. Throughout the rest of this paper we
assume n ≥ 2 to avoid peculiarities of the one-dimensional setting.

Clearly, valuations of the form (2.3), restricted to Kn, are examples of continuous
SO(n)-invariant valuations, but the family of continuous SO(n)-invariant valuations
on Kn is much richer. One simple example are the intrinsic volumes Vj, 0 < j < n,
they are even motion invariant, but not of the form (2.3).

In the seminal paper [1] by Alesker, characterization theorems for rotation in-
variant continuous polynomial valuations are derived. A valuation ϕ : Kn → Tp is
called polynomial of degree at most k if ϕ(K + x) is a polynomial in x of degree at
most k for all K ∈ Kn. If ϕ is polynomial of degree at most k and ϕ(K + x) is a
polynomial in x of exact degree k for at least one K ∈ Kn, ϕ is called polynomial
of degree k.

In [1], a characterization theorem for continuous polynomial rotation invariant
valuations is derived, involving the family of valuations given by

ϕp,j(K) =

∫

ncK

p(‖x‖2, 〈x, u〉) Λj(K, d(x, u)), (3.1)

where p is a polynomial in two variables with values in Tp and j ∈ {0, . . . , n−1}. The
properties of the support measures Λj(K, ·), listed for instance in [27, Section 4.2],
imply that ϕp,j : Kn → Tp is an O(n)-invariant continuous valuation. In addition,
ϕp,j is a polynomial valuation of degree at most 2 deg p.

Theorem 6 (Alesker [1, Theorem B (i)]). For every continuous polynomial valuation
ϕ : Kn → Tp, which is SO(n)-invariant if n ≥ 3 and O(n)-invariant if n = 2, there
exist polynomials p0, . . . , pn−1 in two variables with values in Tp such that

ϕ =
n−1∑

j=0

ϕpj ,j. (3.2)

Conversely, any expression of the form (3.2) defines a continuous polynomial O(n)-
invariant valuation on Kn with values in Tp.

Note that as (3.1) defines an O(n)-invariant valuation, every continuous poly-
nomial SO(n)-invariant valuation is also O(n)-invariant when n ≥ 3. A character-
ization theorem for the particular case of continuous polynomial SO(2)-invariant
valuations on K2 can also be found in [1]. As we do not require that the valuations
are translation invariant, McMullen’s decomposition is not readily available. How-
ever, polynomiality of degree at most k implies that ϕ can be decomposed into a
sum of homogeneous valuations with homogeneity degrees in {0, 1, . . . , n+ k}. This
follows from a more general result in [20] and is used extensively in [1].
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Example 7. A very simple example of a continuous polynomial O(n)-invariant
valuation on Kn is

ϕkn(K) =

∫

K

‖x‖2kdx,

k ∈ N0. This valuation is of the form (3.2), since the divergence theorem implies

(n+ 2k)

∫

K

‖x‖2kdx = 2

∫

ncK

‖x‖2k〈x, u〉Λn−1(K, d(x, u)),

see e.g. [27, p. 316].

The space Vn,k of all real-valued continuous O(n)-invariant (or, equivalently,
SO(n)-invariant when n ≥ 3) valuations in Rn that are polynomial of degree at
most k ∈ N0 is finite dimensional.

In fact, Alesker has shown the following decomposition

Vn,k = Wn,0 ⊕Wn,1 ⊕ . . .⊕Wn,k,

where each subspace Wn,q is spanned by valuations of (exact) polynomial degree q.
This yields the recursive formula

dimVn,k = dimVn,k−1 + dimWn,k.

As dimWn,2q+1 = q(n− 1) and dimWn,2q = q(n− 1) + (n + 1), see [1, p. 997], this
implies

dimVn,2i = i2(n− 1) + (i+ 1)(n+ 1),

dimVn,2i+1 = i(i+ 1)(n− 1) + (i+ 1)(n+ 1),

for all i ∈ N0, n ≥ 3. The fact that dimVn,0 = dimWn,0 = n + 1 is a direct
consequence of Hadwiger’s theorem, as valuations of polynomial degree zero are
translation invariant, and thus V0, . . . , Vn forms a basis of Wn,0. Furthermore, we
see dimVn,1 = dimVn,0 = n + 1, so Wn,1 is trivial – continuous SO(n)-invariant
valuations of polynomial degree exactly one do not exist. Explicit bases for Wn,k

and hence for Vn,k can be constructed from the family of valuations

ϕr,sj (K) =

∫

ncK

‖x‖2r〈x, u〉s Λj(K, d(x, u)), (3.3)

r, s ∈ N0, j = 0, . . . , n − 1. For odd polynomial degree k = 2q + 1, q ∈ N, the
valuations ϕq−i,2i+1

j , j = 1, . . . , n − 1, i = 1, . . . , q, form a basis of Wn,2q+1. For
even polynomial degree k = 2q, q ∈ N0, the valuations ϕq−i,2ij , j = 1, . . . , n − 1,
i = 0, . . . , q, (note that i = 0 is included now) together with ϕqn and ϕq,00 form a basis
of Wn,2q. (For the definition of ϕqn, see Example 7.) This follows from the facts that
the exact polynomial degree of any of these valuations is 2q+ 1 and 2q, respectively,
and that these valuations can replace the less explicit ones in [1, Lemma 4.8]. More
explicitly for the planar case, a basis of all O(2)-invariant continuous valuations of
degree at most k ∈ 2N0 + 1 is given by the valuations ϕi,j1 , where the non-negative
integers i and j satisfy 2i+ j ≤ k, together with ϕ2i,0

0 , 0 ≤ 2i < k.
From the above it is straightforward to find a basis of the space V p

n,k of all Tp-
valued continuous O(n)-invariant (or, equivalently, SO(n)-invariant when n ≥ 3)
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valuations in Rn, as any ϕ ∈ V p
n,k can be written as a linear combination of basis

vectors in Tp, where the coefficients are in Vn,k. We only note here that this implies

dimV p
n,k = dimVn,k · dimTp,

where dimTp =
(
n+p−1

p

)
.

The valuations in (3.1) are all quasi-smooth. A continuous valuation ϕ : Kn → R
is called quasi-smooth, if the map on Kn given by

K 7→ [(t, x) 7→ ϕ(tK + x)],

t ∈ [0, 1], x ∈ Rn, is a continuous map from Kn into the space Cn([0, 1] × Rn) of
n-times continously differentiable functions on [0, 1]×Rn. This notion is extended to
Tp-valued valuations by assuming quasi-smoothness pointwise i.e. for all real-valued
valuations ϕ(K)(x1, . . . , xp), x1, . . . , xp ∈ Rn.

Alesker [2, 3] showed that any quasi-smooth valuation can be approximated
uniformly on any compact subset of Kn by continuous polynomial valuations. For
the understanding of SO(n)-invariant quasi-smooth valuations it is thus sufficient to
investigate the valuations ϕp,j, defined in (3.1). There are SO(n)-invariant continuous
valuations that are not quasi-smooth, but it is an open problem if all of them can
be approximated by continuous polynomial valuations.

Example 8. On K2 the functional

ϕ(K) =

∫

K

‖x‖−1dx

is a real-valued O(2)-invariant continuous valuation (the finiteness of which can be
seen by introducing polar coordinates). The valuation ϕ is a special case of the
valuations appearing in Theorem 11 below. The valuation is not quasi-smooth. In
fact, for K = [0, 1]2 and s > 0 an application of the divergence theorem like in
Example 7 shows that

ϕ(K + (s, s)) = −2s

∫ 1+s

s

‖(s, y)‖−1dy + 2(1 + s)

∫ 1+s

s

‖(1 + s, y)‖−1dy.

The second derivative of this function of s has a pole at 0, so ϕ is not quasi-smooth.
However, it can be shown that ϕ can be approximated uniformly on any compact
subset of K2 by continuous polynomial valuations.

Rotational integral geometry for the valuations appearing in the characterization
theorems in [1] appears largely unexplored. Below we show, as a new result, how the
valuation ϕr,sn−1 defined in (3.3) with s even can be expressed as a rotational average.
The assumption that s is even can be omitted when o ∈ K.

Theorem 9. Let q ∈ {2, . . . , n−1}, r, s non-negative integers with s even. Then, the
valuation ϕr,sn−1 in (3.3) can be written as a rotational Crofton integral with q-planes:

∫

G(n,q)

ϕr,sL (K ∩ L) νq(dL) = ϕr,sn−1(K). (3.4)
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for all K ∈ Kn. Here

ϕr,sL (K ′) =
ωn
ωq

∫

nc(K′)
‖x‖2r+n−q〈x, u〉s F s−1

2
,−n−q

2
; q−1

2
(sin2∠(x, u)) ΛL

q−1(K
′, d(x, u))

is an integral with respect to the generalized curvature measure ΛL
q−1(K

′, ·) of K ′ ∈
KqL relative to L.

Proof. As support measures are weakly continuous and the integrand in the defini-
tion of ϕr,sL is continuous in (x, u), one can apply an approximation argument. It is
thus enough to show the claim for a polytope K for which the union of all support
planes of K at the facets does not contain the origin. The variable s is even, so it
does not matter if one works with the exterior or the interior normal vectors. It is
thus enough to show the claim for one facet, or, equivalently, for all (n− 1)-dimen-
sional sets K. Let u ∈ Sn−1 be one of the unit normals of K at a relative interior
point. Then

ϕr,sn−1(K) =

∫

K

‖x‖2r〈x, u〉sHn−1(dx),

and using [16, Proposition 5.4] we find

ϕr,s(K) =
ωn
2

∫

G(n,1)

∫

K∩M
‖x‖2r+s+n−1[u⊥,M ]s−1H0(dx) ν1(dM).

The only analytic function h that satisfies
∫

G(M,q)

h([u⊥ ∩ L,M ]s−1) νMq (dL) = [u⊥,M ]s−1 (3.5)

for all M ∈ G(n, 1) is given by

h(z) = z F s−1
2
,−n−q

2
; q−1

2
(1− z 2

s−1 ). (3.6)

The proof of this claim follows closely [16, Section 5.6], where the case s = 0 is
treated. Using (3.5) and interchanging the order of integration we find

ϕr,s(K) =

∫

G(n,q)

ϕr,sL (K ∩ L) νq(dL),

with

ϕr,sL (K ∩ L) =
ωn
2

∫

G(L,1)

∫

(K∩L)∩M
‖x‖2r+s+n−1h([u⊥ ∩ L,M ]s−1)H0(dx) νL1 (dM)

=
ωn
ωq

∫

K∩L
‖x‖2r+s+n−q[u⊥ ∩ L,Mx]h([u⊥ ∩ L,Mx]

s−1)Hq−1(dx),

where we at the last equality sign have again used [16, Proposition 5.4], but now
in L, and we wroteMx for span{x}. As [u⊥∩L,Mx] is the cosine of the angle between
x and the unit normal vector of K ∩ L in L, this function ϕr,sL coincides with the
one in the statement of the theorem.
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Rotational integral geometry of intrinsic volumes has been developed during the
last decade in a series of papers ([4, 5, 10, 18]), motivated by the strong interest in
such results from local stereology ([16]). In the theorem below, we show in the spirit
of Corollary 4 how the intrinsic volumes can be expressed as rotational averages.
A central element in the proof of the theorem is the classical Crofton formula for
affine subspaces

∫

A(n,q)

Vj(K ∩ E)µq(dE) = αn,j,qVn+j−q(K), (3.7)

where

αn,j,q =

(
q

j

)
κqκn+j−q

(
n

q − j

)
κjκn

,

and 0 ≤ j ≤ q ≤ n; see [27, Section 4.4].

Theorem 10 (Auneau & Jensen [5], Gual-Arnau et al. [10]). For q = 1, . . . , n − 1
and j = 1, . . . , q, let ϕ = Vn+j−q be the intrinsic volume of homogeneity degree
n+ j − q. Then, ∫

G(n,q)

ϕL(K ∩ L) νq(dL) = ϕ(K),

K ∈ Kn, where

ϕL(K ′) =
ωn−q+1

ω1

1

αn,j−1,q−1

∫

A(L,q−1)
d(o, E)n−q Vj−1(K

′ ∩ E)µq−1(dE), (3.8)

K ′ ∈ KqL, and d(o, E) is the distance from o to E. For j = q, (3.8) takes the following
explicit form

ϕL(K ′) =
ωn
ωq

∫

K′
‖x‖n−q dx, (3.9)

while for j = q − 1, (3.8) can equivalently be expressed as

ϕL(K ′) =
ωn
ωq

∫

nc(K′)
‖x‖n−qF− 1

2
,−n−q

2
; q−1

2
(sin2∠(x, u)) ΛL

q−1(K
′, d(x, u)). (3.10)

Note that (3.9) also appears in Example 5, while (3.10) is obtained by setting
r = s = 0 in Theorem 9 and noting that ϕ0,0

n−1(K) = 2Vn−1(K).
Besides the classical Crofton formula, the proof of Theorem 10 uses the following

version of the Blaschke-Petkantschin formula for a non-negative measurable function
f on A(n, r), see [21, Theorem 2.7],
∫

A(n,r)

f(E)µr(dE) =
ωn−r
ωq−r

∫

G(n,q)

∫

A(L,r)

d(o, E)n−qf(E)µLr (dE) νq(dL), (3.11)

q = 1, . . . , n− 1, r = 0, . . . , q − 1. This formula, also called the invariator principle
in stereology ([31]), is used to translate the classical Crofton formula, dealing with

10



affine subspaces, into a result for linear subspaces. The details of the proof may be
found in [17, p. 239].

The formula for ϕL in (3.8) is not very explicit, but actually useful in local
stereology, because a stereological estimator of Vn−q+j(K) can be constructed from
this formula, involving motion invariant random flats within isotropic random linear
subspaces, as explained in Section 7 below. However, from a theoretical point of
view, a more explicit expression for (3.8) would be desirable. To the best of our
knowledge, this is an open problem in rotational integral geometry.

In the spirit of Corollary 2, we now consider the SO(n)-compatible family {ϕL :
L ∈ G(n, q)} where

ϕL(K ′) = Vj(K
′), (3.12)

K ′ ∈ KqL, q = 1, . . . , n − 1, j = 0, . . . , q. In [4, 18], the rotational averages of these
sectional valuations are derived. The result is presented in the theorem below.

Theorem 11 (Auneau, Rataj & Jensen [4, 18]). Let q = 1, . . . , n− 1, j = 0, . . . , q
and {ϕL : L ∈ G(n, q)} be the SO(n)-compatible family given by (3.12). Then,

∫

G(n,q)

ϕL(K ∩ L) νq(dL) = ϕ(K), (3.13)

where for j = q

ϕ(K) =
ωq
ωn

∫

K

‖x‖−(n−q) dx.

If o 6∈ bdK, then for j < q

ϕ(K) =
2ωq

ωnωq−j

∫

ncK

‖x‖−(n−q)

×
∑

I⊂{1,...,n−1}
|I|=q−j−1

Qq(x, u,AI)

∏
i∈I κi(x, u)

∏n−1
i=1

√
1 + κ2i (x, u)

Λn−1(K, d(x, u)), (3.14)

where κi(x, u), i = 1, . . . , n − 1, are the principle curvatures of ncK at (x, u).
Furthermore, AI = AI(x, u) is the (n−1−|I|)-dimensional subspace spanned by the
principal directions ai(x, u), i 6∈ I, at (x, u) ∈ ncK, and

Qq(x, u,AI) =

∫

G(span{x},q)

[L,AI ]
2

‖pLu‖q−j
νspan{x}q (dL).

If q = 1 and x ⊥ u, we set Q1(x, u,M) = 0. For j = q−1, (3.14) takes the following
explicit form

ϕ(K) =
ωq
ωn

∫

ncK

‖x‖−(n−q)F− 1
2
,n−q

2
;n−1

2
(sin2∠(x, u))Λn−1(K, d(x, u)). (3.15)

The proof of the theorem involves extensive geometric measure theory.
In [4], the explicit form of Qq has been derived. Generally, Qq(x, u,AI) depends

on the angle between x and u, and the angle between x and AI . As an example, let

11



j = 0 and q = n− 1. Then, by [18, Proposition 3],

ϕ(K) =
2

(n− 1)ωn

∫

ncK

‖x‖−1

×
[n−1∑

i=1

R(x, u, ai(x, u))
Πj 6=iκj(x, u)∏n−1

l=1

√
1 + κ2l (x, u)

]
Λn−1(K, d(x, u)),

where

R(x, u, a) = sin2∠(x, a)
[
sin2 θFn−1

2
, 1
2
;n+1

2
(sin2∠(x, u))

+ cos2 θFn−1
2
, 3
2
;n+1

2
(sin2∠(x, u))

]
,

with θ = ∠(px⊥a, px⊥u). For n = 3 an application of the Euler-transformation (1.2)
implies

R(x, u, a) = F1, 3
2
;2(sin

2∠(x, u)) sin2∠(x, a)[(sin2 θ)cos∠(x, u) + cos2 θ].

As
cos θ =

cos∠(a, x) cos∠(x, u)

sin∠(a, x) sin∠(x, u)
,

trigonometric identities give

R(x, u, a) = F1, 3
2
;2(sin

2∠(x, u))

×
[
(sin2∠(x, a)) cos∠(x, u) + 2 cos2∠(x, a)

cos2∠(x, u)

sin2∠(x, u)
sin2 ∠(x, u)

2

]
,

where F1, 3
2
;2 can be simplified using (1.3) with α = 1. Summarizing, we find for

n = 3, q = 2 and j = 0 that (3.14) reduces to

ϕ(K) =
1

8π

∫

ncK

‖x‖−1
[ 2∑

i=1

κ3−i(x, u)

Π2
l=1

√
1 + κ2l (x, u)

[
sin2∠(x, ai(x, u)) cos−2

∠(x, u)

2

+ 2 cos2∠(x, ai(x, u))
cos∠(x, u)

sin2∠(x, u)
tan2 ∠(x, u)

2

]]
H2(d(x, u)). (3.16)

We conclude these considerations with a remark on SO(n)-invariant valuations in
the context of the above rotational formulae. When ϕL = Vj is an intrinsic volume,
the left hand side of (3.13) defines a real-valued SO(n)-invariant valuation ϕ. In the
case of the Euler characteristic, j = 0, the valuation ϕ is not continuous, as can be
seen considering a non-constant sequence of singletons converging to {o}. Using the
upper semi-continuity of the intersection operation one can show that ϕ is contin-
uous for j ≥ 1. One may ask if this valuation can be approximated by polynomial
ones. Due to Weierstrass’ approximation theorem the hypergeometric function in
(3.15) can uniformly be approximated by polynomials on [−1, 1]. As a consequence,
the valuation in (3.15) is a locally uniform limit of continuous SO(n)-invariant poly-
nomial valuations by Theorem 6. In contrast to this, the valuation in (3.14) is for
j ≤ q − 2 an integral over the unit normal bundle where the integrand depends
on the principal directions of ncK. It was therefore conjectured in [4] that such
valuations are not locally uniform limits of continuous SO(n)-invariant polynomial
valuations even if j ≥ 1. The lowest dimensional example of this kind occurs for
n = 4, q = 3 and j = 1. The mentioned problem is still open.

12



4 Rotational Crofton formulae for Minkowski
tensors

Rotational Crofton formulae for Minkowski tensors have recently been derived in
[6, 30].

To express Minkowski tensors as rotational averages, we need to generalize The-
orem 10. An important element in the proof of Theorem 10 is the classical Crofton
formula (3.7). In [15], (3.7) is generalized to the case of Minkowski tensors. It turns
out that the formula for Minkowski tensors derived in [15] is considerably more com-
plicated than the classical Crofton formula, but for Minkowski tensors Φr,0

k it takes
a sufficiently simple form so that the proof of Theorem 10 carries over. For a convex
body K contained in a flat E ⊂ Rn, there are variants of the Minkowski tensors
denoted by Φ

r,s(E)
j (K). These Minkowski tensors are again tensor valuations of rank

r + s in Rn, but they are calculated with respect to the support measures of K in
E; see the beginning of [15, Section 3] for details.

Theorem 12 (Auneau-Cognacq et al. [6, Corollary 4.4]). For q = 1, . . . , n − 1,
j = 1, . . . , q and r a non-negative integer, let ϕ = Φr,0

n−q+j be the tensor of rank r
with s = 0 and index n− q + j. Then,

∫

G(n,q)

ϕL(K ∩ L) νq(dL) = ϕ(K),

K ∈ Kn, where

ϕL(K ′) =
ωn−q+1

ω1

1

αn,j−1,q−1

∫

A(L,q−1)
d(o, E)n−q Φ

r,0(L)
j−1 (K ′ ∩ E)µq−1(dE), (4.1)

K ′ ∈ KqL. For j = q, (4.1) takes the following explicit form

ϕL(K ′) =
ωn
ωq

1

r!

∫

K′
xr‖x‖n−q dx, (4.2)

while for j = q − 1, (4.1) can equivalently be expressed as

ϕL(K ′) =
ωn
ωq

1

r!

∫

nc(K′)
xr‖x‖n−qF− 1

2
,−n−q

2
; q−1

2
(sin2∠(x, u)) ΛL

q−1(K
′, d(x, u)). (4.3)

A result of the type (4.1) can also be established for Φr,1
n−q+j, see [6, Corollary 4.4],

but here explicit expressions for ϕL for j = q and j = q − 1 are not available.
Surface tensors Φ0,s

k are studied in [24]. In [24, Theorem 3.4], Φ0,s
n−1(K) is ex-

pressed for even s as a Crofton-integral with respect to lines E ∈ A(n, 1), involving
an explicitly known tensor Gs(π(E)) of rank s. Here, π(E) is the line through the
origin parallel to E. By combining this result with (3.11), Φ0,s

n−1(K) can for even s
be expressed as a rotational integral. We get for q = 1, . . . , n− 1

Φ0,s
n−1(K) =

∫

G(n,q)

ϕL(K ∩ L) νq(dL),

13



where
ϕL(K ′) =

ωn−1
ωq−1

∫

A(L,1)

d(o, E)n−qGs(π(E))V0(K ∩ E)µL1 (dE).

As is apparent from the discussion above, it is an open problem to express
Minkowski tensors with general indices as rotational averages. One possible route
to follow for the tensors Φ0,s

k with arbitrary non-negative integer s is to use the
recently established kinematic formula [8, Corollary 6.1] for trace-free tensors Ψs

k in
combination with the Blaschke-Petkantschin formula (3.11). For k, l ≥ 0, k + l ≤ n
and n < l + p, we get

ωs+k+l
ωs+kωl

(
k + l

k

)
kl

k + l

[
n
l

]−1
Ψs
k+l(K) =

∫

A(n,n−l)
Ψs
k(K ∩ E)µn−l(dE)

=

∫

G(n,p)

αsp,k,l(K,L)νp(dL),

where
αsp,k,l(K,L) =

ωl
ωp−n+l

∫

A(L,n−l)
Ψs
k(K ∩ E)d(o, E)n−pµL(dE).

Combining this with the fact that Φ0,s
k can be expressed in terms of Ψ0

k, . . . ,Ψ
s
k

([8, Proposition 4.16]) it can be seen that any translation invariant Minkowski ten-
sor Φ0,s

k , 2 ≤ k ≤ n − 1, s ∈ N0, can be written as a non-trivial rotational Crofton
integral. To the best of our knowledge, explicit general formulae cannot be found in
the literature. It is an open problem to express the more general Minkowski tensors
Φr,s
k as rotational averages.
The situation is much more clear for rotational averages of Minkowski tensors,

due to the recent work of Svane ([30]). Using the same techniques as in [18], The-
orem 11 can be generalized as follows, where it should be noted that the integrand
of the function Qq in (4.4) now depends also on pLu when s > 0.

Theorem 13 (Svane [30]). Let q = 1, . . . , n − 1, j = 0, . . . , q, r, s non-negative
integers and let {ϕL : L ∈ G(n, q)} be the SO(n)-compatible family given by

ϕL(K ′) = Φ
r,s(L)
j (K ′),

K ′ ∈ KqL. Then, ∫

G(n,q)

ϕL(K ∩ L) νq(dL) = ϕ(K),

K ∈ Kn, where for j = q and s = 0

ϕ(K) =
1

r!

ωq
ωn

∫

K

xr‖x‖−(n−q) dx.

If K ∈ Kn contains o in its interior, then for j < q

ϕ(K) =
1

r!s!

2ωq
ωnωq−j+s

∫

ncK

xr‖x‖−(n−q)

×
∑

I⊂{1,...,n−1}
|I|=q−j−1

Qq(x, u,AI)

∏
i∈I κi(x, u)

∏n−1
i=1

√
1 + κ2i (x, u)

Λn−1 (d(x, u)) , (4.4)
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where
Qq(x, u,AI) =

∫

G(span{x},q)
(pLu)s

[L,AI ]
2

‖pLu‖q−j+s
νspan{x}q (dL).

For j = q − 1, (4.4) takes the following explicit form

ϕ(K) =
2

r!s!ωs+1

ωqωq−1ωn−q
ωnωn−1ωn−2

∑

a+b+c+2l=s

(
s

a, b, c, 2l

)
ω2l+n−2
ω2l+1

×
∑

e+f+t+v=l

(
l

e, f, t, v

)
(−1)f+v+b2t+1Qe

×
∫

ncK

uc+2f+t xr+a+b+2v+t

‖x‖n−q+a+b+2v+t
g(sin2∠(x, u))Λn−1(K; d(x, u)),

where Q ∈ T2 is the metric tensor and

g(α2) =
ωn−1+2b+2c+4l

ωq−1+2b+2c+2lωn−q+2l

α2e(1− α2)
a+b+t

2 F s−1
2
,n−q

2
+l;n−1

2
+b+c+2l(α

2).

We finally mention that a recently derived kinematic Crofton formula for area
measures [14] can also be combined with the Blaschke-Petkantschin formula (3.11) in
order to obtain a rotational Crofton-type representation of the surface area measure
Sk(K, ·) of K with index 2 ≤ k ≤ n− 1.

5 Uniqueness of the measurement function

Let K ∈ Kn and q ∈ {1, . . . , n − 1} be given. The rotational Crofton formulae in
Section 4 all read

∫

G(n,q)

ϕL(K ∩ L) νq(dL) = ϕ(K), (5.1)

where ϕ is some tensor valued valuation and the functionals ϕL are tensor valued
valuations on KqL for all L ∈ G(n, q). As ϕL is the quantity we have to measure in
order to obtain a desired isotropic average, we refer to ϕL as the measurement func-
tion. In [10] it was asked if this measurement function is unique under appropriate
additional assumptions when the right hand side of (5.1) is an intrinsic volume of
K. This question was motivated by the observation that two apparently different
measurement functions that satisfy (5.1) with ϕ = Vn actually coincide. In fact, also
the following result on surface area estimation appears to support uniqueness of the
measurement function. Theorem 10 implies that (5.1) with ϕ = Vn−1 holds with ϕL
given by (3.10). About a decade before Theorem 10 was established, a Blaschke-
Petkantschin formula was used in [16, Section 5.6] to show that the apparently
different measurement function

ϕL(K ′) =
1

2

ωn
ωq

∫

Sn−1∩L
ρn−1K (u)

1

cos γL(u)
F− 1

2
,−n−q

2
, q−1

2
(sin2 γL(u))du, (5.2)
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K ′ ∈ KqL, also satisfies (5.1) if o ∈ intK. Here γL(u) is the angle between u
and the (almost everywhere unique) outer unit normal in L of K ′ at its bound-
ary point uρK′(u). A closer examination reveals that the measurement functions
(3.10) and (5.2) actually coincide when q = 2; see [11] for a proof in the case of
strictly convex and smooth K ⊂ R3 and [31] for the general case.

Using the linearity of the integral, the original uniqueness question can equiva-
lently be rephrased by asking under what conditions

∫

G(n,q)

ϕL(K ∩ L) νq(dL) = 0 (5.3)

implies that all measurement functions ϕL are vanishing.
In contrast to the convex case, the corresponding question for measurement func-

tions on Ln-stars is not difficult: We have already noted after Corollary 4 that an
SO(n)-compatible family {ϕL : L ∈ G(n, q)} of continuous valuations is uniquely
determined when ϕL is known on all balls in L, so (5.3) implies that all ϕL vanish.
When q = 1 any member of an SO(n)-compatible family {ϕL : L ∈ G(n, q)} of
functionals ϕL : SnL → R (without any further assumptions) must vanish when (5.3)
holds. In fact, one only has to show that ϕL vanishes on all line-segments in L that
contain the origin. However, this is a direct consequence of (5.3) applied to the sets

K = rBn ∪ {x ∈ RBn : 〈x,w〉 ≥ 0}, (5.4)

0 ≤ r ≤ R, w ∈ Sn−1, and the SO(n)-compatibility.
The question under what conditions (5.3) determines ϕL in the convex case is

widely open apart from the following result on one-dimensional sections.

Theorem 14. Let {ϕL : L ∈ G(n, 1)} be an SO(n)-compatible family of functionals
ϕL on KnL. Then (5.3) implies that ϕL = 0 for all L ∈ Ln1 .

The proof uses the convex hull K1 of K in (5.4) and the intersection K2 of all
closed supporting half spaces of K1 that contain a point of {x ∈ RBn : 〈x,w〉 ≥ 0}
in their boundaries. An explicit calculation and comparison of (5.3) with K1 and
K2 replacing K then yields the assertion.

6 Principal rotational formulae

A principal rotational formula for Minkowski tensors may involve integrals of the
form ∫

SO(n)

Φr,s
k (K ∩ ϑM) ν(dϑ),

k = 0, . . . , n, r, s ∈ N0, where K,M ∈ Kn and ν is the unique rotation invariant
probability measure on SO(n). In local stereology, principal rotational formulae are
used in cases where an unknown spatial structure K is studied via the intersection
with a randomly rotated set M . In such applications, M is a known ‘sampling
window’ constructed by the observer.
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In this section, we consider principal rotational formulae for general Minkowski
tensors. It turns out that local Minkowski tensors are an important tool in the deriva-
tion of such formulae. For K ∈ Kn, r, s non-negative integers and k = 0, . . . , n− 1,
the local Minkowski tensors are defined by

Φr,s
k (K,ψ) :=

ωn−k
r! s!ωn−k+s

∫

ncK

ψ(x, u)xrusΛk(K, d(x, u)) (6.1)

and

Φr,0
n (K,φ) :=

1

r!

∫

K

φ(x)xr dx, (6.2)

where ψ and φ are non-negative measurable functions on Rn×Sn−1 and Rn, respec-
tively. The classical Minkowski tensors are obtained in (6.1) and (6.2) by choosing
the functions ψ and φ identically equal to 1. We remark for later use that the rotation
group acts on the corresponding function spaces in the natural way: for ϑ ∈ SO(n),
let (ϑψ)(x, u) = ψ(ϑ−1x, ϑ−1u) and (ϑφ)(x) = φ(ϑ−1x), x ∈ Rn, u ∈ Sn−1. We define
the rotational average

ψ(x, u) =

∫

SO(n)

ψ(ϑx, ϑu) ν(dϑ)

and likewise for φ̄. The same definition can also be applied to functions ψ and φ
with values in Tp.

A simple application of Tonelli’s theorem yields a principal rotational formula
for local Minkowski tensors.

Proposition 15. Let ψ and φ be non-negative measurable functions on Rn × Sn−1
and Rn, respectively. Then, for K ∈ Kn, r, s non-negative integers and k = 0, . . . ,
n− 1, ∫

SO(n)

Φr,0
n (K,ϑφ) ν(dϑ) = Φr,0

n (K, φ̄)

and ∫

SO(n)

Φr,s
k (K,ϑψ) ν(dϑ) = Φr,s

k (K,ψ).

As a consequence of Proposition 15, we have the following principal rotational
formula for local Minkowski tensors. We slightly abuse notation using 1A(x, u) =
1A(x) for the indicator function of a set A ⊂ Rn and φM(x, u) = φM(x) for the
function φM defined below, where (x, u) ∈ Rn × Sn−1.

Theorem 16. Let K,M ∈ Kn and

φM(x) =
Hn−1(intM ∩ ‖x‖Sn−1)
Hn−1(‖x‖Sn−1) ,

if x ∈ Rn \ {o}, and φM(o) = 1intM(o). Then, for any non-negative integer r we
have ∫

SO(n)

Φr,0
n (K ∩ ϑM) ν(dϑ) = Φr,0

n (K,φM). (6.3)
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If, in addition, k = 0, . . . , n− 1, and s ∈ N0 we have
∫

SO(n)

Φr,s
k (K ∩ ϑM, ϑ1intM) ν(dϑ) = Φr,s

k (K,φM). (6.4)

When k = n − 1 and Hn−1(bdK ∩ ϑ bdM) = 0 for almost all ϑ ∈ SO(n), this
implies

∫

SO(n)

Φr,s
n−1(K ∩ ϑM) ν(dϑ)

= Φr,s
n−1(K,φM) +

1

r!s!

2

ωs+1

∫

ncM

1intKxrus Λn−1(M, d(x, u)). (6.5)

Proof. As 1intM = φM and

Φr,0
n (K ∩ ϑM) = Φr,0

n (K,ϑ1intM),

(6.3) follows directly from Proposition 15. Support measures are locally defined, so
Λk(K ∩ ϑM, η) = Λk(K, η) for the open set η = (intM)× Sn−1. This implies

Φr,s
k (K ∩ ϑM, ϑ1intM) = Φr,s

k (K,ϑ1intM)

and Proposition 15 yields (6.4). To show (6.5) an application of the facts that support
measures are locally defined together with the additional assumption yields

Λn−1(K ∩ ϑM, ·) = Λn−1(K, · ∩ (ϑ(intM)× Sn−1))
+ Λn−1(ϑM, · ∩ ((intK)× Sn−1))

for almost all ϑ. Integrating xrus with this measure, applying (6.4) and using again
the fact that support measures are locally defined to simplify the second term,
yields (6.5).

Proposition 15 may also be used to derive a principal rotational formula where
Minkowski tensors are expressed as rotational averages. The result is given in the
theorem below.

Theorem 17. Let K,M ∈ Kn. Suppose that M is chosen such that o ∈ intM and
that

Hn−1(intM ∩ ‖x‖Sn−1) > 0

for all o 6= x ∈ K. Let

φ◦M(x) =
Hn−1(‖x‖Sn−1)

Hn−1(intM ∩ ‖x‖Sn−1)1intM(x),

if Hn−1(intM∩‖x‖Sn−1) > 0, and φ◦M(x) = 0, otherwise. Then, for r, s non-negative
integers and k = 0, . . . , n− 1,

∫

SO(n)

Φr,s
k (K ∩M,ϑφ◦M) ν(dϑ) = Φr,s

k (K)

and ∫

SO(n)

Φr,0
n (K ∩M,ϑφ◦M) ν(dϑ) = Φr,0

n (K).
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The theorem follows from Proposition 15 as φ◦M(x) = 1 for x ∈ K.
In order to use Theorem 17 for estimating Φr,s

k (K) from an observation inK∩ϑM ,
where ϑ is a random rotation, requires to determine the weight function φ◦M yielding
a Horvitz-Thompson-type correction. This is possible when ϑM is known which is
often the case in optical microscopy, see e.g. [29].

But from a basic science point of view, it is important to develop principal
rotational formulae of the type (6.3) and (6.5) with integrands only depending on
K ∩ ϑM without any further knowledge. To the best of our knowledge, this is an
open problem in rotational integral geometry for the measurement function Φr,s

k with
k < n− 1.

7 Local stereology applications

The aim of local stereology ([16]) is the estimation of quantitative parameters (vol-
ume, surface area, Minkowski tensors, . . . ) of spatial structures from sections through
fixed points, called reference points.

Using a rotational Crofton formula, local stereological estimators of Minkowski
tensors Φr,s

k (K) have recently been derived ([19]), based on measurements on random
sections passing through a fixed point of K. More specifically, such local estimators
are available for (i) s = 0, 1 and r, k arbitrary and for (ii) r = 0, s even and
k = n−1. In (i), the rotational Crofton formula presented in [6, Corollary 4.4] is used
while (ii) follows by combining [24, Theorem 3.4] with the Blaschke-Petkantschin
formula (3.11). The details were given in Section 4. The most common stereological
application of rotational Crofton formula is the estimation of intrinsic volumes (r =
s = 0). For volume and surface area, that is when k = n or k = n−1, different forms
of measurement functions have been suggested. In [31] several surface area estimators
are discussed and a measurement function based on Morse theory is established. The
works of Cruz-Orive and Gual-Arnau on this subject are summarized in the recent
paper [12].

Alternatively, measurements for local estimation of Φr,s
k (K) may be performed

on the intersection K ∩M of K with a randomly rotated convex body M. Here, a
principal rotational formula is used; see Section 6.

In this section, we will investigate to what extent these results can be transferred
to particle processes. Let X be a particle process of full-dimensional convex particles
in Rn that we represent as a stationary marked point process. The marked point
process is given by

{[x(K);K − x(K)] : K ∈ X},
where x(K) ∈ K is a reference point associated to each particle K ∈ X while the
mark K−x(K) is the particle translated such that its reference point is the origin o.
The particle mark distribution is denoted by Q. We let K0 be a random convex set
with distribution Q. We may regard K0 as a randomly chosen particle or a typical
particle with o put at its reference point.

Inference about the distribution of Φr,s
k (K0) may be based on a sample of par-

ticles, collected as those particles with reference point in a sampling window. More
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specifically, we consider a sample of the form

{K ∈ X : x(K) ∈ W}, (7.1)

where W ∈ B(Rn) is a full-dimensional sampling window with 0 < λn(W ) < ∞.
The distribution of Φr,s

k (K0) may be studied via the empirical distribution of

{Φr,s
k (K − x(K)) : K ∈ X, x(K) ∈ W}. (7.2)

If complete access to the sampled particles is not possible, the distribution of
Φr,s
k (K0) may still be studied via (7.2) if a precise estimate Φ̂r,s

k (K − x(K)) of
Φr,s
k (K − x(K)) is available, e.g. from replicated local sectioning of K − x(K).
We will now discuss the situation where such precise estimates are not available.

For this discussion, it turns out to be useful to consider the following n+1 probability
measures PXk, k = 0, . . . , n, associated to the particle process X. The probability
measure PXn is concentrated on Rn and is absolutely continuous with respect to the
Lebesgue measure λn with probability density

fK0(x) = P (x ∈ K0)/Eλn(K0), x ∈ Rn,

called the cover density. The density fK0 may be envisaged as a kind of probabil-
ity cloud. If K0 is deterministic, then fK0 is proportional to 1K0 , so K0 can be
reconstructed from fK0 . If Q is invariant under rotations, then fK0 is also rotation
invariant.

The remaining probability measures PXk, k = 0, . . . , n− 1, are concentrated on
Rn × Sn−1 and are normalized versions of the mean support measures

PXk(A) =
EΛk(K0, A)

EΛk(K0,Rn × Sn−1)
, A ∈ B(Rn × Sn−1).

The probability measures PXk, 0 ≤ k ≤ n − 1, contain information about the
probabilistic properties of the boundary of K0. As an example, PX(n−1)(Rn × ·) is
proportional to the surface area measure of the so-called Blaschke body B(X) of the
particle process, see [28, p. 149]. If Q is invariant under rotations, then B(X) is a
ball.

The theorem below shows that for particle processes, normalized mean Min-
kowski tensors determine the moments of arbitrary order in the distributions PXk,
k = 0, . . . , n.

Theorem 18. Let X be a stationary particle process of full-dimensional convex
particles in Rn with particle mark distribution Q. Let K0 be a random convex set
with distribution Q. Then, for non-negative integers r, s and k = 0, . . . , n− 1

EΦr,s
k (K0)

EΦ0,0
k (K0)

=
ωn−k

r!s!ωn−k+s

∫

Rn×Sn−1

xrusPXk(d(x, u)).

For k = n, we get
EΦr,0

n (K0)

EΦ0,0
n (K0)

=
1

r!

∫

Rn

xrfK0(x)λn(dx).
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For k = n−1 and r = 0 we have the following connection to the surface area measure
of the Blaschke body:

EΦ0,s
n−1(K0)

EΦ0,0
n−1(K0)

=
1

s!ωs+1

∫

Sn−1

us
Sn−1(B(X), du)

Vn−1(B(X))
.

Let us now return to the problem of drawing inference about the distribution
of Φr,s

k (K0) from a sample of particles. Using Campbell’s theorem for marked point
processes, we have

E
∑

K∈X,x(K)∈W Φr,s
k (K − x(K))

E
∑

K∈X,x(K)∈W Φ0,0
k (K − x(K))

=
EΦr,s

k (K0)

EΦ0,0
k (K0)

. (7.3)

Combining this result with Theorem 18, it follows under weak assumptions about
the particle process that

r!s!ωn−k+s
ωn−k

∑
K∈X,x(K)∈W Φr,s

k (K − x(K))
∑

K∈X,x(K)∈W Φ0,0
k (K − x(K))

is a consistent (in a probabilistic sense) estimator of the moment of order (r, s) of
PXk, also in the case where Φr,s

k (K − x(K)) is substituted with an unbiased estima-
tor Φ̂r,s

k (K − x(K)), subject to non-negligable variability. For instance, consistency
follows in an expanding window regime if the particle process is ergodic, see [9,
Corollary 12.2.V].

These ideas have been pursued in detail in [26, 33] for volume tensors and the
resulting methods have been implemented in optical microscopy. For a sampled
particle K, the volume tensor Φr,0

n (K − x(K)) is here unbiasedly estimated using a
local stereological design, involving measurements from the central part of K.

The design used in [26, 33] is a so-called vertical slice design. Let us consider
a slice of the form T = L + B(o, t) where L ∈ G(M, q), q > 1, is a q-dimensional
linear subspace containing a fixed line M ∈ G(n, 1) passing through o and t > 0
is the thickness of the slice. The line M is called the vertical axis. The set of such
slices is denoted T (n, q,M). We let ρMq denote the unique probability measure on
T (n, q,M), invariant under rotations that keep M fixed.

The unbiased estimator of Φr,0
n (K−x(K)) is obtained by replacingK byK−x(K)

in the lemma below.

Lemma 19. Let T be a random vertical slice with distribution ρMq . Let K ∈ Kn be
a fixed convex set and Ga,b the distribution function of the Beta distribution with
parameters (a/2, b/2). Then,

Φ̂r,0
n (K;T) =

1

r!

∫

K∩T
xrGn−q,q−1(t

2/‖pM⊥(x)‖2)−1λn(dx)

is an unbiased estimator of Φr,0
n (K).

The lemma is a direct consequence of [16, Proposition 6.3].
Combining Lemma 19 with Theorem 18 and (7.3), we obtain the following result.
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Theorem 20. Let W ∈ B(Rn) with 0 < λn(W ) < ∞. Let X be a stationary
particle process of convex particles in Rn with particle mark distribution Q. Let K0

be a random convex set with distribution Q. Finally, let T be a random vertical
slice, independent of the particle process X, with distribution ρMq . Then, for any
non-negative integer r,

E
∑

K∈X,x(K)∈W Φ̂r,0
n (K − x(K);T)

E
∑

K∈X,x(K)∈W Φ̂0,0
n (K − x(K);T)

=
1

r!

∫

Rn

xrfK0(x)λn(dx),

where Φ̂r,0
n is given in Lemma 19.

If the particle mark distribution Q is invariant under rotations that keep the
vertical axis fixed, then it is not needed to randomize the slice.
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