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ABSTRACT i

Abstract

The goal of my thesis is to understand the curvature of the Hitchin connection
in a vector bundle over Teichmüller space. The bundle is the holomorphic
sections of a certain line bundle over the moduli space of rank n and degree
k holomorphic vector bundles of fixed determinant on the Riemann surface
given by the point in Teichmüller space. This is interesting as it is related to
the topological quantum field theory, however, we will not explore this aspect.

The thesis consists of two parts. The first part consists of the first four
chapters, where we introduce the methods and objects we will be studying
in the second part. First, we introduce the moduli space of rank n degree k
holomorphic vector bundles over a closed Riemann surface of genus greater
than one, and we explain the connection between unitary representations and
vector bundles, see [Seshadri, 1982], [Mehta and Seshadri, 1980], [Narasimhan
and Seshadri, 1965] and [Narasimhan and Seshadri, 1964]. Then we briefly
review [Andersen, 2012] on the general construction of a Hitchin connection.
The second chapter explains the relation between the Selberg zeta function and
the determinant of the Laplace operator on a holomorphic vector bundle. This
relation is central to understanding the Ricci potential on the moduli space
of holomorphic vector bundles. The third chapter explains, how [Zograf and
Takhtadzhyan, 1989] construct coordinates and find the Ricci potential for the
moduli space of holomorphic vector bundles. We only add a small observation
about the Levi-Civita connection in the moduli space. To finish the first part
we follow [Zograf and Takhtadzhyan, 1987] in working on the Teichmüller
space. We alter our approach slightly from theirs to take into account, that we
have a bundle on the Riemann surface represented by a point in Teichmüller
space. These coordinates allow us to work with the Ricci potential on the
moduli space of holomomorphic vector bundles and explore, how it depends
on the underlying Riemann surface.

The second part contains my own work, and work with my advisor Jørgen
E. Andersen. The fifth chapter is a detailed draft for a joint paper. In the
paper we construct coordinates, on the moduli space of pairs of a Riemann
surface and a holomorphic bundle of rank n and degree k. The construction
is inspired by the previously introduced coordinates. We actually provide
two different sets of coordinates and prove that they are different. Finally,
Chapter 6 contains local calculations related to the Hitchin connection, and
there we calculate the (1, 1)-part of the curvature. This allows us to modify
the definition of the Hitchin connection from [Andersen, 2012] in such a way
that its curvature only consists of the (1, 1)-part, under certain assumptions I
believe are true for the genus of the surface heigh enough.
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Resume

Målet med min afhandling er at forstå krumningen af Hitchin-konneksionen på
et bundt over Teichmüller-rummet. Bundtet er de holomorfe snit af et bestemt
linjebundt over modulirummet af rang n grad k holomorfe vektorbundter med
given determinant over Riemann-fladen, som punktet i Teichmüller-rummet
specificere. Dette er interessant, blandt andet fordi det er relateret til klassiske
konstruktioner af topologiske kvantefeltteorier. Vi vil ikke undersøge denne
forbindelse nærmere.

Afhandlingen består af to dele. Den første del består af de første fire
kapitler. I disse fire kapitler introducerer vi de metoder og objekter, vi vil
undersøge i den anden del. Først introducerer vi modulirummet af rang n
og grad k holomorfe vektorbundter over en lukket Riemann-flade af genus
større end to, see [Seshadri, 1982], [Mehta and Seshadri, 1980], [Narasimhan
and Seshadri, 1965] og [Narasimhan and Seshadri, 1964]. Så giver vi en hur-
tig gennemgang af [Andersen, 2012]’s konstruksion af en Hitchin konneksion.
Det andet kapitel forklarer, hvordan determinanten af Laplace-operatoren på
et holomorft vektorbundt kan udtrykkes ved hjælp af Selbergs zeta-funktion.
Denne måde at beskrive determinanten af Laplace-operatoren på er central
for at forstå Ricci-potentialet på modulirummet af holomorfe vektorbundter.
Det tredje kapitel forklarer, hvordan [Zograf and Takhtadzhyan, 1989] kon-
struerer koordinater på modulirummet af holomorfe vektorbundter, og hvor-
dan de finder Ricci-potentialet på dette rum. Vi tilføjer en lille observation
om Levi-Civita konneksionen på modulirummet. Som afslutning på den første
del præsenteres [Zograf and Takhtadzhyan, 1987]’s måde at arbejde i koordi-
nater på Teichmüller-rummet. Disse koordinater tillader os at arbejde med
Ricci-potentialet på modulirummet af holomorfe vektorbundter og undersøge,
hvordan det afhænger af den underliggende flade.

Den anden del indeholder hoveddelen af det nye arbejde lavet i samarbe-
jde med min vejleder Jørgen E. Andersen. Det femte kapitel er et detalieret
udkast til en fælles artikel. I denne artikel konstruerer vi koordinater på mod-
ulirummet af par af en Riemann-flade og et holomorft vectorbundt på denne
af grad k og rang n. Konstruksionen er inspireret af de koordinater, der blev
introduceret in den foregående del af afhandlingen. Vi konstruerer også mere
direkte koordinater fra deres og viser, at de to sæt af koordinater er forskellige.
Det sidst kapitel indeholder udregninger, der skal hjælpe med af forstå Hitchin
konneksionen fra [Andersen, 2012]. Vi udregner (1, 1)-delen af krumningen
for denne konneksion. Dette tillader os at modificere konneksionen således, at
dette er hele den krumning der er, under nogle antagelser jeg mener er rigtige,
hvis genus er stor nok.
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Introduction

The work in this thesis is inspired mainly by a desire to understand a Hitchin
connection, [Hitchin, 1990]. One of the interesting applications of the Hitchin
connection is to construct (2 + 1)-TQFT using geometric quantization. The
Hitchin connection is needed to construct the vector space associated to a
surface. To use geometric quantization we need a prequantized line bundle
over a Kähler manifold. The choice we are interested in occurs, when the
Kähler manifold is the moduli space of holomorphic vector bundles on our
surface. However, for this to make sense we need to give our surface a complex
structure. If we take the family of complex structures on our surface given
by the Teichmüller space, T , this gives a family of Kähler structures on the
moduli space of degree k rank n stabel vector bundles. Here the moduli space of
degree k rank n stable vector bundles with fixed determinant,MSU(n),k, is the
symplectic manifold underlying all the Kähler structures given by identifying
this moduli space with the moduli space of degree k rank n holomorphic vector
bundles with fixed determinant, M0

n,k. The symplectic manifold MSU(n),k

has a prequantum line bundle over it, call it L. Now we can look at the
trivial bundle Ĥ = T × C∞(MSU(n),k,L) which contains T × H0(M0

n,k,L).
A Hitchin connection is a connection in Ĥ of the form ∇t +u, where ∇t is the
trivial connection and u is a 1-form on T with values in differential operators
on C∞(MSU(n),k,L). We say it is a Hitchin connection, if it preserves the
subbundle T ×H0(M0

n,k,L). Hitchin connnections can be shown to exist and
to be projectivly flat, allowing us to define the vector space associated to a
surface as the projectivly preserved section.

The aim of my thesis is to further our understanding of the Hitchin connec-
tion. We will be concerned with local calculations. To get a first grip on the
Hitchin connection [Andersen, 2012] gives an explicit formula for the 1-form u
in terms of the Ricci potential onM0

n,k and the tensor valued 1-form G, which
measure the variation of the complex structure by V ′[I] = G(V )ω. Additional
refinement can be found in [Andersen and Gammelgaard, 2011], where they
give an expression for the curvature of the Hitchin connection, however, these
expressions are not as specific as we would like. So in my thesis I will work
in local coordinates, inspired by [Zograf and Takhtadzhyan, 1989] and [Zograf
and Takhtadzhyan, 1987].

vii



viii INTRODUCTION

Now that we have the setting of my thesis, we will go through what the
thesis broadly speaking contains. The thesis consists of six chapters of which
the first four mostly gather background material and the last two primarily
contain my results and computations. In Chapter 1 I introduce the moduli
space and its complex structure from fairly basic notions. The second half of
Chapter 1 briefly describes the results of [Andersen, 2012] and [Hitchin, 1990,
Lemma 2.15], they will help us understand G(V ). Chapter 2 is mainly a brief
review of the Selberg zeta function. Following [Sarnak, 1987] the chapter ends
in proving that the determinant of the Laplace operator is closely related to the
derivative of the Selberg zeta function. After these introductory chapters follow
Chapter 3 and Chapter 4 in which the material of [Zograf and Takhtadzhyan,
1989] and [Zograf and Takhtadzhyan, 1987] are presented. In Chapter 3, in
addition to the results of [Zograf and Takhtadzhyan, 1989], I also prove that
a slight modification (Proposition 3.2.3) of their Lie derivative gives me a way
of calculating the Levi-Civita connection onMn,k. In Chapter 4 I also deviate
slightly from [Zograf and Takhtadzhyan, 1987, Theorem 2], they are working
with a Laplace operator on tensors, while my Theorem 4.3.3 is concerned with
the Laplace operator in a certain family of vector bundles on the Riemann
surface, this family is also what in Proposition 5.2.3 is used (and justified) to
compare two complex structures. The Theorem 4.3.3 follows the same logic
as [Zograf and Takhtadzhyan, 1987, Theorem 2].

The last two chapters present my main results. Chapter 5 is a detailed
draft for a paper with my advisor Jørgen Ellegaard Andersen, we also thank
Peter Zograf for discussing it with us. In this paper we construct two sets of
coordinates on the moduli space of pairs of a Riemann surface and a holomor-
phic bundle of rank n and degree k over the surface. The highlights are the
following five results:

Theorem 0.0.1 (Theorem 5.1.1)
For all sufficiently small µ ⊕ ν ∈ H0,1(Xρ0 , TXρ0) ⊕ H0,1(Xρ0 ,EndE) there
exist a unique bundle map Φµ⊕ν such that

1. Φµ⊕ν solves
∂̄HΦµ⊕ν = ∂Φµ⊕ν(µ⊕ ν),

where ν is considered a left-invariant vector field on GL(n,C) at each
point in H.

2. The base map extends to the boundary of H and fixes 0, 1 and ∞.

3. The pair of representations (ρµ, ρµ⊕νE ) defined by equation (5.2) repre-
sents a point in T ×M ′.

4. pGL(n,C)(Φ
µ⊕ν(z0, e)) has determinant 1 and is positive definite.
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Theorem 0.0.2 (Theorem 5.1.2)
Mapping all sufficiently small pairs

µ⊕ ν ∈ H0,1(Xρ, TXρ)⊕H0,1(Xρ,EndE)

to
(ρµ, ρµ⊕νE ) ∈ T ×M ′

provides local analytic coordinates centered at (ρ0, ρE) ∈ T ×M ′.

We identify the algebraic complex structure on the moduli space with the
complex structure given to the moduli space in [Hitchin, 1990].

Proposition 0.0.3 (Proposition 5.2.3)
We have that the map

Ψ : (T ×M ′, J)→Ms

is complex analytic, e.g. J is in fact the complex analytic structure this space
gets from the Narasimhan-Seshadri diffeomorphism Ψ.

We also construct another set of coordinates by first using the Bers’s coordi-
nates and then the coordinates on the moduli space [Zograf and Takhtadzhyan,
1989] to flow along the fiber. We prove that these fibred coordinates resemble
the previous constructed coordinates.

Theorem 0.0.4 (Theorem 5.1.3)
The fibered coordinates and the universal coordinates agree to second-order,
but not the third-order at the center of the coordinates.

And we end the Chapter with:

Theorem 0.0.5 (Theorem 5.5.5 )
The coordinates of 5.1.1 and the fibered coordinates agree to second-order, but
differ at third-order in the derivatives at the center point.

In the final Chapter 6 I have collected various results obtained by local calcu-
lations, the main highlight being the following four which give a good under-
standing of the curvature:

Lemma 0.0.6 (Lemma 6.1.1)
In coordinates on T ×M0

n,k, centered at (σ,E) ∈ T ×M0
n,k, we have for a

vector field V on T , identified by the Kodaira-Spencer map at σ ∈ T with
the Beltrami differential µ ∈ H0,1(Xσ, TXσ), and two cotangent vectors on
(M0

n,k, (−?)σ), represented by harmonic forms ν̄Ti , ν̄
T
j ∈ H1,0(Xσ,EndE), that

at (σ,E):

G(V )(ν̄Ti , ν̄
T
j ) = −2i

∫
X
µtrν̄Ti ν̄

T
j .
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Lemma 0.0.7 (Lemma 6.2.1)
On the complex space T ×M0

n,k we have:

2i∂̄σV
′[Fσ] = trG(V )∂σFσω −

1

2
tr∇(1,0)G(V )ω.

Corollary 0.0.8 (Corollary 6.3.2)
The following identity holds

θ(V,W )− 2i∂T ∂̄T F (V,W ) =
RankE

6π
ωWP (V,W ) =

n

6π
ωWP (V,W )

and
F (1,1)(V,W ) =

ikn

12π(k + n)
ωWP (V,W ).

And finally we modify the Hitchin connection in [Andersen, 2012] to have no
curvature of type (2, 0), under certain assumptions I believe to be true for g
big enough.

Theorem 0.0.9 (Theorem 6.3.3)
The connection ∇̂ = ∇t + u + k

(2n+k)2 c̃ on Hk → T is a Hitchin connection
with curvature −ikn

12π(k+n)ωWP .



Chapter 1

Moduli Space

In this first chapter of the thesis we will introduce some of the central concepts,
which we will investigate in greater detail later in the thesis. We start with
a review of the construction of the moduli space of stable vector bundles in
[Narasimhan and Seshadri, 1964], however, we twist it a little to suit our
purpose better. As part of the construction we will see, that bundles also can
be described by a conjugacy class of irreducible representations, both ways of
seeing the space will be important. In the second section we follow [Andersen,
2012] in describing the Hitchin connection on a family of Kähler structures of
a symplectic manifold. While much can be said in this general setting, not all
we would like has been done yet. In this thesis we will work with refining the
general formulas of [Andersen and Gammelgaard, 2011] to the case, where the
underlying symplectic manifold is the moduli space of connections on a fixed
bundle E over Σ of rank n, which is flat on Σ−p and has the holonomy e

−2πik
n I

around p. This is symplectic with the Goldman symplectic form. The moduli
space of connections is diffeomorphic to the space of stable holomorphic vector
bundles of rank n and degree k, however, only the latter carries a canonical
complex structure that is in fact also Kähler with respect to the Goldman
symplectic form. While we will only study a special case, it is an important
case, since the moduli space of connections is used to construct a bundle over
Teichmüller space, with a Hitchin connection that can be used to construct the
Witten-Reshetikhin-Tureav topological quantum field theory of the underlying
surface. It does so through geometric quantization in the spirit of [Witten,
1989]. We will end the chapter with a lemma from [Hitchin, 1990] about the
variation of the complex structure on the moduli space of connections, which
we will later need to refine in order to calculate the curvature of the Hitchin
connection.

1



2 CHAPTER 1. MODULI SPACE

1.1 Construction of the Moduli Space of Stable
Vector Bundles of Rank n and Degree k

The moduli space of stable holomorphic vector bundles of rank n and degree k
over a Riemann surfaceX will be our main object of study. From Narasimhan’s
and Seshadri’s theorem we know that this is closely related to a subset of
unitary representations of a central extension of the fundamental group, the
space of representations will be denotedR. Here the central extension of π1(X)
will be given by puncturing the surface at p. The representations of π1(X−p)
can be interpreted as a subset of U(n)|π1(X−p)|, this gives the representations
a topology as a subset. The topology can also be described differently using
that the group π1(X − p) is generated by a1, b1, . . . ag, bg, γ where g is the
genus of X. The the only relation in this representation of π1(X − p) is∏g
i=1[ai, bi] = γ. Now the topology of the representations we just introduced,

can also be described by looking only at what happens to the generators ai
and bi, this gives a map R → U(n)2g := Ω which is injective. The topology of
the image of R in U(n)2g is homeomorphic to R, and so the subset topology
from the image is the same topology as the first topology we gave R.

1.1.1 The Tangent Space of the Representation Variety

The map introduced above, R → Ω, we will use indirectly. For a representa-
tion ρ ∈ R we will denote the image of the generators as follows Ai = ρ(ai)
and Bi = ρ(bi). We are interested in the subset of representations such that∏g
i=1[Ai, Bi] = e

−2πik
n I. This equation cuts out a real analytic variety of Ω.

We will only be interested in the irreducible representations. The irreducible
points are simple and the equation gives the structure of a real analytic man-
ifold on the subset of simple points. Before moving on to study the space
and showing that the irreducible representations form a manifold, we note the
following:

Proposition 1.1.1 ( [Narasimhan and Seshadri, 1964, Prop. 2.1])
For a genus g ≥ 2 surface, Σ, there exists irreducible representations of
π1 ( Σ − p ) into U(n), with the loop around p being sent to e

−2πik
n I for

every n ≥ 1.

While this proposition is slightly different from their version, the proof works
unchanged.

Our space of representations is cut from Ω by the equation
g∏
i=1

[Ai, Bi] = e
−2πik
n I,

so we need to understand the differential of the map f(ρ) =
∏g
i=1[Ai, Bi].

Let ρ ∈ f−1(e
−2πik
n I) and denote the differential of f at ρ by D1 : Ωρ →



1.1. CONSTRUCTION OF THE MODULI SPACE OF STABLE VECTOR
BUNDLES OF RANK N AND DEGREE K 3

su(n)
e
−2πik
n

. We want to find the kernel of D1, it can be described using the
right-invariant Maurer-Cartan form ω = dA · A−1. The Maurer-Cartan form
is zero only on the zero vector, hence the kernel of the pullback of ω with f is
the same as the kernel of D1:

kerD1 = {v ∈ Ωρ|df · f−1(v) = 0}.

We can rewrite the requirement df · f−1(v) = 0 in terms of a 1-cocycle on
F , the free group on 2g generators (ai’s and bi’s) with values in Adρ. For
this purpose write a tangent vector v in Ωρ by right translation as (αi, βi)

g
i=1

with {αi, βi} ∈ T{e}Ω. In fact we will show that the unique 1-cocycle given by
δv(ai) = αi and δv(bi) = βi fulfills δv(

∏g
i=1[ai, bi]) = df · f−1(v). To see this

consider Ω × F as an analytic manifold, where we have given F the discrete
topology. Every point in Ω defines a representation of F , and so we have the
map Φ : Ω× F → U(n) given by Φ(ρ̃, γ) = ρ̃(γ). We can define a function on
F for v ∈ Ωρ given by δv = dΦ · Φ−1(v, ·) : F → u(n). Finally, we need to
show that this construction of δv satisfies the three things claimed below.

The first claim states that δv is a 1-cocycle: Let ρ ∈ Ω and γ1, γ2 ∈ F ,
then we have that Φ(ρ, γ1γ2) = Φ(ρ, γ1)Φ(ρ, γ2), since these are representations
of F . This implies that:

dΦ(ρ, γ1γ2)Φ(ρ, γ1γ2)−1 = (dΦ(ρ, γ1)Φ(ρ, γ2) + Φ(ρ, γ1)dΦ(ρ, γ2))Φ(ρ, γ1γ2)−1

= (dΦ(ρ, γ1)Φ(ρ, γ2) + Φ(ρ, γ1)dΦ(ρ, γ2))Φ(ρ, γ2)−1Φ(ρ, γ1)−1

= dΦ(ρ, γ1)Φ(ρ, γ1)−1 + Φ(ρ, γ1)dΦ(ρ, γ2)Φ(ρ, γ2)−1Φ(ρ, γ1)−1.

We have δv(γ1γ2) = δv(γ1)+ρ(γ1)δv(γ2)ρ(γ1)−1 which implies δv is a 1-cocycle
for F with respect to Adρ.

The second claim states that δv(ai) = αi and δv(bi) = βi : this follows
directly from the definition as δv(ai) = dpi · p−1

i (v), where pi is the projection
on Ω corresponding to ai. But dpi · p−1

i (v) is the right translation of the
component corresponding to ai of v, and so we get αi. The case with the bi’s
is similar.

The third claim states that δv(
∏g
i=1[ai, bi]) = df ·f−1(v): by definition

we have

δv(

g∏
i=1

[ai, bi]) = dΦ(ρ,

g∏
i=1

[ai, bi]) · Φ(ρ,

g∏
i=1

[ai, bi])
−1(v),

but f(ρ) = Φ(ρ,
∏g
i=1[ai, bi]), and so this proves the third claim.

We have a map from F → π1(X−p) given by sending what we called ai, bi
in F to the corresponding element in π1(X − p) which we called ai, bi at the
start of the chapter. This map identifies cocycles for F with respect to Adρ,
which vanish on

∏g
i=1[ai, bi], with cocycles of π1(X − p) with respect to Adρ.
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The Dimension of the Tangent Space and Regular Points

We have now reduced the problem of understanding the tangent space to a
question of understanding cohomology.

dim kerD1 = dimH1(π1(X − p),Adρ) + dimu(n)− dimH0(π1(X − p),Adρ),

since we have that the kernel is isomorphic to the 1-cocycles for the group
π1(Σ− p) with respect to the representation Adρ. The first term above gives
the dimension of the quotient by exact 1-cocycles, and the two last terms give
the dimension of the exact 1-cocycles.

Next, we need to understand the dimension of the cohomology groups. The
following two propositions will give us the relevant information:

Proposition 1.1.2 ( [Narasimhan and Seshadri, 1964, Prop. 2.2])
Let ρ be a U(n) representation of π1(X−p) and let Adρ be the representation
obtained by composing with the adjoint representation of U(n) on u(n) then:

dimH1(π1(X − p),Adρ) = 2n2(g − 1) + 2 dimH0(π1(X − p),Adρ).

Proposition 1.1.3 ( [Narasimhan and Seshadri, 1964, Prop. 2.3])
An unitary representation, ρ, of π1(X − p) into U(n) is irreducible if and only
if

dimH0(π1(X − p),Adρ) = 1.

Both proofs can be shown just as in [Narasimhan and Seshadri, 1964] since the
loop around p acts trivially, and so Adρ is in fact a representation of π1(X).

Returning to kerD1 we have that for f to be of maximal rank dim kerD1 +
dimSU(n) = dim Ω. By the above propositions we have:

dim kerD1 = dimH1(π1(X − p),Adρ) + dimu(n)− dimH0(π1(X − p),Adρ)

= 2n2(g − 1) + 2 dimH0(π1(X − p),Adρ) + n2

− dimH0(π1(X − p),Adρ)

= 2n2g − n2 + dimH0(π1(X − p),Adρ).

Since dimSU(n) = n2 − 1 and dim Ω = 2gn2 this implies that

dimH0(π1(X − p),Adρ) = 1,

and so ρ must be irreducible. From the implicit function theorem it follows
that the irreducible representations form a manifold.
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1.1.2 The Manifold Structure on Equivalence Classes of
Irreducible Representations

In order to get the moduli space of stable holomorphic vector bundles of rank
n and degree k,Mn,k, we need to take the quotient by the conjugation right
action of PU(n) on representations. In the next section we will show that
it is in fact the moduli space, but for the rest of this section we will just let
Mn,k = R/PU(n). Since the group PU(n) is compact we have that the orbit
space is Hausdorff, further the action is free and analytic, and so we have that
the orbit space inherits an analytic structure from the space of irreducible
representations, Rirr. From the construction we have a map p : Rirr →
Mn,k given by sending the representation to its conjugacy class. This gives
R the structure of a PU(n)-principal bundle over Mn,k. To study Mn,k we
need a description of its tangent space, we will argue it can be identified with
H1(π1(X − p),Adρ). We have identified Rirr’s tangent space at ρ with the
1-cocycles, and since the tangent space ofMn,k at p(ρ) can be described as the
quotient of Rirr’s tangent space by the kernel of p, we will be done when we
have shown these are the boundaries. The kernel of p is exactly the image of the
differential of the conjugation action ofU(n) at I. The conjugation map in Ω is
given by (T−1A1T, T

−1B1T . . . T
−1AgT, T

−1BgT ) and the differential is Y →
(A1Y −Y A1, B1Y −Y B1, . . . AgY −Y Ag, BgY −Y Bg), y ∈ u(n). However, we
used the identification where we right translated back to I, and so the tangent
map is Y → (A1Y A

−1
1 − Y,B1Y B

−1
1 − Y, . . . AgY A

−1
g − Y,BgY B

−1
g − Y ),

which is a 1-coboundary, and this also gives all the 1-coboundaries. Hence we
conclude that T[ρ]Mn,k

∼= H1(π1(X − p),Adρ).

1.1.3 Construction of Bundles from Representations

Given a representation, ρ, of π1(X − p) on a finite dimensional vector space,
V , we have a local coefficient system, L(ρ), of vector spaces on X, and we will
denote the i’th cohomology group with coefficients in L(ρ) by H i(X−p, L(ρ)).

Now given a unitary representation, ρ, of π1(X − p) with the loop around
p being sent to e

−2πik
n I, we can construct a sheaf of holomorphic sections on X

that gives rise to a holomorphic vector bundle, W (ρ). We follow [Mehta and
Seshadri, 1980] and [Seshadri, 1982] in the construction of parabolic degree
zero bundles for the special case, where all the weights are the same, e

−2πik
n ,

and there is only one parabolic point. In this case the bundle is defined by
specifying a sheaf by pullback from the universal cover of X − p, we note
that we only consider genus greater than two. In order to construct the vector
bundle we first consider the universal cover of X−p, which is H with an action
of π1(X − p), we can choose the puncture to correspond to ∞. We then have
that H × Cn has an action of π1(X − p). And we can define the a sheaf on
X − p by associating to an open set U ⊂ X − p the invariant sections of Cn
on p−1(U) ⊂ H, all these are locally free of rank n. To finish the construction
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of the sheaf on X we need to specify the value on a small neighborhood, V , of
p. We look at p−1(V ) and take the component near ∞. We can assume that
V is such that this component is given by {z ∈ H|Imz > c}. Then we define
the sheaf over V to be the bounded invariant sections over {z ∈ H|Imz > c}.
We can choose a small enough V , so that for invariant sections only the loop
around p needs to be considered. This loop lifts to the transformation z → z+1

on H and acts on Cn by e
−2πik
n I. We can see that for {ej}nj=1, a basis of

Cn, the invariant sections are given and spanned by e
−2πik
n

zf(pX(z))ej , where
f(z) ∈ (O(V )). This implies that the sheaf is a free sheaf of rank n even
at p. We have now defined the vector bundle W (ρ), by specifying a sheaf.
Direct calculations, or comments in [Seshadri, 1982], will show that it has
degree k. We also observe that the transition functions for the neighborhood
of p will depend on the representation in the usual way, only we also need
to modify them by multiplying with a function which is independent of the
chosen representation.

Because this is a special case where the order of e
−2πik
n I is of order n, we

can find a central extension

0→ Z/nZ→ π̃ → π1(X)→ 0

and a representation of π̃ making it a ramified cover of X, with ramification
point p. We can define the sheaf directly by the invariant section on H × Cn
under π̃. This is the approach which will be used later. This will be in the spirit
of [Narasimhan and Seshadri, 1965, Proposition 6.2], we note they argue the
transition functions near p depend on the representation with a modifications
which is the same for all representations. The modifiaction does not disturb
constructing universal bundles.

Finally, we note that the prinipal GL(n,C)-bundle P (ρ) associated with
W (ρ) can be constructed using the same transition functions, and so it also
depends holomorphically on the representation.

1.1.4 The Moduli Space of Stable Bundles

First, we need to relate the different cohomology groups, as this will be the
basis for showing that conjugate representations give equivalent bundles.

Proposition 1.1.4 ( [Narasimhan and Seshadri, 1964, Prop. 4.1])
Let X be a compact connected complex manifold and ρ : π1(X) → AutV
be a representation in a complex vector space V . Assume further ρ leaves a
Hermitian form, H on X, invariant. Then the natural map

H0(π1(X), ρ)→ H0(X,W (ρ))

is an isomorphism.
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Proof: Any element in H0(π1(X), ρ) will give an element of H0(X,W (ρ)),
which is seen clearly from the description of the sheaf.

Let f ∈ H0(X,W (ρ)), then this is by construction identified with a func-
tion f̃ : X̃ → V satisfying ρ(γ)−1f(z) = f(zγ). Since H(f(z), f(z)) is left-
invariant by ρ, the action of π1(X) leaves H(f(z), f(z)) invariant, which im-
plies it is a function on X. Since this is a plurisubharmonic function and
X is compact, H(f(z), f(z)) is constant. But this means f has a constant
norm and is a holomorphic function, this is only possible if f is constant.
Hence we have f(z) = C ∈ V and ρ(γ)−1C = C,∀γ ∈ π1(X). But this says
C ∈ H0(π1(X), ρ). �

Proposition 1.1.5 ( [Narasimhan and Seshadri, 1964, Prop. 4.2])
Let ρ1 and ρ2 be two U(n) representations of π1(X − p) with the loop around
p being represented by e

−2πik
n I. Then the two holomorphic GL(n,C)-principal

bundles P (ρ1) and P (ρ2) are isomorphic if and only if the representations ρ1

and ρ2 are conjugate.

Proof: If the representations are conjugate we can use this conjugation as
an isomorphism between the two bundles. Conversely assume the bundles
are isomorphic. Then the isomorphism is given by a function f : X̃ →
GL(n,C) which transforms as ρ1(γ)−1f(z)ρ2(γ) = f(zγ),∀γ ∈ π1(X − p).
Since GL(n,C) ⊂ gl(n,C) we can define a representation on the vector space
gl(n,C) by R(γ)A = ρ1(γ)Aρ2(γ)−1, this leaves the Hermitian form tr(A∗A)
invariant. We can now apply the previous proposition, since the loop around
p is in kerR, to conclude that f(z) = C ∈ GL(n,C). But then

ρ1(γ)−1f(z)ρ2(γ) = f(zγ)⇒ ρ2(γ) = C−1ρ1(γ)C.

Finally, we observe that since the ρ’s are unitary, we can find a unitary C1

which will also conjugate the two representations. �

If our representation, ρ, is irreducible then by Proposition 1.1.4

dimH0(X,AdP (ρ)) = 1,

and so W (ρ) must be indecomposable by Schur’s lemma, since AdP (ρ) is the
endomorphism bundle.

The rest of this section will be used to reformulate, once again, what the
tangent space to the moduli space is by relating group cohomology groups to
cohomology groups with values in a complex vector bundle. The cohomology
groups with values in a complex vector bundle have a complex structure, and
it will turn out to give the moduli space the structure of a complex manifold.
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Proposition 1.1.6 ( [Narasimhan and Seshadri, 1964, Prop. 4.3])
Let X be a compact, connected, Kähler manifold. Let ρ be a representation
of π1(X− p) with the loop around p represented by e

−2πik
n I. Then the natural

map
H1(X,L(Adρ))→ H1(X,AdP (ρ))

is an isomorphism.

Although the proposition is stated a little differently here since the loop around
p is in the kernel of Adρ, the proof from [Narasimhan and Seshadri, 1964] can
be used without changes.

1.1.5 The Complex Structure on the Moduli Space

To construct the complex structure we will use a proposition of S. Nakano
[Nakano, 1961, Proposition 1]. The setup is as follows. Let V → M be a
family of complex compact manifolds and let P → V be a family of principal
G-bundles for some Lie group G. Then there is a map ηt : TtM → H1(X,Σt),
where Σt is the sheaf of germs of holomorphic vector fields with values in AdPt.

Proposition 1.1.7 ( [Nakano, 1961, Prop. 1])
If dimH1(X,Σt) is independent of t and ηt is an injection with the image of ηt
a complex subspace of dimH1(X,Σt) for all t, then M is a complex manifold
with the almost complex structure we gave TtM .

We can construct a family of principal GL(n,C)-bundles over the family of
compact complex manifolds Rirr × X, which we denote P. This is done by
letting P be the automorphism bundle of a vector bundle given by the rep-
resentation in Rirr, as of Section 1.1.3. This is a complex manifold since the
transition functions are nicely behaved.

We have seen that TmMn,k

I(ρ)∼= H1(π,Ad(ρ))
J(ρ)∼= H1(X,AdP (ρ)). Since

AdP (ρ) is a complex vector space this last cohomology group is a complex
vector space, and so this gives pointwise a complex structure. However, here
we used a representative for the conjugacy class, so we need to show that the
complex structure is independent of this choice. Further, we will have to show
it is smooth and gives rise to the structure of a complex manifoldMn,k.

Let ρ1 and ρ2 be two equivalent representations and let T be the element
conjugating ρ1 to ρ2. Then this means that Adρ2 = Ad(T )Adρ1Ad(T )−1, and
so T induces isomorphisms

H1(π,Ad(ρ1)) ∼= H1(X,Ad(ρ2))

and
H1(π,AdP (ρ1)) ∼= H1(X,AdP (ρ2)).
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The latter of the two comes from the holomorphic map induced by T between
the two principal bundles P (ρ1) and P (ρ2), and so it is a complex isomor-
phism of vector spaces, and so the complex structure does not depend on the
representative we chose.

For the last part we will need to calculate the deformation map of our
family of principal GL(n,C) bundles over Rirr ×X.

Proposition 1.1.8 ( [Narasimhan and Seshadri, 1964, Prop. 5.1])
The infinitesimal deformation map (Kodaira map) τρ : Rirr → H1(X,AdP (ρ))
is the composition of the following natural maps:

TρRirr
δ→ Z1(π1(X − p),Adρ)

q→ H1(π1(X − p),Adρ)

→ H1(X,L(Ad(ρ)))→ H1(X,AdP (ρ)).

We will skip the proof, from the sheaf description we get transition functions
for P, we can calculate just as in [Narasimhan and Seshadri, 1964] to verify
the result.

Since the U(n) action on the bundle P is effective we can reduce this
to a bundle over Mn,k × X. The deformation map will be the same, and
so this is a smooth map. We will now show, that this is the same map as
the isomorphism we used to define the complex structure on Mn,k at every
point, and so our pointwise complex structures are chosen smoothly and give
an almost complex structure. We work locally on U ⊂ Mn,k and choose a
section on the bundle Rirr → Mn,k over U , call it σ. This gives us the map
τσ(ρ) ◦ dσ : T[ρ]Mn,k → H1(X,AdP (σ(ρ))), which is smooth. We look at the
definition of τρ = J(ρ) ◦ q ◦ δ, since the map I(ρ) = q ◦ δ ◦ dσ, and so we see
that this is exactly the map we used to define the complex structure and that
it is smooth.

In order to show the complex structure is integrable, we verify the condi-
tions of Proposition 1.1.7 in the following lemma.

Lemma 1.1.9 ( [Narasimhan and Seshadri, 1964, Lemma 6.1])
Let ρ be an irreducible U(n) representation of π1(X−p) with the loop around
p represented by e

−2πik
n I. Let Σ(ρ) be the holomorphic vector bundle on X of

invariant tangent vector fields on P (ρ), then:

1. dimCH
1(X,Σ(ρ)) is independent of ρ

2. the natural map H1(X,AdP (ρ))→ H1(X,Σ(ρ)) is injective and a com-
plex linear map.

Proof: We have the exact sequence of vector bundles

0→ AdP (ρ)→ Σ(ρ)→ Θ→ 0,
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where Θ is the holomorphic tangent bundle. Now H0(X,Θ) = 0, and since
X only has one complex dimension H2(X,AdP (ρ)) = 0, and so from the long
exact sequence of cohomology groups, we get:

0→ H1(X,AdP (ρ))→ H1(X,Σ(ρ))→ H1(X,Θ)→ 0. (1.1)

Equation (1.1) shows the first claim, since H1(X,Θ) is independent of ρ and
from Proposition 1.1.2 we know dimH1(X,AdP (ρ)) is independent of ρ. The
second claim is just what the first half of (1.1) means. �

The complex structure we just gave Mn,k can also be described from the
complex structure on the manifold X as an almost complex structure on the
underlying differential manifold, the moduli space of flat vector bundles. This
is what [Hitchin, 1990] does, and the two complex structures are the same.

1.2 The Hitchin Connection

In this chapter we describe the construction of the Hitchin connection which
can be used for the moduli space of connections, as described in [Andersen,
2012].

We will let (M,ω) be a compact symplectic manifold, and (L, (·, ·),∇) be
a prequantum line bundle over M . Here (·, ·) is a Hermitian inner product,
and ∇ a compatible connection with the curvature given by F∇ = −i

2πω. Both
(M,ω) and L will be fixed, we will consider holomorphic families of Kähler
structures on M .
Definition 1.2.1 ( [Andersen and Gammelgaard, 2011, Defn. 2.2])
Let T be a complex manifold with a map, I, to the space of complex structures
on M such that (M,ω, Iσ) is a Kähler manifold for all σ ∈ T . Then we call I
holomorphic if:

V ′[I] = (V [I])′ V ′′[I] = (V [I])′′ ∀V ∈ X (T )

Where V ′ denote the (1, 0)-part of the vector field V and V ′′ the (0, 1)-part.
Also we have that V [I] ∈ C∞(M,Tσ ⊗ (T̄σ)∗ ⊕ T̄σ ⊗ (Tσ)∗) and so (V [I])′ is a
projection to the first factor and (V [I]′′) is a projection to the second factor.

We define the 1-form G̃ on T with values in two tensors on M by:

V [I] = G̃(V )ω V ∈ Γ(TT ). (1.2)

Here V differentiates I as a section of the trivial bundle T ×C∞(M,End(TMC)),
and the tensors on the right-hand side are contracted. We will later see that
in fact G̃(V ) ∈ C∞(M,S2(TMC)). Since each M has a complex structure we
can consider the complexified tangent space TMC ∼= Tσ⊕ T̄σ. And so the map
I being holomorphic means we can split G̃ as

G̃(V ) = G(V ′) + Ḡ(V ′′).
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Here G(V ′) ∈ C∞(M,S2(Tσ)).

Definition 1.2.2 ( [Andersen, 2012, Defn. 1.1])
A complex family of Kähler structures, I, on (M,ω) is called rigid if

∇0,1
σ (Gσ(V )) = 0, ∀V ∈ Γ(TT ), ∀σ ∈ T

Consider the trivial bundle H(k) := T × C∞(M,Lk), we will assume that the
the subspaces of holomorphic sections H(k) := {s ∈ C∞(M,Lk)|∇0,1s = 0}
for a smooth finite dimensional subbundle.

Definition 1.2.3 ( [Andersen, 2012, defn. 1.2])
A connection in H(k) over T of the form

∇̂ = ∇̂t − u,

where ∇̂t is the trivial connection in H(k) and u is a 1-form with values in dif-
ferential operators on C∞(M,Lk), is called a Hitchin connection if it preserves
H(k).

Now we can state the theorem.

Theorem 1.2.4 ( [Andersen, 2012, Theorem 1.3])
If (T , I) is a rigid family of Kähler structures on the symplectic prequantizable
compact manifold (M,ω), which satisfies that there exists n ∈ Z such that the
first Chern class of (M,ω) in n[ω] ∈ H2(M,Z) and H1(M,R) = 0. Then there
exists a Hitchin connection, ∇̂ in H(k). The connection is given as

∇̂V = ∇̂tV − u(V )

With ∇̂t the trivial connection in H(k), V a smooth vector field on T and u(V )
the second order differential operator given by:

u(V )(s) =
1

2k + n

(
1

2
∆G(V )(s)−∇G(V )dFσ(s) + 2kV ′[Fσ]s

)
.

Where Fσ is a smooth family of Ricci potentials (Ric= nω + 2i∂∂̄Fσ) for
Mσ and V ′ is the (1, 0)-part of the vector field V on T . And ∆G(V ) is the
composition:

∆G(V ) : C∞(M,Lk)
∇1,0
σ

−−−−−−→ C∞(M,T ∗σ ⊗ Lk)
G⊗Id

−−−−−−→ C∞(M,Tσ ⊗ Lk)
∇1,0
σ ⊗Id+Id⊗∇1,0

σ

−−−−−−−−−−−−−−→ C∞(M,T ∗σ ⊗ Tσ ⊗ Lk)
tr

−−−−→ C∞(M,Lk).

Theorem 1.2.4 can be used for the moduli space of flat SU(n)-connections. We
will study a smooth family Ricci potentials in the coming chapters in order to
understand the Hitchin connection.
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The proof of Theorem 1.2.4 splits into three lemmas. The first lemma
gives an equation for u(V ). The second lemma calculates what happens to
the equation, if we assume u(V ) is a second order operator. Finally, the third
lemma shows that the second order operator with the symbol G(V ) and the
Ricci potential can be combined into a solution of the equation for u(V ).

Lemma 1.2.5 ( [Andersen, 2012, Lemma 2.2])
The connection ∇̂ in H(k) from Theorem 1.2.4 induces a connection in H(k) if
and only if

i

2
V [I]∇1,0s+∇0,1u(V )s = 0 (1.3)

for all smooth sections of H(k) and all vector fields V on T .

So to show ∇̂ is a Hitchin connection we only need to show the equation (1.3).
For the statement of the following lemma let G ∈ H0(Mσ, S

2(Tσ)), then by
the procedure given at the end of Theorem 1.2.4 we construct a second order
differential operator we call ∆G.

Lemma 1.2.6 ( [Andersen, 2012, Lemma 2.6])
Assume the first Chern class of (M,ω) is n[ω] ∈ H2(M,Z), for σ ∈ T , s ∈ H(k)

and for any G ∈ H0(Mσ, S
2(Tσ)) we have:

∇0,1
σ (∆G(s)− 2∇GdFσ(s)) = −i(2k + n)Gω∇1,0

σ (s)

− iktr(∇1,0
σ (G)ω − 2G∂σFω)s.

And finally the third lemma is:

Lemma 1.2.7 ( [Andersen, 2012, Lemma 2.8])
The following identity holds:

4i∂̄σ(V ′[Fσ]) = 2tr(G(V )∂σ(Fσ)ω −∇1.0(G(V )ω))

if H1(M,R) = 0.

We will show this for the SU(n)−moduli space later Lemma 6.2.1 without
assuming H1(M,R) = 0.

If we combine Lemma 1.2.6 and Lemma 1.2.7 it turns out, that u(V ), as
defined in Theorem 1.2.4, solves the equation in Lemma 1.2.5 and so u(V )
defines a Hitchin connection.

1.2.1 G(V ) for the Moduli Space of Vector Bundles

We follow Hitchin [Hitchin, 1990] in deriving properties for G(V ) in the general
case and formulas for the moduli space of flat vector bundles. A complex struc-
ture, I ∈ C∞(M,EndTM), gives a Kähler stucture on a symplectic manifold
(M,ω) if:

I2 = −Id, (1.4)



1.2. THE HITCHIN CONNECTION 13

[IX, IY ] = [X,Y ] + I[X, IY ] + I[IX, Y ], (1.5)
ω(X, IY ) = −ω(IX, Y ), (1.6)
ω(X, IX) > 0 ∀X 6= 0. (1.7)

Here X and Y are tangent vectors on M .
We want to study a family of Kähler structures. Let us first consider a

path of Kähler structures It. Differentiating in (1.4) with respect to t we have

İI + Iİ = 0,

where İ is the derivative of It with respect to t. This means that İ takes the
−i eigenspace to the i eigenspace of I, and this map contains the information
to reconstruct İ, therefore we can think of İ ∈ Ω0,1(M,TIM) as a (0, 1)-form
with values in (1, 0)-tangent vectors on (M, I). Expressed in local coordinates
we get:

İ =
∑
i,j

aij
∂

∂zi
⊗ dz̄j . (1.8)

Next we turn our attention to the moduli space of vector bundles. The tangent
space can be identified with the harmonic 1-forms with values in End0E. For
a 1-form, α, to be harmonic we have:

dAα = 0

dA ? α = 0,

where ? is the Hodge star and dA the flat connection in the bundle End0E.
This implies that the Hodge star preserves the harmonic 1-form, and we can
define a complex structure as:

Iα = − ? α.

For a surface the complex stucture is described by the Hodge star ?, and from
the considerations (1.8) we have that

?̇ = a
∂

∂z
⊗ dz̄ ∈ Ω0,1(Σ,K−1)

is a Beltrami differential. For the moduli space of vector bundles the (1, 0)-
tangent space can be identified with H1(Σ,End0E) at the bundle E and the
(0, 1)-tangent space is identified with H0(Σ,End0E ⊗K). Using these identi-
fications we have the following description of İ:

Lemma 1.2.8 ( [Hitchin, 1990, Lemma 2.13])
If X ∈ T 0,1 is represented by a holomorphic section α of End0E ⊗ K, then
İX ∈ T 1,0 is represented in H1(Σ,End0E) by −?̇α ∈ Ω0,1(Σ,End0E).
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Proof: We let ?(t) be a 1-parameter family of complex structures on Σ and
then we have a corresponding family I(t) on the moduli space of vector bundles.
In order to calculate Iα we choose a harmonic representative h with respect
to the conformal (complex) structure ?:

α = h+ dAψ.

Differentiating this equation at t = 0 gives 0 = ḣ + dAψ̇. Further we have,
that α = h for t = 0. By the definition of I we have

I[α] = [− ? h] ∈ H1
A(Σ,End0E).

When we differentiate at t = 0, we get:

İ[α] = [−?̇h− ?ḣ] = [−?̇α+ ?dAψ̇].

Since İ[α] represents an element of T 1,0 there exists a (0, 1)-form β and a
ϕ ∈ Ω0(Σ,End0E) such that:

−?̇α+ ?dAψ̇ + dAϕ = β ∈ Ω0,1(Σ,End0E).

Now since we have ?̇ ∈ Ω0,1(Σ, k−1) and α ∈ Ω0(Σ,End0E ⊗K) both β and
?̇α are of type (0, 1) and we must have:

β = −?̇α+ ∂̄(ϕ− iψ̇),

which means [β] = [−?̇α] ∈ H1(Σ,End0E). �

Using Lemma 1.2.8 and ω we can describe G(V ) explicitly, since G(V ) = İω−1

when we view ω as a map from (T 1,0)∗ → T 0,1. We can also view both ω−1

and G(V ) as quadratic functions on the cotangent spaces (T 1,0)∗⊗ (T 0,1)∗ and
(T 1,0)∗ ⊗ (T 1,0)∗ respectively. In this interpretation ω(α, β) =

∫
σ trα ∧ β, and

so we have:
G(V )(α, α) =

∫
X
V [−?]trα2. (1.9)

It is clear from (1.9) that G(V ) is holomorphic on the moduli space of vector
bundles. We will calculate V [−?] in Chapter 6.



Chapter 2

The Laplace Operator on
Quotients of the Upper
Half-plane

We will be interested in studying the Ricci potential on the moduli space
of stable holomorphic vector bundles with fixed determinant over a Riemann
surface, X = (Σ, σ) and degree k. This function is closely related to the
Laplace operator on the bundle over X. We will study the case where X is
compact and of genus greater than 1. In this case X can be identified with
a quotient of the upper half-plane H by a discreet subgroup of PSL(2,R), a
Fuchsian group of the first kind. The bundles can be constructed using unitary
representations of π1(Σ) or π1(Σ− p) with certain restrictions. In this section
we will review results about automorphic forms and relate them to sections of
the vector bundle over X constructed from the unitary representation.

After these preliminary considerations we will review elements of the the-
ory of automorphic forms, in particular the Selberg trace formula and the
Selberg zeta function. We shall present the results without proofs. We will
end the section following [Sarnak, 1987] by proving the close relation between
ζ-regularized determinants of the Laplace operator and values of the Selberg
zeta function. This result allows us to interpret the determinant as the Selberg
zeta function in further studies.

2.1 Structural Results

For our convenience we will begin by mentioning some usefull structural results
about the subgroups of PSL(2,R), we will encounter, and their fundamental
domains. The discrete subgroups can be described by the following theorem.

Theorem 2.1.1 ( [Venkov, 1982, Theorem 1.2.1])
A Fuchsian group of the first kind is determined by a finite set of generators

15
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A1, B1, . . . , Ag, Bg, S1, . . . , Sr, R1, . . . , Rl with the defining relations:

[A1, B1] · . . . · [AgBg] · S1 · . . . · Sr ·R1 · . . . ·Rl = I

Rm1
1 = . . . = Rmll = I.

Here the elements R are elliptic (|trR| < 2), S parabolic (|trS| = 2) and A
and B hyperbolic (|trA| > 2).

We will mainly consider the case where there are no parabolic elements. Groups
with no parabolic elements give a compact fundamental domain, whereas
groups with parabolic elements give a non-compact finite measure fundamen-
tal domain. Also, most of the time we are interested in groups without elliptic
elements, as these give genus g closed surfaces. However, we may want to
consider an orbifold with a single n-fold branching point, this corresponds to
having an elliptic element of order n.

Associated to the group Γ we can find a fundamental domain that is con-
nected, and whose interior only contains Γ inequivalent points, while the clo-
sure contains representatives of all Γ equivalence classes. Further, we can find
the fundamental domain as a hyperbolic polygon with sides pairwise identified.
If the group Γ contains no parabolic elements we can choose the fundamental
domain to be compact. We denote such a choice F in the following.

These results let us work with objects on the manifold X by considering
functions on H which are equivariant with respect to an action of the related
group Γ. We will introduce one such object in the next section, simply writing
about it from the perspective of X being a quotient of H by a discrete group
Γ.

2.2 Automorphic Forms

Given a discrete subgroup of Γ ⊂ PSL(2,R) and a U(n)-representation, ρ, of
Γ, a vector valued automorphic form of weight (n,m) is a smooth function on
f : H→ Cn such that

f(γz) = ρ(γ)f(z)(γ′z)n(γ′z)m.

The group Γ acts on H as isometries of the hyperbolic plane and on Cn with
the unitary representation ρ. This means that Γ acts on H×Cn and this action
is discrete and faithful, and so the quotient space gives a vector bundle over
the surface H/Γ. The automorphic forms will correspond to sections of the
bundle associated with ρ by the above construction tensored with (TσX)−⊗n⊗
(T̄X)−⊗m, where Tσ denotes the subbundle of TCX on which the complex
structure acts as i. Conversely, given a section of this bundle over X we can
pull it back to H, and it will be a function with the required transformation
properties.



2.2. AUTOMORPHIC FORMS 17

Since we have a unitary representation, there is a naturally associated inner
product on these sections given by:

〈f, g〉 =

∫
F

(f(z), g(z))Cn
dzdz̄

2iy2−n−m .

This inner product is well-defined on functions whose restriction to the closure
of F is compactly supported, and the inner product is independent of the
fundamental domain chosen. We will work with the completion of the smooth
automorphic forms of weight (n,m) with finite norm (the L2 space). We will
mostly be interested in the Laplace operator on functions in L2(Γ, ρ) that is
given by −y2 d2

dzdz̄ . The Laplace operator is a symmetric operator and extends
to a positive self-adjoint operator.

2.2.1 Kernel Operator Associated with the Laplace Operator

We want to develop tools to help us understand the spectrum of the Laplace
operator, specifically we want to be able to manipulate the ζ-regularized de-
terminant. In this section, we will take some function, h, defined in a neigh-
borhood of the real axis and construct an operator with eigenvalues h(λ) for
λ ∈ σ(∆). First, on the upper half-plane model of hyperbolic space H we can
consider the following equation:

−y2 d2

dzdz̄
f1(z)− s(s− 1)f1(z) = f2(z). (2.1)

The following theorem then holds:

Theorem 2.2.1 ( [Venkov, 1982, Lemma 1.1.1])
For f2 : H → C a smooth and bounded function, there exists a kernel
k(z, z′, s), z, z′ ∈ H, s ∈ C, such that for Re(s) > 1 we have:

f1(z) =

∫
H

k(z, z′, s)f2(z′)ρ

is a bounded smooth function solving (2.1).
Further, k(z, z′, s) is given by:

k(z, z′, s) = k(u(z, z′), s), u(z, z′) =
|z − z′|2

yy′
= cosh(disthyp(z, z′))− 1

(2.2)

k(u, s) =
1

4π

∫ 1

0
[t(1− t)]s−1

(
t+

u

4

)−s
dt (2.3)

for Re(s) > 0.
Finally, k(u, s) is analytic in s and smooth in u for Re(s) > 0 and u > 0.

It has the following assymptotics:

k(u, s) = − 1

4π
log u+O(1), u→ 0
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and the bound:
k(u, s) = O(u−Res), u→∞.

This Theorem gives us formulas for the resolvent kernel of (∆− s(s− 1)). In
the case where s = 1, k(u, 1) = −1

4π lnu. This is the kernel associated to ∆ we
will encounter most often. If we have a Riemann surface, X, the kernel of the
Laplace operator on X is:

G(z, z′) =
∑
γ∈ρ

k(u(z, ρH(γ)z′), 1), z 6∈ ρH(π1(X))z′. (2.4)

2.3 The Selberg Trace Formula

In this section we describe the Selberg trace formula. The trace formula refor-
mulates the trace of nicely behaved functions h used on the Laplace operator
in geometric terms. As we have seen earlier, it is convenient to know the inte-
gral kernel of an operator for these purposes. It is obtained using the Selberg
transform:
Theorem 2.3.1 ( [Venkov, 1982, Theorem 3.3.3] )
If h : [0;∞)→ C is measurable and bounded then the operator

h(∆) : L2(Γ, χ)→ L2(Γ, χ)

is defined, and the kernel as integral operator has the spectral decomposition:

h(z, z′,∆) =
∑
j

h(λj)w(z, λj)⊗ w(z′λj).

If we further assume that there is a function h̃ : C→ C which fulfills:

1. h̃(s) = h(s(s − 1)) is analytic in the strip −ε < Re(s) < 1 + ε for some
ε > 0.

2. That there exists a δ > 0 such that h̃ has the following growth estimate

h̃(s) = O((|Im(s)|+ 1)−2−δ), −ε < Re(s) < 1 + ε.

Then the kernel can be written h(z, z′,∆) =
∑

γ∈Γ χ(γ)k(u(z, γz′)) with u as
in (2.2), and k : [0;∞)→ C and h related by:∫ ∞

ω

k(t)√
t− ω

dt = Q(ω), k(t) =
1

π

∫ ∞
1

dQ(ω)√
ω − t

, (2.5)

Q(eu + e−u − 2) = g(u), (2.6)

h

(
1

4
+ r2

)
=

∫ ∞
−∞

e−irug(u)du, g(u) =
1

2π

∫ ∞
−∞

e−iruh

(
1

4
+ r2

)
dr, (2.7)

where the series
∑

γ∈Γ χ(γ)k(u(z, γz′)) converge absolutely in the norm on V
and uniformly on compact subsets for H×H giving a continuous map to V .
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Now we are ready to state the Selberg trace formula. Let χ be a unitary rep-
resentation of Γ. Then from the identity h(z, z′,∆) =

∑
γ∈Γ χ(γ)k(u(z, γz′))

and the spectral decomposition of h, we have that:∑
j

h(λj) =

∫
F

∑
γ∈Γ

trχ(γ)k(u(z, γz))dµ(z). (2.8)

Since F is compact we can interchange summation and integration. We get:∑
j

h(λj) =
∑
γ∈Γ

trχ(γ)

∫
F
k(u(z, γz))dµ(z)

=
∑
{γ}Γ

∑
γ′∈Γγ\Γ

trχ(γ)

∫
F
k(u(z, γ′−1γγ′z))dµ(z)

=
∑
{γ}Γ

trχ(γ)

∫
Fγ
k(u(z, γz))dµ(z),

where Fγ is the fundamental domain of Γγ , the centralizer of γ. Now each term
in the sum reduces to calculating the integral over certain nicely described
regions, and we have the following lemma.

Lemma 2.3.2 ( [Venkov, 1982, Lemma 4.3.4])
The following equalities hold with h, g and k related as in (2.5):∫

FE
k(u(z, z))dµ =

Vol(F)

4π

∫ ∞
−∞

r(tanhπr)h

(
1

4
+ r2

)
dr,

where E is the identity element.∫
Fγ
k(u(z, γz))dµ(z) =

ln(N(P ))

N(P )
k
2 −N(P )−

k
2

g(k lnN(P )),

where γ = P k and P is a primitive hyperbolic element with norm N(P )(the
square of the biggest eigenvalue).∫

Fγ
k(u(z, γz))dµ(z) =

1

2m sin
(
kπ
m

) ∫ ∞
−∞

e
−2πrk
m

1− e−2πr
h

(
1

4
+ r2

)
dr,

where γ = Rk and R is an elliptic element of order m ≥ 2.

And this lets us conclude, that for a discrete group with no parabolic elements
we have:

Theorem 2.3.3 ( [Venkov, 1982, Theorem 4.3.6])
Let h(s(1− s)) satisfy:

1. h(s(1− s)) = h1(s(1− s))2.
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2. h̃1(s) = h1(s(1− s)) is analytic for −ε < Re(s) < 1 + ε for some ε > 0.

3. In the strip −ε < Re(s) < 1 + ε we have h̃1 = O((1 + |Im(s)|)−4−δ) for
some δ > 0.

4. h1(R+) ⊂ R.

Then the following identity holds:∑
l

h(
1

4
+ r2

j ) =
Vol(F)

2π

∫ ∞
−∞

r(tanhπr)h

(
1

4
+ r2

)
dr

+2
∑

γΓ primimitive hyperbolic

∞∑
k=1

ln(N(P ))

N(P )
k
2 −N(P )−

k
2

g(k lnN(P ))

+
∑

γΓ primitive eliptic

m−1∑
k=1

1

m sin
(
kπ
m

) ∫ ∞
−∞

e
−2πrk
m

1− e−2πr
h

(
1

4
+ r2

)
dr.

2.4 The Selberg Zeta Function

Definition 2.4.1 (Selberg’s Zeta Function)
For Re(s) > 1 we have the convergent product:

Z(s, ρH, ρE) =
∏

γ simple closed geodesic

∞∏
k=0

det(I − ρE(γ)e−(k+s)|γ|ρH ) (2.9)

=
∏

γ∈ρH(π1(Σ))primitive hyperbolic

∞∏
k=0

det(I − ρE(γ)N(γ)−s−k).

(2.10)

Here N(γ) is the norm of the biggest eigenvalue of γ ∈ PSL(2,R) squared.
The Selberg zeta function (2.9) extends to a meromorphic function for s ∈ C.

In order to prove the claim in the definition that the Selberg zeta function is
meromorphic, we would need to connect the derivative to the Selberg trace for-
mula. We will not discuss how this is done, but will still rewrite the derivative
of the Selberg zeta function to an expression convenient later:

d

ds
logZ(s, ρH, ρE) =

d

ds

′∑
γ∈π1(Σ)

∞∑
k=0

ln det(I − ρE(γ)N(ρH(γ))−s−k)

=
d

ds

′∑
γ∈π1(Σ)

∞∑
k=0

tr ln(I − ρE(γ)N(ρH(γ))−s−k)

=
d

ds

′∑
γ∈π1(Σ)

∞∑
k=0

tr

(
−
∞∑
l=1

ρE(γl)N(ρH(γ))−(s+k)l

l

)
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=

′∑
γ∈π1(Σ)

∞∑
k=0

∞∑
l=1

tr(ρE(γl))N(ρH(γ))−(s+k)l lnN(ρH(γ))

=
′∑

γ∈π1(Σ)

∞∑
l=1

tr(ρE(γl))N(ρH(γ))−sl lnN(ρH(γ))

1−N(ρH(γ))−l

=(2s− 1)

′∑
γ∈π1(Σ)

∞∑
l=1

tr(ρE(γl)) lnN(ρH(γ))

N(ρH(γ))−l/2 −N(ρH(γ))−l/2

· g(k lnN(ρH(γ)), s)

=(2s− 1)

∫
H\Γ

∑
γ hyperbolic

trρE(γ)Qεµs (z, ρH(γ)z)
dxdy

y2
,

(2.11)

where the prime over the sums indicates that the sum is only over primitive

elements, and g(u, s) = e−(s− 1
2 )u

2s−1 is the Fourier transform of ((s− 1
2)2 + r2)−1

in r. The last equality is a consequence of 2.3.2, which was an intermediate
part of the derivation of the Selberg trace formula.

2.4.1 The Relation to Determinants

The Selberg zeta function is closely related to determinants of the Laplace
operators on automorphic forms, see [D’Hoker and Phong, 1986]. We will only
need the result for the Laplace operator on functions and present the argument
of [Sarnak, 1987]. For us the important result is, that for compact manifolds
det ∆ is a constant multiple of Z ′(1). We will differentiate the logarithm of
det ∆, and so the exact constant factor will be unimportant for us.

Theorem 2.4.2 ( [Sarnak, 1987, Theorem 1])
We have that

det(∆ + s(s− 1)) = Z(s,Γ, χ)(e
E−s(s−1)

Γ2(s)2

Γ(s)
(2π)s

)2g−2. (2.12)

The constant E is given by E = −1
4 −

1
2 log 2π + 2ζ ′(−1), g is the genus of

the compact surface given by H/Γ. Finally, Γ2 is the Barnes double gamma
function.

Proof: We know that the Laplace operator has a discrete spectrum with only
an accumulation point at infinity. We will denote the eigenvalues λ0 ≤ λ1 ≤
. . . ≤ λn ≤ . . .. It is well known that

θ(t) =

∞∑
n=0

e−(λn−λ0)t = tr(e−(∆−λ0I)t), t > 0
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fulfills the following asymptotic as t goes to 0:

θ(t) ∼ α

t
+ β + γt+ . . . .

This is used to prove Weyl’s law. Now, for s(s − 1) ≥ λ0 we define det(∆ +
s(s− 1)) as follows:

H(w, s) =
∞∑
k=0

(λk + s(s− 1))−w Re(w) > 0

=
1

Γ(w)

∫ ∞
0

θ(t)e−t(s(s−1)+λ0)tw
dt

t
.

det(∆ + s(s− 1)) : = e
− ∂H
∂w(0,s)

That the latter is well-defined will follow once we show, that H is meromorphic
and regular at w = 0. This is seen from splitting H up as:

H(w, s) =
1

Γ(w)

∫ 1

0
(θ(t)− α

t
− β)e−t(s(s−1)+λ0)tw

dt

t

+
1

Γ(w)

∫ ∞
1

θ(t)e−t(s(s−1)+λ0)tw
dt

t

+
α

Γ(w)(s(s− 1) + λ0)w−1

(
Γ(w − 1)−

∫ ∞
(s(s−1)+λ0

e−yyw−1dy

y

)

+
β

Γ(w)(s(s− 1) + λ0)w

(
Γ(w)−

∫ ∞
(s(s−1)+λ0

e−yyw
dy

y

)
.

Here we used, that the integral representation of Γ(w) =
∫∞

0 tw−1e−tdt and
the change of variable y = t(s(s− 1) + λ0). From this expression of H we can
see, that it is regular at w = 0 and smooth for s(s− 1) > −λ0. Let

∏∞
n=1
′µn

denote the zeta regularized product, then we have the following is true:

det(∆+s(s−1)) =
∞∏
k=0

′

(λk+s(s−1)) =
R∏
k=0

(λk+s(s−1))
∞∏

k=R+1

′

(λk+s(s−1)).

And the last zeta regularized product is well-defined and smooth for s(s−1) >
−λR+1, this will allow us to define the determinant for all real s. Now we
differentiate with respect to s:

1

2s− 1

∂H

∂s
=
∞∑
k=0

(−w)(λk + s(s− 1))−w−1

1

2s− 1

∂

∂s
(

1

2s− 1

∂H

∂s
) = w(w + 1)

∞∑
k=0

(λk + s(s− 1))−w−2.
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Differentiating with respect to w and evaluating at w = 0, where the expression
above converges, we get:

∂

∂s
(

1

2s− 1

∂

∂s
(− log det(∆ + s(s− 1)))) = (2s− 1)

∞∑
k=0

(λk + s(s− 1))−2.

We will also want to know the asymptotics of det(∆ + s(s − 1)) as s → ∞.
We have that there are constants α̃ and β̃ such that:

θ̃(t) =

∞∑
k=0

e−λkt ∼ α̃

t
+ β̃ +O(t), t→ 0.

This implïes:

∂H

∂w
(0, s) =

∂

∂w
|w=0

1

Γ(w)

∫ ∞
0

θ(t)e−s(s−1)ttw
dt

t

=

∫ 1

0
f(t)e−ts(s−1)dt− α̃s(s− 1) + α̃s(s− 1) log((s(s− 1)))

− β̃ log(s(s− 1))− α̃s(s− 1)

∫ ∞
s(s−1)

e−y
dy

y2
− β̃

∫ ∞
s(s−1)

e−y
dy

y2

with f(t) = 1
t (θ̃(t)−

α̃
t β). So we have that all the integrals goes to 0 as s→∞.

Hence

− log det(∆ + s(s− 1)) = −α̃s(s− 1) + α̃s(s− 1) log((s(s− 1)))

− β̃ log(s(s− 1)) + o(1) as s→∞,

where the constants α̃ = g − 1 and β̃ = −g−1
12 .

Next, we will use the trace formula and Barnes’s digamma function to con-
struct another solution to the differential equation with the same asymptotics.

The trace formula for h = 1
r2+(s− 1

2
)2 − 1

r2+β2 gives:

1

2s− 1

Z ′

Z
(s) =

1

2β

Z ′

Z
(
1

2
+ β) +

∞∑
n=0

(
1

λn + s(s− 1)
− 1

λn − 1
4 + β2

)

+ (2g − 2)
∞∑
k=0

(
1

β + 1
2 + k

− 1

s+ k

)
.

We have also that the Barnes digamma function, Γ2(s), fulfills:

d

ds

1

2s− 1

d

ds

(
− log

Γ2(s)2(2π)s

Γ(s)

)
=

1

2(s− 1
2)2

+

∞∑
k=1

1

(k + s− 1
2)2

.
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Therefore we have that:

∂

∂s

(
1

2s− 1

∂

∂s

Z ′

Z
(s) +

d

ds
log

(
Γ2(s)2(2π)s

Γ(s)

)2g−2
)

=

∞∑
n=0

2s− 1

(λn + s(s− 1))2

=
∂

∂s
(

1

2s− 1

∂

∂s
log det(∆ + s(s− 1)).

And we conclude

det(∆ + s(s− 1)) = eE+Fs(s−1)Z(s)
Γ2(s)2(2π)s

Γ(s)
,

with F = −(2g − 2) and E = (2g − 2)(2ζ ′(−1)′ 14 −
1
2 log 2π). �



Chapter 3

The Moduli Space of Stable
Vector Bundles of Rank n

In this chapter, we follow the article [Zograf and Takhtadzhyan, 1989] fairly
closely as their results are central to our further thinking and calculations.
First, we introduce coordinates for the moduli space of stable holomorphic
bundles of rank n and degree k, Mn,k, over the Riemann surface, X. The
coordinates, we explain, are complex analytic with respect to the complex
structure induced onMn,k from X. After introducing the coordinates we in-
troduce a connection, which is referred to as a the Lie derivative in [Zograf and
Takhtadzhyan, 1989]. This allows us to make calculations, and we present the
first and second variation of the metric following [Zograf and Takhtadzhyan,
1989], observing however, that the connection, if composed with an appropi-
ate projection, becomes the Levi-Civita connection on Mn,k. We end the
chapter with presenting the calculation of the Ricci potential in [Zograf and
Takhtadzhyan, 1989]. The Ricci potential is a central object in the rest of the
thesis.

3.1 Coordinates on Mn,k

As we have seen earlier, TEMn,k is naturally identified with

H1(X,AdP (ρ)) ∼= H0,1(X,EndE),

the space of harmonic (0, 1)-forms, through Kodaira-Spencer theory (see Chap-
ter 1 Proposition 1.1.8). In this section we explain the construction of coor-
dinates in [Zograf and Takhtadzhyan, 1989]. Fix some vectorbundle E over a
compact Riemann surface X, we call the differential manifold underlying X
for Σ. In a neighborhood of E we now construct coordinates forMn,k.

We choose to work with an orbitfold n-fold covering of Σ, where the only
singularity is over a fixed point p. This can be represented as a quotient of H.
This quotient is best described by a representation of the central extension of

25
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π1(Σ) by an element, γ̃, of order n, we denote the extention π̃1(Σ). We then
have a representation ρH : π̃1(Σ) → PSL(2,R). The image under ρH of γ̃ is
an elliptic element which has a unique fixpoint we denote z̃. Now our bundle
E can be described by Narasimhan and Seshadri’s theorem as an irreducible
U(n) representation

ρ : π̃1(Σ)→ U(n),

with ρ(γ̃) = e
−2πik
n I, we call these representations admissible.

To construct the coordinates we find maps fν : H → GL(n,C) for each
ν ∈ H0,1(X,EndE) such that:

1. ∂̄fν = fνν.

2. ρEν (γ) = fν(γz)ρE(γ)(fν(z))−1 where both ρ’s are admissible represen-
tations corresponding to vector bundles, and the result is independent
of z.

3. fν(z̃) is a positive definite matrix with determinant 1.

These fν can be constructed in two steps. First, find the antiholomorphic
solution to the differential equation ∂̄fν = fνν that is I at z̃. It is possible to
do this since ν is closed. We call this function fν−. For small ν we have that
the bundle given by the representation χ(γ) = fν−(γz)ρE(γ)(fν−(z))−1 corre-
sponds to a stable bundle and therefore to an admissible representation. This
is so, since stability is an open condition and we have a differentiable family of
holomorphic vector bundles. For ν close to zero the representation corresponds
to an admissible representation, and so we can find a bundle isomorphism be-
tween the two bundles. This isomorphism is given by a holomorphic function
f+ : H→ GL(n,C) conjugating χν to ρEν , the corresponding admissible rep-
resentation. The function fν+ · fν− conjugates ρ to an admissible representation
for Eρν . However this is not unique, since so does Ufν+ · fν−g for any unitary
matrix U and function g ∈ C∞(H). Now the Cartan decomposition decom-
poses a matrix as a unique unitary matrix times a positive definite matrix,
hence the requirement that fν is a positive definite matrix at z̃ fixes U ’s value.
And when we further require the determinant to be one at z̃, there is only one
choice of g such that f εν → I for ε→ 0.

Finally, we note that had we chosen ρ as an SU(n)-representation and our
ν ∈ H0,1(X,End0E), where End0E are the traceless endomorphisms, then this
construction provides coordinates on the moduli space of holomorphic vector
bundles of rank n and degree k with fixed determinant.

3.1.1 Tangent Vectors

Having introduced coordinates we get a local identification around E ∈ U of
T[ρε]Mn,k with H0,1(X,EndE). From Kodaira-Spencer theory we also have
that T[ρε]Mn,k is identified with H0,1(X,EndEρε). These two identifications
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agree at ε = 0, and so we can use the Kodaira-Spencer way of identifying
the tangent vector to verify that the complex structure the coordinates have
from H0,1(X,EndE) agree with the complex structure from Section 1.1.5. We
will now find the identification our coordinates give with the Kodaira-Spencer
identification of tangent vectors at a point ρν2 . The tangent vector ν1 at ρν2

is the tangent vector of the curve ρν2+εν1 at ε = 0. We calculate the Kodaira-
Spencer class of the curve ρν2+εν1 at ε = 0:

We choose a finite covering of a neighborhood of a fundamental domain
for X in H, such that no open set in the cover contains π1(X) equivalent
points. Let (Ui, ϕi) be the chart corresponding to the i’th open set in the
covering. Then if Uij = Ui ∩ Uj 6= ∅ there is an element of Γ such that
ρH(γij)ϕiUij = ϕjUij . The transition functions for the bundle Eρtν1+ν2 from
Uij × Cn in the chart Ui to Uj is ρH(γij)× ρεν1+ν2(γij). And so the Kodaira-
Spencer class is given by the 1-cocycle θij(t) = d

dε

∣∣
ε=t

ρεν1+ν2(γij) in the sheaf
of holomorphic sections of EndEρtν1 . Using the short exact sequence of sheafs:

O(EndEρtν1+ν2 )→ Ω0(EndEρtν1+ν2 )
∂̄→ Ω(0,1)(EndEρtν1+ν2 ), (3.1)

where Ω(p,q)(F ) is the germ of smooth (p, q)-forms with values in the bundle
F , and O(F ) is the germ of holomorphic functions with values in F , we get a
harmonic (0, 1)-form representing the Kodaira-Spencer class. The connecting
homomorphism of the cohomology groups

H1(X,O(EndEρtν1+ν2 ))
δ∗→ H0,1(X,EndEρtν1+ν2 )

P tν1+ν2∼= H0,1(X,EndEρtν1+ν2 )

is an isomorphism. Let gi = { ddε
∣∣
ε=t

f εν1+ν2}(f tν1+ν2)−1ϕi be a section over
Ui×Cn. Then ρtν1+ν2(γij)(gi ◦ ρH(γij))ρ

tν1+ν2(γij)
−1− gj = θij . This implies

that

δ∗(θij) = ∂̄

((
d

dε

∣∣∣∣
ε=t

f εν1+ν2

)(
f tν1+ν2

)−1
)
◦ ϕi

= Ad(fν2)
d

dε

∣∣∣∣
ε=t

((f εν1+ν2)−1(∂̄fεν1+ν2)) ◦ ϕi=Ad(fν2)ν1 ◦ ϕi.

Now we have that the tangent vector ν1 corresponds to P ν2(Ad(fν2)ν1) at ν2.
Since the map ν1 → P ν2(Ad(fν2)ν1) is complex linear we see that the two
complex structures agree, and we have constructed complex analytic coordi-
nates.

3.2 Derivatives

We want to calculate the curvature of the canonical metric onMn,k. In order
to do this we need to calculate the derivatives locally. It is convenient to
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introduce the connection L on sections of Ωp,q(X,EndEρε) overMn,k given by

Lνg =
∂

∂ε

∣∣∣∣
ε=0

(f εν(0))−1g(ε)f εν(0), (3.2)

Lν̄g =
∂

∂ε̄

∣∣∣∣
ε=0

(f εν(0))−1g(ε)f εν(0), (3.3)

at the point Eρ0 . This gives a connection on operators on these bundles as
well. Let

F ε : Ωp,q(X,EndEρε)→ Ωp′,q′(X,EndEρε)

then we have:

LνF
ε|ε=0 =

∂

∂ε

∣∣∣∣
ε=0

Ad(f εν)−1F εAd(f εν). (3.4)

Lemma 3.2.1
The operator L : Ωp,q(X,EndEρε)⊗T (Mn,k)→ Ωp,q(X,EndEρε) is a connec-
tion.

Proof: We need to verify three equations

Lνag = aLνg a ∈ R
Lνhg = hLνg + ν(h) h ∈ C∞(Mn,k)

Lhνg = hLνg h ∈ C∞(Mn,k).

Choose a basis {νi} for H0,1(X,EndE), then we denote a point in Mn,k in
these coordinates by the vector ε. Also let ν be a vector valued function
corresponding to the vector field ν̂ =

∑
i νi(ε)νi. In the following εν̂(0) =∑

i νi(0)νiεi.
First

Lνag =
∂

∂ε

∣∣∣∣
ε=0

(f εν̂(0))−1ag(εν(0))f εν̂(0) = aLνg,

and secondly,

Lνhg =
∂

∂ε

∣∣∣∣
ε=0

(f εν̂(0))−1h(εν(0))g(εν(0))f εν̂(0)

=h(0)
∂

∂ε

∣∣∣∣
ε=0

(f εν̂(0))−1g(ε)f εν̂(0) +

(
∂

∂εν(0)

∣∣∣∣
ε=0

h(εν(0))

)
g

=h(0)Lνg + ν(h)(0).

The third equation follows directly from the definition

Lhνg =
∂

∂ε

∣∣∣∣
ε=0

(f εh(0)ν̂(0))−1g(εh(0)ν(0))f εh(0)ν̂(0) = h(0)Lνg.

This shows L is a connection. �
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Now consider the universal bundle of endomorphisms E → X ×Mn,k. This
bundle has a canonical metric given by:

hE(ξ, η) = tr(ξηT ) for ξ, η ∈ Ω0(X,EndEρ).

The following lemma follows is a reformulation of the first half of [Zograf
and Takhtadzhyan, 1989, Lemma 1], in our language:

Lemma 3.2.2
For hE , ν ∈ H1,0(X,EndE) and ξ, η ∈ Ω0(X,EndE)we have:

(LνhE)(ξ, η) = Lν̄hE(ξ, η) = 0.

Proof: By definition

LνhE(ξ, η) =
d

dε

∣∣∣∣
ε=0

hE(Ad(f εν)ξ,Ad(f εν)η)

=
d

dε

∣∣∣∣
ε=0

tr(f ενξ(f εν)−1((f εν)−1)T ηT (f εν)T )

=
d

dε

∣∣∣∣
ε=0

tr((f εν)T f ενξ((f εν)
T
f εν)−1ηT ) = tr(ad(Φν)(ξ)η̄T ),

where Φν = d
dε

∣∣
ε=0

(f εν)
T
f εν . We see that:

Φν(γz) =
d

dε

∣∣∣∣
ε=0

(f εν)
T

(γz)f εν(γz)

=
d

dε

∣∣∣∣
ε=0

(ρεν(γ)(f εν)ρ(γ)−1)
T

(z)ρεν(γ)f εν(z)ρ(γ)−1

=
d

dε

∣∣∣∣
ε=0

ρ(γ)(f εν)
T

(z)f εν(z)ρ(γ)−1 = ρ(γ)Φνρ(γ)−1,

since the representation is unitary. This transformation relationship means
that Φν descends to an element of Ω0(X,EndE). Furthermore, after carrying
out the differentiation we see, that Φν is a sum of holomorphic and anti-
holomorphic functions and therefore is a harmonic function. But EndE =
adE ⊕ CI, and adE is stable and therefore has no holomorphic sections nor
any antiholomorphic sections. The surface X is compact, this implies that Φν

is a constant multiple of I, but condition 2 on the f εν requires determinant
1 and hence trΦν = d

dεε=0
det((f εν)T f εν(z̃)) = d

dε1 = 0. This proves that the
first variation of LνhE is zero. The antiholomorphic variation is calculated
similarly. �

The fact that Φν = 0 gives us useful information about f εν+ .

d

dε

∣∣∣∣
ε=0

((f εν)T f εν) =
d

dε

∣∣∣∣
ε=0

(f εν− )T +
d

dε

∣∣∣∣
ε=0

(f εν+ )T
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+
d

dε

∣∣∣∣
ε=0

f εν+ +
d

dε

∣∣∣∣
ε=0

f εν− ,

and

∂̄Φν = (
d

dε̄

∣∣∣∣
ε=0

∂fεν+ )T + ν,

hence d
dε̄

∣∣
ε=0

∂fεν+ = −ν̄T = −i ∗ ν. Similarly we have d
dε

∣∣
ε=0

∂fεν+ = 0. From
this it follows that:(

∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

Adf εν
)
η =

∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

f ενη(f εν)−1

=

(
∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

f εν
)
η(f0ν)−1 − f0νη(f0ν)−1

(
∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

f εν
)

(f0ν)−1

= −iad ∗ ν = −adν̄T , (3.5)

where the second equality follows from f0(z) = I and ∂f0(z) = 0. This implies
that the term differentiated with repect to z also must be differentiated with
respect to ε̄, otherwise the contribution is zero.

With this information we can calculate the variation of ∂̄ and its adjoint
− ∗ ∂̄∗ = ∂̄∗.

Lν ∂̄ =
∂

∂ε

∣∣∣∣
ε=0

(Adf εν)−1∂̄Adf εν

=
∂

∂ε

∣∣∣∣
ε=0

(Adf εν)−1Adf εν ∂̄

+
∂

∂ε

∣∣∣∣
ε=0

(Adf εν)−1
(
∂̄Adf εν

)
=

(
∂

∂ε

∣∣∣∣
ε=0

(Adf εν)−1

)(
∂̄Adf0ν

)
+ (Adf0ν)−1 ∂

∂ε

∣∣∣∣
ε=0

(
∂̄Adf εν

)
= 0 + ad(ν),

where the first term is zero, since ∂̄Adf0ν = ∂̄AdI = 0. We find

Lν̄ ∂̄
∗ =

∂

∂ε̄

∣∣∣∣
ε=0

(Adf εν)−1∂̄∗Adf εν

=
∂

∂ε̄

∣∣∣∣
ε=0

(Adf εν)−1Ad(f εν)∂̄∗

+
∂

∂ε̄

∣∣∣∣
ε=0

(Adf εν)−1(−∗)
(
∂̄Ad(f εν)−1

T
)
∗
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= (Adf0ν)−1(−∗) ∂

∂ε

∣∣∣∣
ε=0

(
∂̄Ad(f εν)−1

T
)
∗

= − ∗ ∂

∂ε̄

∣∣∣∣
ε=0

(∂Ad((f εν)−1)T )∗

= − ∗ adν ∗ .

The last equality follows from (3.5), ∂(Ad(f0ν)±1) = 0 and the calculation:

0 =
∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

(Ad(f εν)Ad(f εν)−1)

=

(
∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

Ad(f εν)

)
Ad(f0ν)−1 +

(
∂

∂z
Ad(f0ν)

)(
∂

∂ε̄

∣∣∣∣
ε=0

Ad(f εν)−1

)
+

(
∂

∂ε̄

∣∣∣∣
ε=0

Ad(f εν)

)(
∂

∂z
Ad(f0ν)−1

)
+ Ad(f0ν)

(
∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

Ad(f εν)−1

)
=− adν̄T +

(
∂

∂z

∂

∂ε̄

∣∣∣∣
ε=0

Ad(f εν)−1

)
.

Similarly we find
Lν̄ ∂̄ = Lν ∂̄

∗ = 0.

Now we have all the information we need to calculate the variation of the
Laplace operator and the harmonic projection.

Lν∆ = Lν ∂̄
∗∂̄ = ∂̄∗adν,

Lν̄∆ = Lν̄ ∂̄
∗∂̄ = − ∗ adν ∗ ∂̄,

LνP = Lν(I − ∂̄∆−1
0 ∂̄∗) = −adν∆−1

0 ∂̄∗ + ∂̄∆−1
0 ∂̄∗adν∆−1

0 ∂̄∗

= −Padν∆−1
0 ∂̄∗

and

Lν̄P = ∂̄∆−1
0 ∗ adν ∗ P.

Finally, we can differentiate ν̃1(ε) = P εν2(Adf εν2ν1) as a family of elements of
Ω(0,1)(X,EndEρεν2 ).

Lν̄2 ν̃1 =
∂

∂ε̄

∣∣∣∣
ε=0

(f εν2)−1P εν2(f εν2ν1(f εν2)−1)f εν2 (3.6)

= (Lν̄2P )(ν1) = ∂̄∆−1
0 (∗[∗ν1, ν2]), (3.7)

and likewise we find

Lν2 ν̃1 = (Lν2P )(ν1) = −Padν2∆−1
0 ∂∗ν1 = 0. (3.8)

Now, if we consider the connection ∇ = P 0,1Lv on H0,1(X,EndE) ∼= TEMn,k,
then from Lemma 3.2.2 we see that ∇ is compatible with the metric. From
(3.6) and (3.8) it follows that ∇ is torsion free, since for coordinate vector
fields ∇ν̃ = 0 for ν ∈ H0,1(X,EndE), and so ∇ν1 ν̃2 −∇ν2 ν̃1 − [ν1, ν2] = 0 at
E. This proves:
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Proposition 3.2.3
The connection ∇ = P 0,1Lv : TEMn,k × Γ(TMn,k) → Γ(TMn,k) is well
defined onMn,k and is the Levi-Civita connection for the Kähler metric.

3.3 The Kähler Metric on the Moduli Space

We have the metric, hE , on fibers of EndE. This fiber metric induces a
metric on the tangent bundle of Mn,k as follows. Let ν1(z)dz̄, ν2(z)dz̄ ∈
H0,1(X,EndE) then

g(ν1(z)dz̄, ν2(z)dz̄) =

∫
X
tr(ν1(z)dz̄ ∧ ∗(ν2(z)dz̄)) =

∫
X
hE(ν1(z), ν2(z))

dzdz̄

i
.

(3.9)
We now look at a coordinate neighborhood of E and choose a basis {νi} of
H0,1(X,EndE). We will write a point in coordinates as εν =

∑
i εiνi. The

tangent vector in coordinates corresponding to νi will be written ∂i for the
holomorphic and ∂ī for the antiholomorphic derivative. In these coordinates
the metric is:

gij̄(εν) = g(∂i, ∂j̄)(εν)

=

∫
X
hενE (ν̃ενi , ν̃

εν
j ) =

∫
X
hενE (P ενAd(f εν)νi, P

ενAd(f εν)νj)

=

∫
X
hενE (P ενAd(f εν)νi,Ad(f εν)νj)

=

∫
X
h0
E(Ad((f εν)T )P ενAd(f εν)νi, νj),

since P is an orthogonal projection.
Inspired by [Zograf and Takhtadzhyan, 1989, Lemma 1] we prove a slightly

reformulated version:
Lemma 3.3.1
The metric g onMn,k is a Kähler metric and in coordinates around E we have

∂kgij̄(0) = ∂k̄gij̄(0) = 0.

And the second-order derivatives are:

∂k∂l̄gij̄(0) = −
∫
X
hE([νk,∆

−1
0 (∗[∗νi, νl])], νj)

+

∫
X
hE(ad(∆−1

0 (∗[∗νk, νl]))(νi), νj)

Proof: We know d
dε |ε=0(f εν)T f εν = 0, and so we find:

∂kgij̄(0) =
∂

∂εk

∣∣∣∣
ε=0

∫
X
h0
E(Ad((f εν)T )P ενAd(f εν)νi, νj)
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=
∂

∂εk

∣∣∣∣
ε=0

∫
X
h0
E(Ad((f εν)T f εν)Ad(f εν)−1ν̃ενi , νj)

=

∫
X
h0
E(

∂

∂εk

∣∣∣∣
ε=0

Ad((f εν)T f εν)ν̃0
i , νj)

+

∫
X
h0
E(

∂

∂εk

∣∣∣∣
ε=0

Ad(f εν)−1ν̃ενi , νj)

=

∫
X
h0
E(∂̄∆−1

0 ∗ [∗νi, νk], νj) = 0.

Since νj is in the orthogonal complement of the image of ∂̄.
It only remains to calculate:

∂k∂l̄gij̄(0) =
∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

∫
X
h0
E(Ad((f εν)T f εν)Ad(f εν)−1ν̃ενi , νj)

=

∫
X
h0
E(

∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

(Ad((f εν)T f εν))νi, νj)

+

∫
X
h0
E(

∂

∂εk

∣∣∣∣
ε=0

(Ad((f εν)T f εν))
∂

∂ε̄l

∣∣∣∣
ε=0

Ad(f εν)−1ν̃ενi , νj)

+

∫
X
h0
E(

∂

∂ε̄l

∣∣∣∣
ε=0

(Ad((f εν)T f εν))
∂

∂εk

∣∣∣∣
ε=0

Ad(f εν)−1ν̃ενi , νj)

+

∫
X
h0
E(

∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

Ad(f εν)−1ν̃ενi , νj)

=

∫
X
h0
E(

∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

(Ad((f εν)T f εν))νi, νj)

+

∫
X
h0
E(

∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

ν̃ενi , νj).

We calculate the first term. Since the first derivatives at εν = 0 of (f εν)T f εν)
are zero and (f0)T f0) = I, we have

∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

(Ad((f εν)T f εν)) = ad
∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

((f εν)T f εν).

Define Φνk,ν̄l = d2

dε̄ldεk

∣∣∣
ε=0

(f εlνl+εkνk)
T
f εlνl+εkνk . Then we find that

∆Φνk,ν̄l = −2y2 d2

dzdz̄

d2

dε̄ldεk

∣∣∣∣
ε=0

(f εlνl+εkνk)
T
f εlνl+εkνk

= −2y2(−νTl νk − νTl νk + νTl νk + νkν
T
l ) = −2y2[νk, ν̄

T
l ].

So Φνk,ν̄l = −∆−1
0 (∗[∗νk, νl]) + ϕνk,ν̄l , with ϕνk,ν̄l a harmonic function. Since

ϕνk,ν̄l is harmonic it must be a constant multiple of I. And since ad(I) = 0
we have

∂2

∂ε̄l∂εk

∣∣∣∣
ε=0

(Ad((f εν)T f εν)) = −ad∆−1
0 ∗ [∗νk, νl].
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Having calculated the first term, let us continue with the second term. We get

∂2

∂εk∂ε̄l
|ε=0(Adf

∑
i εiνi)−1P

∑
i εiνiAdf

∑
i εiνi

=
∂2

∂εk∂ε̄l
|ε=0(I − (Adf

∑
i εiνi)−1∂̄

∑
i εiνi(∆−1

0 )
∑
i εiνi(∂̄∗)

∑
i εiνiAdf

∑
i εiνi)

= ad(νk)∆
−1
0 ∗ ad(νl) ∗ −ad(νk)∆

−1
0 ∗ ad(νl) ∗ ∂̄∆−1

0 ∂̄∗ + terms from Im(∂̄)

= ad(νk)∆
−1
0 ∗ ad(νl) ∗ P + terms from Im(∂̄)

= −(Lνk ∂̄)∆−1
0 (Lνl ∂̄

∗)P + terms from Im(∂̄),

since ∂2

∂εk∂ε̄l
|ε=0(Adf

∑
i εiνi)−1∂̄

∑
i εiνiAdf

∑
i εiνi = ∂2

∂εk∂ε̄l
|ε=0

∑
i εiνi = 0 and

∂
∂ε̄l
|ε=0

∑
i εiνi = 0. �

3.3.1 Geodesic Coordinates and the Curvature Tensor

As we have seen in the proof of Lemma 3.3.1, the first derivatives of the
metric are zero at E in the coordinates around E. And so our coordinates are
geodesic coordinates for the Kähler metric. This means, that we can calculate
the curvature of the metric as

Rij̄kl̄(0) = (∂νk ∂̄νlgij̄)(0) (3.10)

= −h((ad∆−1
0 (∗[∗νk, νl]) + ad(νk)∆

−1
0 ∗ ad(νl)∗)νi, νj). (3.11)

This can be rewritten as

Rij̄kl̄(0) = −〈∆−1
0 (∗[∗νi, νl]), ∗[∗νj , νk]〉 − 〈∆−1

0 (∗[∗νi, νj ]), ∗[∗νl, νk]〉, (3.12)

where 〈a, b〉 =
∫
X hE(a, b)ρ, a, b ∈ Ω0(X,EndE). Where ρ denote the density

of the hyperbolic volume on X.

3.3.2 Variation of the Metric in the Determinant Line
Bundle

Choose a basis νi ∈ H0,1(X,EndEρ). The metric in the determinant line
bundle, det ind∂̄ ∼= detT ∗N on ν1 ∧ ν2 . . . ∧ νd, is then given by detG for
G(Eρεν ) = {gij}i,j for gij , the metric pairing of νi and νj .

Lemma 3.3.2 ( [Zograf and Takhtadzhyan, 1989, Lemma 2])
For E ∈ N we have the following formula for the curvature with respect to the
basis {νi}:

ΘEnd(∂νn , ∂(νm)) = Θad(∂νn , ∂(νm))

= −tr((ad∆−1
0 (∗[∗νn, νm]) + (LνTn ∂̄)∆−1

0 (Lν̄m ∂̄
∗))P 0,1).
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Proof: In our coordinates around E the norm of the holomorphic section of
the cotangent bundle,

∧
i ∗ν̃i, is given by:

|
∧
i

∗ν̃i|2 = det{G}.

Hence, the curvature form of the metric connection is given by:

ΘEnd(∂νn , ∂(νm)) =
∂2

∂εn∂ε̄m
|ε=0 log |

∧
i

∗ν̃i|2 =
∂2

∂εn∂ε̄m
|ε=0 log detG

=
∂

∂εn
|ε=0trG−1 ∂

∂̄εm
|εm=0G

= trG−1 ∂2

∂εn∂ε̄m
|ε=0G

−G−1

(
∂

∂̄εm
|εm=0G

)
G−1

(
∂

∂εn
|εm=0G

)
= trG−1 ∂2

∂εn∂ε̄m
|ε=0G.

Where the last equality is a consequence of the first derivatives of gij being
zero. Now we use that trAP =

∑
i,j hE(Aνi, νj)(G

−1)j,i and (3.11) which
shows:

ΘEnd(∂νn , ∂(νm)) = −tr(ad(∆−1
o (∗[∗νn, νm]))P ) + tr(ad(νn)∆−1

0 ∗ ad(νm) ∗ P ),

which concludes the proof. �

3.3.3 Green’s Function and ζ-regularized Determinants

In this section we recall two results from Chapter 2 that are relevant for our
further considerations. First, recall we worked with the Laplace operator on
automorphic forms of weight (n,m) with respect to a group Γ and a U(n)-
representation χ. If we let Γ be the group π1(Σ) represented by deck transfor-
mations on the universal cover of Σ, H and we let χ be a U(n)-representation
which corresponds to the vector bundle E, then an automorphic form is equiv-
alent to a section of

E ⊗ (TσΣ)−n ⊗ (T̄σΣ)−m.

This means that the Laplace operator on automorphic forms corresponds to
the Laplace operator on Σ with values in E. We can pull back the objects on
Σ to H, and they will have the following properties as functions on H.

The Green’s function of the Laplace operator on Σ is pulled back to a
EndEndE valued function on H × H, with a logarithmic singularity on the
diagonal, which transforms as:

G(γ1z, γ2z
′) = Ad(ρ(γ1))G(z, z′)Ad(ρ(γ2))−1 ∀z, z′ ∈ H ∀γ1γ2 ∈ Γ̃.
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The function G(z, z′) can be expressed as a sum over Γ of the form:

G(z, z′) =
∑
γ∈Γ

Adρ(γ)Q(z, γz′), z 6= z′.

Here Q is the resolvent of the Laplace operator on H, with values in EndCn,
which is well know to be:

Q(z, z′) = − 1

π
log

∣∣∣∣z − z′z̄ − z′

∣∣∣∣ IEndCn .

Secondly, in Chapter 2 we also introduced the Selberg zeta function, which
fulfills:

1

1− 2s

d

ds
logZ(s) =

∫
Σ

∑
γ hyperbolic

Adρ(γ)Qs(z, γz)
dxdy

y2

=

∫
Σ

(Gs(z, z
′)−Qs(z, z′))|z=z′

dxdy

y2

d

ds

∣∣∣∣
s=1

logZ(s) = log(k det ∆0).

Where Qs is the integral kernel for (∆ + s(s − 1))−1, se (2.11), and k is a
constant.

3.4 Variations of the Determinant of the Laplace
Operator

We will continue to use coordinates around E with a fixed basis {νi} ⊂
H0,1(X,EndE). For a ν ∈ H0,1(X,EndE) the derivative with respect to ν
is denoted, ∂ν , and for the corresponding coordinate vector field in a neigh-
borhood, we write ∂ν̃ , then the first variation is:

Lemma 3.4.1 ( [Zograf and Takhtadzhyan, 1989, Lemma 3])
For ν ∈ H0,1(X,EndE), the formula:

∂ν log det ∆ = −i
∫
X
tr(adν ∧ ψ)

holds at the point E in N , where

ψ(z) =
∂

∂z′
(G(z, z′)−Q(z, z′))|z=z′ ∈ Ω0,1(X,EndEndE).

Or stated in terms of forms

∂ log det ∆ = −
∑
j

i

∫
X
tr(adνj ∧ ψ)dνj ∈ T ∗[σ,E]Mn,k.
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Proof: We have that

∂ν log det ∆ =
∂

∂ε

∣∣∣∣
ε=0

log det ∆εν = − ∂

∂ε

∣∣∣∣
ε=0

d

ds
|s=0ζ(∆εν , s).

For Re(s) > 1 and λ > 1 we have that

∂

∂ε

∣∣∣∣
ε=0

ζλ(∆εν , s) =
d

dε

∣∣∣∣
ε=0

tr((∆ + λ)−s)

= tr
(
d

dε

∣∣∣∣
ε=0

(Adf εν)−1(∆ + λ)−sAdf εν
)

= −str((∆ + λ)−s−1Lν∆),

where the last equality follows from the Taylor expansion and the cyclic prop-
erty of the trace. Again using the cyclic property of the trace we have

−str((∆ + λ)−s−1Lν∆) = −str(adν(∆ + λ)−s−1∂̄∗).

Now the kernel of (∆ + λ)−s−1∂̄∗ is found using Stokes’s theorem and

∗∂̄ ∗ f(z)dz̄ = ∗∂̄f(z)T (−i)dz = i ∗ ∂f(z)Tdz ∧ dz̄ = 2y2∂f(z).

We find

(∆ + λ)−s−1∂̄∗(f(z′)dz̄′) =

∫
X
Ks+1,λ(z, z′)(− ∗ ∂̄′ ∗ f(z′)dz̄′)

dz′ ∧ dz̄′

2iy2

= −
∫
X

2Ks+1,λ(z, z′)∂′f(z′)
dz′ ∧ dz̄′

2i

=

∫
X

2∂′Ks+1,λ(z, z′)f(z′)
dz′ ∧ dz̄′

2i
.

With the kernel we can calculate the trace to be

∂νζλ(s) = −2s

∫
X
tr(adν(z)∂′Ks+1,λ(z, z′))|z=z′

dz ∧ dz̄
2i

.

From the explicit description of Ks,λ as a sum over the elements of Γ we see,
that the ∂ of the identity term vanishes at the diagonal, and therefore we have:

∂νζλ(s) = si

∫
X
tr(adν ∧ ψs+1,λ(z))

ψs+1,λ(z) = ∂′(Ks+1,λ(z, z′)− ks+1,λ(z, z′))|z=z′ .

This last kernel expression makes sense for Re(s) > −1
2 and by analytic con-

tinuation holds for these s.

∂ν log det(∆ + λ) = − d

ds s=0
∂νζλ(∆, s) = −i

∫
X
tr(adν ∧ ψ1,λ(z)),

Now since log det(∆) = limλ→0+ log det(∆ + λ) − log λ and ∂ν log λ = 0. We
conclude the proof by observing k1,0 = Q and ∂′K1,0 = ∂′G. �
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Using the coordinate transformations to move this result in coordinates cen-
tered at Eεν to our coordinates around E we find, that:

∂ log det ∆εν = −
∑
j

i

∫
X
tr(adνενj ∧ (∂′εν(Gεν(z, z′)−Q(z, z′)))|z=z′)dνj .

The second variation can now be calculated:

Theorem 3.4.2 ( [Zograf and Takhtadzhyan, 1989, Theorem 2])
For νj , νi ∈ H0,1(X,EndE) we have:

∂̄∂ log det ∆(∂ī, ∂j) = ΘEnd (∂ī, ∂j) +
1

2π

∫
X
tr(adνj ∧ ad ∗ νi).

Proof: From Lemma 3.4.1 we have:

∂̄∂ log det ∆(∂ī, ∂j) = −i d
dε̄
|ε=0

∫
X
tr((Adf ενi)−1ad(ν̃j ∧ ψ)Adf ενi)

= −i d
dε̄
|ε=0

∫
X
tr((Adf ενi)−1adν̃jAdf ενi

∧ (Adf ενi)−1ψAdf ενi)

= −i
∫
X
tr((Lν̄iadν̃j) ∧ ψ)

− i
∫
X
tr(adνj ∧ Lν̄i(∂′(G(z, z′)−Q(z, z′))|z=z′)).

We take each term by itself. First the Q term:

Lν̄i∂
′Q(z, z′) = Lν̄i∂

′−1

2π
log
|z − z′|2

|z̄ − z′|2
I

= − ∂

∂ε̄

∣∣∣∣
ε=0

Ad(f ενi(z))−1Ad(f ενi(z′))

2π

(
1

z − z′
− 1

z̄ − z′

)
=

1

2π

(
1

z − z′
− 1

z̄ − z′

)(
∂

∂ε̄

∣∣∣∣
ε=0

Ad(f ενi(z))− ∂

∂ε̄

∣∣∣∣
ε=0

Ad(f ενi(z′)

)
=

1

2π

(
1

z − z′
− 1

z̄ − z′

)(
∂

∂ε̄

∣∣∣∣
ε=0

Ad(f ενi+ (z))− ∂

∂ε̄

∣∣∣∣
ε=0

Ad(f ενi+ (z′)

)
,

since d
dε̄

∣∣
ε=0

∂̄fενi− = 0 from the definition of f ενi− . This means d
dε̄

∣∣
ε=0

f ενi− is
a constant and so does not contribute. We are interested in what happens on
the diagonal, and since we know that ∂ ∂

∂ε̄

∣∣
ε=0

Ad(f ενi+ (z)) = −i ∗ νi, we can
calculate the limit and find:

i

∫
X
tr(adνj ∧ Lν̄i∂′Q(z, z′)|z=z′) =

1

2π

∫
X
tr(adνj ∧ ad ∗ νi).

Since the contribution from the Q term is finite, so must the contribution from
∂′G be.
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The next term is Green’s function. Since −i∂′G is the kernel of ∆−1
0 ∂̄∗, we

can vary this operator instead:

Lν̄i∆
−1
0 ∂̄∗ = ∆−1

0 ∗ adνi ∗ −∆−1
0 ∗ adνi ∗ ∂̄∆−1

0 ∂̄∗ = ∆−1
0 ∗ adνi ∗ P.

This implies:

−i
∫
X
tr(adνj ∧ Lν̄i∂′G(z, z′)|z=z′) = tr((Lνj ∂̄)∆−1

0 Lν̄i ∂̄
∗P ).

The final term we need to calculate is

−i
∫
X
tr(Lν̄iadνj ∧ ψ) = −i

∫
X
tr(ad∂̄∆−1

0 (∗[∗νj , νi]) ∧ ψ)

= i

∫
X
tr(ad∆−1

0 (∗[∗νj , νi]) ∧ ∂̄ψ),

where the last equality follows from Stokes’s theorem. Now we have

∂̄ψ(z) = ((∂̄ + ∂̄′)∂′(G(z, z′)−Q(z, z′)))|z=z′ .

The kernel G(z, z′)−Q(z, z′) is a regular function, and so we can calculate

((∂̄ + ∂̄′)∂′(G(z, z′)−Q(z, z′)))|z=z′ = lim
z→z′

(∂̄ + ∂̄′)∂′(G(z, z′)−Q(z, z′))

= lim
z→z′

(∂̄ + ∂̄′)∂′(G(z, z′))

− (∂̄ + ∂̄′)∂′(Q(z, z′)).

By direct calculation using that

Q(z, z′) =
1

π
log
|z − z′|
|z̄ − z′|

IEndCn2 ,

we find

∂̄′∂′Q(z, z′) =
1

y2
∆′Q(z, z′) = 0 ∂̄∂′Q(z, z′) =

1

8πy2
I,

when not on the diagonal. The term −i∂̄′∂′G(z, z′) is the kernel of ∆−1
0 ∆ =

I − P0, where P0 is the projection on the kernel of ∆. The kernel of ∆ is
spanned by the section I. This means

G(z, z′) = δ(z, z′)− P0(z, z′)
z 6=z′
= −P0(z, z′)

=
1

hE(I, I)Area(X)2yy′
I =

1

n24π(g − 1)2yy′
I.

The term −i∂̄∂′G(z, z′) is the kernel of ∂̄∆−1
0 ∂̄∗ = I − P . This implies that

∂̄∂′G(z, z′) = δ(z, z′)− P (z, z′)
z 6=z′
= −P (z, z′).
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Hence:
∂̄ψ(z) = −P (z, z′)− 1

8πy2

(
1 +

1

n2(g − 1)

)
I.

Therefore, since tr(ad(A)I) = 0:

−i
∫
X
tr(Lν̄iadνj ∧ ψ) = tr(ad∆−1

0 (∗[∗νj , νi])P ),

and by Lemma 3.3.2 the conclusion follows. �

In the next section, we will see that −1
2 log det ∆ is the Ricci potential when

we restrict toMn,k
V B,0.

3.4.1 The Symplectic Form

On the moduli space the symplectic form is given by

Ω
(
∂νj , ∂̄νj

)
=
i

2
〈νi, νj〉 =

1

2

∫
X
tr(νi ∧ ν̄Tj ).

Now we have that

tr(adaadb) = 2ntrab− 2tratrb.

And so from Theorem 3.4.2 and since det ∆ = det ∆ad det ∆X :

ΘAdE(∂νi , ∂̄νj ) = ∂∂̄ log det ∆|AdE
(
∂νi , ∂̄νj

)
+

2ni

π
g
(
∂νi , ∂̄νj

)
,

because ∂M0
n,k

∆X = 0. Now we want to understand the Ricci form so we
compose with the complex structure and get:

RicAdE(∂νi , ∂̄νj ) = i∂∂̄ log det ∆|ad
(
∂νi , ∂̄νj

)
+

2n

π
ω
(
∂νi , ∂̄νj

)
.

In other words, the Ricci potential is −1
2 log det ∆.



Chapter 4

Teichmüller Variations

In the previous chapters we have mainly talked about the moduli space of rank
n degree k stable vector bundles. Our interest in this space was to study the
Hitchin connection and related structures on the bundle of holomorphic sec-
tions over a family of Kähler structures. We have a naturally induced complex
structure on the moduli space from the underlying Riemann surface. Hence,
one natural candidate for complex structures is the space of complex structures
on the surface. In fact each complex structure on the surface gives a Kähler
structure on the moduli space. In this chapter we will introduce coordinates
for the cover of the Riemann moduli space known as the Teichmüller space.

The Teichmüller space can be defined as:

T (Σ) := {(Xf , f : Σ→ Xf )| f ∈ Diff(Σ, Xf ), Xf a Riemann surface} /(R),
(4.1)

where R is the relation given by fRg if there is a biholomophism Φ : Xf → Xg

such that g−1 ◦ Φ ◦ f is isotopic to the identity.
We know from Kodaira-Spencer theory that the maximal possible tangent

space at (Xf , f) is H1(X,Θ), the first Čech cohomology group with values in
the germ of holomorphic vector fields. This can be identified with harmonic
sections of

TσX ⊗ T ∗σX,
here TσX is the holomorphic tangent space inside TΣC. We will denote the
set of smooth sections of

(TσX)n ⊗ (TσX)−m

by Ω0,m(X, (TσX)n) for n,m ≥ 0. We will now introduce local coordinates
constructed from the Beltrami differentials.

4.1 Bers’s Coordinates

In this section we introduce Bers’s coordinates [Ahlfors and Bers, 1960]. These
are constructed from Ω0,1(X,TσX). First, we use uniformization to represent
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X as a quotient of H by ρH : π1(Σ) → Γ ⊂ PSL(2,R). Then there is a
correspondence between tensors on X and a subset of functions on H given by

Ω0,m(X, (TσX)n) ∼= {f : H→ C|f(γz)(γ′z)−n(γ′z)
m

= f(z)∀γ ∈ Γ}. (4.2)

Let µ ∈ Ω0,1(X,TσX) then, from the transformation properties, we see that
‖µ‖∞ is well-defined. Now use the correspondence (4.2) and consider µ as a
function on H. If ‖µ‖∞ < 1 then we can solve the equation

∂̄gµ(z) = µ(z)∂gµ(z)

on H. This solution is unique if we require that it fixes 0, 1 and ∞. We
define the new complex structure on Σ by changing the representation of π1

into PSL(2,R) to ρµH(γ) = (gµ(ρH(γ)((gµ)−1))). This gives us a map from
a neighborhood of zero in Ω0,1(X,TσX) into Teichmüller space. We will now
calculate the differential and see that the restriction to the harmonic Beltrami
differentials, H0,1(X,TσX), has maximal rank at zero and is injective, and
hence define coordinates on a neighborhood of X in Teichmüller space. These
coordinates will be holomorphic coordinates for Teichmüller space.

4.1.1 The Differential

We calculate the Kodaira-Spencer map corresponding to ν ∈ H0,1(X,TσX)
at Xµ for µ ∈ H0,1(X,TσX). That is the Kodaira-Spencer map of the curve
ρµ+εν
H . This will allow us to identify our coordinate vector fields as Kodaira-

Spencer classes.
We consider an open covering, U , of a fundamental domain of Xµ in it’s

universal cover H. The Kodaira 1-cocycle is given by θij = d
dε

∣∣
ε=0

gµ+νε ◦ γij ◦
(gµ+νε)−1 ∂

∂z for Ui, Uj ∈ U and γijUj ∩ Ui 6= ∅. We have that:

d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ+νε)−1 ∂

∂z

=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ)−1 ∂

∂z
+

d

dε

∣∣∣∣
ε=0

gµ ◦ γij ◦ (gµ+νε)−1 ∂

∂z

=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ)−1 ∂

∂z

+
(
∂gµ ◦ γij ◦ (gµ)−1

)
· γ′ij ◦ (gµ)−1 d

dε

∣∣∣∣
ε=0

(gµ+νε)−1 ∂

∂z

+
(
∂̄gµ ◦ γij ◦ (gµ)−1

)
· γ′ij ◦ (gµ)−1 d

dε

∣∣∣∣
ε=0

(gµ+νε)−1 ∂

∂z
.

Before continuing this calculation we consider:

0 =
d

dε

∣∣∣∣
ε=0

(gµ+νε)−1 ◦ gµ+νε =
d

dε

∣∣∣∣
ε=0

(gµ+νε)−1 ◦ gµ
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+ (∂(gµ)−1) ◦ gµ d

dε

∣∣∣∣
ε=0

gµ+νε

+ (∂̄(gµ)−1) ◦ gµ d

dε

∣∣∣∣
ε=0

gµ+νε.

In what follows we will need the following two relations:

0 = ∂̄(gµ ◦ (gµ)−1) = (∂gµ) ◦ (gµ)−1∂̄(gµ)−1 + (∂̄gµ) ◦ (gµ)−1∂(gµ)−1

= (∂gµ) ◦ (gµ)−1∂̄(gµ)−1 + (µ∂gµ) ◦ (gµ)−1∂(gµ)−1

⇒ ∂̄(gµ)−1 = −µ ◦ (gµ)−1∂(gµ)−1,

1 = ∂(gµ ◦ (gµ)−1) = (∂gµ) ◦ (gµ)−1∂(gµ)−1 + (∂̄gµ) ◦ (gµ)−1∂(gµ)−1

= (∂gµ) ◦ (gµ)−1∂(gµ)−1 − (µ∂gµ) ◦ (gµ)−1µ̄ ◦ (gµ)−1∂(gµ)−1

⇒ ∂(gµ)−1 =
1

1− |µ|2
1

∂gµ
◦ (gµ)−1.

Using this we have:

d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ+νε)−1 ∂

∂z

=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ)−1 ∂

∂z
− (∂gµ) ◦ γij ◦ (gµ)−1γ′ij ◦ (gµ)−1(

∂(gµ)−1 d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

+ (∂̄(gµ)−1)
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

)
∂

∂z

− (∂̄gµ) ◦ γij ◦ (gµ)−1γ′ij ◦ (gµ)−1(
(∂(gµ)−1)

d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

+ (∂(gµ)−1)
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

)
∂

∂z

=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ)−1 ∂

∂z
− (∂gµ) ◦ γij ◦ (gµ)−1γ′ij ◦ (gµ)−1(

(∂(gµ)−1)
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

− (µ∂(gµ)−1)
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

)
∂

∂z

− (µ∂gµ) ◦ γij ◦ (gµ)−1γ′ij ◦ (gµ)−1

(
(∂(gµ)−1)

d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

− (µ̄∂(gµ)−1)
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

)
∂

∂z
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=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ)−1 ∂

∂z
− (∂gµ) ◦ γij ◦ (gµ)−1((

d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

)
∂(gµ)−1γ′ij ◦ (gµ)−1(

γ′ij ◦ (gµ)−1 − γ̄′ij ◦ (gµ)−1
(
µ ◦ γij ◦ (gµ)−1

)
µ̄ ◦ (gµ)−1

)
+

d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

(
µ ◦ γij ◦ (gµ)−1γ̄′ij ◦ (gµ)−1 − µ ◦ (gµ)−1γ′ij ◦ (gµ)−1

)
∂(gµ)−1

)
∂

∂z

=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ γij ◦ (gµ)−1 ∂

∂z
− d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

((∂gµ) ◦ γij ◦ (gµ)−1)(1− |µ|2)∂(gµ)−1(γ′ij ◦ (gµ)−1)
∂

∂z

=
d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1 ◦ gµ ◦ γij ◦ (gµ)−1 ∂

∂z

− d

dε

∣∣∣∣
ε=0

gµ+νε ◦ (gµ)−1

(
∂

∂z
◦ (gµ ◦ γij ◦ (gµ)−1)

)
.

And so we have that θij = δ∗(gi) for gi = dgµ+εν

dε

∣∣∣
ε=0
◦ (gµ)−1 ∂

∂z . To finish the
calculation we have to calculate:

∂̄gi =
d∂gµ+εν

dε

∣∣∣∣
ε=0

◦ (gµ)−1(∂̄(gµ)−1)
∂

∂z

+
d∂̄gµ+εν

dε

∣∣∣∣
ε=0

◦ (gµ)−1(∂(gµ)−1)
∂

∂z

=
d∂gµ+εν

dε

∣∣∣∣
ε=0

◦ (gµ)−1(−µ ◦ (gµ)−1∂(gµ)−1)
∂

∂z

+
d(µ+ εν)∂gµ+εν

dε

∣∣∣∣
ε=0

◦ (gµ)−1(∂(gµ)−1)
∂

∂z

=ν ◦ (gµ)−1∂gµ ◦ (gµ)−1(∂(gµ)−1)
∂

∂z

=
ν

1− |µ|2
∂gµ

∂gµ
◦ (gµ)−1 ∂

∂z
.

So the tangent vector corresponding to ν at µ is P0,1( ν
1−|µ|2

∂gµ

∂gµ
◦ (gµ)−1). This

map is holomorphic in ν, and so we have holomorphic coordinates. Further,
we see that only the different harmonic forms give rise to different complex
structures.
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4.2 Variations of the ∂̄-Operator on X

We will now introduce a connection like we did for the SU(n) moduli space.
Let δµ be defined as

δµ(s) =
d

dε

∣∣∣∣
ε=0

(gεµ)∗sεµ =
d

dε

∣∣∣∣
ε=0

(sεµ ◦ gεµ)(∂gεµ)n(∂gεµ)m

for a section sεµ ∈ Ωn,m(Xεµ) and µ ∈ H0,1(X,TσX). And similarly we have
for the operators:

δvF
ε =

d

dε

∣∣∣∣
ε=0

(gεµ)∗ ◦ F ε ◦ ((gεµ)∗)−1.

This definition also works for E-valued sections for some holomorphic bundle
E on X for a fixed U(n)-representation ρE of π1(X). In order to work with
the Ricci potential, we need to understand the derivatives along the Teich-
müller space of ∂̄ on Ωn,0 and ∂̄∗ on Ωn,1, or if we want to work with the
Ricci potential on the moduli space of bundles, we need to understand their
endomorphism valued versions. However, as long as the bundle comes from a
fixed representation both alternatives are calculated by:

δµ(∂̄nh) = (δµ∂̄n)h+ ∂̄nδµh

δµ(∂̄nh)− ∂̄nδµh =
d

dt

∣∣∣∣
t=0

(hz̄(g
tµ)(∂gtµ)n(∂gtµ)− ∂̄nh(gtµ)(∂gtµ)n)

= − d

dt

∣∣∣∣
t=0

(hz(g
tµ)(∂gtµ)n(∂̄gtµ)

+ nh(gtµ)(∂gtµ)n−1(∂̄∂gtµ))

= −hz(z)µ(z)− nh(z)∂µ(z)

= −
(
hz(z)µ(z)− nµ(z)h(z)

∂ρ

ρ

)
= −(µ(z)ρn∂nρ

−n)h(z) = −(µ(z)∂̄∗n+1ρ)h(z).

And so δµ∂̄n = −(µ(z)∂̄∗n+1ρ), where ρ is the volume form. Similarly, we
find δ̄µ∂̄n = δµ∂̄n

∗
= 0 and δ̄µ∂̄n

∗
= µ̄∂̄n−1ρ

−1. We see that the differential
operators are on new spaces now, but the volume form ρ also changes tensor
type.

4.3 Variation of the Selberg Zeta Function

As a short reminder, we have that the Selberg Zeta function is given by

Z(s, ρH, ρE) =
∏

γ primitive hyperbolic

∞∏
k=0

det(I − ρE(γ)e−(k+s)|γ|ρH ).
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And from this follows:

1

2s− 1

d

ds
logZ(s, ρH, ρE) =

∫
H\Γ

∑
γ hyperbolic

trρE(γ)Qεµs (z, γz)
dxdy

y2
(4.3)

when Re(s) > 1.

Lemma 4.3.1 ( [Takhtajan and Zograf, 1991, Lemma 3])
For µ ∈ H0,1(Xσ, TσX) and Re(s) > 1 we have:

∂µ logZ(s, ρH, ρE) =
∂

∂ε
logZ(s, ρεµH , ρE)

= −i
∫
X
µ(∂∂′tr(Gs(z, z′)−Qs(z, z′))|z=z′ ,

at the point σ ∈ T . Where ∂∂′(Gs(z, z′) − Qs(z, z′)))|z=z′ is a (2, 0)-tensor
with values in EndE.

Note that i have an i infront of my expression, I believe this is a mistake in
the original formulation.

Proof: Now differentiating in (4.3) we find:

1

2s− 1

d

ds

∂

∂εµ
logZ(s, ρεµH , ρE)

=
∂

∂εµ

∫
H/Γ

∑
γ hyperbolic

trρE(γ)Qs(z, γz)
dxdy

y2

=
∂

∂εµ

∫
H/Γ

tr(Gs(z, z′)−Qs(z, z′))|z=z′
dxdy

y2

=

∫
H/Γ

tr(δµGs(z, z′)− δµQs(z, z′))|z=z′
dxdy

y2

=

∫
H/Γ

tr

(∫
H/Γ

Gs(z, z
′′)(δµ∆)Gs(z

′′, z′)
dx′′dy′′

y′′2
(4.4)

−
∫
H

Qs(z, z
′′)(δµ∆)Qs(z

′′, z′)
dx′′dy′′

y′′2

)∣∣∣∣
z=z′

dxdy

y2
,

since the derivative of the area vanishes. Now we have that∫
H/Γ

Gs(z, z
′′)(δµ∆)Gs(z

′′, z′)
dx′′dy′′

y′′2

=

∫
H/Γ

µ(z′′)
d

dz′′
Gs(z, z

′′)
d

dz′′
Gs(z

′′, z′)dx′′dy′′

= −i
∫
H/Γ

µ(z′′)
d

dz
Gs(z, z

′′)
d

dz′
Gs(z

′′, z′)dx′′dy′′,
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and similarly for the Q’s remembering that here we have to integrate over all
of H. Going back to (4.4) and changing the order of integration we have:∫
H/Γ

tr

(∫
H/Γ

Gs(z, z
′′)(δµ∆)Gs(z

′′, z′)−Qs(z, z′′)(δµ∆)Qs(z
′′, z′)

)∣∣∣∣∣
z=z′

= −i
∫
H/Γ

µ(z)tr

(
d2

dzdz′

∫
H/Γ

Gs(z, z
′′)Gs(z

′′, z′)
dx′′dy′′

y′′2

+ i

∫
H

Qs(z, z
′′)Qs(z

′′, z′)
dx′′dy′′

y′′2

)∣∣∣∣
z=z′

= −i
∫
H/Γ

µ(z)

(
d2

dzdz′
1

2s− 1

d

ds
tr(Gs(z, z′)−Qs(z, z′))

)∣∣∣∣
z=z′

dxdy.

Now multiplying by (2s − 1) and then integrating this from 1 < t < b with
respect to s we take the limit b→∞. Since

∑
γ hyperbolic trρ(γ)Qs(z, γz)→ 0

and logZ(s)→ 0 as s→∞, we have the desired conclusion:

∂

∂εµ
logZ(s, ρεµH , ρE). �

Corollary 4.3.2
Let µ ∈ H0,1(X,TσX) then

∂µ log det ∆E,σ = −i
∫
X
µtr(∂′∂ψ(z, z′))|z=z′ ,

with ψ(z, z′) = G1(z, z′)−Q1(z, z′). Here ψ(z, z′)|z=z′ ∈ Ω0(X,EndE).

This is the specialization to s = 1 of Lemma 4.3.1 using that

log det ∆ = logZ ′(1, ρεµH , ρE) = lim
s→1

δµ logZ(s, ρεµH , ρE),

where the last equality holds because Z has a simple zero at s = 1. If we want
to compare to the Laplace operator of the previous chapter, then we should
choose E to be the endomorphism bundle of the point in the moduli space of
bundles, which corresponds to the representation Adρ.

The lemma 4.3.1 and corollary 4.3.2 only give formulas for the holomorphic
derivatives, but since we have that Z(s, ρεµH , ρE) is a real valued function for
real s ≥ 1, we can conjugate the formulas in order to get the antiholomorphic
1-forms. To say more than this we need a better understanding of the quasi-
conformal maps gµ. Define the following functions:

Gµ =
d

dε

∣∣∣∣
ε=0

gεµ, Φµ =
d

dε̄

∣∣∣∣
ε=0

gεµ, µ ∈ Ω0,1(X,TσX), ε ∈ C (4.5)
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Following the formulation in [Zograf and Takhtadzhyan, 1987] of the results
of [Ahlfors, 1961] we then have, that Φµ is a holomorphic Eichler integral of
weight 2 for the Riemann surface given by ρH and:

Φ′′′µ (z) = −1

2
y−2µ̄(z) ∈ Ω2,0(X), (4.6)

and further:

∂̄Gµ = µ,

Gµ =
(z − z̄)2

2
Φ′′µ(z) + (z − z̄)Φ′(z) + Φ(z).

Now, for the mixed second derivatives we have the following result inspired
by [Zograf and Takhtadzhyan, 1987, Theorem 2]:

Theorem 4.3.3
We have the following identity:

∂̄∂ log det ∆EndE(µ1, µ̄2) =
iRankE

12π

∫
X
µ1µ̄2ρ+ tr((µ1µ̄2

+ µ1∂∆−1
0 µ̄2∂̄ρ

−1)P 0,1).

Proof: We have:

∂̄∂ log det ∆EndE(µ1, µ̄2) =− δµ̄2i

∫
X
µ1(z)tr(∂∂′(G−Q)(z, z′))|z=z′

=− i
∫
X

(δµ̄2µ1(z))tr(∂∂′(G−Q)(z, z′))|z=z′

− i
∫
X
µ1(z)tr(δµ̄2(∂∂′(G−Q)(z, z′)))|z=z′ .

The last term will actually split into two since both the G and the Q term will
be finite, as is seen from calculating:

δµ̄2∂∂
′Q =

d

dε̄

∣∣∣∣
ε=0

(∂gεµ2(z))(∂′gεµ2(z′))

2π(gεµ2(z)− gεµ2(z′))2

=
1

(z − z′)2

(
∂Φµ2(z) + ∂′Φµ2(z′)− 2

Φµ2(z)− Φµ2(z′)

z − z′

)
=
−1

6π
Φ′′′µ2

(z) =
µ̄2(z)

12πy2
IE ,

where we expand Φµ2 in a power series using its complex analytic proper-
ties. Now we can calculate the G contribution since −i∂∂′G is the kernel of
∂̄∗1ρ∆−1

0 ∂̄∗0 , and we have:

δµ̄2 ∂̄
∗
1ρ∆−1

0 ∂̄∗0 = µ̄2∂̄ρ
−1ρ∆−1

0 ∂̄∗0 + ∂̄∗1ρ(−∆−1
0 µ̄2∂̄ρ

−1∂̄∆−1
0 ∂̄∗0 + ∆−1

0 µ̄2∂̄ρ
−1)
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= µ̄2(I − P 0,1) + ∂̄∗1ρ∆−1
0 µ̄2∂̄ρ

−1P 0,1.

Since we know the integral is finite, we have:

−i
∫
X
µ1(z)tr(δµ̄2(∂∂′G))|z=z′ = tr((−µ1µ̄2 − µ1∂∆−1

0 µ̄2∂̄ρ
−1)P 0,1).

These two terms give the theorem once we have checked that∫
X
δµ̄2(µ1(z))tr(∂∂′(G−Q)(z, z′))|z=z′ = 0

does not contribute:∫
X
δµ̄2(µ1(z))tr(∂∂′(G−Q)(z, z′))|z=z′

=

∫
X
∂̄ρ−1∂̄

(
∆0 +

1

2

)−1

(µ1(z)µ̄2)tr(∂∂′(G−Q)(z, z′))|z=z′

=−
∫
X
∂̄

(
∆0 +

1

2

)−1

(µ1(z)µ̄2)ρ−1∂̄(tr(∂∂′(G−Q)(z, z′))|z=z′).

And we have that

∂̄(tr(∂∂′(G−Q)(z, z′))|z=z′ = tr((∂̄ + ∂̄′)∂∂′(G−Q)(z, z′))|z=z′)
= tr(∂∆′(G−Q)(z, z′) + ∂′∆(G−Q)(z, z′))|z=z′ = 0,

as it is the kernel of ∂̄∗∆−1
0 ∆0 −∆0∆−1

0 ∂̄∗ = 0. �

And so we have the following identity of forms:

−itr((µ1µ̄2 + µ1∂∆−1
0 µ̄2∂̄ρ

−1)P 0,1) + i∂̄∂ log det ∆EndE(µ1, µ̄2)

=
RankE

6π
ωWP (µ1, µ̄2).





Chapter 5

Coordinates on the Moduli
Space of Pairs of a Riemann
Surface and a Holomorphic
Vector Bundle

Abstract

In this paper we provide two ways of constructing complex coordi-
nates on the moduli space of pairs of a Riemann surface and a stable
holomorphic vector bundle centered around any such pair. We compute
the transformation between the coordinates to second-order at the center
of the coordinates. We conclude that they agree to second-order, but not
the third-order at the center.

5.1 Introduction

Fix g, n > 1 to be integers and let d ∈ {0, . . . n−1}. Let Σ be a closed oriented
surface of genus g. Consider the universal moduli space, M, consisting of
equivalence classes of pairs (ϕ : Σ → X,E), where X is a Riemann surface
of genus g, ϕ : Σ → X is a diffeomorphism and E is a semi-stable bundle
over X of rank n and degree d. Let Ms be the open dense subset of M
consisting of equivalence classes of such pairs (ϕ : Σ → X,E) with E stable.
The main objective of this paper is to provide coordinates in a neighborhood
of the equivalence class of any pair (ϕ : Σ→ X,E) inMs. There is an obvious
forgetful map

πT :M→ T

where T is the Teichmüller space of Σ, whose fiber over [ϕ : Σ → X] ∈ T is
the moduli space of semi-stable bundles for that Riemann surface structure on

51
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Σ. Let πsT : Ms → T denote the restriction of πT to Ms, and we denote a
point [ϕ : Σ→ X] in T by σ.

We recall that locally around any σ ∈ T there are the Bers coordinates
[Ahlfors and Bers, 1960]. Further, for any point [E] in some fiber (πsT )−1(σ)
we have the Zograf and Takhtadzhyan coordinates near [E] along that fiber of
πT [Zograf and Takhtadzhyan, 1989].

In order to describe our coordinates on Ms we recall the Narasimhan-
Seshadri theorem. Let π̃1(Σ) be the universal central Z/nZ extension of π1(Σ),
and let M be the moduli space of representations of π̃1(Σ) to U(n) such that
the central generator goes to e2πid/n Id. Let M ′ be the subset of M consisting
of equivalence classes of irreducible representations. The Narasimhan-Seshadri
theorem gives us a diffeomorphism

Ψ : T ×M ′ →Ms,

which we use to induce a complex structure on T ×M ′ such that Ψ is complex
analytic. We will now represent a point in T by a representation

ρ0 : π̃1(Σ)→ PSL(2)

and denote the corresponding point in Teichmüller space by Xρ0 . Here, ρ0 is
really a representation of π1(Σ) pulled back to π̃1(Σ). A point in M ′ will be
represented by a representation

ρE : π̃1(Σ)→ U(n),

which corresponds to the stable holomorphic bundle E on Xρ0 .
We build complex analytic coordinates around any such (ρ0, ρE) ∈ T ×

M ′ by providing a complex analytic isomorphism from a small neighborhood
around zero in the vector space H0,1(Xρ0 , TXρ0)⊕H0,1(Xρ0 ,EndE) to a small
open subset containing (ρ0, ρE) in T ×M ′.

The coordinates are given by constructing a certain family

Φµ⊕ν : H×GL(n,C)→ H×GL(n,C) (5.1)

of bundle maps of the trivial GL(n,C)-principal bundles over H indexed by
pairs of sufficiently small elements

µ⊕ ν ∈ H0,1(Xρ0 , TXρ0)⊕H0,1(Xρ0 ,EndE).

These bundle maps will uniquely determine representations (ρµ, ρµ⊕νE ) ∈ T ×
M ′ such that

ρµ(γ)× ρµ⊕νE (γ) = Φµ⊕ν ◦ (ρ0(γ)× ρE(γ)) ◦ (Φµ⊕ν)−1 (5.2)

for all γ ∈ π̃1(X) by the following theorem. Pick a base point z0 ∈ H, and let
pGL(n,C) be the projection onto GL(n,C) of the trivial bundle H×GL(n,C).
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Theorem 5.1.1
For all sufficiently small µ ⊕ ν ∈ H0,1(Xρ0 , TXρ0) ⊕ H0,1(Xρ0 ,EndE) there
exist a unique bundle map Φµ⊕ν such that

1. Φµ⊕ν solves
∂̄HΦµ⊕ν = ∂Φµ⊕ν(µ⊕ ν), (5.3)

where ν is considered a left-invariant vector field on GL(n,C) at each
point in H.

2. The base map extends to the boundary of H and fixes 0, 1 and ∞.

3. The pair of representations (ρµ, ρµ⊕νE ) defined by equation (5.2) repre-
sents a point in T ×M ′.

4. pGL(n,C)(Φ
µ⊕ν(z0, e)) has determinant 1 and is positive definite.

From this theorem we easily derive our main theorem of this paper.

Theorem 5.1.2
Mapping all sufficiently small pairs

µ⊕ ν ∈ H0,1(Xρ, TXρ)⊕H0,1(Xρ,EndE)

to
(ρµ, ρµ⊕νE ) ∈ T ×M ′

provides local analytic coordinates centered at (ρ0, ρE) ∈ T ×M ′.

Our second coordinate construction provides fibered coordinates, which along
T uses Bers’s coordinates, [Ahlfors and Bers, 1960], and which uses Zograf’s
and Takhtadzhyan’s coordinates [Zograf and Takhtadzhyan, 1989] along the
fibers. We refer to section 5.4 for the precise description of these fibered
coordinates.

Finally, we compare the two sets of coordinates by computing the infinites-
imal transformation of the coordinates up to second order at the center of both
coordinates.

Theorem 5.1.3
The fibered coordinates and the universal coordinates agree to second-order,
but not the third-order at the center of the coordinates.

We refer to Theorem 5.5.5, for the details of how the two set of coordinates
differ at third-order.

Remark 5.1.4
If we perform our construction using elements of H0,1(X, (End0E)) where
(End0E) is the subspace of traceless endomorphisms, we get coordinates on
the universal SU(n) moduli space in a completely similar way.
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5.2 The Complex Structure on Ms from a
Differential Geometric Perspective

Recall, that we endow the space T × M with the structure of a complex
manifold by using the Narasimhan-Seshadri theorem to provide us with the
diffeomorphism

Ψ : T ×M ′ →Ms,

and then declaring it to be complex analytic. There is the following alternative
construction of this complex manifold structure.

Recall the general setting of [Andersen et al., 2012] in the context of geo-
metric quantization and the Hitchin connection, namely T̃ is a general com-
plex manifold and (M̃, ω) is a general symplectic manifold. In that paper a
construction of a complex structure on T̃ × M̃ is provided via the following
proposition. But first we need the following definition.

Definition 5.2.1 ( [Andersen and Gammelgaard, 2011, Defn. 2.2])
A family of Kähler structures on (M̃, ω) parametrized by T̃ is called holomor-
phic if it satisfies:

V ′[J ] = V [J ]′ and V ′′[J ] = V [J ]′′

for all vector fields V on T̃ . Here, the single prime on V denotes projection on
the (1, 0)-part, and the double prime on V denotes projection on the (0, 1)-part
of the vector field V . Further V [J ] ∈ Tσ ⊗ (T̄σ)∗ ⊕ T̄σ ⊗ T ∗σ , and we let V [J ]′

denote the projection on the first and V [J ]′′ the projection on the second factor.

Proposition 5.2.2 ( [Andersen et al., 2012, Proposition 6.2])
The family Jσ of Kähler structures on M̃ is holomorphic, if and only if the
almost complex structure J , given by

J(V ⊕X) = IV ⊕ JσX, ∀(σ, [ρE ]) ∈ T̃ × M̃, ∀(V,X) ∈ Tσ,[ρE ](T̃ × M̃),

is integrable.

The family of complex structures on M ′ considered in [Hitchin, 1990], see also
[Andersen et al., 2012], [Andersen, 2012] and [Andersen and Gammelgaard,
2011], and given by the hodge star, −?σ, σ ∈ T , fulfills the requirements of
the proposition with respect to the Atiyah-Bott symplectic form ω on M ′. We
will denote the complex structure which T ×M ′ has as J .

Proposition 5.2.3
We have that the map

Ψ : (T ×M ′, J)→Ms

is complex analytic, e.g. J is in fact the complex analytic structure this space
gets from the Narasimhan-Seshadri diffeomorphism Ψ.



5.3. COORDINATES FOR THE UNIVERSAL MODULI SPACE OF
HOLOMORPHIC VECTOR BUNDLES 55

Proof: In order to understand the complex structure of T ×M ′ from the
algebraic geometric perspective we want to construct holomorphic horizontal
sections of T ×M ′ → T . We will use the universal property of the space of
holomorphic bundles to show that the sections T → T × {ρE} ⊂ T ×M ′ are
holomorphic for all [ρE ] in M ′.

Our first objective is to construct a holomorphic family of vector bundles
over Teichmüller space, where each bundle corresponds to the same unitary
representation of π̃1(Σ). We start from the universal curve, T × Σ, and its
universal cover, T × Σ̃. Both of these spaces are complex analytic, and we
get the universal curve T × Σ as the quotient of T × Σ̃ by the holomorphic
π1(Σ)-action.

This allows us to construct the vector bundles over T as the sheaf theoretic
quotient of

T × Σ̃× Cn

by the π̃1(Σ)-action, given by the π1(Σ)-action on T ×Σ̃, and the unitary action
on Cn given by our fixed representation ρE : π̃1(Σ) → U(n) (See [Mehta and
Seshadri, 1980] for details on this construction, here we are simply composing
representations with the natural quotient map from π1(Σ − {p}) to π̃1(Σ) to
match the setting of our paper to a special case of the setting in [Mehta and
Seshadri, 1980]). The action is of course holomorphic, and so the quotient
(fiberwise invariant sections over T ) is a family of Riemann surfaces with a
holomorphic vector bundle over it of rank n and degree d. The universal prop-
erty ofMs implies, that this family therefore induced a holomorphic section

ιρE : T →Ms.

This shows that the horizontal sections are holomorphic submanifolds, and so
the tangent space must split at every point as I ⊕ Jσ. Here Jσ must be −?σ,
since it comes from the structure of the fibers. �

The conclusion is, that the algebraic complex structure on the moduli space
of pairs of a Riemann surface and a holomorphic vector bundle over it and the
complex structure from [Andersen et al., 2012] on T ×M ′ are the same.

5.3 Coordinates for the Universal Moduli Space of
Holomorphic Vector Bundles

In this section we prove Theorem 5.1.1.
We will need the composition of the map Φµ⊕ν with the projection on each

of the two factors, which we denote as follows:

Φµ⊕ν
1 : H×GL(n,C)→ H,

Φµ⊕ν
2 : H×GL(n,C)→ GL(n,C).
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In fact Φµ⊕ν
1 is the projection onto H followed by the induced map on the base

by (5.6) below.
The equation (5.3) is equivalent to the following two equations on Φµ⊕ν

i :

∂̄HΦµ⊕ν
1 (z, g) = µ∂HΦµ⊕ν

1 (z, g), (5.4)

∂̄HΦµ⊕ν
2 (z, g) = µ∂HΦµ⊕ν

2 (z, g) + ∂GL(n,C)Φ
µ⊕ν
2 (z, g)ν, (5.5)

since ∂GL(n,C)Φ
µ⊕ν
1 (z, g) = 0. With this simplification the first equation is

exactly Bers’s equation for

Φµ
1 (z) = Φµ⊕ν

1 (z, g), (5.6)

and so we can solve it using the techniques in [Ahlfors and Bers, 1960], and
we obtain a Riemann surface, Xρµ , corresponding to a representation, ρµ.

The second equation (5.5) we solve in two steps. First, we identify ν with an
endomorphism valued 1-form using the standard identification of left-invariant
vector fields and elements of the Lie algebra. To solve the equation we consider
the antiholomorphic solution of the equation

∂̄HΦν
−(z, e) = ∂GL(n,C)Φ

ν
−(z, g)(ν)|g=e = Φν

−(z, e) · ν

and extend it equivariantly to the rest of H × GL(n,C). We observe that
∂HΦν

− = 0, since it is antiholomorphic. And so it follows, by adding zero to
the defining equation of Φν

−, that:

∂̄HΦν
−(z, g) = ∂GL(n,C)Φ

ν
−(z, g)(ν) + µ∂HΦν

−(z, g).

The vector bundle on Xρµ corresponding to the representation

χν(γ) = Φν
−(ρ0(γ)z, e)ρ0⊕0

E (γ)(Φν
−(z, e))−1

is stable, if µ ⊕ ν is small enough. This means, we can find a holomorphic
gauge transformation on the universal cover of Xρµ , Φµ⊕ν

+ : H → GL(n,C),
such that

ρµ⊕νE (γ) = Φµ⊕ν
+ (ρµ(γ)z)χµ⊕ν(γ)(Φµ⊕ν

+ (z))−1 (5.7)

is an admissible U(n)-representation and independent of z by the Narasimhan-
Seshadri theorem [Narasimhan and Seshadri, 1964]. Now we use the basemap
to define Φ̃µ⊕ν

+ = Φµ⊕ν
+ ◦ Φµ

1 .
The following computation shows that the map Φ̃µ⊕ν

+ is in the kernel of
∂̄H − µ∂H:

(∂̄H − µ∂H)Φ̃µ⊕ν
+ = (∂̄HΦµ⊕ν

+ ) ◦ Φµ
1 ∂̄HΦ̄µ

1 + (∂HΦµ⊕ν
+ ) ◦ Φµ

1 ∂̄HΦµ
1

− µ(∂̄HΦµ⊕ν
+ ) ◦ Φµ

1∂HΦ̄µ
1 − µ(∂HΦµ⊕ν

+ ) ◦ Φµ
1∂HΦµ

1 .
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We then use the differential equation ∂̄Φµ
1 = µ∂Φµ

1 and that ∂̄HΦµ⊕ν
+ = 0 to

get that

(∂̄H − µ∂H)Φ̃µ⊕ν
+ = ∂HΦµ⊕ν

+ ◦ Φµ
1µ∂HΦµ

1 − µ∂HΦµ⊕ν
+ ◦ Φµ

1∂HΦµ
1 = 0.

Define Φµ⊕ν
2 (z, g) = Φ̃µ⊕ν

+ (z, g)Φν
−(z, g). We see that Φµ⊕ν

2 fulfills equation
(5.5) by the following calculation

∂̄HΦµ⊕ν
2 = (∂̄HΦ̃µ⊕ν

+ )(Φν
−) + (Φ̃µ⊕ν

+ )(∂̄HΦν
−)

= (∂̄HΦ̃µ⊕ν
+ )(Φν

−) + (Φ̃µ⊕ν
+ )(∂GL(n,C)Φ

ν
−ν),

since Φ̃µ⊕ν
+ ∈ ker(∂̄H − µ∂H) we get that

∂̄HΦµ⊕ν
2 = (µ∂HΦ̃µ⊕ν

+ )(Φν
−) + (Φ̃µ⊕ν

+ )(∂GL(n,C)Φ
ν
−ν).

To finish the calculation we use that Φ+ and Φ1 are independent of the
GL(n,C) factor, and therefore so is Φ̃µ⊕ν

+ . Also Φµ⊕ν
− is antiholomorphic,

so we have that

∂̄HΦµ⊕ν
2 = µ∂H(Φ̃µ⊕ν

+ Φν
−) + ∂GL(n,C)(Φ̃

µ⊕ν
+ Φν

−)ν

= µ∂HΦµ⊕ν
2 + (∂GL(n,C)Φ

µ⊕ν
2 )ν.

To show that we still get an admissible representation, we use that (5.7) is
independent of which z we choose. This lets us conclude that

ρµ⊕νE (γ) =Φµ⊕ν
+ (ρµ(γ)Φµ

1 (z))χµ⊕ν(γ)(Φµ⊕ν
+ (Φµ

1 (z)))−1

=Φµ⊕ν
+ (Φµ

1 (ρ0(γ)(Φµ
1 )−1(Φµ

1 (z))))χµ⊕ν(γ)(Φµ⊕ν
+ (Φµ

1 (z)))−1

=Φ̃µ⊕ν
+ (ρ0(γ)z)χµ⊕ν(γ)(Φ̃µ⊕ν

+ (z))−1,

and so
ρµ⊕νE (γ) = Φµ⊕ν

2 (ρ0(γ)z, g)ρ0⊕0
E (γ)(Φµ⊕ν

2 (z, g))−1

is an admissibleU(n)-representation. Finally, the requirement that Φµ⊕ν
2 (z0, e)

is a positive definite matrix of determinant 1 fixes all remaining indeterminacy
as in [Zograf and Takhtadzhyan, 1989].

5.3.1 The Tangent Map from Kodaira-Spencer Theory

We will now analyse the tangential map of our coordinates. The only prob-
lematic part is what happens in the tangent directions parallel to the fibers.
We can calculate the Kodaira-Spencer map of the family of representations
ρµ⊕ν+tµ̃⊕ν̃
E , t ∈ C. However, to ease the computation we first prove the follow-

ing lemma.
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Lemma 5.3.1
We let Xρ0 be a Riemann surface and ρ0 the corresponding representation of
π1(Xρ0). For a family of representations of Rt : π̃1(Xρ0)→ U(n), where

Rt(γ) = Υ(t, ρ0(γ)z)ρE(γ)Υ(t, z)−1

with both ρ0 and ρE independent of t and Υ any smooth map

Υ : C×H→ GL(n,C),

we have that the Kodaira-Spencer class’s harmonic representative of the family
Rt at t = 0 is:

P 0,1
ρ0,E

(
AdΥ(0, z)

(
d

dt

∣∣∣∣
t=0

Υ(t, z)−1∂̄HΥ(t, z)

))
∈ H0,1(X0,EndER0).

Here P 0,1
ρ0,E

denotes the projection on the harmonic forms on Xρ0 with values
in EndER0 .

Proof: To compute the Kodaira-Spencer map we first consider d
dt

∣∣
t=0

Rt and
note, this is an element of H1(X,End(E)). However, this cohomology group
is isomorphic to H0,1(X,EndE). The isomorphism is constructed by finding a
Čech chain with values in the sheaf Ω1(EndE), say ϕi, such that

δ∗(ϕ)ij = ϕi − ϕj =
d

dt

∣∣∣∣
t=0

Rt(γij),

for open sets Ui∩Uj 6= ∅ which are related by the transformation γij ∈ π̃1(Σ) on
the universal cover. Once ϕi has been found, P 0,1

ρ0,E
(∂̄Hϕi) will give a harmonic

representative of the Kodaira-Spencer class.
We can now calculate that

d

dt

∣∣∣∣
t=0

Rt(γij) =
d

dt

∣∣∣∣
t=0

Υ(t, ρ0(γ)z)ρE(γ)Υ(t, z)−1

=
d

dt

∣∣∣∣
t=0

Υ(t, ρ0(γ)z)ρE(γ)Υ(0, z)−1

+ Υ(0, ρ0(γ)z)ρE(γ)
d

dt

∣∣∣∣
t=0

Υ(t, z)−1

=
d

dt

∣∣∣∣
t=0

(Υ(t, ρH(γij)z)Υ(0, ρ0(γij)z)
−1)R0(γij)

−R0(γij)
d

dt

∣∣∣∣
t=0

(Υ(t, z)Υ(0, z)−1)

= R0(γij)δ(
d

dt

∣∣∣∣
t=0

(Υ(t, z)Υ(0, z)−1))ij .
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The Kodaira-Spencer class is then:

∂̄H
d

dt

∣∣∣∣
t=0

(Υ(t, z)Υ(0, z)−1) = AdΥ(0, z)

(
d

dt

∣∣∣∣
t=0

Υ(t, z)−1∂̄HΥ(t, z)

)
.

We compose with the harmonic projection to get the harmonic representa-
tive. �

We have the following proposition.

Proposition 5.3.2
The Kodaira-Spencer map of ρµ⊕ν+tµ̃⊕ν̃

E , t ∈ C, at µ ⊕ ν ∈ H0,1(X,TX) ⊕
H0,1(X,EndE),

KSµ⊕ν : H0,1(X,TX)⊕H0,1(X,EndE)

→ H0,1(Xρµ , TXρµ)⊕H0,1(Xρµ ,EndEρµ⊕νE
)

is given by

KSµ⊕ν(µ̃⊕ν̃) = Pµµ̃
µ⊕P 0,1

µ⊕ν

(
(Φµ

1 )−1
∗

(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2 + ν̃

)))
.

Here µ̃µ = ( µ̃
1−|µ|2

∂Φµ1
∂Φµ1

) ◦ (Φµ
1 )−1, and Pµ and P 0,1

µ⊕ν are the L2-projections on

the harmonic forms H0,1(Xρµ , TXρµ) respectively H0,1(Xρµ ,EndEρµ⊕νE
).

Proof: By using that the defining equation (5.2) for ρµ⊕ν+tµ̃⊕ν̃
E is independent

of z, we get that

ρµ⊕ν+tµ̃⊕ν̃
E = Φµ⊕ν+tµ̃⊕ν̃

2 (ρ0(γ)z, e)ρ0⊕0
E (γ)Φµ⊕ν

2 (z, e)−1

= Φµ⊕ν+tµ̃⊕ν̃
2 ((Φµ

1 )−1(ρµ(γ)z), e)ρ0⊕0
E (γ)

· Φµ⊕ν
2 ((Φµ

1 )−1(z), e)−1.

And so to find the Kodaira-Spencer class, by Lemma 5.3.1 we only need to
calculate:

AdΦµ⊕ν
2 ◦ (Φµ

1 )−1 d

dt
|t=0(Φµ⊕ν+tµ̃⊕ν̃

2 ◦ (Φµ
1 )−1)−1∂̄(Φµ⊕ν+tµ̃⊕ν̃

2 ◦ (Φµ
1 )−1)

=AdΦµ⊕ν
2 ◦ (Φµ

1 )−1

· d
dt
|t=0((tµ̃(Φµ⊕ν+tµ̃⊕ν̃

2 )−1∂Φµ⊕ν+tµ̃⊕ν̃
2 ) ◦ Φµ

1 )−1∂̄(Φ̄µ
1 )−1

+ AdΦµ⊕ν
2 ◦ (Φµ

1 )−1 d

dt
|t=0(ν + tν̃) ◦ (Φµ

1 )−1∂̄(Φ̄µ
1 )−1

=(Φµ
1 )−1
∗

(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2 + ν̃

))
. (5.8)

Now, to get the Kodaira-Spencer map we project on the harmonic (0, 1)-forms
and remark, that in the Teichmüller directions we can apply the usual argu-
ments from the classical case of Bers’s coordinates. �
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We see the map is injective and complex linear in both µ̃ and ν̃. Since we
know T ×M ′ is a manifold the Implicit Function Theorem now implies that
the coordinates we constructed are in fact holomorphic coordinates in a small
neighborhood. This completes the proof of Theorem 5.1.2.

5.4 The Fibered Coordinates

In this section we will fuse Zograf’s and Takhtadzhyan’s coordinates with
Bers’s coordinates in a kind of fibered manner in order also to produce co-
ordinates on T ×M ′, which are complex analytic with respect to J .

Since through any stable bundle we have a copy of T embedded as a com-
plex submanifold, we can construct fibered coordinates once we identify the
tangent spaces in the fiber direction locally along these copies of T . We identify
them by the maps

H0,1(Xρ0 ,EndEρ0
E

) 3 ν → νµ = P 0,1
µ,E((Φµ

1 )−1
∗ (ν)) ∈ H0,1(Xρµ ,EndEρ0µ

E
).

This identification gives us coordinates taking (µ, ν) to

(ρµ, ρ
νµ

E ) =
(

Φµ
1 ◦ ρ0(γ) ◦ (Φµ

1 )−1, fν
µ
(ρµ(γ)z)ρ00

E (γ)(fν
µ
(z))−1

)
.

These are complex coordinates, since νµ are local holomorphic sections of the
tangent bundle.

Before we calculate the Kodaira-Spencer maps for these coordinate curves,
we will need to understand the derivatives of (Φµ

1 )−1.

Lemma 5.4.1
We have the following two identities for (Φµ

1 )−1 : H→ H

∂̄(Φµ
1 )−1 = −µ ◦ (Φµ

1 )−1∂̄(Φµ
1 )−1, (5.9)

∂̄(Φµ
1 )−1 =

(
1

1− |µ|2
1

∂Φµ
1

)
◦ (Φµ

1 )−1. (5.10)

Proof: We consider the identity Φµ
1 ◦ (Φµ

1 )−1(z) = z. And we use the differ-
ential equation for Φµ

1 , which is

∂̄Φµ
1 = µ∂Φµ

1 ,

to calculate:

0 = ∂̄(Φµ
1 ◦ (Φµ

1 )−1) = (∂̄Φµ
1 ) ◦ (Φµ

1 )−1∂̄(Φµ
1 )−1 + (∂Φµ

1 ) ◦ (Φµ
1 )−1∂̄(Φµ

1 )−1

= (µ∂Φµ
1 ) ◦ (Φµ

1 )−1∂̄(Φµ
1 )−1 + (∂Φµ

1 ) ◦ (Φµ
1 )−1∂̄(Φµ

1 )−1.

Now ∂Φµ
1 6= 0 for µ small, since we perturb the map z : H→ H, we have that

−µ ◦ (Φµ
1 )−1∂̄(Φµ

1 )−1 = ∂̄(Φµ
1 )−1,
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which is (5.9). We can use (5.9) to describe ∂̄(Φµ
1 )−1 by differentiating Φµ

1 ◦
(Φµ

1 )−1 = z:

1 = ∂(Φµ
1 ◦ (Φµ

1 )−1) = (∂̄Φµ
1 ) ◦ (Φµ

1 )−1∂(Φµ
1 )−1 + (∂Φµ

1 ) ◦ (Φµ
1 )−1∂(Φµ

1 )−1

= −µ(∂Φµ
1 ) ◦ (Φµ

1 )−1µ̄∂̄(Φµ
1 )−1 + (∂Φµ

1 ) ◦ (Φµ
1 )−1∂(Φµ

1 )−1

= ((1− |µ|2)(∂Φµ
1 )) ◦ (Φµ

1 )−1∂(Φµ
1 )−1,

and so conjugating and isolating ∂̄(Φµ
1 )−1 we find:

∂̄(Φµ
1 )−1 =

(
1

1− |µ|2
1

∂Φµ
1

)
◦ (Φµ

1 )−1,

which proves (5.10). �

Let κµ be an (n,m)-tensor with values in a holomorphic bundle, Eρ0µ
E
, on the

Riemann surface, Xρµ , i.e.

κµ ∈ C∞(Xρµ , T
−nXρµ ⊗ T

−m
Xρµ ⊗ EndEρ0µ

E
).

Then we define
(Φµ

1 )∗(κµ) = (κµ ◦ Φµ
1 )(∂Φµ

1 )n(∂Φµ
1 )m,

and so
(Φµ

1 )−1
∗ (κ0) = (κ0 ◦ (Φµ

1 )−1)(∂Φµ
1 )−n(∂Φµ

1 )−m.

We have the families of unbounded operators

∂̄µ,E
ρ0
µ
E

: L2(Xρµ ,EndEρ0µ
E

)→ L2(Xρµ ,Ω
0,1 ⊗ EndEρ0µ

E
),

∂̄∗µ,E
ρ0
µ
E

: L2(Xρµ ,Ω
0,1 ⊗ EndEρ0µ

E
)→ L2(Xρµ ,EndEρ0µ

E
),

∆µ,E
ρ0
µ
E

= ∂̄∗∂̄ : L2(Xρµ ,EndEρ0µ
E

)→ L2(Xρµ ,EndEρ0µ
E

),

and the finite range operator

P 0,1
µ,E

ρ0
µ
E

: L2(Xρµ ,Ω
0,1 ⊗ EndEρ0µ

E
)→ L2(Xρµ ,Ω

0,1 ⊗ EndEρ0µ
E

)

P 0,1
µ,E

ρ0
µ
E

= I − ∂̄µ,E
ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

,

where ∆0,µ,E
ρ0
µ
E

is the restriction of ∆µ,E
ρ0
µ
E

to the complement of the constant

function, and P 0,1 is the projection on the harmonic (0, 1)-forms. We will also
need the following results:

Lemma 5.4.2 ( [Takhtajan and Zograf, 1991])
We have the following variational formulae for the derivative at Xρ0 :

d

dt
|t=0(Φtµ̃

1 )∗∂̄tµ̃,E
ρ0
µ
E

(Φtµ̃
1 )−1
∗ = −µ̃∂0,E ,

d

dt̄
|t=0(Φtµ̃

1 )∗∂̄tµ̃,E
ρ0
µ
E

(Φtµ̃
1 )−1
∗ = 0,



62
CHAPTER 5. COORDINATES ON THE MODULI SPACE OF PAIRS OF

A RIEMANN SURFACE AND A HOLOMORPHIC VECTOR BUNDLE

d

dt
|t=0(Φtµ̃

1 )∗∂̄
∗
tµ̃,E

ρ0
µ
E

(Φtµ̃
1 )−1
∗ = 0,

d

dt
|t=0(Φtµ̃

1 )∗∂̄
∗
tµ̃,E

ρ0
µ
E

(Φtµ̃
1 )−1
∗ = −∂∗0,Eµ̃.

And at (Xρµ , Eρ0µ
E

) we also have that:

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

= (Φµ
1 )∗P

0,1
µ,E

ρ0
µ
E

(Φµ
1 )−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗∂̄µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

(Φµ
1 )∗∆

−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

(Φµ
1 )−1
∗

+ (Φµ
1 )∗∂̄µ,E

ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

(Φµ
1 )−1
∗ |t=0

(Φµ+tµ̃
1 )∗∂̄

∗
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗
d

dt
(Φµ

1 )∗P
0,1
µ,E

ρ0
µ+tµ̃
E

(Φµ
1 )−1
∗ .

Proof: The first identities are proven in [Takhtajan and Zograf, 1991, Equa-
tion (2.6)] (without the EndE, which makes no difference), the last statement
is seen straightforwardly:

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

=
d

dt
|t=0(Φµ+tµ̃

1 )∗∂̄µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

(Φµ+tµ̃
1 )∗∆

−1
0,µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (Φµ+tµ̃
1 )∗∂̄

∗
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ .

We can then use the following identities

d

dt
|t=0(Φµ+tµ̃

1 )∗∆
−1
0,µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ = −(Φµ
1 )∗∆

−1
0,µ,E

ρ0
µ
E

(Φµ
1 )−1
∗

and
d

dt
|t=0(Φµ+tµ̃

1 )∗∆0,µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (Φµ
1 )∗∆

−1
0,µ,E

ρ0
µ
E

(Φµ
1 )−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗∆0,µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

=
d

dt
|t=0(Φµ+tµ̃

1 )∗∂̄µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (Φµ
1 )∗∂̄

∗
µ,E

ρ0
µ
E

(Φµ
1 )−1
∗

+
d

dt
|t=0(Φµ

1 )∗∂̄µ,E
ρ0
µ
E

(Φµ
1 )−1
∗ (Φµ+tµ̃

1 )∗∂̄
∗
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ .

Now, putting this together and using that

P 0,1
µ,E

ρ0
µ
E

= I − ∂̄µ,E
ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

,

we have the last identity. �
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Proposition 5.4.3
The Kodaira-Spencer map of the curve ρ(ν+tν̃)µ+tµ̃

E at t = 0 is:

KSνµ(µ̃⊕ ν̃) =Pµµ̃
µ ⊕ P 0,1

νµ
(
Ad(fν

µ
)((fν

µ
)−1 · (∂fνµ)µ̃µ + ν̃µ)

+Adfν
µ
(Φµ

1 )−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃(Φµ+tµ̃

1 )−1
∗ (ν)(1− |µ ◦ (Φµ

1 )−1|2)),

with µ̃µ = ( µ̃
1−|µ|2

∂Φµ1
∂Φµ1

) ◦ (Φµ
1 )−1 and Pµ and P 0,1

νµ the L2-projections on the

harmonic forms H0,1(Xρµ , TXρµ) respectively H0,1(Xρµ ,EndEρνµE ).

Proof: First, we observe that the Teichmüller direction is unchanged from
the classical case. Then we want to use Lemma 5.3.1, and so using that
ρ

(ν+tν̃)µ+tµ̃

E is independent of z we find:

ρ
(ν+tν̃)µ+tµ̃

E (γ) = f (ν+tν̃)µ+tµ̃
(ρµ+tµ̃(γ)z)ρE(γ)(f (ν+tν̃)µ+tµ̃

(z))−1

= f (ν+tν̃)µ+tµ̃
(Φµ+tµ̃

1 ((Φµ
1 )−1(ρµ(γ)z)))ρE(γ)

(f (ν+tν̃)µ+tµ̃
(Φµ+tµ̃

1 ((Φµ
1 )−1(z))))−1.

Next, we have to calculate:

Ad(fν
µ
)
d

dt
|t=0

((
(f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ) ◦ (Φµ
1 )−1

)
∂̄
(

(fν
µ+tµ̃

)−1 ◦ Φµ+tµ̃
1 ◦ (Φµ

1 )−1
))

=Ad(fν
µ
)
d

dt
|t=0

((
(ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1 )−1

)
(∂(Φµ+tµ̃

1 ◦ (Φµ
1 )−1))

)
+ Ad(fν

µ
)
d

dt
|t=0

((
f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ◦ (Φµ
1 )−1

)−1

· (∂fνµ) ◦ Φµ+tµ̃
1 ◦ (Φµ

1 )−1(∂(Φµ+tµ̃
1 ◦ (Φµ

1 )−1))
)
.

For the first term we find:

Ad(fν
µ
)
d

dt
|t=0

((
((ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1 )−1

)
(∂(Φµ+tµ̃

1 ◦ (Φµ
1 )−1))

)
=
d

dt
|t=0Ad(fν

µ
)((ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1 )−1

·
(

(∂Φµ+tµ̃
1 ◦ (Φµ

1 )−1)∂(Φµ
1 )−1 + (∂̄Φµ+tµ̃

1 ◦ (Φµ
1 )−1)∂(Φ̄µ

1 )−1
)
.

We can now rewrite the last factor using (5.9) and (5.10) and their conjugates:

(∂Φµ+tµ̃
1 ◦(Φµ

1 )−1)∂(Φµ
1 )−1 + (∂̄Φµ+tµ̃

1 ◦ (Φµ
1 )−1)∂(Φ̄µ

1 )−1

= (∂Φµ+tµ̃
1 ◦ (Φµ

1 )−1)∂(Φµ
1 )−1
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+ (((µ+ tµ̃)∂Φµ+tµ̃
1 ) ◦ (Φµ

1 )−1)(−µ̄ ◦ (Φµ
1 )−1∂(Φµ

1 )−1)

= (∂Φµ+tµ̃
1 ◦ (Φµ

1 )−1)∂(Φµ
1 )−1(1− (((µ+ tµ̃)µ̄) ◦ (Φµ

1 )−1)).

We have that the pushforward of a (0, 1)-form (Φµ
1 )∗(ν) = ν ◦ Φµ

1∂Φµ
1 , and so

using this for the first term we have:

Ad(fν
µ
)
d

dt
|t=0

((
((ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1 )−1

)
(∂(Φµ+tµ̃

1 ◦ (Φµ
1 )−1))

)
= Ad(fν

µ
)
d

dt
|t=0

(
(Φµ

1 )−1
∗

(
(Φµ+tµ̃

1 )∗
(
(ν + tν̃)µ+tµ̃

)
(1− |µ|2 − t̄µµ̃)

))
= Ad(fν

µ
)(Φµ

1 )−1
∗

(
(1− |µ|2)

d

dt
|t=0(Φµ+tµ̃

1 )∗(
P 0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν + tν̃)

))
= Ad(fν

µ
)P 0,1

µ,E
ρ0
µ
E

(
(Φµ

1 )−1
∗ (ν̃) + µ̃µ∂µ,E

ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

(Φµ
1 )−1
∗ (ν)

)
(
(1− |µ|2)

)
◦ (Φµ

1 )−1.

Here we used the result from Lemma 5.4.2 to calculate the derivative of the
projection.

For the second term we rewrite

∂(Φµ+tµ̃
1 ◦ (Φµ

1 )−1)

= (∂̄Φµ+tµ̃
1 ) ◦ (Φµ

1 )−1∂̄(Φµ
1 )−1 + (∂Φµ+tµ̃

1 ) ◦ (Φµ
1 )−1∂̄(Φµ

1 )−1

= ((µ+ tµ̃)∂Φµ+tµ̃
1 ) ◦ (Φµ

1 )−1∂̄(Φµ
1 )−1 + (∂Φµ+tµ̃

1 ) ◦ (Φµ
1 )−1∂̄(Φµ

1 )−1 (5.11)

using (5.10) and (5.9) in (5.11) and find:

∂(Φµ+tµ̃
1 ◦ (Φµ

1 )−1) =

(
tµ̃

1− |µ|2
∂Φµ+tµ̃

1

∂Φµ
1

)
◦ (Φµ

1 )−1,

which implies that:

Ad(fν
µ
)
d

dt
|t=0

((
f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ◦ (Φµ
1 )−1

)−1

· (∂fνµ) ◦ Φµ+tµ̃
1 ◦ (Φµ

1 )−1(∂(Φµ+tµ̃
1 ◦ (Φµ

1 )−1))
)

= Ad(fν
µ
)((fν

µ
)−1 · (∂fνµ)(µ̃µ)),

where µ̃µ =

(
µ̃

1−|µ|2
∂Φµ1
∂Φµ1

)
◦ (Φµ

1 )−1. And so we have

Ad(fν
µ
)
d

dt
|t=0

((
(f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ) ◦ (Φµ
1 )−1

)
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∂̄
(

(fν
µ+tµ̃

)−1 ◦ Φµ+tµ̃
1 ◦ (Φµ

1 )−1
))

=Ad(fν
µ
)

(
(Φµ

1 )−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν)(1− |µ|2) ◦ (Φµ
1 )−1)

)
+ Ad(fν

µ
)ν̃µ + Ad(fν

µ
)((fν

µ
)−1 · (∂fνµ)(µ̃µ)). (5.12)

We have shown that composing with the projection gives us the harmonic
representative. �

5.4.1 Comparison of the Two Tangent Maps and a Proof of
the First Part of Theorem 5.1.3

We compare

P 0,1
µ⊕ν,

(
(Φµ

1 )−1
∗

(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2 + ν̃

)))
and

P 0,1
νµ
(
Ad(fν

µ
)((fν

µ
)−1 · (∂fνµ)µ̃µ + ν̃µ)

+Adfν
µ
(Φµ

1 )−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν)(1−|µ◦(Φµ
1 )−1|2)).

First, we observe that

Adfν
µ
(Φµ

1 )−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν)(1− |µ ◦ (Φµ
1 )−1|2)

is a term that vanishes in ν and µ to first-order at the center, since either we
differentiate with respect to µ and set ν = 0 or we differentiate with respect
to ν and then we find, when we evaluate at µ = 0, that ∂̄∗0,Eν = 0, from the
expression in Lemma 5.4.2.

Next, we compare

(Φµ
1 )−1
∗

(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2

))
with

Ad(fν
µ
)((fν

µ
)−1 · (∂fνµ)µ̃µ).

We observe, that since ∂I = 0 both (Φµ⊕ν
2 )−1∂Φµ⊕ν

2 and (fν
µ
)−1 · (∂fνµ)

vanish unless we differentiate them with respect to the moduli space direction
or the Teichmüller direction. If we differentiate with respect to µ we get ∂

∂εν
εµ,

but at ν = 0 this is zero. This means we can compare the two after evaluating
µ = 0, and then we have fν0

= Φ0⊕ν , and so they agree to first-order.
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The last terms to consider are (Φµ
1 )−1
∗

(
AdΦµ⊕ν

2 (ν̃)
)
and Ad(fν

µ
)ν̃µ. Now,

if we put µ = 0 the terms agree. If we differentiate with respect to µ, we can
put ν = 0 first. We are differentiating a term of the form

∂̄µ,E
ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

(Φµ
1 )−1
∗ ν̃

with respect to µ. The result is an exact term, which is killed by the harmonic
projection P 0,1 out in front of our expressions, plus a term containing ∂̄∗0,Eν =
0. This proves the first part of Theorem 5.1.3. The second part will be proved
in the following section.

5.5 Variation of the Metric

In order to settle the question whether our new coordinates are the same
as the fibered coordinates discussed above, we shall consider the variation
of the metric in both sets of coordinates and use the resulting formulae to
demonstrate that they are not identical to third-order.

5.5.1 Variation in the Universal Coordinates

With the newly introduced coordinates we get a new tool to analyse the metric
and the curvature of the moduli space. As a first step in understanding the cur-
vature, we will calculate the second variation of the metric in local coordinates,
at the center point. This section will use the coordinates from Theorem 5.1.1.
In the next section we will do the same calculation for the fibered coordinates,
and use this to show that the two sets of coordinates differ at third-order.

So first we consider the function (Φ̄
ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 . This transforms as

a function on X with values in EndE, our reference point. Now, to further
understand this function, we look at d

dε |ε=0(Φ̄
ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 . Then we find:

∆
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = ∆(

d

dε
|ε=0(Φ̄

ε(µ⊕ν)
+ )T +

d

dε
|ε=0Φ

ε(µ⊕ν)
−

+
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
− )T +

d

dε
|ε=0Φ

ε(µ⊕ν)
+ ),

and since Φ
ε(µ⊕ν)
− is antiholomorphic we get:

∆
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 =

d

dε
|ε=0∆(Φ̄

ε(µ⊕ν)
+ )T +

d

dε
|ε=0∆Φ

ε(µ⊕ν)
+ .

We now use that (∂̄ − εµ∂)Φ
ε(µ⊕ν)
+ = 0 and ∆ = y−2∂∂̄ to see:

∆
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = y−2µ̄∂̄∂̄(Φ̄

0(µ⊕ν)
+ )T + y−2µ∂∂Φ

0(µ⊕ν)
+ = 0,
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since Φ0
+ = I, and so the derivative is zero. This allows us to conclude,

that d
dε |ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 is a constant multiple of the identity element in

EndE, and because of the determinant criteria in Theorem 5.1.1 we have

0 =
d

dε
|ε=0(det(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 )

= tr|ε=0((Φ̄0
2)TΦ0

2)−1 d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = tr

d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 ,

and so d
dε |ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = 0. We see that this immediately implies

that d
dε |ε=0∂Φ

ε(µ⊕ν)
+ = − d

dε̄ |ε=0∂̄Φ
ε(µ⊕ν)
−

T

= 0.
We can study d

dε̄ |ε=0(Φ̄
ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 similarly and conclude that

d

dε̄
|ε=0∂Φ

ε(µ⊕ν)
+ = − d

dε
|ε=0∂̄Φ

ε(µ⊕ν)
−

T

= −ν̄T .

Next, we want to understand the variation of the ∂̄µ,E
ρ(µ⊕ν)

-operator on func-
tions and ∂̄∗µ,E

ρ(µ⊕ν)
-operator on (0, 1)-forms, since they play a central role in

understanding the tangent spaces over the universal moduli space. We work
on the universal cover and pull back our family of differential operators from
the universal cover of (Xρµ , Eρ(µ⊕ν)) to (Xρ0 , E), in terms of representations.
Then ∂̄µ,E

ρ(µ⊕ν)
is just represented by ∂̄ on H:

d

dε
|ε=0AdΦεµ⊕ν

2 (Φεµ
1 )∗∂̄(Φεµ

1 )−1
∗ (AdΦεµ⊕ν

2 )−1

=
d

dε
|ε=0AdΦεµ⊕ν

2

1

1− |εµ|2
(∂̄ − µ∂)(AdΦεµ⊕ν

2 )−1

=
d

dε
|ε=0

1

1− |εµ|2
(
AdΦεµ⊕ν

2 (ad(∂̄ − εµ∂)Φεµ⊕ν
2 )(AdΦεµ⊕ν

2 )−1

+ (∂̄ − εµ∂)
)

=
d

dε
|ε=0

1

1− |εµ|2
(εadAdΦεµ⊕ν

2 ν + (∂̄ − εµ∂))

= adν − µ∂. (5.13)

Likewise we find that the variation of ∂̄∗ = −ρ−1∂. We begin by observing
that on (0, 1)-forms we have:

(Φεµ
1 )∗∂(Φεµ

1 )−1
∗ α = (Φεµ

1 )∗∂(α ◦ (Φεµ
1 )−1 1

∂̄Φεµ
1 ◦ (Φεµ

1 )−1
)

= (Φεµ
1 )∗

(
(∂α) ◦ (Φεµ

1 )−1 ∂(Φεµ
1 )−1

∂̄Φεµ
1 ◦ (Φεµ

1 )−1

+ (∂̄α) ◦ (Φεµ
1 )−1 ∂(Φεµ

1 )−1

∂̄Φεµ
1 ◦ (Φεµ

1 )−1
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− α ◦ (Φεµ
1 )−1 (∂(∂̄Φεµ

1 )) ◦ (Φεµ
1 )−1(∂̄Φ̄εµ

1 )−1

(∂̄Φεµ
1 ◦ (Φεµ

1 )−1)2

− α ◦ (Φεµ
1 )−1 (∂∂Φεµ

1 ) ◦ (Φεµ
1 )−1(∂̄Φεµ

1 )−1

(∂̄Φεµ
1 ◦ (Φεµ

1 )−1)2

)
=

1

1− |εµ|2
(∂ − ε̄µ̄∂̄ − ε̄(∂̄µ̄)) =

1

1− |εµ|2
(∂ − ε∂µ).

And so we find:

d

dε̄
|ε=0AdΦεµ⊕ν

2 (Φεµ
1 )∗∂̄

∗(Φεµ
1 )−1
∗ (AdΦεµ⊕ν

2 )−1

=
d

dε̄
|ε=0AdΦεµ⊕ν

2

−ρ−1

1− |εµ|2
(∂ − ε̄∂̄µ̄)(AdΦεµ⊕ν

2 )−1

=
d

dε̄
|ε=0

−ρ−1

1− |εµ|2
(
AdΦεµ⊕ν

2 (Ad(∂ − ε̄∂̄µ̄)Φεµ⊕ν
2 )−1

+ (∂̄ − ε̄∂̄µ̄)
)

=
d

dε̄
|ε=0

−ρ−1

1− |εµ|2
(ad(Ad(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 )− ε̄µ̄ρ−1ad∂̄Φ

ε(µ⊕ν)
2

+ (∂ − ε̄∂̄µ̄))

= − ∗ adν ∗+µ̄∂̄ρ−1, (5.14)

where the equality follows from the equation ∂µ = 2y−1µ, and ρ−1 = y2.
Alternativly, we could have used that the first derivative of density ρ is zero
at the center point of our coordinates [Wolpert, 1986] to find this.

This is the first step in understanding the metric on the universal mod-
uli space of pairs of a Riemann surface and a holomorphic bundle over it,
given at a point (X,E) by identifying the tangent space with H0,1(X,TX)⊕
H0,1(X,EndE). Two elements µ1 ⊕ ν1 and µ2 ⊕ ν2 can be paired as:

g(µ1 ⊕ ν1, µ2 ⊕ ν2) =

∫
Σ

(ρXµ1µ̄2 + itrν1 ∧ ?ν̄T2 ),

where ρX is the density of the hyperbolic metric corresponding to the complex
structure on X. Since the term

∫
Σ ρXµ1µ̄2, is independent of the bundle,

nothing has changed compared to the situation on Teichmüller space. Let us
examine the term

∫
Σ trν1 ∧ (̄ − ?)νT2 , since we are evaluating the metric on

tangent vectors, −? will act by −i, and so we replace it in the following to
avoid confusion.

In coordinates around (X,E) we have, using Proposition 5.3.2, that the
metric is given by:

gV Bε(µ⊕ν)(µ1 ⊕ ν1, µ2 ⊕ ν2)

= −i
∫

Σ
trP 0,1

ε(µ⊕ν)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1
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∧ P 0,1
ε(µ⊕ν)((Φ

ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν2

T

− i
∫

Σ
trP 0,1

ε(µ⊕ν)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ1(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1
ε(µ⊕ν)((Φ

ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν2

T

− i
∫

Σ
trP 0,1

ε(µ⊕ν)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1

∧ P 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ (AdΦ
ε(µ⊕ν)
2 )µ2(Φ

ε(µ⊕ν)
2 )∂Φ

ε(µ⊕ν)
2

T

− i
∫

Σ
trP 0,1

ε(µ⊕ν)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ1(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1
ε(µ⊕ν)((Φ

ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )µ2(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

T

.

(5.15)

Now we can use that P 0,1
ε(µ⊕ν) is self-adjoint with respect to the metric to rewrite

the terms as:∫
Σ
trP 0,1

ε(µ⊕ν)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1 ∧ P 0,1

ε(µ⊕ν)((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν2

T

=

∫
Σ
trAd(Φ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 )(1− |εµ|2)Ad(Φ

ε(µ⊕ν)
2 )−1

(Φ
ε(µ⊕ν)
1 )∗P

0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1 ∧ ν2

T . (5.16)

Since (Φεµ
1 )∗(dz̄ ∧ dz) = (|∂Φεµ

1 |2 − |∂̄Φεµ
1 |2)dz̄ ∧ dz. Also recall that

(Φεµ
1 )−1
∗ ν =

(
ν

∂̄Φ̄εµ
1

)
◦ (Φεµ

1 )−1

and (Φεµ
1 )∗P

0,1
ε(µ⊕ν)h = (∂̄Φ̄εµ

1 )(P 0,1
ε(µ⊕ν)h) ◦ Φεµ

1 .
From this it follows:

Lemma 5.5.1
In the coordinates around (X,E) given by Theorem 5.1.1 we have that:

d

dε
|ε=0g

V B
ε(µ⊕ν)(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫
X
tr((µ̄2ν1) ∧ ν)

d

dε̄
|ε=0g

V B
ε(µ⊕ν)(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫
X
tr((µ1ν̄

T ) ∧ ν̄T2 ).

Proof: We calculate each term gathering the terms like (5.16). We have

already seen that d
dε |ε=0Φ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 = 0, and so these terms do not con-

tribute. Now we consider the operators, we have left out subscripts from the
calculation as their domains should be clear. The derivative of the projection
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is a sum of an operator ending with ∂̄ and one which starts with ∂̄∗, as is seen
from:

d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗P

0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

=
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(−∂̄∆−1

0 ∂̄∗)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

=
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(−∂̄)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

Ad(Φ
ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∆

−1
0 )(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

Ad(Φ
ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∂̄

∗)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

=
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(−∂̄)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )∆−1

0 ∂̄∗

+ ∂̄
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∆

−1
0 )(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )∂̄∗

+ ∂̄∆−1
0

d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∂̄

∗)(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 ).

The first two terms are orthogonal to ν ∈ H0,1(X,EndE), and the second one
applied to a harmonic from is zero. This means the contribution from the first
term in (5.15) is zero.

Now all the remaining terms contain a ∂Φ
ε(µ⊕ν)
2 which is zero at ε = 0.

Hence, the only contributions to the derivative arise when we derive these, and
then we have that d

dε̄∂Φ
ε(µ⊕ν)
2 = −ν̄T and d

dε∂Φ
ε(µ⊕ν)
2 = 0. Inserting this and

setting ε = 0 we find the formulae in the lemma. �

We proceed to calculate the second order derivatives of the metric. To do so we
need to calculate d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 , d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

and the contribution from d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1P 0,1AdΦ

ε(µ⊕ν)
2 which is non-

zero when applied to a harmonic form and also is not orthogonal to a harmonic
form.

We now calculate the three terms. For the first term we begin by applying
the Laplace operator on H to the expression:

∆
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

= y2∂̄∂
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

=
d2

dε1dε̄2
|ε=0y

2∂̄∂((Φ
ε(µ⊕ν)
+ Φεµ

− )TΦ
ε(µ⊕ν)
+ Φεµ

− )

=
d2

dε1dε̄2
|ε=0y

2
(
∂̄Φεµ
−
T
∂Φ

ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ Φεµ

− + ∂̄Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

∂̄Φ
ε(µ⊕ν)
+ Φεµ

−

+ ∂̄Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ ∂̄Φεµ

− + Φεµ
−
T
∂Φ

ε(µ⊕ν)
+

T

∂Φ
ε(µ⊕ν)
+ Φεµ

−
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+ Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

∂Φ
ε(µ⊕ν)
+ ∂̄Φεµ

− + Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

∂̄∂Φ
ε(µ⊕ν)
+ Φεµ

−

+ Φεµ
−
T
∂̄∂Φ

ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ Φεµ

− + Φεµ
−
T
∂̄Φ

ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ ∂̄Φεµ

−
)
.

For all the terms where two different factors are differentiated we are only
able to match the ε-derivatives in one way that is nonzero. We also have
that ∂̄∂Φ

ε(µ⊕ν)
+ = ∂εµ∂Φ

ε(µ⊕ν)
+ , and so we need to derive it with respect to

ε and ε̄ to get a nonzero contribution. For the same reason ∂̄Φ
ε(µ⊕ν)
+ needs

to be differentiated twice to be nonzero. Since ∂̄Φ
ε(µ⊕ν)
+ is always paired with

another term we need to differentiate, these terms will not contribute:

∆0
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = y2((ν2)

T
(−ν̄T1 )

T
+ 0 + (ν2)

T
ν1 + (−ν̄1)T

T

· (−ν̄T2 ) + (−ν̄2)T ν1 − µ1ν̄
T
2 − µ̄2ν1 + 0)

= y2([ν1, ν̄
T
2 ]− ∂µ1ν̄

T
2 − ∂µ̄2ν1).

We conclude that

d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = ∆−1

0 ((−?)adν2 ? ν1 − ?∂µ1ν̄
T
2 − ?∂̄µ̄2ν1) + cI

for some constant c, since the kernel of ∆0 is the constant multiple of I. In
what remains this term will not contribute, as we will be looking at

ad(
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 ).

Next we calculate the second term d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 . The

calculation follows directly from the previous computation:

∂̄∆−1
0 ((−?)adν2 ? ν1 − ?µ1ν̄

T
2 − ?µ̄2ν1) = ∂̄

d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

=
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )T ∂̄Φ

ε(µ⊕ν)
2 +

d2

dε1dε̄2
|ε=0(∂Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

=
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )T (Φ

ε(µ⊕ν)
2 εν + εµ∂Φ

ε(µ⊕ν)
2 )

+
d2

dε1dε̄2
|ε=0((Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2

= −µ1ν̄
T
2 +

d2

dε1dε̄2
|ε=0((Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 )T ,

since d
dε |ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = 0.

Finally, we need to calculate the third term

d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φεµ

1 )∗P
0,1(Φεµ

1 )−1
∗ AdΦ

ε(µ⊕ν)
2 ,
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but only where both ∂̄ and ∂̄∗ has been differentiated in ∂̄∆−1
0 ∂̄∗. This is

simplified by ∂̄ (see (5.13)) only depending on ε and not ε̄. Using this and
(5.14) we have:

d

dε1
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φεµ

1 )∗∂̄(Φεµ
1 )−1
∗ AdΦ

ε(µ⊕ν)
2 ∆−1

0

d

dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φεµ

1 )∗∂̄
∗(Φεµ

1 )−1
∗ AdΦ

ε(µ⊕ν)
2

= (−µ1∂ + adν1)∆−1
0 (∂∗µ̄2 − ?adν2?).

Now we are ready to prove:

Theorem 5.5.2
Consider the second variation of the metric in the coordinates on the universal
moduli space of pairs of a Riemann surface and a holomorphic bundle on it.
Then we have this second variation at the center is:

d2

dε1dε̄2

∣∣∣∣
ε=0

gε(µ⊕ν)(µ3 ⊕ ν3, µ4 ⊕ ν4)

= −i
∫

Σ
tr(−µ1∂ + adν1)∆−1

0 (∂∗µ̄2 − ?adν2?)ν3 ∧ ν̄T4

− i
∫

Σ
tr(ad∆−1

0 ((−?)adν2 ? ν1 − ?(∂µ1ν̄
T
2 )− ?(∂̄µ̄2ν1))ν3 ∧ ν̄T4 )

+ i

∫
Σ
µ1µ̄2trν3 ∧ ν̄T4

− i
∫

Σ
tr(adν1 + µ1∂)∆−1

o ∂̄∗µ3ν̄
T
2 ∧ ν̄T4

− i
∫

Σ
trµ3∂∆−1

0 (?[?v1ν2]− ?(∂µ1ν̄
T
2 )− ?(∂̄µ̄2ν1)) ∧ ν̄T4

− i
∫

Σ
trµ̄2µ3ν1 ∧ ν4

T

− i
∫

Σ
tr∂̄∆−1

o (− ? adν2 ?+∂∗µ2)ν3 ∧ µ̄4ν1

− i
∫

Σ
trν3 ∧ µ4∂∆−1

0 (?[?v2ν1]− ?(∂µ2ν̄T1 )− ?(∂̄µ̄1ν2))
T

− i
∫

Σ
trν3 ∧ µ̄1µ4ν2

T − i
∫

Σ
trµ3ν1 ∧ µ4ν2

T .

Proof: Since we already have computed all the ingredients, we gather the
results here:

−i d2

dε1dε̄2
|ε=0

∫
Σ
trP 0,1(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3

∧ P 0,1((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν4

T
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= −i d2

dε1dε̄2
|ε=0

∫
Σ
trAd(Φ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 )(1− |εµ|2)

Ad(Φ
ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗P

0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3 ∧ ν4

T

= −i
∫

Σ
tr

d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 )ν3 ∧ ν4

T

− i
∫

Σ
tr

d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗

P 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3 ∧ ν4

T

− i
∫

Σ

d2

dε1dε̄2
|ε=0(1− |εµ|2)trν3 ∧ ν̄T4

= −i
∫

Σ
tr(ad(∆−1

0 ((−?)adν2 ? ν1 − ?(∂µ1ν̄
T
2 )

− ?(∂̄µ̄2ν1)))ν3 ∧ ν̄T4 )

− i
∫

Σ
tr(−µ1∂ + adν1)∆−1

0 (∂∗µ̄2 − ?adν2?)ν3 ∧ ν̄T4

+ i

∫
Σ
µ1µ̄2trν3 ∧ ν̄T4 .

Now, for the second term we have:

d2

dε1dε̄2
|ε=0 − i

∫
Σ
trP 0,1(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ3(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν4

T

= −i
∫

Σ
trP 0,1µ3

d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 ∧ ν4

T

− i
∫

Σ
tr

d

dε1
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗P

0,1(Φ
ε(µ⊕ν)
1 )−1

∗

Ad(Φ
ε(µ⊕ν)
2 )µ3

d

dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 ∧ ν4

T

= −i
∫

Σ
trP 0,1µ3(∂∆−1

0 ((−?)adν2 ? ν1 − ?(∂̄µ̄2ν1)

− ?(∂µ1ν̄
T
2 )) + µ̄2ν1) ∧ ν4

T

− i
∫

Σ
tr(−µ1∂ + adν1)∆−1

0 ∂̄∗µ3ν̄
T
2 ∧ ν4

T .

And similarly

−i
∫

Σ
trP 0,1(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3

∧ P 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ (AdΦ
ε(µ⊕ν)
2 )µ4(Φ

ε(µ⊕ν)
2 )∂Φ

ε(µ⊕ν)
2

T
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= −i
∫

Σ
trν3 ∧ P 0,1µ4(∂∆−1

0 ((−?)adν1 ? ν2 − ?(∂̄µ̄1ν2)

− ? (∂µ2ν̄T1 )) + µ̄1ν2)
T

− i
∫

Σ
tr∂̄∆−1

0 (−∂∗µ2 − ?adν2?)ν3 ∧ µ4ν1.

Finally, there is not much choice in how to differentiate:

−i d2

dε1dε̄2
|ε=0

∫
Σ
trP 0,1(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ3(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )µ4(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

T

= −i
∫

Σ
trP 0,1µ3

d

dε̄2
|ε=0∂Φ

ε(µ⊕ν)
2 ∧ P 0,1µ4

d

dε̄1
|ε=0∂Φ

ε(µ⊕ν)
2

T

= −i
∫

Σ
trµ3ν̄

T
2 ∧ µ̄4ν1.

Collect all these results and we have the conclusion. �

5.5.2 The Variation of the Metric in Fibered Coordinates

In this section we look at the fibered coordinates and do the same computa-
tions. We end the section comparing the two sets of coordinates, and we show
they differ at third-order.

From the calculation of the Kodaira-Spencer map (Proposition 5.4.3) we
know, that the metric restricted to the vertical tangent bundle (the moduli
space of bundles direction) is given by:

gεν
εµ

V B (µ1 ⊕ ν1, µ2 ⊕ ν2) = −i
∫

Σ
P 0,1
ενεµAdf

ενεµνεµ1 ∧ P
0,1
ενεµAdf εν

εµνεµ2

T

− i
∫

Σ
P 0,1
ενεµAdf

ενεµνεµ1 ∧ P
0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂fενεµ)

T

− i
∫

Σ
P 0,1
ενεµAdf

ενεµνεµ1

∧ P 0,1
ενεµAd(f ενεµ)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν)

T

− i
∫

Σ
P 0,1
ενεµAd(f εν

εµ
)(µεµ1 (f εν

εµ
)−1∂fεν

εµ
) ∧ P 0,1

ενεµAdf εν
εµνεµ2

T

− i
∫

Σ
P 0,1
ενεµAd(f εν

εµ
)(µεµ1 (f εν

εµ
)−1∂fεν

εµ
)

∧ P 0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂fενεµ)

T

− i
∫

Σ
P 0,1
ενεµAd(f εν

εµ
)(µεµ1 (f εν

εµ
)−1∂fεν

εµ
)
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∧ P 0,1
ενεµAd(f ενεµ)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν)

T

− i
∫

Σ
P 0,1
ενεµAd(f εν

εµ
)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ1

1 )P 0,1(Φεµ+tµ1
1 )−1ν)

∧ P 0,1
ενεµAdf εν

εµνεµ2

T

− i
∫

Σ
P 0,1
ενεµAd(f εν

εµ
)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ1

1 )P 0,1(Φεµ+tµ1
1 )−1ν)

∧ P 0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂fενεµ)

T

− i
∫

Σ
P 0,1
ενεµAd(f εν

εµ
)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ1

1 )P 0,1(Φεµ+tµ1
1 )−1ν)

∧ P 0,1
ενεµAd(f ενεµ)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν)

T

.

While these nine terms look intimidating we can discard three of the terms, be-
cause P 0,1

ενεµAd(f εν
εµ

)((Φεµ
1 )−1
∗ (1−|εµ|2) ddt |t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν) van-

ishes to second-order and P 0,1
ενεµAd(f εν

εµ
)(µεµ2 (f εν

εµ
)−1∂fεν

εµ
) vanishes to first-

order, so terms containing both kind of factors or only the first kind of factors
will vanish to higher order than we are interested in. Now the first variation
will be the same as in Section 5.5, but to calculate it we will have to work with
slightly different expressions.

First we consider

d

dε
|ε=0((f ενεµ)T f εν

εµ) ◦ Φεµ
1 = 0

and

d

dε̄
|ε=0((f ενεµ)T f εν

εµ) ◦ Φεµ
1 = 0.

Both of these follow from the computations in Chapter 3, where it was shown
that d

dε̄ |ε=0((f εν)T f εν) = 0. Composing with ν → νεµ will not change it, and
if we differentiate Φεµ

1 , then we can set ε = 0 in the rest of the terms and
calculate d

dεI ◦ Φεµ
1 = 0. Now, for a projection the first derivative will either

have harmonic forms in it’s kernel or the image will be in the orthogonal
complement, hence the only contributions are from the terms:∫

Σ
P 0,1
ενεµAdf

ενεµνεµ1 P 0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂fενεµ)

T

and ∫
Σ
P 0,1
ενεµAd(f εν

εµ
)(µεµ1 (f εν

εµ
)−1∂fεν

εµ
)P 0,1

ενεµAdf εν
εµνεµ2

T
.

And so we have, completely analogous to the previous section:
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Lemma 5.5.3
In the fibered coordinates around (X,E) we have that:

d

dε
|ε=0g

V B
ενεµ(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫
X
µ̄2tr(ν1ν),

d

dε̄
|ε=0g

V B
ενεµ(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫
X
µ1tr(ν̄T ν̄T2 ).

In order to get the second variation of the metric we need to calculate the two
terms

d2

dε1dε̄2
|ε=0((f ενεµ)T f εν

εµ
) ◦ Φεµ

1

and
d2

dε1dε̄2
|ε=0((f εν

εµ
)−1∂fεν

εµ
) ◦ Φεµ

1 .

We calculate these as the previous set of coordinates, applying the same strat-
egy:

∆0
d2

dε1dε̄2
|ε=0((f ενεµ)T f εν

εµ
) ◦ Φεµ

1 = y2∂∂̄
d2

dε1dε̄2
|ε=0((f ενεµ)T f εν

εµ
) ◦ Φεµ

1

=
d2

dε1dε̄2
|ε=0y

2∂∂̄((f εν
εµ

− )T (f εν
εµ

+ )T f εν
εµ

+ f εν
εµ

− ) ◦ Φεµ
1 .

Now we use:

∂̄∂(h ◦ Φεµ
1 ) = ∂Φεµ

1 ∂Φ̄εµ
1 (∂∂h) ◦ Φεµ

1 + ∂̄Φ̄εµ
1 ∂Φεµ

1 (∂∂̄h) ◦ Φεµ
1

+ ∂̄Φεµ
1 ∂Φ̄εµ

1 (∂̄∂h) ◦ Φεµ
1 + ∂Φ̄εµ

1 ∂̄Φ̄εµ
1 (∂̄∂̄h) ◦ Φεµ

1

= ∂Φεµ
1 εµ∂̄Φ̄εµ

1 (∂∂h) ◦ Φεµ
1 + ∂̄Φ̄εµ

1 ∂Φεµ
1 (∂∂̄h) ◦ Φεµ

1

+ |εµ|2∂Φεµ
1 ∂Φ̄εµ

1 (∂̄∂h) ◦ Φεµ
1 + εµ∂̄Φ̄εµ

1 ∂̄Φ̄εµ
1 (∂̄∂̄h) ◦ Φεµ

1 ,

for h = (f ενεµ)T f εν
εµ , and since we know that ∂fενεµ and ∂̄fεν

εµ vanish to
first-order in ε, we only have the surviving terms:

∆0
d2

dε1dε̄2
|ε=0((f ενεµ)T f εν

εµ
) ◦ Φεµ

1 = y2(−∂µ1ν̄
T
2 − ∂̄µ̄2ν1 + [ν1, ν̄

T
2 ]),

this expression is similar to the previous section. We proceed to calculate

d2

dε1dε̄2
|ε=0((f εν

εµ
)−1∂fεν

εµ
) ◦ Φεµ

1 ,

and so we study

∂̄∆−1
0 y2(−µ1∂ν̄

T
2 − µ̄2∂̄ν1 + [ν1, ν̄

T
2 ])

=∂̄
d2

dε1dε̄2
|ε=0((f ενεµ)T f εν

εµ
) ◦ Φεµ

1
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=
d2

dε1dε̄2
|ε=0(∂̄((f ενεµ)T f εν

εµ
)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(∂((f ενεµ)T f εν

εµ
)) ◦ Φεµ

1 ∂̄Φεµ
1

=
d2

dε1dε̄2
|ε=0(((∂fενεµ)T f εν

εµ
)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(((∂̄fενεµ)T f εν

εµ
)) ◦ Φεµ

1 ∂̄Φεµ
1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T ∂̄fεν

εµ
)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T∂fεν

εµ
)) ◦ Φεµ

1 ∂̄Φεµ
1 .

Here the second and fourth term cancel, as is seen by using that two of the
factors vanish to first-order in ε, which then give µ1ν̄

T
2 and −µ1ν̄

T
2 respectively.

d2

dε1dε̄2
|ε=0(((∂fενεµ)T f εν

εµ
)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T ∂̄fεν

εµ
)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

=
d2

dε1dε̄2
|ε=0(((f ενεµ)−1∂fενεµ

T
f ενεµ

T
f εν

εµ
)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T f εν

εµ
ενεµ)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

=
d2

dε1dε̄2
|ε=0(((f ενεµ)−1∂fενεµ

T
) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(ενεµ)) ◦ Φεµ

1 ∂̄Φ̄εµ
1

=
d2

dε1dε̄2
|ε=0(((f ενεµ)−1∂fενεµ

T
) ◦ Φεµ

1 ∂̄Φ̄εµ
1 + ∂̄∆−1

0 ∂∗µ̄2ν1.

Note that this varies from the previous section.
We need to consider two more things. The first is the second variation of the

harmonic projection. However, since the only relevant part is the contribution
where both ∂̄ and ∂̄∗ have been differentiated in ∂̄∆−1

0 ∂̄∗ and the coordinates
agree to second-order nothing will have changed, and we have it results in:

(−µ1∂ + adν1)∆−1
0 (∂∗µ̄2 − ?adν2?).

The second and final term to consider is the new term in the formula for
the metric, which is:

d2

dε1dε̄2
|ε=0P

0,1
ενεµAd(f εν

εµ
)((Φεµ

1 )−1
∗ (1− |εµ|2)∗



78
CHAPTER 5. COORDINATES ON THE MODULI SPACE OF PAIRS OF

A RIEMANN SURFACE AND A HOLOMORPHIC VECTOR BUNDLE

d

dt
|t=0(Φεµ+tµ̃

1 )P 0,1(Φεµ+tµ̃
1 )−1

∗ εν),

as d
dt |t=0(Φεµ+tµ̃

1 )∗P
0,1(Φεµ+tµ̃

1 )−1
∗ (εν) vanishes to second-order this has to be

differentiated twice:

d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∗P
0,1(Φεµ+tµ̃

1 )−1
∗ ν1

= −(
d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∗∂̄(Φεµ+tµ̃
1 )−1

∗

∆−1
0

d

dε̄2
|ε=0(Φεµ+tµ̃

1 )∗∂̄
∗(Φεµ+tµ̃

1 )−1
∗ ν1)

− ∂̄ d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∗∆
−1
0 ∂̄∗(Φεµ+tµ̃

1 )−1
∗ ν1

= −µ̃∂∆−1
0 ∂∗µ̄2ν1 − ∂̄

d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∗∆
−1
0 ∂̄∗(Φεµ+tµ̃

1 )−1
∗ ν1.

We are now ready to gather all the contributions in the following:

Theorem 5.5.4
We have the following for the second variation of the metric at (X,E) in the
fibered coordinates:

d2

dε1dε̄2
|ε=0g

V B
ενεµ(µ3 ⊕ ν3, µ4 ⊕ ν4)

=

∫
Σ
tr((−µ1∂ + adν1)∆−1

0 ((−?)adν2 ?+∂∗µ̄2)ν3) ∧ ν̄T4

− i
∫

Σ
tr(ad∆−1

0 ((−?)adν2 ? ν1 − ?(∂µ1ν̄
T
2 )− ?(∂̄µ̄2ν1))ν3 ∧ ν̄T4 )

− i
∫

Σ
tr(adν1 − µ1∂)∆−1

o ∂̄∗µ3ν̄
T
2 ∧ ν̄T4

+ i

∫
Σ
µ1µ̄2trν3 ∧ ν̄T4

− i
∫

Σ
trµ3∂∆−1

0 (?[?ν1ν2]− ?(∂µ1ν̄
T
2 )− ?(∂̄µ̄2ν1)) ∧ ν̄T4

+ i

∫
Σ
trµ3∂∆−1

0 ∂̄∗µ1ν̄
T
2 ∧ ν4

T

− i
∫

Σ
tr∂̄∆−1

o (− ? adν2 ?+∂∗µ̄2)ν3 ∧ (−µ̄4ν1)

− i
∫

Σ
trν3 ∧ µ4∂∆−1

0 (?[?ν2ν1]− ?(∂µ2ν̄T1 )− ?(∂̄µ̄1ν2))
T

+ i

∫
Σ
trν3 ∧ µ4∂∆−1

0 ∂̄∗µ2ν̄T1
T
− i
∫

Σ
trµ3ν1 ∧ µ4ν2

T

+ i

∫
Σ
µ3∂∆−1

0 ∂∗µ̄2ν1 ∧ ν̄T4 + i

∫
Σ
ν3 ∧ µ4∂∆−1

0 ∂∗µ̄1ν2

T
.
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Comparing this to the previous coordinates (Theorem 5.5.2) we see that there
are four terms here which we did not have before and two we no longer have.
The new terms are:

i

∫
Σ
µ3∂∆−1

0 ∂∗µ̄2ν1 ∧ ν̄T4 ,

i

∫
Σ
ν3 ∧ µ4∂∆−1

0 ∂∗µ̄1ν2

T
,

i

∫
Σ
trµ3∂∆−1

0 ∂̄∗µ1ν̄
T
2 ∧ ν4

T

and

i

∫
Σ
trν3 ∧ µ4∂∆−1

0 ∂̄∗µ2ν̄T1
T
.

While the ones we no longer have are:

−i
∫

Σ
trν3 ∧ µ1µ̄4ν2

T

and

−i
∫

Σ
trµ̄2µ3ν1 ∧ ν4

T .

Now we have that for ν1 = ν4 and µ2 = µ3 and the rest zero the difference
between the two expressions are:

− i
∫

Σ
µ3∂∆−1

0 ∂∗µ̄2ν1 ∧ ν̄T4 − i
∫

Σ
trµ̄2µ3ν1 ∧ ν4

T

= −i
∫

Σ
∆−1

0 ∂∗µ̄2ν1 ∧ ∂∗µ̄2ν1
T
ρ− i

∫
Σ
trµ̄2µ2ν1 ∧ ν1

T .

And since ∆ is a positive operator we have that −i
∫

Σ ∆−1
0 ∂∗µ̄2ν1∧∂∗µ̄2ν1

T
ρ ≥

0 and, for obvious reasons, −i
∫

Σ trµ̄2µ2ν1 ∧ ν1
T > 0.

Theorem 5.5.5
The coordinates of 5.1.1 and the fibered coordinates agree to second-order, but
differ at third-order in the derivatives at the center point.





Chapter 6

Local Calculations for the
Hitchin Connection

In this Chapter I have gathered all the remaining material. The first two
sections use local coordinates, in the first we derive an explicit expression for
G(V ) and in the second we prove [Andersen, 2012, Lemma 2.8], a lemma for
the construction of the Hitchin connection.

After these preliminary excercises, the next three sections are concerned
with the curvature of the Hitchin connection. We first recall the result on the
curvature of the Hitchin connection from [Andersen and Gammelgaard, 2011].
The next section finishes the calculation of the (1, 1)-part of the curvature. The
final section contains an argument based on the computation of the (1, 1)-part
of the curvature which shows we can modify the Hitchin connection so that
the (2, 0)-part of the curvature is zero, under some assumptions I believe hold
for g > 2.

The final section is a calculation of the requirements that an inner prod-
uct on the bundle of holomorphic sections is projectivly compatible with the
Hitchin connection.

6.1 A Refined Expression for G(V )

In [Hitchin, 1990] it was shown that:

G(V )(α, α) =

∫
Σ

(V [−?])trα2,

where V [−?] is a Beltrami differential given by differentiating the complex
structure. We will now calculate in coordinates which Beltrami differential
it is. So far, when we have calculated variations of (1, 0)-forms, we have
calculated them under the condition that each is a (1, 0)-form, however, since
the complex structure does not know about these types we will have to vary
them as 1-forms. Another reason we have been content to vary our objects
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preserving type is, that for most expressions we have been looking at integrals
of the wedge of a (1, 0)-form and a (0, 1)-form. In this case the contribution
from varying the forms as 1-forms is |ε|2, and so it does not actually contribute
to the previous computations. However when calculating G(V ), we pair two
(1, 0)-forms. Now the contribution to the (1, 1)-part is actually order ε, which
means it will be important. In short, what we do now is the correct way of
varying our objects, the only reason we have not discussed it previously is
because it would not have contributed.

So, looking at a fixed 1-form ν̄Tdz ∈ H1,0(X0,EndE) and varying it as a
1-form, rather than as a (1, 0)-form, we then find:

(Φεµ
1 )−1
∗ (ν̄Tdz) = ν̄T ◦ (Φεµ

1 )−1 · ∂(Φεµ
1 )−1dz + ν̄T ◦ (Φεµ

1 )−1 · ∂̄(Φεµ
1 )−1dz̄

= ν̄T ◦ (Φεµ
1 )−1 · ∂(Φεµ

1 )−1dz

− (εµν̄T
∂Φεµ

1

∂Φεµ
1

) ◦ (Φεµ
1 )−1∂(Φεµ

1 )−1dz̄.

We need a harmonic representative, and so we project the dz term to
H1,0(Xεµ,EndE) and the dz̄ term to H0,1(Xεµ,EndE):

PH
(
(Φεµ

1 )−1
∗ (ν̄Tdz)

)
= P 1,0

(
ν̄T ◦ (Φεµ

1 )−1 · ∂(Φεµ
1 )−1dz

)
− P 0,1

(
(εµν̄T

∂Φεµ
1

∂Φεµ
1

) ◦ (Φεµ
1 )−1∂(Φεµ

1 )−1dz̄

)
.

We know, how the complex structure acts on the spaces H1,0(Xεµ,EndE) and
H0,1(Xεµ,EndE) by mutiplying the (1, 0)-part by −i and the (0, 1)-part by i.
Now we can pull these 1-forms back to X0. Finally, we pull the computation
back to H0,1(X0,EndE)⊕H1,0(X0,EndE):

(Φεµ
1 )∗IPH(Φεµ

1 )−1
∗ ν̄T

= −iP 1,0
(
ν̄T ◦ (Φεµ

1 )−1 · ∂(Φεµ
1 )−1dz

)
◦ Φεµ

1 (∂Φεµ
1 + ∂̄Φεµ

1

dz̄

dz
)

− iP 0,1

(
(εµν̄T

∂Φεµ
1

∂Φεµ
1

) ◦ (Φεµ
1 )−1∂(Φεµ

1 )−1dz̄

)
◦ Φεµ

1 (∂Φ̄εµ
1

dz

dz̄
+ ∂̄Φ̄εµ

1 ).

Next, we want to differentiate with respect to ε at ε = 0. The first dz term
gives something in Im∂̄ when differentiated, and it can be calculated by the
method used so far. For our later application to the metric this term will not
be relevant, as it is in the orthogonal complement of the harmonic forms. The
second dz term is of order |ε|2 and so it gives zero as well. Both dz̄ terms are
of order ε, and so we get:

d

dε
|ε=0(Φεµ

1 )∗IPH(Φεµ
1 )−1
∗ ν̄T = −iP 0,1µV ν̄

T − iµV P 1,0ν̄T . (6.1)
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Also note, that from this calculation it is easily seen that

d

dε
|ε=0(Φεµ

1 )∗PH(Φεµ
1 )−1
∗ ν̄T = −P 0,1µV ν̄

T + µV P
1,0ν̄T ,

and so we conclude:

Vµ[I]ν̄T =

(
d

dε

∣∣∣∣
ε=0

(Φεµ
1 )∗I(Φεµ

1 )−1
∗

)
ν̄T = −2iP 0,1µV ν̄

T .

We have proved the following:

Lemma 6.1.1
In coordinates on T ×M0

n,k, centered at (σ,E) ∈ T ×M0
n,k, we have for a

vector field V on T , identified by the Kodaira-Spencer map at σ ∈ T with
the Beltrami differential µ ∈ H0,1(Xσ, TXσ), and two cotangent vectors on
(M0

n,k, (−?)σ), represented by harmonic forms ν̄Ti , ν̄
T
j ∈ H1,0(Xσ,EndE), that

at (σ,E):

G(V )(ν̄Ti , ν̄
T
j ) = −2i

∫
X
µtrν̄Ti ν̄

T
j . (6.2)

The function G(V )(ν̄Ti , ν̄
T
j ) in our local neighborhood is clearly holomorphic

on the moduli space of holomorphic bundles, since:

G(V )(ν̄Ti , ν̄
T
j ) = −2i

∫
X
µtrP 1,0

εν (Ad(f εν(ν̄Ti )) ∧ P 1,0
εν (Ad(f εν(ν̄Ti ))

= −2i

∫
X
trAd(f εν)−1(P 0,1

εν (µP 1,0
εν (Ad(f εν(ν̄Ti ))))) ∧ ν̄Ti .

For ν ∈ H0,1(Xσ,EndE) we find:

d

dε̄
|ε=0Ad(f εν)−1P 0,1

εν µP
1,0
εν Ad(f εν)

= −∂̄∆−1
0 ∗ (adν) ∗ P 0,1µP 1,0 − P 0,1µP 1,0adν̄T∆−1

0 ∂∗.

Now the first term is orthogonal to ν̄Tj and the second term is zero, since
ν̄Ti ∈ ker ∂∗. Hence we see that d

dε̄ |ε=0G(V )(ν̄Ti , ν̄
T
j ) = 0, and since ∇0,1ν = 0

at the center point this implies that ∇0,1G(V ) = 0 at the center point, and so
since it is a tensor we have this for all points. Alternatively, we can calculate
∇0,1G(V ) in a small neighborhood. To do so we study:

∇0,1

ν̃
T ν̄

T
i = P 1,0 d

dε̄
AdΦε0⊕ν̃ν

2 P 1,0(AdΦε0⊕ν̃+0⊕ν
2 )−1ν̄Ti

= P 1,0adν̃Tν ∆−1
0 ∂∗ν̄Ti = adν̃Tν ∆−1

0 ∂∗ν̄Ti .
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The last equality follows from considering P 1,0 = P 1,0P 1,0. When we differ-
entiate we only get something nonzero from the last projection. Now we can
calculate:

d

dε̄
G(V )(ν̄Ti , ν̄

T
j ) = −2i

d

dε̄

∫
X
µtrP 1,0

εν (Ad(Φε0⊕ν̃+0⊕ν
2 (ν̄Ti ))

∧ P 1,0
εν (Ad(Φε0⊕ν̃+0⊕ν

2 (ν̄Ti ))

= −2i
d

dε̄

∫
X
µtrAd(Φε0⊕ν̃ν

2 )P 1,0
εν (Ad(Φε0⊕ν̃+0⊕ν

2 )−1(ν̄Ti ))

∧Ad(Φε0⊕ν̃ν
2 )P 1,0

εν (Ad(Φε0⊕ν̃+0⊕ν
2 )−1(ν̄Ti ))

= G(V )(∇0,1

ν̃
T ν̄

T
i , ν̄

T
j ) +G(V )(ν̄Ti ,∇

0,1

ν̃
T ν̄

T
j ),

and therefore

(∇0,1

ν̃
TG(V ))(ν̄Ti , ν̄

T
j ) =

d

dε̄
G(V )(ν̄Ti , ν̄

T
j )

− (G(V )(∇0,1

ν̃
T ν̄

T
i , ν̄

T
j ) +G(V )(ν̄Ti ,∇

0,1

ν̃
T ν̄

T
j )) = 0.

6.2 Calculations Concerning the Hitchin
Connection on Teichmüller Space

Before we turn our attention the curvature of the Hitchin connection, we show
the following lemma. It is proved in [Andersen, 2012], but here we will make
no homological assumptions and we will prove it by local calculations.

Lemma 6.2.1
On the complex space T ×M0

n,k we have:

2i∂̄σV
′[Fσ] = trG(V )∂σFσω −

1

2
tr∇(1,0)G(V )ω. (6.3)

Proof: To prove the result we need only do so pointwise, and so we will look
at (σ,E) ∈ T ×M0

n,k, and we will choose a basis νi of H0,1(Xσ,EndE) such
that ω(∂i, ∂̄j) = δji at (σ,E). In order to calculate the form at (σ,E) we work
with our coordinates around this point.

We have calculated V ′[2iF ] in Lemma 4.3.2 to be

V ′[2iF ] = V ′[−i log det ∆0] = −
∫
X
µtr(∂∂′(G(z, z′)−Q(z, z′))|z=z′).

And so we find:

2i∂̄σV
′[Fσ](∂̄k) = − d

dε̄

∣∣∣∣
ε=0

∫
X
µtr(∂∂′(Gενk(z, z′)−Qενk(z, z′))z=z′)

= − d

dε̄

∣∣∣∣
ε=0

∫
X
µtr(Adf ενk(z)−1(∂∂′(Gενk(z, z′)
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−Qενk(z, z′))|z=z′)Adf ενk(z′)).

Recall that G(V )ω(∂̄k) = −2iP 0,1(µkν̄
T
k ). Using Lemma 3.4.1, which states

2∂σFσ(ν) = i

∫
X
adν ∧ (∂′(G(z, z′)−Q(z, z′))|z=z′),

we find that:

trG(V )∂σFσω(∂̄k) =

∫
X
ad(P 0,1(µkν̄

T
k )) ∧ (∂′(G(z, z′)−Q(z, z′))|z=z′)

=

∫
X
ad((µkν̄

T
k )− ∂̄∆−1

0 ∂̄∗(µkν̄
T
k ))

∧ (∂′(G(z, z′)−Q(z, z′))|z=z′).

We can evaluate the difference of all but one of the terms with

Q(z, z′) =
−1

2π
log
|z − z′|2

|z − z̄′|2

on the diagonal:

tr(ad(µν̄Tk )∂′Q(z, z′) +
d

dε̄

∣∣∣∣
ε=0

Adf ενk+ (z)−1(Adf ενk+ (z′))µ∂′∂Q(z, z′))

=
−1

2π

(
ad(µν̄Tk )

z − z′
−

ad(µν̄Tk )

z̄ − z′

+

(
d

dε̄

∣∣∣∣
ε=0

Adf ενk+ (z)− d

dε̄

∣∣∣∣
ε=0

Adf ενk+ (z′)

)
(

µ

(z − z′)2
)

)
z′→z
=
−1

2π

(
−
ad(µν̄Tk )

2iy
+ µ∂

d

dε̄

∣∣∣∣
ε=0

∂Ad(f ενk+ )

)
=
−1

2π

(
−
ad(µν̄Tk )

2iy
+ µ∂adν̄Tk

)
.

Since adA,A ∈ GL(Cn) is traceless and the expression is non-singular, we see
that the contribution from the Q terms above is zero. Now we know that the Q
contribution is finite. The two contributions from the kernel G must be finite
as well, and we can directly calculate the variation of these by calculating the
variation of the operators.

(2i∂̄σV
′[Fσ]− trG(V )∂σFσω)(νk)

=−
∫
X
tr(µ(∇ν̄∂∂′G(z, z′))− ad((µν̄Tk ) ∧ ∂′G(z, z′))|z=z′)

+

∫
x
tr(ad(∂̄∆−1

0 ∂̄∗(µν̄Tk )) ∧ (∂′(G(z, z′)−Q(z, z′)))|z=z′)

=−
∫
X

∫
X
µtr∂G(z, z′) ∧ (− ∗ ad(νk(z

′)∗)P (z′, w))|z=wdz′dw
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+

∫
x
tr(ad(∂̄∆−1

0 ∂̄∗(µν̄Tk )) ∧ (∂′(G(z, z′)−Q(z, z′)))|z=z′).

Here we used that −i∂∂′G(z, z′) is the kernel of ∂∆−1
0 ∂̄∗. Then we see that

∇ν̄∂∆−1
0 ∂̄∗ = −adν̄T∆−1

0 ∂̄∗ − ∂∆−1
0 ∗ adν ∗+∂∆−1

0 ∗ adν ∗ ∂̄∆−1
0 ∂̄∗

= −adν̄T∆−1
0 ∂̄∗ − ∂∆−1

0 ∗ adν ∗ P.

Since our basis is orthogonal at E, we have that∫
X
∂G(z, z′) ∧ (− ∗ ad(νk(z

′)∗)P (z′, w))

= −∂∆−1
0

∑
j

(∗adνk(z′)(∗νj(z′)))⊗ ν̄Tj (z),

and so we have:

(2i∂̄σV
′[Fσ]− trG(V )∂σFσω)(νk)

= + i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νj , νk])ν̄Tj

+

∫
X
tr∂̄∆−1

0 ∂̄∗(ad((µν̄Tk ))(∂′(G(z, z′)−Q(z, z′))))|z=z′

(∗)
= i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νk, νj ]
T

)ν̄Tj

−
∫
X
tr∆−1

0 ∂̄∗(ad((µν̄Tk ))) ∧ ∂̄(∂′(G(z, z′)−Q(z, z′)))|z=z′

=i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νk, νj ]
T

)ν̄Tj −
∫
X
tr(∆−1

0 ∂̄∗ad((µν̄Tk ))) ∧ (−P (z, z′))

=i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νk, νj ]
T

)ν̄Tj +
∑
j

∫
X
tr[∆−1

0 ∂̄∗(µν̄Tk ), νj ], ν̄
T
j

=i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νk, νj ]
T

)ν̄Tj + i
∑
j

∫
X
tr∆−1

0 ∂̄∗(µν̄k)(∗[∗νj , νj ]
T

)ρ

=i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νk, νj ]
T

)ν̄Tj

+ i
∑
j

∫
X
tr(−ρ−1∂µν̄k)∆

−1
0 (∗[∗νj , νj ]

T
)ρ

=i
∑
j

∫
X
µtr∂∆−1

0 (∗[∗νk, νj ]
T

)ν̄Tj + i
∑
j

∫
X
µtr(∂∆−1

0 (∗[∗νj , νj ]
T

))ν̄Tk .

The equality in (∗) follows from the fact that ∂̄(ad(∆−1
0 ∂̄∗µν̄Tk )∧∂G) is exact,

and so the integral is zero. Further, as part of the proof of Theorem 3.4.2 we
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calculated that when the limit exists in the integral it is:

−P (z, z′) +
1

8πy2

(
1

n2(g − 1)
+ 1

)
I = ∂̄(∂′(G(z, z′)−Q(z, z′))|z=z′).

The final term in the lemma is

−1

2
tr∇(1,0)G(V )ω(∂̄k)

= +i
∑
l,j

dνl((∇
(1,0)
∂l

∫
x
µtr(ν̄Tl ν̄

T
j )∂l ⊗ ∂j)δkj )

= +i
∑
l

d

dε
|ε=0(

∫
x
µtr(νενkl

T
νενkk

T
))

= +i
∑
l

∫
X
µtr(∂̄∆−1

0 ∗ [∗νl, νl]
T
ν̄Tk + ν̄Tl ∂̄∆−1

0 ∗ [∗νk, νl]
T

)

= +i
∑
l

∫
X
µtr(∂∆−1

0 ∗[∗νl, νl]
T
ν̄Tk + ν̄Tl ∂∆−1

0 ∗[∗νk, νl]
T

),

since ∇∂l = 0 at E. This concludes the argument. �

6.3 Consideration of the Curvature of the Hitchin
Connection

We will now refine the expression found in [Andersen and Gammelgaard, 2011]
for the curvature of the Hitchin connection. In [Andersen and Gammelgaard,
2011, Theorem 4.8] the following theorem is proved:

Theorem 6.3.1
The curvature of the Hitchin connection acts by

F 2,0
∇ =

k

(2k + 2n)2
Pk(∂T c) F 1,1

∇ =
ik

2k + 2n
(θ − 2i∂T ∂̄T F ) F 0,2

∇ = 0,

on sections of the bundle H(k).

Here θ is as defined below in (6.4). The form c is given by:

c(V ) = −∆G(V ) − dFG(V )dF − 2nV ′[F ].

Finally, Pk(∂T c(V,W )) is the prequantum operator associated with the func-
tion ∂T c(V,W ):

Pk(∂T c(V,W )) =
i

k
∇X∂T c(V,W )

+ ∂T c(V,W )

for X∂T c(V,W ), the Hamiltonian vector field.



88
CHAPTER 6. LOCAL CALCULATIONS FOR THE HITCHIN

CONNECTION

6.3.1 The (1, 1)-part of the Curvature

We know that all the dependency onMn,k
V B of the form ∂̄T ∂T log det ∆0(µ1, µ̄2)

comes from

θ(µ1, µ̄2) =
1

4
gMn,k

V B
(SMn,k

V B
(G(µ1)ωMn,k

V B
Ḡ(µ̄2))), (6.4)

which we can calculate using Hitchin’s formulas presented in section 1.2.1 and
the refinement calculated later in (6.2). Choose an orthonormal basis at (σ, ρ),
then we have that:

G(µ1)ωMn,k
V B
Ḡ(µ̄2)ij̄

=

∑
j,l

−2i

∫
X
µ1trν̄Ti ν̄

T
j (−

∫
trνj ∧ ν̄Tl )2i

∫
X
µ̄2trνlνk

 (Xνi ⊗Xν̄j )

= −4

(∫
X
µ1trν̄Ti P

0,1(µ̄2νk)

)
(Xνi ⊗Xν̄j ).

If we symmetrize and then contract with the metric the result is the same as
just contracting with the metric, since the symmetrization contains an aver-
aging, and so we have:

θ(µ1, µ̄2) = −itr(µ1P
1,0µ̄2P

1,0), (6.5)

the i comes since to rewrite as a trace we need the metric rather than the
symplectic form.

Since a Beltrami differential solves the equation ∂µ(z) = 2
z−z̄µ(z), we find

that µ̄∂̄ρ−1 = ρ−1∂̄µ̄ = −∂∗µ̄. Inserting this in the formula from Theorem
4.3.3 we have:
Corollary 6.3.2
The following identity holds

θ(V,W )− 2i∂T ∂̄T F (V,W ) =
RankE

6π
ωWP (V,W ) =

n

6π
ωWP (V,W ) (6.6)

and
F (1,1)(V,W ) =

ikn

12π(k + n)
ωWP (V,W ).

6.3.2 The (2, 0)-part of the Curvature

In order to calculate the (2, 0)-part of the curvature we need the following
from [Andersen and Gammelgaard, 2011]. They argue, because the curvature
has to preserve the holomorphic sections, the operators Pk(∂T c(V,W )) must
preserve the holomorphic sections. As a consequence the Hamiltonian vector
field of the function ∂T c(V,W ) on M0

n,k must be holomorphic, and as there
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are none of those, ∂T c(V,W ) is in fact constant and dMn,k
∂T c(V,W ) = 0. We

now use the Bianchi identity and Corollary 6.3.2 to see that:

U ′′[
k

(2k + 2n)2
∂T c(V

′,W ′)] + V ′[
ikn

12π(k + n)
ωWP (W ′, U ′′)]

−W ′[ −ikn
12π(k + n)

ωWP (V ′, U ′′)]

= (∂̄T ∂T c)(U
′′, V ′,W ′) + ∂(

ikn

12π(k + n)
ωWP )(W ′, V ′, U ′′) = 0.

From this we conclude ∂̄T ∂T c = 0, since ωWP is closed. We therefore have
dT ∂T c = 0.

Before we continue the argument, we will make two assumptions, which I
believe are true for genus greater than two. The assumptions are:

1. That H2
dR(Mg,C) ∼= C and is generated by the symplectic form.

2. There is an embedded Riemann surface, Xg, in Mg such that for a 2-
form, α, the isomorphism above is given by

∫
Xg

(α) times the symplectic
form. (In [Kodaira, 1967] a family of Riemann surfaces of genus m(2n−
1) for m,n ≥ 1 over a compact Riemann surface S. By the universal
property this gives a map from S toMm(2n−1). The image of this map
is the manifold we called Xg for m = g and n = 1.)

I am still looking for references on the first assumption.
These assumptions will now allow us to conclude that ∂T c is exact. To

conclude this we use that it is invariant under the action of the mapping
class group, and therefore it descends from T to the moduli space of genus g
curves, Mg. We know that H2(Mg,C) ∼= C. The isomorphism is described
by integrating our form over a special Riemann surface embedded in Mg,
since ∂T c is of type (2, 0) the integral over a Riemann surface is zero, and so
it must be exact. Exactness allows us to find a 1-form c̃ on Mg, such that
∂Mgc = −dMg c̃. We can pull this back to T , where we will still denote the
form c̃.

While we cannot yet say the curvature of the Hitchin connection con-
structed in [Andersen, 2012] is of type (1, 1), we can modify it to get a new
Hitchin connection for which this is true, by replacing u(V ) in the definition
with u(V ) + k

(2n+k)2 c̃(V ). We expect that ∂T c = 0, but have not yet verified
this.

Theorem 6.3.3
The connection ∇̂ = ∇t + u + k

(2n+k)2 c̃ on Hk → T is a Hitchin connection
with curvature ikn

12π(k+n)ωWP .
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Proof: First we see that it is a Hitchin connection. By [Andersen, 2012,
Lemma 2.2] it is a Hitchin connection, if:

i

2
V [I]∇1,0

σ s+∇0,1
σ ((u(V ) +

k

(2n+ k)2
c̃(V ))s) = 0

for ∇σ, the Levi-Civita connection on Mn,k. However, since u(V ) gives a
Hitchin connection this reduces to:

i

2
V [I]∇1,0s+∇0,1((u(V ) +

k

(2n+ k)2
c̃(V ))s) =

k

(2n+ k)2
(∂̄Mn,k

c̃(V ))s = 0.

We can now calculate the curvature of this modified Hitchin connection by
modifying [Andersen and Gammelgaard, 2011, Theorem 4.8]. For commuting
vector fields V and W on T we calculate:

F∇̂(V,W ) = [∇̂V , ∇̂W ]

= [∇tV + u(V ) +
k

(2n+ k)2
c̃(V ),∇tW + u(W ) +

k

(2n+ k)2
c̃(W )]

= [∇tV + u(V ),∇tW + u(W )]

+ [
k

(2n+ k)2
c̃(V ),∇tW + u(W ) +

k

(2n+ k)2
c̃(W )]

+ [∇tV + u(V ) +
n

(2n+ k)2
c̃(V ),

n

(2n+ k)2
c̃(W )]

=
k

(2n+ k)2
∂T c(V,W ) +

ink

12π(2n+ k)
ωWP (V,W )

+
k

(2n+ k)2
(−W [c̃(V )] + V [c̃(W )])

=
ink

12π(2n+ k)
ωWP (V,W ). �

Since the curvature is now of type (1, 1) we should be able to conclude directly.

Conjecture 6.3.4
There exists a mapping class group invariant inner product on H(k), and it is
preserved by the Hitchin connection of Theorem 6.3.3.

However, I have not been able to find the appropiate reference. We know
from previous work of Andersen that there is a projectively compatible inner
product.

6.4 The Inner Product on Hk
σ

This section is a presentation of my understanding of a method, explained to
me by my advisor Andersen, of getting an equation for an inner product on
H(k) (the bundle from Chapter 1).
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Let (·, ·) : Hk
σ ×Hk

σ → C be a Hermitian inner product which is preserved
by the Hitchin connection, that is:

V [(s1, s2)]− (∇̂V s1, s2)− (s1, ∇̂V s2) = 0. (6.7)

Where ∇̂V = ∇tV + û(V ), with û(V ) = −u(V ) + k
(n+2k)2 c̃(V ), is the Hitchin

connection of Theorem 6.3.3. We denote the Hermitian inner product in the
prequantum line bundle by 〈·, ·〉 and make the ansatz:

(s1, s2)σ =

∫
X
〈s1, s2〉B(k)

σ

ωn

n!
.

In the following we will denote the projection C∞(M,L⊗k) → H
(k)
σ by π(k).

For (6.7) to be fulfilled we must have:

π(k)
(
V [B(k)

σ ] +B(k)û(V ) + û(V )∗B(k)
)
π(k) = 0. (6.8)

To reformulate this we need the following formula

π(k)
σ (∇Xs1) = π(k)

σ (fXs1), (6.9)

where fX = Λd(ιXω) and Λ is the contraction with ω. Now we can rewrite
what it means for (6.7) to be fulfilled.

0 =V [(s1, s2)]− (∇V s1, s2)− (s1,∇V̄ s2)

=

∫
M
V [〈s1, s2〉B(k)]

ωn

n!
− (∇V s1, s2)− (s1,∇V̄ s2)

=

∫
M

(〈∇̂tV s1, s2〉B(k) + 〈s1, ∇̂tV̄ s2〉B(k) + 〈s1, s2〉V [B(k)])
ωn

n!

− ((∇tV + û(V ))s1, s2)− (s1, (∇tV̄ + û(V̄ ))s2)

=

∫
X
〈(−B(k)û(V )− û∗((̄V ))B(k) + V [B(k)])s1, s2〉

ωn

n!
.

Since s1 and s2 are holomorphic sections, this means we have the operator
identity:

0 = π(k)
σ (−B(k)û(V )− û∗(V̄ )B(k) + V [B(k)]))π(k)

σ .

Using (6.9) we calculate each term remembering that

u(V ) =
1

4k + 2n

(
∆G(V )s+ 2∇G(V )dFσs− 4kV ′[Fσ]s

)
.

Note this differ from Theorem 1.2.4 because in the above expression I used
−F .

We find:

π(k)
σ B(k)∆G(V ) = π(k)

σ B(k)∇iGij(V )∇j
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= π(k)
σ ∇iB(k)Gij(V )∇j − π(k)

σ (∇iB(k))Gij(V )∇j
= −π(k)

σ Gij(V )∇j(∇iB(k)) + π(k)
σ Gij(V )(∇j∇iB(k))

= −π(k)
σ ∇jGij(V )(∇iB(k)) + π(k)

σ ∇j(Gij(V ))(∇iB(k))

+ π(k)
σ Gij(V )(∇j∇iB(k)) = π(k)

σ (∆G(V )B
(k)),

and

π(k)
σ B(k)∇G(V )dFσ = π(k)

σ ∇G(V )dFσB
(k) − π(k)

σ (∇G(V )dFσB
(k))

= π(k)
σ ∇iGij(V )dFσ(νj)B

(k) − π(k)
σ (∇iGij(V )dFσ(νj))B

(k)

− π(k)
σ (∇G(V )dFσB

(k))

= −π(k)
σ (∆G(V )Fσ)B(k) − π(k)

σ (∇G(V )dFσB
(k)).

This shows that:

π(k)
σ B(k)u(V )π(k)

σ = π(k)
σ

1

4k + 2n

(
∆G(V )B

(k) − 2(∆G(V )Fσ)B(k)

−2∇G(V )dFσB
(k) − 4kV ′[Fσ]B(k)

)
.

Now π
(k)
σ u(V̄ )∗B(k)π

(k)
σ is the adjoint of π(k)

σ B(k)u(V̄ )π
(k)
σ , since B(k) is real,

and therefore
π(k)
σ u(V̄ )∗B(k)π(k)

σ = π
(k)
σ B(k)u(V̄ )π

(k)
σ

Now ∆G(V̄ )B
(k) = ∆Ḡ(V )B

(k), and we find that:

π(k)
σ u(V̄ )∗B(k)π(k)

σ = π(k)
σ

1

4k + 2n

(
∆Ḡ(V )B

(k) − 2(∆Ḡ(V )Fσ)B(k)

−2∇Ḡ(V )dFσB
(k) − 4kV ′′[Fσ]B(k)

)
.

We rewrite (6.8) to:

V [B(k)
σ ]− 1

4k + 2n

(
(∆G̃(V )B

(k))− 2(∇G̃(V )dFB
(k))

−2(∆G̃(V )F )B(k) + 2nV [F ]B(k)
)
−V [F ]B(k)+

4k

(4k + 2n)2
(c̃(V )+c̃(V )) = 0.

(6.10)

From this follows that up to order 1
4k+2n the function eF is a solution. Now

that I have explained how to get an equation for B(k), we proceed to study
the equation and try to solve it.

We can expand B(k) in powers of 1
4k+2n writing

B(k) = eF

1 +

∞∑
j=1

cj

(
1

4k + 2n

)j .
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For the 1
4k+2n term, c1, we have the following equation.

V [c1e
F ] +

(
(∆G̃(V )e

F )− 2(∇G̃(V )dF e
F )

−2(∆G̃(V )F )eF − 2nV [F ]eF
)
− V [F ]eF c1 + c̃(V ) + c̃(V ) = 0.

Continuing the calculation

V [c1]eF +
(

((∆G̃(V )F )eF + dFG̃(V )dFeF )− 2(dFG̃(V )dFeF )

−2(∆G̃(V )F )eF − 2nV [F ]eF
)

+ c̃(V ) + c̃(V ) = 0.

And so the final differential equation is:

V [c1] = −(∆G̃(V )F )− dFG̃(V )dF − 2nV [F ] + c̃(V )

= c(V ) + c̄(V ) + c̃(V ) + c̃(V ). (6.11)

We see that the last term is a closed 1-form, since ∂T c + dT c̃ = 0, and from
Corollary 6.3.2 and [Andersen and Gammelgaard, 2011, Prop. 4.4 and Prop
4.3] we have ∂̄T c+ ∂T c̄ = 0. We can solve (6.11) on T , and for genus greater
than 2 we have that the abelianization of π1(Mg) is trivial, [Powell, 1978], so
the solution will be mapping class group invariant. We see this, since c1 gives
a homomorphism from π1(Mg) to C which must be the zero map. Now this
allows us to determine c1 up to a function onM0

n,k.
For higher order coefficients we have, doing similar computations, that:

V [cj ] = cj−1(c(V ) + c̄(V ) + c̃(V ) + c̃(V ))− 2n(c̃(V ) + c̃(V ))cj−2

+(∆G̃(V )cj−1 − dFG̃(V )dcj−1).

In future work I hope also to be able to solve for cj , j > 1, with a proper choice
of c1.
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