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Abstract

The geometry of real world objects can be described by Minkowski tensors.
Algorithms have been suggested to approximate Minkowski tensors if only a
binary image of the object is available. This paper presents implementations
of two such algorithms. The theoretical convergence properties are confirmed
by simulations on test sets, and recommendations for input arguments of the
algorithms are given. For increasing resolutions, we obtain more accurate es-
timators for the Minkowski tensors. Digitisations of more complicated objects
are shown to require higher resolutions.

Keywords: Minkowski tensor; digital algorithm; set with positive reach; digi-
tisation

1 Introduction

Image analysis is the interpretation of discrete representations of real world ob-
jects. Its wide range of applications can be found in fields such as Biology [2, 5],
Physics [10], and Materials Sciences [18, 19]. Traditional digital geometry [11] uses
binary information to assess volume or surface area or, more generally, intrinsic vol-
umes of (sufficiently regular) sets A ⊂ Rn. More recently, the estimation of Minkow-
ski tensors has been suggested, as tensor-valued valuations allow for quantification
of location- and orientation-related properties of A.

In [8], algorithms for the estimation of Minkowski tensors of sets with positive
reach from digitisations are introduced. The derivation of the algorithms is based on
a generalised Steiner formula, and the estimators can be shown to converge to the
true tensors as the resolution d of the digitisation tends to infinity. This property
is called multigrid convergence, and the results on multigrid convergence of the
estimators are presented as Theorems 3.1 and 4.1 of this paper.

We have implemented two of the algorithms described in [8] in MATLAB. In
dimension n and for a set A ⊂ Rn with Reach(A) > 0, one algorithm depends
on the choice of n + 1 radii 0 < R0 < · · · < Rn < Reach(A); the other on n
radii 0 < R0 < · · · < Rn−1 < Reach(A). We have implemented the algorithms in
MATLAB in dimension n = 2. Based on simulations for both convex and non-convex
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test sets with positive reach via our digital algorithms, we will give recommendations
for the choices of the radii on which the algorithms are based. Further, we explore
the consequences of making erroneous choices of the radii, i.e. choosing them larger
than Reach(A). We also discuss a possible lower limit d/

√
2 for the radii. Finally,

both algorithms are multigrid convergent, and we wish to explore how well the
theory carries over when the algorithms are applied in the realistic setting of finite
resolution.

In Section 2, we introduce the notions of positive reach and digitisation, and we
give the definition of Minkowski tensors. Section 3 presents the first algorithm and
its implementation as well as a review of the method for obtaining the estimators
via a generalised Steiner formula. In Section 4 follows the second algorithm and
corresponding implementation. Having established the algorithms, we proceed to
perform simulations on test sets in Section 5 and examine the theoretical properties
of the algorithms in applications. In Section 6 we give recommendations for the
choices of input arguments for the algorithms based on our findings in Section 5.

2 Preliminaries

We equip Euclidean n-space Rn with the standard inner product 〈·, ·〉 and induced
norm |·|. For a compact set A ⊂ Rn, let dA(x) be the distance of x ∈ Rn to A and
write

AR = {x ∈ Rn | dA(x) ≤ R}
for the R-parallel set of A, R ≥ 0. Denote by Unp(A) ⊂ Rn the set of all points
x ∈ Rn which have a unique nearest point in A and by Exo(A) ⊂ Rn the complement
of Unp(A) in Rn; the exoskeleton of A. Note that x belongs to the exoskeleton
of A if and only if the closed ball BR(x) with radius R = dA(x) and centre x has
more than one point of intersection with A. Let pA : Unp(A) → A be the metric
projection which maps a point x ∈ Unp(A) to its unique nearest point pA(x) in A.
If AR ∩ Exo(A) = ∅, all points at distance at most R from A have a unique nearest
point in A, i.e. AR ⊂ Unp(A). If R′ is the supremum of all R such that this property
holds, A is said to have reach R′. When R′ is positive, A is called a set with
positive reach. By Motzkin’s theorem, see for instance [16, Theorem 1.2.4], a set
has infinite reach if and only if it is convex. Another example of sets with positive
reach are ρ-regular sets introduced independently by Pavlidis [15, Definition 7.4]
and Serra [20, Definition p. 144] and often used in digital geometry due to their
favourable properties under digitisation; see for instance [4] and [21]. A set A ⊂ Rn

is called ρ-regular if both A and the closure of its complement AC have reach at
least ρ.

2.1 Digitisations
Letting Z denote the integers, a cubic lattice dL ⊂ Rn is any rotated, translated
version of dZn ⊂ Rn, where d > 0 is called the lattice distance. An element l ∈ dL
is called a sampling point. We adopt a basic digitisation model of a set A ⊂ Rn
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Figure 1: Illustration of the digitisation process in dimension 2. The compact set A ⊂ R2

(blue) in (a) is digitised to A0 = A ∩ dL in (b).

by considering the set
A0 = A ∩ dL

of all lattice points in A. In signal processing, A0 is interpreted as the result of an
ideal sampler. The discrete set A0 is called the digitisation of A by dL, and d−1 is
called the resolution of the digitisation. Figure 1 illustrates the digitisation process.

The Voronoi cell of x ∈ A0 with respect to the digitisation A0 is defined as

VA0(x) = {y ∈ Rn | |y − x| ≤ |y − z| for all z ∈ A0}
= cl{y ∈ Unp(A0) | pA0(y) = x},

where cl(X) denotes the closure of a set X ⊂ Rn. A Voronoi cell of a sampling point
x ∈ A0 is called a Voronoi cell of A0. The Voronoi cells of A0 have pairwise disjoint
interiors, and their (finite) union coincides with Rn. Similarly, we may choose to
consider Voronoi cells with respect to a lattice dL (a locally finite set),

VdL(x) = cl{y ∈ Unp(dL) | pdL(y) = x},

where x ∈ dL. The set VdL(x) is an n-dimensional hypercube in Rn with side length
d and centre x. In R2, VdL(x) can be interpreted as the pixel of x.

Clearly VA0(x) is a hypercube of side length d if and only if the 2n neighbours of
x in the axis directions of dL are all elements of A0. In this case VA0(x) = VdL(x),
and we say that x is an inner point of A0. In the plane, x is an inner point if its
usual four-neighbours are in A0; see Figure 2 for an illustration.

In this paper, we work exclusively with binary representations of the underlying
set A ⊂ Rn. Colouring VdL(x) black whenever x ∈ A0 and white otherwise, A0 can be
represented as a black-and-white digital image, the so-called Gauss-digitisation [11]
of A. Given the lattice dL, the Gauss-digitisation and A0 capture the same infor-
mation of the underlying set A. Therefore, all the results for A0 that follow can
equivalently be formulated using the Gauss-digitisation.

2.2 Minkowski tensors
One purpose of image processing is the extraction of geometric characteristics of an
object from a digital image. We give here a short introduction to a rather general
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Figure 2: Comparison of Voronoi cells with respect to a digitisation A0 ⊂ dL in (a) and
with respect to a lattice dL in (b). Here y is an inner point of A0 whereas x is not.

class of such characteristics; the so-called Minkowski tensors. For a more thorough
review, the reader may consult the excellent book [16] by Schneider.

For p ∈ N0, let Tp denote the space of symmetric tensors of rank p on Rn.
Using the scalar product to identify Rn with its dual, an element T of Tp defines
a symmetric p-linear functional T : (Rn)p → R. Any T ∈ Tp is determined by the
numbers

T(i1...ip) = T (ei1 , . . . , eip), (2.1)
i1, . . . , ip ∈ {1, . . . , n}, where e1, . . . , en is the standard basis in Rn. In particular, a
tensor of rank zero, one, and two can be identified with a scalar, a vector in Rn, and
a symmetric matrix of size n × n, respectively. More generally, a tensor of rank p
can be identified with a symmetric array of size np. When calculating tensors later
on, it will be the entries of this array that we calculate.

Denote by xr the r-fold tensor product of x ∈ Rn, which is given by

xr(v1, . . . , vr) =
r∏

i=1

〈x, vi〉, v1, . . . , vr ∈ Rn,

and by ab the symmetric tensor product of symmetric tensors a and b. We use the
convention that x0 = 1.

For a compact subset A of Rn, we define an element of Tr, called the r’th
volume tensor of A, by

Φr,0
n (A) =

1

r!

∫

A

xrdx. (2.2)

Notice in particular that Φ0,0
n (A) is simply the volume Vn(A) of A. For s ≥ 1, we

put Φr,s
n (A) = 0. More general tensors related to A can be defined by integrating

over boundary points and outer normal vectors when A is a set with positive reach.
Let A ⊂ Rn be a set with positive reach. For k = 0, 1, . . . , n − 1 and r, s ∈ N0,

we define elements of Tr+s by

Φr,s
k (A) =

1

r!s!

ωn−k
ωn−k+s

∫

Rn×Sn−1

xrusΛk(A; d(x, u)), (2.3)
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where Sj−1 is the unit sphere in Rj, ωj is the surface area of Sj−1, and Λk(A; ·) is
the generalised curvature measure of A introduced in [23]. For all k = 0, 1, . . . , n
and r, s ≥ 0, Φr,s

k (A) are the Minkowski tensors of A. For r = s = 0, the Minkow-
ski tensors Φ0,0

k (A), k = 0, 1, . . . , n, coincide with the k’th intrinsic volumes Vk(A)
of A; see for instance [16], as was already noted in the case of the volume Vn(A).
In particular, 2Vn−1(A) is the surface area of A when A does not have lower dimen-
sional parts, and V0(A) is the Euler-Poincaré characteristic of A. By restricting the
integrations in (2.2) and (2.3) to B ∩A respectively B × Sn−1 with B ⊂ Rn a Borel
set, local Minkowski tensors can be defined as suggested in [7]. Although the digital
algorithms for estimating Minkowski tensors are formulated using the local versions,
we restrict our considerations to the estimation of Minkowski tensors of the form
(2.2) and (2.3).

3 Minkowski tensor estimation from n + 1

parallel sets

Steiner’s formula, in its version for sets A ⊂ Rn with positive reach, shows that
the parallel volume Vn(AR) is a polynomial in R of degree at most n as long as
0 ≤ R < Reach(A). Up to constants, its coefficients are coinciding with the intrin-
sic volumes V0(A), . . . , Vn(A). This allows for the computation (estimation) of the
intrinsic volumes when Vn(AR) is (approximately) known for different radii R. Re-
placing the parallel volume with the Voronoi tensors measures, to be defined below,
this idea can be extended to an estimation procedure for Minkowski tensors.

3.1 The Voronoi tensor measures
For a compact set A ⊂ Rn and R ≥ 0, the formula

Vr,s
R (A) =

∫

AR

pA(x)r(x− pA(x))sdx (3.1)

defines Tr+s-valued measures Vr,s
R (A). These are called the (total) Voronoi tensor

measures and were first introduced by Hug, Kiderlen, and Svane in [8]. In the case
where A has positive reach, 0 ≤ R < Reach(A), a Steiner-type formula implies that

Vr,s
R (A) = r!s!

n∑

k=0

κs+kR
s+kΦr,s

n−k(A), (3.2)

where κj is the volume of the unit ball in Rj.
For n + 1 different choices of R, 0 < R0 < R1 < · · · < Rn < Reach(A), equa-

tion (3.2) gives rise to a system of n+ 1 linear equations for each pair (r, s);


Vr,s
R0

(A)
...

Vr,s
Rn

(A)


 = M r,s

R0,...,Rn




Φr,s
n (A)
...

Φr,s
0 (A)


, (3.3)
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with the matrix

M r,s
R0,...,Rn

= r!s!



κsR

s
0 . . . κs+nR

s+n
0

... . . . ...
κsR

s
n . . . κs+nR

s+n
n


.

The matrix M r,s
R0,...,Rn

is a Vandermonde-type matrix and so in particular invertible,
hence (3.3) can be solved for the Minkowski tensors;




Φr,s
n (A)
...

Φr,s
0 (A)


 =

(
M r,s

R0,...,Rn

)−1


Vr,s
R0

(A)
...

Vr,s
Rn

(A)


. (3.4)

We wish to utilise (3.4) for the estimation of Minkowski tensors from digitisations.
To this end, suitable estimators for the Voronoi tensor measures on the right-hand
side of (3.4) must be introduced.

3.2 Estimators for Minkowski tensors from digitisations
Let dL be a lattice. Given a digitisation A0 = A∩ dL of a set A ⊂ Rn with positive
reach, Reach(A) > R ≥ 0, we approximate the Voronoi tensor measure Vr,s

R (A) by
the corresponding quantity Vr,s

R (A0) for A0. This yields estimators



Φ̂r,s
n (A0)
...

Φ̂r,s
0 (A0)


 =

(
M r,s

R0,...,Rn

)−1


Vr,s
R0

(A0)
...

Vr,s
Rn

(A0)


 (3.5)

for the Minkowski tensors; compare (3.4). The justification for replacing Vr,s
R (A)

with its discrete counterpart Vr,s
R (A0) is given in [8, Theorem 4.3], which implies

that Vr,s
R (A0) converges to Vr,s

R (A) as d → 0+ under weak assumptions on A. This
yields the following convergence theorem result for Φ̂r,s

R (A) when A is topologically
regular, that is, A is the closure of its interior. This seems a reasonable restriction
when working with digitisations, since the lower dimensional parts of an object are
generally not visible in the digital image A0.

Theorem 3.1 Let A ⊂ Rn be compact and topologically regular. If Φ̂r,s
k (A ∩ dL) is

defined by equation (3.5) with A0 = A ∩ dL and 0 < R0 < · · · < Rn < Reach(A),
then Φ̂r,s

k (A ∩ dL) is multigrid convergent to Φr,s
k (A), which means

lim
d→0+

Φ̂r,s
k (A ∩ dL) = Φr,s

k (A). (3.6)

A proof of Theorem 3.1 can be found in [8, Corollary 5.2]. If, in addition, A is
convex or ρ-regular, the convergence in (3.6) is of order O(d) when r = s = 0, that
is, for estimators of the intrinsic volumes. For (r, s) 6= (0, 0), convergence is known
to be of order O(

√
d).

Equation (3.5) gives a set of estimators for all the Minkowski tensors, but al-
ternative estimators exist in the case of the volume tensors given by (2.2). We will
return to these considerations in Section 4, where we introduce an additional algo-
rithm which exploits this fact. For now, we can use (3.5) to compute estimators for
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the Minkowski tensors of a set A ⊂ Rn with positive reach from a digitisation A0.
In the next subsection, we will explain how the Voronoi tensor measures can be
computed for discrete sets.

3.3 Implementation in dimension two

For x ∈ A0, we have the relation VA0(x)∩AR
0 = VA0(x)∩BR(x), and we will refer to

this intersection as theR-bounded Voronoi cell of x ∈ A0 with respect to A0. The
space Rn coincides with the finite union of the Voronoi cells of A0, so AR

0 coincides
with the union of R-bounded Voronoi cells of A0. This yields a simplification of (3.1)
for the discrete set A0,

Vr,s
R (A0) =

∑

x∈A0

xr
∫

VA0
(x)∩BR(x)

(y − x)sdy. (3.7)

Thus, the Voronoi tensor measures for discrete digitisations can be reduced to a sum
of contributions from each element of A0, and these contributions depend only on the
corresponding R-bounded Voronoi cells of A0. The right-hand side of equation (3.5)
is now easily computed using (3.7). This will be our first algorithm.

We choose to focus on dimension two for the implementation of the algorithm
given by (3.5). In this case, (3.5) becomes




Φ̂r,s
2 (A0)

Φ̂r,s
1 (A0)

Φ̂r,s
0 (A0)


 =

(
M r,s

R0,R1,R2

)−1


Vr,s
R0

(A0)
Vr,s
R1

(A0)
Vr,s
R2

(A0)


 (3.8)

with

M r,s
R0,R1,R2

= r!s!



κsR

s
0 κs+1R

s+1
0 κs+2R

s+2
0

κsR
s
1 κs+1R

s+1
1 κs+2R

s+2
1

κsR
s
2 κs+1R

s+1
2 κs+2R

s+2
2


.

In practice, one is usually interested in the tensors of rank at most two, i.e. tensors
for which r + s ≤ 2. The relevant volumes κj of the unit ball in Rj are thus

κ0 = 1, κ1 = 2, κ2 = π, κ3 = 4π/3, κ4 = π2/2. (3.9)

From [16, (4.27),(5.18),(5.30)], it follows that for k = 0, . . . , n − 1, the tensor
Φ0,1

k (A) = 0 is trivial. It is therefore not necessary to use approximations Φ̂r,s
k (A) in

these cases. Nonetheless, our implementation calculates and reports these estima-
tors, since values deviating considerably from the origin indicate that the resolution
is not sufficiently high.

For a given digitisation A0 of a set A ⊂ R2, the algorithm determines Φ̂r,s
k (A0)

by (3.7) and (3.8) based on three fixed radii 0 < R0 < R1 < R2 < Reach(A). The
assumption that all radii must be smaller than Reach(A) requires the knowledge of
(a positive lower bound of) the reach of A. Since the reach may not be accessible
in applications, we also analyse the behaviour of the estimators when one or more
radii are larger than Reach(A) in the simulation section.

The asymptotic result in Theorem 3.1 is based on increasing resolution (d→ 0+).
Hence any given radius R > 0 is eventually larger than half the diameter d

√
2 of
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Figure 3: The estimators Φ̂0,0
1 (A) and Φ̃0,0

1 (A) as functions of Rmax for fixed resolution
d−1 = 100 and different radii for the square A = [0, 1]2 with R0 = Rmax/n for Rn, n = 2, 3.
Here R3 denotes the algorithm presented in Section 3.3, R2 denotes the second algorithm
to be introduced in Section 4, and Rmax denotes the maximal radius Rn−1 for Rn. The
third radius, R1, of R3 is given by R1 = (R0 + R2)/2. The second algorithm, R2, only
depends on two radii. The dashed black line indicates the point when Rmax is greater
than d/

√
2; the coloured dashed lines when all radii of the corresponding algorithm are

above d/
√

2.

a pixel, implying that the union of all R-bounded Voronoi cells of points x ∈ A0

covers the Gauss-digitisation of A completely. On the other hand, if R < d/
√

2 for
some d > 0, the R-bounded Voronoi cell of an inner point does not cover its pixel.
In this case the replacement of Vr,s

R (A) by Vr,s
R (A0) in the transition from (3.4) to

(3.5) may cause unwanted errors. In fact, Figure 3 shows the behaviour of half the
perimeter estimator V̂1(A) = Φ̂0,0

1 (A) for the unit square A = [0, 1]2 when the radii
vary in the vicinity of d/

√
2. The figure clearly illustrates the described effect. This

effect can be avoided by choosing R0 > d/
√

2, and we shall do so for the remainder
of this paper.

As R > d/
√

2, one can simplify the computations in the algorithm in the follow-
ing way. Under this assumption, the Ri-bounded Voronoi cell VA0(x)∩BRi

(x) of an
inner point x ∈ A0 coincides with VdL(x). Hence the contributions of all inner points
of the digitisation to the integral

∫
VA0

(x)∩BRi
(x)

(y − x)sdy are the same and vanish
when s is odd. This observation is exploited in the implementation of the algorithm
in order to reduce computation times.

With the aforementioned choices, we obtain the following algorithm, where we
restrict attention to estimators of Minkowski tensors of rank at most two. These
tensors have been shown to be most relevant in practical applications such as those
suggested at the beginning of the introduction. An extension to higher rank tensors
is straightforward and only requires minor modifications in the code.
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Algorithm Minktensor2D3R (R3)

Input:
• Digitisation A0 = A ∩ dL of a compact topologically regular set A ⊂ R2

with positive reach;
• Lattice distance d > 0 of dL;
• Two radii R0 and R2 satisfying 0 < R0 < R2 < Reach(A).

Action:
• Calculate Vr,s

Ri
(A0) using (3.7) for Ri, i = 0, 1, 2, with R1 = (R0 +R2)/2,

and for all r, s ∈ {0, 1, 2} with r + s ≤ 2;
• Determine the corresponding Minkowski tensors by (3.8).

Output:
• Estimators Φ̂r,s

k (A0) for all k, r, s ∈ {0, 1, 2} with r+ s ≤ 2 (including the
trivial ones of the form Φ̂0,1

k (A0) for model control) of the corresponding
Minkowski tensors.

The programme will give a warning if radii are chosen below the recommended
lower limit d/

√
2 as discussed above. If any result of the algorithm is numerically

below 10−6, the output is rounded off to zero.

4 Minkowski tensor estimation from n parallel
sets

As proved in [8], it is possible to refine the algorithm introduced in Section 3.2 by
using simpler estimators for the volume tensors defined in (2.2). Since we require
that the set A ⊂ Rn be compact and topologically regular, one can use the estimators

Φ̃r,0
n (A0) =

dn

r!

∑

x∈A0

xr (4.1)

for the volume tensors. This is the natural generalisation of the usual volume estima-
tor in the case r = 0, which counts foreground pixels; see for instance [14]. Letting
∂A denote the boundary of A, we have the following result on convergence from [8,
Section 5.1].

Theorem 4.1 Let A ⊂ Rn be compact and topologically regular, and suppose ∂A is
a Lebesgue null set. Then Φ̃r,0

n (A∩ dL), defined by equation (4.1) with A0 = A∩ dL,
is multigrid convergent to Φr,0

n (A), i.e.

lim
d→0+

Φ̃r,0
n (A ∩ dL) = Φr,0

n (A). (4.2)

The assumption that ∂A is a Lebesgue null set is weaker than that of positive
reach, so these estimators converge towards the true volume tensors for a larger class
of sets than Φ̂r,0

n do. Moreover, they do not require any knowledge of the reach of A.
If, in addition, ∂A is an (n− 1)-rectifiable set, i.e. if ∂A is the image of a bounded
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subset of Rn−1 under a Lipschitz map, the convergence in (4.2) is of order O(d).
This condition is for instance satisfied by ρ-regular sets.

In addition to their advantageous convergence properties, using the estimators in
(4.1) for the volume tensors, we can derive an alternative algorithm for computation
of estimators for the Minkowski tensors of sets A with positive reach, which is based
on only n fixed radii 0 < R0 < · · · < Rn−1 < Reach(A).

Indeed, let 0 ≤ R < Reach(A) and consider the Voronoi tensor measures Vr,s
R (A)

defined by (3.2). Subtract r!s!κsRsΦr,s
n (A) from both sides of the equation to obtain

Vr,s
R (A)− r!s!κsRsΦr,s

n (A) = r!s!
n∑

k=1

κs+kR
s+kΦr,s

n−k(A). (4.3)

In the case s > 0, Φr,s
n (A) = 0, so (4.3) takes the simple form

Vr,s
R (A) = r!s!

n∑

k=1

κs+kR
s+kΦr,s

n−k(A), s > 0, (4.4)

and when s = 0,

Vr,0
R (A)− r!Φr,0

n (A) = r!
n∑

k=1

κkR
kΦr,0

n−k(A). (4.5)

Similarly to the approach used in section 3.1, estimators for the Minkowski tensors
are obtained from (3.7), (4.4), and (4.5):




Φ̃r,s
n−1(A0)

...
Φ̃r,s

0 (A0)


 =

(
N r,s

R0,...,Rn−1

)−1


Vr,s
R0

(A0)− r!Φ̃r,s
n (A0)

...
Vr,s
Rn−1

(A0)− r!Φ̃r,s
n (A0)


 (4.6)

for all r, s ≥ 0, where a new Vandermonde-type matrix

N r,s
R0,...,Rn−1

= r!s!



κs+1R

s+1
0 . . . κs+nR

s+n
0

... . . . ...
κs+1R

s+1
n−1 . . . κs+nR

s+n
n−1




is introduced. The number of equations in the linear system described by (4.6) is
reduced by one compared to (3.5). Once more, we note that for s > 0, Φr,s

n (A) equals
0 and can thus be estimated by Φ̃r,s

n (A) = 0, so the terms r!Φ̃r,s
n (A0) are put equal

to zero.
It follows from Theorems 3.1 and 4.1 that Φ̃r,s

k (A0) is multigrid convergent for all
k = 0, . . . , n and r, s ∈ N0 if A is compact and topologically regular and 0 < R0 <
· · · < Rn−1 < Reach(A). A combination of [8, Theorem 4.2 and Lemma 5.1] and the
remarks following Theorem 4.1 implies that this convergence is of order O(d) when
A is convex or ρ-regular and r = s = 0. For (r, s) 6= (0, 0), the speed of convergence
is O(

√
d).

Again, this algorithm has been implemented in the planar case. For n = 2, the
algorithm in (4.6) reduces to

(
Φ̃r,s

1 (A0)

Φ̃r,s
0 (A0)

)
=
(
N r,s

R0,R1

)−1
(
Vr,s
R0

(A0)− r!Φ̃r,s
2 (A0)

Vr,s
R1

(A0)− r!Φ̃r,s
2 (A0)

)
(4.7)
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for r, s ≥ 0, where Φ̃r,0
2 (A0) = (d2/r!)

∑
x∈A0

xr and N r,s
R0,R1

is defined as

N r,s
R0,R1

= r!s!

(
κs+1R

s+1
0 κs+2R

s+2
0

κs+1R
s+1
1 κs+2R

s+2
1

)

with κj given by (3.9).

Algorithm Minktensor2D2R (R2)

Input:
• Digitisation A0 = A ∩ dL of a compact topologically regular set A ⊂ R2

with positive reach;
• Lattice distance d > 0 of dL;
• Two radii R0 and R1 satisfying d/

√
2 < R0 < R1 < Reach(A).

Action:
• Calculate Φ̃r,0

2 (A0) using (4.1) for r ∈ {0, 1, 2};
• Calculate Vr,s

Ri
(A0) using (3.7) for R1, R2 and all r, s ∈ {0, 1, 2} with

r + s ≤ 2;
• Determine the corresponding Minkowski tensors by (4.7).

Output:
• Estimators Φ̃r,s

k (A0) for all k, r, s ∈ {0, 1, 2} with r+ s ≤ 2 (including the
trivial ones of the form Φ̂0,1

k (A0) for model control) of the corresponding
Minkowski tensors.

The programme will give a warning if radii are chosen below the recommended
lower limit d/

√
2 as discussed above. If any result of the algorithm is numerically

below 10−6, the output is rounded off to zero.

5 Simulations

In the preceding sections, we have introduced two different algorithms for the com-
putation of estimators for the Minkowski tensors of sets A ⊂ R2 with positive reach
from a digitisation A0 = A ∩ dL. We denote by R3 the first algorithm, introduced
in Section 3, which is based on three radii 0 < R0 ≤ R1 ≤ R2 < Reach(A), and
by R2 the second algorithm, introduced in Section 4, based on two radii 0 < R0 ≤
R1 < Reach(A). Theorems 3.1 and 4.1 on multigrid convergence of the algorithms
do not depend on the specific choice of the radii, but we expect the choice to affect
the accuracy at least to some extent: We have already argued that choosing radii
below d/

√
2 is problematic, so we will impose the restriction d/

√
2 < R0 henceforth.

Finally, we wish to explore the consequences of choosing one or more radii larger
than Reach(A).

For R3, three Voronoi tensor measures VRi
(A0), i = 0, 1, 2, must be calculated

and a system of three linear equations must be solved. For R2, only two Voronoi
tensor measures VRi

(A0), i = 1, 2, are calculated and a system of two linear equations
solved. As a trade-off, we must calculate estimators for the volume tensors Φr,0

2 (A),

11



but these are computed quite effectively using the algorithm in (4.1). In particular,
note that for the volume tensors, we need only compute the sum

∑
x∈A0

xr once for
each r, the relevant values being r ∈ {0, 1, 2}, resulting in three simple computations.
For the Voronoi tensor measures, computed via (3.7), we need computations for each
choice of r ∈ {0, 1, 2}, for each choice of s ≥ 0 such that r+s ≤ 2, and for each choice
of Ri. For R3 and hence three radii, this gives twelve computations; for R2 only
nine. Hence the second algorithm requires fewer computations, and in particular,
the number of computations of the more complicated integral on the right-hand side
of (3.7), which depends on the Voronoi diagram, is reduced by three. We would
thus expect R2 to be faster than R3 as the size of the data set A0 increases or,
equivalently, as the resolution grows.

5.1 Choices of radii
The purpose of this section is to give recommendations for proper choices of radii
based on simulations with test sets. Let Rmax be the maximal radius equal to R2

in the case of R3 and to R1 in the case of R2. To evaluate the behaviour of the
estimators for varying choices of radii, the following procedure is used.

Procedure P for selecting radii

(1) For some fixed resolution, consider the interval (d/
√

2,m) where 3d/
√

2 < m <
Reach(A). Put Rmax = m and R0 = Rmax/n for algorithm Rn, n = 2, 3. This
way, the radii are evenly spaced over the interval (0,m) and all greater than
d/
√

2. We now let m vary and plot the estimators of the Minkowski tensors
as functions of m.

(2) Based on our findings in (1) and applying the same resolution, we choose a
maximal radius in the interval (d/

√
2,Reach(A)) for which we get satisfactory

estimators in the previous simulations. We then choose R0 in the interval
(d/
√

2, Rmax). We plot the estimators as functions of R0.

(3) Based on our findings in (2) and applying the same resolution, we choose a
minimal radius R0 > d/

√
2 for which we get satisfactory estimators in the

previous simulations. We then choose Rmax in the interval (R0,m) where m >
R0. We plot the estimators as functions of Rmax.

If A is convex, there is no upper constraint on m or Rmax in the above procedure.
The procedure requires some choice of resolution. For the simulations below, we
choose resolution d−1 = 1000.

We now apply procedure P to different test sets in R2. As test sets we have
chosen, with increasing geometric complexity, a convex disc, a non-convex annulus,
and a realisation of the complement of a planar Boolean model; see Figure 4.

Our starting point is the simple case of a translated unit disc A = B1 + (1, 1)T ,
where we put Br = Br(0), r ≥ 0. We apply procedure P to A to find suitable radii
for each of the algorithms; see Figure 5. In this figure, we only report results for the
tensors Φr,s

k (A), r, s ≥ 0, r + s ≤ 2, in the case k = 1. The corresponding results for
k = 0 are qualitatively the same. The case k = 2 stands out in that R2 makes use of

12
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(b)
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0
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Reach(A)

(c)

Figure 4: The three test sets used in our simulations. (a) shows the disc B1 + (1, 1)T , (b)
the annulus cl(B2 \B1) + (1, 1)T , and (c) the complement of one realisation of a Boolean
model with intensity γ = 10 and uniform radius distribution U(0.08, 0.16) for the typical
particle.

(4.1) for the estimation of the volume tensors, and this formula does not depend on
the radii. The results for the tensors with k = 2 are, however, very similar to those
with k ∈ {0, 1} for the algorithm R3, but to illustrate the difference in behaviour
of R2, Figure 6 shows the results of step (1) of procedure P for volume tensors.

To report results, we use the identification of rank p tensors with the entries of
the array of size np as explained in (2.1). As there are 12 non-trivial components
of tensors Φr,s

1 (A) with r, s ≥ 0, r + s ≤ 2, we only report a selection of such
entries. To concretise, Φ0,0

1 (A) = π is half the perimeter of A , and Φ1,0
1 (A) is,

up to normalisation, the centre of gravity of a uniform mass distribution on ∂A.
Hence Φ1,0

1 (A)(1) is the projection of this centre of gravity onto the x-axis. Another
example is

Φ2,0
1 (A) =

1

2

∫

∂A

x2H1(dx),

where H1 denotes the one-dimensional Hausdorff measure. Hence

Φ2,0
1 (A)(i,j) =

1

2

∫

∂A

xixjH1(dx).

In particular, for Figures 5(b) and (c), we we have chosen to plot just a single non-
trivial array entry. The reason for this is that the difference between algorithms R3

andR2 is only visible on a very small scale; much smaller than the difference in values
of the tensors. Analogously, for the volume tensors Φr,0

2 (A) with r ∈ {0, 1, 2}, we
plot only the entry corresponding to the area Φ0,0

2 (A) = π in Figure 6. The reader
should note the precision on the y-axis before concluding that R3 is significantly
poorer than R2 for volume tensor estimation; from Rmax > 0.0023, the error of any
volume tensor estimator computed by R3 in this step is below 1%.

The behaviour shown for these selected tensors is representative of the tensors
of A. No estimators for tensors that are equal to zero are included in our plots
because the estimators likewise equal zero independently of the choices of radii in
any step of procedure P for both algorithms.

From Figure 5(a), representing step (1) of P , we observe that unless the radii
are all chosen below 0.02, the choice of radii does not seem to have much effect on
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(a) Procedure P(1) with R0 = Rmax/n for Rn with n = 2, 3.

0 1 2 3 4 5 6 7 8 9 10

3.1410

3.1412

3.1414

3.1416

3.1418

R0

R3

R2

Φ0,0
1 (A)

(b) Procedure P(2) with Rmax = 10.

5 6 7 8 9 10

3.14140

3.14145

3.14150

3.14155

3.14160

Rmax

R3

R2

Φ0,0
1 (A)

(c) Procedure P(3) with R0 = 5.

Figure 5: The quality of estimators for the tensors Φr,s
1 (A), r, s ≥ 0, r + s ≤ 2, for fixed

resolution d−1 = 1000 and different radii for the disc A = B1 + (1, 1)T . The estimators
for Φ0,0

1 (A) and Φ1,0
1 (A)(1) overlap completely, thus explaining why Φ0,0

1 (A) does not show
in (a).
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Figure 6: Procedure P(1) for the disc A = B1+(1, 1)T with d−1 = 1000 and R0 = Rmax/n
for Rn with n = 2, 3.

the computed estimators. In the figure, we have zoomed in on the small interval
(d/
√

2, 0.1] to illustrate this point. When Rmax is chosen larger than 0.4, the error
of the estimators is below 1% for both algorithms. For R3 in particular, Rmax need
only be greater than 0.2 to obtain this accuracy. This means that even though we
have no upper limit on Rmax, we need not choose an extremely large value but could
select Rmax equal to e.g. a few times the diameter of the object. In Figure 5(b), which
corresponds to step (2) of procedure P , we examine the algorithms for Rmax = 10.
We observe that problems arise only when R0 is chosen in the lower half of the
interval (0, 10). Indeed, if we choose R0 = 0.01 or 0.1 in step (3), we get large errors
for R2. In comparison, R3 is less affected by our choice of R0 and is generally more
accurate than R2. In Figure 5(c), we put R0 = 5 and observe that varying Rmax has
close to no effect as long as we do not choose it too close to R0.

There is an apparent tendency in figures 5(b) and (c) of the estimators to con-
verge to some wrong value of the tensor. This, however, is not in conflict with our
theoretical expectations. The estimators are expected to converge to the true tensors
as we increase the resolution, and in these simulations, we have fixed a resolution
and are simply examining the importance of the choices of radii. The examination
of the importance of the resolution follows in the next subsection.

From Figure 5(a), we see a tendency of the algorithms to approximate the tensors
either from above or below. One could ask whether relations

Φ̂r,s
k (A) ≤ Φr,s

k (A) ≤ Φ̃r,s
k (A)

exist, possibly with the inequalities reversed depending on the choice of k, r, s ∈
{0, 1, 2}, r + s ≤ 2. However, we see from Figures 5(b) and (c) that this is not the
case as both algorithms underestimate the tensor.

Analogously, we now follow procedure P in the case of a non-convex set. We
choose to consider the annulus A = cl(B2 \B1) + (1, 1)T . The reach of A is 1, so we
must choose d/

√
2 < R0 < R1 < R2 < 1. However, we now repeat procedure P(1) for

this non-convex set and allow for radii above the theoretical upper limit Reach(A)
in order to investigate how this affects the estimators. The result is illustrated in
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Figure 7: Procedure P(1) for the annulus A = cl(B2 \B1) + (1, 1)T with d−1 = 1000 and
R0 = Rmax/n for Rn with n = 2, 3. The dashed black line indicates the point when Rmax

is greater than Reach(A); the coloured dashed lines when all radii of the corresponding
algorithm are above Reach(A).

Figure 7, where we have chosen to plot the non-zero tensor entries Φ2,0
0 (A)(1,1) and

Φ1,1
0 (A)(1,1). Clearly, as soon as Rmax > Reach(A), the estimators become highly

unreliable. There is no visible effect when the lower radii also surpass the upper
bound.

For radii within the permitted range (d/
√

2,Reach(A)), we get a picture similar
to the one for the disc, but since the radii are now limited to a smaller interval, we
see the effect of choosing the radii too close to one another to a greater extent. The
picture is similar for the remaining tensors: for Rmax greater than 0.25, the error
of R3 is below 1%, whereas we need Rmax > 0.5 for the same precision in R2. In
general, results improve for higher choices of Rmax, and with Rmax = 0.95, we obtain
an error below 0.3%. For step (2) of procedure P , we thus pick Rmax = 0.95. The
picture here resembles Figure 7, so we do not include the plot. Again, we need to
choose R0 near the middle of the interval (d/

√
2, Rmax) in order to get satisfactory

results suggesting a strategy for choosing R0 when Rmax is fixed. This becomes even
more apparent when we simulate for fixed R0 in step P(3). Indeed for R0 equal to
for instance 0.1, the estimators are rather poor, most prominently for R2, no matter
how we choose Rmax. Choosing R0 = 0.5 gives much more accurate estimators, in
particular if Rmax is chosen close to Reach(A).

It thus appears that a recommendation for non-convex sets is to choose Rmax

close to the upper limit Reach(A) and put R0 = Rmax/2. These recommendations
are at least valid for the non-convex annulus, and it is now natural to ask whether
they apply also in the case of other, possibly more complex, non-convex sets.

One candidate for a more complex non-convex set is the complement of a (sta-
tionary) Boolean model. We will not go into details with the definition of Boolean
models here since we will only consider one concrete example; the interested reader
is instead referred to [17, Section 4.3]. Consider a stationary Poisson point process
in R2 with intensity γ > 0. A random compact set is attached to each point of the
process in such a way that the random sets are independent of each other and of
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Figure 8: Procedure P(3) for the complement A of the Boolean model in Figure 4(c)
with d−1 = 1000 and R0 = 0.03.

the Poisson process. The union Z of these sets forms a stationary Boolean model.
We consider here a Poisson process with intensity γ = 10 and discs as random com-
pact sets with a radius distribution given by the uniform distribution U(a, b) in the
interval between a = 0.08 and b = 0.16.

We will analyse Minkowski tensors of the Boolean model in the unit square
W = [0, 1]2; see Figure 4(c) for the realisation that was used in the analysis. It is
clear that Z ∩ W does not in general have positive reach (positive reach is only
possible if none of the discs overlap). Therefore, we consider instead its complement
A = (Z ∩ W )C . We have indicated the distance determining the reach of A in
Figure 4(c); Reach(A) = 0.0614. We then perform procedure P but restrict attention
to the tensors of rank zero: the Euler characteristic Φ0,0

0 (A), half the perimeter
Φ0,0

1 (A), and the area Φ0,0
2 (A) as illustrated by Figure 8. Here, we show the result of

simulations for step (3) of procedure P with R0 = 0.03, which was found by steps
(1) and (2) to be a good choice for the minimal radius. For this particular model,
it seems we have a challenge in finding truly good radii for obtaining satisfactory
estimators. Especially R2 is prone to error.

One explanation for the less precise estimators for the complement of the Boolean
model might be that we need to consider the model for higher resolutions. It is then
relevant to ask whether the same choices of radii are equally good for different choices
of resolution. We will explore this question shortly. The procedure P can be applied
to a test set for each of the algorithms R3 and R2 in turn in order to find good
choices of radii for each of them, but one may also choose to find those radii which
yield the best results for both algorithms simultaneously. The latter allows for what
could be considered a better basis for comparison of the algorithms later on when
we fix the radii and let the resolution vary. Incidentally, for the three test sets above,
we have chosen the same radii for R3 and R2 in the different steps of procedure P
because the best choices for R2 work equally well for R3 (although not necessarily
the other way around).

We check now whether our choice of resolution affects the way in which we
should choose the radii for a given test set. Consider again the disc B1 +(1, 1)T . The
simulations performed for this set, illustrated by Figure 5, make use of a resolution
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Figure 9: Comparison of effect of choices of radii on estimators for the Euler characteristic,
Φ0,0
0 (A), for different choices of resolution in procedure P(1) for A = B1 + (1, 1)T .

d−1 = 1000. We now carry out the same simulation but for different resolutions.
The results are shown in Figure 9, where the effect is illustrated for the Euler
characteristic, Φ0,0

0 (A). The graphs representing each of the four chosen resolutions
exhibit a similar behaviour. As could be expected, higher resolution yields better
estimators, but from the figure it would seem that the resolution only determines
how large radii are needed for good estimators, i.e. for low resolutions, one needs
to be able to choose rather high radii whereas high resolutions allow for choices
of smaller radii. This tendency is reproducible for the two other test sets as well
for all the estimators. This means that if we have a model for which the choice of
radii is restricted by the reach, we can compensate by choosing a higher resolution.
Moreover, if one choice of radii works well for a given resolution, that same choice
will also work for higher resolutions.

As stated in Section 3.3, R3 sets R1 = (R0 + Rmax)/2 by default. We have
examined the effect of varying R1 in the interval (R0, Rmax), but except for when R1

is very close to the limits of the interval, the choice of R1 seems to have no effect
at all. Therefore, minimising the number of input arguments for the algorithm by
preassigning R1 seems the best solution.

Concluding this section, we can give the following general recommendations for
the choice of radii. It is advantageous to choose Rmax large; we suggest 95% of
Reach(A) in the non-convex case and several diameters of A in the convex case.
The smallest radius, R0, is recommended to be chosen in the middle of the interval
(d/
√

2, Rmax), which turned out to work well for R2. Concerning R3, the choice of
R0 seems less critical as long as it is not chosen too close to either end of the interval
(d/
√

2, Rmax). For R3, setting R1 = (R0 +Rmax)/2 is recommended, and this choice
has already been made in our implementation of the algorithm.

5.2 Influence of resolution on the quality of estimators
Having chosen radii for the three test sets based on procedure P for a given res-
olution, we examine the influence of the resolution on the computed estimators; a
task which was partly commenced by the comparison in Figure 9. We simulate for

18



102 103

10−8

10−6

10−4

10−2

100

102

d−1

R3

R2

|Res(Φ̂0,0
0 (A1))|

|Res(Φ̃0,0
0 (A1))|

|Res(Φ̂0,0
0 (A2))|

|Res(Φ̃0,0
0 (A2))|

|Res(Φ̂0,0
0 (A3))|

|Res(Φ̃0,0
0 (A3))|

(a) A log-log plot of residuals for the Euler characteristic Φ0,0
0 (A) as functions of the resolution.
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(b) A log-log plot of residuals for the area Φ0,0
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Figure 10: Plots of the absolute Minkowski tensor residuals as functions of the resolution
for the three test sets A1 = B1+(1, 1)T with R0 = 5, Rmax = 10; A2 = cl(B2\B1)+(1, 1)T

with R0 = 0.5, Rmax = 0.95, and A3 the complement of the Boolean model with R0 = 0.03,
Rmax = 0.05.

varying choices of resolution and plot the estimators as functions hereof.
Figure 10 shows results for the three test sets of the previous subsection. As

we have fixed the radii, we have automatically set a lower limit for the resolution,
since we need to make sure that d/

√
2 < R0. As the three sets are plotted together,

the set with the smallest R0, the complement of the Boolean model, determines the
minimal resolution. Thus for R0 = 0.03, the resolution should be at least 24.

The functions plotted in Figure 10 are not, as previously, the estimators. Rather,
we plot the absolute deviation of the estimator from the true tensor; the abso-
lute residual. The residual Φ̂r,s

k (A)− Φr,s
k (A) of the estimator Φ̂r,s

k (A) is denoted by
Res(Φ̂r,s

k (A)) for k, r, s ∈ {0, 1, 2} with r + s ≤ 2. Figure 10(a) shows the result for
the Euler characteristic, Φ0,0

0 (A), and Figure 10(b) that for the area, Φ0,0
2 (A). The

functions are plotted on a log-log scale. This way, we are able to check the rate of
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convergence. Indeed, summing up on previous remarks, for estimators of the intrinsic
volumes, Φ0,0

k (A) with k ∈ {0, 1, 2}, calculated by either algorithm, the rate of con-
vergence is of order O(d) if A is convex or ρ-regular. In fact, for the volume tensors,
R2 yields estimators that converge to Φr,0

2 (A) with r ∈ {0, 1, 2} with speed O(d)
if A is a compact topologically regular set with boundary a 1-rectifiable Lebesgue
null set, which is less restrictive than the requirements of convexity or ρ-regularity.

That the speed of convergence of the estimator Φ̂r,s
k (A) towards Φr,s

k (A) is O(dm)
for m ∈ R means that

Res(Φ̂r,s
k (A)) ≤ c · dm

for some c ∈ R, where Φ̂r,s
k (A) is inherently a function of d. This implies that

log|Res(Φ̂r,s
k (A))| ≤ log(c) +m log(d). (5.1)

The disc is both convex and ρ-regular for ρ = 1, and the annulus is ρ-regular
for ρ = 1. The complement of the Boolean model is neither, but its boundary is
1-rectifiable. Hence, by (5.1), we expect to see linear graphs in Figures 10(a) and
10(b) with slope m equal to −1 (we are plotting as functions of d−1 and not d) for
the disc and the annulus. For the complement of the Boolean model we expect the
same in Figure 10(b), but we have no theoretical results on its convergence rate for
the Euler characteristic.

In Figure 10(a), linear fitting approximations yield:

|Res(Φ̂0,0
0 (A1))| ≈ 1.19 · log(d)− 9.15;

|Res(Φ̃0,0
0 (A1))| ≈ 1.28 · log(d)− 3.52;

|Res(Φ̂0,0
0 (A2))| ≈ 1.27 · log(d) + 0.36;

|Res(Φ̃0,0
0 (A2))| ≈ 1.30 · log(d) + 2.18;

|Res(Φ̂0,0
0 (A3))| ≈ 1.69 · log(d) + 7.86;

|Res(Φ̃0,0
0 (A3))| ≈ 1.30 · log(d) + 8.01.

These simulations indicate the following conclusions: Firstly, at least for the given
example sets, the asymptotic speed of convergence already holds for finite resolution
for a range of d that is realistic in practical applications. Even for the Boolean model,
for which we do not have an asymptotic speed of convergence bound from theory,
the speed is at least linear. Secondly, and maybe even more interestingly, the speed
of convergence in the examples is clearly better than dm with m = 1 as suggested by
the theory. This indicates that an improved asymptotic convergence rate holds and
could possibly be proven, at least for certain subclasses of sets with positive reach.

Similar conclusions can be made for Figure 10(b), where the linear equations are
given by:

|Res(Φ̂0,0
2 (A1))| ≈ 1.30 · log(d) + 1.72;

|Res(Φ̃0,0
2 (A1))| ≈ 1.56 · log(d) + 0.30;

|Res(Φ̂0,0
2 (A2))| ≈ 1.28 · log(d) + 2.66;

|Res(Φ̃0,0
2 (A2))| ≈ 1.41 · log(d)− 0.31;

|Res(Φ̂0,0
2 (A3))| ≈ 1.42 · log(d) + 3.41;

|Res(Φ̃0,0
2 (A3))| ≈ 1.24 · log(d)− 2.27.
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Again, the speed of convergence is super-linear in the considered range of d. It
appears that the speed of convergence of Φ̃0,0

2 (A) is better than the one of Φ̂0,0
2 (A)

except for the case A = A3, but the slope in this case is supposedly less meaningful
due to the huge fluctuation of the residuals (green circles). In fact, the coefficient of
determination, R2, equals 0.59 compared to 0.87 for A = A1 and 0.78 for A = A2,
indicating that the regression line is a rather poor approximation in the case A = A3.

That Φ̃0,0
2 (A) performs particularly well for A1 and A2 is explained by the fact

that this estimator is based on the basic counting scheme (4.1). For the circle,
A = A1, the speed of convergence problem corresponds essentially to the Gauss
circle problem, where the best known exponent [9] is m = 285/208 ≈ 1.37, but it is
conjectured [6] to be m = 1.5− ε for arbitrary ε > 0.

The graphs for R2 exhibit strong fluctuations of the residuals. However, as the
estimators for the volume tensors, Φ̃r,0

2 (A) with r ∈ {0, 1, 2}, are essentially based
on counting sampling points in A as explained above, a so-called Zitterbewegung
effect [1, p. 307], known from systematic sampling, occurs here, thus explaining the
fluctuations.

The rate of convergence for Φ̂r,s
k (A) and Φ̃r,s

k (A) with k, r, s ∈ {0, 1, 2} and r+s ∈
{1, 2} for convex and ρ-regular sets is O(

√
d). This asymptotic result is also tested

in practise for the disc and the annulus in Figure 11. Here, the absolute residual for
the tensor Φ1,1

1 (A)(1,1) is plotted. As before, we obtain linear equations:

|Res(Φ̂1,1
1 (A1)(1,1))| ≈ 1.30 · log(d)− 0.13;

|Res(Φ̃1,1
1 (A1)(1,1))| ≈ 1.30 · log(d)− 0.10;

|Res(Φ̂1,1
1 (A2)(1,1))| ≈ 1.23 · log(d) + 0.32;

|Res(Φ̃1,1
1 (A2)(1,1))| ≈ 1.31 · log(d) + 1.17,

which do not corroborate the theoretically expected rate of convergence correspond-
ing to a slope m = 0.5 but rather points to an even higher speed of convergence
comparable to that for the intrinsic volumes.

From Figures 10 and 11, it is evident that the more complicated the test set, the
higher resolution is required in order for the algorithms to produce good estimators.
For the disc, R3 has en error below 1% for resolutions above d−1 = 46 compared
to d−1 = 80 for the annulus. For the complement of the Boolean model, we need
resolutions well above 2000 to obtain such accurate estimators. In comparison, R2

has an error below 1% for resolutions above d−1 = 45 for the disc but d−1 = 285 for
the annulus. We cannot obtain this accuracy for the Boolean model with resolutions
below 10 000, but above 9000, we can get below 5%.

The majority of the previous plots have neglected to report results for tensors
that are (trivially) equal to zero with the exception of the Euler characteristic of
the annulus in Figure 10(a). For completeness, we plot such estimators in Figure 12,
again for the annulus. We see that not all estimators are identically zero, and here,
too, results depend on the resolution. All zero-tensor estimators are reported by the
algorithms R3 and R2, so these can be used as indicators of the overall quality of the
estimators for a given resolution. The zero-tensors for the disc are in fact identically
zero regardless of resolution, confirming that more complicated sets demand higher
resolutions.
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Figure 11: A log-log plot of the absolute Minkowski tensor residuals for a rank two
tensor as a function of the resolution for A1 = B1 + (1, 1)T with R0 = 5, Rmax = 10 and
A2 = cl(B2 \B1) + (1, 1)T with R0 = 0.5, Rmax = 0.95.
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Figure 12: Plot of the Minkowski tensor estimators for zero-tensors as functions of the
resolution for A = cl(B2 \B1) + (1, 1)T with R0 = 0.5, Rmax = 0.95.

From our simulations, we make the following observations. Firstly, it has proven
particularly difficult to compute good estimators for the Euler characteristic, Φ0,0

0 (A),
for both algorithms R3 and R2, unless we consider very simple models such as
the disc. Secondly, R2 produces better estimators for the volume tensors than R3.
Lastly, smaller resolutions suffice for simpler models. This means that for the sim-
plest model, the disc, all tensors are computed fairly accurately by both algorithms
already for low resolutions, and residuals of both algorithms are low. In this case,
the error of R2 is smaller than that of R3 because the volume tensors are the ones
more difficult to estimate. However, as complexity of the model increases, difficulty
of estimating the Euler characteristic surpasses the volume tensors, and so R3 be-
comes the better choice of algorithm since it estimates all but the volume tensors
better than R2.
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Regarding the speeds on convergence, the theoretical results for both algorithms
already appear to hold under a resolution regime that is realistic in practice. In fact,
the speeds of convergence deduced from our simulations are higher than the theoret-
ically expected and also apply to sets that do not meet the necessary requirements
for the theorems on multigrid convergence to apply.

Finally, running our simulations in MATLAB, we have observed that R2 is no-
ticeably faster thanR3. This is likely due to the considerations made at the beginning
of Section 5.

6 Discussion

Based on our findings from the various plots in Section 5, we conclude that the
algorithms R3 and R2 do in fact yield good estimators for the Minkowski tensors
in the setting of finite resolution. Algorithm R3 has proven more accurate than R2

except in the case of the volume tensors.
On the other hand, R2 is generally faster than R3 in computing the estimators,

and for sufficiently high resolutions, R2 does produce satisfactory estimators. Com-
putations times are, however, fairly small in general. Thus, to obtain the best results,
our recommendation is to use (4.1) to obtain reliable estimators for the volume ten-
sors and subsequently use R3 to estimate the remaining Minkowski tensors. Hence
we suggest not to use R2 at all apart from its volume tensor estimators in (4.1).
First applying (4.1) and thereupon R3 increases computation times but yields far
better estimators. The algorithm defined in this way is named Minktensor2D:

Algorithm Minktensor2D

Input:
• Digitisation A0 = A ∩ dL of a compact topologically regular set A ⊂ R2

with positive reach;
• Lattice distance d > 0 of dL;
• Two radii R0 and R2 satisfying d/

√
2 < R0 < R2 < Reach(A).

Action:
• Calculate Φ̂r,0

2 (A0) using (4.1) for r ∈ {0, 1, 2};
• Calculate Vr,s

Ri
(A0) using (3.7) for Ri, i = 0, 1, 2, with R1 = (R0 +R2)/2,

and for all r, s ∈ {0, 1, 2} with r + s ≤ 2;
• Determine the corresponding Minkowski tensors by (3.8).

Output:
• Estimators Φ̂r,s

k (A0) for all k, r, s ∈ {0, 1, 2} with r+ s ≤ 2 (including the
trivial ones of the form Φ̂0,1

k (A0) for model control) of the corresponding
Minkowski tensors.

If any result of the algorithm is numerically below 10−6, the output is rounded off
to zero.

All MATLAB-files for Minktensor2D are available for download [3].
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With regard to the practical use of Minktensor2D, we suggest that in the setting
of finite positive reach, one chooses Rmax close to but strictly smaller than the reach;
for instance Rmax equal to 95% of Reach(A). The lower radius R0 should be chosen
near Rmax/2. When there is no upper bound on Rmax, i.e. the reach is infinite, Rmax

can be chosen arbitrarily large, but a choice equal to several diameters of the object
is advised. Accuracy of the algorithms is then determined by the resolution. The
more complicated the object, the larger resolution is necessary.

A disadvantage of the algorithm is that one needs to know (a lower bound for)
the reach of the object. This is a hindrance if one wishes to extract geometric
knowledge of some unknown set. Simply guessing the reach can cause major errors,
since it is vital that the radii chosen for the algorithm are strictly smaller than the
reach as illustrated in Figure 7. Further, in applications, data is not always given
as black-and-white digitisations but rather as grey-scale images. Here, one assigns
an intensity ranging from 0 to 1 to each sampling point of the lattice depending on
the overlap of the object with the Voronoi cell corresponding to the sampling point.
Local algorithms for Minkowski tensor estimation based on grey-scale input can for
instance be found in [22].

We conclude by mentioning that an implementation of the above algorithms in
dimension three or higher is possible. However, it appears to be difficult to determine
the integrals on the right-hand side of (3.7) numerically. One possibility would be to
use a sufficiently fine approximation of the R-bounded Voronoi cells by polytopes for
which an exact evaluation of the corresponding integral is possible. This has already
been used in [13] to solve a related problem.
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