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Abstract

Motivated by applications in local stereology, a new rotational Crofton formula
is derived for Minkowski tensors. For sets of positive reach, the formula shows
how rotational averages of intrinsically defined Minkowski tensors on sections
passing through the origin are related to the geometry of the sectioned set.
In particular, for Minkowski tensors of order j − 1 on j-dimensional linear
subspaces, we derive an explicit formula for the rotational average involving
hypergeometric functions. Sectioning with lines and hyperplanes through the
origin is considered in detail. We also study the case where the sections are not
restricted to pass through the origin. For sets of positive reach, we here obtain
a Crofton formula for the integral mean of intrinsically defined Minkowski
tensors on j-dimensional affine subspaces.

Keywords: integral geometry, sets of positive reach, Minkowski tensors, local
stereology

1 Introduction

In local stereology, rotational averages of measurements on sections through fixed
points are considered [13]. Local stereology is applied in optical microscopy which
allows virtual sections to be generated through reference points in a tissue block.
A typical example is optical sectioning through the nucleus of a biological cell. A
technical advantage of such sectioning in biological material is that the boundary of a
central section is often much more clearly visible than the boundary of a peripheral
section. Local stereology is by now recognized as being a very powerful tool in
biomedicine, especially in neuroscience and cancer grading.

Motivated by applications in local stereology, we study in the present paper
functionals Ψ defined on a set of positive reach X by

Ψ(X) =

∫

Ldj
ΨL(X ∩ L) dL, (1)

where Ldj is the space of all j-dimensional linear subspaces in Rd, ΨL is a functional
on the sets X ∩ L and dL is the element of the rotation invariant measure on Ldj .
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Such functionals arise in local stereology where ΨL(X ∩L) is observed on a random
section L, distributed according to a normalized version of the rotation invariant
measure. Then, (1) implies that the mean of ΨL(X ∩L) is, up to a known constant,
equal to Ψ(X).

For the fundamental case where ΨL is one of the intrinsic volumes, an explicit
expression for Ψ(X) was determined under weak regularity conditions in [14], see
also [3]. In particular, explicit expressions for Ψ(X) are available in the case where
ΨL is volume and surface area in L. In the present paper, we will generalize this
result by applying (1) to a general class of functionals ΨL that contains Minkowski
tensors on L of arbitrary rank. The intrinsic volumes are Minkowski tensors of
rank 0. Minkowski tensors of rank 1 or higher contain important information about
position, shape and orientation. The particular case where ΨL is a volume tensor
was treated in [2, (10) and Proposition 5.3]. In the present paper, we treat explicitly
the case of surface tensors.

We also study functionals of the form

Ψ(X) =

∫

Edj
ΨE(X ∩ E) dE, (2)

where Edj is the space of all j-dimensional affine subspaces in Rd, ΨE is a functional
on the sets X ∩ E and dE is the element of the motion invariant measure on Edj .

Functionals of the form (2) are well studied in the literature. In the case where
ΨE is an intrinsic volume, Ψ is again an intrinsic volume. This is the classical Crofton
formula. The case of Minkowski tensors has been treated in [11] while very general
formulae are derived in [19]. Recently, Hug and Weis [12] have studied the case where
ΨE(X ∩ E) is substituted by a tensor-valued measure.

In the present paper, we consider the case where ΨE is an arbitrary Minkowski
tensor. Using the basic theorems in [19], we show for an arbitrary set X of positive
reach that the functional Ψ in (2) is a linear combination of Minkowski tensors. The
same formulae are obtained for total measures in the Crofton formulae for tensor-
valued measures, derived for convex bodies in [12].

The paper is structured as follows. In Section 2, definitions and basic notation
used for Grassmann manifolds, generalized curvature measures, Minkowski tensors,
and hypergeometric functions are shortly summarized. The rotational integral for-
mulae of the type (1) are derived in Section 3, while some affine counterparts of the
type (2) may be found in Section 4. Proofs are deferred to an Appendix.

2 Notation and definitions

We first introduce some relevant notation and definitions that we are going to use
throughout the paper.

2.1 Grassmann manifolds

Let Ldj denote the Grassmannian consisting of j-dimensional linear subspaces of Rd.
The measure we consider on Ldj is the rotation invariant measure, which is unique up
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to a constant. More specifically, the measure is the j(d − j)-dimensional Hausdorff
measure on Ldj considered as a subspace of the vector space

∧
j Rd by identifying

L ∈ Ldj with v1 ∧ · · · ∧ vj for any oriented orthonormal basis v1, . . . , vj spanning L,
see [5, Chapter 1]. This measure has total measure given by

cd,j := Hj(d−j)(Ldj ) =
σd · · ·σd−j+1

σj · · ·σ1

,

see [5, 3.2.28]. Here, Hm denotes the m-dimensional Hausdorff measure and

σk = 2πk/2/Γ(k/2) = Hk−1(Sk−1)

is the surface area of the (k − 1)-dimensional sphere. By convention cd,0 = 1.
For L ∈ Ldj−1 and x /∈ L, we let Lx ∈ Ldj denote the linear subspace spanned

by L and x. We let p(x|L) be the orthogonal projection of x onto L and π(x|L) =
p(x|L)/|p(x|L)| ∈ Sd−1 its normalization. Similarly, if v is a vector, we write p(x|v)
for the projection of x onto the line through the origin spanned by v and π(x|v)
for its normalization. If L ⊆ Rd is a linear subspace of Rd of dimension larger than
j, then LLj denotes the space of j-dimensional linear subspaces of L. If v ∈ Rd is
a non-zero vector, then Lvj denotes the set of j-dimensional linear subspaces of Rd

containing v.
Given two subspaces Lj ∈ Ldj and Lk ∈ Ldk, we define the generalized sine

function G(Lj, Lk) as follows. An orthonormal basis for Lj ∩ Lk is extended to an
orthonormal basis for Lj and one for Lk. Then, G(Lj, Lk) is the volume of the
parallelepiped spanned by all these vectors. In particular, G(Ld−1, Lk) = |p(n|Lk)|,
where n is a unit normal of Ld−1.

Let v ∈ Rd and assume v 6= 0. Consider the function

h : Ldj\{L ∈ Ldj | v ⊥ L} → Sd−1

mapping L to π(v|L). Then, the (d− 1)-Jacobian (see [5]) was computed for L with
v /∈ L and v /∈ L⊥ in [19, Lemma 4.2] to be

Jd−1h(L) =

( |p(v|L⊥)|
|p(v|L)|

)j−1

.

This allows us to apply the coarea formula to a bounded measurable function f :
Ldj → R as follows

∫

Ldj
f(L) dL =

∫

Sd−1

1{〈u,v〉>0}

(
1− 〈u, v〉2
〈v, u〉2

) 1−j
2
∫

Lv⊥∩u⊥j−1

f(Mu) dM du. (3)

Here, dL denotes the element of the rotation invariant measure on Ldj while du is the
element of the (d − 1)-dimensional Hausdorff measure on Sd−1. We will also make
repeated use of the following integration formula, see e.g. [8, Lemma 1.3.1],

∫

Sd−1

f(u) du =

∫

Sd−1∩v⊥

∫ 1

−1

f
(
tv +

√
1− t2w

)
(1− t2)

d−3
2 dt dw, (4)
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where v ∈ Sd−1 is any unit vector.
Finally, we let Edj denote the affine Grassmannian consisting of j-dimensional

affine subspaces of Rd. The element of the motion invariant measure on Edj is denoted
by dE where for E = L + y with y ∈ L⊥ we have dE = dy dL. If L ⊆ Rd is a j-
dimensional linear subspace, we denote by Sj−1(L) the unit sphere in L and ΣL =
L×Sj−1(L). Similarly, if E = L+y is an affine subspace, we write Sj−1(E) = Sj−1(L)
and ΣE = E × Sj−1(E).

2.2 Generalized curvature measures

The reach of a closed set X ⊆ Rd is the supremum of all R satisfying that every
point x at distance less than R from X has a unique closest point in X. We denote
this closest point by pX(x) ∈ X. The space of non-empty compact sets in Rd (resp.
E ∈ Edj ) having positive reach will be denoted by PRd (resp. PR(E)). Similarly, let
Kd (resp. K(E)) denote the set of non-empty compact convex subsets of Rd (resp.
E ∈ Edj ). All convex sets have infinite reach, so Kd ⊆ PRd.

For X ∈ PRd, the generalized curvature measures Λk(X; · ), k = 0, . . . , d − 1,
are measures on Σ. They were introduced for sets of positive reach in [25], see also
[20] in the case of convex sets, and they satisfy the following local Steiner formula

Hd
(
x ∈ Rd

∣∣∣ 0 < d(x,X) < ε,
(
pX(x), x−pX(x)

|x−pX(x)|
)
∈ A

)
=

d−1∑

k=0

εd−kκd−kΛk(X;A),

for any Borel set A ⊆ Σ and ε smaller than the reach of X. The so-called intrinsic
volumes are obtained as Vk(X) = Λk(X; Σ), k = 0, . . . , d− 1.

The generalized curvature measures can be described explicitly as follows. For
X ∈ PRd, the unit normal bundle norX of X is the set of support elements, i.e.
the set of pairs (x, n) for which x is a boundary point of X and n is an outer unit
normal of X at x. More specifically,

norX =
{(
x, y−x|y−x|

)
∈ Rd × Sd−1 | y /∈ X, pX(y) = x

}
.

This is a (d − 1)-rectifiable set. A basis for the tangent space of norX at (x, n) is
given by the vectors

(
1√

1+κi(x,n)2
ai(x, n), κi(x,n)√

1+κi(x,n)2
ai(x, n)

)
, i = 1, . . . , d− 1, (5)

where ai(x, n) are the principal directions at (x, n) corresponding to the principal
curvatures κi(x, n), i = 1, . . . , d − 1. Integration of a locally bounded measurable
function ψ : Σ→ R with respect to Λk(X; · ) is then given by

∫

Σ

ψ(x, n) Λk(X; d(x, n)) (6)

=
1

σd−k

∫

norX

ψ(x, n)
∑

|I|=d−k−1

∏
i∈I κi(x, n)

∏
i

√
1 + κi(x, n)2

Hd−1(d(x, n)).
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If X ∈ PR(E) for some E ∈ Edj , there are also generalized curvature measures
relative to E, denoted ΛE

k (X; · ). These are measures on ΣE satisfying the analogue
of the local Steiner formula in E

Hj
(
x ∈ E | 0 < d(x,X) < ε,

(
pX(x), x−pX(x)

|x−pX(x)|

)
∈ A

)
=

j−1∑

k=0

εj−kκj−k ΛE
k (X;A),

where A ⊆ ΣE is a Borel set and ε is smaller than the reach of X.
We are going to consider families of valuations Ψψ

k,E on PR(E) of the following
form. For X ∈ PR(E),

Ψψ
k,E(X) =

∫

ΣE

ψ(E, x, n) ΛE
k (X; d(x, n)), (7)

where ψ : Udj → R is a function on

Udj =
{

(E, x, n) ∈ Edj × Rd × Sd−1 | (x, n) ∈ ΣE
}
. (8)

To ensure integrability, we assume that ψ is measurable and locally bounded.

2.3 Minkowski tensors

We are particularly interested in a special case of (7), known as the Minkowski
tensors. To define these, we let Tp be the vector space of symmetric tensors of rank
p ∈ N0 on Rd. The volume tensors are defined for X ∈ PRd and p ∈ N0 by

Φp,0
d (X) =

∫

X

xp dx ∈ Tp,

where xp is the tensor product of p copies of x. The integration is to be understood
coordinatewise. The integral geometry of volume tensors is well understood [2, 11,
18, 26], so this paper will focus on the remaining Minkowski tensors. These are
defined for r, s ∈ N0 and 0 ≤ k ≤ d− 1 as follows

Φr,s
k (X) =

σd−k
r!s!σd−k+s

∫

Σ

xrns Λk(X; d(x, n)) ∈ Tr+s, (9)

where xrns denotes the symmetric tensor product of r copies of x and s copies of n.
The tensors in (9) are sometimes called surface tensors. Using (6) coordinatewise,
we also have

Φr,s
k (X) =

1

r!s!σd−k+s

∫

norX

xrns
∑

|I|=d−k−1

∏
i∈I κi(x, n)

∏
i

√
1 + κi(x, n)2

Hd−1(d(x, n)).

If X ∈ PR(E), we can replace Σ and Λk(X; · ) by ΣE and ΛE
k (X; · ) in (9). The

resulting tensors are thus defined relative to E (i.e. intrinsically defined) and are
denoted by Φr,s

k,E(X).
In the literature, Minkowski tensors are usually only considered for X ∈ Kd, but

since both the definition and the results of this paper hold for sets of positive reach,
satisfying mild regularity conditions, we will be working in this generality.
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We let Q ∈ T2 denote the metric tensor Q =
∑d

i=1 v
2
i , where v1, . . . , vd is an

orthonormal basis of Rd. Similarly, for L ∈ Ldj we define the metric tensor on L by
Q(L) =

∑j
i=1w

2
i , where w1, . . . , wj is any orthonormal basis for L.

The Minkowski tensors, considered as functionals on Kd with values in Tr+s,
have the following properties:

(i) Continuity with respect to the Hausdorff metric on Kd.
(ii) Isometry covariance: Φr,s

k (X + t) =
∑

l ϕr+s−l(X)tl for all t ∈ Rd, and for any
rotation θ ∈ SO(d), Φr,s

k (θX) = θΦr,s
k (X) (see [10] for details).

(iii) Valuation property: If X1, X2, X1 ∪X2 ∈ Kd, then
Φr,s
k (X1) + Φr,s

k (X2) = Φr,s
k (X1 ∪X2) + Φr,s

k (X1 ∩X2).

According to Alesker’s classification theorem [1], all tensor-valued functionals with
the properties (i)–(iii) are linear combinations of the tensors QlΦr,s

k (X).
The Minkowski tensors can be viewed as the total measures of the tensor valued

measures given for X ∈ PRd on a Borel set A ⊆ Σ as follows

Φr,s
k (X;A) =

σd−k
r!s!σd−k+s

∫

Σ

1{(x,n)∈A}x
rns Λk(X; d(x, n)).

These measures are called the local Minkowski tensors. In the classification of local
tensor valuations on Kd, some new tensor measures Φr,s,1

k with very similar properties
were discovered [9, 10]. These are the so-called generalized local Minkowski tensors
given by ([10, (2.38)])

Φr,s,1
k (X;A)

=
1

r!s!σd−k+s

∫

norX∩A
xrns

∑

|I|=d−k−1

∏
i∈I κi∏

i

√
1 + κ2

i

∑

i/∈I
ai(x, n)2Hd−1(d(x, n))

for k ∈ {1, . . . , d − 1}, r, s ≥ 0, and A ⊆ Σ a Borel set. We let Φr,s,1
k (X) =

Φr,s,1
k (X; Σ). Although the local Minkowski tensors QlΦr,s

k , 2l + r + 2 = p, and
the generalized local Minkowski tensors QlΦr,s,1

k , 2l+r+s+2 = p, are linearly inde-
pendent, there are linear dependences between their total measures, as the following
proposition shows.

Proposition 2.1. Let X ∈ PRd, r ≥ 0, and s ≥ 2. Then

Φr,s−2,1
d−1 (X) = QΦr,s−2

d−1 (X)− 2πsΦr,s
d−1(X). (10)

For 1 ≤ k ≤ d− 2,

Φr,s−2,1
k (X) =

s−1∑

l=0

2π(s− 1− l)Φr+l+1,s−l−1
k−l−1 (X)−Q

s−3∑

l=0

Φr+l+1,s−l−3
k−l−1 (X) (11)

and

Φr,s−2,1
k (X) = Q

r∑

l=0

Φr−l,s−2+l
k+l (X)−

r∑

l=0

2π(s+ l)Φr−l,s+l
k+l (X). (12)

In particular,
Φ0,s−2,1
k (X) = QΦ0,s−2

k (X)− 2πsΦ0,s
k (X). (13)
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For X ∈ Kd, the results in Proposition 2.1 were observed in [9, Remark 4.1]
(referring to computations in [11]). In the Appendix, it is shown that the definition
of Φr,s,1

k makes sense and Proposition 2.1 holds more generally for sets of positive
reach.

We end the discussion of tensors by defining the contraction of two tensors T ∈
Tr+s and S ∈ Tr as follows: If S = v1 � · · · � vr, where � denotes the symmetric
tensor product, then the contraction Contr(T, S) of T and S is an element of Ts
given by

Contr(T, v1 � · · · � vr)( · ) = T (v1, . . . , vr, · ),
where T is identified with its dual map (Rd)r+s → R. This is extended to all S by
linearity.

2.4 Hypergeometric functions

Hypergeometric functions show up in many of the formulae below. We therefore re-
call some basic definitions and properties here. More information can be found in [22]
or [23]. The hypergeometric function pFq has p+q parameters a1, . . . , ap, b1, . . . , bq ∈
R and is given by the power series expansion

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

n=0

∏p
i=1(ai)n∏q
i=1(bi)n

zn

n!
, z ∈ R,

where the Pochhammer symbol is defined by

(a)n =
Γ(a+ n)

Γ(a)
= a · (a+ 1) · · · (a+ n− 1)

when n is a positive integer and (a)0 = 1. We shall only need the case p = q + 1.
Then pFq has convergence radius at least 1 and converges absolutely at z = 1 if∑

i ai −
∑

i bi > 0. If some bi ≤ 0 is an integer (and bi is maximal among b1, . . . , bq
with this property), then pFq is undefined unless there is an integer 0 ≥ aj ≥ bi, in
which case we define

pFq(a1, . . . , ap; b1, . . . , bq; z) =

−aj∑

n=0

∏p
1(ai)n∏q
i (bi)n

zn

n!
.

(This interpretation seems to be non-standard when aj = bi, but we include this
case to simplify notation later).

The most important case is p = 2 and q = 1, where we have the following integral
representation for 0 < b < c

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− zt)−atb−1(1− t)c−b−1 dt.

We will also need Gauss’s hypergeometric theorem

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , (14)

which holds whenever c > a+ b.
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3 Rotational Crofton formulae

3.1 A general rotational formula

In this section, we consider rotational integrals of the form

Ψ(X) =

∫

Ldj
Ψψ
k,L(X ∩ L) dL, (15)

where X ∈ PRd is a set of positive reach, Ψψ
k,L is a functional on PR(L) of the

form (7), and 0 ≤ k < j < d.
We will restrict ourselves to the class P̃Rd

consisting of sets X of positive reach,
satisfying:

(i) o /∈ ∂X.

(ii) For almost all L ∈ Ljd, there is no (x, n) ∈ norX with x ∈ L and n perpendic-
ular to x.

According to [6, Theorem 4.10], the condition (ii) ensures that X ∩ L has positive
reach for almost all L and hence the integrand in (15) is defined almost surely. The
condition (i) is discussed in Remark 3.2 below. The restriction to P̃Rd is rather mild.
It was thus shown in [14, Proposition 1] that the class P̃Rd contains all convex sets
X satisfying o /∈ ∂X. Furthermore, if X ∈ PRd, then almost all translations of X
will belong to P̃Rd.

Theorem 3.1 below shows that the integral in (15) exists for all X ∈ P̃Rd.
Moreover, the theorem gives an explicit formula for Ψ(X). In the special case where
ψ is a function of x only, such a formula was already given in [14, p. 558]. To state
the theorem, we introduce for (x, n) ∈ norX the notation AI(x, n) for the tangent
subspace

AI(x, n) = span{ai(x, n), i /∈ I},
where I ⊆ {1, . . . , d− 1} and ai(x, n), i = 1, . . . , d− 1, are the principal directions.

Theorem 3.1. Suppose X ∈ P̃Rd
. Let ψ : Udj → R be a locally bounded measurable

function and 0 ≤ k < j < d. Then,
∫

Ldj
Ψψ
k,L(X ∩ L) dL =

1

σj−k

∫

norX

1

|x|d−j
∑

|I|=j−1−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

(16)

×
∫

Lx⊥j−1

ψ
(
Lx, x, π

(
n|Lx

))G
(
Lx, AI(x, n)

)2

∣∣p(n|Lx)
∣∣j−k dLHd−1(d(x, n)).

In particular, the integral on the left hand side exists.

A proof of Theorem 3.1 can be found in the Appendix. The proof follows the
lines of [14], but avoids the theory of slices. Instead, the area and coarea formulae
are applied directly.
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Remark 3.2. Theorem 3.1 does not hold if the assumption (i) is relaxed. As a
simple counterexample, let d = 2, j = 1, and k = 0. Let X be a polygon with a
vertex at o and let ψ ≡ 1. Then, Ψψ

0,L(X ∩ L) = 1 for all L ∈ L2
1 and the left hand

side of (16) becomes c2,1 = π. The inner integral at the right hand side of (16) is
simply |p(n|x)|. Since {(o, n) ∈ norX} has positive measure, the right hand side of
(16) is undefined.

In the special case k = j−1, Ψψ
k,L(X∩L) is an integral with respect to the Haus-

dorff measure on the normal bundle of X ∩ L. Since G
(
Lx, A{1,...,d−1}

)
=
∣∣p(n|Lx)

∣∣,
Theorem 3.1 shows that the rotational integral Ψ(X) is again an integral with re-
spect to the Hausdorff measure over the normal bundle of X. This is made precise
by the following corollary.

Corollary 3.3. Suppose X ∈ P̃Rd
. Let ψ : Udj → R be a locally bounded measurable

function and 1 ≤ j < d. Then
∫

Ldj
Ψψ
j−1,L(X ∩ L) dL

=

∫

norX

1

|x|d−j
∫

Lx⊥j−1

ψ
(
Lx, x, π

(
n|Lx

))∣∣p(n|Lx)
∣∣ dLΛd−1(X; d(x, n)).

3.2 Rotational Crofton formulae for Minkowski tensors

If we choose
ψ(L, x, n) =

σj−k
r!s!σj−k+s

xrns

in (7), then Ψψ
k,L is the Minkowski tensor Φr,s

k,L in L and Theorem 3.1 becomes a
result concerning the rotational integral of Minkowski tensors.

The special case s = 0 was treated in [2, Proposition 5.3]. For s > 0 and k =
j − 1, the formula in Theorem 3.1 can be given a more explicit expression. This
is shown in the following theorem when j > 1. The case j = 1 is simpler and is
postponed to Section 3.3. To state the theorem, we introduce the following notation
for (x, n) ∈ norX:

α = α(x, n) = sin(∠(x, n)) =
√

1− 〈x,n〉2|x|2 ,

where ∠(x, n) is the angle between x and n.

Theorem 3.4. Suppose X ∈ P̃Rd
and 1 < j < d. Then

∫

Ldj
Φr,s
j−1,L(X ∩ L) dL =

σ1cd−3,j−2

r!s!σs+1

∑

a+b+c+2l=s

(
s

a, b, c, 2l

)
σ2l+d−2σd−1+2b+2c+4l

σ2l+1σj−1+2b+2c+2lσd−j+2l

×
∑

p+q+t+v=l

(
l

p, q, t, v

)
(−1)q+v+b2t+1Qp

∫

norX

nc+2q+t xr+a+b+2v+t

|x|d−j+a+b+2v+2t

× α2p〈x, n〉a+b+t
2F1

(
s−1

2
, d−j+2l

2
; d−1+2b+2c+4l

2
;α2
)

Λd−1(X; d(x, n)).

For α = 1, the integrand should be interpreted as the limit when α→ 1.
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We remark here that in the case where X is convex and o is an interior point
of X, the situation α = 1 does not occur.

Proof. Corollary 3.3 shows that
∫

Ldj
Φr,s
j−1,L(X ∩ L) dL (17)

=
σ1

r!s!σs+1

∫

norX

xr

|x|d−j
∫

Lx⊥j−1

p
(
n|Lx

)s
∣∣p
(
n|Lx

)∣∣s−1 dLΛd−1(X; d(x, n)).

We compute the inner integral. Write n = nx + nx⊥ where nx = 〈n, x〉x/|x|2 is the
projection of n onto x and nx⊥ the projection of n onto x⊥. Then,

I :=

∫

Lx⊥j−1

p
(
n|Lx

)s∣∣p
(
n|Lx

)∣∣1−s dL

=

∫

Lx⊥j−1

(
nx + p

(
nx⊥|L

))s∣∣nx + p
(
nx⊥ |L

)∣∣1−s dL.

If nx⊥ 6= 0, we may use (3) and (4) with v = nx⊥/|nx⊥ | and find

I = cd−3,j−2

∫

Sd−2(x⊥)

1{〈u,n
x⊥ 〉>0}

×
(√|nx⊥|2 − 〈nx⊥ , u〉2

〈nx⊥ , u〉

)2−j (nx + 〈nx⊥ , u〉u
)s

∣∣nx + 〈nx⊥ , u〉u
∣∣s−1 du

= cd−3,j−2

∫

Sd−3(x⊥∩n⊥)

∫ 1

0

tj−2(1− t2)
d−2−j

2

×
(
nx + αt

(
tα−1nx⊥ +

√
1− t2ω

))s

((1− α2) + α2t2)
s−1
2

dt dω

= cd−3,j−2

∑

a+b+l=s

(
s

a, b, l

)
naxn

b
x⊥α

l (18)

×
∫

Sd−3(x⊥∩n⊥)

∫ 1

0

ωltj−2+2b+l((1− α2) + α2t2)
1−s
2 (1− t2)

d−2−j+l
2 dt dω.

Note that ∫

Sd−3(x⊥∩n⊥)

ωl dω =

{
2σl+d−2

σl+1
Q(x⊥ ∩ n⊥)

l
2 , l even,

0, l odd,
(19)

as shown in e.g. [21, (24)], and that

Fd,j,s,l,b(α
2) :=

∫ 1

0

tj−2+2b+2l((1− α2) + α2t2)
1−s
2 (1− t2)

d−j−2
2

+l dt

=
1

2

∫ 1

0

(1− t) j−3+2b+2l
2 (1− α2t)

1−s
2 t

d−j−2+2l
2 dt

=
σd−1+2b+4l

σj−1+2b+2lσd−j+2l
2F1

(
s−1

2
, d−j+2l

2
; d−1+2b+4l

2
;α2
)

(20)
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for α < 1. This yields

I = cd−3,j−2

∑

a+b+2l=s

2
σ2l+d−2

σ2l+1

(
s

a, b, 2l

)
naxn

b
x⊥α

2lQ(x⊥ ∩ n⊥)lFd,j,s,l,b(α
2), (21)

when α < 1. For α = 1, only terms with a = 0 contribute to (18) since nx = 0. This
corresponds to interpreting terms of the form

naxFd,j,s,l,b(α
2)

in (21) as the limit when α → 1. Indeed, this holds for a = 0 because s = b + 2l in
this case, and hence (14) shows that Fd,j,s,l,b(1) is finite. For a > 0, we have

|nx|aFd,j,s,l,b(α2) = (1− α2)
s−b−2l

2
1

2

∫ 1

0

(1− t) j−3+2b+2l
2 (1− α2t)

1−s
2 t

d−j−2+2l
2 dt

= (1− α2)
1
2

1

2

∫ 1

0

(1− t) j−3+2b+2l
2

(
1− α2

1− α2t

) s−b−2l−1
2

(1− α2t)
−b−2l

2 t
d−j−2+2l

2 dt

≤ (1− α2)
1
2

1

2

∫ 1

0

(1− t) j−3+b
2 t

d−j−2+2l
2 dt.

Our assumptions on j ensure that this converges to 0 when α→ 1.
It is easy to check that the formula (21) also holds when nx⊥ = 0 since α = 0

in this case. Finally, we use that nx = 〈n, x〉x/|x|2 and nx⊥ = n − 〈n, x〉x/|x|2 to
obtain

naxn
b
x⊥ =

b∑

c=0

(
b

c

)
(−1)b−cncxa+b−c〈n, x〉a+b−c|x|−2(a+b−c) (22)

and

Q(x⊥ ∩ n⊥)l =

(
Q−

(
x

|x|

)2

−
(
nx⊥

|nx⊥|

)2)l
(23)

=
∑

p+q+v+t=l

(
l

p, q, v, t

)
(−1)q+v2tα−2(q+v+t)〈x, n〉t|x|−2v−2tQpn2q+tx2v+t.

Inserting everything in (17) and renaming indices proves the theorem.

Example 3.5. Let d = 3 and j = 2. Previously, explicit formulae for
∫

L32
Φr,0

2,L(X ∩ L) dL and
∫

L32
Φr,0

1,L(X ∩ L) dL

have been given [2, Example 5.2 and 5.4]. Theorem 3.4 opens up for studying the
integrals ∫

L32
Φr,s

1,L(X ∩ L) dL

for arbitrary s.
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For s = 1, we use that 2F1(0, b; c;α2) = 1 and get
∫

L32
Φr,1

1,L(X ∩ L) dL

=
1

r!π

∑

a+b+c=1

σ2+2b+2c

σ1+2b+2c

(−1)b
∫

norX

nc
xr+a+b

|x|d−j+a+b
〈x, n〉a+b Λ2(X; d(x, n))

=
1

2r!

(∫

norX

xr+1

|x|2 〈x, n〉Λ2(X; d(x, n)) +

∫

norX

n
xr

|x| Λ2(X; d(x, n))

)
.

For s = 2, Theorem 3.4 yields the following expression
∫

L32
Φr,2

1,L(X ∩ L) dL =
2

σ3r!

( ∑

a+b+c=2

(
2

a, b, c

)
(−1)b (24)

×
∫

norX

ncxr+a+b 〈x, n〉a+b

|x|1+a+b
F3,2,2,0,b+c(α

2) Λ2(X; d(x, n))

+
∑

p+q+t+v=1

(−1)q+v2tQp

×
∫

norX

n2q+txr+2v+tα
2p〈x, n〉t
|x|1+2v+2t

F3,2,2,1,0(α2) Λ2(X; d(x, n))

)
,

where Fd,j,s,l,b is as in (20). The hypergeometric functions involved can be found
at [23]. If K and E denote the complete elliptic integrals of the first and second
kind, respectively, we get

F3,2,2,0,0(α2) = π
2 2F1

(
1
2
, 1

2
, 1;α2

)
= K(α2),

F3,2,2,0,1(α2) = π
4 2F1

(
1
2
, 1

2
, 2;α2

)
= α−2(E(α2) + (α2 − 1)K(α2)),

F3,2,2,1,0(α2) = π
16 2F1

(
1
2
, 3

2
, 3;α2

)
= 1

3α4 (2(α2 − 1)K(α2)− (α2 − 2)E(α2)),

F3,2,2,0,2(α2) = 3π
16 2F1

(
1
2
, 1

2
, 3;α2

)
= 1

3α4 ((4α2 − 2)E(α2) + (3α4 − 5α2 + 2)K(α2)).

This can be inserted in (24) to simplify the expression, but the functions E(α2) and
K(α2) do not cancel out.

3.3 The case j = 1

If L ∈ Lx⊥0 , then Lx is the line spanned by x. Moreover, if x and n are non-orthogonal,
then π(n|Lx) = 〈x,n〉x

|〈x,n〉||x| . Thus, Corollary 3.3 becomes
∫

Ld1
Ψψ

0,L(X ∩ L) dL

=

∫

norX

1

|x|d−1

∫

Lx⊥0
ψ
(
Lx, x, π

(
n|Lx

))∣∣p(n|Lx)
∣∣ dLΛd−1(X; d(x, n))

=
1

σ1

∫

norX

ψ
(
span(x), x, 〈x,n〉x|〈x,n〉||x|

)

|x|d |〈x, n〉|Hd−1(dx).

12



In the special case of Minkowski tensors, this yields
∫

Ld1
Φr,s

0,L(X ∩ L) dL =
1

r!s!σs+1

∫

norX

xr+s〈x, n〉s
|x|d+s|〈x, n〉|s−1

Hd−1(dx). (25)

We remark that if X ∈ Kd and o lies in the interior of X, then π(n|Lx) = x/|x|, so
(25) simplifies to

∫

Ld1
Φr,s

0,L(X ∩ L) dL =
1

r!s!σs+1

∫

norX

xr+s

|x|d+s−1
〈x, n〉Hd−1(dx).

3.4 The case j = d− 1

In the case j = d− 1, the rotational integral in Theorem 3.1 can also be computed
explicitly. We demonstrate this only for Minkowski tensors Φr,s

k,L with k < d−2 since
the case j = d− 1 and k = d− 2 is covered by Theorem 3.4. We get
∫

Ldd−1

Φr,s
k,L(X ∩ L) dL =

1

2r!s!σd−1−k+s

∫

norX

xr

|x|
∑

|I|=d−2−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

×
∫

Sd−2(x⊥)

(n− 〈n, u〉u)s|p(u|AI(x, n))|2|n− 〈n, u〉u|k−d+1−s duHd−1(d(x, n))

=
1

2r!s!σd−1−k+s

∫

norX

∑

a+b=s

(
s

a

)
(−1)bna

xr

|x|
∑

|I|=d−2−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

×
∑

i/∈I
Contr

(∫

Sd−2(x⊥)

〈n, u〉bub+2(1− 〈n, u〉2)
k−d+1−s

2 du, a2
i

)
Hd−1(d(x, n)).

(26)

If x and n are not parallel, then (4) with v = π(n|x⊥) yields
∫

Sd−2(x⊥)

〈n, u〉bub+2(1− 〈n, u〉2)
k−d+1−s

2 du

= αb
∫

Sd−3(x⊥∩n⊥)

∫ 1

−1

tb(1− t2)
d−4
2

(
tπ(n|x⊥) +

√
1− t2w

)b+2
(1− t2α2)

k−d+1−s
2 dt dw

= 2αb
∑

2p+q=b+2

(
b+ 2

2p

)
σ2p+d−2

σ2p+1

Γ
(
b+q+1

2

)
Γ
(

2p+d−2
2

)

Γ
(

2b+d+1
2

) π(n|x⊥)qQ(x⊥ ∩ n⊥)p

× 2F1

(
d−1−k+s

2
, b+q+1

2
; 2b+1+d

2
;α2
)
.

If x and n are parallel, the same holds when π(n|x⊥) is interpreted as any vector
v ∈ Sd−2(x⊥) and Q(n⊥ ∩ x⊥) as Q(x⊥ ∩ v⊥).
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When α 6= 0, we may compute
(
b+ 2

2

)
Contr

(
π(n|x⊥)qQ(x⊥ ∩ n⊥)p, a2

i

)

=

(
q

2

)
π(n|x⊥)q−2Q(x⊥ ∩ n⊥)p Contr

(
π(n|x⊥), ai

)2

+ 2pq π(n|x⊥)q−1Q(x⊥ ∩ n⊥)p−1 Contr
(
π(n|x⊥), ai

)
Contr

(
Q(x⊥ ∩ n⊥), ai

)

+ 4

(
p

2

)
π(n|x⊥)qQ(x⊥ ∩ n⊥)p−2 Contr

(
Q(x⊥ ∩ n⊥), ai

)2

+ p π(n|x⊥)qQ(x⊥ ∩ n⊥)p−1 Contr
(
Q(x⊥ ∩ n⊥), a2

i

)
, (27)

where negative powers of a tensor are interpreted as zero and

Contr
(
π(n|x⊥), ai

)
= 〈π(n|x⊥), ai〉 =

〈x, n〉〈x, ai〉
α|x|2 ,

Contr
(
Q(x⊥ ∩ n⊥), ai

)
= p(ai|x⊥ ∩ n⊥) = ai −

〈x, ai〉
α|x| π(x|n⊥),

Contr
(
Q(x⊥ ∩ n⊥), a2

i

)
= |p(ai|x⊥ ∩ n⊥)|2 = 1− 〈x, ai〉

2

α2|x|2 .

This can be inserted in (26) to provide a formula for the rotational integral.

Example 3.6. In dimension d = 3, the simplest example with j = d − 1 = 2 and
k < j − 1 = 1 is Φr,0

0,L. To the best of our knowledge, this situation has not been
treated in the literature. Using the above computations in this case, we get

Contr

(∫

S1(x⊥)

u2

1− 〈n, u〉2 du, a2
i

)

= πContr
(
Q(x⊥ ∩ n⊥)2F1(1, 1

2
; 2;α2) + π(n|x⊥)2

2F1(1, 3
2
; 2;α2), a2

i

)

= π

(
2− 2

√
1− α2

α2
− 2

(
√

1− α2 − 1)2

α4

〈x, ai〉2
|x|2

)
.

This should be interpreted as π
2
when α = 0. The values of the hypergeometric

functions are taken from [23]. Inserting in (26), we get

∫

L32
Φr,0

0,L(X ∩ L) dL =
1

2r!

∫

norX

xr

|x|
2∑

i=1

κi(x, n)∏2
j=1

√
1 + κj(x, n)2

×
(

1−
√

1− α2

α2
− (
√

1− α2 − 1)2

α4

〈x, a3−i〉2
|x|2

)
H2(d(x, n)).
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4 Affine Crofton formulae

4.1 General affine formulae

In this section, we consider for each affine subspace E ∈ Edj a valuation Ψψ
k,E defined

on compact sets of positive reach X ⊆ E by

Ψψ
k,E(X) =

∫

ΣE

ψ(E, x, n) ΛE
k (X, d(x, n)),

0 ≤ k < j < d. Here ψ : Udj → R is a locally bounded measurable function, where
Udj is as in (8).

Suppose X ⊆ Rd is a compact set of positive reach. It follows from [6, Theo-
rem 6.11 (1)] that for almost all E ∈ Edj , the set X ∩E has positive reach and hence
Ψψ
k,E(X ∩E) is well-defined. The integral of Ψψ

k,E(X ∩E) with respect to the motion
invariant measure on Edj is determined in the next theorem.

Theorem 4.1. Let X ∈ PRd and 0 ≤ k < j < d. Then,
∫

Edj
Ψψ
k,E(X ∩ E) dE =

1

σj−k

∫

norX

∑

|I|=j−k−1

∏
i∈I κi(x, n)

∏
i

√
1 + κi(x, n)2

(28)

×
∫

Ldj
ψ(L+ x, x, π(n|L))

G(L,AI(x, n))2

|p(n|L)|j−k dLHd−1(d(x, n)).

For k = j − 1, this can be simplified to
∫

Edj
Ψψ
j−1,E(X ∩ E) dE =

∫

norX

∫

Ldj
ψ(L+ x, x, π(n|L))|p(n|L)| dLΛd−1(X; d(x, n)).

Proof. It follows from [19, Theorem 3.1] that
∫

Edj
Ψψ
k,E(X ∩ E) dE =

1

σj−k

∫

Ldj

∫

norX

∑

|I|=j−k−1

∏
i∈I κi(x, n)

∏
i

√
1 + κi(x, n)2

× ψ(L+ x, x, π(n|L))
G(L,AI(x, n))2

|p(n|L)|j−k Hd−1(d(x, n)) dL, (29)

since the condition [19, (3.1)] is satisfied for almost all L ∈ Ldj , as noted in the proof
of [19, Theorem 3.5]. One can show, using an argument similar to the one in the proof
of Theorem 3.1 given in the appendix, that Fubini’s theorem can be applied to (29).
This yields (28). The last statement follows because G(L,A∅(x, n)) = |p(n|L)|.

In the case where ψ(E, x, n) does not depend on E, the following theorem is
a direct consequence of [19, Theorem 3.5]. To state the result, we introduce the
constant

Cd,j,k = cd,j

(
d+ k − j − 1

k

)
Γ
(
j+1

2

)
Γ
(
d−j+1

2

)

π
d
2

, 0 ≤ k < j < d,

and, given n ∈ Sd−1, we let Sd−1
+ (n) =

{
z ∈ Sd−1 | 〈z, n〉 ≥ 0

}
denote the upper

halfsphere determined by n.
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Theorem 4.2. Let X ∈ PRd and 0 ≤ k < j < d. Suppose ψ : Rd × Sd−1 → R is a
measurable, locally bounded function. Then,

∫

Edj
Ψψ
k,E(X ∩ E) dE =

Cd,j,k
σj−k

∫

norX

d−1∑

l=1

∑

|I|=j−k−1,
l /∈I

∏
i∈I κi(x, n)

∏
i

√
1 + κi(x, n)2

(30)

×
∫

Sd−1
+ (n)

ψ(x, z)(1− 〈z, n〉2)−
j+1
2 〈z, n〉k+1〈z, al〉2 dzHd−1(d(x, n)).

Note that the factor 1/σj−k in (30) also appears in the proof of [19, Theorem 3.5],
but seems to be forgotten in the statement of the theorem.

The approach in [11], using the explicit expression for the curvature measures
for polytopes, also relies on the result in Theorem 4.2 in the special case where X
is a polytope.

If ψ(E, x, n) does not depend on E and n, then (30) becomes particularly nice.

Corollary 4.3. Let X ∈ PRd and 0 ≤ k < j < d. Suppose ψ(E, x, n) = ψ(x) is a
locally bounded measurable function. Then

∫

Edj
Ψψ
k,E(X ∩ E) dE = cd,j

Γ
(
j+1

2

)
Γ
(
d+k−j+1

2

)

Γ
(
k+1

2

)
Γ
(
d+1

2

) Ψψ
d−j+k,Rd(X).

Proof. We find, using (4) with v = n, that
∫

Sd−1
+ (n)

(1− 〈z, n〉2)−
j+1
2 〈z, n〉k+1〈z, al〉2 dz

=

∫ 1

0

tk+1(1− t2)
d−j−2

2 dt

∫

Sd−2(n⊥)

〈w, al〉2dw

=
Γ
(
k+2

2

)
Γ
(
d−j

2

)

2Γ
(
d−j+k+2

2

) σd−1

(d− 1)
.

The result now follows from Theorem 4.2.

Note that for ψ = 1, Corollary 4.3 reduces to the classical Crofton formula.

4.2 Affine Crofton formulae for Minkowski tensors

By choosing
ψ(E, x, n) =

σj−k
r!s!σj−k+s

xrns

in Theorem 4.2, we obtain affine Crofton formulae for Minkowski tensors. Such for-
mulae were first given in [11, Theorem 2.5 and 2.6] in the case of convex sets. These
theorems show that the integral of the Minkowski tensors Φr,s

k,E(K ∩E) with respect
to the motion invariant measure on Edj is again a linear combination of Minkowski
tensors as one would expect from Alesker’s classification theorem mentioned in Sec-
tion 2.3. However, the constants appearing in the linear combinations are compli-
cated to evaluate. Recently, the results have been generalized and the constants have
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been simplified in [12]. It is possible to derive the constants in Theorem 4.4 below
directly from the formulae in [11] using the identity (14) or from [12, Theorem 2] by
rearranging terms. The main contribution of our Theorem 4.4 is the generalization
of the formulae to sets of positive reach. Like the results in [11] and [12], the proof
of Theorem 4.4 relies on Theorem 4.2 shown in [19].

Theorem 4.4 is stated, using the tensors Φr,s,1
k (X) that were introduced in Sec-

tion 2.3. These tensors can be written as a linear combination of the Minkowski
tensors according to Proposition 2.1.

Theorem 4.4. Let X ∈ PRd and 0 ≤ k < j < d. Then
∫

Edj
Φr,s
k,E(X ∩ E) dE =

Cd,j,kπ
d−1
2

2σj−k+sΓ
(
d−j+2+k+s

2

)

×
b s
2
c∑

p=0

χpd,j,k,s

(
(d− j + k)QpΦr,s−2p

d−j+k(X) + 2pQp−1Φr,s−2p,1
d−j+k (X)

)
,

where the constants χpd,j,k,s are given in (31) below.

Using (13), we get the following corollary for r = 0, which was proven for convex
sets in [12, Corollary 1].

Corollary 4.5. Let X ∈ PRd and 0 ≤ k < j < d. Then
∫

Edj
Φ0,s
k,E(X ∩ E) dE =

Cd,j,kπ
d−1
2

2σj−k+sΓ
(
d−j+2+k+s

2

)

×
b s
2
c∑

p=0

(
(d− j + k + 2p)χpd,j,k,s − 4π(p+ 1)(s− 2p)χp+1

d,j,k,s

)
QpΦ0,s−2p

d−j+k(X),

where the constants χpd,j,k,s are given in (31) below (χpd,j,k,s = 0 if p > s
2
).

Proof of Theorem 4.4. Using Theorem 4.2 with

ψ(x, n) =
σj−k

r!s!σj−k+s

xrns,

we find
∫

Edj
Φr,s
k,E(X ∩ E) dE =

Cd,j,k
r!s!σj−k+s

∫

norX

xr
d−1∑

l=1

∑

|I|=j−k−1,
l /∈I

∏
i∈I κi∏

i

√
1 + κ2

i

×
∫

Sd−1
+ (n)

zs(1− 〈z, n〉2)−
j+1
2 〈z, n〉k+1〈z, al〉2 dzHd−1(d(x, n)).

We now use that
∫

Sd−1
+ (n)

zs(1− 〈z, n〉2)−
j+1
2 〈z, n〉k+1〈z, al〉2 dz

= Contr
(∫

Sd−1
+ (n)

zs+2(1− 〈z, n〉2)−
j+1
2 〈z, n〉k+1 dz, a2

i

)
.
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Applying (4) with v = n, we obtain
∫

Sd−1
+ (n)

zs+2(1− 〈z, n〉2)−
j+1
2 〈z, n〉k+1 dz

=

∫

Sd−2(n⊥)

∫ 1

0

(tn+
√

1− t2w)s+2(1− t2)
d−j−2

2 tk+1 dt dw

=
∑

a+2b=s+2

(
s+ 2

a

)
na
∫

Sd−2(n⊥)

w2b dw

∫ 1

0

(1− t2)
2b+d−j−2

2 ta+k+1 dt

=
∑

a+2b=s+2

∑

p+q=b

(−1)q
(
b

p

)(
s+ 2

a

)
σd+2b−1

σ2b+1

Γ
(
k+2+a

2

)
Γ
(
d−j−2+2b

2

)

Γ
(
d+k−j+s+2

2

) Qpna+2q,

where we have used that
∫

Sd−2(n⊥)

wldw =

{
2σl+d−1

σl+1
Q(n⊥)

l
2 , l even,

0, l odd,

and that Q(n⊥) = Q− n2. Since

Contr
(
Qpna+2q, a2

l

)
=

(
s+ 2

2

)−1

p
(
Qp−1na+2q + 2(p− 1)Qp−2na+2qa2

l

)
,

we get
∫

Edj
Φr,s
k,E(X ∩ E) dE =

Cd,j,k
r!s!σj−k+s

b s+2
2
c∑

b=0

b∑

p=0

(−1)b−p
(
b

p

)(
s+ 2

2b

)
σ2b+d−1

σ2b+1

× Γ
(
k+4+s−2b

2

)
Γ
(
d−j−2+2b

2

)

Γ
(
d+k−j+s+2

2

)
∫

norX

xr
d−1∑

l=1

(
s+ 2

2

)−1

p

×
(
Qp−1ns+2−2p + 2(p− 1)Qp−2ns+2−2pa2

l

)

×
∑

|I|=j−k−1,l /∈I

∏
i∈I κi∏

i

√
1 + κ2

i

Hd−1(d(x, n))

=
Cd,j,kπ

d−1
2

2σj−k+sΓ
(
d−j+2+k+s

2

)

×
b s
2
c∑

p=0

χpd,j,k,s
(
(d− j + k)QpΦr,s−2p

d−j+k(X) + 2pQp−1Φr,s−2p,1
d−j+k (X)

)

where

χpd,j,k,s =
σj−k+s−2p

22pp!π1/2

b s
2
c−p∑

b=0

(−1)b
(
s− 2p

2b

)
Γ
(

2b+1
2

)
Γ
(
k+2+s−2b−2p

2

)
Γ
(
d−j+2b+2p

2

)

Γ
(

2b+2p+d+1
2

) (31)

=
σj−k+s−2pΓ

(
k+2+s−2p

2

)
Γ
(
d−j+2p

2

)

p!22pΓ
(

2p+d+1
2

)
b s
2
c−p∑

b=0

(
− s−2p

2

)
b

(
− s−2p−1

2

)
b

(
d−j+2p

2

)
b

(1)b
(

2p+d+1
2

)
b

(
− k+s−2p

2

)
b

=
σj−k+s−2pΓ

(
d−j+2p

2

)
Γ
(
k+2+s−2p

2

)

p!22pΓ
(

2p+d+1
2

) 3F2

(
2p−s+1

2
, 2p−s

2
, d−j+2p

2
; 2p−k−s

2
, 2p+d+1

2
; 1
)
.
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In the special case k = j− 1, we obtain the following simplification, see also [12,
Corollary 5].

Corollary 4.6. Let X ∈ PRd and let 1 ≤ j < d and k = j − 1. Then,

∫

Edj
Φr,s
j−1,E(X ∩ E) dE =

cd−2,j−1π
d+1
2

σs+1Γ
(
d+s+1

2

)
b s
2
c∑

p=0

χpd−2,j−2,j−1,s

s− 2p− 1
QpΦr,s−2p

d−1 (X),

where χpd−2,j−2,j−1,s is given in (31) (we interpret 2πσm/m as σm+2 if m = 0,−1).

Proof. This follows either directly from Theorem 4.2 using a computation of
∫

Sd−1
+ (n)

zs(1− 〈z, n〉2)−
j−1
2 〈z, n〉k+1 dz,

or from Theorem 4.4 using the identity [24]

d(d+ 1)e
(

3F2(a, b, c; d, e; z)− 3F2(a, b, c; d+ 1, e; z)
)

= abcz3F2(a+ 1, b+ 1, c+ 1; d+ 2, e+ 1; z).

4.3 Crofton integrals for spherical harmonics

In the case k = j−1, the Crofton integral has a particularly nice expression in terms
of spherical harmonics. This is analogous to [4, Corollary 6.1].

Corollary 4.7. Let X ∈ PRd where d ≥ 3 and let 1 ≤ j < d and k = j−1. Assume
ψ(E, x, n) = f(x)h(n) where h is a d-dimensional spherical harmonic of degree s.
Then,

∫

Edj
Ψψ
j−1,E(X ∩ E) dE = cd−2,j−1σd−1as,j,dΨ

ψ
d−1,Rd(X),

where

σd−1a2m,j,d = (−1)m
π

d−2
2 Γ
(

2m+1
2

)
Γ
(
d−j

2

)
Γ
(
j+1

2

)

Γ
(

2m+d−1
2

)
Γ
(
d+1

2

) 3F2

(
−m, 2m+d−2

2
, j+1

2
; 1

2
, d+1

2
; 1
)
,

σd−1a2m+1,j,d = (−1)m
2π

d−2
2 Γ
(

2m+3
2

)
Γ
(
d−j

2

)
Γ
(
j+2

2

)

Γ
(

2m+d−1
2

)
Γ
(
d+2

2

) 3F2

(
−m, 2m+d

2
, j+2

2
; 3

2
, d+2

2
; 1
)
.

Proof. Applying (4) and [8, Theorem 3.4.1], we get
∫

Sd−1
+ (n)

〈z, n〉j(1− 〈z, n〉2)
−j+1

2 h(z) dz = σd−1h(n)

∫ 1

0

(1− t2)
d−j−2

2 tjP d
s (t) dt,

where P d
s (t) is the Legendre polynomial of dimension d and degree s (with the

notation of [8]). The constants

as,j,d =

∫ 1

0

(1− t2)
d−j−2

2 tjP d
s (t) dt
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are computed explicitly in [16, Proposition 3] (with the same notation). A more
compact expression can be found by consulting the integral table [7]. The polynomial
called

(
s+d−3
d−3

)
P d
s in [8] is here referred to as the Gegenbauer polynomial C(d−2)/2

s .
We perform a substitution
∫ 1

0

(1− t2)
d−j−2

2 tjP d
s (t) dt =

1

2

(
s+ d− 3

d− 3

)−1 ∫ 1

0

(1− y)
d−j−2

2 y
j−1
2 C

d−2
2

s

(
y

1
2

)
dy.

The latter integral can be found in [7, 7.319]. Theorem 4.2 then yields the result.

Corollary 4.7 has a nice application to Minkowski tensors. It was shown in [4,
Proposition 4.16] that the following tensor of rank s

Hs
d(u) =

b s
2
c∑

i=0

(−1)iΓ
(
d
2

+ s− 1− i
)

4ii!(s− 2i)!
|u|2iQius−2i

has the property that all its coordinates are d-dimensional spherical harmonics. Re-
placing us by Hs

d(u) in the definition of the Minkowski tensors, we get the harmonic
Minkowski tensors

Ξr,s
k (X) =

σd−k
r!s!σd−k+s

∫

Σ

xrHs
d(n) Λk(X; d(x, n)).

Similarly, for E ∈ Edj and X ⊆ E we may define

Ξ̃r,s
j−1,E(X) =

σ1

r!s!σs+1

∫

ΣE

xrHs
d(n) ΛE

j−1(X; d(x, n)).

The tilde in Ξ̃r,s
j−1,E(X) indicates that this is generally not a harmonic tensor when

j = dimE < d since Hs
d(u) restricted to Sj−1(E) is not necessarily harmonic.

Corollary 4.8. Let X ∈ PRd where d ≥ 3 and let 1 ≤ j < d and k = j − 1. Then
∫

Edj
Ξ̃r,s
k,E(X ∩ E)dE = as,j,dcd−2,j−1σd−1Ξr,s

d−1(X). (32)

Remark 4.9. The result in Corollary 4.8 resembles [4, Corollary 6.1]. In [4], the
tensors on the left hand side of (32) are computed with respect to the measures
Λk(X ∩ E, · ), i.e. with X ∩ E considered as a subset of Rd rather than E. In this
setting, a formula like (32) holds for all k < j − 1 when r = 0. We are able to show
the formula for all r ≥ 0, but only for k = j− 1. We leave it open whether a similar
formula holds for k < j − 1.

In applications, it is simpler and more natural to consider X ∩ E as a subset
of E when computing a tensor. On the other hand, the tensor Ξ̃r,s

j−1,E(X ∩ E) is
not a harmonic tensor on E and therefore the formula (32) is less natural than the
analogue in [4].
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Remark 4.10. Corollary 4.8 can be used to define an unbiased estimator for the
harmonic tensor Ξr,s

d−1(X) if as,j,d is non-zero. It can be shown that as,1,d 6= 0 if and
only if s is even or s = 1. The question whether as,j,d 6= 0 for j > 1 is more involved.
It was answered in [16] in certain cases.

Suppose we want to express the Minkowski tensor Φr,s
d−1(X) as a Crofton integral.

In the case r = 0 and j = 1, this was done in [17]. In the general situation, we write
Φr,s
d−1(X) as linear combination of the harmonic Minkowski tensors QpΞr,s−2p

d−1 (X).
This is possible because us can be written as a linear combination of the tensors
QpHs−2p

d (u) (see [4, Proposition 4.10] when r = 0). If the constants as−2p,j,d are non-
zero for all p ≥ 0, then we can use (32) to express Φr,s

d−1(X) as a Crofton integral.

Appendix

In this Appendix, we present proofs of Proposition 2.1 and Theorem 3.1. Since the
proofs use the theory of normal cycles for sets of positive reach, we first recall the
definition and basic properties. Details can be found in [25].

Let X ∈ PRd be a compact set of positive reach. Then norX is a compact
(d−1)-rectifiable set. The oriented tangent space at (x, n) ∈ norX can be identified
with the simple (d− 1)-vector

aX(x, n) =
∧

1≤i≤d−1

(
1√

1+κi(x,n)2
ai(x, n), κi(x,n)√

1+κi(x,n)2
ai(x, n)

)
∈
∧

d−1

(Rd × TSd−1),

where ai and κi are as in (5). If X ∈ PR(L) is considered as a subset of L ∈ Ldj ,
then we denote its normal bundle inside ΣL by norLX and the tangent (j−1)-vector
field of norLX by aLX ∈

∧
j−1(TΣL).

The normal cycle of X ∈ PRd is a (d− 1)-current NX that acts on a differential
(d− 1)-form ω in Rd × Sd−1 by

NX(ω) =

∫

norX

〈aX , ω〉 dHd−1.

The normal cycle is a cycle, i.e. it vanishes if ω is a coboundary.
The Lipschitz-Killing curvature form on Rd × Sd−1 is the (d − 1)-form given in

the coordinates x1, . . . , xd, n1, . . . , nd on Rd × Rd by

ρk =
1

k!(d− k − 1)!σd−k

×
∑

σ∈Sd

sgn(σ)nσ(d) dxσ(1) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1),

where Sd is the group of permutations of {1, . . . , d} and sgn(σ) is the sign of σ ∈ Sd.
For L ∈ Ldj , a relative Lipschitz-Killing (j − 1)-curvature form ρLk on L × Sj−1(L)
is defined in a similar way. Suppose X ∈ PR(L). Integration of a locally bounded
measurable function ψ : ΣL → R with respect to ΛL

k (X; · ) is then given by

Ψψ
k,L(X) =

∫

ΣL

ψ(x, n) ΛL
k (X; d(x, n)) =

∫

norLX

ψ(x, n)〈aLX , ρLk 〉Hd−1(d(x, n)).
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Proof of Proposition 2.1. The identity (10) follows easily from

Q = n2 +
d−1∑

i=1

a2
i .

Both (11) and (12) follow inductively from the identity

1{r≥0}Φ
r,s−2,1
k (X) (33)

= 1{k>1,s>2}Φ
r+1,s−3,1
k−1 (X) + 2π(s− 1)Φr+1,s−1

k−1 (X)− 1{s>2}QΦr+1,s−3
k−1 (X)

for s ≥ 2, r ≥ −1, and 1 ≤ k ≤ d − 1. In the case of (12), the induction start is
(10). Equation (13) is the special case r = −1.

The Minkowski tensor Φr,s
k (X) is given by applying the normal cycle NX to a

(d − 1)-form ρr,sk :
∧
d−1(Rd × Rd) → Tr+s. Choose an oriented orthonormal basis

e1, . . . , ed for Rd. Then the coordinate of ρr,sk corresponding to the basis element
ei1 � · · · � eir+s ∈ Tr+s is

ρr,sk,i1,...,ir+s
=

xi1 . . . xirnir+1 . . . nir+s

k!(d− k − 1)!ωd−k+sr!s!

×
∑

σ∈Sd

sgn(σ)nσ(d) dxσ(1) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1).

Here and throughout the proof, symmetrization in the indices i1, . . . , ir+s is under-
stood when we write the coordinates of a Tr+s-valued tensor. Similarly, it can be
shown [9, Section 4] that Φr,s−2,1

k (X) is given by applying the normal cycle to the
(d− 1)-form with coordinates

ηr,sk,i1,...,ir+s
=

xi1 · · ·xirnir+1 . . . nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2r!(s− 2)!

× dxir+s−1 ∧
∑

σ∈Sd
σ(1)=ir+s

sgn(σ)nσ(d) dxσ(2) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1).

We first show (33) in the case r ≥ 0. Define the Tr+s-valued (d− 2)-form

ωr,sk,i1,...,ir+s
=

xi1 · · · xirxir+s−1nir+1 . . . nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

×
∑

σ∈Sd,σ(1)=ir+s

sgn(σ)nσ(d) dxσ(2) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1).

Since NX vanishes on coboundaries, it suffices to show that pointwise
〈
aX , dω

r,s
k

〉

=
〈
aX , η

r,s
k − 1{k>1,s>2}η

r+1,s−1
k−1 − 2π(s− 1)ρr+1,s−1

k−1 + 1{s>2}Qρ
r+1,s−3
k−1

〉
.
(34)

It is straight-forward to check that all differential forms in (34) are SO(d)-covariant.
(We say that ω is SO(d)-covariant if for all θ ∈ SO(d),

〈 d−1∧

i=1

(θ∗vi, θ∗wi), ω(θ(x),θ(n))(θu1, . . . , θur+s)
〉

=
〈 d−1∧

i=1

(vi, wi), ω(x,n)(u1, . . . , ur+s)
〉
,
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for all (vi, wi) ∈ Rd × Rd and u1, . . . ur+s ∈ Rd.) It is therefore enough to show (34)
when (x, n) = (x, ed). At this point, forms of the type dnd ∧ ξ and dxd ∧ ξ vanish on
aX . We first compute:

dωr,sk,i1,...,ir+s
= ηr,sk,i1,...,ir+s

+ 1{s>2}

r+s−2∑

j=r+1

xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)

× δσ(1),ir+snσ(d) dnij ∧ dxσ(2) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1) (35)

+
xi1 · · ·xirxir+s−1nir+1 · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)

× δσ(1),ir+s dnσ(d) ∧ dxσ(2) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1). (36)

Here the Kronecker δ-notation has been used and a “ ˆ” indicates that a factor is
left out. We see that (35) equals

1{s>2}

r+s−2∑

j=r+1

xi1 · · · xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!
δij ,ir+s

∑

σ∈Sd

sgn(σ)δσ(1),ir+s

× nσ(d) dnσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1) (37)

− 1{s>2}

r+s−2∑

j=r+1

xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)δσ(1),ir+s

k∑

m=2

× δij ,σ(m)nσ(d) dxij ∧ dxσ(2) ∧ · · · dnσ(m) · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1)

(38)

+ 1{s>2}

r+s−2∑

j=r+1

xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)δσ(1),ir+s

× δij ,σ(d)nσ(d) dnσ(d) ∧ dxσ(2) ∧ · · · ∧ dxσ(k) ∧ dnσ(k+1) ∧ · · · ∧ dnσ(d−1). (39)

Clearly (39) vanishes at (x, ed) when evaluated on aX . Moreover, (37) equals

Qρr+1,s−3
k−1 1{s>2}

− 1{k>1,s>2}

r+s−2∑

j=r+1

xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 2)!(d− k)!ωd−k+s−2(r + 1)!(s− 2)!
δij ,ir+s

∑

σ∈Sd

sgn(σ)

× δσ(1),ir+snσ(d) dxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1) (40)

− 1{s>2}

r+s−2∑

j=r+1

xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!
δij ,ir+s

∑

σ∈Sd

sgn(σ)

× δσ(d),ir+snσ(d) dxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1), (41)
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and (38) + (40) equals

− 1{s>2,k>1}

r+s−2∑

j=r+1

(k − 1)xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)

× δσ(1),ir+sδij ,σ(k)nσ(d) dxij ∧ dxσ(2) ∧ · · · dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1)

− 1{s>2,k>1}

r+s−2∑

j=r+1

(k − 1)xi1 · · · xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 1)!(d− k)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)

× δσ(1),ir+sδij ,σ(1)nσ(d) dxij ∧ dxσ(2) ∧ · · · ∧ dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1)

= −1{s>2,k>1}η
r+1,s−1
k−1,i1,...,ir+s

+ 1{s>2,k>1}

r+s−2∑

j=r+1

xi1 · · ·xirxir+s−1nir+1 · · · n̂ij · · ·nir+s−2

(k − 2)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

∑

σ∈Sd

sgn(σ)

× δσ(1),ir+sδσ(d),ijnσ(d) dxij ∧ dxσ(2) ∧ · · · ∧ dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1).
(42)

Also (42) vanishes at (x, ed). It remains to evaluate (36)+(41) at (x, ed). This yields

xi1 · · ·xirxir+s−1δir+1,...,ir+s−2,ir+s,d

(k − 1)!(d− k − 1)!ωd−k+s−2(r + 1)!(s− 2)!

×
∑

σ∈Sd

(− sgn(σ))δσ(d),ir+s dxσ(1) ∧ · · · ∧ dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1)

− 1{s>2}(s− 2)
xi1 · · ·xirxir+s−1δir+1,...,ir+s−2,ir+s,d

(k − 1)!(d− k)!ωd−k+s−2(r + 1)!(s− 2)!

×
∑

σ∈Sd

sgn(σ)δσ(d),ir+s dxσ(1) ∧ · · · ∧ dxσ(k−1) ∧ dnσ(k) ∧ · · · ∧ dnσ(d−1)

= −2π(s− 1)ρr+1,s−1
k−1,i1,...,ir+s

.

Putting things together yields (34).
To check the remaining case r = −1, 1 ≤ k < d− 1, in (33), it is enough to show

〈
aX , dω̃

0,s
k

〉
=
〈
aX ,−1{k>1,s>2}η

0,s−2
k − 2πsρ0,s

k + 1{s>2}Qρ
0,s−2
k

〉
= 0,

where

ω̃0,s
k,i1,...,is

=
ni1 . . . nis−1

k!(d− k − 2)!ωd−k+s−2(s− 1)!

×
∑

σ∈Sd,σ(1)=is

sgn(σ)nσ(d) dxσ(2) ∧ · · · ∧ dxσ(k+1) ∧ dnσ(k+2) ∧ · · · ∧ dnσ(d−1).

The computations are similar, but slightly simpler.

24



Proof of Theorem 3.1. We first show that Ψψ
k,L(X ∩L) is integrable with respect to

L. Since ψ is bounded by some M > 0 on norX, we have
∫

Ldj
|Ψψ

k,L(X ∩ L)| dL

=
1

σj

∫

Ldj−1

∫

Sd−j(L⊥)

∣∣∣∣
∫

norLz (X∩Lz)

ψ(x, n)〈aLz

X∩Lz , ρL
z

k 〉Hj−1(d(x, n))

∣∣∣∣ dz dL

≤ M

σj

∫

Ldj−1

∫

Sd−j(L⊥)

∫

norLz (X∩Lz)

|〈aLz

X∩Lz , ρL
z

k 〉|Hj−1(d(x, n)) dz dL.

Fix L ∈ Ldj−1 such that for Hj−1-almost all (x, n) ∈ norX we have x /∈ L and for
almost all z ∈ Sd−j(L⊥):

There is no (x, n) ∈ norX with x ∈ Lz and n ⊥ Lz. (43)

Almost all L ∈ Ldj−1 satisfy these two conditions by [14, Lemma 5] and the definition

of P̃Rd
.

Define two functions f and g as in [14, Section 7] by

f : norX\{(x, n) ∈ norX | x ∈ L or n ⊥ Lx} → Rd × Sd−j(Lz),
f(x, n) = (x, π(n|Lx)),

g : norX\{(x, n) ∈ norX | x ∈ L} → Sd−j(L⊥),

g(x, n) = π(x|L⊥),

and for z ∈ Sd−j(L⊥), define

hz : L× Sd−1\{(x, n) ∈ L× Sd−1 | n ⊥ Lz} → L× Sj−1(L),

hz(x, n) = (x, π(n|Lz)).

It follows from [6, Theorem 4.10 (3)] that for z ∈ Sd−j(L⊥) satisfying (43), we have

norL
z

(X ∩ Lz) = {(x, π(n|Lz)) | (x, n) ∈ norX, x ∈ Lz}
= f

(
g−1(z) ∪ g−1(−z)

)
∪ hz(N),

where N = {(x, n) ∈ norX | x ∈ L} has Hj−1-measure 0 by assumption. Because
of condition (43), hz is locally Lipschitz on N , and hence Hj−1(hz(N)) = 0.

It was shown in [14, Lemma 3] that for almost all z,

Hj−1
(
(x, n) ∈ f(g−1(z)) | #

(
f−1(x, n) ∩ g−1(z)

)
> 1
)

= 0, (44)

where # denotes cardinality. It follows from [14, Proof of Lemma 4] that for almost
all z it holds for Hj−1-almost all (x, n) ∈ norL

z
(X ∩ Lz) that there is a unique

y ∈ g−1(z) ∪ g−1(−z) with (x, n) = f(y) and

aL
z

X∩Lz(x, n) = f](ζ(y))/Jj−1(f|g−1(z)∪g−1(−z))(y),

where
ζ = (aXxg]Ωd−j)/Jd−jg
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and Ωd−j is an orientation form on Sd−j(L⊥) as in [14, p. 552].
Since f is locally Lipschitz on g−1(z) for almost all z ∈ Sd−j(L⊥), the area and

coarea formulae together with (44) yield
∫

Ldj−1

∫

Sd−j(L⊥)

∫

norLz (X∩Lz)

|〈aLz

X∩Lz , ρL
z

k 〉|Hj−1(d(x, n)) dz dL

= 2

∫

Ldj−1

∫

Sd−j(L⊥)

∫

f(g−1(z))

|〈aLz

X∩Lz , ρL
z

k 〉|Hj−1(d(x, n)) dz dL

= 2

∫

Ldj−1

∫

Sd−j(L⊥)

∫

g−1(z)

|〈ζ, f ]ρLx

k 〉|Hj−1(d(x, n)) dz dL

= 2

∫

Ldj−1

∫

norX

|〈aX , g]Ωd−j ∧ f ]ρL
x

k 〉|Hd−1(d(x, n)) dL. (45)

We must show that (45) is finite. In [14, Section 7] it is shown that

〈aX , g]Ωd−j ∧ f ]ρL
x

k 〉 =
1

σj−k

1

|p(x|L⊥)|d−j|p(n|Lx)|j−k (46)

×
∑

|I|=j−1−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

G(Lx, AI(x, n))2.

Since G(Lx, AI(x, n)) ≤ |p(n|Lx)|, there is a C > 0 such that
∣∣∣∣

1

|p(x|L⊥)|d−j|p(n|Lx)|j−k
∑

|I|=j−1−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

G(Lx, AI(x, n))2

∣∣∣∣

≤ C

|p(x|L⊥)|d−j|p(n|Lx)|j−k−2
.

It follows from e.g. [25, (1)] that Hd−1(norX) < ∞ when X is compact, so it is
enough to show that

∫

Ldj−1

|p(x|L⊥)|j−d|p(n|Lx)|2−j+kdL (47)

is uniformly bounded on norX. By assumption, there is an ε > 0 such that |x| ≥ ε
on norX. The (j − 1)(d − j)-Jacobian of the map Ldj−1\Lxj−1 → Lx⊥j−1 given by
L 7→ p(L|x⊥) was computed in [14, Lemma 6] to be |x|d−j|p(x|L⊥)|j−d. Letting
w = π(n|x⊥), the coarea formula yields
∫

Ldj−1

|p(x|L⊥)|j−d|p(n|Lx)|2−j+kdL ≤ εj−d
∫

Lx⊥j−1

|p(n|Lx)|2−j+k dL

= εj−d
∫

Lx⊥j−1

(1− α2 + α2|p(w|L)|2)
2−j+k

2 dL,

where α = α(x, n) = sin∠(x, n). If j − k ≤ 2 or α = 0, this is clearly bounded.
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Assume j − k > 2 and α 6= 0. Using (3) and (4), we then have
∫

Lx⊥j−1

|p(n|Lx)|2−j+k dL

= cd−3,j−2

∫

Sd−2(x⊥)

1{〈u,w〉>0}
〈u,w〉j−2

(1− 〈u,w〉2)
j−2
2

(1− α2 + α2〈u,w〉2)
2−j+k

2 du

= cd−3,j−2σd−2

∫ 1

0

tj−2(1− t2)
d−j−2

2 (1− α2 + α2t2)
2−j+k

2 dt

≤ cd−3,j−2σd−2

∫ 1

0

(1− t2)
d−j−2

2 tk dt.

Since 2 < j ≤ d− 1, this is finite and hence (45) is finite.
The finiteness of (45) allows us to apply the area and coarea to the rotational

integral. A computation similar to (45) yields
∫

Ldj
Ψψ
k,L(X ∩ L) dL

=
2

σj

∫

Ldj−1

∫

Sd−j(L⊥)

∫

f(g−1(z))

ψ(Lz, x, n)〈aLz

X∩Lz , ρL
z

k 〉Hj−1(d(x, n)) dz dL

=
2

σj

∫

Ldj−1

∫

norX

ψ(Lx, f(x, n))〈aX , g]Ωd−j ∧ f ]ρL
x

k 〉Hd−1(d(x, n)) dL.

Using again that (45) is finite, we can apply Fubini’s theorem. Inserting (46), we get
∫

Ldj
Ψψ
k,L(X ∩ L) dL =

2

σjσj−k

∫

norX

∫

Ldj−1

ψ(Lx, x, π(n|Lx))
|p(x|L⊥)|d−j|p(n|Lx)|j−k

×
∑

|I|=j−1−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

G(Lx, AI(x, n))2 dLHd−1(d(x, n)).

Since (47) was finite, we can apply the coarea formula for the map L 7→ p(L|x⊥)
once again to obtain the claim of Theorem 3.1:

∫

Ldj
Ψψ
k,L(X ∩ L) dL =

1

σj−k

∫

norX

∫

Lx⊥j−1

ψ(Lx, x, π(n|Lx))
|x|d−j|p(n|Lx)|j−k

×
∑

|I|=j−1−k

∏
i∈I κi(x, n)

∏d−1
i=1

√
1 + κi(x, n)2

G(Lx, AI(x, n))2 dLHd−1(d(x, n)).
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