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Abstract

Extreme value theory provides an asymptotically justified framework for es-
timation of exceedance probabilities in regions where few or no observations
are available. For multivariate tail estimation, the strength of extremal depen-
dence is crucial and it is typically modeled by a parametric family of spectral
distributions. In this work we provide asymptotic bounds on exceedance prob-
abilities that are robust against misspecification of the extremal dependence
model. They arise from optimizing the statistic of interest over all dependence
models within some neighborhood of the reference model. A certain relaxation
of these bounds yields surprisingly simple and explicit expressions, which we
propose to use in applications. We show the effectiveness of the robust ap-
proach compared to classical confidence bounds when the model is misspeci-
fied. The results are further applied to quantify the effect of model uncertainty
on the Value-at-Risk of a financial portfolio.

Keywords: Extremal dependence, Pickands’ function, model misspecification,
stress test, robust bounds, convex optimization

1 Introduction

In parametric statistics there are several sorts of uncertainties that arise in the esti-
mation of an unknown quantity of interest. The estimation uncertainty, for instance,
refers to the error made by inferring the model parameters from only finitely many
data points. Bootstrapping or results on asymptotic normality are typically applied
to quantify this error and to derive confidence intervals. On the other hand, the
parametric family used as a model for the data is a finitely dimensional subset of all
distributions and is thus only an approximation of the true data generating distribu-
tion. The uncertainty due to this misspecification is usually called model uncertainty,
and it is more difficult to quantify than the estimation uncertainty within a para-
metric model class. A popular way to provide confidence bounds, that are robust
against wrong model assumptions, is to find the smallest and largest values of the
statistic of interest with respect to all probability measures in some neighborhood
of the estimated parametric distribution assuming that it contains the true data
generating distribution. Moreover, one may view such a search for the worst case
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as a systematic stress test within a set of plausible scenarios Breuer and Csiszár
(2013b).

For a random vector (X,Y >) = (X, Y1, . . . , Yd−1) with d ≥ 2, in this paper we
consider the optimization problem

Vµ(δ) = sup
P′
{E′X : Dµ(P′,P) ≤ δ,E′Y = EY }, δ > 0, (1.1)

where the supremum is taken over all probability measures in the δ-neighborhood of
the reference model P under the constraint that the expectation of Y is preserved.
Here and in the sequel E′ denotes the expectation under the model P′, and all
the measures are defined on a common measurable space (Ω,F). The proximity
Dµ(P′,P) will be measured in terms of the L2

µ-distance between the densities of
P′ and P with respect to some dominating probability measure µ, which provides
additional flexibility in selection of the neighborhood; it will be shown that the
choice µ = P essentially results in Rényi divergence of order 2. The random variable
X is the statistic of interest and the constraint on the expectation of Y allows to
incorporate necessary model restrictions. They arise naturally in the application of
the results to estimation of multivariate tail probabilities.

Importantly, the optimizing µ-density has an appealing form yielding the sur-
prisingly simple, explicit expression

EX +

√
δ

det{Σµ(X,Y )}
det{Σµ(Y )} (1.2)

for the optimal value Vµ(δ) when δ ∈ [0, δ∗] is in a certain range, and otherwise this
expression provides an upper bound on Vµ(δ), where Σµ(·) denotes the respective µ-
covariance matrix. In this paper, we advocate using this simple square-root bound,
and its analogue for the respective minimization problem, as robust bounds for EX
under moment constraints; see Theorem 2. Interestingly, the above fraction of the
determinants is a well-known expression in stochastic simulation theory where it
arises as the minimal variance of X + c>Y , for arbitrary c ∈ Rd−1 (Asmussen and
Glynn, 2007, Sec. V.2).

The general optimization problem (1.1) might be interesting in many different
situations, see e.g. Dey and Juneja (2012); Glasserman and Xu (2014); Breuer and
Csiszár (2013b) for applications of the robust approach to various problems in eco-
nomics, risk and finance. Let us also note that a problem similar to (1.1) appears
as the dual representation of a coherent risk measure Ahmadi-Javid (2012); Artzner
et al. (1999). In this work we concentrate on the application to the risk of rare events
and the estimation of their small tail probabilities, a field that has attracted strong
attention in the last decade. Extreme value theory provides the theoretical founda-
tion for statistical extrapolation into tail regions with few or no data; see Embrechts
et al. (1997); de Haan and Ferreira (2006); Resnick (2008) for more details.

The univariate theory is well understood and is concerned with the quantification
of tail probabilities P(Z > z) of a random variable Z, where z > 0 is a threshold
close to the upper end point of its distribution function F . There are standard
procedures to build confidence intervals for estimators of P(Z > z), but bounds
that are robust against violation of the assumptions of the extremal types theorem
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have only recently been studied in Blanchet and Murthy (2016). The authors of this
paper solve the optimization problem

F δ(z) = sup
P′
{P′(Z > z) : D̂(P′,P) ≤ δ},

where F δ is the worst case survival function over all probability measures P′ in some
divergence neighborhood with radius δ > 0 around the reference model P. Here D̂ is
either the Kullback–Leibler divergence or the Rényi divergence of an arbitrary order;
see also Section A.3. It is shown in Blanchet and Murthy (2016) that the worst case
tail F δ is considerably heavier than the one of the reference distribution F .

For a d-dimensional random vector Z = (Z1, . . . , Zd)
>, multivariate extreme

value theory studies probabilities P(Z ∈ tB), where for B ⊂ [0,∞]d bounded away
from the origin and large t > 0 the dilated set tB is called a tail region. As in
the univariate case, the idea is to extrapolate from regions with more data into
the tails, but in the multivariate case the dependence between components Zi at
high quantiles is crucial. The mathematical concept of regular variation is needed in
order to perform this extrapolation. Assuming that Z is standardized to have unit
Pareto marginal tails, multivariate extreme value theory justifies, in particular, the
following approximation for any zi > 0 and large t > 0:

P(∃i : Zi > tzi) ≈ t−1dE
(

d
max
i=1

Yi
zi

)
, (1.3)

where Y = (Y1, . . . , Yd) takes values in the standard simplex and satisfies certain
moment constraints, i.e.,

Y ∈ Sd−1 =
{
y ∈ [0,∞]d :

d∑

i=1

yi = 1
}

and ∀i : EYi = 1/d.

The distribution of Y is called a spectral distribution and it encodes extremal depen-
dence in the model. Many parametric models have been proposed for the spectral
distribution (e.g., Hüsler and Reiss, 1989; Tawn, 1990; Boldi and Davison, 2007;
Cooley et al., 2010). For a non-parametric approach to estimation of the spectral
distribution we refer the reader to Einmahl and Segers (2009), where an optimization
problem is used to enforce the moment constraint.

A natural problem is to find bounds for the asymptotic expression of the tail
probability in (1.3) with fixed z = (z1, . . . , zd)

> that are robust against model mis-
specification of the spectral distribution, i.e., the distribution of Y . For the upper
bound we are thus interested in the maximization problem

sup
P′

{
E′
(

d
max
i=1

Yi
zi

)
: Dµ(P′,P) ≤ δ,E′Yi = 1/d for all i

}
(1.4)

which is clearly a special case of (1.1) with X = X(z) = maxdi=1 Yi/zi. Importantly,
we assume here that the dominating measure µ is supported by {Y ∈ Sd−1} and
hence Y ∈ Sd−1 holds also P′-a.s. In particular, Yd = 1 −∑d−1

i=1 Yi and so there
are essentially d − 1 moment constraints which ensure that Y has a valid spectral
distribution also under the measure P′.
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Similarly, a lower bound can be defined as the optimal value of the correspond-
ing minimization problem with sup replaced by inf in (1.4). The respective opti-
mal values β∗(z) and β∗(z) of these optimization problems readily yield the robust
asymptotic bounds

t−1d β∗ (z) . P(∃i : Zi > tzi) . t−1d β∗ (z) , as t→∞.

Note that according to (1.3) it is enough to consider z ∈ Sd−1. It should also be
stressed that our bounds address misspecification of the extremal dependence model
exclusively, and so they are guaranteed to hold for sufficiently large scaling factor t
only. Furthermore, we essentially optimize over the class of max-stable distributions,
which is different from the univariate case analysis in Blanchet and Murthy (2016).

In Section 2 we provide details on the divergence Dµ(P′,P), and recall necessary
results on multivariate extreme value theory, regular variation and spectral mea-
sures. The convex optimization problem (1.1) is solved in Section 3 and the simple
square-root bound for the optimal value Vµ(δ) is derived in Section 4, where we
also identify a necessary and sufficient condition for this upper bound to coincide
with Vµ(δ). Based on these general results, in Section 5 we investigate robust bounds
for small probabilities of tail regions in the bivariate case arising from the optimiza-
tion problem (1.4) for d = 2. Several examples are given in Section 5.1 to illustrate
the results. In Section 5.2 we conduct an experiment that shows the effectiveness
of the robust bounds compared to classical confidence bounds when the model is
misspecified. As a further application of our theory, Section 6 discusses how worst
case bounds on the Value-at-Risk of a financial portfolio under model uncertainty
can be derived. The Appendix contains some parametric families of spectral distri-
butions, further comments about the degenerate maximizer of the problem in (1.4),
and results on optimization for other divergences.

2 Preliminaries and the setup

2.1 Distribution model risk

Distribution model risk refers to the error made when using a simplified model of
reality that is only an approximation to the data generating process. From a prob-
abilistic point of view, this amounts to computing the quantity of interest, say the
probability P(A) of some event A, using a wrong probability measure P, which nev-
ertheless is close in some sense to the true measure Ptrue. The robust approach to this
problem is to consider all measures P′ in some neighborhood of P that should contain
Ptrue as well, and to find the maximal and the minimal values among all P′(A). These
numbers then provide robust bounds on the true value Ptrue(A). This approach has
become quite popular in financial mathematics, see Hansen and Sargent (2001);
Ahmadi-Javid (2012); Breuer and Csiszár (2013a); Glasserman and Xu (2014) and
references therein, and Blanchet and Murthy (2016) for an application to univariate
extreme value statistics.

A natural way to define a neighborhood of measures around P is to consider
some form of divergence. Fix a dominating probability measure µ, i.e., such that
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P � µ, and suppose for now that P′ � µ. Letting L = dP/dµ and L′ = dP′/dµ
be the corresponding Radon–Nikodym derivatives we consider the standard squared
L2
µ-distance

Dµ(P′,P) = Eµ(L′ − L)2, (2.1)

where Eµ denotes the expectation under probability measure µ. We put Dµ(P′,P) =
∞ if P′ is not absolutely continuous with respect to µ. It is noted that (2.1) is
a special case of the so-called Bregman divergence, see, e.g., Breuer and Csiszár
(2013a). Furthermore, by choosing µ = P we get

DP(P′,P) = E(L′ − 1)2 = EL′2 − 1 (2.2)

for all P′ � P with L′ = dP′/dP. Moreover,

DP(P′,P) ≤ δ iff logEL′2 ≤ log(1 + δ) = δ′,

where logEL′2 is the well-known Rényi (power) divergence of order 2 of P′ from P.
In other words, neighborhoods of measures defined by DP(·,P) ≤ δ coincide with
second order Rényi divergence neighborhoods with radius δ′.

It is clear that the choice of the dominating measure µ has an impact on the
solution of the optimization problem (1.1). Suppose, for instance, that P,P′ and µ
are defined on [0, 1] and that they are absolutely continuous with respect to Lebesgue
measure with densities f, f ′ and g, respectively. Then it holds that

Dµ(P′,P) =

∫ 1

0

(
f ′(ω)

g(ω)
− f(ω)

g(ω)

)2

g(ω)dω =

∫ 1

0

(f ′(ω)− f(ω))2
1

g(ω)
dω, (2.3)

and so µ provides a mechanism of weighing the squared distance between f ′ and f .
A similar weight function appears in e.g. Bücher et al. (2011) in the context of
estimating the Pickands’ function. Thus the dominating measure µ may be chosen
according to our uncertainty about the measure P.

In this study we leave out a detailed analysis of the choice of µ. Our default choice
in applications to multivariate extremes is µ = P, which corresponds to Rényi di-
vergence of order 2. We also provide an example where this choice is inappropriate,
in which case the uniform dominating measure is used. Finally, the remaining pa-
rameter δ > 0, representing our trust into the measure P, has to be chosen by hand
or derived from data. In Section 5.2 we use a straightforward heuristic procedure to
estimate it from data.

2.2 Regular variation and spectral distributions

A d-dimensional random vector Z is multivariate regularly varying in the non-
negative orthant if there exists a sequence at →∞, as t→∞, and a Radon measure
ν on E = [0,∞]d\{0} equipped with its Borel σ-algebra such that

tP(Z/at ∈ ·) v−→ ν, t→∞ (2.4)

in the sense of vague convergence, see, e.g., (Resnick, 2007, Ch. 6). The so-called
exponent measure ν then satisfies the scaling property ν(tB) = t−αν(B) for all t > 0
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and all Borel sets B ⊂ E bounded away from 0, where α > 0 is called the tail index of
regular variation. Moreover, by switching to polar coordinates z 7→ (‖z‖, z/‖z‖) =
(r,ω) for the L1-norm ‖z‖ =

∑d
i=1 |zi| on Rd, the measure ν factorizes into

c αr−α−1dr ×H(dω),

where c > 0 and H is a probability measure, called the spectral measure, on the sim-
plex Sd−1 equipped with its Borel σ-algebra. Importantly, (2.4) implies the following
weak convergence to H:

P
(
Z

‖Z‖ ∈ ·
∣∣∣∣ ‖Z‖ > t

)
w−→ H, as t→∞. (2.5)

Without loss of generality we assume that ν is non-degenerate in the sense that
ν({z : zi > 1}) 6= 0 for all i = 1, . . . , d. Otherwise, we may simply remove the
components of the vector Z that decrease at a faster rate. This implies that all
marginal survival functions F i(z) = 1 − Fi(z) are regularly varying with the same
index −α, and, moreover, for some mi > 0,

F i(z)

F 1(z)
→ mi as z →∞ (2.6)

withm1 = 1. That is, F i(z) are equivalent in the limit up to multiplicative constants.
It is common to split the problem of multivariate tail estimation into estima-

tion of marginal tails and estimation of the spectral distribution. The theory for
univariate tail estimation is well-studied and there are many established methods
to estimate the survival functions de Haan and Ferreira (2006); Resnick (2007).
We therefore assume that the marginal tail models are continuous and correctly
specified, and that the Zi have been transformed to unit Pareto tails. That is, we
generally assume that α = 1 and F i(z) = 1/z for large z, apart from Section 6,
where we return to the general setup and the issue of standardization.

With the above standardization in mind we may choose at = t in (2.4) leading
to the approximation

P(Z ∈ tB) ≈ ν(B)/t

for large t and B bounded away from the origin with ν(∂B) = 0. A natural choice of
such a set is given by Bz = E\[0, z], where we may assume that ‖z‖ = 1 because of
the scaling property of ν. That is, we are interested in approximating the probability
that at least one marginal is relatively large, namely Zi > tzi for some i. Letting
Y ∈ Sd−1 have the spectral distribution H one finds that

ν(Bz) = cE
∫

1{∃i:rYi>zi}r−2dr = cE
(

d
max
i=1

Yi
zi

)
. (2.7)

Moreover, according to the above standardization the exponent measure must satisfy

tP(Zi > t)→ 1 = ν({z : zi > 1}) = cEYi

and hence EYi = 1/c for all i. But since
∑d

i=1 Yi = 1, it must be that c = d,
which yields the approximation in (1.3), our starting point for the robust approach.
Importantly, any Y satisfying these moment constraints gives rise to a valid spectral
measure.
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Remark 1. The sum norm used throughout this paper is special in the sense that
the constant c does not depend on the spectral measure. This makes it possible to
employ the optimization problem in (1.1). Other norms would lead to the objec-
tive E′X(z)/E′Y1, which does not comply with (1.1).

A common way of representing the dependence structure in the bivariate case
Pickands (1981); Klüppelberg and May (2006); Bücher et al. (2011) is by means of
the so-called Pickands’ function

A(z) = 2E{(1− z)Y1 ∨ z(1− Y1)}, z ∈ [0, 1]. (2.8)

Indeed, an easy transformation of (2.7) yields

ν(Bz) =

(
1

z1
+

1

z2

)
A

(
z1

z1 + z2

)
.

Importantly, the Pickands’ dependence function A : [0, 1] → [1/2, 1] is convex and
satisfies z ∨ (1 − z) ≤ A(z) ≤ 1. Moreover, any such function defines a unique
exponent measure ν, see (de Haan and Ferreira, 2006, p. 226).

3 Convex optimization

In this section we solve the optimization problem (1.1) which, according to (2.1),
can be rewritten in the convenient form

Vµ(δ) = sup
L′≥0
{Eµ(L′X) : EµL′ = 1,Eµ(L′ − L)2 ≤ δ,Eµ(L′Y ) = Eµ(LY )}, (3.1)

where the supremum is taken over all measurable functions L′ : Ω → [0,∞) sat-
isfying the stated constraints. This is a convex optimization problem in an infinite
dimensional space allowing for a rather explicit solution given in Theorem 1. For re-
lated results without moment constraints see Breuer and Csiszár (2013a); Blanchet
and Murthy (2016); Dey and Juneja (2012); Glasserman and Xu (2014). The lat-
ter two works also provide short derivations based on the strong duality theorem.
There is, however, no reference to the strong duality theorem for infinite dimensional
spaces which does require verification of certain conditions. Moreover, the issue with
a distribution of X with some mass at its right end is not addressed in the literature.

3.1 The underlying measurable space

Before solving the optimization problem (1.1) or its equivalent version (3.1), let us
comment on the underlying measurable space (Ω,F). Letting G = σ(X,Y ) ⊂ F
we assume that L = dP/dµ is G-measurable. That is, the choice of the dominating
measure µ does not introduce additional randomness in the model, which is trivially
the case for our default choice µ = P. The optimization problem (1.1) formulated on
the measurable space (Ω,F) and its analogue formulated on the measurable space
(Ω,G) lead to the same optimal value Vµ(δ). This follows from Jensen’s inequality:

Eµ(L′ − L)2 = Eµ
(
Eµ[(L′ − L)2|G]

)
≥ Eµ(E[L′|G]− L)2,
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where the latter is the respective divergence on (Ω,G). Therefore, we may always
consider the induced distributions of (X,Y >) without changing the robust bounds.
In the setting of (1.4) we may thus work on the Borel σ-algebra of Sd−1. In fact, this
can be seen as the modeling choice requiring little justification.

3.2 The optimal Radon–Nikodym derivative

Let us immediately present the solution to the optimization problem (3.1). It is
noted that the proof of this result provides good intuition on the form of the solution.
Throughout the paper, we will denote a maximizer of (3.1), if it exists, by L∗, and
for any random variable X we put E∗X = Eµ(L∗X).

Theorem 1. Assume that EµX2,EµY 2
i ,EµL2 < ∞ and let EY = y. Then L∗ is a

maximizer of the optimization problem (3.1) if and only if EµL∗ = 1,Eµ(L∗Y ) = y
and at least one of the following holds:

(i) there exist a > 0, b, ci ∈ R, i = 1, . . . , d− 1, such that

L∗ =
(
aX + b+ c>Y + L

)
+

µ-a.s. and Eµ(L∗ − L)2 = δ.

(ii) there exist ci ∈ R, i = 1, . . . , d−1, such that the distribution of X+c>Y under
µ has a positive mass at its upper end, L∗ = 0 everywhere else µ-a.s., and the
constraint Eµ(L∗ − L)2 ≤ δ holds.

Proof. Note that EµL′2 ≤ 2{Eµ(L′ − L)2 + EµL2} < ∞ if Eµ(L′ − L)2 ≤ δ. So
we may consider a normed vector space of µ-square-integrable L′ and its convex
subset defined by the additional requirement of L′ ≥ 0. Note also that Eµ(L′|X|),
Eµ(L′|Yi|) < ∞. Next, for the convex optimization problem (3.1) we define the
corresponding Lagrangian:

L(L′) = Eµ(L′X)− a(Eµ(L′ − L)2 − δ) + b(EµL′ − 1) + c>(Eµ(L′Y )− y), (3.2)

where a ≥ 0, b, ci ∈ R. The strong duality theorem, see e.g. (Mitter, 2008, Thm. 4),
asserts that L∗ is a maximizer of the original problem if and only if L∗ is a maximizer
of supL′≥0 L(L′) for some a ≥ 0, b, ci ∈ R, such that the constraints hold as well as
so-called complementary slackness:

EµL∗ = 1, Eµ(L∗Y ) = y, Eµ(L∗ − L)2 ≤ δ, a(Eµ(L∗ − L)2 − δ) = 0.

For this result to be true it is sufficient to verify Slater’s condition: ∃L′ ≥ 0 such
that Eµ(L′ − L)2 < δ and EµL′ = 1,Eµ(L′Y ) = y, but this is clearly satisfied by
L′ = L.

Hence it is left to solve the dual problem supL′≥0 L(L′) for fixed a ≥ 0, b, ci ∈ R.
Since L(L′) is concave in L′, a sufficient and necessary condition for a maximizer L∗
of the dual problem is

g′L∗,L′(0+) ≤ 0 ∀L′ ≥ 0, where gL∗,L′(t) = L(L∗(1− t) + L′t),

that is, one looks down from L∗. But gL∗,L(t) is given by

Eµ
{

(L∗(1− t) + L′t)(X + b+ c>Y )− a(L∗(1− t) + L′t− L)2 + aδ − b− c>y
}
,
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which can be differentiated under the expectation sign, see e.g. (Williams, 1991,
A16), yielding

Eµ(L′ − L∗)(X + b+ c>Y − 2a(L∗ − L)) ≤ 0, ∀L′ ≥ 0. (3.3)

This implies that X + b + c>Y − 2a(L∗ − L) ≤ 0 and L∗ = 0 when the inequality
is strict µ-a.s., because otherwise we may choose L′ ≥ 0 to invalidate (3.3). But the
latter clearly implies (3.3) and so we have the equivalence. Thus for a > 0 we get

L∗ =

(
X + b+ c>Y

2a
+ L

)

+

µ-a.s.,

which is equivalent to (i). If a = 0 then X + c>Y ≤ −b and L∗ = 0 when the
inequality is strict µ-a.s. Hence µ(X+c>Y = −b) > 0, because otherwise EµL∗ = 0.
This yields (ii).

Remark 2. Suppose that for some δ′ > 0 there is L∗ as in (ii) of Theorem 1 which
also satisfies the equality constraints. Then such L∗ must be a maximizer of (3.1) for
any δ ≥ δ′. This implies that the corresponding optimal value Vµ(δ′) is the maximal
possible for any δ > 0, and in particular it does not increase with further increase
of δ. In the following we let δ∗∗ be the minimal such δ′, and δ∗∗ = ∞ if no such δ′
exists. The optimizer L∗ then has the form given in (ii) of Theorem 1 if and only if
δ ≥ δ∗∗.

We believe that some further clarification of Theorem 1 is necessary. Normally,
we only need to look at (i), whereas (ii) corresponds to a rather pathological case
explained in Remark 2. A necessary condition for the latter is that δ is sufficiently
large, δ ≥ δ∗∗, and also that (X,Y >) satisfies the condition mentioned in (ii) for
some c, because otherwise δ∗∗ =∞. The following two simple examples will provide
some further intuition.

Example 1. Consider the optimization problem without moment constraints when
µ = P and the distribution of X has a positive mass p > 0 at its upper end x. Then
the optimizer L∗ in (ii) puts all the mass on {X = x} achieving E∗X = x which is
the maximal possible value for any δ > 0. But we must have

δ + 1 ≥ EL∗2 = pE(L∗2|X = x) ≥ pE2(L∗|X = x) = 1/p,

because E(L∗|X = x) = 1/p. So if δ ≥ 1/p− 1 then we can choose L∗ = 1/p1{X=x}
yielding the maximal possible optimal value x, but otherwise we must consider L∗
from (i). In particular, we have δ∗∗ = 1/p− 1.

Example 2. This example shows that in general (ii) does not require the distri-
bution of X to have a mass at its upper end. Take µ = P and consider the case
of one constraint where X = Y 1A for some event A and Y > 0 on Ac. Hence
X − Y = −Y 1Ac ≤ 0 a.s. meaning that X − Y has mass P(A) at 0. Clearly,
E′X ≤ E′Y = y for any P′ � P, whereas E∗X = E∗Y = y if L∗ puts all the mass
on A. It is only left to ensure that there is such L∗ preserving the expectation of Y .

9



The following observation will later lead to the square-root bound (1.2), an upper
bound on Vµ(δ).

Remark 3. If the non-negativity constraint on L′ is removed in the optimization
problem (3.1) then

L̂ = aX + b+ c>Y + L, a > 0, b, ci ∈ R

satisfying EµL̂ = 1,Eµ(L̂− L)2 = δ,Eµ(L̂Y ) = y is a maximizer.

Finally, we note that the optimization problem (1.1) can be solved for some
other popular divergences such as Rényi and Kullback–Leibler divergences; see Ap-
pendix A.3 for details. In both cases it is assumed that the dominating measure µ
coincides with P. In this paper, however, we aim at providing simple explicit bounds
while giving flexibility in defining the neighborhoods of measures by choosing an
appropriate dominating measure µ, and therefore we exclusively focus on the diver-
gence Dµ(P′,P) defined in (2.1).

3.3 Computing the optimal value

Let us consider the main case (i) of Theorem 1 where L∗ = (aX + b + c>Y + L)+.
In order to find a > 0, b, ci ∈ R, i = 1, . . . , d− 1, we need to solve a system of d+ 1
corresponding equations:

Eµ(L∗ − L) = 0, Eµ(L∗ − L)2 = δ, Eµ{(L∗ − L)Y } = 0. (3.4)

If a solution is found then the optimal value is given by Vµ(δ) = Eµ(L∗X). Note,
however, that the maximizer L∗ may be of a different form given in case (ii) of
Theorem 1, which corresponds to δ ≥ δ∗∗ and the maximal possible optimal value.
In some cases δ∗∗ has an explicit formula, whereas in some other cases identification
of δ∗∗ requires solving yet another convex optimization problem. This latter problem
usually can be avoided in practice when plotting Vµ(δ) as a function of δ, because
solving (3.4) becomes problematic only when Vµ(δ) is close to its maximal value.
Some further details concerning δ∗∗ in the particular case of problem (1.4) are given
in Section A.2.

In the important case of µ = P we have L ≡ 1. Incorporating the latter into the
constant b reduces the number of equations by one. Indeed, we then may consider
L∗ = aU+ with U = U(b, c) = X + b+ c>Y and the equations

E(U+) = 1/a, var(U+) = δ/a2, cov(U+,Y ) = 0>.

Hence we need to find constants b, ci ∈ R, i = 1, . . . , d − 1, such that U > 0 with
positive probability and

cov(U+,Y ) = 0>, δ = var(U+)/E2(U+).

If a solution is found then VP(δ) = E(U+X)/E(U+) and the corresponding Radon–
Nikodym derivative is L∗ = U+/E(U+). Moreover, this suggests a parametric ap-
proach to plot VP(δ), δ > 0: (1) fix b in some range and try to find ci, i = 1, . . . , d−1,
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such that cov(U+,Y ) = 0> and U > 0 with positive probability, (2) plot (δ, VP(δ))
for various values of b.

Solving the above systems of non-linear equations may not be trivial, but it can
be done numerically for a moderate dimension d. Note that evaluation of the left
hand sides in (3.4) for a given choice of constants a, b, ci requires integration with
respect to the joint distribution of (X,Y >). Thus each evaluation is costly even for
small d. In the following section we provide an upper bound for the optimal value of
a simple explicit form that does not require solving any equation. Moreover, in our
applications we observed that this bound often coincides with the optimal value or
is very close to it.

4 Robust bounds of a simple form

Throughout this section we assume that EµX2,EµY 2
i ,EµL2 < ∞, and recall that

Σµ(X,Y ) denotes the µ-covariance matrix of the vector (X,Y >). The following re-
sult provides a robust bound of a simple form on E′X under the moment constraints
E′Y = EY and in the neighborhood defined by Dµ(P′,P) ≤ δ. In the following we
call it a robust square-root bound.

Theorem 2. If Σµ(X,Y ) is invertible then the optimal value of (3.1) for δ > 0
satisfies

Vµ(δ) ≤ EX +

√
δ

det{Σµ(X,Y )}
det{Σµ(Y )} ,

which holds with equality if and only if

X−EµX−covµ(X,Y )Σµ(Y )−1(Y −EµY )+

√
det{Σµ(X,Y )}
δ det{Σµ(Y )} L ≥ 0 µ-a.s. (4.1)

Proof. The covariance matrix Σµ(X,Y ) is positive definite and so must be Σµ(Y ),
showing that det{Σµ(X,Y )}, det{Σµ(Y )} > 0. Consider case (i) of Theorem 1 and
note that we may rescale the constants b, c so that L∗ = (aU + L)+, where U =
X + b+ c>Y .

First, we assume that aU + L ≥ 0 µ-a.s. Then according to (3.4) we have

EµU = 0, varµ(U) = δ/a2, covµ(Y , U) = 0.

Denoting σ = covµ(Y , X) the latter reads as

0 = covµ(Y , U) = covµ(Y , X + b+ c>Y ) = σ + Σµ(Y )c

showing that c> = −σ>Σµ(Y )−1. Similarly,

varµ(U) = covµ(U,X + b+ c>Y ) = covµ(U,X) = varµ(X) + c>σ

= varµ(X)− σ>Σµ(Y )−1σ (4.2)

which is det{Σµ(X,Y )}/ det{Σµ(Y )} according to the well-known formula for the
determinant of a block matrix, see Schur (1917) or (Ouellette, 1981, Eq. (1.3));
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the expression in (4.2) is called the Schur complement of Σµ(Y ) with respect to
Σµ(X,Y ). Hence we find that

a =
√
δ det{Σµ(Y )}/ det{Σµ(X,Y )}, b = −EµX + σ>Σµ(Y )−1EµY .

According to (4.2) we finally get

Vµ(δ) = E∗X = Eµ{(aU + L)X} = EX + a covµ(U,X)

= EX + a
det{Σµ(X,Y )}

det{Σµ(Y )} ,

which readily yields Vµ(δ) under the assumption of non-negativity of aU +L. But in
any case we have an upper bound according to Remark 3. Finally, we have an exact
expression for Vµ(δ) if

0 ≤ U + L/a

= X − EµX + σ>Σµ(Y )−1EµY − σ>Σµ(Y )−1Y +

√
det{Σµ(X,Y )}
δ det{Σµ(Y )} L

holds µ-a.s., which completes the proof.

The assumption that Σµ(X,Y ) is invertible is not a restriction, because otherwise
either some moment constraints are redundant and so can be removed, or X can be
expressed as a linear combination of Yi and so EX is determined by the moment
constraints. Moreover, there is a link to the control variates method for variance
reduction, where det{Σµ(X,Y )}/ det{Σµ(Y )} corresponds to the minimal possible
variance of X + c>Y for an arbitrary vector c, see (Asmussen and Glynn, 2007,
Sec. V.2). Furthermore, if (X,Y >) is jointly normal then the above fraction of the
determinants is the variance ofX conditional on Y = y. Finally, in some applications
it may be important to understand when the optimizing measure is equivalent to
the dominating measure µ, i.e., L∗ is strictly positive µ-a.s. It is easy to see that this
happens if and only if (4.1) holds with strict inequality. As before here we assume
that det{Σµ(X,Y )} 6= 0, which additionally ensures that the case (ii) of Theorem 1
cannot be used to construct a strictly positive L∗.

The condition (4.1) implies that there exists δ∗ ∈ [0,∞] such that the robust
square-root bound is exact for all δ ∈ [0, δ∗], but otherwise it is conservative. Because
of the form of the square-root bound we observe that necessarily δ∗ ≤ δ∗∗, where
the latter is defined in Remark 2. Figure 1 illustrates these quantities, the optimal
value and the square-root bound. Note also that the optimal value Vµ(δ) must be a
concave function of δ, which is easily seen from (3.1).

The corresponding minimization problem is solved by considering −X instead
of X in (3.1), in which case we define L∗, δ∗ and δ∗∗ analogously to L∗, δ∗ and δ∗∗.
In particular, we have the following lower square-root bound.

Corollary 1. Under the assumptions of Theorem 2 it holds for δ > 0 that

inf
P′
{E′X : Dµ(P′,P) ≤ δ,E′Y = EY } ≥ EX −

√
δ

det{Σµ(X,Y )}
det{Σµ(Y )}

12



b
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δ∗∗δ∗

Figure 1: The optimal value Vµ(δ) (lower curve) and the square-root bound (upper curve)
as functions of δ.

with equality if and only if

X − EµX − covµ(X,Y )Σµ(Y )−1(Y − EµY )−
√

det{Σµ(X,Y )}
δ det{Σµ(Y )} L≤ 0 µ-a.s.

(4.3)

Proof. Consider −X in place of X in Theorem 2 and note that det{Σµ(X,Y )} stays
the same. The condition for equality immediately follows from (4.1).

Remark 4. When µ = P, with Σ = ΣP it holds that

δ∗ =
det{Σ(X,Y )}
b∗2 det{Σ(Y )}1{b

∗>0} +∞1{b∗≤0},

δ∗ =
det{Σ(X,Y )}
b∗

2 det{Σ(Y )}1{b∗<0} +∞1{b∗≥0},
(4.4)

where b∗ and b∗ are the essential supremum and the essential infimum of

cov(X,Y )Σ(Y )−1(Y − EY )− (X − EX),

respectively. In particular, if |X| and all |Yi| are bounded a.s. then necessarily δ∗,
δ∗ > 0.

In the case of no moment constraints, d = 1, the square-root bounds on E′X in
the respective ball of measures are given by

EX ±
√
δ varµ(X).

In the case of one constraint, d = 2, we obtain the square-root bounds

EX ±
√
δ varµ(X)(1− corr2µ(X, Y )), (4.5)

and the corresponding δ∗, δ∗ can be computed from (4.1) and (4.3). Notice that the
bounds become tighter in presence of a constraint when X and Y are correlated.

It is important to note that the exact robust bounds become tighter or stay
the same when an extra moment constraint is added, which follows immediately
from (3.1). The same is true for the square-root bounds. This either follows from
the proof of Theorem 2 and Remark 3, or from the following analysis based on block
matrix algebra. Letting Y + = (Y1, . . . , Yd)

>, we need to show that

det{Σµ(X,Y +)}/ det{Σµ(Y +)} ≤ det{Σµ(X,Y )}/ det{Σµ(Y )}.
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This inequality follows by rewriting it using the Schur complements as in (4.2) and
applying the block matrix inversion formula (Ouellette, 1981, Thm. 2.7). By doing
so we find that this inequality is strict unless

covµ(X, Yd) = covµ(X,Y )Σµ(Y )−1 covµ(Y , Yd).

In other words, this condition corresponds to the case when the extra moment con-
straint on Yd does not improve the square-root bounds, assuming that the enlarged
covariance matrix Σµ(X,Y +) is invertible.

5 Bounds on Pickands’ dependence function

In this section we apply the bounds from the previous sections to assess the model
misspecification error in multivariate extremes with the focus on tail probabilities
in (1.3). For illustration, we consider the bivariate case and note that the extension to
higher dimensions is analogous. Possible computational challenges will be discussed
in Section 6 presenting another application of the robust approach to multivariate
extremes.

Recall that we exclusively address misspecification of the spectral distribution.
In the bivariate case, this distribution is defined on the simplex S1, and it is thus
effectively one-dimensional. In the following we assume that the corresponding ran-
dom variable Y = Y1 ∈ [0, 1] µ-a.s. Alternatively to (1.4), we may directly consider
the robust bound on the Pickands’ dependence function defined in (2.8):

sup
P′
{2E′ {(1− z)Y ∨ z(1− Y )} : Dµ(P′,P) ≤ δ,EY = 1/2} , (5.1)

i.e., we take X = X(z) = 2{(1 − z)Y ∨ z(1 − Y )} for a fixed z ∈ (0, 1). The
respective optimal value A∗(z; δ) provides the asymptotic robust upper bound on
the tail probability

P(Z1 > tz1 or Z2 > tz2) . t−1
(

1

z1
+

1

z2

)
A∗
(

z1
z1 + z2

; δ

)
, t→∞

The lower bound is obtained similarly using the optimal value A∗(z; δ) of the corre-
sponding minimization problem.

In addition to the exact robust bounds we will use the corresponding square-
root bounds, and also bounds in the model class for comparison. More precisely, we
consider the following:

(a) Robust bounds A∗(z; δ) and A∗(z; δ) given by Theorem 1, which can be com-
puted as explained in Section 3.3. Details on the identification of δ∗∗ and δ∗∗ are
postponed to the Appendix A.2, because this is not essential for applications.

(b) Robust square-root bounds Â∗(z; δ) ≥ A∗(z; δ) and Â∗(z; δ) ≤ A∗(z; δ) given
by (4.5). These are conservative bounds that are easy to compute. Moreover,
they are exact when δ ≤ δ∗ and δ ≤ δ∗ for upper and lower bounds, respec-
tively.
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(c) Exact bounds in the model class that are not robust under model misspec-
ification. That is, we impose the restriction that Y under P′ belongs to the
chosen model class. These bounds are easy to compute for, e.g., one-parameter
families, but otherwise it can be a hard problem. This paper addresses model
misspecification issues and so the bounds in the model class will be given only
for comparison.

Remark 5. The bounds in (a) and (b) on Pickands’ function directly provide ro-
bust bounds on the extremal coefficient θ = 2A(1/2) ∈ [1, 2], a commonly used
summary statistic for dependence in multivariate and spatial extreme value statis-
tics (Schlather and Tawn, 2003).

Regarding the optimization problem (5.1) it is convenient to switch to the in-
duced distributions of Y , see also Section 3.1. Thus we assume that Ω = [0, 1] and
F is the respective Borel σ-algebra, and that Y (ω) = ω. In Section 2.1 we claimed
that the choice of the dominating measure µ reflects our uncertainty about the mea-
sure P. Throughout this paper, however, our main choice is µ = P leading to the
Rényi divergence of order 2. For the purpose of illustration we also use µ = Leb[0, 1]
assigning uniform weights; see (2.3). In the following we discuss some further sim-
plifications of the general theory in these two particular cases.

If µ = P, then computing the robust bounds requires solving a system of two non-
linear equations, see Section 3.3 for details. On the contrary, the square-root bounds
(4.5) are always explicit, and we only need to compute EX, var(X) and corr(X, Y ).
Moreover, Remark 4 provides simple expressions for δ∗ and δ∗ in terms of b∗ and b∗.
Importantly, the latter two can be given explicitly under a minor assumption that
0, 1, z are in the support of the distribution of Y :

b∗ = EX − ρ/2 + (−2z) ∨ (ρz − 2z(1− z)) ∨ (ρ− 2(1− z)),

b∗ = EX − ρ/2 + (−2z) ∧ (ρ− 2(1− z)),

where ρ = cov(X, Y )/ var(Y ). Indeed,

b∗ = EX − ρ/2 + ess sup(ρY −X), b∗ = EX − ρ/2 + ess inf(ρY − X)

according to Remark 4, and ρY − X achieves its maximum in one of the points
Y = 0, Y = z or Y = 1, and its minimum in Y = 0 or Y = 1. Further comments
concerning δ∗∗ and δ∗∗ will be given in Section A.2.

If µ = Leb, then for the exact robust bounds we need to solve a system of three
non-linear equations. Concerning the square-root bounds, we observe from (4.5)
that their width is determined by the dominating measure µ, whereas L affects the
center EX and the values of δ∗, δ∗ only; see (4.1) and (4.3). A simple calculation
based on (4.5) yields the following square-root bounds for an arbitrary density L:

EX ±
√
δ

4

3
z3(1− z)3. (5.2)

Furthermore, for any δ one can provide a lower bound on the density L(w) so that
the square-root upper and lower bounds are exact. In particular, one can show that
if L approaches 0 at one of the ends of the interval [0, 1] then δ∗ = 0, that is, the
lower square-root bound is never exact. Similarly, if L approaches 0 at z then δ∗ = 0.
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5.1 Illustration of the bounds

In the beginning of this section we provided a list of three bounds on the Pickands’
dependence function A(z): (a) exact robust bounds, (b) conservative square-root
bounds and (c) bounds in the model class. Let us illustrate these bounds for differ-
ent divergence levels δ with an example of a Hüsler–Reiss spectral distribution; see
Appendix A.1 for several common parametric families of spectral distributions. The
Hüsler–Reiss distribution has a single parameter λ ∈ (0,∞) and we fix it to λ = 0.6.
Furthermore, we consider z = 0.4 and use two dominating measures: µ = P and
µ = Leb. The upper panels of Figure 2 show the bounds as functions of diver-
gence δ. The middle and lower panels depict the Hüsler–Reiss density h0.6(ω) as
well as the optimizing densities corresponding to the upper and lower bounds for a
particular choice of δ = 0.4. In order to make comparisons easier, the densities with
respect to the Lebesgue measure are depicted in both cases, and so for µ = P we
plot L∗(ω)h0.6(ω) and L∗(ω)h0.6(ω) rather than L∗(ω) and L∗(ω). Finally, there is
no density corresponding to the square-root bound when δ is larger than δ∗ or δ∗
for the upper and lower bound, respectively. Nevertheless, there always exists the
corresponding pseudo-density which is not necessarily non-negative; see Remark 3.
These pseudo-densities are also included in Figure 2.

Additionally, we find δ∗ = 0.36, δ∗ = 0.14 when µ = P, and δ∗ = 0.43, δ∗ = 0
when µ = Leb, respectively. Thus in the case of µ = Leb the upper square-root
bound is exact for the chosen level δ = 0.4 and so L∗ and the corresponding pseudo-
density coincide. In the other cases, exact and square-root bounds do not coincide,
but it can be seen that the square-root bound is still a very good approximation of
the exact robust bound even when δ is much larger than δ∗ or δ∗. Furthermore, the
upper bounds in the model class are obtained for λ = 0.737 and λ = 0.844 according
to µ = P and µ = Leb, and the lower bounds for λ = 0.367 and λ = 0.366.

Let us make some final observations concerning the optimizing densities. Firstly,
when maximizing A(z) the probability mass is shifted from around z towards 0
and 1. Conversely, when minimizing A(z) the mass is shifted towards z. Secondly,
when µ = P the density corresponding to the exact upper bound approaches 0 at
both ends, and it does not do so when µ = Leb. The reason is that the chosen
Hüsler–Reiss spectral density decays faster than any power at 0 and at 1, and so
Rényi divergence as defined in (2.2) is finite only if the density of P′ decays fast at
0 and at 1. This issue will arise again in Section 5.2 describing our experiments.

5.2 Experiments

In this section we show how the robust bounds are able to capture correctly the
uncertainty due to model misspecification in a statistical estimation problem. They
remain reliable in situations where classical confidence bounds would underestimate
the statistical error.

As an application of our results we consider the estimation of tail probabilities
of the bivariate, regularly varying random vector Z; see Section 2.2. Throughout
this section we assume that Z follows an asymmetric logistic distribution with de-
pendence parameter a ∈ (0, 1) and asymmetry parameters b1, b2 ∈ [0, 1] as defined
in Appendix A.1.2, so that the limiting spectral measure H = AL(a, b1, b2) = Ptrue
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Figure 2: Upper panels contain the value ofA(z) for P being Hüsler–Reiss with λ = 0.6 and
z = 0.4 (blue), exact robust bounds (black), the square-root bounds (green) and bounds
in the model class (dashed purple) as functions of δ. Middle and lower panels show the
Hüsler–Reiss density and the optimizing (Lebesgue-)densities for δ = 0.4 corresponding to
upper and lower bounds, respectively. The pseudo-densities corresponding to square-root
bounds are given in green.
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in (2.5) has the density (A.4). We conduct several experiments that illustrate the
use of the robust bounds in practical applications. All our experiments are carried
out according to the following scheme.

(a) Simulate n data Z(1), . . . ,Z(n) from a bivariate asymmetric logistic distribu-
tion using the R-package Stephenson (2002).

(b) Transform the samples to polar coordinates as in Section 2.2, and choose r > 0
such that there are k < n of the radii exceeding the threshold r. According
to (2.5), the corresponding angles, say Y (1), . . . , Y (k), are approximate realiza-
tions of the spectral distribution. The choice of the threshold r is a trade-off
between the sample size k and the approximation error.

(c) Choose a parametric family for the spectral distribution and fit it to the obser-
vations Y (1), . . . , Y (k), using maximum likelihood estimation. The parametric
family can either be the correct asymmetric logistic model, or a misspeci-
fied model such as the Hüsler–Reiss or the extremal-t described in Appen-
dices A.1.1 and A.1.3, respectively. This model of the spectral distribution
defines our probability measure P.

(d) Plot the Pickands’ dependence functions Atrue and A corresponding to the
true asymmetric logistic model Ptrue and the estimate P from (c), respectively;
see (2.8).

(e) Estimate the divergence of the data from the fitted model δ = Dµ(Pdata,P)
using a naive approach: estimate the density (and point masses) from the given
k observations and plug it into (2.1) together with the model density from (c).
Alternative methods for divergence estimation can be found in, e.g., Póczos
and Schneider (2011). For comparison, we also compute the true divergence
δtrue = Dµ(Ptrue,P) of the true underlying asymmetric logistic distribution
from the fitted model.

(f) Compute the robust square-root bounds Â∗(z; δ) and Â∗(z; δ) for Pickands’
function A using δ computed in (e). The exact robust bounds, which are con-
siderably harder to compute, are very close to the square-root bounds and we
omit them for clarity of the plots.

(g) Compute the classical 95%-confidence bounds for the Pickands’ function by
non-parametric bootstrap. This is based on 300 estimates of the model pa-
rameters as in (c), each for a resample of the data with replacement. We plot
these bounds around A.

Remark 6. Let us remark that instead of simulating data from the asymmetric lo-
gistic distribution we could have used any bivariate distribution from its max-domain
of attraction, because we rely on a limiting result in (b) to approximate realizations
of Y . Importantly, it is the limiting asymmetric logistic distribution and the corre-
sponding spectral distribution of Y which are of main interest since they provide a
way to extrapolate tail probabilities out of the sample.

The basic information on the four experiments is given in Table 1, and the corre-
sponding plots are given in Figure 3. In all experiments we use k = 500 exceedances.
In experiment #1 we fit a symmetric extremal-t model to an asymmetric logistic
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Table 1: Details on the four experiments. AL: asymmetric logistic, HR: Hüsler–Reiss, ET:
extremal-t.

# Ptrue n Fitted model P µ δ δtrue

1 AL(0.4, 0.7, 1) 20000 ET(0.65, 1.21) P 0.34 0.35
2 AL(0.5, 1, 1) 20000 HR(0.61) Leb 0.05 0.06
3 AL(0.5, 1, 1) 2000 ET(0.88, 3.37) P 0.05 0.05
4 AL(0.5, 0.9, 0.5) 20000 AL(0.49, 0.85, 0.54) P 0.02 0.02

model, where both allow for point masses at 0 and 1. The bootstrap confidence
bounds are quite tight in this example, but they do not contain the true model on
most of the domain. This shows that these classical bounds are overly confident if the
fitted model is misspecified. The robust bounds, one the other hand, are wider and
they do contain the true model everywhere. We note that the square-root bounds
may go outside the triangle of admissible Pickands’ functions, see first row in Fig-
ure 3. This, however, can be easily fixed by simply restricting the bounds to stay
inside the triangle.

In experiment #2 we fit a symmetric Hüsler–Reiss model to a symmetric logistic
model (b1 = b2 = 1) with no point masses. Here the dominating measure is µ = Leb
for the reasons that we discuss below. Even though both models are symmetric,
the Hüsler–Reiss family is not flexible enough to well-approximate the generating
logistic distribution. This is underlined by the fact that the Pickands’ function does
not stay inside the bootstrap bounds, but only inside the wider robust bounds.

In the first two experiments we simulate n = 20 000 data points, corresponding
roughly to 55 years of daily observations. We choose r to be the 97.5% quantile of all
radii, and use for fitting the k = 500 observations whose radii exceed r. In experiment
#3 we only have n = 2000 data points and still use k = 500, corresponding to the
75% quantile for r. Comparing the histograms #2 and #3 in Figure 3, we note that
in the latter case there are less observations close to 0 and 1. This illustrates that the
data used for fitting comes from a pre-limit distribution. The δ we are estimating
therefore represents the divergence of the data, that is, the pre-limit distribution,
from the fitted model. This number can be considerably larger or smaller than δtrue,
the divergence of the generating logistic distribution from the fitted model. In this
case the robust theory still works well, but the estimated δ becomes unreliable. In
experiment #3 we chose a run with similar divergences δ and δtrue.

Experiment #4 shows the case of fitting the well-specified asymmetric logistic
family to the data. As expected, both the bootstrap and the robust bounds contain
the true model. It is interesting to observe that both types of bounds almost coincide,
meaning that the robust version is not overly conservative in the well-specified case.

Let us briefly discuss the choice of a dominating measure µ. We use µ = P,
i.e., the classical Rényi divergence as defined in (2.2), whenever possible, that is,
whenever δtrue is finite. This is the case when fitting extremal-t in experiments #1
and #3 and asymmetric logistic in #4, but not in experiment #2. Even though the
true symmetric logistic density with no point masses is absolutely continuous with
respect to the fitted Hüsler–Reiss density, the Rényi divergence of the former from
the latter is infinite, because the Hüsler–Reiss density decays faster than any power
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Figure 3: Left column: histogram of approximate Y , the true spectral distribution (solid
red), the fitted distribution (blue), non-parametric density estimate used to compute diver-
gence (dashed red). Right column: Atrue(z) (red), fitted A(z) (solid blue) with its bootstrap
bounds (dashed blue), and the robust square-root bounds (green). The rows correspond to
experiments #1–4 described in Table 1, respectively.
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at 0. Therefore, we take µ = Leb as a dominating measure in this case. Notice
however, that the Lebesgue dominating measure does not allow for point masses
which is desired in the other experiments.

Our experiments show that the easily computable robust square-root bounds
can be applied effectively to measure uncertainty related to misspecified depen-
dence structures in multivariate extremes. These readily available bounds are often
exact, or very close to the exact robust bounds, see also Section 5.1. Thus the more
challenging computation of the exact bounds is usually not required. Let us note
that estimation of δ can be subtle, but it can be improved by an adequate choice of
the dominating measure µ. Another important problem concerns reliable estimation
of δ when data is coming from a pre-limit distribution. We leave these statistical
questions for future research.

6 Robust bounds on the Value-at-Risk of a
portfolio

In recent years diversification effects in heavy-tailed portfolios received considerable
attention; see Mainik and Embrechts (2013); Mainik and Rüschendorf (2010); Zhou
(2010). Suppose that Z is a d-dimensional vector of dependent risk factors, and
consider the portfolio P =

∑d
i=1wiZi, where w1, . . . , wd ≥ 0 are some non-negative

weights, not all being 0; one may assume that
∑

iwi = 1 but this is not required. In
order to have comparable risks one assumes that Z is multivariate regularly varying
with some index α > 0 and non-degenerate exponent measure ν, so that (2.6)
holds true.

Let VaRi(p) be the Value-at-Risk of the ith component, i.e., it satisfies

F i(VaRi(p)) = p,

where p > 0 is a number close to 0. It follows that VaRi(p) is regularly varying at 0
with index −1/α, and moreover from (2.6) we find

VaRi(p)

VaR1(p)
→ m

1/α
i as p ↓ 0. (6.1)

In the following we consider the Value-at-Risk VaRP (p) of the portfolio P and pro-
vide the corresponding asymptotic robust bounds.

As discussed in Section 2.2, it is a common procedure to first estimate the
marginal tails and then to address tail dependence, comparable to the copula con-
cept in multivariate modeling. In this work we focus on the latter, more difficult task,
and so we assume that the marginal survival functions F i are correctly specified.
Transforming the marginals to unit Pareto

Ẑi =
1

F i(Zi)
,

we obtain normalized multivariate regularly varying Ẑ, to which we associate Ŷ ∈
Sd−1 having the corresponding spectral distribution.
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According to (Zhou, 2010, Thm. 3.1) the Value-at-Risk VaRP (p) of the portfo-
lio P satisfies

(
VaRP (p)

VaR1(p)

)α
→ dE

(
d∑

i=1

wi(miŶi)
1/α

)α

as p ↓ 0. (6.2)

That is, the Value-at-Risk of the portfolio is asymptotically equivalent to the Value-
of-Risk of every individual risk factor up to a diversification constant, which is easily
identified from (6.2) and (6.1). In particular, letting

X =

(
d∑

i=1

wi(miŶi)
1/α

)α

(6.3)

we have the approximation for small p > 0

VaRP (p) ≈ VaR1(p)(dEX)1/α.

Suppose now that our model P for the extremal dependence between the risk
factors, i.e., for the spectral distribution Ŷ , is subject to model uncertainty. A
prominent problem in the financial literature on model uncertainty is to obtain worst
case bounds on the Value-at-Risk of a portfolio (cf., Embrechts et al., 2013, 2015). In
this regard we may directly apply our results from Sections 3 and 4 by considering
the optimization problem (3.1) with X given in (6.3) and the moment constraints
EŶi = 1/d. Let us note again that there are essentially d − 1 constraints since
Ŷd = 1−∑d−1

i=1 Ŷi. For fixed uncertainty radius δ > 0, Theorem 1 yields the desired
exact worst case bounds on VaRP (p) which are found numerically by solving a system
of d+ 1 non-linear equations. In higher dimension, solving these equations might be
computationally challenging. On the other hand, the upper and lower square-root
bounds in Theorem 2 and Corollary 1 coincide with the exact bounds for δ < δ∗

and δ < δ∗, respectively, and are otherwise very good approximations. Moreover,
they can be easily computed even in higher dimensions. Indeed we only need to
evaluate the covariance matrix Σµ(X, Ŷ ) with respect to the chosen dominating
measure µ. In the default case µ = P this can be done, for instance, by Monte Carlo
methods based on independent samples from Ŷ . An algorithm for exact and efficient
simulation of Ŷ can be found in Dombry et al. (2016).

Differently to Zhou (2010) and the above discussion, in Mainik and Embrechts
(2013) the asymptotic relation between VaRP (p) and VaR1(p) is expressed using
the spectral distribution of the original non-standardized Z. This approach avoids
separating the problem into marginal tail estimation and estimation of the tail de-
pendence structure, which may be beneficial in some situations. Nevertheless, it does
neither allow to use standard models for the spectral measure, nor to use the robust
bounds presented in this paper. To be more explicit, let Y ∈ Sd−1 have the spectral
distribution corresponding to Z. Then according to (Mainik and Embrechts, 2013,
Cor. 2.3) it holds that

(
VaRP (p)

VaR1(p)

)α
→ E

(
d∑

i=1

wiYi

)α

/ EY α
1 as p ↓ 0,

where Y is not required to satisfy any moment constraints. It is now clear that
optimization of the right hand side does not fit into our framework.
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Appendix

A.1 Some parametric families of spectral distributions

In the following we provide several commonly used parametric models for the spec-
tral distribution H of (Y1, Y2) ∈ S1 in the bivariate case under L1-norm. Without
loss of generality, we restrict our attention to the first component Y = Y1, so that H
is a probability measure on [0, 1] equipped with its Borel σ-algebra. The following
formulas are known but not readily available in the literature, and so we present
them here for completeness.

A.1.1 Hüsler–Reiss

If the max-stable distribution is a bivariate Hüsler–Reiss distribution with depen-
dence parameter λ ∈ (0,∞), then the density of the corresponding spectral distri-
bution is

hλ(ω) =
1

ω2(1− ω)4λ

1√
2π

exp

{
−1

2

(
λ+

log 1−ω
w

2λ

)2
}
, ω ∈ [0, 1].

It is easy to check that this distribution is symmetric around 1/2 and that EY = 1/2.
Moreover, A(1/2) = Φ(λ), where Φ is the standard normal distribution function.

A.1.2 Asymmetric logistic

If the max-stable distribution is an asymmetric logistic distribution with depen-
dence parameter a ∈ (0, 1) and asymmetry parameters b1, b2 ∈ [0, 1], then the
corresponding spectral distribution has point masses P(Y = 0) = (1 − b2)/2 and
P(Y = 1) = (1− b1)/2, and the density is

ha,b1,b2(ω) =
1− a

2a

(b1b2)
1/a

(ω(1− ω))1+1/a

{(
b1
ω

)1/a

+

(
b2

1− ω

)1/a
}a−2

, ω ∈ (0, 1).

(A.4)

A.1.3 Extremal-t

If the max-stable distribution is an extremal-t distribution with parameters ρ ∈
[−1, 1] and a > 0, then the distribution of the corresponding spectral distribution
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has point masses

P(Y = 0) = P(Y = 1) = 1− Fa+1

{
ρ

√
a+ 1

1− ρ2
}
,

and the density for ω ∈ (0, 1) is

hρ,a(ω) =
(1− ρ2)a+1

2 Γ(a+2
2

)

2a
√
πΓ(a+1

2
)

(ω(1− ω))1/a−1

×
{
ω2/a − 2ρ(ω(1− ω))1/a + (1− ω)2/a

}−a+2
2 .

Here, Fa is the t-distribution function with a > 0 degrees of freedom, i.e.,

Fa(x) =
Γ(a+1

2
)√

aπΓ(a
2
)

∫ x

−∞

(
1 +

t2

a

)−a+1
2

dt, x ∈ R.

A.2 Degenerate optimizers for the Pickands’ function

In this section we study the degenerate case (ii) of Theorem 1 for the Pickands’
dependence function A(z) defined in (2.8), see also Section 5. That is, we assume
that

X = X(z) = 2{(1− z)Y ∨ z(1− Y )}, Y ∈ [0, 1] (A.5)
for some fixed z ∈ [0, 1], and that the constraint is EY = 1/2. Our aim is to identify
the corresponding optimal values and the thresholds δ∗∗ and δ∗∗, see Remark 2. The
following result shows that the degenerate case corresponds to the trivial bounds
z ∨ (1 − z) ≤ A(z) ≤ 1 as expected, but a certain assumption on the µ-support of
Y is necessary.

Lemma 1. Consider (A.5) and assume that µ-support of Y contains 0, z, 1. Then the
case (ii) of Theorem 1 occurs if and only if there exists a Radon–Nikodym derivative
L∗ (with respect to µ) such that

Eµ(L∗ − L)2 ≤ δ, P∗(Y = 0) = P∗(Y = 1) = 1/2,

in which case E∗X = 1.
In case of the minimization problem the corresponding requirement on a Radon–

Nikodym derivative L∗ is

Eµ(L∗ − L)2 ≤ δ,





P∗(Y ≥ z) = 1, z < 1/2,

P∗(Y = 1/2) = 1, z = 1/2,

P∗(Y ≤ z) = 1, z > 1/2,

E∗Y = 1/2,

in which case E∗X = z ∨ (1− z).

Proof. Observe that the maximum of X+cY is obtained for Y = 1 or Y = 0 or both
(draw a picture). Since E∗Y = 1/2 we must have P∗(Y = 0) = P∗(Y = 1) = 1/2,
which yields the result.

The minimum of X+ cY is obtained either at Y ≤ z or at Y ≥ z or at the single
points 0, z, 1 (z is the bending point). Again the constraint E∗Y = 1/2 leads to the
result. The corresponding optimal value is 2(1− z)E∗Y = 1− z when z ≤ 1/2, and
it is z when z > 1/2.
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For the maximization problem, in the case of µ = Leb, it is impossible to have
P∗(Y = 0),P∗(Y = 0) > 0 and so according to Lemma 1 there cannot be a degenerate
maximizer for any δ, i.e. δ∗∗ =∞. In the case of µ = P we have the following:

δ∗∗ =
1

4p0
+

1

4p1
− 1, (A.6)

where pi = P(Y = i), and in particular p0 and p1 must be positive to have δ∗∗ <∞.
This follows from Lemma 1 and the following arguments. Note that

EL∗2 = E(L∗2|Y = 0)p0 + E(L∗2|Y = 1)p1 ≥ l20p0 + l21p1,

where li = E(L∗|Y = i) and so l0p0 = l1p1 = 1/2. Hence, L∗ = l01{Y=0} + l11{Y=1}
guarantees the minimal value for EL∗2 among the allowed ones for any fixed δ. There-
fore, a sufficient and necessary condition for existence of a degenerate maximizer is
l20p0 + l21p1 − 1 ≤ δ, which readily yields (A.6).

For the minimization problem, the case of z = 1/2 is easy, δ∗∗ =∞ for µ = Leb,
and δ∗∗ = 1/P(Y = 1/2)− 1 for µ = P. For z 6= 1/2 the value of δ∗∗ depends on the
distribution of Y on Y ≥ z if z < 1/2 (on Y ≤ z if z > 1/2). More precisely, we
need to identify a Radon–Nikodym derivative L∗∗ which assigns no mass to Y < z,
satisfies the constraints Eµ(L∗∗) = 1,Eµ(L∗∗Y ) = 1/2 and minimizes Eµ(L∗∗ − L)2.
This optimization problem is solved by L∗∗ = (b+ cY +L)+1{Y≥z} for b, c ∈ R such
that the constraints hold. Finally, the minimal value Eµ(L∗∗ − L)2 is our δ∗∗.

A.3 Optimization for Rényi and Kullback–Leibler
divergences

For completeness, we consider our optimization problem (3.1) for some other popular
divergences: Rényi divergence of order η > 1 given by

D̂η(P′,P) =
1

η − 1
logEL′η,

and Kullback–Leibler divergence given by

D̂1(P′,P) = E(L′ logL′),

where it is assumed that P′ � P with L′ = dP′/dP and that the dominating mea-
sure µ coincides with P. An easy adaptation of the proof of Theorem 1 shows that
a maximizer P∗ of

sup
P′
{E′X : D̂η(P′,P) ≤ δ,E′Y = EY }

must have a Radon–Nikodym derivative L∗ ≥ 0 which satisfies EL∗ = 1,E(L∗Y ) =
EY and one of then following:

(i) D̂η(P∗,P) = δ and there exist a > 0, b, ci ∈ R such that

L∗ = (aX + b+ c>Y )
1/(η−1)
+ a.s. when η > 1, (A.7)

L∗ = exp(aX + b+ c>Y ) a.s. when η = 1, (A.8)
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(ii) there exist ci such that the distribution of X + c>Y has a positive mass at its
right end, L∗ = 0 everywhere else a.s., and the constraint D̂η(P∗,P) ≤ δ holds.

Conversely, any such L∗ corresponds to a maximizer P∗. In the case η > 1 we
assume that E|X|η/(η−1),E|Y |η/(η−1) < ∞, and in the case η = 1 we assume that
E(|X|L′),E(|Yi|L′) <∞ for all L′ satisfy E(L′ logL′) ≤ δ. Furthermore, regardless of
these assumptions, if there exists L∗ as above and such that E(|X|L∗),E(|Yi|L∗) <∞
then it must be a maximizer, which can be seen by considering an appropriate convex
subset of L′ in the proof of Theorem 1.

Note that taking η = 2 we retrieve the result of Theorem 1 for µ = P. In
the case d = 1 (no moment constraints) the expression for L∗ in (i) appears in
e.g. Blanchet and Murthy (2016). Furthermore, Breuer and Csiszár (2013a) considers
more general divergences but the results are less explicit. Finally, we elaborate on
the case of Kullback–Leibler divergence extending the result of Ahmadi-Javid (2012)
by introducing moment constraints.

Proposition 1. Assume that X, Yi ≥ 0 are positive random variables with finite
expectation, and G(a, c) = EeaX+

∑
i ciYi is finite on some domain D ⊂ (0,∞) × Rd

with non-empty interior. Suppose there exist (a, c) ∈ D such that

Gi(a, c)

G(a, c)
= EYi, a

G0(a, c)

G(a, c)
+

d∑

i=1

ciEYi − logG(a, c) = δ,

where Gi(·) is a derivative with respect to the ith variable (pointing inside the domain
if on the boundary). Then

V KL(δ) = sup
P′
{E′X : D̂1(P′,P) ≤ δ,E′Y = EY } =

G0(a, c)

G(a, c)
,

which corresponds to the exponential change of measure L∗ = eaX+
∑

i ciYi/G(a, c).

Proof. According to (A.8) we consider

L∗ = exp(aX + b+
∑

i

ciYi) =: exp(U), a > 0, b, ci ∈ R

together with the constraints: EeU = 1,E(UeU) = δ,E(Yie
U) = EYi. We may rewrite

these using the moment generating function G:

G(a, c) = e−b,

aG0(a, c) + bG(a, c) +
∑

i

ciGi(a, c) = δe−b,

ebGi(a, c) = EYi,
V KL(δ) = ebG0(a, c).

The equations in the statement are now immediate. Finally, we note that E(XL∗)
and E(YiL

∗) are finite which completes the proof.
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