
www.csgb.dk

RESEARCH REPORT 2017

CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen

A note on gaps in proofs of central limit theorems

No. 12, November 2017



A note on gaps in proofs of central limit theorems

Christophe A.N. Biscio1, Arnaud Poinas2 and Rasmus Waagepetersen1

1Department of Mathematical Sciences, Aalborg University, Denmark
2IRMAR, Campus de Beaulieu, Bat. 22/23, France

Abstract

We fill two gaps in the literature on central limit theorems. First we state
and prove a generalization of the Cramér-Wold device which is useful for es-
tablishing multivariate central limit theorems without the need for assuming
the existence of a limiting covariance matrix. Second we extend and provide
a detailed proof of a very useful result for establishing univariate central limit
theorems.
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1 Introduction

Many applications of spatial statistics involve spatially varying covariates. One com-
mon example is universal kriging (e.g. Chilès and Delfiner, 2008), where a determin-
istic component of a spatial variable is modelled using a regression on spatial covari-
ates. Another example, which we will discuss in some detail for illustrative purpose,
is log-linear modelling of intensity functions for spatial point processes, see e.g.
Rathbun and Cressie (1994), Rathbun (1996), Schoenberg (2005), Waagepetersen
(2007), Guan and Loh (2007). Such models have for example found much use in
ecology where point processes are used to model locations of plants and animals,
and the covariates could describe landscape type, topography or soil properties.

Letting Z = {Z(u)}u∈Rd where for each u ∈ Rd, Z(u) ∈ Rp is a covariate vector,
the intensity function is often assumed to be of the form

ρ(u; β) = exp(βTZ(u)) (1.1)

where β ∈ Rp. In the aforementioned references, the regression parameter β is in-
ferred using an estimating function given by the score of the log likelihood function
of a Poisson process. For deriving asymptotic results it is crucial to establish asymp-
totic normality of the estimating function. Often increasing domain asymptotics are
used where a sequence {Wn}n≥1 of bounded but increasing observation windows
Wn ⊂ Rd are considered. The score estimating function is then

en(β) =
∑

u∈X∩Wn

Z(u)−
∫

Wn

Z(u)ρ(u; β)du (1.2)
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where X denotes the spatial point process. An estimate of β is obtained by solving
en(β) = 0.

In spatial statistics in general, central limit theorems for α-mixing spatial pro-
cesses are very popular tools for establishing asymptotic results both for random
field and point process models. In case of the model (1.1), asymptotic properties of
estimators of β were for example established by central limit theorems for α-mixing
spatial processes in Guan and Loh (2007) and Waagepetersen and Guan (2009).
Bolthausen (1982) provided a much cited central limit theorem for stationary α-
mixing random fields. This result was later extended to the non-stationary case
by Guyon (1995). Karácsony (2006) extended the result further to triangular arrays
considering a combination of infill and increasing domain asymptotics. When taking
a deeper look at the techniques employed in the proofs of the aforementioned refer-
ences, a couple of issues may disturb the reader. These are addressed in Sections 2–3
below.

2 Cramér-Wold device

Bolthausen (1982), Guyon (1995) and Karácsony (2006) only gave detailed proofs of
central limit theorems in the univariate case. Guyon (1995) and Karácsony (2006)
also stated multivariate central limit theorems and just referred to the Cramér-Wold
device for extending the univariate central limit theorems to the multivariate case.
However, a closer look shows that a simple application of the Cramér-Wold device
does not always suffice. Suppose that {Xn}n≥1 is a sequence of random vectors
in Rp. The Cramér-Wold device (e.g. p. 383 in Billingsley, 1995) then says that Xn

converges in distribution to a random vector X if and only if, for all a ∈ Rp, aTXn

converges in distribution toward aTX. In statistical applications we often want to
show that Var(Xn)−1/2Xn converges in distribution toward N (0, Ip) as n goes to
infinity for some sequence of statistics Xn. If Var(Xn) converges to a fixed positive
definite matrix Σ then this is equivalent to showing thatXn converges in distribution
toward N (0,Σ) and the application of the Cramér-Wold device is trivial.

However, in many applications a limit for Var(Xn) does not exist. Returning
again to the problem of inferring the intensity function (1.1) and letting Xn =
en(β)/|Wn|1/2 be given by (1.2) normalized by |Wn|1/2, the covariance matrix of Xn

is

Σn =
1

|Wn|

(∫

Wn

Z(u)TZ(u)ρ(u; β)du+

∫

Wn

∫

Wn

Z(u)TZ(v)[g(u, v)− 1]dudv

)

where g( · , · ) is the so-called pair correlation function (e.g. Møller and Waage-
petersen, 2004). Due to the dependency on Z(u), u ∈ Wn, it is not reasonable to
assume that Σn converges to a fixed limit. Guyon (1995) and Karácsony (2006) just
refer to the simple application of the Cramér-Wold device and in particular do not
discuss the issue of whether a limiting covariance matrix exists or not. To be on
firm ground, a Cramér-Wold type result covering the case with no limiting covari-
ance matrix seems missing. Therefore, we state the following generalization of the
Cramér-Wold device.
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Lemma 2.1. Let {Xn}n∈N be a sequence of random variables in Rp such that

0 < lim inf
n→∞

λmin(Var(Xn)) < lim sup
n→∞

λmax(Var(Xn)) <∞,

where for a symmetric matrix M , λmin(M) and λmax(M) denote the minimal and
maximal eigenvalues of M .

Then, Var(Xn)−1/2Xn
distr.−−−→n→∞ N (0, Ip) if for all a ∈ Rp,

(
aT Var(Xn)a

)− 1
2 aTXn

distr.−−−→
n→∞

N (0, 1).

The condition in this lemma regarding lim infn→∞ λmin Var(Xn) is the kind of condi-
tion used in the central limit theorems of Guyon (1995) and Karácsony (2006) and
so is not restrictive in practice. A proof of this lemma is provided in Section 4.

3 A lemma by Bolthausen

Bolthausen (1982), Guyon (1995) and Karácsony (2006) all use the following key
lemma.

Lemma 3.1. For n ∈ N, let {Xn}n∈N be random variables such that
supn∈N E(X2

n) <∞ and for all t ∈ R,

E[(it−Xn)eitXn ] −−−→
n→∞

0.

Then Xn
distr.−−−→n→∞ N (0, 1).

Karácsony (2006) somewhat misleadingly coins this “Stein’s lemma” and refers to
Stein (1972) and Guyon (1995). Guyon (1995) in turn refers to Stein (1972). How-
ever, the original reference is Bolthausen (1982) who states and proves the lemma
while acknowledging inspiration from Stein (1972). Stein’s lemma (Stein, 1981) says
that if Z is standard normal then E[f ′(Z)−Zf(Z)] = 0 for any differentiable f with
E|f ′(Z)| < ∞. This result is related to but nevertheless different from Lemma 3.1.
We do not find Bolthausen (1982)’s very condensed proof easily accessible and be-
lieve it is useful to provide a more detailed proof of this crucial lemma. Moreover,
the conclusion of Lemma 3.1 holds under a weaker assumption as stated below.

Lemma 3.2. For n ∈ N, let {Xn}n∈N be uniformly integrable random variables such
that for all t ∈ R,

E[(it−Xn)eitXn ] −−−→
n→∞

0. (3.1)

Then Xn
distr.−−−→n→∞ N (0, 1).

A proof of the last more general lemma is presented in Section 5.
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4 Proof of Lemma 2.1

Assume by contradiction that Var(Xn)−1/2Xn
distr.−−−→n→∞ Y ∼ N (0, Ip) does not hold.

Then there exists a bounded and continuous function f such that

Ef(Var(Xn)−1/2Xn)− Ef(Y )

does not converge toward 0. Thus, there exists ε > 0 and a strictly increasing function
b : N→ N such that for all n ∈ N,

∣∣Ef(Var (Xb(n))
−1/2Xb(n))− Ef(Y )

∣∣ > ε. (4.1)

Further, since for all a ∈ Rp, (aT Var(Xn)a)−
1
2aTXn

distr.−−−→n→∞ N (0, 1), we also have

(
aT Var(Xb(n))a

)− 1
2 aTXb(n)

distr.−−−→
n→∞

N (0, 1)

for any a ∈ Rp. Since the sequence of eigenvalues of the matrices Var(Xn) is bounded,
there exists by the Bolzano-Weierstrass theorem a strictly increasing function c :
N→ N such that {c(n)}n∈N ⊂ {b(n)}n∈N, and a matrix Σ such that

Var (Xc(n)) −−−→
n→∞

Σ.

Since (
aT Var (Xc(n))a

)− 1
2 aTXc(n)

distr.−−−→
n→∞

N (0, 1)

we obtain by multiplying with aT Var (Xc(n))a and using Slutsky’s lemma, that

aTXc(n)
distr.−−−→
n→∞

aTN (0,Σ).

Hence, by the Cramér-Wold device,

Xc(n)
distr.−−−→
n→∞

N (0,Σ)

which is equivalent to
Σ−

1
2Xc(n)

distr.−−−→
n→∞

N (0, Ip).

Therefore, by Slutsky’s lemma,

Var (Xc(n))
− 1

2Xc(n)
distr.−−−→
n→∞

N (0, Ip).

From this we can conclude
∣∣Ef(Var (Xc(n))

−1/2Xc(n))− Ef(Y )
∣∣ ≤ ε

for n large enough which contradicts (4.1).
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5 Proof of Lemma 3.2

Since the Xn are uniformly integrable, we have by (25.11) in Billingsley (1995),

sup
n∈N

E|Xn| <∞. (5.1)

By Markov’s inequality, for all ε > 0,

P (|Xn| > ε) ≤ E|Xn|
ε
≤ supn∈N E|Xn|

ε
. (5.2)

By (5.2), it follows that the sequence {Xn}n∈N is tight. Suppose now that b : N→ N
is an increasing function and X a random variable such that Xb(n)

distr.−−−→n→∞ X. Then,
by Theorem 25.11 in Billingsley (1995) and (5.1),

E|X| ≤ lim inf
n→∞

E|Xb(n)| <∞

so that E(X) and E(XeitX), for t ∈ R, are well defined. Since the random variables
Xn are uniformly integrable, so are Xb(n) and Xb(n)e

itXb(n) , for all t ∈ R. Thus, by
Theorem 25.12 in Billingsley (1995),

lim
n→∞

E(Xb(n)) = E(X) and lim
n→∞

E(Xb(n)e
itXb(n)) = E(XeitX).

Then, by (3.1),
E[(it−X)eitX ] = 0

which may be written

tφX(t) +
∂

∂t
φX(t) = 0 (5.3)

where φX denotes the characteristic function of X. For all t ∈ R, we may multiply
each side of (5.3) by et2/2 so that (5.3) is equivalent to

∂

∂t
(et

2/2φX(t)) = 0

which, since φX is a characteristic function, has the unique solution φX(t) = e−t
2/2.

Thus, X ∼ N (0, 1). Hence, we have shown that each convergent subsequence of
{Xn}n∈N converges in distribution towards a standard normal distribution. More-
over, since {Xn}n∈N is tight, such a subsequence exists by Theorem 25.10 in Billings-
ley (1995). Therefore, by the Corollary, p. 337 in Billingsley (1995), Xn

distr.−−−→n→∞
N (0, 1).
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