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Preface

This thesis presents the results I obtained during my PhD studies at the Department
of Mathematics at Aarhus University. The project was supervised by Jacob Schach
Mpller but I also had many helpful discussions with Oliver Matte, Wojciech Dybalski,
Fumio Hiroshima and Masao Hirokawa. My studies were mainly funded by the
Independent Research Fund Denmark but I also received travel grants from the
Augustinus Foundation, the Oticon Foundation and Aarhus University for which I
am grateful.

The thesis contains an introduction to the framework, a presentation and discus-
sion of the results obtained and four papers in which the results are proved. These
papers are

* Paper A: Spin-Boson type models analysed through symmetries: submitted.

* Paper B: Large interaction asymptotics of spin-boson type models: ready for
submission.

* Paper C: Non-existence of ground states in the translation invariant Nelson
model: ready for submission.

* Paper D: Rigorous Results on the Bose-Polaron: small corrections needed
(typos).

An old version of Paper A appeared in my Part A thesis. Since then, the conclusions
have been vastly generalised and the final version is presented here. Both Paper
A and B started from a note given to me by Jacob Schach Mgller, who had tried
to prove existence of exited states in the massive Spin-Boson model at sufficiently
strong interactions. I managed to prove a convergence theorem which removed all
constraints in one of the results by Jacob and even added an unexpected result on
ultraviolet renormalisation.

The idea for Paper C came to me while working on Paper D. After reading a Paper
by Ira Herbst and David Hasler, I realised that their difficulties could be avoided by
rotational symmetry and non degeneracy of ground states. Paper D was finished last
minute and may be a little rough around the edges. It started a project to investigate
a model for polarons in Bose Einstein condensations. I wanted to prove theorems
similar to those that hold for Nelson type Hamiltonians.

During my time as a PhD student I have spend quite a lot of time abroad. I spend
6 months at the TUM in Munich, 4 Months at Kyushu University and 2 weeks at
Hiroshima University. Apart from this I have spend several months abroad during
various summer schools and conferences. I have also presented my work at the
following conferences/seminars:
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10.
11.

. Mathematical Physics seminar, Kyushu University. September 2016.

. Qmath13, Institute of Technology. October 2016.

. LQP39, University of Miinster, January 2017.

. Mathematical Physics seminar, Kyoto University. May 2017.

. Probability Seminar, Kyushu University. July 2017.

. Mathematical Physics seminar, Aalborg University. September 2017.

. Thiele Seminar, Aarhus University. October 2017.

. QMath/QUSCOPE Joint Quantum Theory Seminar, Aarhus University. Novem-

ber 2017.

. Mathematical Challenges in Quantum Mechanics, La Sapienza, Rome. February

2018.
Quantum fields and related topics, RIMS Kyoto. July 2018.

Young Researchers symposium (in connection with ICMP), Mcgill University.
July 2018.

This thesis marks the end of many happy years at the university. I had the chance
to learn great mathematics, make friends and literally travel around the globe. First
and foremost I would like to thank Jacob for his continued support and the hours he
spend on my supervision. Secondly, I would like to thank Wojciech Dybalski, Fumio
Hiroshima and Masao Hirokawa for letting me stay at their respective universities
and helping me with my research. Thirdly, I would like to thank family and friends
who have solved many practical problems for me while I was either physically or
mentally absent from the real world.

Thomas Norman Dam
July 2018, Aarhus



Summary

In this thesis, several families of operators related to quantum field theory are in-
vestigated. It is emphasised that all results are obtained through non perturbative
techniques so there is no restrictions on the size of interactions.

The first paper is concerned with a family of models describing a qubit coupled to
a bosonic field. Let Hgp denote the corresponding Hamiltonian. It is shown, that there
is a unitary map U such that UHggU* = F, @ F_, where F, are selfadjoint operators
on Fock space. The operators F. are referred to as fiber operators. We calculate the
essential spectrum of F_, F, and Hsg under minimal conditions and identify which
fiber operator corresponds to the ground state. Using this we find a simple criterion
for the existence of an exited state.

Under the additional assumption of linear coupling we find the strong interaction
limit of spin-boson Hamiltonians. The limit is independent of the qubit, which has
two main applications. First of all, it is proven that exited states exists at sufficiently
strong coupling. Secondly, one can conclude that ultraviolet renormalisation using
Nelsons original method will never give physically interesting result.

The thesis also treats the massless translation invariant Nelson model. This model
describes a spinless particle with no charge coupled to a photon field. After a unitary
transformation we may write the Hamiltonian for this system as a direct integral of
fiber operators {H (&)} ccg3. We prove that H(&) does not have a ground state for any &.
The physical significance of this result is that construction of scattering states cannot
be done the usual way, as it requires existence of ground states for sufficiently many
of the &.

We also treat polarons in Bose Einstein condenstates. Recently a new model
has been proposed and we prove a collection of fundamental theorems for this
Hamiltonian including selfadjointness. The main problem is, that it adds 4 terms to
the old model and it is not clear if this destroys selfadjointness or other nice properties.
However rewriting the operator it is possible to prove that many properties of the
old model carries over to the new model.






Resume

Denne afhandling omhandler matematisk stringent behandling af modeller fra
kvantefeltteori. Det skal understreges, at alle resultater i denne athandling er ikke-
perturbative. Faktisk tages koblingens styrke til co i et af resultaterne, sa perturbative
metoder ville slet ikke kunne virke i dette tilfaelde.

Den forste model som behandles, er en generalisering af spin-boson modellen.
Denne model beskriver et to-niveau system koblet til et kvantiseret felt. Lad Hgpg veere
den tilhgrende Hamiltonoperator. Det vises, at der findes en uniteer transformation
U sdledes UHsgU" = F, @ F_, hvor F, er selvadjungerede operatorer pa Fockrum.
Operatorerne F, kaldes for fiberoperatorer. I afhandlingen bestemmes det essentielle
spektrum af F, og Hgp under minimale antagelser. Desuden identificeres hvilken af
fiberoperatorerne svarer til grundtilstanden. Ved brug af et variationelt argument
finder man et simpelt kriterium for eksistensen af en exciteret tilstand.

Antages at koblingen til feltet er lineser, kan man bestemme en asymptotisk
greense for Hgp nédr koblingsstyrken gar mod uendeligt. Denne greense er uafthengig
af to-niveau systemet, hvilket har to konsekvenser. Den forste konsekvens er, at
Hamiltonoperatoren har en exciteret tilstand, nar koblingsstyrken er stor nok. Den
anden konsekvens er, at "standardmetoden" til ultraviolet renormalisering ikke kan
give et fysisk interessant resultat.

Afhandlingen indeholder ogsa et kapitel dedikeret til den masselgse Nelson model.
I dette tilfeelde beskriver Hamiltonoperatoren en partikel uden spin eller ladning,
der vekselvirker med et kvantiseret felt af fotoner. Efter en uniteer transformation
kan Hamiltonoperatoren skrives som et direkte integral af fiberoperatorer {H(&)}¢cgs-
Det vises, at H(&) ikke har en grundtilstand for noget &. Dette resultat har den
konsekvens, at spredningsteori bliver enormt besveerligt, da disse grundtilstande
normalt bruges til konstruktionen af spredningstilstande.

Den sidste model som analyseres i denne afhandling er en ny model for en
urenhed der bevager sig i et Bose-Einstein kondensat. Den minder meget om en
eldre model for samme fysiske system, men Hamiltonoperatoren i den nye model
indeholder 4 led mere en Hamiltonoperatoren i den gamle model. Det vises, at en lang
reekke af egenskaber som den gamle Hamilton operator besidder ogsa geelder for den
nye Hamiltonoperator. Dette er dog langt fra oplagt og kreever mange omskrivninger
af den nye Hamiltonoperator.
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Chapter 1

A quick introduction to Fock spaces.

The aim of this section is to give the reader an up to date list of various identities and
inequalities needed to analyse operators on Fock Spaces. The proofs of many of these
claims are long and will not be given here. I have a PDF (available upon request)
with most of the proofs which was given to during a course by Oliver Matte. Since
then I added the remaining proofs along with an introduction to direct sums and
abstract tensor products. I will assume the reader is familiar with tensor products
of Hilbert-spaces and direct sums of Hilbert spaces and operators as this is covered
in most graduate courses on functional analysis. I will start from tensor products of
operators and work my way through the material. The reason for this is that not all
people agree on what the tensor product of two operators is and this might create
confusion later on.

1 Tensor products of operators

This subsection is taken ore or less directly from [6] (see also [38]). Throughout this
section let Hy,...,’H,, be a finite collection of Hilbert spaces. Let D; C H; be a subset
and define the algebraic tensor product

D|®---®D,, = Span{x; ®---®x,, | x; € V;}.
The following theorem establishes notation and a few definitions:

Theorem 1.1. Let T; be and operator on H; for i € {1,...,n}. Then there is a unique linear
map T = T\®---®T, defined on D(T,)®---®D(T,) such that

T® - ®T,(x® - Qx,) =T1x; ® - @ T,X,, (1.1)
forall x; € D(T;) and i € {1,...,n}. Furthermore, we have
(1) Ifall T; are densely defined then T is densely defined and T;®---®T; C T*.

(2) Ifall T; are closable, then T is closable. We will then write T = Ty ®---® T,,. Further-
more, we have

e --®T,=T,®--QT,
T[®®T,=(T,® T,

1



2 Chapter 1. A quick introduction to Fock spaces.

(3) If all the T; are symmetric (selfadjoint, unitary, a projection), then T is symmetric
(selfadjoint, unitary, a projection).

(4) If T, 20 forallie{l,...,n} then T > 0.
(5) If all the T; are bounded then T is bounded and

ITI= Tl Tall= 1Ty ® - @ Tl

The following result is also important. Many of the operators that we will encounter
are on the form given in this theorem
Theorem 1.2. For each j € {1,...,n} let T; be a selfadjoint operator on 'H; and define
H=1%--0T;®---®1,
H=H;+H,+---+H,.
Then

(1) (Hy,---,H,) is a touple of strongly commuting selfadjoint operators with o(H;) =
a(Tj). The joint spectrum is o(Ty) % ---x 0(T,,) and if f : IR — C is Borel measurable
then f(H)=1®-- & f(Tj)®---®1.

(2) H is essentially selfadjoint with

GtH _ oitTi g 9 eitTh ¢ e R,

(3) If Vj is a core for T; then V1®---®V,, is a core for H.

(4) Assume T; is semibounded with inf(o(T;)) = A; for all j. Then H is selfadjoint and
semibounded with inf(o(H)) = A:= Ay +---+ A,,. Let Pg denote the spectral measure
for an operator Be {H, Ty,..., T,}. Then

et =ehg...@e!l t>0
Pu({A}) = Pr,({M}) @+ ® Pr, ({An}).

In particular, Dim(Py ({A})) = Dim(T; ({A}) - Dim(T,,({A})). Let pj = inf(0ess(T}))
which may be co. Then

inf(oess(H)) = mjin{yj + Z/\j} = m.

1=

(5) Assume B; is selfadjoint on H;. If D(T;) C D(B;) for some i € {1,...,n} then D(H;) C
D1®---®B;®---®1).

(6) Assume B; is selfadjoint on H; and T; + B; is selfadjoint. Then

H+1® -®B;®--®1=1®---®(T;j+B;)®---®1:=5;
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1.1 Fock spaces

In this section we present some facts about symmetric Fock spaces. This section is
based on (Oliver). No proofs are presented but most of the results are easy to prove
and can be found in e.g. [31].

Let H be a separable Hilbert space. For n € Ny = N U {0} we will write H®" for
the n-fold tensor product of H. Here H®" = C by convention. The following lemma
allows us to define symmetric tensors.

Lemma 1.3. Let n € IN and S, be the permutations of {1,...,n}. For each 1t € S,, there is a
unique unitary map 7 on H®" such that

T(f1® ® fu) = fr(1)® ® fr(n)
forall fi,..., f, € H. The following also holds :
1. Let 1,0 €S,. Then 7o = G ot and (7)™ = L.

2. Define

Then S, is a projection.
We also define Sy = 1 on € = H®°. The range S,,(H®") is called the symmetric
tensor product and is sometimes written as H®". Furthermore, we will write
Sn(fl ®s "’®sfn) :fl ®s "'®sfn-
If H = L?(M,F,u) where (M, F, p) is o-finite then H®" = L>(M", F&", 4®") and we
have the formula
(Tf)ky,eo k) = f(knfl(l)' . -'krrl(n))

Let f € H®". Then f € H®" of and only if f(ky,...,k,) = f(ky(1),--., ky(n)) for almost
all (ky,...,k,) € M,, and t € S,,. So H®" is simply the square integrable functions
which are permutation symmetric in the variables ky,..., k.

We now define the bosonic (or symmetric) Fock space as

[e¢]

B (H) = @HM

n=0

We will write an element ¢ € F,(H) in terms of its coordinates ¢ = (1/)(”)) and define
the vacuum Q) = (1,0,0,...). For any g € H we define the corresponding exponential

vector (or coherent state) as
[ ®n
eg)=y = (1.2)
=0

n!

5

Let D c H. We define the following families of vectors
N ={(")e A(H)| IK e N s.t. p!" = 0 for all n > K},
J(D)={Q}U{f; &8, f, | f € D and ne N},
E(D)={e(f)| f e D}.

We have the following Lemma
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Lemma 1.4. N is a dense subspace of F,(H). If D C H is dense then J (D) and £(D) are
total in Fy(H). Furthermore, £(D) is a collection of linearly independent vectors.

We can now introduce the Wyel representation. Let {/() be the unitaries from H
into ‘H. Fix U € U(H) and h € H. Then there is a unique unitary map W(h, U) such
that

W(h,U)e(g) = e_||h||2/2_<f'Ug>e(h +Ug). VgeH

It is easily seen that that (h, U) — W(h, U) is strongly continuous and
W (hy, U)W (hy, Uy) = e ™AV W ((hy, Uy ) (hy, Uy)),

where (hy, Uy)(hy, Uz) = (hy + Uyhy, Uy Uy). If A is selfadjoint on H and f € H then
t > W(0,e"*) and t > W(—itf,1) are strongly continuous unitary representations of
R on F,(H). By Stones theorem we may define selfadjoint operators dI'(A) and ¢(f)
on J,(H) by

et — (0, i)

P = W(—itf,1).

for all t € R. One may then prove the following

Theorem 1.5. Let A be selfadjoint on H. Then H®" reduces dT(A) and the restriction to
HE&" ND(dT(A)) is given by

n
dr(A):= ) (1) LA@1)" s .
i=1

We may also calculate the spectrum

o(dT(A) = (A +-+ A, | A ec(A) n>1

o(dI'(A))={0}u [] A4+, 1A ea(A)}

n=1
Assume now A > 0 and injective. Then the following holds
(1) 0is an eigenvalue for dT' (w) with multiplicity 1. The eigenspace is spanned by Q).
(2) Let m =inf(0(A)) and megs = inf(0egs(A)). Then

IN(Goss (AT (@))) 2 Megs + (11— 1)m

(3) dI'(w) will have compact resolvents if and only if w has compact resolvents.

If H=L*M, F,p) where (M, F, ) is o-finite and A is a multiplication operator
on H then dT")(A) is multiplication by

Ak, k) = A(ky) + -+ Alky).

Regarding the field operators we have the following result
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Lemma 1.6. Let f € H and D C H be dense. Then both J (D) and £(D) spans a core for
o(f)-

In order to get a better understanding of field operators we introduce creation
and annihilation operators.

Lemma 1.7. Let f € H. There exists unique closed operators a(f) and a*(f) with the
property that a(g)Q = 0,a"(g)Q = g and

S 88 fi) = = ) (i@ e
i=1

a+(g)(f1 ®s“‘®sfn): Wl+1g®5f1 ®s"'®sfn

forall f1,..., f, € H. Here ﬁmeans that f; is omitted from the tensor product. a(f) is called
an annihilation operator while a*(f) is called a creation operator. We also have:

(1) @(f)=a(f)+a'(f)

(2) The canonical commutation relations hold

la(f), a(g)] = 0 =[a*(f),a"(g)] and [a(f),a"(g)] = (f,g)-

(3) The following holds
[9(f) ()] = 2iIm({f, g)).
(4) If D C H is dense then J (D) and (D) span cores for a(f) and a'(f).
(5) If A is selfadjoint on H and f € D(A) then
[dT(A),a*(f)] = a' (Av)
[a(f), dT(A)] = a(Av)
[T(A), p(f)] = ~igp(iAv).

Furthermore NND(dT(A)) is contained in the domains of [dT(A),a*(f)], [a(f), dT(A)]
and [dT(A), ¢(f)].

If H=L*M, F,p) where (M, F, p) is o-finite we have explicit formulas for cre-
ation and annihilation operators. For i € H®" with n > 1 we have

@)kt Karo o Koyr) = N fMW¢<k,k1,...,kn_1>dy<k>

(@ Wk ror) = s ) SN i)
i=1

where k; means that the variable k; is omitted. If K is an other Hilbert space and
U :H — K is a bounded operator with ||U||< 1 then we define

T(U) =10 U®" e
n=1

Note that I'(U) will be unitary if U is unitary. We have the following Lemma
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Lemma 1.8. Let U : ' H — K be unitary, A be selfadjoint on H, V € U(H) and f € H then
( JAT(A)L(U)* = dT(UAU™).

(
W(f,V I‘(U;* =W(UFf,UVU).
F( )o()T(U) = @(Uf).
L(U)a(f)L(U) =a(Uf)
T(U)a' (f)T(U) =a"(Uf).

Furthermore, T(U)(f1 ®s -+ ®s f) = Ufi s -+ ®; U f,, and T(U)Q = Q.

An important aspect of this Lemma is that we may assume H = LZ(M, F,n)
when proving spectral properties and various inequalities. It is needed to prove the
following relative bounds.

Theorem 1.9. Let A be a non negative, selfadjoint and injective operator on H. Let
fireeer fn€D(wV?) and a > 0. Then

a(fy)---a(f,) maps D(dT(A)**"/?) continuously into D(dI'(A)?) with respect to the
graph norm. We have the following specific bound for A > 0 and 1 € D(dT(A)*"/?):

I(dT(A)+ A)al ;) <fn>¢||s[]—[uw-“2ﬁ|| (T (A) + 12|
i=1

a*(fl ) ~~a+(fn) maps D(dT(A)"?) continuously into F,(H) with respect to the graph
norm. We have the following specific bound for 1 € D(dT(A)"?):

lat ()@ fpllP< m2" [ T+ ™ )40 1T (a7 pip
=0 "’

i=1
One can now apply these relative bounds to obtain relative bounds of the field

operators. We sum up the important conclusions

Theorem 1.10. Let A be a non negative, selfadjoint and injective operator on H. Let
fireer f € D(w™V2). Then D(AT(A)?) C D(@(fi)---@(f,)) and ¢(f;) is infinitesimally
dT'(A) bounded.

Furthermore, o(dT(A) + ¢(f)) = —|A"V2 fi|>+0(dT(A)) and dT(A) + ¢(f;) has a
ground state if and only if f, € D(A™!).

The following transformation statements are also very good to know as they will
be used frequently in the papers. This statement below taken from [6]. For a proof
see [26].

Lemma 1.11. Let f,he H and U € U(H). Then
W(h,U)p(g)W(h U)" = ¢(Ug) - 2Re((Ug, 1))
W(h, U)a(g)W(h,U)" = u(Ug) —(Ug h)
W(h,U)a' ()W (h, U) =a'(Ug)—(h,Ug)
Furthermore, if w is selfadjoint, non negative and injective on H and h € D(wU”) then
W(h,U)dl'(w)W(h,U) =dl(UwU") - @p(UwU"h)+(h, UoU"h)
on the domain D(dT(UwU™)).
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The next result is commonly used. In the papers below it is used to split Hamilto-
nians into two parts. In one part one usually has compact resolvents and the other
part can usually be analysed using Theorem 1.5. The statement here is taken from [6]
where a proof can also be found.

Theorem 1.12. There is a unique isomorphism U: F,(Hi ®H,) — Fy(H1) @ Fp(Hy) such
that U(e(f ®g)) = e(f)®e(g)- If fi,.... f; € Hy and g1,..., 8, € H; then

U((fll O) s+ B (fj:O)®s(Olg1)®s e ®s (O,gg))

jler \'?
=((].+€)!) (fi @@ £)® (51 - . g0).

The map also has the following transformation properties. If A; is selfadjoint on H;, V; is
unitary on H; and f € Hy,g € H, then

UW(feg VieV,)U ' =W(f,V))eW(g, V,)
UdT (A, ®@A,)U* =dl(A)®1 +1®dI(A,)
Up(f,9U =p(f)®1+1®@¢(g)
Ua(f,g)U" = a(f)®1 + 1®al(g)
Ud'(f,9)U" = a'(f)@1 + 18a'(g).

One very essential observation is the relationship between quantum field theory
and Malliavin calculus. In simple terms it can be shown that the symmetric Fock space
is unitarily equivalent in a "nice way" to L*(X,F,P) where (X, F,IP) is probability
space. Here "nice way" refers to the fact that many field operators are transformed
to multiplication operators which simplifies many calculations. It also provides the
Fock space with a very nice positive cone. The following statement is taken from [6].
See [5] for a proof.

Theorem 1.13. Let Hi C H be a real Hilbert space such that H = Hg + iHy. Then there
exists a probability space (X, F,IP) such that J;,(H) is unitarily isomorphic to L*(X, F,IP)
via a map I. Furthermore, the following properties hold

(1) If U is a bounded operator on H with ||U||< 1 such that UHR C HR then ZT'(U)Z*
is positivity preserving.

(2) Assume w > 0 is selfadjoint and injective. If e™' maps Hy into Hy for all t >
0 then Ze *T(@)T* is positivity improving. If inf(c(w)) > 0 then Te T (@)T* is
hypercontractive.

(3) Ifv e Hy then Zp(v)L* acts like multiplication by a normally distributed variable
@(v) with mean 0 and variance ||v||*. In fact, {@(v)}veny is a Gaussian process
indexed by Hy with mean 0 and covariance function given by Cov(@(vy), @(v2)) =

(v1,v2).
The duality between Fock spaces and Malliavin calculus can be pushed quite far

and forms the foundations for white noise analysis. Even though white noise analysis
is very exiting we shall not pursue it further here.
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1.2 Direct Integrals

We willl now consider a special kind of operators defined on Hilbert space valued
L2 spaces. Let Q = (M, F, ) be a o-finite measure space and H a separable Hilbert
space. We have the identification

LX(M, F,p)@H = LM, F,u, H)

where L>(M, F, #,’H) denotes the H valued L2 space generated by Q. Let f : M — B(H)
be strongly measurable (i.e. x — f(x)i is measurable for all ¢ € H) and bounded.
Then we define the direct integral

(53]
TIo(f) = J-Mf(x)dﬂ(x)

as the bounded operator on L?(Q, H) defined by Ig(Uy)i(x) = Uh(x). One also has
a direct integral for unbounded selfadjoint operators. Let {A,} e be a collection
on selfadjoint operators on H. We say {A,},cp is strong resolvent measurable if
x > (Ay +i)7! is strongly measurable. Then we define

Ie(Ax)p(x) = Uxp(x)
D(Is(Ay)) = ( € LA(Q, H) | (x) € D(A,) and x - [| A (x)lle L*(Q))

The following Theorem sums up the results about direct integrals we shall need

Theorem 1.14. Let {A,} e be a collection on selfadjoint operators on H. Then x —
(A +1)7" is strongly measureable if and only if x > e'*Ax is weakly measurable. In this
case Ig(Ay) is selfadjoint and x +— (i + f(A,))~! is strongly measurable for all f : R — IR
Furthermore,

fIg(Ay)) = Ig(f (Ay)).

If Ay 2 A for all x we find Ig(Ayx) 2 A (use f = 1(_q 1)) If A is selfadjoint or bounded
on H we may identify 1 ® A = Ig(A) and if V is a multiplication operator on L*(Q) then
Vel=I4V).

Proof. This is easily done using results from [26] and [35]. O

The following Lemma shows what happens in the special case where one considers
operators on Fock space. This is used in [9]

Proposition 1.15. Let Q = (M, F, u) be a sigma-finite measure space. Let x — f, € H and
x > g, € H be measurable, {A,} e a be strong resolvent measurable family of selfadjoint
operators on H and x — U, € B(H) be strongly measurable with |U,||< 1. Then

(1) {p(f)}xem- {at(fo)a(fo)lxerm and {dT(Ay)) e are strong resolvent measurable and
x - I'(Uy) is strongly measurable. We will use the notation @g(fy) = Ig(@(fy))

“g;(fx)“ea(fx) = I@(a+(fx)a(fx))' dr@(Ax) = I@(dr(Ax)) and reB(Ux) = I@(F(Ux))~

(2) If U, is unitary for all x then Iy(U,) is unitary and

r@(Ux)(PGB(fx)r@(Ux)* = (P@(Uxfx)
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(3) Assume x +— f, and x — g, are bounded, A, > 0 is injective for all x € M,
fo 8y € D(A;Y?) for all x € M and the two maps x A;lﬂfx and x — A;l/zgx
are bounded. Then @g(fy) is dT5(A)? bounded, Qg(g,)Pe(fy) is dTs(A) bounded
and aé(gx)a@(fx) is AT (A) bounded. In particular, @g(fy) is infinitesimally dI(A)

bounded.
We will need the following definition

Definition 1.16. Consider the v-dimensional Lebesguespace £, = (RY, B(R"), A,,). Let
x = f, € H be bounded and measurable. We say it is weakly differentiable if for all

ie{l,..., v} thereis x — gff) € H such that for all ¢ € C;°(RY) and 1 € H we have

J, st s == |2, 000005t
RY RY

in this case we write dy. f = ga(cl)-

Shall need on last result about differential operators
Lemma 1.17. Define
K = L2(RY, B(R"), Ay, Fi(H)) = L*(R", B(R"), A,)) ® 7 (H),
pi = —idy, ®1 and |p|= (A2 1.
(1) D(Ipl) = M-, Dlp;) and for i € D(|pl) we have lliplpll= L}, llp;ll>.

(2) Ifx > f, is weakly differentiable the [pg(fy), pi] = —i@g(dy, fx) holds on C§*(R*)®J (D).
In particular @g(f,) € D(pl) for P € Cg"(IRV)@j(D).






Chapter 2

The papers

In this chapter, I will comment on the results obtained in this thesis and compare
them to results found in the literature. In general, the operators I investigated take the
form H =T + gV where T is the free (kinetic) energy and V models the interaction.
The results obtained in this thesis are all non perturbative which means g is not
assumed to be small. In fact we will send g to infinity in the second paper.

The interaction V always depends on elements (fi,..., f,;) from the bosonic state
space H and T depends on a non negative, injective and selfadjoint operator on
H called w. The interaction V is called infrared regular if f; € D(w™!) for all i and
infrared singular if this is not the case. As we shall see below, infrared regularity
usually guarantees that H has a ground state, while infrared singularities can imply
H does not have a ground state.

1 Paper A: Spin-Boson type models analysed through
symmetries.

In this paper, we analyse so-called spin-boson type Hamiltonians with singular
perturbations. Physically, such hamiltonians describe dynamics of a two level system
interacting strongly with a boson field. The Hilbert space for the operator is C?®;(H)
where H is the state space of a single Boson. Let 0y, 0, and 0, denote the Pauli matrices

_(t oo\ (o i\ (o1
7o -1 7 of ™71 of

We also write e; = (1,0) and e_; = (0,1). The operators investigated in this paper are
of the form

2n
Hy(a, f, @)= 10,81 +1@dl(@)+ ) _ai(o.8¢(f)),
i=1

which is here parametrised by a € C*", f € H*",5 € C and w selfadjoint and non
negative on H. One should note that the standard spin-boson model corresponds to
the case where a; = for i > 2. This operator possesses a special symmetry, called the
spin-parity symmetry, which implies that there is a unitary map V such that

VHW(a,f,w)V* =F_ ,(a,f,w)®F,(a,f o)

11
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where the fiber operators F, (a, f, w) are defined as

2n
Fyla, f,@) = qT(=1)+dT(@)+ ) _a;p(f)".
i=1

This project started as an attempt to prove that the standard spin-boson model has
an exited state for strong couplings. The general strategy was to localize the essential
spectrum of the of the F, (a, f, w) and then establish the existence of a ground state
in each fiber operator via a variational argument.

First problem on the agenda is proving that F,](a,f,a)) and H,,(a,f,a)) makes
sense. To do so we need to introduce some more notation and assumptions. For an
element f € H?" we define the leading terms

L(f)={i €{2,3,...2n} | fy = f; V] > ).

The expression £(f)° is to be interpreted as the complement within {1,2,..., 2n}. For
w selfadjoint on H we define the numbers

m =inf{o(w)} and e = inf{oegs(w)}.
We will need the following definition
Definition 1.1. Let (M, F, u) be a measure space.

(1) We say that (M, F, u) has strong topological properties if M is a locally compact,
Hausdorff and second countable topological space, F is the Borel o-algebra and y is
finite on compact sets.

(2) Let M be a metric space. We say that M can be cut nicely if for each n € N
there is a sequence of disjoint sets {Gl},enw C B(M) that covers M such that

sup,on Diam(G}) converges to 0 as n tends to infinity, GI is compact and for
any B € M bounded the set

{a eIN| G NB =0}
is finite.

In order to get essential selfadjointness one needs to use either hyper contractive
bounds (see [34]) or a result due to Arai (see [2]). For this reason the conditions we
work under are sometimes split in two. The general, assumptions are

Hypothesis 1.1. a € C*", f € H*" and w selfadjoint on H fulfil Hypothesis 1.1 if
(1) L(f) consists only of even numbers, a; > 0 for all i € L(f)\{2} and ay > 0if 2 € L(f).

(2) w is injective and non negative.
(3) f € D(w 2)ND(w?) forall i €{2,...,2n} and f, € D(w™?).

Hypothesis 1.2. f € H?" and w selfadjoint on H fulfil Hypothesis 1.2 if and only if
(fi8(w)f;) € R for all g : R — R measurable and bounded on o (w).
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Hypothesis 1.3. f € H>" and w selfadjoint on M fulfil Hypothesis 1.3 if either n < 2 or
m > 0 and Hypothesis 1.2 holds.

Hypothesis 3 ensures that we may use hypercontrative bounds if n > 2.
Hypothesis 1.4. f € H*" and w selfadjoint on H fulfil Hypothesis 1.4 if

(1) H = L*(M,F, u) where (M, F, u) has strong topological properties and M can be
cut nicely.

(2) w is a multiplication operator on H.

(3) There is a measurable function h: M — C with |h|= 1 such that hf is R*" valued
almost everywhere. A function h with these properties is called a phase function for

f.

Hypothesis 1.5. We say f € H*" and w selfadjoint on H fulfil Hypothesis 1.5 if f; €
(w™) for all i.

The following proposition gives precise conditions under which F, (a, f, w) and
H,](a,f, w) are selfadjoint.

Proposition 1.2. Assume 1 € C and (a, f, w) satisfies Hypotheses 1.1 and 1.3. Then the
operators Fq(a,f,a)) and Hq((x,f,w) are closed on the respective domains

D(Fq(ar ’

f,©)) = D(AT(@)) Niec(rp 2 D))
D(H,(a,

,@)) =D(1®dT(w)) Nier(pz DA @ @(f)')

Given any core D of w the linear span of the following sets

J(D):=10)u| Jig1 @ &g, 18 €D}
n=1

T(D):={v;®v; | v € ey, e_1},v2 € T(D))

are cores for Fy(a, f,w) and H, (e, f, w) respectively. Also both operators are selfadjoint

and semibounded if (a,17) € R*™*! and they have compact resolvents if w has compact
resolvents.

The overall strategy for proving this proposition is outlined in [21] and is a rather
technical argument involving a lot of commutators. If one wishes to find the essential
spectrum of the fiber operators (and thereby the full Hamiltonian) it is not really that
important to know the full domain of the operators. However the estimates needed
to prove proposition 1.2 were actually central in proving the following Theorem
which we will call the HVZ Theorem. In the remaining part of this section we will
be suppress «, f and w from the notation as they are fixed in the initial part of each
Theorem discussed below.

Theorem 1.3 (HVZ-theorem). Let & € R?",5 € R, f € H*" and w be selfadjoint on H
and assume they satisfy Hypothesis 1.1,1.3 and either n < 2 or Hypothesis 1.4. Then the
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following holds

inf{oess(Fyy)} 2 min{E_,, + Megs, &y + M+ Megs}
U{g(—l)qr/ A+t /\q | Aj € Gess(w)} c Gess(Ft])
q=1

inf(aess(Hq)) = Er; + Megs

U{Eq A+t Ay | A € Oess ()} C Uess(Hq)-
q=1

In particular, H, has a ground state of finite multiplicity if mess > 0 and if m = megs then
inf(oess(Fy)) = E-yy + Mess. Furthermore

(1) Assume m = Megs, [Mess, 3Megs] C Tess (@) and if megs = 0 then megq is not isolated
in Oess(w). Then Oess(Fyy) = [E_) + Megs, 00).

(2) Assume [Megg, 2Megs | C Opss(w) and if megs = 0 then megg is not isolated in Oess(w).
Then 0ess(H,;;) = [Ey + Mess, 00).

(3) If we assume Hypothesis 1.1,1.2,1.3 and either n < 2 or Hypothesis 1.4, then
E ) < &y with equality if and only if n = 0 or m = 0. In particular we find
inf(aess(qul)) = g—lql + Megss.

The HVZ-theorem for H, does not really come as a surprise as similar results has
been seen in e.g. [10] for the standard spin-boson model. The statement given here is
much more general and the argument is also rather long and technical. In the paper
[10] the authors really need a fourier transform along with many nice properties
of wand f.If f; = f; for all i,j € {1,..., 2n} then Theorem 1.3 applies as soon as the
operator exists. Hence Theorem 1.3 is a vastly more general result. The proof is based
on the method by Glimm and Jaffe introduced in the paper [16].

One really interesting thing is an equality such as inf(ces(Fy)) = ;) + mess. State-
ments of this sort can be combined with variational methods to extract ground states.
In fact one can use a coherent trial state, and prove there is an exited state for large
interactions in the standard spin boson model. We also have

Theorem 1.4. Let @ € R?",5 € R, f € H*" and w be selfadjoint on H and assume they
satisfy Hypothesis 1.1,1.2 and 1.3. Let U be the map such that

UHq(a,f,a))U* =F ,(a, f,w)®F,(a, f, o)
Then

(1) If 5= O then ground states of H, are non degenerate and if i is a ground state for
H,, then Uy = e_gign(y) ® ¢ where ¢ is an eigenvector for F_y,| corresponding to the
energy E,.

(2) F_yy has non degenerate ground states and any ground state eigenvector will have
nonzero inner product with Q. In particular Hy will have a doubly degenerate ground
states if they exists. If { is a ground state for Hy then U = e; @ p1 +e_1 Q P_;
where ¢; is either 0 an eigenvector for Fy corresponding to the energy Ey.
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(3) If we further assume Hypothesis 1.4 when n > 2 then £, = E,. Hence H,, has a
ground state if and only if F_},| has a ground state. Also, if m = 0 then F), has no
ground state when 1 # 0.

(4) If we further assume Hypothesis 1.4 when n> 2 and m,n # 0 then H, will have an
exited state in (E,, E, + Megs ] if Fyy| has a ground state. This is the case if 2|1|< megs.

Parts of this result are similar to results found in [20] and [22] for the standard
spin-boson model. In [20], non degeneracy of the ground state of H,, is investigated
and in [22] the subspace containing the ground state is pinpointed. Our main contri-
bution in these cases, is that these results works in much higher generality.

However, the observation that Fj,| has no ground state if m = 0 and 7 = 0 is new
and nearly impossible to prove directly. It is only the connection with H,, that allows
us to give a simple proof. Furthermore the simple criteria 2|y|< m.s, for the existence
of an exited state is also new. Unfortunately this does not say anything about what
happens when the interaction strength goes to infinity, but this is the main topic of
paper B.

We now have the following result about ground states in the massless but infrared
regular case.

Theorem 1.5. Let @ € R*", 5 € R, f € H*" and w be selfadjoint on H and assume they
satisfy Hypothesis 1.1,1.2,1.3,1.5 and either n < 2 or Hypothesis 1.4.

(1) If F_yy| has a ground state i and H, has a ground state ¢ then i € D(N“) and
¢ € D(1®N*) for any a > 0.

(2) Assume H = L*(R”, B(R"), A®"), w is a multiplication operator and n < 2. Then E,
is an eigenvalue for F_}, and H,. Here A®Y is the Lebesgue measure on B(RY).

Part (2) was proven in [3] and [14] for the standard spin-boson model. Our result
is proven along the same lines but contains some new ideas to improve generality.
Usually it is assumed that w has bounded derivatives away from 0 and that w(x)
goes to infinity as x goes to infinity. These criteria have been removed, so it is really
only the infrared singularity that poses a problem for existence. In [20] and [4] it
is proven, that the standard spin-boson model has a ground state in some infrared
singular cases. However, that result is only perturbative and existence for all coupling
strengths is an open problem.

Part (1) follows from completely novel ideas based on pull through formulas.
Assume M = L%(u, F, u). Then one can define the pointwise annihilation operator
of order n as a map A, : D(N"?) — L>(M", F®", u®", F,(H)). This works well if
regularity with respect to the number operator is already known. In paper A, we
develop a new approach to the pointwise annihilation operators such that they can be
applied to any state. In this framework we prove, that A, € L2(M", F&", u®", F(H))
if and only if ® € D(N"/2). Under the infrared regularity condition it is easy to see
A, € L2(M", F®n, u®", F,(H)) for any ground state ¢ and n € IN. Thus the conclusion
in Theorem 1.5 follows. In principle this could also be applied to almost every other
model in non relativistic quantum field theory as long infrared singularities are
absent.
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2 Paper B: Large interaction asymptotics of spin-boson type
models.

In this paper we consider the standard spin-boson model
H,(v,w):=1n0,81+1@dl'(w)+0,®@(v),

which is here parametrised by v € H, 7 € C and w selfadjoint and non negative on H.
As in Paper A, there is a unitary map V such that

VHW(v,w)V* =F_,(v,w)®F,(v,w)
where the fiber operators F,Y(v,w) are defined as
Fy(v,w) =nl(-1)+dl(w) + ¢(v).
For w selfadjoint on H we define the numbers
m =inf{o(w)} and Mess = inf{0ess(w)}.

Selfadjointness is now a walk in the park via Kato-Rellich theorem. Alternatively one
can just use the Lemma 1.2.

Proposition 2.1. Let w > 0 be selfadjoint and injective, v € D(w™"/?) and 1 € C. Then
the operators F, (v, w) and H, (v, w) are closed on the respective domains

D(F, (v, w)) = D(dI'(w))

D(H,(v, ) = D(1 ®dT (w))

and given any core D of w the linear span of the following sets

J(D):= Q| JIi vV ful fj€D)
n=1

TD):={fi®fy|fi€lere1} fr € T(D))

is a core for F, (v, w) and H, (v, w) respectively. Furthermore, both operators are selfadjoint
and semibounded if n € R and they have compact resolvents if w has compact resolvents.

The physically relevant assumptions are:

Remark 2.2. In the physical model we have H = L*(RY,B(R"), A,) with v < 3, w(k) =

Vm? +|[k|? and vg 5 (k) = gw(k)™V2 x(w(k)) where x is a cutoff function (i.e. 0 < x < 1
and ensures vg A € D(w™Y?)). The model is said to be massive if m > 0.

The aim of this paper is to investigate limits of F,(v,w) and H,(v,w) as the
interaction strength [v| tends to infinity. As with paper A, the original motivation
was to prove existence of exited states in the spin-boson model at large interaction
strengths. In the special case where H = C this was done in the paper [29] using a
simple Weyl transformation and a compactness argument. The main technical result
is the following theorem
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Theorem 2.3. Let {vg}ee(0,00) C D(w™Y?) and P, denote the spectral measure correspond-
ing to w. Assume that there is i1 > 0 such that:

(1) {Py([0,77])vg}ge(0,00) cOnverges to v € D(w™'/2) in the graph norm of w2,

(2) ||w‘1Pw(n7,oo)vg|| diverges to oo as g tends to infinity.
Then the g-dependent family of operators given by

W (@™ P,y (1, 00)vg, 1)F, (vg, )W (0™ Py (7T, 00)vg, 1)* + [l ™2 Py, (71T, 00)v, ||
= W (2w ™' P, (i, c0)vg, —1) + dT(w) + (P, (0, fiT])vy) (2.1)

= fmﬁ{(vg, w)

is uniformly bounded below by —Iql—supge(o’m)IIPw(O, n“i])vg||2. Furthermore, the family

{}?,]’ﬁ(vg,w)}ge(o,oo) converges to dI'(w) + @(v) in norm resolvent sense as g tends to oo.

This result is interesting for a number of reasons. First of all the convergence
is in norm resolvent sense and the transformation is unitary which means we can
find limiting spectrum using standard theory. Secondly, there is almost no restriction
on how w‘lvg goes to infinity. This means that it can be applied to both ultraviolet
renormalisation analysis and to the case vy = gv for some scaling g > 0. Thirdly the
limit found does not depend on 7. From a physical point of view this means that the
qubit becomes degenerate in the limit. Applying this theorem yields the following
two corollaries regarding the strong interaction limit

Corollary 2.4. Let v € H, y € R and assume m > 0. Then there exists gy > 0 such
that Sq(gv,.w) isa non degenerat'e eigenvalue of F,(gv,w) when g > go. Fur.thermore,
one may pick a family of normalised vectors {1} such that g — g is smooth,

Fy(gv, w)pg = &, (v, w) Py and

g€[80,00)

lim ”4’g - e*gz\laflvllz6(_ga)flv)“ —0,

g—)(x)
Nw) — el 1o|?
lim (Yo, Ntpg) — g~l I _o,
g—00 g
lim (£, (gv, )+ g2llw™"?v|?) = 0.
g*)OO

-1/2

If <0 then g+ &, (gv, w) + ¢2||lw™V2?v|| is strictly increasing and the range is contained

in [-n,0].
Corollary 2.5. Assume w is selfadjoint, non-negative and injective on H. Let v € H and
1 € R If m(w) > 0 there is gy > 0 such that H, (gv, ) has an exited state with energy
E,(8v, w) for g > go. Furthermore

lim (E, (gv, 0) - E, (gv,w)) = 0.

g—)OO

These two corollaries shows the claim that we set out to prove: For sufficiently
strong coupling there is an exited state. However it also tells much more. I shows
that as the interaction becomes large, the contribution from the qubit vanishes, so
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the eigenstates become approximately coherent and the energy approximates that of
a free system. In particular, the energy difference between the ground state and the
exited state will go to 0. Note that by Remark 2.2 the above conclusions applies to
the massive spin-boson model. In the massless but infrared regular case one has the
following result.

Theorem 2.6. Assume also H = L>(RY, B(R"),,)) where A, is the Lebesgue measure.
Assume also w is a selfadjoint, non-negative and injective multiplication operator. Let
v € D(w™!) and n < 0. Then there is a family {glger of normalised ground states for
F,7 (gv, w) and

lim (€, (gv, w) + g%l V2v]1?) = 0.

g—00

N, ) - g2l |
i (PNl
g—o0 g

We cannot conclude that an exited state exists in the full model, because one of
the fiber operators will not have a ground state by Theorem 1.4 in Paper A. We now
turn our attention to ultraviolet renormalisation. We have the following corollary to
Theorem 2.3.

Corollary 2.7. Assume H = L*>(M,F,u) and w is a multiplication operator on this
space. Let v : M — C is measurable and that {X¢}ee(0,00) 1S @ collection of functions
from R into [0,1]. Assume g > xq(x) is increasing and converges to 1 for all x € R.
Assume furthermore that k — xq(w(k))v(k) € D(w™V?) and that there is i > 0 such
that v := 1i,<mv € D(w™?). If k w(k)‘lv(k)l{w>1}(k) ¢ 'H there are unitary maps
{Velee(0,00) a1d {Uglge(0,00) independent of 1 such that:

(1) {VgFW(vg,w)Vg* + ||w‘1/21{a,>,~,;}vg||2}ge(oroo) is uniformly bounded below and con-
verges in norm resolvent sense to the operator dI'(w) + @(v) as g tends to infinity.

(2) {UgH,,(vg,w)Ug* + ||a)‘1/21{m>ﬁ;}vg||2}ge(o,m) is uniformly bounded below and con-
verges in norm resolvent sense to the operator

H i= (dT'(w) + () & (T (w) + (7))
as g tends to oo. This implies

(H (vg’ w) + ||w_1/21{a)>171}vg||2+i)_1 - (HO(vgrw) + ||w_1/21{a)>n~1}vg||2+i)_l

U
will converge to 0 in norm as g tends to co.

Let ﬁn(vg, w) = Hy (v, w)+||a)‘1/2vg||2. By Remark 2.2 we see that the physical spin-
boson model with v = 3 fulfils the criteria in Corollary 2.7. So if a limit of ﬁq(vg, )
exists in strong or uniform resolvent sense then the limit will be independent of #.
In particular the resulting model will not be physically interesting. In conclusion:
One cannot hope to renormalise the spin-boson model in a physically interesting way
using the scheme introduced by E. Nelson to renormalise the Nelson model (see [30]).
For a longer discussion see paper B below.

Paper B contains two more results which are interesting even though they are not
directly related to the main topic of the paper. The first one is
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Theorem 2.8. Let w be selfadjoint, non-negative and injective on H, v € D(w™'?), g €
(0,00) and 1 < 0. Assume H = L>(M, F,u) and w is a multiplication operator on this

space. If that F, (gv, ) has a ground state 1, = (1/)2”,3) then

(1) We may choose g, such that 4’;'% >0 and (—1)"7‘3’”110(% > 0 almost everywhere on
{v=0}"

(2) Almost everywhere the following inequality holds

g% foiky)l--ulk,)]
Vil w(ki)+w(ky)

|y (ky, e Ko<

In particular l,bg,; is zero outside {v = 0}"" almost everywhere and if v € D(w™"') then

I|¢Egi,1;);|| goes to zero like g" for g tending to 0.

(3) Assume v € D(w™'), f : Ny — [0,00) is a function and assume F,(gv,w) has a
n\&
ground state for all 1 < 0. Then H,(gv, w) has a ground state ¢ , for all a € R and
we have

o n)Z 2n||a)—1v”2n
=y LS <oo > Yy, €D(F(N)) ¥y <0
n=0

& ¢, €D(1®f(N)) VaeR

In particular g, € D(YN!) and ¢g, € D(1® YN!) for all p > 2.

A result similar to (2) was derived in Frolichs paper [13]. However the application
(3) was never mentioned in that paper. One should note that part (3) vastly generalises
the result in paper [22], were it is proven ), € D(e'N) for all t > 0. The only downside
of part (3) is the infrared condition, which does not apply to the massless physical
model. The last result is

Theorem 2.9. Assume w is a selfadjoint, non-negative and injective multiplcation opera-
tor on H = L>(RY, B(R”), A,). If m(w) > 0, v € H\{0} and

kP
LV o) pk=oo (2.2)

then both Fo(v,w) and F_, (v, w) have a ground state so H, (gv, w) will have an excited

state. The condition is satisfied if w € C*(R",R), v < 2 and there is xo € RY such that
w(xg) = m and |v| is bounded from below by a positive number on a ball around x.

The technique for proving this result has been deployed for the translation invari-
ant Nelson model in the papers [29] and [39]. Note that Theorem 2.9 applies to the
massive physical spin-boson model in dimension 1 and 2 so an exited state always
exist in this case.
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3 Paper C: Non-existence of ground states in the translation
invariant Nelson model.

In this paper we analyse operators arising from a spinless particle interacting with
a boson field. The bosonic Hilbert space is H = L?(RY,B(R"),A,) and the total
Hilbertspace is L?(R"u, B(RY), A,)) ® F,(H) = L>(RY, B(RY), A,, F,(H)) and the total
Hamiltonian takes the form

H=K(A)®1+18dT(w)+ ppe(Uy)

where w is a selfadjoint, non-negative and injective multiplication operator, K is
the dispersion relation for the matter particle and (U,v)(k) = e/**v with v € D(w'/?).
Write k for the identity map from R" to IRY. H is called translation invariant because
in commutes with the p, ® 1 + 1 ® dI'(k) which is the total momentum of the field and
the particle. From this fact it may be proven that there is a unitary transform U of
L*(RY,B(RY), A,, F,(H)) such that

U'HU = | H(&)dA, (&)
IRV

where

H, (&) = K(& —dT(k)) +dT(w) + po(v).
The standard assumptions under which the above discussion is true are.
Hypothesis 3.1. We assume

(1) K € C%(R,RR) is non negative and there is Cx > 0 such that ||VK||>< Cx(1 + K) and
ID2K||< Cx where D*K is the Hessian of K.

(2) w:RY — [0,00) is continuous and w > 0 A, almost everywhere.
(3) v e D(w 1?).
As Hy(&) acts on the n’th particle sector as multiplication by
Gulky,-oorkn) = K(E —ky =+ —ky) + w(ky) + - + w(ky).

Thus Hy(&) is selfadjoint on D(Hy(&)) = D(dT (w)) N D(K(E —dI'(k))). Using Theorem
1.10 and that dT'(w) is Hp(&)-bounded one immediately gets H, (<) is selfadjoint. In
fact

Lemma 3.1. Assume Hypothesis 1. Then D(H,(&)) is independent of & and p. Let D C
{f e H| f has compact suppot} be a dense subspace. Then E(D) and J (D) span cores for
H,(&,A).

H

Our main result can be stated under the conditions:
Hypothesis 3.2. We assume

(1) K,w and v are rotation invariant. Furthermore k — e~*K) is positive definite for
all t.
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(2) wissub-additive and w(x;) < w(x,) if |x1|< |x5|. Furthermore, C, = limy_,olk| " w(k)
exists and is strictly positive.

(3) veD(w™")

For the 3-dimensional Nelson model we have K € {k — |k|?, k — /|k|>+m — m)},
w(k) = k] and v = w2y where y : R” —» Ris a spherically symmetric ultraviolet
cutoff. It is well known that Hypothesis 1 and 2 are fulfilled in this case. We can now
state the main theorem of this paper:

Theorem 3.2. Assume Hypothesis 1 and 2 along with v > 3. Then H,(&) has no ground
state for any & and p = 0.

This theorem proves that infrared singularities in the interaction can imply non-
existence of ground states. This is physically significant because ground states of the
H, (&) are used to construct scattering states for the full system. Hence the result
above implies that the construction of scattering states becomes a very hard problem.
However a lot of work has actually already been done on this problem, since the
conclusion of Theorem 3.2 has been widely anticipated.

The first indication of non-existence was provided by in the PhD-thesis of J.
Frolich which was published in the two papers [12] and [13]. In the paper [32] it is
proven that ground states exists in a non-equivalent Fock representation. This proves,
that the method used in [3] and [14] cannot be used to prove existence of ground
states, but not ground states are absent.

Absence of ground states was proven for the minimally coupled model in the
paper [20]. The proof given in that paper requires that the map X(&) = inf(o(H,(¢)))
is differentiable and that the derivative is nonzero. However, proving ¥ is differen-
tiable is very hard and has only been done perturbatively (see [1]). Furthermore the
differentiability criterion does not work at & = 0 where ¥ has a global minimum.

In this paper we mimic the proof given in [20], but we rely on rotation-invariance,
non degeneracy of ground states and the HVZ-theorem instead of the existence of
a non zero a derivative. The techniques in this paper could potentially be extended
to the renormalised model, as most of the Lemmas used here remains true for the
renormalised model. But there are issues with domains in the last steps of the proof
and proving the pullthrough formula is also a challenge.

4 Paper D: Rigorous Results on the Bose-Polaron

In this paper we look at a new model for an impurity moving in a Bose gas. In recent
papers [25], [36] and [37] a more complicated model and rather successful model has
been used in the physics literature. It considers the impurity as a spinless particle
interacting with a bosonic field (the condensate). We define and analyse a generalised
version of the model in [25], [36] and [37]. In this generalised model, the bosonic
space is assumed to be an abstract, separable Hilbert space H. The total hilbert space
is L2(RY, B(R"), A,) ® F,(H) = L*(RY, B(R), A, 7 (H)) and the full Hamiltonian takes
the form

1
H‘;gz = (mAx + V)® 1+ dlg(w) + §1 Py — vy) + S H (v, 1y)
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where V is an external potential and
® 4 t T\t
HI(uxrvx) = f a (ux)a(ux) +a (vx)a(vx) —a (ux)a (vx) - u(ux)a(vx)d/\v(x)
]RV

At this point it is not clear if H;(u,,v,) makes sense as an operator, as it is not clear
that we are taking the direct integral of a selfadjoint operator. We will need the
following lemma

Lemma 4.1. Assume u,v € D(w™'/?) where w is selfadjoint, injective and non negative
on H. For € D(w) we have

at(w)a(u)+a' (v)a@)—at(w)a (v) - a(u)a(v)

_ L2 Lo 2_
= (=) + Tl + ) - Clo,u)

=at(u+v)a(u+v)+ o()p(u)+ D(v,u)
where C(v,u) = S(|lull>+|vl|?) and D(v,u) = 3 ((u,v) + Re((u,v))).

Thus if we define the function h(x) = C(vy, uy) and u,, v, € D(w~/?) for all x then
we may interpret

1 1 .
HI(ux’vx) = Z(PEB(“X - vx)2 + Z(PEB(Z(“X + vx))z +h®l.

I will now describe the hypothesis we are working under
Hypothesis 4.1. We assume the following minimal properties

(1) Ve LIZOC(IRV) and —ﬁA,ﬁV is essentially selfadjoint on C*(IRY). Defining V_max{0,-V}
we also assume V2 is relatively (— 551 A)Y/? bounded with bound smaller than 1.

(2) w is selfadjoint, non negative and injective on H.

(3) x = v, and x — u, are weakly differentiable maps. Both maps takes values in
D(w™?) N D(w~V?) and the partial derivatives takes values in D(w~'/?). Further-
more

sup{J|(1+ w V%4 a)l/z)

xeRY

sup {1+ @ 2)d vl (1 + @ ?) 9y ull} < 00
xeRY,iefl,...,v}

vl (1 + @072 + @0 )u ) < 00

One may now prove

Theorem 4.2. Assume Hypothesis 1 holds, that g € Rand g, > 0. Let S be the selfadjoint
closure of ﬁAx +V. Then S is bounded below and Hg, ., (V') is selfadjoint on D(S®1) N
D(dIg(w)), bounded below and essentially selfadjoint on any core for S ® 1 + dIig(w). One
example of a core is C3°*(RY)®J (D(w)).

Assume in addition that (a,e”"“by € R for all t > 0 and a,b € {v,}yerr U {thy}xerr- If
Hg‘j,gz has a ground state, then it is non degenerate and any eigenvector will have non zero
inner product with any vector of the form ¢ ® Q with ¢ = 0 and non negative.
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The selfadjointness part of this statement more or less appears in [21]. However,
the author does have stronger conditions and uses the result in [2]. Unfortunately
there is a small mistake in [21, Lemma 3.3], so I decided to prove Theorem 4.2 from
scratch in the paper. The proof is not that long (3 pages) and does not really rely on
any specialised knowledge.

The hardest part to prove is the second part. One has to find a unitary map U
into an L?-space such that U’*Hggz U is positivity improving. The usual choice would

be to take U = 1 ® U where U is a Q-space isomorphism. However, it is not clear
that this will work as Hj(u,,v,) is not a multiplication operator in Q-space. One
needs to rewrite Hj(u,, v,) using Lemma 4.1 and even then, standard theory does not
quite apply. This is why this paper has a section devoted to positivity preserving and
positivity improving semi groups.

As in the case of the Nelson model, we also have fiber Hamiltonians defined on
Fy(H)

Hgy50(€) =516 —dT(m)? + AT ) + g1p(u —v)

+ga’ (u)a(u) + ga" (v)a(v) + grat (w)a' (v) + gra(u)a(v)

where m = (m\1),...,m(")) is a vector of operators and & € C". The operator (&—dT'(m))?
should be interpreted as (£; —dI'(mV))? +---+ (&, —dT(m"))?. The basic assumptions
for these operators are

Hypothesis 4.2. Under hypothesis 4.2 we assume

1. w,mM,...,m") are strongly commuting selfadjoint operators. Furthermore, w is
non negative and injective.

2. vueD(w ) nD("?) NN, D(mV) N D(w™2ml)),

Hypothesis 4.3. H = Lz(IR",B'(IRV), Ay), w is multiplication by a continuous function
and m\) is multiplication by m) (k) = k;.

Hypothesis 4.4. Assume in addition (a, ertweitim® ity py Rforallt >0, ty,...,t, €
Rand a,b € {u,v}

We have the following Theorem

Theorem 4.3. Assume Hypothesis 1 holds. If g € R, g, > 0 and & € R” then H(&)
is selfadjoint on D(dT(w)) N D((dT(m))?), bounded below and essentially selfadjoint on
D(dT(w)) N'D((dT(m))*) N\ N. Furthermore, we also have:

1) & H(&) is an analytic family of type A, so the map & — (H(E)+1)~! is smooth.
(1) (€) ytic family of typ p (H(

(2) The map X(&) =inf(o(H(E))) is locally Lipshitz and almost everywhere twice differ-
entiable.

(3) Assume Hypothesis 4.3 holds as well. Then

(& —ky = —ky) + k) +-+ wlky) € 0ss(H(E))
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forall kq,...,k, € RY. If in addition infycry w(k) > 0 or w(0) = 0 then

inf(0ess(H(E))) = nierl}go gieanfv X(E =k = —kp) + w(ky) + -+ w(ky)(ky)-

If w is also unbounded we have 0,5(H(E)) = [inf(0,5(H(E))), 00).

(1) ix,mv)

4) Assume Hypothesis 4.3 holds as well. Define the elements u, = ™1™ "’ ¢
(4) yp x

(v

u

W ... etxvm

and v, = eixam )v. Then there is a unitary map (the Lee Low Pines trans-

formation) such that

(7]
UHglrgz U'= ‘J].RV Hgl,gz(é)d/\v(é)

If in addition we assume Hypothesis 4.4 then ng

g, has no ground state.

(5) Assume Hypothesis 4.4 holds as well. Then ¥ has a global minimum at & = 0 and
if Hg, o,(0) has a ground state then it is non degenerate. If inf(o(w)) > 0 and we
additionally assume Hypothesis 4.3 holds, then 0 is the unique minima.

All of these results are known for the Nelson model (see [15], [18] and [23]). The
main contribution is selfadjointness, statement (5) and the last part of statement (4).
The proof of the remaining properties are almost identical to the proof given for the
Nelson model. In part (5) we also follow the general strategy outlined in [15], [18]
and [23] but the proofs become much longer due to technical problems with positive
cones. Again we are saved by the general theory developed in this paper.

One interesting observation is the fact that nggz has no ground state in the
translation invariant case. From a physical perspective this should be a no-brainier:
Translation invariant systems should not have bound states, as bound states should be
localised. However, translation invariance is not with respect to impurity coordinates,
so the "localisation argument" does not quite work.

Proving that there is no bound states has actually not been done so far and it is
by no means trivial. We can only exclude the existence of a ground state due to the
following simple argument: If a ground state eigenvector exists, then the eigenspace
has infinite dimension by the direct integral decomposition. However this contradicts
Theorem 4.2. A similar strategy would work for any bound state as long one can
exclude infinite dimension of the eigenspace. Tools such as Mourre theory could be
useful for this, but that would be future work.

We now turn our attention to the machinery that makes everything work. Let

H =L*(M,F,p)
H., ::Lz(/\/l,]-",y) :={f e H| f = 0 almost everywhere}

be an L?-space. We want to answer the following question: If B is a multiplcation
operator and A is selfadjoint, bounded below and generates a positivity improving
semigroup does it follow that A + B generates a positivity improving semigroup? The
general answer to this question is no (see [35, Theorem XIII.48]), but it is often true.
To use the results in the literature (see [11], [27] and [35]) one needs to approximate
B by bounded multiplication operators in such a way A+ B,, and A + B— B,, remains
uniformly bounded below. To find such lower bounds is often easy but not in the
situations encountered in this paper.
Instead of working directly with operators we do instead work with forms.
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Definition 4.4. Let A be selfadjoint on a Hilbert space H. The form of A is the sesquilinear
map q4 : D(A|Y?) x D(|A]"?) — C given by

9a(,§) = (Sign(A)A]"*,14]' %)
We now present the following theorem

Theorem 4.5. Let A be selfadjoint and bounded below on H. Assume B is a multiplication
operator on H and define B, = max{0, B} and B_ = max{0,—B}. Assume

(1) A generates a positivity improving semigroup.
(2) D(gp, ) contains a core for g4 and D(q4) ND(qp,) C D(qp_).
(3) The quadratic form q = g4 +qp, —qp_ is bounded below and closed.

is bounded below and closed. If C is the operator corresponding to q then C will generate a
positivity improving semi group.

One key example is Schrodinger operators on a connected, weighted Riemannian
manifold (M, g,Y) (see [17] for definitions). In this case A is the Laplace-Beltrami
operator which is positivity improving because the heat kernel is positive everywhere.
Furthermore, if B is a potential where gqp_ is locally integrable and qp_is g4 +qp, -
bounded with bound strictly smaller than 1 then the form g = g4 + qg will be closed
and bounded below. The operator corresponding g will generate a positivity improv-
ing semigroup. A similar result was found in [19] but we do not require potential to
be Kato-class and we work on a weighted manifold.

The following result is a bit different but we use it a part of our proofs.

Theorem 4.6. Let A, B, C be selfadjoint operators in L*(M, F, p). Assume
(1) A is bounded below and e™*4 is positivity improving for all t > 0.
(2) Bis a multiplication operator which is bounded from below.

(3) =C = 0and C is a multiplication operator.
(4) D(gqp) contains a form core for g and D(q4) N D(qg) C D(qc¢).

(5) The form q =qa + qp+ qc is closable and bounded below.

Then the operator H corresponding to q is bounded below and e~

is positivity improving.

Let A be selfadjoint, bounded below and assume it generates a positivity im-
proving semigroup. Assume also B is an A bounded multiplication operator and
H:=A+B=A+B, —B_ is selfadjoint and bounded below. By standard theory (see
e.g. [42]) we have D(q4) C D(qp) = D(gp,) N D(qp_) and it is not hard to see that
ga +49p, +q-p_ is closable and the operator corresponding to that closure is H. Hence
we find H generates a positivity improving semi group. This is used often in Paper D.
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SPIN-BOSON TYPE MODELS ANALYSED USING SYMMETRIES

THOMAS NORMAN DAM, JACOB SCHACH M@OLLER

ABsTRACT. In this paper we analyse a family of models for a qubit interact-
ing with a bosonic field called spin-boson type models. The Hamiltonian has
a special symmetry called spin-parity symmetry, which plays a central role in
our analysis. Furthermore, higher order perturbations of field operators are
added to the Hamiltonian. We find the domain of selfadjointness and decom-
pose the Hamiltonian into two fiber operators each defined on Fock space. We
then prove a HVZ theorem for the fiber operators and single out a particular
fiber operator, which has a ground state if and only if the full Hamiltonian has
a ground state. From these results we can deduce a simple criterion for the
existence of an exited state.
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1. INTRODUCTION

This paper is devoted to the analysis of so called spin-boson type models, which
is a family of models describing a qubit interacting with a bosonic field. The
assumptions in our framework are very weak, which allows us to cover both the Rabi
model and the standard spin-boson model simultaneously. Furthermore, higher
order perturbations of field operators are also considered. QFT Models with higher
order perturbations have lately become relevant in physics. They appear in cavity
QED (see [11]) and in the theory of polarons (see [19]).

The analysis in this paper relies on the fact that spin-boson type Hamiltonians
commute with the spin-parity operator. This fact was used in [3] and [8] to prove
that ground states exist in the massless spin-boson model. The spin-parity operator
has two invariant subspaces, which are both isomorphic to the Fock space. In our
paper, we investigate the restriction of the full model to each of these subspaces.
These two restrictions are referred to as the fiber operators. We shall see, that the
two fiber operators differ only by the value of a scalar parameter, but they behave
quite differently.

Models with higher order perturbations were treated in [9], [11], [13] and [21].
Spin-boson type models are treated in [11], [13] and [21], but the authors assume
either that the field is massive or that the coupling is weak. The results in [9] does
not assume weak coupling or a massive field, but the model treated in that paper
is not the spin-boson model and rather strong infrared conditions are assumed.
Furthermore, the author of [9] only proves selfadjointness of the Hamiltonian and
existence of ground states, while we treat several other questions as well.

Thomas Norman Dam: Department of mathematics, Aarhus University, 8000 Aarhus C Den-
mark; cyperman@gmail.com

Jaciob Schach Mpgller: Department of mathematics, Aarhus University, 8000 Aarhus C Den-
mark; Jacob@math.au.dk.
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We start by proving selfadjointness of all involved operators and move on to
prove an HVZ theorem for the fiber operators. The method we use is related to
the approach in [14], but is written up in a more general way, which allows one to
handle massless fields and abstract Hilbert spaces. The HVZ theorem for the fiber
operators also gives an HVZ theorem for the full Hamiltonian.

Using arguments similar to those presented in [8], we prove that if ground states
exists for the full Hamiltonian, then the bottom of the spectrum is a non degenerate
eigenvalue. Using this result, we single out a particular fiber which has a ground
state if and only if the full Hamiltonian has a ground state. Ground states for the
other fiber operator must therefore correspond to exited states. The HVZ theorem
then gives a simple criterion for the existence of an exited state.

The reader is then encouraged to have a look at Appendix D, where a new frame-
work for pointwise annihilation operators is developed. Most maps are continuous
in this framework, so calculations are reduced to simple algebraic manipulations.
This makes it very easy to rigorously prove higher order pull-through formulas. Us-
ing these pull-through formulas, we prove that ground states are in the domain of
the number operator raised to any positive power (if infrared regularity is assumed).

Lastly, we follow the general strategy outlined in [7] to prove the existence of
ground states in massless (but infrared regular) models. Our proofs are simpler
than the ones presented in [7] and we are able to work under weaker assumptions
on the bosonic dispersion relation. This is possible due to a novel approach to the
last step in [7].

2. NOTATION AND DEFINITIONS

We start by fixing notation. If X is a topological space we will write B(X)
for the Borel o-algebra. Furthermore if (M, F, ) is a measure space and X is a
Banach space we will for 1 < p < oo write LP (M, F, u, X) for the vector valued LP
space. If X = C we will drop X from the notation. Also we will write B(X) for
the bounded linear operators from X to X.

Let H be the state space of a single boson which we will assume to be a separable
Hilbert space. Write H®" for the n-fold tensor product of H and let H®s" C H®"
be the subspace of symmetric tensors. The bosonic (or symmetric) Fock space is
defined as

oo

Fo(H) = P

n=0

IfH = L?(M, F, ) where (M, F, p) is o-finite, then H®" = L2 (M™, F&", &™),
We will write an element 1 € F,(#) in terms of its coordinates as ¢ = (1)) and
define the vacuum 2 = (1,0,0,...). The finite particle vectors are defined by

N ={@"™) e F(H)| 3K e Ns.t. ™ =0 for all n > K}.
For g € H one defines the annihilation operator a(g) and creation operator af(g)
on symmetric tensors in Fp(H) using a(g)Q = 0, af (9)t =g and
1 n N
a(g)(fl Qs Bs fn) - ﬁ Z<g7fi>f1 Qs -+ s fz Qs+ Ds fn
i=1

at(9)(f1 ®s - ®s fn) = VN + 1g Q4 f1 @4 -+ Qs fn

where f, means that f; is omitted from the tensor product. One can show that
these operators extends to closed operators on F3(#) and that (a(g))* = af(g).
Furthermore, we have the canonical commutation relations which are:

[a(f),a(g)] = 0 = [a?(f),al(9)] and [a(f),at(g)] = (f,9).
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We also define the field operators
¢(g) = a(g) +al(g).
They are selfadjont and

(2.1) l(f); p(g)] = 2iIm((f, g))-

Let A be a selfadjoint operator on H with domain D(A). Then we define the second
quantisation of A to be the selfadjoint operator

(2.2) dr(A) = O@éi(l@)k—lA@l)”—k lpen -

n=1k=1

If w is a multiplication operator then dI'(w) acts on elements in H®" as multipli-
cation by wy, (k1,...,kn) = w(k1) + - +w(ky,). The number operator is defined as
N = dI'(1). If K is an other Hilbert space and U : H — K is a bounded operator
with |U]|< 1 then we define

NU) =10 U [ys.n .

n=1

Note that T'(U) will be unitary if U is unitary. We will write dT'("™ (A) = dT'(A) |ye.n
and T (U) = I'(U) |yesn throughout the text. If v € D(A) one has the commu-
tation relation

(2:3) [dT'(A), p(v)] = —ip(iAv)

where N ND(dI'(A)) C D([dT'(A), p(v)]). We now introduce the Weyl representa-
tion. For any g € H we define the corresponding exponential vector

%) g®n
(2.4) o) =3 U

One may prove that if D C H is a dense subspace then {e(f) | f € D} is a linearly
independent and total subset of Fy,(H). Let U(#) be the unitaries from H into H.
Fix U € U(H) and h € H. Then there is a unique unitary map W (h,U) such that

W (h,U)e(g) = e IMP/2= 00D e(h 4 Ug). Vg eH

One may easily check that (h,U) — W (h,U) is strongly continuous. Furthermore
one may check the relation

W (hy, U)W (ha,Us) = e~ "™ UV ((hy, Uy) (ha, Us)),
where (h1,Uy)(he,Us) = (hy + Urha, UyUs). If A is selfadjoint and f € H we have
GHC(A) — Dty = (0, ¢t
et — W(tf,1).
The following lemma is important and well known (see e.g [4] or [12]):

Lemma 2.1. Assume w > 0 is selfadjoint an injective on H and let g1, g2, ..., gn €
D(w™2). Then o(g1) - @(gn) is d0(w)% bounded. In particular o(gy)---p(gn) is
N2 bounded so N C D(p(g1) - ©(gn)). We have the following bounds

le(g0)¥ll < 2]|(w™% + 1)ga|l[|(d0(w) + 1) 29|
le(g1)@(g2)]l < 15[|(w™2 + V)gi|l[l (w2 + 1)gall|(d0(w) + D)o

1

which holds on respectively D(dl'(w)2) and D(dl'(w)). In particular ¢(g1) is in-
finitesimally dT'(w) bounded. Furthermore, dT'(w) + ¢(g1) > —|lw™ 2 g1||%.



34

Paper A

SPIN-BOSON TYPE MODELS ANALYSED USING SYMMETRIES 4

Lemma 2.2. Let U : H — K be unitary, A be selfadjoint on H, V € U(H) and
f€H. Then

T(U)dT (AT (U)* = dT(UAU*).
(W (f,V)T(U)* = W(Uf,UVU").
L(U)e(HTWU)" = U f).
L(U)a(HT(U)" = a(Uf).
F(U)af(f)F(U)* a'(Uf).
)

Furthermore, I'(U)(f1 ®s -+ ®s fn

- Qs Ufp and T(U)Q = Q.

3. THE SPIN-BOSON MODEL

Let 04, 0y,0, denote the Pauli matrices and define e; = (1,0) and e_; = (0, 1).
Note that e; is an eigenvector for o, with eigenvalue j. We consider a qubit coupled
to a radiation field. The state space for the qubit is C? and the energy of the qubit
can be represented by no,. Let H be the state space for a single boson and w be the
energy operator for a single boson. Then the state space for the field is F,(H) and
the energy operator of the field is dT'(w). This leads to the state space C? ® Fy(H)
for the total system and we have the Hamiltonian

Hy(a, f,w) =no, @1+ 1@ dl(w +Zaz o ® o(fi))',
=1

which is here parametrised by a € C?", f € H2?" 7 € C and w selfadjoint on H. We
will also need the fiber operators:

F”](avﬂw):nr( +dr +Za1<p fz

If the spectra are real we define
E, (o, f,w) :=inf(o(Hy (e, f,w)))
Enla, fLw) = inf(o(Fy(a, f,w))).
For an element f € H2" we define the leading terms
L(f)={i€{2,3,....2n} | f; # f; Vj > i}.

The expression L£(f)€ is to be interpreted as the complement within {1,2,...,2n}.
For w selfadjoint on H we define the numbers

m(w) = inf{o(w)} and meg(w) = inf{oess(w)}.
The basic set of assumptions are:
Hypothesis 1. o € C?, f € H?" and w selfadjoint on H fulfil Hypothesis 1 if
(1) L(f) consists only of even numbers, c; > 0 for alli € L(f)\{2} and az >0
if 2 € L(f).
(2) w is injective and nonnegative.
(3) fi e D(w™2)ND(w?) for alli € {2,...,2n} and f, € D(w™2).

Hypothesis 2. f € H*" and w selfadjoint on H fulfil Hypothesis 2 if (fi, g(w)f;) €
R for alli,j € {1,...,2n} and g : R — R measurable and bounded on o(w).

Hypothesis 3. f € H?>" and w selfadjoint on H fulfil Hypothesis 3 if either n < 2
or m(w) > 0 and Hypothesis 2 holds.

Hypothesis 3 ensures that we may use hypercontrative bounds if n > 2.

Hypothesis 4. f € H?" and w selfadjoint on H fulfil Hypothesis 4 if
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a(Ep) X :
| Epy + Mess
O’(F,w) X E
E—pn| Epn) + Mess
o(Hy) X X [
5,‘7]‘ = En SW\ En + Mess
E

FI1GURE 1. The picture established by Theorems 3.3 and 3.4 in the
case 0 < 2‘7]|< Mesgsy, M= Mless and [mes57 3'rness] C Oess (UJ)

(1) H = L?*(M, F, 1) where (M, F,u) satisfies the assumptions in Theorems
A.5 and A.8.

(2) w is a multiplication operator on H.

(3) There is a measurable function h : M — C with |h|= 1 such that hf is
R?" valued almost everywhere. A function h with these properties is called
a phase function for f.

Hypothesis 5. We say f € H?" and w selfadjoint on H fulfil Hypothesis 5 if
fi € D(w™1) for alli.
This now brings us to our results.

Proposition 3.1. Assumen € C and (o, f,w) satisfies Hypotheses 1 and 3. Then
the operators Fy(c, f,w) and Hy(a, f,w) are closed on the respective domains

D(Fy(ev, f,w)) = D(dL'(w)) Nie(pq2y D(@(fi)')
D(Hy(ev, f,w)) = D(1®dL(w)) Niesrnger P @ o(fi)).

Given any core D of w the linear span of the following sets

J(D) = {2} U J{g1 @5+ @5 90 | g; € D}

n=1
j('D) = {Ul X V2 ‘ v € {617671},1}2 € j('D)}
are cores for Fy(a, f,w) and Hy(a, f,w) respectively. Also both operators are self-
adjoint and semibounded if (a,n) € R2"+1 and they have compact resolvents if w
has compact resolvents.
Proposition 3.2. Let ¢ = (¢1,0-1) = e1 ® ¢1 + e_1 ® ¢_1 be an element in
Fo(H)? = Fo(H) @ Fo(H) ~ C2 @ Fy(H). Write ¢; = (¢'")) for j € {~1,1}. Let
j € {-1,1}. Define $j = (55’“) where
g(k) . qﬁgk) k is even
J ") ks odd
Then (Ej € Fp(H) and the map U : ¢ — ((Zl,qg,l) is U 1is selfadjoint and unitary.
Furthermore
UH'r](a? faw)U* = F*T](OQ fvw) 2] F7](Oé, faw)
In the remaining part of this section we will be suppress «, f and w from the

notation as they are fixed in the initial part of each Theorem. The first result we
present is about the location of the essential spectrum.
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Theorem 3.3. Let o € R?" € R, f € H?*" and w be selfadjoint on H and assume
they satisfy Hypothesis 1,3 and either n < 2 or Hypothesis 4. Then the following
holds

inf{oess(Fy)} > min{€_, + Megs, Ey + M + Megs

ULy + A+ 4 X | X € ess (@)} C ess(Fy)
q=1
inf(UeSS(Hn)) = By + Mess
LB, + M+ 4 A | \i € Oess (W)} C 0ess(Hy).
q=1
In particular, H,, has a ground state of finite multiplicity if mess > 0. We also have:
(1) Assume m = Megs, [Messs 3Mess) C Tess(W) and if Mess = 0 then megs is not
isolated in Oess(w). Then Oess(Fy) = [E—y + Mess, 00).
(2) Assume [Mess, 2Mess] C Tess(w) and if mess = 0 then mess s not isolated in
Oess(W). Then oess(Hy) = [Ey 4 Mess, 0).
(3) If we assume Hypothesis 1,2,3 and either n < 2 or Hypothesis 4, then
S,‘,”. < &y with equality if and only if n = 0 or m = 0. In particular we
find 1nf(cress(F|m)) = g_‘,,” + Miess -

In the following result we single out which fiber operator is associated with the
ground state and which fiber operator is associated with exited states.

Theorem 3.4. Let o € R?" n € R, f € H?" and w be selfadjoint on H and assume
they satisfy Hypothesis 1,2 and 3. Let U be the map from Proposition 3.2.

(1) If n # 0 and E, is an eigenvalue for H, then E, is non degenerate. If 1
is a ground state for H, then Ut = e_gg,(n) ® ¢ where ¢ is an eigenvector
Jor F_p, corresponding to the energy Ey.

(2) If E_py is an eigenvalue for F_y, then E_y, is non degenerate. In par-
ticular, if Fo is an eigenvalue for Hy then Eqy will have multiplicity two.
Furthermore, if ¥ is a ground state for Hy then Uy = e1 @1 +e_1 R ¢p_1
where ¢; is either 0 or an eigenvector for Fy corresponding to the energy
Eo = 50.

(3) If we further assume Hypothesis 4 when n > 2 then E_, = E,. Hence H,
has a ground state if and only if F_y, has a ground state. Also, if m =0
then F, has no ground state for n # 0.

(4) If we further assume Hypothesis 4 when n > 2 and m,n # 0 then H,, will
have an exited state in (Ey, Ey + Mess| if F, has a ground state. This is
the case if 2|n|< Mess-

Assuming weak infrared regularity one can prove the following theorem. Note that
the assumptions imposed on w are much weaker than in e.g. [7].

Theorem 3.5. Let o € R?", € R, f € H?" and w be selfadjoint on H and assume
they satisfy Hypothesis 1,2,3,5 and either n < 2 or Hypothesis 4.
(1) If F_y, has a ground state v and Hy has a ground state ¢ then i € D(N®)
and ¢ € D(1® N®) for any a > 0.
(2) Assume H = L*(RY, B(R"), A\®"), w is a multiplication operator and n < 2.
Then E, is an eigenvalue for F_, and H,. Here A\®V s the Lebesgue
measure on B(R").

4. IMPORTANT ESTIMATES

In this section we prove series of estimates which will become useful later. We
start with the following lemma
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Lemma 4.1. Fiz a € R?" and define
K={fe€H™| (o, f) satisfies part (1) of Hypothesis 1 }.

There is a constant C := C(«), such that for any collection { A(v)}ven of selfadjoint
operators and f € K we have

2n
(4.1) > oAt = C
j=2
Proof. Let K = {i € {2,4,...,2n} | oy > 0} = {i1,...,ix}. For each b < k we
consider polynomials of the form
iy—1
Oziinb —+ Z &]‘Xj,
j=2
where ¢ is either 0 or ¢j. Since there are only finitely many choices of b and a;
we find a uniform lower bound Cy < 0 of all these polynomials. Using the spectral
calculus we find
iy—1
(4.2) ai, A + @A) > Co,
j=2
for all A selfadjoint on F3(H), b € {1,...,k} and choices of &; as either 0 or «;.
Since the sum of operators in equation (4.1) is a sum of at most n operators of the
form in equation (4.2) we find nCj is a uniform lower bound. O

In the remaining part of the section we fix w to be a selfadjoint, nonnegative and
injective operator on X with domain D(w).
Lemma 4.2. For any € > 0 and r > 0 there is C := C(r,e) such that for all

v1,v2 € D(w™2) and a,b > 0 with ||(1 + w™2)oy||+](1 + w2 )va|+a + b < 7 we
have

2Re((ap(v1) ", bp(v2)*0)) > —el|dT (w)||*~C9||*
for all v € NND(dI'(w)).

Proof. On elements in N' we may calculate using equation (2.1)

o(v2)p(v1)* = p(v1)*e(v2) + 4(2Im((v2, v1)))p(v1)*.

This implies
2Re((ap(v1)", bip(v2) ) = 2ab||p(v1)p(v2) V||
— 16abIm((vy, v1)Im({p(v1)39, ©(v2)1h)).

Now

Im((p(v1)*9, p(v2)¥)) = %([@(vz)&(vl)‘o’}%w = 3Im((va, v1))llp(v1)¥||*.

Hence we find

2Re(a{p(v1)", bip(v2) ) > —487°||p(v1) 9|
Using Cauchy-Schwarz inequality and Lemma 2.1 we find

()7 < 4ll(w™2 + Dor |2((, d0(@)e) + [[$]1%) < 4r*((, T (w)0) + [[]2),

and so

Re((ap 1), b)) > 1967 o] )16
1961%)?
> —elar ()l -196r 12— L 2

which finishes the proof. ]
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Lemma 4.3. For anye > 0,7 > 0,n € N there is C := C(r,e,n) such that for all
v € D(w?) and a > 0 with ||v||+|w2v|+a < r we have

2Re((ap(v)™" 9, dT (w))) = —€llag(v) " Y|I*=Clly 1%,
for all p € NN D(dT(w)).
Proof. Define w, = max{w, k} via the spectral calculus. Using equation (2.3) we
find the following operator identity holds on A

n—1

p(v)"dT (wy) = dT(wi)e(0)" +i Y ()" p(iwr)p(v).
§=0

This yields

2Re({ap(v)*", dT(wi)) = 2al|dT(wy) o (v) |

n—1
=20 Tm((p(v)", p(v)" I p(iwrv)p(v) ).
=0

Now for each j <n — 1 we have

Im((p(v)" 9, p(0)" 7 (i) p(v) ) = 2%<[<P(U)"_j_1¢(iwkv)@(v)j7 e(v)" |, ¥).
Using equation (2.1) we may calculate on N/

n—j—1

p(iwr)p(v)’, p(v)"] = (v)" I p(iwgv), ¢ (v)"lp(v)?
2(77,71).

[p(v)
= n2iTm(—i{wyw,v))@(v)

Using the above equalities we find
9R 20, dl > —2an2llw? vll? n—1,2
e((ap(v)™y, dl(w))) = =2an”||wio|*[lo(v)" " Y|
1 1 B
= —2a""n?|wivl|l(az p(v)" ||,

Now for any &’ > 0 there is a constant A depending only on ¢, n such that z2("~1 <

) <
'z + A. Pick such A for &’ = 27'n=2r=271/"¢. Then since |Jw?v||*< [w2o|2< 12
for all k£ we find that

2Re((ap(v)* ¢, dT (wi)i)) > —cllagp(v)*"¢|* =20 Ar* /7|y 2.
Taking k to oo finishes the proof. O
Lemma 4.4. Let r > 0,1 > ¢ > 0 and n € N. Define
K = {(a,v) € [0,00) x (D(w?) N D(w'?)) | e + ||(1 +w T +wi)l|<n i}

_JH" n<2
C\{veH | (vi,v) €ER Vi je{l,..,n}} n>2

There is a constant C := C(g,r,n) such that for all (a1, v1),. .., (an,v,) € K with
v=(v1,...,0,) € A we have

2
+Clwl*.

n . 1 n )
I )l + Y lesten) PP i * el

for all for ¢ € N N D(dl'(w)).
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Proof. First we note that
2

I+ Yooy P = a0 + Y- asetes s

=1

— Z 2Re({av;p(v;) ¥, dT (w)))

Jj=1

_Z Z 20,5, Re((p(v,) 27190, p(v5,) 72 ).

J1=1j2=j1+1

Let C(r,e,n) be the constant from Lemma 4.3 and define ¢y = C(r,e,1) 4 --- +

C(r,e,n) which depends only on n,r,¢. Then we find

= " 2Re({ajip(vy) ¥4, dD(w)) < ellajip(v) ]| +Co |||

j=1 j=1
We now turn to the double sum. If n < 2 we only have one term which can be
estimated using Lemma 4.2. Therefore we find a constant Cy > 0 such that

-3 3 205,05 Re(((v;,) 71, ()72 10)) < el dD(w) ][> +Ca ]|

j1=1j2=j1+1

If n > 2 then ¢p(v;) and ¢(v;) commute on N for all 4, j and so

_Z Z 20,5, Re((p(vj,) 74, p(vz,)24)))

J1=1j2=j1+1

== Y 205,05 ll0(v,) @(vs,) 207 < 0 < ef|dT (W) *+Cal| ],
J1=1j2=j1+1

Using these inequalities we find the desired result with C' = % ]

Lemma 4.5. Letr > 0,1 > e > 0 and n € N. Then there is a constant C' such
that for all f € H?", o € C?",n € C and w selfadjoint on H that fulfils Hypothesis

1, 8 and
2n
-3 -3 3 f. max -1
]+ levl[+|(w +1)f1\|+;||(w +1+w?)fl<r, jeﬂ(g\m{% p<m,
we have
InD(=Dyll+ Y llajelf)v] < elldDw)e+ Y ajw(fj)jdeJrCHiﬁll
JEL(f)e JEL(Sf)
) 1
() Yl 1T (W) || < ———5 [[Fy(e, f,w)¥]l + CllY]).

(1-¢)?
for all v € NND(dl'(w)) and i € L(f).

Proof. For a fixed e, r,n pick Cy such that
20—1 22
2 2 4
r ; |z|¥ < 1622 |z|*+C1,

for all £ € {1,...,n}. For each j € L(f)°\{1} we find ¢ € L(f)\{2} such that
f; = fq and j < ¢. Noting that a;l <r < r7! <a, we find

llog o (£ 1< 4/ r2lle(f)7 117 < ﬁl\s@(fq)qllﬂ/allwlé %Haqs&(fq)qllﬂ/allwl-
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We know from Lemma 2.1 that

lare(f1)el < 2rl(w™2 + 1) fi]l (@, dT(w)) + [[]|) 2
4
< Clar@)l+2rl i+

Then it is clear that there is a constant Cy depending only on r, e and n such that

S Jagelfiyull< (udr Wit 3 lase(s;) wu)wzwu

JEL(f)® JEL(S)

Combining this with Lemma 4.4 (applied with e = %) there is a constant C3 again
depending only on 7, ¢ and n such that

43 Y Jagelhyvl< dlar@e + 3 ajeo(fj)ij+03HwH-
JEL(f)e JEL(Sf)

This proves the first relation. For the next we note that

dU(w)+ Y aw(fj)jw‘éI\F,,(a7f7w)w|\+ S a5 el+ -
JEL(S) JEL(Sf)e

Using equation (4.3) we obtain

v+ Y agelf) wH< L iFo )+ S

JEL(S)
Combining this and Lemma 4.4 we find a constant Cy such that for all ¢ € L(f)

g (fo) I, [ldT (w >w|\<( : SE 1 (ev, f, )Pl +Call]].

This finishes the proof. a

Cy+r

pl LA F

5. PROOF OF PROPOSITION 3.1 AND PROPOSITION 3.2
We start by proving a lemma regarding the map U in Proposition 3.2.

Lemma 5.1. The map U defined in Proposition 3.2 is unitary with inverse U* = U.
Furthermore, for any v € H and A selfadjoint on H we have

(5.1) Uloz @ p(v))U" = ¢(v) @ p(v) = 1 @ p(v)
(5.2) U(1 ® dT'(A))U* = dT'(A) @ dT(A) = 1 @ dT(A)
(5.3) Ulo, ® WU* = (-T'(=1)) & (=1) = 0, @ [(~1).

In particular we have for « € C*", f € H?>",n € C and w selfadjoint on H that
UHﬂ(a7 f7 W)U* = F*T](av f,(U) D Fﬂ(a7 f7 UJ).
Proof. First we note that

SRS = 3 1P+ ST W1 Y W1+ S )2
k=0 k=0

k even k odd k even k odd
= [ +Y-all’=ller ® 1 + e1 @ s |?

which shows that the 1/71 are elements in Fock space and U gives rise to an isometric
map from Fy(H)* to Fy(H)?. To prove surjectivity we fix (¢1,9-1) € Fy(H)* and

write U2(¢1,9_1) = (1[)1,1/1 1) = (¢1,6_1). Fixing j € {1, —1} we have

7 (k) (k)
¢;k) _ {wj k even _ {wj k even 7/}(-k)

9" kodd ¢ kodd Y

)
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and hence U is bijective with inverse U —1 = U. It is clear from the definition of
; that the map (v1,%_1) — ; is linear and hence U is also linear. We have
thus proven that U is unitary with U = U~ = U*. It remains to prove equations
(5.1),(5.2) and (5.3). Both sides of each equation is a selfadjoint map and the maps
on the left hand side of each equation is essentially selfadjoint on the set spanned
by e; ® Q and e; ® g1 Qs -~ Qs g with j € {£1} and g, € D(A). Hence we just
need to show equality on this set. Now
U*(Gj ®Q) = 6]' ®Q
U(ej ® (91 ®s -~ ®s gr)) = €(—1)rj @ (91 @5 -+ @5 Gk),
which is in the domain of 0, ® ¢(v),1 ® dI'(A) and 0, ® 1. Using o,¢e; = e_; and
o.e; = je; we find
0 @ pv)(e; @) =e; @v=U(10¢(v))(e; @ Q)
0. @ p(v)(eciyr; ® (91 ®s -+ @5 k) = €(_1)ri1; ® af(v)g1 @ - Qs gi
+er-1; ®a(v)gr ®s - D g
=U"(1@p@))(e; ® (91 ®s - Os gk))
1®dI'(A)(e; @) =0=U"(1®dI'(4))(e; @ Q)
1@dL(A)(e—1yr; ® (91 ®s -+ ®s gr)) = €(—1yr; @ AT (A)g1 @5 - - D g
=U"(1@dl(A))(e; © (91 @s -~ Rs gr))
0, X 1(6]' &® Q) = jej QRO = U*(O'z ®F(71))(6]‘ & Q)
02 ® Le1yr; ® (g1 @5 -+ D5 gr)) = (1) je1ye; @ (91 @s - s gr)
= je(,l)k]‘ @T(-1)g1 ®s -+ Vs g
=U"(0: @T(=1))(e; © (91 @5 - - @5 gr))-

This finishes the proof. O

Now Proposition 3.1 will follow as soon as we prove the statements for Fy (a, f,w).
We start by proving the following lemma

Lemma 5.2. The conclusions of Proposition 3.1 hold under Hypothesis 1, 8 and
the assumption

Li=dl(w)+ Y aje(f;)

JeL(f)
is essentially selfadjoint on N ND(dT(w)).

Proof. Combining the assumption with Lemma 4.4 we see that L is selfadjoint on
C = D(dI'(w)) Njec(pizy Pp(f;)7).

Now simple perturbation theory along with Lemma 4.5 shows that F,(«, f,w) is
closed on C and any core for L is a core for F,(a, f,w). If a € R?" and 1 € R, the
Kato-Rellich Theorem shows that F; (o, f,w) is selfadjoint and bounded below.

We now prove that J (D) is a core for L. It is enough to approximate elements in
N ND(w). Any such element 1 can be approximated by a sequence {¢; }]"‘;1 from
the span of J(D) with respect to dI'(w)-norm. Pick c so large 1(_o )(N)¥ = 1),
and write P = 1(_oo ¢)(N). Then by the decomposition in equation (2.2) we see
that Py; converges to ¢ in D(dI'(w))-norm and in N™ norm. It follows from Lemma
2.1 that 1; converges to ¢ in L-norm as desired.
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If w has compact resolvents then so does dI'(w) by lemma B.4. That F,(a, f,w)
has compact resolvents will now follow from the equality

(Fy(a, fyw) +4) "' = (dT(w) +4) "
+ (A0 (W) +8) T (Fy (e, fow) — dD(w)) (Fy(a, fow) +i) 7
This finishes the proof. a

Proof of Proposition 3.1. It remains to prove that

L:=dl'(w Z 7<Pf1

JEL(S)

is essentially selfadjoint on N'N D(dl'(w)) under Hypothesis 1 and 3. The case
n < 2 is simply done by appealing to [1]. If n > 2 one appeals to the theory
of hypercontractive semigroups (See Lemma E.1, Theorem E.2 and [17, Theorem
X.58] ) and obtains L is essentially selfadjoint on N,enD(dI'(w)™).

Using Lemma 2.1 we see that L is dI'(w)™ bounded. Recall that a vector g € H
is said to be bounded for w if g € NpenD(w*) and there is C' > 0 such that
lw*gl|< C¥|lg|| for all k € N. The set of vectors which are bounded for w is dense
in H since

g= lim 1_g4(w)g
£—ro00
for any g € H. Let g1,...,94 be bounded for w. Then we have g1 ®; -+ ®, gq €
NkenD(dT (w)*) and

Hdr(w)kgl ®s e ®s gq”

k
> (a) WL By ©s Wy

aeNY,|al=k
k
< > (Hercrlal ol
aeNY,|al=k

<(Cr4 -+ C)Fllgall- - llgqll-

Hence g1 ®s - -+ ®s gq is an analytic vector for dI'(w)™. In particular
{Q} U{g1 ®s - Qs gq | gi is bounded for w,q € N} C N ND(dl'(w))

will span a core for dI'(w)™ by Nelsons analytic vector theorem. Since L is dI'(w)™
bounded, we find that elements from N’ ND(dl'(w)) can approximate every element
in D(dI'(w)™) with respect to the graph norm of L. Since L is essentially selfadjoint
on D(dl'(w)") we find N N D(dl'(w)) is a core for L. O

6. LEMMAS FOR THE HVZ THEOREM

In this chapter we discuss some of the technical machinery needed to prove the
HVZ theorem.

Lemma 6.1. Let f € H?",a € R?" n € R, w be selfadjoint on H and assume
Hypothesis 1 and 3 are satisfied. If there is a unitary map V : H — H1 @ Ha_such
that V fi = (fi,0) for alli € {1,...,2n} and VwV* = w; & wa. Then (a, f,w:)
satisfies Hypothesis 1 and 3. Furthermore there is a unitary map

U Fy(H) > Fy(Hh) @ €D (Fi(H) @ HE)
k=1
such that

UF,(a, f,w)U* = F,(a, f,w1) @@(F( (@, frwn) @14 1@ dr®) (wg))
k=1



A.6. Lemmas for the HVZ Theorem

43

SPIN-BOSON TYPE MODELS ANALYSED USING SYMMETRIES 13

In fact U = UyU T(V'), where Uy is the unitary map from Theorem C.1 and Us is
the unitary map from Theorem C.2.

Proof. Tt is easy to see that Hypothesis 1 and 3 are preserved under the isomor-
phism. Using Lemma 2.2 one calculates

D(V)Ey(a, f,w)T(V)* = nl(=1@ —1) +dl(wr © wa) + Y cip(V fi)".

i=1
Let U; be the isomorphism from Theorem C.1. Using Theorems B.2 and C.1 we
see

UIL(V)Ey(a, @)D (V) UT = n0(=1) @ T(=1) + Fo(a, fLe1) ® 14 1@ dT (ws).

Let Uy be the unitary transform from Theorem C.2. Defining U = UsUT(V) we
calculate

UF,(a, f,w)U* = nUsT(=1) @ T(=1)Us + UsFo(a, f,w1) @ 1U5 + Us1 @ d (w)Us

= (0O DI(1) + Fola Freon))
® é (nF(fl) @T® (1) + Fola, fw) ®1+1® dl“(’“)(wQ)) )
k=1

The fact that T*)(—1) = (—1)* finishes the proof. O

Lemma 6.2. Let f € H?",a € R™, 5 € R, w be selfadjoint on H and assume
Hypotheses 1 and 3 are satisfied. Let H1, Ha C H be closed subspaces with Hi- = Ho
and let P; denote the orthogonal projection onto H;. If f € H?" and w is reduced
by Hi, then we may take w; = w |y, and Vf = (Pif, Pof) in Lemma 6.1. Let U
be the corresponding map. For gi1,...,94 € Ha we define

B={Q}U | J{h1 @ @y | hi € Hi ND(w)}
b=1

C:{gl®s"’®sgq}u U{h1®s"'®shb®sgl®s"'®sgq | hi €H10D(w)}.
b=1

If ¢ € Span(B) then we may interpret 1 as an element in both Fp(H) and Fp(H1).

Using this identification for v we find that

(6.1) U*(1h @ (91 ®s -+ ®s gq)) € Span(C).
(6.2) Us(¢) =.
(6.3) [(Fy (s f,w) = Mol = [[(Fy (s, frw1) = Al

where \ € C.

Proof. V is clearly unitary and satisfies the properties needed in Lemma 6.1. Let
Ji : Hi = H1®H2 be the embedding defined by either j1(f) = (f,0) or j2(g) = (0, 9)
and define @Q; = V*j;. Then @Q; is the inclusion map from #; into H. Lemma C.3
immediately yields equation 6.1 and

L(Q)=U" |rm) -

This map acts as the identity on the set spanning B proving equation (6.2). To
prove (6.3) we note ¢ = UU*y = Uy and so

[(Fy(a, f,w) = l|= [[U(Fy(a, f,w) = NUU[|= [[(Fy (e, frw1) = A
This finishes the proof. ]
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Lemma 6.3. Let {f*}22, C H?",a € R*™ 5 € R and w be selfadjoint on H.
Assume (v, f*,w) fulfils Hypothesis 1, 8 and L(f*) = L(f') for all k € N. Assume
furthermore that

1 _1
C:= sup LI Me™2 £2I oo™ 2 FEIL AN} < o0
keEN,ge{2,...,2n}

Then for each A € R there is K < oo such that

lo(f3) (Fylas f5,w) + A &) 7|, [[d0(w) (Fy (e, f5,0) + A £4) "< K
forallk e Nyge{l,...,2n} and 1 < j <gq.
Proof. Define

ax [0
aeL(fH\{2} ¢

and e = J. Then by Lemma 4.5 we have for all ¢ € D(dI'(w))NA and ¢ € L(f*)\{2}
the inequalities

7':max{2n30+Hoz\|+|n|7 ( m _1>}+1

lage(£3) 11, |0 @) lI< 4l Fy (e, 5, )yl +Cllw |

where C' depends only on 7,7, and not on k. Now D(dI'(w)) NN is a core for
F,(a, f*,w) and so the inequality extends to all 1) € D(F,(«, f¥,w)). Using

1y (e, f*, ) (Fy (e, f5,w) £ i+ X)7H|< 24 A
and o ' <7 for all ¢ € L(f')\{2} we obtain the following uniform upper bounds
(6.4) o) (Fya, 5, w) £ i+ ) THl| < r(8+ 4IA+C)[¥]
(6.5) 14T (w) (Fy (e, £5,w) £+ )79 < (8 + 4A+O)[[¥]

for ¢ € L(f1)\{2}. Assume now ¢ € {1,...,2n} and 1 < j < ¢q. Using Lemma 2.1
we find for j < 2 and ¢ € D(F,(a, f*,w)) C D(dl'(w)) that

lo(f5)YYII< 15(2rY[|(dD(w) + 1)7/2¢]|< 6072 (dT (w) + 1|
Using (6.5) we find |o(f¥)7(F,(a, f*,w) £i+ X) 71| < 60r(8 + 4)A|+C 4 1) which

is a uniform upper bound. If j > 3 we may find p € £(f')\{2} such that f, = f,.
For ¢ € D(F,(a, f*,w)) C D(p(f,)P) we have

le(fg Yl () el+]-
Using equation (6.4) we find [|o(fF)7(F, (o, f¥,w) £i+X) "< r(8 + 4N+C) +1
which is a uniform upper bound. O

Next is a crucial result regarding convergence of operators.

Lemma 6.4. Assume H = L*(M, F, ) where (M, F, ) is o-finite, a € R?" and
n €R. Let w,wy,wa,... be a collection of multiplication operators on L*(M,F, )
and f, f*, f2,... be a collection of elements from H*™ such that (cv, f,w), (a, f*,wi)
satisfy Hypothesis 1, 3 and L(f) = L(f*) for all k. Assume that

. Wk . w
lim —=1= lim —

k—oo W k—o0 Wi
in L®(M,F,p) and that
1 1
(6.6) Jim ff =1 Jim w [ =wTE
. . +1 1
(6.7) Jim [ = f; Jim w =0t

in H for all j > 2. Furthermore we assume either n < 2 or there is a function
h: M — St C C such that hf and hfi, are almost surely R*"-valued for all k. Then
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Fy(a, f¥,wi) — Ak, converges to Fy(a, f,w) — A in norm resolvent sense whenever
{6}, CR converges to A.

Proof. We check convergence at the point ¢ in the resolvent set. For convenience
we will sometimes write w = weo or f = f*°. Since wy/w and w/wy are essentially
bounded functions we see («, f*,w) fulfils Hypothesis 1 and 3. Furthermore the
limits in equations (6.6) and (6.7) also exists if we write w instead of wy since the
wk /w,w/wy converges to 1 in L°°(M, F, u). We now prove

(68) (F’fl(avfk7wk) + /\n - i)_l - (Fﬂ(avfkvw) +A- i)_l

converges to 0 since this will reduce the problem to the case wy =w and Ay = A =0
for all k. For any ¢ € Fp(H) and k, k' € NU {oo} have

S0 cnlin) + b )2 0O  ) P )
=1

2 oo

< Do (k) + 4 wr (k)0 (R, k) Pdu® (R Ke).
oo =1 Y M!

Wk
Wi

so D(dl'(wy)) = D(dl'(w)) for all k € N. On this set ||(dl'(wk) — dl'(w))w]|? is now
estimated by

i /Mg(wk(kl) —w(kn) + -t wilke) = w(ke) 20O (ke ko) Pdp® (ks k)
(=1

2 oo

> /W(w<k1) + o w(ke)) WO (ks k) PAp® (R, k).
=1

<

W —w
w

Hence we find with Cy, = ||“£=|| that

||(F”I(a7fk7wk) + /\n - i)_l - (Fn(avfkvw) +A- i)_lH
< Ak = A+ClldL (W) (Fy (e, fryw) + A =) 7.

Now [|dT(w)(F, (e, fe,w) + A — )7 is uniformly bounded by Lemma 6.3 and Cj,
converges to 0. Thus the operator in equation (6.8) converges to 0 as desired, and
so we have reduced to the case wy, = w and A\ = A = 0 for all k.

In case n > 2, we let Hg be the real Hilbert space from Lemma E.1, corresponding
to the elements fF for k € NU {co} and i € {1,...,2n}. Let L?(X,X,Q) be a
Q-space corresponding to ‘Hg and V' is unitary map from Theorem E.2. Now define

2n
(6.9) I(f*) = arp(fF) + Y asp(fF),

=2

for all k € NU{co}. By Theorem E.2 we know that Ve~ *(“)V* is hypercontractive
and the interaction terms VI(f*)V* are a multiplication operators on the same Q-
space for all k. Convergence in norm resolvent sense now follows if n = 0 from
Theorem E.2 and [17, Theorem X.60]. For 1 # 0 we apply Lemma E.3.
Assume now n < 2 and define I(f*) as in equation (6.9) for all k € NU{oc} and
write F(f) := F,(a, f,w) and F(f*) := F,(«, f¥,w). Define
Cr = max {[lo(f — f5)e(fi)"(dl (W) + D)7, le(f = Ol (w) + 1)~}

0<b<1

D= sup  {l(fi) (F(f5) £0) 7ML I (w) + DFES*) £ 7},

0<a<3,keNU{oco}
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where D < oo follows from Lemma 6.3. On N we may calculate

I(f*) = I(f) = arp(ft = f) + a2(@(f)e(fs — f2) +o(f5 = f2)e(f2))
+as(o(f3)20(f5 — f2) + e()e(fs — f3)e(fs) + (5 — f2)e(fs)?)
+aap(f20(f5 = fa) + aup(F5) 0 (5 = fa)e(fa)
+aup(f)e(ff = f)e(fa)® + aap(ff — fa)e(fa).

Fix k € N. Let ¥, ¢ € Fp(H) with (F(f*) +4) 71, (F(f) —4) "' € N. We note
that this set is dense since A/ contains a core for F(f*) and F(f). We calculate

(&, (F(f5) =) = (F(f) =)~ )v)
= ((F(f") +0) " o, (I(F) = I(fONES) — )7 ).

This is a sum of 10 terms of the form
— o (p(f)(ES) + 1)y 0(ff — f)e(f) (F(f) — i)~ ")

—aj(o(f; = e ES*) + D)7 b, o(f) (F(f) — i)~ ).
with 0 < a <3 and 0 < b < 1. Hence we see that

o, (F(f*) =)™ = (F(f) =)~ H)|< 10max{laa ], [aal, ], [aa } D2 Cr |9 ¢]].
C}, converges to 0 by Lemma 2.1 which finishes the proof. |

Lemma 6.5. Let H = L*(M,F,u) where (M, F,u) is o-finite, o € R* n €
R, f € H* and w : M — R be measurable. Assume that («, f,w) satisfies Hypoth-
esis 1,3 and either n < 2 or Hypothesis 4. Let {A,}5° | be an increasing sequence
of sets covering M up to a zeroset and define f* = 14, f. Then (a, f¥,w) sat-
isfies Hypothesis 1, 8 and either n < 2 or Hypothesis 4 for all k. Furthermore
Fy(a, ¥, w) is uniformly bounded from below and converges to Fy (o, f,w) in norm
resolvent sense. In particular, if Ay € Tess(Fy(a, f¥,w)) and {\c}32, converges to
A, then X € oess(Fy(av, f,w)) and

lim 5,](oz,fk,w) =&,(a, f,w).
k—o0

Proof. (a, f*,w) satisfies Hypothesis 1 obviously. In case n < 2 Hypothesis 3 is
obtained directly and if n > 2 the phase function for f will also be a phase function
for f*. Since Hypothesis 4 implies Hypothesis 2 we have proven the first part.
Norm resolvent convergence follows directly from Lemma 6.4. Write

2n
Fy(a, fF,w) = nT(=1) + d0(w) + a1o(ff) + > ajp(fF).
j=2

Using 7T'(=1) > —[n| and dT'(w) + arp(f) > —af[w™2 ff[*> —af|w™2 fi]]* by
Lemma 2.1 we can find a uniform lower bound of the first three terms. The sum
is also uniformly bounded from below by Lemma 4.1 since £(f*) = L(f) for all
k. The functional calculus now implies the claims regarding convergence of the

spectra. O

7. THE HVZ THEOREM

In this section we prove Theorem 3.3 except from part 3. Fix n € R,a €
R2" f € H?", w selfadjoint on H and assume they fulfil Hypothesis 1,3 and either
n < 2 or Hypothesis 4. We introduce the notation Fi_yyrx = F(_yyr,(a, f,w),
Eiyr = ECryrn(a, fow), m = m(w) and Megs 1= Mess (w)-

Since spectral properties are conserved under unitary transformations we may
(using Lemmas A.10 and 2.2) assume that H = L?(M,F,u) where (M, F, u)
satisfies the assumptions in Theorems A.5 and A.8 and w is a multiplication operator
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on ‘H with w > 0 almost everywhere. In particular M is a locally compact metric
space. In case n > 2 and we assume Hypothesis 4 to hold, we may assume that
the phase function A is 1 by using the unitary transformation I'(h). Hence we may
assume the f; to be almost everywhere real valued when n > 2.

Lemma 7.1. {_1)a + A1+ -+ Ay | Ai € Oess (W)} C Tess(F1) for all ¢ € N.
Proof. Fix ¢ € N and A1,..., Ay € Oess(w). By Theorem A.5 we may for each i €
{1,...,q} pick a collection of sets {4} }72 such that 0 < p(A}) < oo, [w — Ai|< £
on A, AiNA)=0fori#jork#{and

> u(A}) < oo
k=1

for all i € {1,...,q}. Define for each and k € N the set
q

Bi=J U4 = B =33 u(A) <o,

i=1j=k i=1j=k

and note that p(By) | 0. Since the By, is a decreasing collection of sets we find

B =B
k=1
has measure 0. Define now for each ¢ € N the set
He = {f cH | 1B§f =f ufa.e} = 1357’[.
Assume first that f € H3? for some K and hence that f € H2" for all £ > K.
Define the following sets for ¢ > K
44 [e'S)
A= J HanDw) =H,NDw)  Ax = |J HrND(w)
k=K k=K
We now claim that A is a core for w. If ¢ € D(w) then ¢y = ¢1B,§ € Ay for all
k > K and using dominated convergence we find
lim [|¢ — gp[|*= 0= lim [lw(d — ¢x)[|”
k—oo k—o0

so A is a core for w. Defining

L7(-'4<>0):{Q}U U{gl®s“‘®sgk|gi€-’400}
k=1

T(A) = {0 U {91 @ - @4 9 | 95 € Ar}
k=1
we find that J (A ) spans a core for Fy; by Proposition 3.1. Note that any element
in g € Span(J(Ax)) is of the form

b c
g= aQ"’ZZ“i,jQ{ Rg v+ ®sg~?
i=1 j=1

for some a,b,c,a;; constants and qf € A. Note that each gf is in fact con-
tained in some Ay j) by definition so defining v = max; ;{£(¢, )} we see that
g € Span(J(Ay)) for any ¢ > u. Hence we have now proven the following state-
ments

e For any g € Span(J(Aw)) there is v € N with w > K such that g €
Span(J (Ay)) for any £ > u.
e Span(J(Ax)) is a core for Fiyj.
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For each p € N we pick a v, € Span(J(As)) such that [|(F(_1ya — E—1)a)vp||< %
and ||vp||= 1. Pick for each p € N an u(p) > K such that v, € Span(J(A;)) for
any ¢ > u(p) and u(p 4+ 1) > u(p) for all p € N. For each p € Nand i € {1,...,q}
we define

g = (AL y) 2 las

u(p)

and note ¢g” € D(w) since w is bounded by \; + ﬁ on Ai(p)‘ Note also that
g’ € 'H?f(p) since Ai(p) C By(p) 80 g7 and elements in Hu(p) have disjoint support.
Furthermore the collection {g? }peN,ie{l,...,q} is orthogonal since the elements have
disjoint support. Let U, be the unitary map in Lemma 6.2 corresponding to H,,)

which exists since f € H" C H2(,). Define

0o = ValU; (1 @ gf @5 -+~ @5 gh).

We are done in the case f € H7" for some K if we can prove that {¢,}2, is a
Weyl sequence for Iy corresponding to the value £ _1ys + A1 + -+ + ;. We check:

(

1 ¢p S D(Fl)
(2
(3
(4

)

) llépll=1 for all p € N.

) ¢p is orthogonal to ¢, for p # r.

) H(F(*l)q - (5(,1)17 + A+ )\q))gﬁp” converges to 0.

(1): Lemma 6.2 shows ¢, € N ND(dT'(w)) C D(F}) for all p € N.
(2): For each fixed p € N we have that the ¢g¥ are orthogonal. Let S, be the
permutations of {1,...,¢}. Then we find

1
2
g ®s -+ @: g7 =5 Y _(F © @5y @ ghy)
0ES,

1

= Z; (9,900 (g8, ab )
geSy

1 1

(3): Define for all p € N the set

Cp:{gf(@s"'@sgS}U U{h1®s®sh/®sgf®s®sgf}’ ‘ hl EHu(p)ﬂD(w)}
(=1

and let » < p. Then ¢, € Span(C;) and ¢, € Span(C},) by Lemma 6.2, so we just
need to see that every element in C, and C, are orthogonal. Let ¥y € C), and
1y € C,. Note every tensor in C), has a factor g7 and that this factor is orthogonal
to gi for all 4 € {1,...,q} by construction. Furthermore for any h € H,() we
see that h is supported in B;’(T) - Bg(p) - (Ai(p))” and hence ¢g'h = 0, so ¢ is
orthogonal to any element in H, (). This implies 1), contains a factor orthogonal
to all factors in 5. This finishes the proof of (3).
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(4): Using Lemma 6.2 we find

|(F1 = E—1ya — A — - = Xg) byl
=V IUp(FL = ECnya + M+ + X)Upvy @ gF @5 - @5 g8
< VAN(F (e, fwr) — EC1ya)vp ® gF @+ @4 gL ||

q
VY vy @ gY@ @ (wagl = Nigh) @ - @, g |
i=1
q
< (F—1ye = Ena)vpll /@ D ll(w = X)d? |
=1

1 1
< -+ ! —
S VL)

which converges to 0. This finishes the case where f € H2" for some K. To prove
the general case let f* = Ipe f and note that &1y, (a, Py + M+ + A €
Oess(Fy (v, f¥,w)) for all k. Applying Lemma 6.5 finishes the proof. |

Lemma 7.2. Define m = min{mess + €-1,&1 + Mess + m}. Then (—oo,m) N
Uess(Fl) = @

Proof. First we note that if m = 0 then mes = 0 by injectivity of w and so
the statement is trivial since (—oo,m) does not contain any spectral points of Fj.
Hence we may assume m > 0, so w > m > 0 almost everywhere. If mess = 0o the
conclusion will follow from Proposition 3.1. Hence we may assume mgss < 00.

Define B = Uj<2,{f; # 0} and assume that the lemma has been proven under
the extra assumption that B is bounded and there is an R > 0 such that R~ <
w < R on B. To prove the general case case we fix o € M and define

A= (Bn{k " <w < k}N By(xg)) U B®

where By(z) is the ball centred at zy of radius k. Note that the A are increasing
and cover M up to a zeroset. Let f*¥ = 1,4, f and note that Lemma 6.5 implies
(o, f*, w) satisfies Hypothesis 1,3 and either n < 2 or Hypothesis 4. Furthermore
Ujggn{f;-c # 0} is now bounded and contained in {k~! < w < k}. Defining Fy1 ; =
Fiy(a, fEw) and Exy = Exnla, f*,w) we therefore have

(71) (_00777”9) N Jess(Fl,k) - @7

where my = min{mess + E_1%,E1k + Mess + m}. Note that my converges to
m by Lemma 6.5. Equation (7.1) implies that h(Fj ;) is compact for all h €
C®((—o0,my)). For any h € C((—oo,m)) we have h € C°((—o0,my)) for k
large enough and Lemma 6.5 implies
k—o0

in norm. Therefore h(F}) is compact finishing the proof.

What remains is the special case where B is bounded and there is an R > 0 such
that R~! < w < R on B. Pick now a sequence of maps {wy}32, as in Lemma A.1.
Then 1pwy is a simple function

Ik
lek = E ak’jlgk,
=1 ’
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where 2R > @y, ; > (2R)7}, the BE ..., E(’;k are disjoint and

N

Rk
B=|] B
1

J

From Lemma A.1 one obtains w/wy and wy/w converges 1 in L°°(M, F, ) and
defining the masses my, 1= m(wy) and Mess k1= Mess(Wr) We have my, converges to
m and Megs p converges to Mmegs. We may thus assume my > 0 for all k. Define
A = B¢ and use Theorem A.8 to pick disjoint subdivisions

Ck 9k
A=Hyu| A} and B=J.U|] B}
=1 j=1
which fulfils the criteria in Theorem A.8 and let Py be the projection

9k 1

Cr 1
P =3 /| @y + 3 s [ ALy

Now 0 < ,u(B]’-“) < 00 by Theorem A.8 so the elements 1z are nonzero, orthogonal
7
elements in H. We define

‘Hj, = Span ({13;; |je {1,,..,qk}}) .

Furthermore, Theorem A.8 also gives that for all k € N, j < g there is a 4’ such
that B]’.C - B;-“,. Hence wy, is constant on B}“. For each 8 € R we thus find

9k
wf =wl1, +w€1(]k +Za§k13f’
j=1

with 2R > a;; > (2R)™'. Hence w,f is an operator defined on all of H, and it acts
on 1 BE like multiplication with af x- In particular the projection @ onto Hj will

map H into D(wf) for all 8 € R. Note that {/L(B;?)*%lB;g |j€{l,...,qx}} is an
orthonormal basis for H; and hence @y is given by

dk 1
f = _— duplgr.
Orf ;M(B}C) /B;' f(@)dpl g

Hence we find for f € D(wf) that
ar P

dk 1 )
QkWSf-‘;;A“B?)/;fwg@ﬂfﬁwdulsy-}:ldgi)jgffﬁﬂdulag

j=1 J

k
1
_ B _ B

SO wf is reduced by H. Note that w*%fi is supported in B. Hence Py (w*%fi) =
rw™2f;) € Hp C D(w?) so we may define
Quw™2 fi) € My C D(w}) y defi

(7.2) = wEPwHf) € My C D)) VB ER.

1 1
P, converges strongly to 1 by Theorem A.8 which implies w, * fF =P (w2 f)

3
converges to w2 fi for all 4 € {1,2,...,2n}. Since the f; and fF are 0 almost
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everywhere outside B and (2R)™! < wy,w < 2R on B we find that

15— £l < (/B\ff—w,?w*%fﬁdu) n (/B|w,§w*%ﬁ—fi|2du)

1

< VERIPG ) o PR [ - wbifPan)

which converges to 0 by dominated convergence since wy converges to w by Lemma
A.1. Hence fF converges to f; for all i € {1,2,...,2n}. For i > 2 we calculate

Hwkfhwf||<(/3\w$ WA du) (/| b ,%fmdu)
<2R||fF — i+ (/W — W) du)
B

which converges to 0. Hence w/ fk converges to w? fiforallie{23,...,2n}.

Noting that £(f*) = L(f) for all k sufficiently large and the fF are real ifn>2
we find that (o, f*,wy) satisfies Hypothesis 1,3 and either n < 2 or Hypothesis 4.
Hence we may now define

Fyiyg = Fay(a, f5,wp).

Theorem 6.4 now applies so Fly; j converges to Fly; in norm resolvent sense. Let
Ex1,k = inf(o(F41,1)) and define

My, = min{Mess k + E—1,k, E—1,k + Mess,k + Mk}

Applying the bounds in Lemmas 4.1 and 2.1 along with the bound nI'(—1) > —|n|
we see

-1 k)2
Fiip > —|nl=llw, > fII°+C,

which is uniformly bounded below in k, since Hw,:% fF|l converges. This implies
that €115 converges to £+1 and so my, converges to m.

Assume now we have proven that h(Fy ;) is compact for any h € C°((—o0, my)).
Then for any h € C°((—o0,m)) we would have h € C°((—o0,my)) for k large
enough. This together with norm resolvent converges gives h(F}) is compact, which
would finish the proof.

Let h € C°((—o0,my)). Now f* € H2" by construction and wy, is reduced by
Hy. Defining g1 = wy |3, and g2 = wy |H? we may apply Lemma 6.1 to obtain a
unitary map

Uy : Fo(H) = Fo(Hi) © @ (Fo(Hi) @ (Hj)®+7)
j=1
such that

UnFi14Uf = Fig(o, f5.01) & P (FiH)M,(a, Fg)el+1le dr<f)(g2)) :
j=1

Thus we find Exy (v, £, g1) > Ex15 and

Uph(FLp)Uf = h(F,(a, ¥, 91)) @@h( _1yin(a, 5, q1)®1+1®df<3)(92))

Now h(F,(a, f*, 1)) is compact by Proposition 3.1 since Hy, has finite dimension.
For j > 11let C; = F(,l)]n(oz,fk,gl) ®1+1®dl'¥(gy). Using Theorem B.2,
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Proposition 3.1 and Lemma B.4 we find for j > 1
inf(0ess(C5)) = Eayan(as f£.91) + (= 1) inf(0(g2)) + inf(ess(92))
>E ikt (G — D)mp + Mess x> Ty
inf(0(Cy)) > E1yay(a, £, 91) + jinf(o(g2)) > E 1)k + .
Thus h(C}) is compact for all j and since my > 0 we find h(C;) = 0 for j large

enough. Hence Uph(F 1)U is a direct sum of compact operators where only finitely
many are nonzero. This shows Uph(Fy ;)U}: is compact as desired. a

Combining the two previous lemmas with Proposition 3.2 proves the first part of
Theorem 3.3. Statements (1) and (2) will follow from the corollaries below.

Corollary 7.3. Assume m = Mess, that [m,3m] C dess(w) and if m =0 then 0 is
not isolated in Oess(w). Then oess(F1) = [E-1 + m, 00).

Proof. If m = mess then & < £_1 + m by Lemma 7.1. Hence the minimum in
Lemma 7.2 is £_1 +Mess = E_1+m. Now fix x € [E_1 +m,00). If m # 0 the result
is direct from Lemma 7.1. If m = 0 then for any £ > 0 we may find A € gess(w)
with A <e. We may then pick ¢ € NU {0} such that

|lx — 5(_1)2q+1 —(2¢+ DA< e
Now E(_1)20+1 + (2¢ + 1)X € Oess(F1) 50 & € Tess(F1) = Tess(F1). O
Corollary 7.4. Assume m = Mess, that [m,2m] C oess(w) and if m = 0 then 0 is
not isolated in Tess(w). Then oess(Hy(a, f,w)) = [Mess + Ey(a, f,w),00).
Proof. Combining Proposition 3.2 and Lemma 7.1 we see
{Ep(a, fw) + A1+ -+ Ag | A € Oess (W)} C 0ess (Hy (v, fw))
for all ¢ € N. The proof is now the same as for Corollary 7.3. |

8. UNIQUENESS

In this chapter we fix n € R, € R?™, f € H?" and w be selfadjoint on H such
that the Hypothesis 1,2 and 3 are satisfied. Let F}, := Fy (o, f,w), &, := & (o, f,w),
H, = Hp(a, f,w), Mess = Mess(w), m = m(w) and E, := E,(«, f,w). We let Hg
be the real Hilbert space from Lemma E.1 and L2(Q,G,P) be the corresponding
Q-space.

Lemma 8.1. Define the unitary matric
1 _
=500
Let V' be the Q-space isomorphism and define U = A® V. This defines a unitary
map from C? @ Fp(H) to
C?* @ L*(Q,G,P) = L*({+1} x @, B{+1}) ® G, 7 ® P) := L*(X, X, ),
where T is the counting measure. Here we use the tensor product

((v1,v-1) ® f)(a,z) = 81 401 f(T) + 01 001 f(2).

where &; ; is the Kronecker delta. For v € Hr we have

(8.1) Uo, @ p(v)U* = ®(v)
(8.2) Uo,®1U=-0,®1
(8.3) Ul® dl(w)U* = 1@ Vdl(w)V*

where ®(v) is a multiplication operator. Furthermore UH,U* generates a positivity
improving semigroup for n < 0.
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Proof. We begin by noting that (e; ® f)(a,z) = 0;of(z) and Vo(v)V* = @(v) is
a multiplication operator. We now prove equations (8.1),(8.2) and (8.3). Equation
(8.3) is trivial. To prove the other two one calculates

Ac,A* =0, and Ao, A" = —0,

and so Uo, @ o(v)U = —0, @ g(v) and Uo, ® ¢(v)U = 0, ® 1. Since —0, @ @(v)
obviously acts like multiplication by the map (®(v))(a,z) = —a(p(v))(x) we are
done proving equations (8.1) and (8.2).

From Lemma B.3 we find that every element v € L?(X, X, v) is of the form

P=e @Y1 +e_1 @YP_1.

Hence v is (strictly) positive if and only if 1 and ¢_, are (strictly) positive. Using
Theorem E.2 we therefore find that 1 ® exp(—tVdI'(w)V*) is positivity preserving
for all ¢ > 0. Furthermore, the map o, ® 1 is positivity preserving since it maps
e1® Y +e_1 ®Y_1 into e_; ® Y1 + €1 ®1P_1 and so exp(tl ® o,) is positivity
preserving for all ¢ > 0. It follows that for all n <0 and ¢ > 0

exp(—tUH,(0,0,w)U™) = exp(—tnl ® 0,)(1 @ exp(—tVdl'(w)V™))

is positivity preserving. We now calculate

1 1
—(e1®1l+e®l)=—.
paetreol =1

Fix n < 0. Since e; ® 2 spans the non degenerate ground state eigenspace of
no, ®1+1® dl'(w) = H,(0,0,w) by Theorem B.2, the above calculation shows
that % does the same for —no, ® 1 + 1 @ Vdl'(w)V* = UH,(0,0,w)U*. So
UH,(0,0,w)U* generates a positivity preserving semi group and the ground state
is spanned by a strictly positive vector. This implies that the semi group generated
by UH,(0,0,w)U* is ergodic by [18, Theorem XIII.43|. Note that

(8.4) Uler ® Q) = Aey @ VQ =

2n

UH,U* = UH,(0,0,w)U* + Y a;®(f;)7 := UH,(0,0,w)U* + B
j=1
and define
2n
Be =Y a;(f;) 1yjacs) <k}
j=1

which is a bounded multiplication operator. Assume now that we have proven the
following statements

(1) If u,v > 0 and (u, exp(—tBy)v) = 0 then (u,v) =0

(2) UH,(0,0,w)U* + By, UH,U* — By, are uniformly bounded below and con-

verge in strong resolvent sense to UH,U* and UH,(0,0,w)U* respectively.

Then we may appeal to the proof of [6, Theorem 3| to see that UH,(«, f,w)U*
generates an ergodic semigroup, which by [18, Theorem XIII1.44| will be positivity
improving.

The first statement is trivial since By, is a multiplication operator. To prove the
second statement, note that 7 (D(w)) spans a core for H,(0,0,w) and H,, by Propo-
sition 3.1. Thus for any element ¢ € Span(J(D(w))) we have Ut € D(®(f;)7) for
all j so by dominated convergence we find

lim ByUt = BU.
k—o0
Since UJ (D(w)) spans a core for UH,(0,0,w)U* and UH,U* we find UJ(D(w))

spans a core for UH,(0,0,w)U* + By, and UH,U* — By, for all k. Using stan-
dard theorems about strong resolvent convergence (e.g. [16, Theorem VIII.25])
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we find UH,,(0,0,w)U* + By and UH,U* — By, converges to UH,U* respectively
UH,(0,0,w)U* in strong resolvent sense.
What remains is the lower bound. We calculate

2n
+ > (f) e >a-
j=2
UH,(0,0,w)U* 4 B, = —no; @ 1+ 1@ VAL (w)V* + a1®(f1) 1105 <k}
2n
+ D (Y Lasi<n-
j=2
In both expressions, the first term on the right hand side is bounded below by
—|n|, and the sum is bounded below uniformly in & by Lemma 4.1. Now a3 ®(f1)
is infinitesimally 1 ® VdI'(w)V* bounded by Lemmas 2.1 and B.3. Hence there are
0 <a<1,b>1such that for all ) € D(1 ® VdI'(w)V*) we have

lea®@(f1)¢ < al|(1 @ VAL (w)VF)p[+bl[¢]-

Now loa; ®(f1) will satisfy the same inequality for any C' € X’ and so [23, Theorem
9.1] provides a lower bound of 1ca; ®(f1) + 1 ® VdI'(w)V* independent of C. O

Lemma 8.2. Ifn # 0 and E, is an eigenvalue for H, then E; is non degenerate.
If 4 is any ground state for H, then Ut = e_ggn(y) @ 1 where 3 is an eigenvalue
for the fiber F_ | corresponding to the energy E,. Also E; is not an eigenvalue for
Fjyy-

Proof. If n < 0 non degeneracy of the ground state follows from Lemma 8.1 along
with [18, Theorem XIIL.43]. If a ground state exist then it will have nonzero inner
product with e; ® 2, since this vector is mapped the positive element % under the
map U from Lemma 8.1 (see equation (8.4)). If n > 0 then o, ®1 transforms H,, into
H_,, showing that non degeneracy holds in this case as well, but now the nonzero
inner product will be with the vector o, ® 1(e3 ® ) = e_1 ® Q. In conclusion if a
ground state for H, exists then it is non generate and 0 # (1, e_gign(y) ® ).

Non degeneracy of the ground state for H, implies that E, must be a non
degenerate eigenvalue for F_, or Fj,, but never both. It remains to see that this
always will be F_|,|. Let U be the unitary map from Proposition 3.2, and let ¢ be
a ground state for H,. Then Uy = e_1 @ _1 + €1 @ 1 = (¥1,%_1) is a ground
state for F_, @ F;, corresponding to the eigenvalue £,. By non degeneracy of the
ground state for H,, we must have either ¢»_; = 0 or ¢; = 0. Now

0 7é <1/},67sign(n) ® Q> = <(1/’17 1/}2)7 U*efsign(n) ® Q>
= <(1/}1, 1102)’ € _sign(n) oY Q) = (UJ—Sign(n)a Q)

This implies ¥_gign(,) # 0. Hence 1 _gign(r) is an eigenvector for F_ ), corresponding
to the eigenvalue . a

Lemma 8.3. If £_; is an eigenvalue for F_, then E_p, is non degenerate and
every eigenvector will have nonzero inner product with €.

Proof. We start with the case n = 0. Let V be the Q-space isomorphism from
Theorem E.2. From Thorem E.2 we know that VdI'(w)V* generates a positivity
improving semigroup and V{2 = 1. We now prove that the semigroup of VFyV* is
positivity improving. Note
2n
VEV* =VE(0,0,w)V* + > a;@(v;) := VHy(0,0,w)V* + A,

Jj=1
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and define
2n
_ N {CTAYATS
A =030 (15w, 1<k
j=1

which is now a bounded multiplication operator. With the exact same proof as in
Lemma 8.1 we check

(1) If u,v > 0 and (u, exp(—tAg)v) = 0 then (u,v) = 0.
(2) VFy(0,0,w)V* 4+ A, VFV* — Ay are uniformly bounded below and con-
verge in strong resolvent sense to respectively VEFoV*, V Fy(0,0,w)V*.
An appeal to the proof of [6, Theorem 3] along with [16, Theorem XIII.43] finishes

the proof when 7 = 0. For general n # 0 one may combine Theorem E.2 part 1
with [6, Theorem 2] to obtain the conclusion in this case. O

We can now prove some spectral properties of the fiber operators. In the remaining
part of this section we will also assume Hypothesis 4 is satisfied if n > 2, so we may
use Theorem 3.3 except from part (3), which is proven in the next lemma

Lemma 8.4. In general we have E_j,| = E and E_j; < &y Furthermore E_y, <
&y if and only if m >0 and n # 0. In particular if n # 0 and m = 0 then F, will
have no ground state.

Proof. If m = 0 then mess = 0 by injectivity of w. Using Theorem 3.3 we obtain
Expn| < Expy) since Exyy € 0(Fypy)). Hence equality follows in this case, and it is
trivial if n = 0. The statement regarding no ground state of Fj,| now follows from
E_in| = &y and Lemma 8.2.

Assume that m > 0 and 7 # 0. Now m > 0 implies that F, is an eigenvalue
for H, by Theorem 3.3, and so by Lemma 8.2 we have £, = £_, is an eigenvalue
for F_j,|. Now since £_j,| = E;, < &), we just have to prove that £_),| = &, is
impossible. Assume E_,| = &};;. Then Theorem 3.3 implies that

inf(gcss(Fln\)) = g—\nl + Mess > g|77\7

and so £_|, = &, = E, would be an eigenvalue for F),|, but this gives a contra-
diction with Lemma 8.2. O

Regarding exited states we now deduce the following

Lemma 8.5. If n # 0 and &, is an eigenvalue for Fj, then it is an eigenvalue
for Hy, contained in (E, E 4 mess]. This is the case if 2|n|< Mess.

Proof. Assume &, is an eigenvalue for F,;. Then mess > m > 0 by Lemma 8.4
and we calculate using Theorem 3.3 and Lemma 8.4

By =E ) < Epy = Ejy) + Mess = B + Mess.

Assume now 0 < 2|n|< mess. By Theorem 3.3 it is enough to prove the inequality
Epnl < E_jy) + Mess. For any € > 0 we may pick normalised ¢ € D(Fj,;|) = D(F_;)
such that

e+ &y = E-py) < W,y — Fopy0) = 2nl(¥, T(=1)¢) < 2[n).

This proves the desired inequality. O

Theorem 3.4 is now a combination of all lemmas in this chapter.
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9. THE MASSLESS CASE

In this chapter we prove the last half of Theorem 3.5. A proof of the first half
can be found in Appendix D. First we shall need the following lemma.

Lemma 9.1. Assume H = L*(M,F,u) with (M, F, ) o-finite. Let n < 0,a €
R, f € H2", w be a selfadjoint multiplication operator on H and assume (a, f,w)
satisﬁes Hypothesis 1,2,3 and either n < 2 or Hypothesis 4. Let A =J;<o,{fi # 0},
Hi = L3(X, F, 1A,u) Ho = L2(X, F,1acp), w; be multiplication with w on the space
H; and define f; € Hy by f; = fi 1ap-almost everywhere. Then (a,f,wl) satisfies
Hypothesis 1,2,3 and either n < 2 or Hypothesis 4. We also have
1) &, fiw) = &,(mf, wi) and & (a, f,w) is an eigenvalue for F(a, f,w)
if and only if £,(c, f,w) is an eigenvalue for Fy(a, f,wi). In particular if
w > g > 0 almost everywhere on A then &,(w, f,w) is an eigenvalue for
Fn(a,f,wl) and thus for Fy(a, f,w).
(2) If ¥ = (¥®) is a ground state for Fy(a, f,w1), then ¥ = (14x9p®) is a
ground state for Fy(a, f,w).
Proof. Define P; : H — H; by Pi(f) = f lap-almost everywhere and Po(f) = f
1 4cp-almost everywhere. Let V : H — Hq & Ha be V(f) = (Pi(f), P2(f)). Then
we see V is unitary with V*(f,g9) = 14f + 1acg p-almost everywhere. Clearly we
have V f; = (ﬁ, 0) along with VwV™* = (w;,wsz). The properties in Hypothesis 1,2
and 3 are easily checked. If n > 2 one uses the same phase function for fas for f
to verify Hypothesis 4. Using Lemma 6.1 we find a unitary map U from F,(H) to

Fo(H1) @ é (fb(?'h) ®7—l§"j)

j=1
such that
UF,(a, f,w)U" = Fy(a, f,w) @69( 1),naf,w1)®1+1®df‘(3)(w2))
Jj=1

Since n < 0, Theorem 3.3 implies &,(«, f,wl) <& y(a, J?,wl) with equality if and
only if n = 0 or inf oess(wy) = 0. Hence we find using Theorem B.2 and Lemma
B.4 that

Enle, frw) = min{&y (e, f,w1), nf (E (e frwn) + jinf(o(wn))} = &, fwn)

Assume now that &,(a, f,w) is an eigenvalue for F,(a, f,w;). Then by the decom-
position we find &,(a, f,w) is an eigenvalue for F,(c, f,w). Assume now &, (o, f,w)

is an eigenvalue for F,(a, f,w), and that it is not an eigenvalue for Fy (o, f,w1).
Then there is an j € N such that
Enla, f,w) = inf(0(F_1yiy(e, fw1) @1+ 1@ dIY (ws)))

= E_1yin(a, f?wl) + jinf(o(we)).
This can only hold if inf(o(w2)) = 0 and therefore
inf (0 (F(_1yy(, fw1) ® 1+ 1@ d0Y (W) = E1yiy(a, frw1) +0.
Injectivity of wy and Lemma B.4 implies that 0 is no eigenvalue for dI'¥)(wy). By
Theorem B.2 we find that £_1);,(a, f,w1)+0 is not an eigenvalue for the operator
Fpinla, fw) @1 +1® dl'9) (wy) which is a contradiction. Hence &,(a, f,w)

is an eigenvalue for Fj (o, f,w1). The statement regarding the dimension of the
eigenspaces is contained in Theorem 3.4. The last part of statement (1) follows
from m(wq) > ¢ > 0 and Theorem 3.3.
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To prove statement (2) we let j; : H; — H1 @ Hz be the embedding j(f) =
(f,0) and define Q@ = V*j;. Now U*yp = T'(Q)y by Lemma C.3 and U*t is
the desired eigenvector for F,(«, f,w). Noting Q(f) = V*j1(f) = 1af we see
I'(Q)y = (149™) as desired. O

From now on we assume H = L?(R”, B(R¥), A®¥), w is a multiplication operator,
n €R, o € R?>", n <2 and Hypothesis 1,2,3 and 5 are satisfied.

Define B, = {w > ¢7'} and f* = 1p,f. Then Fyy, := Fiw(a,fz,w) con-
verges in norm resolvent sense to Fliy := Iy (a, f,w) by Lemma 6.5 and & =
E,|m(a7f£,w) converges to £ := &_j,(a, f,w). Furthermore F_;, has a ground
state ¢, for all £ by Lemma 9.1. Taking a subsequence we may assume that ),
converges weakly to 1. The last half of Theorem 3.5 will be proven by [2, Lemma
4.9] if we can prove that ||¢||= 1. First a few observations which we will summarise
in Lemma 9.2a below. For a strict definition of the pointwise annihilation operator
see the discussion after Lemma D.9 in Appendix D.

Lemma 9.2. The following holds
(1) Let Ay be the point wise annihilation operator of order 1. We have

(A1te) (k) = Z [ (B)(Fre — &+ w(k) ™ jogeo(f) e
j=1

(2) There is a constant C' independent of £ and j such that Hajtp(ff)j_lngg C

(3) ¢ € D(N) and (g, N1bg) is uniformly bounded in £. In particular we
find A1y € L2(RY,B(RY),\®", Fy(H)) for all £ € N and the sequence
{A1e}32, is bounded in this space.

(4) We have

2n

(9.1) Artpe — ij(k)(Fl =& +w(k) aye(fi) e

converges to 0 in L?(RY, B(RY), A\, Fy(H)).
Proof. Statement (1) follows directly from Theorem D.16 in Appendix D. To prove

statement (2), we note that ja,;@(ff)?~'(F_1, — i)' is uniformly bounded for
¢ e Nand j < 2n by Lemma 6.3. Let C' be the bounding constant. Then

e o(££)7 el |< Cl(Ee — i)bel|.

Now & is convergent and ||1)¢]|= 1 for all ¢ and so the conclusion follows.
To prove statement (3) we note that 1), € D(N) by the first half of Theorem 3.5.
Using (1) and & < &, (a, f¢, w) by Theorem 3.3 we estimate

NITORY 2| ()P
92) sl o | 32T | <2003 o

Integrating and appealing to Theorem D.15 yields the result.

To prove statement (4), note that (Fi, — & + w(k))™ — (F1 — € + w(k))™?
converges to 0 in norm by Lemma 6.4. Since jajga(ff)j_lwg is uniformly bounded,
we see that the function in equation (9.1) converges to 0 pointwise. Using estimates
as in equation (9.2), the conclusion follows by dominated convergence. ]

We need one last lemma before we can put it all together. One should note that
a similar statement also appears in the paper [7], but the proof presented here is
faster and much more general.
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Lemma 9.3. Let G € C§°(RY) such that G(0) = 1 and 0 < G < 1. Define
Gr = G(x/R) and let A be either v = —iVy, or k. For anye > 0 there is ¢/, R’ >0
such that ||(1 —T(Gr(A)))Yel|< € for R > R',£ > ¢ and any choice of A.

Proof. We start by noting
(1 -T(Gr(A)))* =1 -T(Gr(A)) + (Gr(A))(T(Gr(A)) —1).
On j particle vectors we see that I'(Gr(A))(I'(Gr(A)) — 1) acts like a negative
multiplication operator in position/momentum space depending on the choice of
A. Hence
(1 - D(Gr(4))? < 1-T(Gr(A).
On j particle vectors in position/momentum space (depending on A) we find that
1 —T'(Gr(A)) acts like multiplication by
J J
1= GG (k) - Gky) = S (1= Gka)Glhigr) - Glky) < 3 (1= G(ka)).
i=1 i=1

Hence 1 —T'(Gr(A)) < dI'(1 — Gr(A)) so it is enough to prove that

(Ye, dT(1 — GR(A))te)

goes to 0 for R, ¢ tending to co. First we note that ¢, € D(N) C D(dI'(1-Ggr(A)))
by Lemma 9.2, so the above quantity is well defined. Using Theorem D.15 we see
that

(Yo, dT(1 — GR(A))be) = (Arbe, (1 — Gr(A)) ® 1) Ar¢dy).

Define the maps
2n
() =3 [R)FL(F) = € +wlk) oy (£~ .
j=1

By Lemma 9.2 we know Aj1), — g¢ converges to 0 in L2(RY, B(R), \®¥, F,(H)) and
the A1ty are uniformly bounded in L2(R”, B(R"), A\*”, F,(H)). In particular the g
are uniformly bounded in L?(R”, B(RY), A®¥, F;,(H)), and since ||(1—-Gr(4))®1|=
1 for all R, we find an ¢’ such that

(A1, (1 — Gr(A)) ® 1A1¢y) <
for all R > 0, > ¢'. Write
qi(t) = f;(k)(F1 — € + w(k) ™!
and note that ¢; € L?*(R”,B(R"),\*", B(F,(#))). Hence there is a sequence
{G@p}py of elements in L?(R”, B(R”), \*", B(F,(H))) such that g;, converges to
g in L2(R”, B(R¥), A\®", B(Fy(H))) and each gj,, is a linear combination of func-

tions of the form g(k)B where B € B(Fy(H)) and g € H. Since jajap(fjl.)jflw is
uniformly bounded in ¢, we see that

+{ge, (1 = Gr(A4)) ® 1)qr)

Wl m

2n
qep = Z ‘Yj,pjaj¢(ff)]71¢£
j=1

converges to g € L2(RY, B(RY), A®¥, F,(#H)) uniformly in ¢, for p tending to co. In
particular the g, are uniformly bounded in L#(RY, B(R"), \®¥, F,(H)) since this
holds for the g;. Picking p large enough we may thus estimate as above

(Argoe (1~ Gr(4) @ 1LAWe) < 2 + gy, (1~ GrlA)) © 1)

for all ¢ > ¢/, R > 0. Now each of the terms in g, is of the form g ® v, where
vp is uniformly bounded in ¢ and g is independent of /. Furthermore the number
of terms in g, is also independent of ¢ (it depends only on p by construction).
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Since 1 — Gr(A) converges to 1 strongly by the functional calculus, we find that
((1 —GRr(A)) ® 1)qep goes to 0 for R tending to oo, uniformly in ¢. Thus picking
R larger than some R’ we find for ¢ > ¢’ that

(A1, (1 = Gr(A)) ® 1) A1¢y) < ¢,

since the q¢, are uniformly bounded in L?(R”, B(R”), \®”, F;,(H)). O
The following lemma finishes the proof of Theorem 3.5.
Lemma 9.4. ||¢|=1.

Proof. Let e > 0. Pick R', ¢’ so large that ||(1-T'(Gr(A)))el|< § when A is either
xz=—iViorkand R> R £ > (. By Lemma 9.2, (1), N¢g) is uniformly bounded
by a constant C, thus we find

VC
\[Hl(poo)( )N W||< \[

Hence we may pick p so large that ||(1 — 1jg 5 (V))%¢||< § uniformly in £. We now
find
L= [l¢
= It = (GR(k)))weHHIF(GR( )
+ ID(Gr(F)T(GR(—i ))(1 —Lo)

(1 = Li0,5) (N)Yell= 11 (p,00) (N ) eI <

(1 =T(Gr(=iV)))ll
J(N)Ye|l+ [T (G r(E)T(GR(=iV)) Lo 5 (N) el
< e+ |[D(Gr(K)T(GR(=iV)) 10,4 (V).
Since I'(Gr (k)T (Gr(— zV))l{[Op]}(

1—e < [[D(Gr(k)L(Gr(=iV)

is compact, we may take £ to oo and find

Ljo,p1y (NP [[90]]< lim inf[gpe|= 1.

This finishes the proof. (]

\/\_/

APPENDIX A. MEASURE THEORY.

In this section we introduce the necessary measure theoretic tools to prove the
HVZ theorem. We fix a o-finite measurable space (M, F,pu). If f: M — R is
a measurable map and M} is the corresponding multiplication operator then it is
easy to see

o(Mp)={reR | u((A—e,A+¢€)) >0 for all € > 0} := essran(f)
Oess(My) = {N € R | Dim(1{s—ccwertey L2 (M, F, 1)) = oo for all € > 0}.
Here essran(f) is called the essential range of f under p.

Lemma A.1. Let f : M — R be measurable such that f > 0 almost everywhere.
Let B € F and assume there is an R > 0 such that

B c f~Y[R™Y,R]).

Then there is a sequence of real valued measurable functions { f,}52, such that f,
converges uniformly to f, f. takes only finitely many values in B, (2R)™! < f, <
2R on B, f,./f and f/fn converges to 1 in L>°(M,F,u) and

lim inf(o(My,)) = inf(o(My)).
n— o0
Furthermore, 0ess(My,) # 0 if 0ess(My) # 0 and in this case
lim inf(0ess(My,)) = inf(oess(My)).
n— o0
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Proof. Define

— k
B
Note the above sum is pointwise finite, and so defines a measurable, nonnegative
function. In fact C = {f <0} = {f, <0} C B¢ for all n and
1

Al — fa(2)|< —,
(A.1) sup [£(@) = ful@)IS gom
S0 ﬁ < fn < 2R on B for all n. Hence uniform convergence is implied and we may
calculate

f f - fn

2 _1l=1 <2R = .
fn B fn - Ron on—1
Hence f/fn, —1 € L®(M,F,u) and converges to 0 in this topology. A similar
argument works for f,/f — 1.

Equation (A.1) shows D(My) = D(Mjy, ) for all n and on this set we have the
inequality ||(My — My, )¢||< R™127"||¢|| which shows My, converges to My in
norm resolvent sense (see [16, Theorem VIII.25]). Since the operators My, are
uniformly bounded below by 0, we conclude

Tim_inf(o(My,)) = inf(o(My)).

1 1

Write A = inf(0ess(My)). For every g € N we have

Li-r—gra+a1) = LBens-1(0=g-t g T L2 (=g-2 At
and the left hand side defines an infinite dimensional projection. Then one of the

two projections on right hand side must have infinite dimension for infinitely many
q € N. If it is the first projection, we find

Ltmat avgry) = 1Bens=1(0ma a0 F 1o 0mgt ag-1)n
has infinite dimension for for infinitely many ¢ and so A € gess(My, ). Defining A, =
A we even found a sequence of elements converging to A such that A\, € oess(My, ).
Assume now 1y-1(x_g—1,r44-1)np has infinite dimensional range for infinitely
many ¢q. Fix n € N and pick k such that

e [k(R2Y)7Y (k+1)(R2™M)™Y),

and note that either k(R2")~! or (k—1)(R2")~! belongs to the essential spectrum
of My, , since it is an eigenvalue of infinite dimension. In particular oess(Mj,, )
contains a point A, such that |A — \,|< 2(R2")7L.

Hence we have now proven that for each n € N there is a A, € 0ess(My,) such
that A, converges to A. In particular p,, = inf(oess(My, )) < oo and bounded from
above, since the sequence of \,, is bounded.

Let p be any limit point of the p,,. Then p < A and by elementary properties of
norm resolvent convergence, it is an element in the essential spectrum of M. This
implies 4 = A, and so A is the only accumulation point of the bounded sequence
In, which implies the desired convergence. d

We have the following definition:

Definition A.2. Write Ry = [0,00). A continuous resolution for the measure
space (M, F, ) is a collection (Ag)zer, C F such that u(Ag) =0, A, C Ay when
<y, p(Ay) < oo forallz € RY, 14, — 14, p-a.e for x —y and

U A, = M.

x>0
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Lemma A.3. Assume that (M, F,p) allows a continuous resolution (Ag)zer, -

Let A € F with 0 < p(A). Then for every X € (0, u(A)) there is B C A with B € F
and p(B) = X. Furthermore there is a partition of A into disjoint measurable sets
{Bn}nen such that 0 < u(B,,) < co.

Proof. We start by defining f : [0,00) — [0, 00) by

f(x) = /M La(y)La, () du(y).

Then f is increasing and continuous by the dominated convergence theorem. Fur-
thermore f(0) =0 and by monotone convergence we find that

p(A) = lim f(z).

Let A € (0, 1(A)). The intermediate value theorem now gives zo € [0, 00) such that
A = f(zo) implying B = A,, N A has the properties claimed in the Lemma. We
now prove that the subdivision of A exists. For each n € N pick z,, € [0,00) such
that

flan) = {(1 =27 pu(A) p(A) < oo

n u(A) = o0
Since f is increasing and f(z,) < f(zn+1) we find that x,, < ,41. Define
E,=ANA,,
and put §~1 = By and B, = E,\E,,_; for n > 2. Note that p(By) = u(E1) = f(z1)
s0 0 < u(B1) < o0o. Now p(E,) < oo for all n € N so we find for n > 2 that

:U'(En) = wW(EB\En-1) = f(zn) — f(Tn-1),

so we conclude 0 < /L(En) < o0o. Furthermore, En N Em = () for n # m by
construction. Define

r = lim xz,.
n—oo

If x = oo we find

n=1 n=1 n=1

so we may pick B,, = En. If + < 0o we note that

50 > /M LAW) Lo, (9)dpa(z) = F(z) = Tim f(2n) = p(A),

n—oo

so (A) < oo and f(z) =p
AT STy S R—
Let B = A\U>2, B,, and note that w(B) = 0. Define By = ByUB and B,, = B,

for n > 2. Then u(B,) = u(B,) € (0,00) for all n, and B, N By, = 0 for n # m.
Furthermore,

(A). Furthermore,

G B, = [OJ B, U (A\ G §n>:A,
n=1 n=1 n=1

which shows that a subdivision exists. O

Using this we may prove the following preliminary result.
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Lemma A.4. Assume that (M, F,u) allows a continuous resolution. Let f : M —
R and z € o(My). Then there is a collection of sets {A,}52, C F such that
|f(x) —z|< £ on Ap, Ay N Ay =0 if m#n, p(AL) >0 and

12 <U An> = ZI’L(ATL) < 00.

If My denotes the corresponding multiplication operator we find (M) = 0ess(My).
Proof. Fix z € 0(My) and define
B,={fec(z-—n"t2+n .

There are now several cases. First assume that u(B,) = oo for all n € N. Then
define A,, recursively as follows: By Lemma A.3 we may pick A; C B; such that
u(A;) = 1. Assume now we have constructed disjoint sets Ay, ..., A,_1 such that
Aj C Bj for each j € {1,...,n — 1} and p(4;) = J% Then

50 = 1u(Ba) < u(Ba\(Ay U+ Uy 1)) + 3 =
j=1

50 u(Bp\(A1U---UA,,_1)) = 00. By Lemma A.3 thereis A,, C B,\(A1U---UA,_1)
such that u(A,) = # Hence we have now constructed a sequence of disjoint sets
{A,}nen in F such that A, C B,, and u(4,) = # Since

:u'<UAn> :ZM(AH):Z%<OO
n=1 n=1 n=1

we are done. Assume now that there is a N € N such that p(By) < co. Define
Cn = BN4n-
Since the B,, are decreasing we find that C,, C B,, and
Jim p(Cr) = p({f = 2}) < oc.

If w({f = z}) > 0 we apply Lemma A.3 and obtain a disjoint subdivision {A4,,}22 ;
of {f = z}. Since A,, C {f =z} C B, for all n and

u(@ A)= gu(fln) (= =) < oo,

we are finished.
What remains is the case u({f = z}) = 0. We know that p(C,,) > 0 for all n since
z € essran(f). We now claim that there are natural numbers n; < ns < ng < ...
such that ((Cp, \Ch,,,) > 0. Define n; = 1 and assume that n; < np < --- < ny
has been constructed. Define
ngy1 = min{n € N | u(C,,\Cp) > 0,n > ny}.
The minimum exists because if the set is empty then

w(Chny) = pu(Cy)
for all n > ny implying that u({f = z}) = u(Cyp,) > 0 which is a contradiction.
Define

A = an \anﬂ'

Then Ay C C,, C Cr C By so |f(z) — z|< % holds on Aj. Furthermore, 0 <
1(Ag) < pu(Ch, ) < oo for all k and the Ay are disjoint by construction. Note also

ZN(A'H) =p (U An) < ,U(Cl) < 09,

n=1
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which proves the existence in the last case. The collection of maps u(A, )_% 1a, is
a Weyl sequence for z and hence z € gess(My). a

This leads to the following theorem which we shall need. The reader is reminded
that singletons are sets of the form {z} for some x € M.

Theorem A.5. Assume that (M, F,pn) is o-finite and that all singletons are mea-
surable. Let A be the set of points in (M, F, u) such that the corresponding singleton
has positive measure. Then A is countable and in particular measurable. Let pac
denote the measure pae(B) = p(A°N B) and assume that (M, F, uac) has a con-
tinous resolution. Let f : M — R be measurable, B denote the essential range of f
with respect to pa, and define

C={eR| I NI, CA N # A Y #E m and | f(\n) — A< n7}

Then
Oess(My) =B UC.

If furthermore p(A) < oo then for z1,...,z, € 0ess(My) there are k collections of
sets {AL}o2 ) C F fori€{1,...,k} such that |f(z) —z|< £ on A%, AL NAI =0
ifi#j orm#mn, u(AL) >0 and

u(U A%) = ul(4]) < oo

Proof. By o-finiteness of (M, F, i) we know M can be divided into countably many
disjoint sets of finite measure. Each of these sets can only contain countably many
elements from A and these elements must all have finite measure. Hence A must
be countable and all singletons must have finite measure.

Now if A € B then we may by Lemma A.4 pick a sequence of disjoint elements
{E;}32, in F such that 0 < pac(E;) < oo and |f — A|< 1 on Ej for all i. After
removing the p4c zero set A, we may assume E; C A€ for all ¢, and then p(Ei)*% 1g,
will be a Weyl sequence for A. If A € C, we let {\,}52; be the corresponding
sequence. Then ,u({)\i})_%l{,\l} will be a Weyl sequence for .

To prove the other inclusion, let A € (BUC)®. If u({|f — A\|< n™1} N A°) >0
or AN{0 < |f =A< n7'} #£0 for all n € N then A € BU C which would be a
contradiction. Also AN {|f — A|= 0} must also be finite since we would otherwise
have A € C.

Hence there is an N € N such that A° N {|f — A|< N~} is a zero set and
{If =A< N"'1}nA={|f —Al=0}N A is a finite set. In particular the spectral
projection of f onto (A — N~* A4+ N~1) is given by 1{s_y<n-1} = 1{js-r=01n4a
almost everywhere. Since {|f — A|= 0} N A is finite we see that 1{;_x—ojna has
finite-dimensional range and so A € gegs(My)°.

The construction of the sets goes as follows. Assume first that z1,...,z; are
different. For each ¢ € {1,...,k} we either have z; € Bor z; € C. If z;, € B
then by Lemma A.4 pick a sequence of disjoint elements {gil}%ozl in F such that
0 < pac(AL) and |f — A< 1 on At for all n. After removing the piae zero set A,
we may assume g; C A¢ for all i and so we have

ﬂ (U ZL) =Y u(A) =" pac(Ay) < oo
n=1 n=1 n=1

If z; € C and {\.}2, is the corresponding sequence we let Ai = {\i} which is a
disjoint collection. Then 0 < p(A%) and |f — A|[< £ on A, for all n. Furthermore,
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since p(A) < co we have

(U2) = ) < <o

n=1

Now pick N so large that 2N ! < max;z;|z; — z;| and define A}, = A% . Then
) 1 1
A, C —zi|< C - zil< —
Lo {ir-si< i b {ir i< 1]
7 (U AZ) =" (Al < u(Al) < 0o
n=1 1

n=1 n=

and 0 < p(A%) for all i,n. If z € A5 N Al for i # j we would have |z; — z;|<
|zi — f(z)|+]f(z) — zj|< 2 which is a contradiction. So A%, N AJ, =0 if i # j. If
i=jand n # m we find A} NAJ, = g§V+n N Avﬁwm = . Thus we are now finished
in the case where z1,..., 2z, are different.

If z1,. .., z are not all different, let Aq, ..., \¢ be the different elements and h(7)
be such that z; = Apg;). We now pick sequences {AM}> | C F as in the theorem
for the collection A1, ..., A € 0ess(My) and define A, = fo:gn Observe that

. 1 1
Al — At —l< =
nC{If h(z)|<i+kn}c{‘f ZI<n}

(U] = Sy < iy <

n=1 n=1 n=1

and 0 < p(A%) for all 4,n. Note that A? N AJ = gff,zn ﬂggﬂ(ﬂlk Ifi#jorn#m
then j + mk # i + nk since 1 < 4,7 < k and so the intersection is empty. This
finishes the proof. |
We now have one more definition.

Definition A.6. Let (M, F,u) be a measure space.

(1) We say that (M, F,pn) has strong topological properties if M is a locally
compact, Hausdorff and second countable topological space, F is the Borel
o-algebra and p is finite on compact sets.

(2) Let M be a metric space. We say that M can be cut nicely if for each
n € N there is a sequence of disjoint sets {G}aen C B(M) that covers
M such that sup,ey Diam(GR) converges to 0 as n tends to infinity, GT is
compact and for any B C M bounded the set

{aeN|GENB#0}
is finite.

The following result can be found in standard references on measure theory and
topological spaces.

Lemma A.7. We have the following statements:

(1) Let M be a locally compact metric space, and A C M a compact set. Then
there is an r > 0 such that

V. ={x e M| dist(xz, A) <r}
is compact. In particular for a < r the set
{z e M| dist(z, A) < a}

s an open neighbourhood of A with compact closure.
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(2) If (M, F,u) has strong topological properties then the subspace C.(M) is
dense in LP (M, F,u) for all 1 < p < oco. Furthermore LP(M,F, 1) is sep-

arable for all 1 < p < oo and elements in C.(M) are uniformly continuous
if M is metric.

We have the following important theorem:

Theorem A.8. Assume now that (M, F,u) has strong topological properties and
that M can be cut nicely. Assume that M = AU B with A,B € F and AN B =

0 such that B is bounded. Assume furthermore that for each n € N we have a
subdivision

B=| By

(G

~
Il

1
such that é? N E}l = 0 when j # L. Then there are subdivisions

Kn
A=H,ul 4}
(=1
kn
B=J,ulJ B}
j=1

such that K, € NU{oo} and k, € N for all n. Furthermore
(1) For each j,n there is j' such that B C E}'}.
(2) p(Hyp) =0=pu(J,) and 0 < u(A}), u(By) < oo for all ¢, n.
(3) A}NAp =0=B}NB}, when L # orj#j and H,NA} =0=J,NB}
for all ;7 and n.
(4) Let P, be the projection onto Span(B,,) where

B, = {IB]n [je{l,...,ka}}U{lap [£€NN]0, Ky}
Then P,, converges strongly to the identity and P, is given by

= Ydu(z)1 Ydp(x)1gn.
g / f(@)du(x)1pn + Z A” / f(@)dp(z) 14
Proof. For each n € N let {G%}aen be the sets from Definition A.6. Fix n € N.

Define for any set C' € F

1,(C) ={a e N|u(G"NC) > 0}

If C is bounded then I,,(C) is finite since there is only finitely many « such that
G NC # (). We have

Fn

:U( U Bnaijul( U Bna)
=1 “aerl,(B}) =1 “ael, (B})e
o
::U( U E;mcg)an
7=1 "aer,(By)
:( U AmGg)u( U AmGg)::( U AmGg)an
a€l, (A) aclIc(A) a€l, (A)

Since In(g;”)“ and I,(A)¢ are countable for all j we find that the sets .J, and
Hy, are a nullsets. The A are obtained by numbering the countable collection
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(AN GY)aer,(a)- Similarly the B? are obtain by numbering the finite collection
EJ” NG" for je{1,...,k,} and a € IW,(EJ”).

The properties in statements (1) and (3) are clear. Statement (2) follows from
the definition of the In(éj") and I,,(A) and the fact that elements of the form CNG2
have compact closure (and thus finite measure) since G” has compact closure. Note
now for later reference that

(A.2) szlp{Diam(A?LDiam(B?)} < sgg Diam(Gy)
2] «

which converges to 0 for n tending to co. What remains is statement (4). The
projection onto Span(B) is obviously given by

ka g K
P.f= JZ:; 1(BY) /B; f(@)du(z)1pn + ; M(T% /A; f(z)dp(z)lan

where the limit is taken in L?(M,F,pu) if K, = oco. Since the corresponding
functions also converge pointwise, we can take the pointwise limit to represent the
limit in L2(M, F, ). It remains to prove that P, converges strongly to the identity.
It is enough to check this on C.(M) since this space is dense in L2(M, F, ).

To prove the statement for f € C.(M) we start by noting that if u({f # 0}) =0
then P,f = 0 for all n and f = 0 in L?(M, F, 1) so the convergence holds in this
case. Assume now that {f # 0} has positive measure and hence that suppf has
positive but finite measure since it is compact. We start by proving that there
is a compact set K and a number Ny € N such that K will contain supp(f) and
supp(P, f) for all n > Ny .

By Lemma A.7 there is an r > 0 such that K = {x € M | dist(z, supp(f)) < r}
is compact. Now pick N; € N such that sup, ;{Diam(A}), Diam(B})} < r for all
n > Nj (this is possible by equation (A.2)). Let n > N;. If P, f(z) # 0 then there
is a set C of diameter smaller than 7 such that € C' and the integral of f over C'
is not 0. In particular supp(f)NC # 0 so x € K. This implies that {P,, f #0} C K
and hence supp(P, f) C K for all n > Ny, proving the claim.

We now prove convergence. Let € > 0. Pick a compact set K containing supp(f)
and supp(P,(f)) for all n > N;. Since f is uniformly continuous on M there
is a § > 0 such that when z,y € M, d(z,y) < 6 then |f(z) — f(y)|< —=—=

Vi(K)'
Pick N2 € N such that sup, ;{Diam(A7}), Diam(B})} < ¢ for all n > Ny and fix

n > N = max{Ny, Na}. For z € M\(H, U J,) there is a set C' of diameter less
than § such that x € C and

Pof(x) = ﬁ /C F)du(y).

This implies

1 €
P @IS i [150) = f@lnt < o
which gives
_ fll= rfyzx%M(K)%gz
IPuf = = ([ 1Pus0) = s dn(a)) < SELE =
This finishes the proof. O

The following two lemmas show that Theorems A.5 and A.8 can be applied to a
wide range of L2-spaces.
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Lemma A.9. Let A C Z and let p be some measure on (A x R, B(A x R¥))
which is finite on compact sets. Then the assumptions of Theorems A.5 and A.8
are satisfied if p(B) < oo where B = {x € A xR | p({z}) > 0} and ppe is zero
on sets of the form {i} x C with C = {x € R | ||z||= c}.

Proof. Since AxRY C R¥*! is closed we see that A xRY is a locally compact metric
space. It is second countable since both A and R” are second countable. A x R
can be covered by compacts so (A x R”, B(A x R¥), u) is o-finite. In particular B
is countable and therefore measurable.

Define U, = {y € R*™ | [jy||< 2} N (A x R¥). Then 1y, converges to 1y,
pointwise for x — y except at points in OU,. Note that U, is a finite union of sets
of the form {i} x {x € R” | ||z||= ¢} with ¢ > 0 and ¢ € Z. Hence 0U, is a ppe
zeroset, proving that {Us }ze[o,00) defines a continuous resolution for ppe.

To show that M cuts nicely we define

Goi= {i} x (X (n oy, n oy + 1)])
i=1

for « € Z™ and i € A. For each n this is a disjoint cover and elements have

diameter \/vn~!. Given any bounded set D, there is A; C A finite and R € N

such that D C Ay x [-R, R]”. It will only take finitely many of the G{, ;) to cover

(o2
Ay x [—=R, R]” and hence D.
The following lemma is central to the spectral analysis.

Lemma A.10. Let H be a separable Hilbert space and let A be selfadjoint on H.
Then H is unitarily equivalent to L*>(M,F, u) such that A is transformed into a
multiplication operator w. If A > ~ for some v € R then we may pick w > ~
everywhere. Furthermore if v is not an eigenvalue then w > v almost everywhere.
Also (M, F, ) will fulfil the conditions in Theorems A.5 and A.S8.

Proof. We follow the construction found in [22]. Let {¢,,}nep (where B C N) be
a complete collection of normed cyclic vectors, and let u, be the measure gen-
erated my ,, with respect to the spectral measure P4 of A. That is u,(C) =
(¥, Pa(C)thy). By [22] we see that H is unitarily equivalent to

K= @ L2(R7 B(R)aun)7
neB

and A acts like multiplication by the identity map f(z) = z on each of the com-
ponent spaces. If A > v then u, will be supported on [y,00) showing we may
pick @ = max{f,v}. By standard measure theory of kernels, there is measure fi on
B(B x R) defined by

/ Fn Ry, k) = 3 / £, 2)dpin ()

iR neB

for any non negative and measurable map f : B x R — R. Then the direct sum of
L?-spaces is clearly unitarily equivalent to

K2 =17 (B xR,B(B x R), i)

and A is now multiplication by the map w(n,z) = &(z). Note that each {n} x R
has measure 1 by construction, so the measure space is o-finite. Hence there is a
strictly positive measurable map f on B xR which integrates to 1. Defining u = fu
we thus obtain a finite measure, and multiplication by f ~2 defines a unitary map
from Ks to

L*(B x R,B(B x R), ).
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Note that A still acts like multiplication by w on this space. Since u(B x R) = 1,
and sets of the form {i} x {x € R | |z|= ¢} are finite we see that the measure space
satisfies the conditions in Lemma A.9. This finishes the proof. ]

APPENDIX B. SPECTRAL THEORY OF TENSOR PRODUCTS

I this section we list a few results regarding the tensor product of operators. A
good reference for these results are [20]. Throughout this section let Hi, ..., H, be
a finite collection of Hilbert spaces. For V; C H; subspaces, we define the algebraic
tensor product

Vi®---®V, = Span{z; ®--- @z, | x; € V;}.
Most of the content in the following theorem can be found in [20]. The remaining
items can easily be deduced.

Theorem B.1. Let T; be an operator on H; for i € {1,...,n}. Then there is a
unique linear map T =T ® - -- T, defined on D(Tl)@) e @D(Tn) such that
Tl®"'®Tn($1 R ®zp) =T, Q- @ Thin,
for all z; € D(T;) and i € {1,...,n}. We also have the following:
(1) If all T; are densely defined then T is densely defined and Tf®--- T C
T*.
(2) If all T; are closable, then T is closable. We will then write T = T1®---®T,.
Furthermore, the following identities hold
e 0h,=Ti®--0T,
ITe T, =N T,
(3) If all the T; are symmetric (selfadjoint, unitary, a projection), then T is
symmetric (selfadjoint, unitary, a projection).
(4) If T; > 0 for all j € {1,...,n} then T > 0.
(5) If all the T; are bounded then T is bounded and

IT||= [Tl - | Tull= T2 @ - - - © T
The following result is also important.

Theorem B.2. For each j € {1,...,n} let T} be a selfadjoint operator on H; and
define

Hi:1®"'®Ti®"'®17

H=Hi+Hy+ -+ Hy.
Then

(1) (Hy,---,Hy) is a touple of strongly commuting selfadjoint operators with
o(H;) = o(Tj). The joint spectrum is o(T1) x ---x o(T,,) and if f : R — C
is Borel measurable then f(H;) =1® - f(I;) ®---® 1.

(2) H is essentially selfadjoint with

eitﬁ =N g... et ¢ eR.

(3) If V; is a core for T; then Vi&---®V, is a core for H.

(4) Assume T is semibounded with inf(o(T;)) = X; for all j. Then H is
selfadjoint and semibounded with inf(o(H)) = A:= Xy +---+ \,. Let Pp
denote the spectral measure for an operator B € {H,Ty,...,T,}. Then

et — oM g e Tn >0

Pu({A\}) = Pr,({M}) @ - @ Pr, ({An}).
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In particular, Dim(Pg({A})) = Dim(T1({A})) - - - Dim(T5, ({\})). Let pj =
inf(oess (1)) which may be co. Then

inf(0ess(H)) > min ¢ p; + Z Aj pi=m.
J [
(5) Assume B; is selfadjoint on H;. If D(T;) C D(B;) for some i € {1,....,n}
theTLD(Hi) C/D(1®"'®B7‘,®"'®l).
(6) Assume B is selfadjoint on H; and T; + B; is selfadjoint. Then

Hi+1®~-~®B¢®~~®1:1®~~~®(1}+B¢)®~-~®1::5i

Proof. Statements (1)-(3) can more or less be found in either [20] or [23]. It is proven
in [20] that f(H;) =1® - ® f(T;) ® --- ® 1 holds for f(z) = (z £ i)~!. From
there one may simply use standard approximation arguments. To prove (4), let P
be a joint spectral measure of A = (Hy,..., H,). Using that the joint spectrum is
o(Ty)%x---x0o(T},), one may show that H = P(f) where f(z1,...,2n) = 1+ +2Zp.
So H is selfadjoint and bounded below by A. The formula for e "t is now immediate
from the spectral theorem. We also find

Pr(N) = P({z1 + + 2 = AN} N0 (T1) x - x 0(T))
=P({z1 =M} x o x {zn = M\n})
=Pr,({M}) @ @ Pr,({Mn}).

Let f € C°((—o00,m)). Then there is € > 0 such that f is supported in (—oo, m—e).
We observe

PH(f):/ for 4ot wn)dP(an,... o).
o(Ty)x-xo(Tyn)

If (1,...,2,) €o(Th) X -+~ xo(T,,) and f(z1+---+z,) # 0, then z; < p; — e for
all . Since only finitely many z; have this property, we find Py (f) is a finite linear
combination of terms of the form

Pry({z}) @@ P, ({zn})

with z; in the discrete spectrum of T;. The above projection has finite rank and is
therefore compact, so Py (f) is compact.
To prove (5), note B;(T; +i)~! is bounded and

(1@ @B @) (H;+i) '=1@ - @B;(Tj+i) ' o1

holds on a dense set. Thus (1®---® B; ®---®1)(H; +1)~! extends to a bounded
operator implying the claim.

To prove (6), note that the equality holds on ;& - @D(Tj + B;)&--- @H,
which is a core for S;. Therefore

(B.1) S;i=H;+1® - ©B;® - ©1
By part (5) we note D(S;) CD(H;) NP(1®---® Bj ® -+ ® 1) so the closure on
the right side of (B.1) is not necessary. O

The next two results are important to the theory developed in this paper.

Lemma B.3. Let A and B be selfadjoint on Ha. If B is A-bounded with bound a,
and C € B(H1) then C ® B is 1 ® A bounded with relative bound a||C||.

Proof. On simple tensors we see that

C®B1®A—-iN)'=C®B(A-i)N!
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which is bounded. Hence D(C ® B) C D(1 ® A) and the above identity extends
to the full tensor product. Calculating norms and taking A to oo gives the 1 ® A-
bound by [22, Lemma 6.3]. Using Theorem B.1 to calculate the norm finishes the
proof. |

We now wish to consider second quantised observables. Let w be selfadjoint on the
space H. Let dI'(w) denote the second quantised observable. By standard theory
of reducing subspaces we have

(B.2) op(d0™ (w)) Cap (i(l@)klw((@l)"k)

k=1
(B.3) Oess (AT (W) COess <2n:(1®)k_1w(®1)"_k>
k=1

Lemma B.4. Letw > 0 be a selfadjoint operator defined on the Hilbert space H and
let m = inf(o(w)) and mess = inf(oess(w)). Let dT'(w) denote the second quantised
observable. Then for n > 1 we have

cd™ W) =1+ + M [N €Eo(w)}
inf(o(dl™ (w))) = nm

Now let w > 0 be injective. Then

(1) 0 s an eigenvalue for dI'(w) with multiplicity 1. The eigenspace is spanned
by €.

(2) inf(Tess (AL (W))) > Mess + (1 — 1)m

(3) dl'(w) will have compact resolvents if and only if this is the case for w.

Proof. The statements regarding the spectrum is easy and can be found in e.g, [12].
We prove the statements (1), (2) and (3).

To prove statement (1), we note that €2 is an eigenvector as desired. Assume
that there exists an eigenvector 3 orthogonal to 2. We may then assume that there
is n > 1 such that % is in the n’th particle sector and an eigenvector for dI'("™ (w)
with eigenvalue 0. Since dI'™) (w) > nm we find m = 0 and thus m € o(w) but is
not an eigenvalue. By Theorem B.2 and equation (B.2) we find that dl'(™ (w) is
injective, reaching a contradiction.

Statement (2) follows from Theorem B.2 and equation (B.3).

If dI'(w) has compact resolvents then projection onto the one particle subspace
shows that w has compact resolvents. If w has compact resolvents, then mess = 00
and so m > 0. Statement (2) now gives that dT'("™)(w) has compact resolvents for
all n € N. Now ||(dI'™(w) 4 i)~![|< -1 which converges to 0 as n tends to oo.
Hence we find

(oo}
(dD (w =P ar™(w) +i)
n=0

is compact. O

APPENDIX C. ISOMORPHISM THEOREMS

Let H;,Ho be Hilbert spaces. Then

Fo(H1 @ Ha) = Fp(H1) @ Fo(Ha) %@ .7:17 Hy) ®IH®€ )
n=0

In this chapter we investigate these isomorphisms. See also [5] and [15].
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Theorem C.1. There is a unique isomorphism U: Fp(H1 @ Ha) — Fp(H1) ®
Fo(Hz) such that U(e(f ®g)) =e(f)®e(g). If f1,....[; € Hi,91 and ..., ge € Ho
then

U((f1,0) ®s -~ ®s (fj’0)®5(07 g1) ®s -+ @5 (0,4¢))

jln \?
:(m) (f1 @+ @5 f5) ® (91 ®s -+ - Qs 90)

The map also has the following transformation properties. If A; is selfadjoint on
Hi, Vi is unitary on H; and f € H1,9 € Ha then

(C.1) UW(fegVieWw)U =W(f,Vi)@W(g,Vz)
(C.2) Udl'(A; @ A)U* =dl' (A1) @ 1+ 1 ® dI'(A2)
(C.3) Up(f,9)U" = o(f) ©1+1@ ¢(g)
(C.4) Ua(f,g)U" = a(f)®1 + 18a(g)

(C.5) Ua'(f,9)U* = at(f)®1 + 1®al(g).

Proof. The set of exponential vectors are total and linearly independent. Hence at
most map can satisfy U(e(f @ g)) = e(f) ® €(g). By the linear independence we
may define U(e(f @ g)) = e(f) ® €(g) and extend by linearity. Note that the image
of exponential vectors is total and the map conserves the inner product since

(e(h1 ® ha), e(f1 @ fo)) = &M NER) = (e(hy), e(f1)){e(h2), €(f2).

Hence it extends by continuity to a unitary map. To prove equation (C.1), it is
enough to check a total set. We calculate

UW(f D g, V1 D VQ)U*E(hl) ® E(hg) = U€(V1h1 D Vgh/z + f D g)
=e(Vihi + f) @ e(Vaha + g)
=W(f,V1) @ W(g, V2)(e(h1) ® €(h2)).

This also proves equations (C.2) and (C.3) since both sides generate the same
unitary group. To prove equations (C.4) and (C.5) define

C={e(fi)@ef2) | fie Hit =U({e(fr @ fo) | fi € Hi}).
for ¢ = €(f1) ® €(f2) € C we have
Ua(f ® g)U"e(f1) @ e(f2) = Ual(f @ g)e(f1 © f2)
=(fDg, [ ® f2)e(f1) ®e(f2)
= (a(f)®1 + 1®a(g))e(f1) @ €(f2)

showing the first relation. For ¢ = €(g1) ® €(g2) € C we find

(6, Ual(f @ g)U*¥) = (Ual(f & 9)U"¢, ) = (¢, (a' (f)®1 + 1&a'(g))1)

as C is total we can now conclude that equations (C.4) and (C.5) hold on C. Let §
denote either T or nothing. Exponential vectors span a core for both creation and
annihilation operators (see [12]) so

Ud(f & g)U* = a?(f)®1 + 1@a*(g) |span(c)

Using that exponential vectors span a core for both creation and annihilation op-
erators it is not hard to see that af(f)®1 + 1®af(g) |span(c) is an extension of
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af(f)®1 + 1®a’(g). Thus we see af(f)®1 + 1®a(g) |span(c) = a*(f)®1 + 1&at(g)
proving equations (C.4) and (C.5). Lastly we note

U(fl,O) Qs+ Qs (f],()) Qs (ngl) Qs+ Qs (O,Qg)

1 1/2
= ( . ) UaT(fl,O)---aT(fj,O)aT(O,gl)-~-aT(0,gg)Q

o\ Y2
:(( ) (f1®s"‘®sfj)®(gl®s"'®sg€)

finishing the proof. |
The following result is obvious.

Theorem C.2. There is a unique isomorphism

U:Fo(H1) @ Fp(Ha) = Fp(H1) & @fb(ﬂl) ® ’Hé&m

n=1

such that

U(we {65V}52,) = ¢Ow e Puw o .

n=1
Let A be a selfadjoint operator on Fy(H1) and B be selfadjoint on Fp(Hz) such that
B is reduced by all of the subspaces HS ™. Write B™) = B |H2®5n. Then

UA®1+19BU*=A+BY o PA®1+12BM)

n=1
U(A@B)U* =BYAs PABM).
n=1

Lemma C.3. Let H be a Hilbert space and assume there is a unitary map V : H —
H1® Ho. Let Uy be the map from Theorem C.1, Us be the map from Theorem C.2
and j; : H; = H1 @ Ha be the embedding defined by ji(f) = (f,0) or j2(g) = (0,9).
Define the maps U = UsU T (V) and Q; = V*j;. Then
(C.6) D(Q1) =U" |7,00)

Fiz a subspace K C Hy and g1,...,94 € Ha. Define

B=|J{h ® - ® hy|hi €K}
b=0

C = U{thl ®s e ®s thb ®s Q291 ®s e ®3 Q2gq ‘ hl S IC}
b=0

Let ¢ € Span(B). Then
(C.7) U(§ @ g1 s -~ @ gq) € Span(C).

Proof. It is enough to prove equation (C.6) on elements of the form €(f) for f € H;.
We calculate using Theorems C.1 and C.2:

Ute(f) =T(V)'Ule(f) @ @ =T(V)"e(f,0) = e(V"if) = e(@uf) = T(Qu)e(f).

By linearity it is enough to prove equation (C.7) in the case 1) = hy ®; - - - ® hy for
h; € K and some b € {0} UN. Using Theorems C.1 and C.2 along with Lemma 2.2
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we find

U (h®s -+ ®s hy) @ (91 Qs -+ Ds gg))
=L(V)* U (h1 Qs -+ Qs hp) @ (g1 ®s -+ Qs gq))
_((b+q)!
- q'b!
_((b+q)
N q'b!

finishing the proof. O

1/2
) L(V)*((h1,0) ®s -+ @5 (hp,0) @5 (0,91) ®s -+ - ®5 (0, 94))

1/2
) Qi1h1 Qs -+ Rs Q1hy ®s Q291 ®s -+ - @5 Q29q

APPENDIX D. POINTWISE ANNIHILATION OPERATORS

In this appendix we define pointwise annihilation operators and show associated
pull through formulas. We will need this when discussing regularity of ground
states. Let H = L?(M, &, n), where (M, &, 1) is assumed to be o-finite. We define
the extended symmetric Fock space to be the product

Fo(h) = X MO

n=0

with coordinate projections P,. For elements (1)), (¢(™) € F,(H) we define

o~ 1 lw™ — o™
d((™), (¢™)) = [ | & < |
where ||-|| is the Fock space norm. This makes sense since P, (F4(H)) C Fp(H).
Standard theorems from measure theory and topology now gives the following
lemma.

Lemma D.1. The map d defines a metric on F1(H) and turns this space into a
complete separable metric space and a topological vector space. The topology and
Borel o-algebra is generated by the projections P,,. If a sequence {1, }52, C Fp(H)
is convergent/Cauchy then it is also convergent/Cauchy with respect to d. Also any
total/dense set in Fy(H) will be total/dense in Fy(H) as well.

Define

(D.1) A={}u [ J{¢®" g e H}.

n=1
Then A is total in F,(H) since the span of A can approximate any exponential
vector. By Lemma D.1 we find A is total in F; (#H) as well. For each a € R we
define

. = 1 2a . 2
e = lim (;m DR ) -
which is measurable from F () into [0, c0]. Let

FarH) ={ € FL(H) | |¥]

Note ||||q,4+ restricts to a norm on F,  (#) that comes from an inner product. In
particular F, 4 (#) is a Hilbert space and for a > 0 we have 7, + (H) = D((N+1)%).
We summarise as follows

a,+< OO}

Lemma D.2. ||-||,,+ defines measurable map from Fi(H) to [0,00] and restricts
to a norm on the spaces Fo 4+ (H). This norm comes from an inner product so
Fa,+(H) is a Hilbert space. Furthermore, the set A from equation (D.1) is total in
Fr(H).
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The point of defining a metric on F (H) and finding a dense set is that most of the
operations we will encounter in this chapter are continous on F.(#). Therefore
many operator identities can be proven by checking the identity on the set A from
(D.1). Fix now v € H. We now define the following maps on F, (H)

at (0)(™) = (an(v)p™ D)
al (v) (™) = (0,0} ()@, af (V). ..)
o+ (v) = ay (v) + al(v)

Where a,(v) is annihilation from H®("+1) to H®:" and af (f) is creation from
HE" to HE D) which are both continuous. The following lemma is almost auto-
matic.

Lemma D.3. The maps a+(v),aj_('u) and ¢4 (v) are all continuous. For B €
{a,at, o} we have

(D:2) By (v)d = B} if % € D(B(v)).

Proof. Equation (D.2) holds for B € {a,a'} simply by definition. The topology on
F4+(H) is generated by the projections P,. Therefore continuity of a(v), ai(v)
and ¢4 (v) follows from continuity of

Prai(v) = an(v)Ppia
Pnal(v) =a ()P, n>1
Poai(v) =0.

We now prove equation (D.2) for B = ¢. The relation

(V) = oy (V)

easily holds on the span of A where A is the set from equation (D.1). For ¢ €
D(¢(v)) we may pick as sequence {1, }52; C Span(A) that converges to ¢ in ¢(f)
norm (use e.g. [15, Corollary 20.5]). Continuity of ¢ (v) together with Lemma D.1
now yields the desired result. O

‘We now move on to the second quantisation of unitaries and selfadjoint operators.
Let U be unitary on H and w = (w1,...,wp) be a tuple of strongly commuting
selfadjoint operators on H. We then define

dl'(w) = (dl'(w1), ..., dl(wp))
dl ™ (w) = (dT ™ (wy), ..., d0™ (w,))
which are now tuples of strongly commuting selfadjoint operators (It is easily

checked that the unitary groups commute). Let furthermore f : R? — C be a
map. We then define

FT 4 (@) = X @™ (@) D(F(AL4(w)) = X D™ (w)))

n=0 n=0
PLU) = X TO(D).
n=0

If w: M — RP is measurable then we may identify w as such a touple of com-
muting selfadjoint operators. In this case f(dI'™ (w)) is multiplication by the map
f(w(k1) + -+ w(ky)). The following lemma is obvious.
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Lemma D.4. The map I'1(U) is an isometry on F(H) and is thus continuous.
Furthermore we have

fldl4 (W)Y = f(dl(w))y, 1+ € D(f(dl'(w)))
L (U)y =TU)y, P € Fp(H)

We will now consider a class of linear functionals on F (H). For each n € N we let
Qn : F+(H) — N denote the linear projection which preserves the first n entries
of (1/)(")) and projects the rest of them to 0. For v € N there is K € N such that
Qnp =1 for n > K. For ¢ € F,(H) we may thus define the pairing

K

(D.3) (W, 0)4 = (1, Quo) = > (1, 61),

i=0
where n > K.

Lemma D.5. The map Q,, above is linear and continuous into Fy,(H). The paring
(-, )+ 1is sesquilinear, and continuous in the second entry. If ¢ € Fo i+ (H) then
P — (Y, d)4 is continous with respect to ||-||—q+. Furthermore, the collection of

maps {{, )+ }pen will separate points of F(H).

Proof. The paring (-, )4 is trivially sesquilinear. Let {5}, converge to ¢ in
F4(H). Then w,(;) will converge to 1) for all 3. Now ||@, (v — %)||? is the sum

|Qn (v — ¥)|1?= ZHU);;) — @2

i=0

which converges to 0. Hence @, is continuous from F(#H) into F,(#H). This also
shows continuity in the second entry of (-,-)1. If ¢ € F, +(H) and ¢ € N we find
some K € N such that

K

[, )+1< D+ DD+ 1)~ @< (16

i=0

|wH7a,+

a,+

showing the desired continuity. Fix now ¢ € F4(H) and assume that (¢, ¢); =0
for all vy € A'. Then (1), (™) = 0 for all ¥ € H®*™ showing ¢ = 0. |

Corollary D.6. Let ¢ € F,(H) for some a <0, D C N be dense in Fp(H) and
assume (Y, ¢y =0 for all v € D. Then ¢ = 0.

Proof. Note D counsists of elements which are analytic for (N+1)~% so D is a core for
(N+1)7* Let ¢ in M and pick {¢,}32,; C D converging to ¢ in (N 4 1)~ %norm.
Using Lemma D.5 we see (¢, ¢)+ = 0 and thus ¢ = 0 by Lemma D.5. d

Lemma D.7. Let v € N, ¢ € F(H), v € H and U be unitary on H. Then we
have
(@), ¢) 4 = (¥, a1 (V)$) 4, (a(w)v, ¢)4 = (¥,dl (v)e)4,
(p(), )4 = (¥, o+ (v)P)+, IO, d)+ = (W, L1 (U")9)+-

Let w = (wy,...,wp) be a tuple of commuting selfadjoint operators, f : RP — C,

v e NND(f(dl'(w))) and ¢ € D(f(dl'+(w))) we have
(FdT (@), d)+ = (&, F(dT+ (w))) +-
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Proof. Since 1 € N we may pick K such that (™) = 0 for all n > K. Then we
may calculate

(a® (v)1p, P, a()Qr+19) = (¥, Qx a4 (v)9) = (Y, a4 (v)P) 4

)+ =
(a(v)¥, d)+ = (¥,a" (V)Qr_10) = (¥, Qral (v)¢) = (¥, al, (v)¢)+
(), 8)4 = (¥, a1 (v)d)4 + (¥, al (v)d)4 = (¥, 04 (v)d)+
(T, )+ = (@, T(U")Qk¢) = (¥, QT (U")¢) = (¢, T (U")p) +

)
Assume now that 1) € N N D(f(dl'(w))) and ¢ € D(f(dT4(w))). Then Qg¢ €
D(f(dI'(w))) and
(fdD(@)v, d)+ = (¥, (AT (w))Qxd) = (¥, Qi F(dT+(w))e) = (&, F(dT+(w))¢)+
this finishes the proof. O
We now consider functions with values in F4 (#H). Let (X, X,v) be a o-finite and
countably generated measure space. Define the quotient

MX, X v)={f: X > FL(H)| fis X — B(FL(H)) mesurable}/ ~,
where we define f ~ g <= f = g almost everywhere. We are interested in the
subspace
CX, X, v)={feM(X,X,v) |z~ P,f(z) e L}(X,X,v,H®") ¥n € No}.

Lemma D.2 shows that « — || f(z)||q,+ is measurable for functions f € C(X,X,v)

and so the integral
J @I vl
X

always makes sense. If a = 0 then it is finite if and only if f € L2(X, X, v, Fp(H)).
We write f € C(X,X,v) as (f(™) where f(") =z +— P, f(x). For f,g € C(X,X,v)
we define - .
= 1 I = g™ | e x e p@em
o)=Y L)
,,,Z:% 20 14 || f0) — gM|| L2 (x x,0 mmem)

We can now summarise.

Lemma D.8. d is a complete metric on C(X,X,v) such that C(X,X,v) becomes
separable topological vector space. The topology is generated by the maps f +—
(x = Pof(z)). Furthermore L*(X,X,v,Fy(H)) C C(X,X,v) and convergence in
L3(X, X, v, Fy(H)) implies convergence in C(X, X,v). Also the map x — || f(x)]la,+
is measurable for any f in C(X,X,v) and a € R.

We now move on to discuss some actions on this space. This is strongly related to
the direct integral and readers should look up the results in [18]. Let n > 1, v € H,
U be unitary on H, w = (w1,...,wp) a tuple of selfadjoint multiplication operators
on H, m: M"™ — RP measurable and g : RP — R a measurable map. Then we wish
to define operators on C(M?* E® 1 ®f) for £ > 1 by

(aly o (v) ) (k) = al () f (k)
(aea e(”)f)(k)= +(0)f (k)
(Po.e(v)f)(k) = v (v) f(k)
(Te.e(U)f)(k) =T (U) (k)
(9(dTg.e(w) +m) f) (k) = g(dl' 1 (w) + m(k)) f (k).
We further define C(MO?, £%0 ,©0) =

F4(H) along with aze’o(v) = ai(v), ago(v) =
a+(v), vg,0(v) = ¢4+ (v) and F@ o =T (U). We have the following lemma.
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Lemma D.9. The aéye(v)ﬂ@’g(v%g@@’g(v) and T'g ¢(U) are well defined and con-
tinuous for all £ € Ng. Let f € C(M¥ E2% u®b). If f(k) € D(g(dT +(w) + m(k)))
for allk € M® then k — P, (g(dT (w)+m(k)) f(k)) is measurable. Thus as domain
of g(dlg e(w) + m) we may choose

{f € C(M* E% 1u®Y)| (k) € D(g(dl 1 (w) + m(k))) for almost every k € M,

/Miupngwm(w) (k) £ (8) P (k) < o0 Vn € N}.

Proof. To deal with the first three maps, it is enough to handle the first two, since
the last follows by addition of continuous maps. We have

kv Ppai(v)h(k) =k — an,(v)Pogp1h(k)
kHPa+(U) (k) =k —al_(v)P,_1h(k) n>1
k|—>P0a+(v) (k)=k—0

k— P,T(U)h(k) = k — T(U) P, h(k).

Continuity of a,(v),a!_,(v) and I (U) and Lemma D.8 now implies that the first

»¥n—1
four maps are well defined and continous. For the next claim we note

Pog(dly (w) + m(k)) f(k) = g(dT™ (w) + m(k)) P, f (k)

since dT'( (w;) +m; (k) is strongly resolvent measurable for each i € {1,...,p}, we
find that g(dl'™ (w) +m(k)) is strongly resolvent measurable and so the conclusion
follows from standard theorems (See e.g [18]). O

We will now introduce the pointwise annihilation operators. For ¢ = (1) ¢
Fi(H) we define Agp € C(MF,E9F 1u®°) by

Po(Agh)(kr, .. ko) = V/(n+ O+ —1) - (n+ D)™ (ky, ke, )
Since (™4 is symmetric and square integrable, we may pick a representative such
that the above map is symmetric in ki, ..., k, and has values in H®=". It is easy

to see, that the choice of representative only changes Ay up to a zeroset. Hence
Ay is well defined. Clearly

1(Ae)™ = (Aed) = V/(n+ O+ €= 1) (0 + 1[0 — 0|

so Ay is continuous from F (H) into C(M¥, £®¢, u®%). One immediately observes
that Agp € L2(MF,E9¢ u® F, (M) if and only if

oo>/ 1Agb(ky, - k)12 4 dp® (k. K)

Zn+12“n+@<n+e—1> A+ Do 2

— Z(n + 02910 |2 < 00
n=0
which is equivalent to ¥ € D(Ng‘*‘“) if é + a > 0. In particular we see A is
almost everywhere F_, | (H) valued if ¢ € F(H). If ), ¢ € D(N#) we apply the

above calculations with a = 0 to obtain
o0

(D4) A= Al = D0+ O+ L= 1)+ ()9l = gl
n=0

< IN2(y — ¢)]l.
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We summarise:

Lemma D.10. A, is a continuous linear map from Fi(H) to C(ME, E® u®h)
and from D(N2) into L*(MY, E9L, u®t, Fy(H)). Furthermore ¢ € D(NY/2) if and
only if App € L2(ME E®L u®t Fy(H)) and if o € Fp(H) we have Agpp is almost

everywhere .7-"_%,+(H) valued.

Fix v € H and £ € Ny. We then define a map z/(v) : C(M¥ E® u®¢) —
C(M‘3+175®((“1)),u®“1) by
(20(0)¥) (k) = v(k)¢ and (ze(v)e)(z, k) = v(z)(k)

when £ > 1. Note this defines a measurable map from M1 into F, (H) and
(D.5) /MmHPn(Ze(U)lb)(k)Hduw“(k) = ol ™ 172 e g0t ot 3o ny

where we define L2(M0, £80, ;80 3{®sn) = }®sn_ This implies z¢(v) is well defined
and obviously linear. Equation (D.5) also shows z;(v) is continuous and maps
L2 (MEE9 u®t ) Fy(H)) continuously into L2(MEH! g8 @+ T (31)). We

summarise

Lemma D.11. The map z;(v) introduced above is linear and continuous. Both
as a map from C(M?, E®C, u®*) into the space C(MUHL EBWHD @+ and from
L2 (ML E9 1u® Fy(H)) into L2(MUHL g2 1 @U+1) |1 (1),

Lastly, we look at permutation and symmetrisation operators. Let ¢ > 1 and
o € S; where Sy is the set of permutations of {1,...,£}. Define & : M* — M* by
G(k1,-. . ko) = (ko(1), - - ko(e)) and observe that & is £2°-E£®¢ measurable. Define
G C(M E®E 1B 5 C(ME, E®, 1®t) by

(Gf)(kl, .,kz) = f(ko(l), .. .,k}a(g)) = (f O&)(kl, . ‘.,kg).

7 is a well defined isometry on C(M¢, £2¢ u®%) since & is measurable and p®¢ =

1®o5 1 so

/ 15 (ks ) [P (k) = / 1F 1y« Ko ) 2 ),
MZ MZ

A similar calculation shows that & is also isometric on L?(M¥*, 9 u®t Fy(H)).
For m € §; we have

57f=foFod=foloon)=50RS

and hence the inverse map of 7 is o1, Note also that G A = Agt since the (™
are symmetric in all coordinates. Define now

1 ~
Sl::ng'

geSy
For m € §y we have

~ 1 Z PN 1 _—
ﬂ'Sg = m ~ ™o = m EES mToo = S[.
o Y3 g 2

Hence S7 = £S,. We summarise:

Lemma D.12. Let £ € N. For o € S; the map & defines a linear bijective isom-
etry from C(ME, ¢ 1®4) to C(ME,E%E, u®%) and from L*(MF,E%E, u® Fy(H))
to L2(MF,E%% 1®¢ Fy(H)). Also GAp) = App and if 1 € Sy then 76 = T o G-

Furthermore Sy is continuous and linear from C(M¥ E®¢ u®%) into the space
C(M &% =YY and it satisfies relation S? = €Sy. Furthermore Sy is also contin-
uous from L2(M 24 u®f Fy(H)) into L2(ME, 2L, u® Fy(H)).
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We can now calculate commutators

Lemma D.13. Let w : M — RP be measurable, v,g € H and let f : RP — R be
measurable. Define Ag =1, A_1 =0, zg(v) =0 and z}:(v) = Sez¢—1(v) for £ > 1.
We have the following operator identities for £,n € Ny

(D.6) ag 0(9)Ach = Avay(g) Agal () — al, ,(9)Ar = 2 (9) Ay
(D7) ase+1(9)2e(v) = z(v)aw,e(g) al, ,1(9)ze(v) = z(v)al, ,(g)
(D.8)  ag.e+1(9)Se+1 = Se+1a,041(9) aly 111(9)Ser1 = Sevraly 414 (9)
(D.9) pa.+1(9)2e(v) = 2e(v)pa,e(9) Po.e41(9)Ser1 = Ser10e,041(9)
min{¢,n} g—1
(D.10) Apr(w)" = Y (Z) ©a,0(v (H zo_( )A,, g
q=0 =

(D.11)  Tgu(—1)Ar = (=1)* A0y (-1).

Let £ > 1. If ¢ € D(f(dl'(w))) then App € D(f(dlg(w) + we)) where we define
wp(ky, ..., ko) =w(ky) + -+ w(ke) and

fldlg(w) + we) A = Ag f(dl 4 (w)) .

Proof. First we note that equation (D.9) follow directly from (D.7) and (D.8).
Secondly we note that by continuity and linearity it is enough to prove the relations
(D.6)-(D.11) directly on the set A from equation (D.1). Thirdly we note that the
identities involving Ay are trivial for ¢ = 0, so we only need to prove these when
£ > 0. We start by proving the identities in equation (D.6).

Let h®" € A (with h®0 = Q). If n < £+1 then ag o (v) Ah®" = 0 = Agay (v)h®".
Otherwise we calculate

(ag,e(9)Ach®™) (K1, ... k) = /n(n —1) ... (n — O)h(ki) ... h(ke) (g, hYR®" 71
= (Aeay (9)h®") (K1, - . ., ke)

If n </ —1 we find
Agal (9)h®" =0 = al, (9)Ach®" =0 =z_,(9)Ar_1h®"

If n > £ — 1 we have (in the calculation we define h®~! = 0)

1 n+1
(Agal(v)h‘g’")(kl, RPN k‘[) = Ag (\/m Z h®a ! RV h®n a+1> (kl, cey k‘g)

4
=Vnn—1)...(n=€+2) Y h(kr)...v(ka) ... h(ke)h®" !
a=1
n+1
+V/nm—=1).(n—0+2) Y h(k)...h(k)h® " @ v @ pE T
a=/0+1

—Z (A h®) (kr, Ky he)

+ W (n—1)...(n— £+ Dh(k1) ... h(ke)al (v)R®"*
= (Seze—1 (V) A1 h®") (1, ... k) + (aly ((V) Ach®™) (K, . .. ko)
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This finishes the proof of equation (D.6). If n < £ we have (—1)‘T'q o(—1)Ah®" =
0= A, L (-1)h®". Writing k = (k1, ..., ke¢) we obtain for n > ¢

(=)' Te.o(~1)Ah®" (k) = (=1)\/n(n — 1) ... (n — £+ 1)h(k1) ... h(ke)(—h)®"*
= Az(—h) " (k)
= AT (—Dh® (k).

This proves equation (D.11). Next we let 1 € C(MH! g3+ @+ and
o € Spy1. We find

(D.12) (afy o (0)3Y) (k) = a (v) (v 0 3) (k) = (Gaf, ,(v)e)) (k)
(D13)  (ak, 415(v)2e41(9)0) (2, k) = a¥ (9)v(@)e(k) = (ze+1(g)ahy o (0)0) (2, F)

where § is either nothing or f. Equation (D.12) shows (D.8) and equation (D.13)
shows (D.7) in the special case £ > 1. The ¢ = 0 case is similar. We will now prove
(D.10). It clearly holds in the ¢ = 0 case. We proceed by induction in ¢. Adding
the two equations in (D.6) we find the n = 1 case. Using the n = 1 case and the
induction hypothesis we find

Ao (V)" = 05,0(0)" AL+ ) 0e,0(v) (A (v) = ae(v) Ar) o (0)"
a=0

= 0e.0)" T A+ e r(v) 2y (V) A1 pp ()"

a=0
n min{f—1,n—a}
n—a
oA Y (M) peter (HZMI )qul
a=0 q=0 c=—1

min{¢,n+1} n+1—gq

toraeE S (1w ([ 00)
q=1 a=0

min{¢,n+1} q
n n+1 n—q—
= po,e(v)" T A + Z ( q ) Poe(v)" 0 H z;ffc(v)A[,q
q=1 c=0

as desired. To prove the last statement we let 1) € D(f(dI'y(w))). Note that

(f(dFJr(w))w)(n-M)(klv csbnge) = f(w(ka) + -0+ w(k,L+£))q/;(”+£)(k1, Y )

is in S, ¢(H®(™*). Standard integration theory yields 1™ +9 (ky,... ke,-,...,-) €
D(f(dI' ™ (w) + we(k1, ..., ke))) for almost all (ki,...,k¢) € M’ Furthermore we
observe
FAT (W) + welkr, o k)T (ks k)
= (fdl4 @)) " ks Ky
/ZHf(dF(")(w)+wg(k1,...7Icg))zp(”+£)(k1,...,Icg,-7...7-)||2du®£(k17...7k4)
M

= || Patef (dl+ (@)Y ]*< 0.
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Since (P, Agh) (K1, ... ke) = /n(n—1)--(n— €+ )T (ky, .o k..o ) we
find that Asyp € D(f(dl'ge(w) + wr)) by Lemma D.9. We calculate

(Pof(dlg e(w) 4+ we)Agh) (K1, . .., ke)

=/nn—1)--(n =L+ 1) f(d0™ (W) + we(kr, ..., k)T (kyy oo Kgyyy )
=Vnn—1)-(n— L+ D) (fdl 4 (@)) " T(ky,. .. ke, ooy
= (PoAef(dL 4 (w)) ) (K1, - . o).

This finishes the proof. |

Commutation relations with Weyl operators can also be calculated but only on
restricted domains. For future reference we prove

Lemma D.14. Let ¢ € D(N%) and g € H. Then the following holds

®
(D.14) AW (g, 1)y = /M W (g, )du(k)A1¢ + z0(g)W (g, 1)

Proof. We calculate on an exponential vector €(v)
(AW (g, e(v)) (k) = e~ I"I7/27m(090) 4y (e(w + ) (k)
= (v(k) + (k)W (g, 1)e(v)

D
- ( | . 1)du(/f)-41w> (K) + 20(g)W (g, 1)
M

Hence the result holds on the span of exponential vectors. The collection of expo-
nential vectors span a core for the number operator N and thus for NV 2. Hence a
general element in ¢ € D(N %) may be approximated in N2-norm by a sequence
{1 }22; inside the span of exponential vectors. Now Lemmas D.10 and D.11 imply

D
lim /M W (g, 1)du(k) Avpn, + 20(9)W (g, 1)n,

n—o00

52}
- /M W (g, 1)du(k) A1t + 20(9)W (g, 1)1

in L2(M, &, u, Fp(H)). Applying equation (D.4) (which hold with equality if £ = 1)
we see that W (g, 1), is Cauchy in N 2 norm and thus convergent. This implies
that W(g,1)y) € D(N2) and N2W (g, 1)¢,, converges to N2W (g,1). Appealing
to Lemma D.10 we see that

lim A;W (g, 1)y, = A1W (g,1)¢,

n—00

in L2(M, &, u, Fy(H)) finishing the proof. O
The pointwise annihilation operators are useful for calculating expectation values.
Before we start note that L2(M, F, u, F,(H)) is a tensor product H ® Fp(H) under
the identification f ® ¢ = k — f(k)¢. If w is a multiplication operator on H then
D
w®l= / w(k)du(k)
M
Dw®l)={f e L*(M,F,uFo(H)) |wf € L*(M,F, u, Fy(H))}.
In particular D(w ® 1) = D(Jw|®1). We now prove:

Theorem D.15. Let 1, ¢ € Fyp(H) and B be a selfadjoint operator on H. Let
B+ = Bl[O,oo) (B),B, = Bl(foo,o) (B) Then:
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(1) We have
(D.15)  D(dI(B4)%) N D(d(B-)%) = D(dI(|B])*)
(D.16) D(dT(|B|)) € D(dT(B4)), D(d(B-)), D(dT(B))

and dU(B,) — dD(B_) = dU'(B) on D(dL(|B))).

(2) Assume B is a multiplication operator. Then ) € D(dF(|B|)%) —
|B|z Ayp € L2(M,E, i, Fy(H)). Furthermore, for ¢, € D(dT(|B|)z) we
have

DI7) 3 oldl(By)b6,dr(B,) o) = /M Bk) (A1 (k). Av(k))duh),

oe+
along with A1y (k) € Fp(H) almost everywhere on {|B(k)|> 0}.
(3) For,¢ € D(dL(|B|)2) ND(N2) we find Ay, A1 € D(|B|2®1) and
(D.18) (dD(|B))2 ¢, dT(|B))2¢) = ((|Bl2@1) A, (| B2 @1)Arv)).

(4) For € D(dT(|B|)) ND(Nz) and ¢ € D(Nz) we find Ayp € D(|B|@1) =
DB®1) and

(D.19) (¢,dL(B)y) = (A1¢, (B ® 1) A1¢).

(5) Let v e H and Y € Fp(H). If x — v(k)(A19)(k) is Fock space valued and
integrable in the weak sense then ¢ € D(a(v)) and

(D.20) o) = / k)(A1)(k)dp(k).

Proof. We start by proving the first four statements of the theorem when B is a
multiplication operator. Let A € {B, By, B_} and note A < |B| everywhere. We
prove equations (D.15) and (D.16) as follows

D(dT'(By)?) N D(dT(B-)?)

= {(W’)
= {w("))

D(dr(|Bl)) { 1/}“”

C {(W))

The identity d['(By) — dI'(B_) = dI'(B) on D(dI'(|B])) is now a simple computa-
tion. To prove statement (2), we calculate using symmetry

Z/ B+ BEDY ™ o k) P (k- )

(Bi(kl) +o B:t(k:n))‘w(n)Pd,U/@n < OO}

n

Mn(\B(kl)H---Jr | B(ka) )™ Pdp® < OO} = D(dr(|B|)?)

(Bl + |B(kn)]) 2™ [Pdp®" < oo}

o Alk) ™ Pdp® < oo} = D(dl'(A)).

(D.21) / |B(ky) |Z [ 0 k) P )

- / BR[| Ay (k) |2 dph).
M

This shows statement (2) except equation (D.17). We have however proven equation
(D.17) in the case ¢ = ¢ and B > 0. Using linearity and statement (1), we find
equation (D.17) holds for ¢ = . One may now apply the polarisation identity to
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finish the proof of statement (2). Statement (3) follows trivially from statement (2)
when B is a multiplication operator.
We now prove statement (4). First we note that

B(k1)* + -+ + B(kn)* < (IB(k1) |+ -+ - + [B(kn)|)?

so D(dL(|B|)) € D(dI'(B2)z). This implies Aj¢) € D(|B|®1) = D(B ® 1) by
statement (3). If ¢,¢ € D(N%) N D(dI'(|B])) the formula in statement (4) will
follow from statements (1) and (2). To finish the proof, it is by Lemma D.10 enough
to find a sequence {¢,}2>, € D(N2)ND(dI'(|B])) that converges to ¢ € D(N2)
in the graph norm of D(Nz).

Let ¢ € D(N2) and let ¢,, = 1[—nn) (dT(|B]))¢. Since dI'(|B|) and Nz commute
strongly, we find ¢, € D(Né) ND(dl(|B])) and

INZ (6 — &)= |1 = L|_pn) (dT(|B))NZ |

which converges to 0. This finishes the proof when B is a multiplication operator.
For general B we may pick an L? space K and unitary U : H — K such that
UBU* = w is a multiplication operator on K. Note that I'(U) transforms dI'( f(B))
into dI'(f(w)) for any real, measurable f. This implies that statement (1) holds,
since it holds with I'(U) applied on both sides.
Let N be the number operator on F,(K) and A; denote the pointwise annihila-
tion operator with respect to F,(K). First we prove that

U @TD(U)* A T(U) = A

as maps on D(N2). Since I'(U)D(Nz) = D(Nz) so both operators are defined
on the same sets. Now a sequence that __converges in NZ-norm will be mapped by
I'(U) to a sequence that converges in N2 norm. Therefore we just need to show
the equality on a set that spans a core for Nz. The set A = {h®" | h € H,n € Ny}
satisfies this so we fix h®" € A4 and calculate

U* @ D(U)* A, T(U)AE" (k) = /(U™ @ T(U)*)(Uh) (k) (UR)E™
— \/ﬁh(k‘)h®n71
= A R®"

as desired.

We now prove statement (3). Under the assumptions in statement (3) we have
D(U)¢,T(U)p € D(AI(|w])2) N D(NZ) so Ay, Ar¢p € U* @ T(U)D(|w|3®1) =
D(|B|2®1). We may then calculate

(L (1B)* ¢, dI(|B)29) = (dU(jw])*T(U)é, dT(|]) T (U)9)
= (|| @D) AT V)9, (lw]* @) AT (U))
(1BIF@1) A9, (1BlF©1)ArY).

We now prove statement (4). Under the given assumptions I'(U)y € D(dI'(Jwl|)) N
D(Nz) and so Ayp € U* @ T(U)*D(|w|®1) = D(|B|®1). Hence
(¢,dT(B)¢) = (I'(U)¢, L' (@)L (U)y)
= (ATU)¢, (w ® AT (U)Y)
= (A19, (B®1)A1¢).
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To prove statement (5) fix ¢ € H®". Then

(.70 [ o000kt )
M
VT [ A R ) ()
Jm n
Using Fubinis Theorem we see
P [ 0 (A0 R)dil) = i (010740,
M
Hence (an41(v)" D) € Fy(H) so ¢ € D(a(v)) and the desired equality holds. [

We can now prove the pull-trough formula.

Theorem D.16. Let o € R?,np € R, f € H?" and w be a selfadjoint multi-
plication operator on H. Assume (o, f,w) satisfies Hypothesis 1,2,8 and either
n < 2 or Hypothesis 4. Define now & = E_1yey(a, f,w), Fr = F_1y,(a, f,w)
and we(k, ..., kn) = w(k1) + - +w(ke). Let X < & for all ¢ and let Ry(a) =
(Fo—=A+a)~! fora>0. Ify € D(Fy) = D(F1) and Ay(Fy — A\ is Fock space
valued for all ¢ < £, then (Apb)(k) € D(Fy) = D(F) for almost every k € M* and

2n min{i,¢}
Aﬂ/)*_Rl/ w/ Zal Z (q) Pl fv, (HP/ cRl—c— 1(fz)>A1/ qd)
q=1
(D22)  + Rz(we('))Ae(Fo = A

Assume furthermore, that Hypothesis 5 holds, n < 0 and ¢ is a ground state for
Fy. Then we may take A = & and we have App € L2(M*, E®E 1® Fy(H)).

Proof. By definition F; — A > 0 for all £ and so the resolvent R(wg(k)) exists almost
everywhere since {w < 0} is a p-zero set. Define the lifted operators on Fy (H) and
C(M?E 2L 12 respectively

Fro= (=101 (=1) +dl (W) + > aipi (f)f
i=1
2n
Fao=(~1)1ge(~1) + dle (W) + wi + > aipe o(f)’
i=1
with domains D(F}) = D(dl'y(w)) and D(Fg) = D(dlg e(w) + we). Let ¢ €
D(Fy) = D(F1) and assume A, (Fy — M)y is Fock space valued for all ¢ < £. By
Lemma D.13 we have A;) € D(Fg). Using Lemmas D.3, D.4 and D.13 we also
obtain

2n min{4,0} qg—1

_7Zai Z <q) (20 fz (HSZ cRl—c— l(fz))AE qw+Al(F07 )d)
i=1 q=1

= (Fa,e — N An.

Assume now we have proven that g, is almost everywhere Fock space valued. Let
M be a zeroset such that:

o Appis F_ya4+(H) valued on M€ (see Lemma D.10).

o go(k) = (Fi o +we(k) + A)(Ae) (k) and ge(k) € Fyp(H) for k € Me.
o R(w¢(k)) exists on M*€.
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Fix k € M¢. For any vector ¢ such that both R(we(k))$ and ¢ is in A (this set is
dense by Proposition 3.1) we find using Lemma D.7 that
(&, Agto(k))4 = ((Fe + we(k) — M) Re(we(k)) o, Aeto(k))+
= (Re(we(k))d, ge(k)) = (¢, Re(we(k))ge(k))+-
Corollary D.6 shows that Aep(k) = Ry(we(k))ge(k) for every k € M€ proving
equation (D.22) and that At is almost everywhere D(Fy) = D(Fy)-valued. We
now prove gy is Fock space valued by induction.

If £ = 1 then g, is a linear combination of A;(Fy — At and functions of the
form k +— fi(k)o(f;)i~11p which all takes values in Fock space. Hence g; is almost
everywhere Fock space valued and so equation (D.22) will hold for A;. Assume now
that g1,...,g¢—1 are almost everywhere Fock space valued. Then equation (D.22)
holds for A4, ..., Ay_1¢ and so A;¢ is almost everywhere D(Fy) = D(F})-valued
for ¢ < ¢ — 1. Using Proposition 3.1 and Lemma D.3 we find for all ¢ > 1 that

Pa,0—q([i) 1 Ar—q = k = 01 (fi) 1 (A—q) (k) = k = (i) (Ae—q¥) (k).
In particular ¢g(fi)i"9As—4v is almost everywhere Fock space valued for ¢ > 1.
Since z4(f;) and S; map Fock space valued maps into Fock space valued maps, we
see that gy is Fock space valued, finishing the proof of (D.22).
For the second part we note that A\ := cEy < & for all ¢ by Theorem 3.3 and so
we may apply the formula since (Fy — \)i = 0. We have already seen that Ay is
D(Fy) = D(Fy) valued almost everywhere. Hence the maps

k= o(fi)(Ae) (k) = o,o(fi)TAct
will also be measurable into F,(#H) for all ¢ < i. We will prove that they are square
integrable. First we note that there is a constant Cj ;; such that

l(fo) Re(we(k)IPS Coie (1 + f@)) .

Hence it is enough to prove that w, | g.||> and ||ge||? are integrable which will now
be done via induction. If £ = 1 then g, is a linear combination of elements of the
form k — f.(k)o(f.)° ' and since f. € D(w™!) the claim follows.

Inductively we now assume that wy 2||g.||?, [|gul|®> are integrable for all u < £.
Then k — o(f;)?1(Ayuv) (k) is square integrable for all 1 < i < 2n, ¢ <4 and u < £.
Now gy is a linear combination of functions of the form

(k1o k) = folkor) - felkow)e(fe) ™ (Ap®)) (ko) - - > ka(e)
where 0 € 8,1 < b < ¢ and ¢ € {1,...,2n}. Combining the observations that
ﬁ(k) < m, fe € D(w™!) and (go(fc)C*bAg_bw)(k:U(bH),..,,ka(g)) is square
integrable with respect to (ks (s11), - -, ko(e)) We find the desired result. a

Proof of Theorem 8.5 part (1). Lemma 5.1 and Theorem 3.4 shows it is enough to
prove the claim for the fiber operator. Lemmas 2.2 and A.10 show we may assume
H = L2(M, F, ) with (M, F, u) a o-finite measure space. This case is dealt with
in Lemma D.10 and Theorem D.16. ]

APPENDIX E. Q-SPACES AND FUNCTIONAL ANALYSIS
Following the approach in [8] we have

Lemma E.1. Let {fo}acr C H and w > 0 be selfadjoint on H. Assume that
(fu,g(w)f5) ER for all a,3 € I and g € My (R, R) where My 4 (R,R) is the set
of real measurable maps from R to R which are bounded on [0,00). Then there is a
real Hilbert space Hg such that H = Hg + iHg, e~ maps Hg to Hg for allt >0
and fo € Hgr for all a € 1.
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Proof. Let

H' = Spang{g(w)fa | g € Mp+(R,R),c € T}.
Note that H’ is a real Hilbert space. For every f € (H')~\{0} we define
H(f) = Spang{g(w)f | g € Ms,+(R,R)}.

It is clear that e™* maps H’ to H' and H(f) to H(f), since it maps the spanning
set to the spanning set. Furthermore we define

A={AC(H)" |H(f) LH(g) V f #g € A}.

We partially order A by inclusion and take a maximal totally ordered subset B.
Let B be the union of all elements in B. If f,g € B, then there is an element in B
that contains both f and g (since B is totally ordered). This implies H(f) L H(g)
and so B € B and is clearly the largest element. Define now

He =H & P Ha),

aEB

which is clearly a real Hilbert space containing {f, }acs and it is left invariant by
e~ ™ since each component is. Assume now towards contradiction that there is an
element f € Hi\{0}. Then for every g1, gs € My(R,R),h € B we would have

(g2(w) f, g1(w)h) = (f, g2(w)g1(w)h) = 0

and so H(f) is orthogonal to H(h) for all h € B. In particular BU {f} € A, and
so BU{BU{f}} is larger than B and totally ordered which is not possible. Hence
Hi\{0} = 0.

Let {e,}N_; be an orthonormal basis for Hg (N < o0o) which is then also an
orthonormal basis for . Hence we may write any element in H as

N N N
f = Z(CL]‘ + ibj)@j = Zajej +i2b]‘€j
j=1 j=1 j=1
as desired. This finishes the proof. a

Theorem E.2. Let Hg C H be a real Hilbert space such that H = Hg +iHr. Then
there exists a probability space (X, X,Q) such that F(H) is unitarily isomorphic to
L%(X,X,Q) via a map I. Furthermore the following properties hold

(1) If U is a bounded operator on H with |U||< 1 such that UHr C Hg then
IT(U)I* is positivity preserving.

(2) Assume w > 0 is selfadjoint and injective. If e maps Hr into Hg for
all t > 0 then Te *TW)T* js positivity improving. If inf(o(w)) > 0 then
Te 1T is hypercontractive.

(3) If v € Hg then Zw(v)T* acts like multiplication by a normally distributed
variable 3(v) with mean 0 and variance |Jv]|?.

(4) If {vn )32, C Hg converges to v € Hg then $(vy)* converges to G(v)¢ in
L1(X,X,Q) for all £ € N and ¢ > 1.

(5) Fiz o € R?" and ¢,7 > 0 and define

K ={f € H*™ | (a, f) satisfies part (1) of Hypothesis 1 and | fi||< 7}
There is a constant C := C(«a,r,q) such that for all f € K we have

—tw

efr D] ,< C,

where f]l(a, f)= 2321 a;o(fi)-
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Proof. Everything in the first three points can be found in [4] and [17]. To prove
the fourth part note that for any N (0, ¢?) distributed variable X we have

X 1llg= o* El1X/a|*4]"/4

Since X /o is N(0,1) distributed we find that E[|X/c|9%]'/9 depends only on ¢ and
a. Write B(g, a) for this constant. Then we may calculate using Holders inequality

—1
[1B(vn)’ = 3(0)llg <D I13(wa) 77 Gvn — v)B(0) |l
j=0
271 . .
< 1) T 1361 B (vn — ) 13g I F(0)7 (139
j=0

—1
<Y B(3q,£—j—1)B(3¢,1)B(3q, j)l|[val 7 o, — vll]Jo]’
j=0

showing the desired result.
We now prove statement (5). The sum from j = 2 to j = 2n is uniformly
bounded below by a constant C; by Lemma 4.1. Thus we now find

”efﬁz(a,f)qu e=C1 Ele= 1 ®(f]1/1 = efcl(e*qzafl\fl\\Q/Q)l/q < e~ Cre—r?ala/?,
This finishes the proof. a

Lemma E.3. Let {A,}22, be a sequence of selfadjoint operators on the Hilbert
space ‘H converging to A in norm resolvent sense. If B is a bounded selfadjoint
operator on H then {A, + B}52, will converge in norm resolvent sense to A+ B

Proof. For A > || B|l+1 we have [ B(A—i\) !, | B(A, —iX) || < L7k and so we
may calculate

(A+B—i\) (4, +B—iN!
=D (A—iN) T (B(A—iX) ) = (A, —iX) T (B(A, — i)
k=0
now each term in the series converge and for fixed k we may estimate

k
104 = ) (BA = i0) ™) = (A, =0 (B(An —iX) < 3 (%)

which is summable. The conclusion now follows by dominated convergence. O
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Abstract: In this paper we investigate a family of models for a qubit interacting
with a bosonic field. More precisely, we find asymptotic limits of the Hamilto-
nian as the strength of the interaction tends to infinity. The main result has
two applications. First of all, we show that self-energy renormalisation schemes
similar to that of the Nelson model will never give a physically interesting result.
This is because any limit obtained through such a scheme would be independent
of the qubit. Secondly, we find that exited states exist in the massive Spin-Boson
models for sufficiently large interaction strengths. We are also able to compute
the asymptotic limit of many physical quantities.

1. Introduction

In this paper we consider a family of models for a qubit coupled to a bosonic field,
which we will call spin-boson type models. These models has been investigated
in many papers, so many properties are well known. Asymptotic completeness
along with basic spectral properties were discussed in [4] and [22]. Existence and
regularity of ground states were discussed in [1],[8],[11] and [13]. Furthermore,
properties at positive temperature were discussed in [15] and [18].

One of the main ingredients in the papers [1] and [11] is the so-called spin-
parity symmetry. In the paper [3], this symmetry is used to decompose the
Hamiltonian into two so-called fiber Hamiltonians, which are both perturba-
tions of Van Hove Hamiltonians. This symmetry is also essential to the analysis
conducted in this paper, and we will need the results from [3].

To avoid a full technical description in the introduction, we will specialise
to the 3-dimensional Spin-Boson model. In this case the bosons have dispersion
relation w(k) = \/m?2 + ||k[|2 with m > 0 (here k € R3). The interaction between
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the field and the qubit is parametrised by the functions

xa(w(k))
vga(k) =g (k)
where {xa}e(0,00) is a family functions such that vy 4 € D(w1/2). We will
assume that A +— x4 (k) increases to 1 as A tends to infinity for all k € R3. Let
2n > 0 be the size of the energy gap in the qubit and Hy 4, be the Hamiltonian
of the full system. Then we show the following (See corollaries 4.4 and 4.3 below)
two things:

1. First we consider self-energy renormalisation schemes. In such schemes one
defines fg.,(A) = inf(o(Hg 4,,)) and proves that {Hy 4, — fg,n(A)}Ae(o,oo)
converges in strong or norm resolvent sense to an operator H;;n. Using Corol-
lary 4.4 and Lemma 5.5 below we see:

(1) A= inf(o(Hga,)) + w21 u>13vg,4]/* has a limit independent of 7.
(2) (Hgam— w0 os1yvg,all+0) ™" = (Hg, a0~ [l ™ *Lius1yvg,al*+i) !

converges to 0 in norm as A tends to oo .

From this we conclude that if a self-energy renormalisation scheme exists then
H, ;f?l“ must be independent of n, which is not physically interesting. In other
words, the contribution from the qubit disappears, as the ultraviolet cutoff is
removed. This result is similar to the result in [6], where it is shown, that the
mass-shell in a certain model becomes ”almost flat” as the ultraviolet cutoff
is removed. Thus the contribution from the matter particle vanishes as the
ultraviolet cutoff is removed.

2. If m > 0 we can take g to infinity instead. In this case the result yields that
an exited state exists for g very large. Furthermore, the energy difference
between the exited state and the ground state converges to 0. Taking g to
infinity is not a purely mathematical exercise as experiments can go beyond
the ultra deep coupling regime. This was achieved by Yoshihara, K. et al. and
published in Nature Physics [25].

We will also prove two smaller results. The first result is about regularity of
ground states with respect to the number operator. The result only applies to
the infrared regular case, but is close to optimal and extends the results found in
[13]. The second result is a condition under which the massive spin-boson model
has an exited state in the mass gap.

2. Notation and preliminaries

We start by fixing notation. If X is a topological space we will write B(X) for
the Borel o-algebra. Furthermore if (M, F, ) is a measure space we will for
1 < p < oo write LP(M, F, u) for the corresponding LP space.

Throughout this paper H will denote the state space of a single boson which
we will assume to be a separable Hilbert space. Let S,, denote projection of H®"
onto the subspace of symmetric tensors. The bosonic (or symmetric) Fock space

is defined as

Fo(H) = @D Sn(HE™).

n=0
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IfH = L?(M, F, u) where (M, F, i) is a o-finite measure space then S, (H®") =
L2, (M™, F&" pu®"). An element ) € Fy,(H) is an infinite sequence of elements

which is written as ¢ = (™). We also define the vacuum 2 = (1,0,0,...).
Furthermore, we will write

Sn(f1®"'®fn):f1®s"'®sfn~

For g € H one defines the annihilation operator a(g) and creation operator a'(g)
on symmetric tensors in F(H) by a(g)2 = 0,a'(g)2 = g and

1 < .
a(g)(fl Qs+ Qs fn) = %;(gv.ﬁ)fl (R fz Qs+ s fn
aT(g)(fl ®s"'®s fn) = Vn+19®s fl ®s"'®s fn,

where ﬁ means that f; is omitted from the tensor product. One can show that
these operators extends to closed operators on F,(H) and that (a(g))* = af(g).
Furthermore we have the canonical commutation relations which states

[a(f),a(9)] = 0 = [aT(f), aT(9)] and [a(f),al(g)] = (,9)-

One now introduces the selfadjoint field operators

©(g) = alg) + a'(g).

Let w be a selfadjoint and non-negative operator on H with domain D(w). Write
(1®)*tw(®1)"~* for the operator By @ ... ® B,, where By, = w and B; = 1 if
J # k. We then define the second quantisation of w to be the selfadjoint operator

dI'(w) =0® @ (Z(l@)klw((@l)nk) s, (1omy - (2.1)

n=1 \k=1

If w is a multiplication operator then dI'(w) acts on elements in S, (H®") as
multiplication by wy,(k1,...,k,) = w(ki) + -+ + w(k,). The number operator
is defined as N = dI'(1). Let U be unitary from # to K. Then we define the
unitary from Fy,(H) to Fp(K) by

rU)=1e@PU |s,mem,

n=1
For n € Ny = NU {0} we also define the operators dI"™ (w) = dI'(w) |s, (en)
and I'™(U) = I'(U) |s, (en). See [3] for a proof of the following lemma:

Lemma 2.1. Let w > 0 be a selfadjoint operator defined on the Hilbert space H
and let m = inf(o(w)). For n > 1 we have

c(@dl™ W) =+ 4 M [ N € a(W)],
inf(o(dI'™ (w))) = nm.

Furthermore, dI'(w) will have compact resolvents if and only if w has compact
resolvents. Furthermore dI'™ (w) is injective for n > 1 if w is injective.
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We now introduce the Weyl representation. For any g € H we define the corre-
sponding exponential vector
%) @n
g

e(g) = —.
9= =

n=0

One may prove that if D C H is dense then the set {e(f) | f € D} is a linearly
independent total subset of Fy,(H). Let U(#H) be the unitaries from H into H.
Fix now U € U(H) and h € H. The corresponding Weyl transformation is the
unique unitary map W (h,U) satisfying

W(h,U)elg) = e IM*/2=Ua)¢(h 1 Ug).

for all g € H. One may easily check that (h,U) — W (h,U) is strongly continu-
ous. Furthermore one may check the relation

W (hy, U)W (hy, Us) = e~ (b Ushe) gy (g UL ) (o, Uy)), (2.2)

where (hy,Uy)(he,Us) = (hy + Urhe, U1Us). If w is selfadjoint and f € H then
we have

eitdl"(w) _ F(eitw) — W(U,eitw)
ePC) —w(tf,1). (2.4)
The following lemma is important and well known (see e.g [2] and [5]):

Lemma 2.2. Let w > 0 be selfadjoint and injective. If g € D(w™1/?) then ¢(g)
is dI"'(w)'/? bounded. In particular ¢(g) is N'/? bounded. We have the following
bound

lp(g)ll< 2[[(@™2 + 1gllll(dI (w) + 1) >3]

which holds on D(dI'(w)'/?). In particular ¢(g) is infinitesimally dI"(w) bounded.
Furthermore o(dI'(w) + ¢(g)) = —|lw™2g||>+o(d(w)).

3. The Spin-Boson model

Let 0,0y, 0, denote the Pauli matrices

(01 (0 —i (10
92=\10) = \io) 7 0o-1
and define e; = (1,0) and e_; = (0,1). The total system has the Hamiltonian

H,y(v,w) =101+ 1Qdl(w) + 0, ® ¢(v),

which is here parametrised by v € H,n € C and w selfadjoint on H. We will also
need the fiber operators:

Fy(v,0) = nI'(~1) + d0 (@) + ¢ ().
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acting in Fp(H). If the spectra are real we define
E,(v,w) := inf(o(Hy(v,w)))
&y (v,w) = inf(o(F(v,w))).
For w selfadjoint on ‘H we define
m(w) = inf{o(w)} and Mess(w) = Inf{oess(w)}-
Standard perturbation theory and Lemma 2.2 yields:

Proposition 3.1. Let w > 0 be selfadjoint and injective, v € D(wil/z) and
n € C. Then the operators Fy(v,w) and Hy(v,w) are closed on the respective
domains

D(F,(v,w)) = D(dI'(w))

D(H,(v,w)) = D(1 ® dI'(w))

and given any core D of w the linear span of the following sets

J(D):={2}U | J{A @ @ fa | f; € D}

n=1
j(D) ={A®fe| fr €{er,e 1}, fo e T(D)}

is a core for Fy(v,w) and Hy(v,w) respectively. Furthermore both operators are
selfadjoint and semibounded if n € R and they have compact resolvents if w has
compact resolvents.

From the paper [3] we find the following theorem:
Theorem 3.2. Let ¢ = (¢1,0-1) = €1 @ ¢1 + e_1 @ ¢_1 be an element in
Fo(H)? = Fo(H) @ Fy(H) ~ C? @ Fy(H). Write d; = (7)) fori € {~1,1}. Let
i € {—1,1}. Define ¢, = (d)z(k)) where

O qﬁgk) k is even

: o™ ks odd

and V(¢1,6-1) = (¢1,6_1). Then
(1) V is unitary with V* = V.

(2) If w > 0 is selfadjoint and injective then V1 @ dI'(w)V* = 1 ® dI'(w). If
furthermore n € R and v € D(w™/?) then
VH,(v,w)V*=F_,(v,w) ® F,(v,w).
(3) Let w > 0 be selfadjoint and injective, n € R and v € D(w~'?). Then
E,(v,w) = &_y(v,w) and Hy,(v,w) has a ground state if and only if the

operator F_jy (v,w) has a ground state. This is the case if m(w) > 0, and it
is mon degenerate if n # 0. Also

inf(UCSS(FInI(an))) = 5—\7]\(”»‘”) + Miggs (W)
inf(Gess(Hy(v,w))) = Ey(v, w) + Megs(w)
and &y (v,w) > E_jy(v,w) if and only if both n # 0 and m(w) # 0.
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(4) Let w > 0 be selfadjoint and injective, n € R and v € D(w~Y?). If ¢ is a
ground state for Hy,(v,w) then

V¢: € _sign(n) ®¢ 7)75 0
e1®Y 1+e1®yYr =0

where v is a ground state for F_,(v,w) and v1,v_1 are either 0 or a ground
state for Fo(v,w).

4. Results

In this section we state the results which are proven in this paper. Throughout
this section w will always denote an injective, non negative and selfadjoint op-
erator on H. Furthermore, we will write m = m(w) and Mess = Mess(w). The
main technical result is the following theorem:

Theorem 4.1. Let {vg}ge(0,00) C D(w™/2) and P,, denote the spectral measure
corresponding to w. Assume that there is m > 0 such that:

(1) {Po([0,m])vg tge(0,00) converges tov € D(w™1/2) in the graph norm of w=1/2.

(2) lw™LP, (1, 00)v,|| diverges to 0o as g tends to infinity.

Then the g-dependent family of operators given by

W (w ™t P, (1, 00)vy, 1)y (vg, )W (WL P,y (7, 00)vg, 1)* + [lw ™2 P, (2, 00)v, |2
= nW (2w ' P, (M, 00)vy, —1) + dI'(w) + (P, (0, m])v,) (4.1)

= F, m(vg,w)

is uniformly bounded below by —|n|—sup e (o,00) | Po(0, m])vy||*. Furthermore,

{ﬁn,ﬁl(vww)}ge(om) converges to dI'(w) + p(v) in norm resolvent sense as g
tends to oo.

The assumption in part (1) is critical. Divergence where w is small can lead to
problems. This is proven in proposition 5.8 below.

In the strongly coupled Spin-Boson model one usually has v, = gv where
7 € D(w™?) and g € (0,00) is the strength of the interaction. We can now
answer what happens as g goes to co.

Corollary 4.2. Let v € H, n € R and assume m > 0. Then there exists gy > 0
such that £,(gv,w) is a non degenerate eigenvalue of F,(gv,w) when g > go.
Furthermore, one may pick a family of normalised vectors {g}ge(g9,00) Such
that g — g is smooth, Fy,(gv,w)y = E,(gv,w)py and

~ — el TR gy | =
Jim [l — e e(=gw™ 0| =0,
2y, =112
i Lo M) — gl ol _
g—o0 g

; 2 —1/2, 12 _
Jim (& (gv,) + gl /20]) =0.

Ifn < 0 then g = &,(gv,w) + g?||w™'/2v]| is strictly increasing.



B.4. Results

97

Asymptotics in Spin Boson type models 7

Corollary 4.3. Let v € H and n € R. If m > 0 there is go > 0 such that
H,(gv,w) has an exited state with energy Ey,(gv,w) for g > go. Furthermore

lim (E,(gv,w) — Ey(gv,w)) = 0.

g—o0

Corollary 4.4. Assume H = L*(M,F,u) and w is a multiplication operator
on this space. Let v : M — C is measurable and that {x4}4ec(0,00) 5 @ col-
lection of functions from R into [0,1]. Assume g — xq4(x) is increasing and
converges to 1 for all x € R. Assume furthermore that k — xg4(w(k))v(k) €
D(w™'/?) and that there is . > 0 such that ¥ := li,<myv € D(w™/2). If k
w(k‘)*lv(k)l{wx}(k) ¢ H there are unitary maps {Vg}ge(o,oo) and {Ug}ge(o,oo)
independent of n such that:
(1) {V, Fy(vg, W)Vq*+||w_l/21{w>ﬁl}vgHQ}gE(O,oo) converges in norm resolvent sense
to the operator dI'(w) + ¢(V) as g tends to infinity.
(2) {UgHy(vg,w)Up + w215 m 10012 Y ge(0,00) is uniformly bounded below and
converges in norm resolvent sense to the operator
H = (dI'(w) + ¢(v)) ® (dI'(w) + ¢(v))
as g tends to oo. This implies
(Hn(vgvw)+||W_1/21{W>77L}Ug“2+i)_1_(HO(Ung)+Hw_1/21{w>ﬁl}”g|‘2+i)_l
will converge to 0 in norm as g tends to co.

To prove a result similar to Corollary 4.2 in the massless case one needs to work
a bit harder. First we shall need

Theorem 4.5. Assume H = L?>(M,K,v) and w is multiplication by a measur-
able function. Let v € D(w™/?), g € (0,00) and n < 0. Assume that F,(gv,w)
has a ground state 14, = (1/)5"73) Then

(1) We may choose 14 ,, such that ¢é?7), >0 and (—1)"5®"1/}5(,Z? > 0 almost every-

where on {v # 0}".
(2) Almost everywhere the following inequality holds

9" vk v(kn)|
Vil w(k) - w(kn)

In particular wén,? is zero outside {v # 0}" almost everywhere and if v €
D(w™1) then H?j}éﬁ?“ goes to zero like g" for g tending to 0.

(3) Assume v € D(w™1), f: Ng — [0,00) is a function and assume F,(gv,w) has
a ground state for all n < 0. Then H,(gv,w) has a ground state ¢4, for all
a € R and we have

o0

n

SR o AQ)
n=0

{8 (ko k)<

292n||w—lv||2n

n <00 = Yy € D(f(N)) V<0

<~ ¢g,a S D(l ® f(N)) Ya € R

In particular ¢g,, € D(VN!) and ¢g, € D(1 ® Y N!) for allp > 2.
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This extends the result which was proven using path measures in [13]. Similar
point wise estimates can also be found in [7]. In the last two results we will
assume H = L2(]RV7 B(R"), \,) where ), is the Lebesgue measure. Furthermore
we assume w is a multiplication operator.

Theorem 4.6. Let v € D(w™!) and n < 0. Then there is a family {tg}qer of
normalised ground states for Fy(gv,w) and

lim (€,(gv,w) + ¢°[lw™"/?0]*) = 0.

g—00
lim (g, N1bg) —g2HUJ_1UH2 _
g—ro0 g2

0.
The following is a simple criterion for the existence of an exited state in the
massive Spin-Boson model.

Theorem 4.7. Assume m > 0 and

I
/Ruw(k)imdkf . (4.2)

Then both F,(v,w) and F_,(v,w) have a ground state and Hy,(gv,w) will have
an excited state. The condition is satisfied if w € C?*(R¥,R), v < 2 and there is
zo € RY such that w(xg) = m and |v| is bounded from below by a positive number
on a ball around xy. This holds for the physical model with v < 2.

5. Proof of the main technical result
In this section we shall investigate operators of the form
Fy(v,w) := I'(w) + W (v, ~1)
indexed by n € R, v € H and w selfadjoint and non negative on H.

Proposition 5.1. Assume n € R, v € H and w is selfadjoint, non negative and
injective on H. Then F,(v,w) is selfadjoint on D(dI'(w)). Furthermore Fy(v,w)

is bounded from below by —|n| and F,(v,w) has compact resolvents if w has
compact resolvents.

Proof. Using equation (2.2) we see
W (v, =)W (v, —1) = e~ (=D Wy — v, (=1)%) = W(0,1) = 1

so W(v,—1) = W(v,—-1)"t = W(v,—1)* since W(v,—1) is unitary. Hence
F,(v,w) = dl'(w) + nW(v,—1) is selfadjoint on D(dI'(w)). Furthermore the
lower bound follows from dI'(w) > 0 by Lemma 2.1 and —1 < W(v,—1) < 1. If

w has compact resolvents, then so does dI'(w) by Lemma 2.1 and hence
(Fy(0,0) + 1)~ = (A1) + 1)~ + 5(d0 (@) + ) W (0, ~ 1) (Fy (0,0) + )"

will be compact. O
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Lemma 5.2. Assume that {vg}ge(0,00) 8 @ collection of elements in H such that
llvgll diverges to co. Then W (vg, —1) converges weakly to 0 as g goes to co.

Proof. By [26, Theorem 4.26] it is enough to check a dense subset. By linearity
it is enough to check a set that spans a dense set. Hence it is enough to check
exponential vectors e(g) for any g € H. We calculate

—l||v 2 Vg
(e(g1), W (vg, —1)e(gz)) = e~ IVal7 /24000920 (e(g1), e(vy — g2))
= e*H”gH2/2+<179792>+(91aUg>*<91,92>’

which converges to 0. O

The following Lemma contains all the technical constructions we need. The tech-
niques goes back to Glimm and Jaffe (see [9]) but has also been used in [3].

Lemma 5.3. Assume w is selfadjoint, non negative and injective on H. Let P,
be the spectral measure of w and let m > 0. Define the measurable function
fi:R—=R

]

fr (f) = :L'l(oyﬁl] (:c) + Z(n + 1)2_k1(,127107(”4_1)2710](7(77%00) (.7;')

n=0
along with wy, = [ fu(A\)dP,(X). Then the following holds

1. F(v,wy) converges to Fy(v,w) in norm resolvent sense uniformly in v.

2. Let {vg}ge(0,00) be a collection of elements in P,((m,o0))H. For each k € N,
there are Hilbert spaces Hi i, Hak, selfadjoint operators wip,war > 0, a
collection of elements {Ug 1 }ge(0,00) C H1,k and a collection of unitary maps
{Uyg.k}ge(0,00) suCh that

Ugie - Fo(H) = Fo(H1 i) B (@ Fo(Hi k) ® Sn(('Hgyk)Q@n)) ,
n=1
w1k > 27% has compact resolvents, ||vg||= ||Vk.q|| for all g >0 and

ug,kﬁn(vgv wk)u;,k :ﬁn(ﬁgﬁkv w1,k)
& @ (Flotyn@o ) 91410 d ™ (wa ) )
n=1

for alln € R.

Proof. (1): We may pick a o-finite measure space (M, F, 1) and a unitary map
U:H — L*(M,F,pu) such that & = UwU* is multiplication by a strictly
positive and measurable map. Conjugation with the unitary map I'(U), Lemma
Al and UwiU* = fi,(Uw,U*) gives us

[(Fy(v,w1) — €)1 = (Fy(v,w) — )71
= |(Ey(Uv, fu(UwU*)) = &)~ — (B, (Uv,UwU*) — €)7Y|
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for all £ € R\C. Hence we may assume w is multiplication by a strictly positive
map, which we shall also denote w. Using standard theory for the spectral calcu-
lus (see [23]) we find wy, is multiplication by wg(z) := fr(w(x)). Write w = weo
and note that wy, > 0 for all k € NU {co} by construction. Furthermore,

27k

<= (5.1)

wi(x) — w(x)
et w(x)

Now dI"™ (wy,) acts on L2

sym

(M™, Fer 8™ like multiplication with the map

W (@1, wn) = wi(@) + - + wil(an)

for all k € NU{oo}. Equation (5.1) gives that |w(™ (x)fwlin)(wﬂﬁ 2= km 1w ()
for all z € M” so D(dI'™(w)) € D(dI'™ (wy,)) for all k € N and n € Ny. Fur-
thermore we find for ¢ € D(dI'™ (w)) that

I(dr ™ (w) = dT ™ (@)l < m~ ' 27* |0 (W) .
Hence for all ) € D(dI'(w)) we have ¢ € D(dI'(wy)) and

_ —k
[(Fy (v, w) = Fy (v, wi) )= [[(dD(w) — dI"(wr))¥[|< %lldf(w)¢\\~
Let € > 0, £ € C\R. We now estimate
[((Fy(v,w) + )71 = (By(v,w) + € )l

1 F, -1
< m”(df(w) — dI(wi)) (Fy (v, ) + &)~ ||
1 ok N

< mﬁ”df(w)(lfn(v,w) +&) |
1

< i (1 T + ) 191
~ [Im(&)| m Mm($)]  [Im(&)]
which shows norm resolvent convergence uniformly in v.

(2): For each k € N we define

Cy = {c € No|P..x := P, ((m,00) N (27", (¢ +1)27]) # o}

For each ¢ € Cy, let K., be a Hilbert space with dimension dim(P, ;) —1. In case
this number is infinity we pick a Hilbert space we countably infinite dimension.
Define K = P, (][0, m])H and note that K reduces w. Define the spaces

Hl,k = L2(Ck,B(Ck), Tck) = 82(Ck) and Hz_’k = ’C @ @ ’Cc,k
ceCl
where 7¢, is the counting measure on C},. We now define wy ; to be multiplication

by the map fi(c) = (c+ 1)27% in H; 4 and

wop =wl|c® @ (e+1)27*.
ceCy,
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Note wy > 27k and wa > 0 since Cj C Ny. Write Cp, = {nzk}fil where
K € NU {oco} and n; s < nit1 Then {1, 3}X, is an orthonormal basis of
eigenvectors for wy  corresponding to the eigenvalues {(n;  + 1)27*}X . This
collection of eigenvalues is either finite or diverges to infinity so wi  will have
compact resolvents. For each g € (0,00) and ¢ € Cj, we define the vector

Pe,kvg
Vg = {Pu,kvgw Pervg 70
c,9,k

Some normalized element in P, ;H otherwise

and note {¢¢ g | ¢ € C} is an orthonormal collection of states. We also define

Hc,g,k’ = {¢ € PL,kH’d} € wc,g,k‘}

and note {H, 4 | ¢ € Cy} consists of orthogonal subspaces. We then define

Hi,gk = Span{tc gk | ¢ € Cp} and Hogr = @ ﬁw,k.

ceCl

Now w > 0 is injective and so

I=P,((0,m) + > Poi = Po((0,]) + > Py,
c=0 ceCy

which implies H = Hi, g1 ® K ® Ha,g,x- Note that vy € Hi 4 by construction.
Let B. 4,1 be an orthonormal basis for H. 4 1 and let By = Ucec, Be,g,x Which is
an orthonormal basis for Hs 4 1. Let B C K be an orthonormal basis for X and
define By, = {tpc, g% | ¢ € C} which is an orthonormal basis for Hi 4 5. Define
D = By U By U B which is an orthonormal basis for .

Let V¢ 4. be a unitary from H, g 1 to KCc i, which exists since the spaces have
the same dimension. Define Qg r : H1,g,x — H1,k to be the unique unitary map
which satisfies Qg x%e,g,kx = 1{c}. Then we define

Ugh =Qer®1& @ Vege : H = Hip @ Ho ke
ceCl

We now prove that

Ug*,kwl,k D wa Uy = wi- (5.2)
Let ¢ € Be gx U{%cg,1} for some ¢ € Cj. Using the functional calculus we find
1 = P, ;¥ € D(wy) and

with = wpPegth = (c+ 1)27 Py g i = (c+ 1)27 %4, (5.3)

Furthermore for ¢ € B C K we find that ¥ € D(w?}) for all p € N and we have
the inequality ||wPe||< mP||¢|. In particular D is an orthonormal basis for H
consisting of analytic vectors for wy so D spans a core for wy. Hence it is enough
to prove equation (5.2) on D.



102 Paper B

12 Thomas Norman Dam, Jacob Schach Mgller

Let ¢ € By U By, and pick ¢ € Cy, such that ¢ € Begr U{tegr}. Ifp =
lﬁc’gyk then Ug7k¢ = (1{6}70). Now 1{6} (S D(wl,k) with wl,kl{c} = (C+ 1)2_k1{c}
SO Ug,]ﬂ/) = (1{(;}7 0) S D(wlyk D w27k) and

Uy e @ w2, Ug k) = (¢ + 127707 1 (11ey,0) = (¢ + 1)27% = wy)

by equation (5.3). If ¢ € B. 4 then Uzt = (0, V, 4,£¢). By definition we have
Veg ik € Kep C D(ws) with wa Ve g1t = (c+ 1)27*V, ;19 Hence U, 19 =
(0, Vc,gyk’lﬁ) S D(wl,k @WQ,]C) and

Up wwik @ wo kUgutp = (c+ 12707 1 (113,0) = (c+ 1)27 %9 = wyt)

by equation (5.3). If » € B C K we have ¢ € D(wy) ND(w) and wgy) = wyp € K.
In particular Uy ¢ = (0,%) € D(wi 1 ®wa k) and Uy pwitp = (0, wrp) = (0,we).
Thus we find

Uy w1k @ wa Uy pth = Uy 1 (0,wt)) = wip.

This proves equation (5.2). As earlier noted vy € Hi g1 50 Ug vy is of the form
(Vg,k,0) with ||vg.x||= ||vg||]. Using Lemma A.1 we find

P (Us o) Fy (g, W) D (Ug )" = F(Tg 0,1 @ i 2).
Letting Ly be the isomorphism from Lemma A.3 we see that
Llﬁn((gg,k, 0), Wk,1 D wk’g)Lﬂf :dF(le) ®R1+1® df(wh)
+ W (Vg r, —1) @ I'(=1).
Letting Lo be the isomorphism from Lemma A.4 we see that
LoLy Ey (3,1, 0), wi1 @ wy2) Li L3
= dl (i) + A0 (wi2) + TO(=1) e gW (T 0, —1)@
P dr(wr) @1+ 1@ dl™ (wg2) + W Ty, —1) @ I (-1)

n=1
= ﬁn(ag’k,w;@l) [a5) @ﬁ(—l)"n(ﬁgﬁkawk,l) ®RI1I+1® d[‘(”)(wkﬂg)
n=1
where we used I'"™)(—1) = (=1)™. Hence Uy j, = Lo L1 (U, ;) will work. O

Lemma 5.4. Assume that w is selfadjoint, injective and non negative operator
on H which have compact resolvents. Let {vg}ge(0,00) be a collection of elements

in H such that ||vg|| diverges to co. Then Fy(vg,w) converges in norm resolvent
sense to Fy(0,w) = dI'(w) as g goes to oo for all n € R.

Proof. We calculate

(Fy(vg,w) — i) = (dl(w) =)
= n(ﬁn(vg,w) - i)ilw(”gv —1)(dI'(w) — i)
— (Fy(0g,) — )W (0~ )AL () — ) W (0, ~1) (AL (@) — 1)
+ 02 d0(w) — i)W (v, —1)(dT(w) — )L

-1
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This implies

(Fy(vgyw) = 8) ™ = (dT(w) =) 7|
< (Il+ D)l (AL (w) = D)7 W (vg, =1) (A (w) — )71,
which converges to 0 by Lemma 5.2 and compactness of (dI'(w) — 1)L O

Lemma 5.5. Let H be a Hilbert space. Let {A,}22, be a sequence of selfadjoint
operators on H that are uniformly bounded below by ~y. Let A be selfadjoint on
H and bounded below. Then A,, converges to A in norm resolvent sense if and

only if et converges to et in norm for all t < 0. In this case inf(a(A,,))
converges to inf(o(A)).

Proof. Norm resolvent convergence along with existence the uniform lower bound
implies convergence of the semigroup (see [20, Theorem VIII.20]). To prove the
converse we apply the formula

A—N)"y = ¥ et dt
(A=nte= [y

for all A < v along with dominated convergence. To prove the last part note that
by the spectral theorem

inf(0(4)) = ~ log([lexp(~4)[) = lim —log(lexp(~A,)[) = lim inf(o(4,))
finishing the proof. O

Lemma 5.6. Assume that w is a selfadjoint, injective and non negative operator
on H. Let {vg}ge(0,00) be a collection of elements in H such that |lvg|| diverges
to co. Assume there is m > 0 such that P, ((0,m|)vy = 0 for all g where P,

is the spectral measure corresponding to w. Then F,(vy,w) converges in norm
resolvent sense to Fy(0,w) = dI'(w) as g tends to oo for all n € R.
Proof. Foreach k € Nlet Hy i, Ho k, W, wi,k, w2,k and vy i be the quantities from

Lemma 5.3 corresponding to the family {vg}4¢c(0,00) and the number m > 0. For
each n € Ny we define

Finhgn = Fieg@gpwi1) @1+ 1@ dI ™ (w9).

By Lemma 5.3 statement (1), it is enough to prove that ﬁn(vg,wk) converges to

dI'(wy) in norm resolvent sense as g tends to co. Noting that F,(vg,wr) > —[7]
for all ¢ we may use Lemma 5.5. Using the unitary transformations in Lemma
5.3 we see

lexp(—t% (vg, wr)) — exp(—tdI (wy))l|

= sup {Hexp(_tF(fl)"n,k,g,n) - exp(_tFO«,k,ym)H}
n€eNg

= sup {[|exp(—tF{—1yny (g, wr,1)) — exp(—td (w1 ) llexp(—tdI ™ (wa,r)) 1}

neNg

< Sup {llexp(—tF(_1yny (Tg 1, wi1)) — exp(—tdD (w1 )]}
neNg

= ngﬁg}{HeXp(—tf(fl)nn(iq,hwk,l)) —exp(—tdl'(w1 )|}

which converges to 0 by Lemma 5.4. This finishes the proof. O
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Lemma 5.7. Assume that w is selfadjoint, injective and non negative operator

onH. Let v € D(w™'/?) and f € D(w). Then
W (£, 1)E, (0,0)W (£, 1) =nW (2f,~1) + dI'(w) + p(v — wf)
T w2 |2 2Re((v, ).
Proof. Use equation (2.2), (2.3) and Lemma A.2. O
We can now prove Theorem 4.1.

Proof (of Theorem 4.1). The formula in equation (4.1) is obtained via Lemma
5.7 and the lower bound is trivial from Lemma 2.2. For ¢ € (0, c0) we will write
P.=P,((c,0)) and P. =1— P. = P,((0,c]). Note that Pvg, Pev, Pevg, Pov €
D(w~?) holds trivially by the spectral theorem. Define for 0 < ¢ < m and
nelk

g = W (2w Povg, —1) + dT(w) + (Pevg) + o™/ Pu((e, ] vy |
Apeg = W (2w~ Povg, =1) + dI'(w) + [lw™ 2 Py (e, m))vg ||

and note they are all selfadjoint on D(dI'(w)) by the Kato-Rellich theorem and
Lemma 2.2. For ¢ € D(dI'(w)) we have ||[(1+dI'(w))/29[|< ||(1 +dI'(w))¥| by
the spectral theorem. Using this and Lemma 2.2 we find for all ¢ € (0,m)]

(P +D7" = (Apeg +0) 7'
< H‘P(ﬁcvg)(‘znyc,g +i)7 |
< 2[Pe(1+w )|l (1 + AT (@) (Ayeg + )7
<2 Pe(l+w™ ) [[(1+ 1+ 1+ [nl+]lw™ P ((0,m] vy ).

where we in the last step used |w™'/2P,((c,m])v,||>< [lw™ 2P, ((0,m])v,]%.
We now define

Cre=3+nl+ sup [w™/2P,((0,m])vy|?

9€(0,00)
which is finite since w™/2 P, ((0,m])v, is convergent. Let B = dI'(w) + ¢(v) and
Co = ||[(1 4+ dI(w))(B +1i)7!||. We estimate using Lemma 2.2
[(Fomg + )" = (B+) || < llo(Prmvg — 0)(B+i)~"|
<21+ w )Py —v)l|Co
Let U. = W (P, ((c1,m])v,1) for some ¢ € (0,m]. Using equation (2.2) and

Lemma A.2 we obtain U.F), 7,,Uf = F,, c 4 for all n € R. Using this transforma-
tion and the previous estimates we find for all ¢ € (0,m] and g > 0 that

”(Fn,ﬁz.,g + i)_l - (B + i)_lngu(ﬁn.c,g + i)_l - (ﬁO,C,g + i)_IH
| (Fo g + )7 = (B+0) 7|
<2(2C [[Pe(1+w™?)u,))
(A + )71 = (Ao, +1) 71|
+205[|(1+w™?) (Prvg —v)|
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Noting that
IPe(1+w™ 2oy |[< |1+ w™2) (Prvg — v)[[+]|Pe(l + w2
we see that

lim sup|(Fy g +1) " = (B+ 1)< 4C1|[Pe(1+w™ /2o

g—0o0

for all ¢ € (0,7m] by Lemma 5.6. Taking ¢ to 0 finishes the proof since Fy, 5.4 =
F, m(vg,w). O

Proposition 5.8. Let H = L(R3, B(R?),\®3),w(k) = |k|, vy = w™ /2151 < <2}
and n < 0. Then ||w™ vgy|| converges to co for g going to oo, but there is h # 0
such that ﬁn(hvg,w) =dI'(w) +nW (hw™ vy, —1) does not go to dI'(w) in norm
resolvent sense.

Proof. Define v = w*1/21{|k|g2}. It is easy to see that |w™'v,|| goes to oo as g
tends to infinity. Assume that convergence in norm resolvent sense holds for all
h # 0. Applying Lemma 5.7 with f = hw™lv, we see

inf {0 (Fy (hvg, )} + b [ 20, [*= inf{o (F, (hvg )}

converges to 0 for g going to co. In [3] it is proven that F),(hvy,w) converges
in norm resolvent sense to F,(hv,w), and the bottom of the spectrum also con-
verges. This can also be done directly as an easy exercise left to the reader.
Taking g to infinity yields

inf (o(Fy (ho,w))} = —h ™"/

for any h # 0. Since (£2, F,(hv,w)2) = 1 we see —h?||w™/2v|2< 1 < 0 for all
h # 0. Taking h to 0 yields 0 < n < 0. O

We now prove Corollaries 4.2, 4.3 and 4.4.

Proof (of Corollary 4.2). Define Uy = W(gw™'v,1) and m := m(w) > 0. Note
that
ﬁn(ngflv,w) 1= Uy Fy(gv, w)U; +92Hw71/2v|\2

converges in norm resolvent sense to dI'(w) as g tends to infinity by Theorem 4.1
(use m = m(w) and v = 0). Since F;(2gw™"

5.5 implies

v,w) > —|n| for all g > 0, Lemma

. 201, ~1/2) 12 Tir = -1 _
glL%OEW(gv,w) + g% |lw™v||*= 915120 inf(o(F, (29w~ v,w))) = 0.

Let Py be the spectral projection of f},(gv, w) onto [—%, ]. Using [20, Theorem
VIIIL.23] and Lemma 2.1 we find P, converges in norm to P = [£2)({2|. Pick go
such that &,(gv,w) + ¢*[lw™/?v|?€ (=2, %) and [P, — P||< 1 for all g > go.
Then P, has dimension 1 by [26, Theorem 4.35], so fn(gv,w) and F,(gv,w) will

have a non degenerate isolated ground state for all g > go. Let {t)4} >4, be a real
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analytic collection of normalized eigenstates for I, (gv,w) and write ¢, = Uyt
which is a ground state for F,(gv,w). We calculate

(e 91 vlle(—guw0), pg) |= (2, By = | PUgl|> |13l — 112 = Pylllldhg 1> 0.

Hence h(g) = <e*92|‘°"_1””6(—gw*1v)7wg) is nonzero and smooth. Multiplying
with ﬁ and normalising, we may pick the family {tg},>4, smooth such that

(eI g (—gu=10), 1hy) = (2, Ugth,) > 0.
This implies
1> (2,9)= |1PYg]|1= [Egl=IIP = Pyll|egll=1 — || P — Pyl

Therefore |(£2,1hy)|= (£2,1,) converges to 1, and hence 1, converges to £2. This
implies

0= lim ||, — @)= lim U5 — Us2ll= lim s, — =141 (=g o))
Using Lemma 5.2 we thus find

<Jg»dp(w)72}vg> =& (gv,w) + 92”‘”_1/2””2*77(1297 W(29W_1U: *1)Jg>

converges to 0. Hence 1), converges to {2 in dF(o.))l/2 norm, and hence also in

N'/2 norm since m > 0. Note that wg,{/;g € D(dI'(w)) € D(N) since m > 0.
Using Theorem A.2 we see that

(thg, Ntpg) = <1Z97 UgNU;{/;ﬁ = <J97N{/;g> +9<J97<P(W_1U){E> +g2||w_1v||.

Since Jg goes to 2 in N2 norm and ¢(w~'v) is N*/2 bounded by Lemma 2.2
we find that ¢(w™1v)1p, converges to ¢(w™1v)§2 in norm. Hence (¢, p(w™1v)e,)
and (g, N1pg) converges to 0 which implies

(9_1<¢97N1/}g> - QHW_lpH) = g_1<7ngN7ZQ> + <QZ97W(W_1”)1Z>

converges to 0 as g tends to co. Define f(g) = &,(gv,w) + *lw2v|]? and
assume 1 < 0. Since f(0) = n and f converges to 0, we just need to see f
is increasing. There is a unitary map U : H — L2(X,F,u) such that UwU*
is a multiplication operator. Using Lemma A.1 we see I'(U)F,(gv,w)I'(U)* =
F,(gUv,UwU*) so

£(9) = &y (gUv,UwU") + ¢*||(UwU*) 200 ?
Hence we may assume H = L*(M,F, ) and w is multiplication by a strictly

positive and measurable map, which we shall also denote w. We note 1), exists
for all g > 0 by Theorem 3.2 and we have the pull through formula (see [3])

a(k)pg = —gu(k) (F—y(gv,w) — E(gv,w) + w(k)) " 0y. (5.4)
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Note that g — &,(gv,w) is real analytic since it is a an isolated non degenerate
eigenvalue by Theorem 3.2. We may then calculate

di‘gsnwv,w) — (g, 0(0)g) = Re((ty, a(v)iby))

= —29/X|v(k)|2H(an(9v7W) — &(gv,w) +w(k)) 2|2 dk

—1/2 —1/2

d
> —2g|lw™?0|*= *dngQHW gl
because ||(F_,(gv,w) — &,(gv,w) + w(k)) ™ /21y]|2< w(k)~! almost everywhere
by Theorem 3.2. This proves the claim. O

Proof (of Corollary 4.3). By Theorem 3.2 we may pick a a unitary map V such
that VH,(gv,w)V* = F_,(gv,w) ® F,(gv,w). Noting that

glg]go En(gv,w) — E_p(gv,w) =0

and that £1,(gv,w) is an eigenvalue for Fi,(gv,w) for sufficiently large g by
Corollary 4.2, we see that for g large enough H,(gv,w) will have at least two
eigenvalues in the mass gap [E,(gv,w), E,(gv, w) + Mess|, and the energy differ-
ence will converge to 0. O

Proof (of Corollary 4.4). Define V, = W (w ™', 1) which is independent of 7. If
w‘lvl{wzl} ¢ H, we see part (1) follows from Theorem 4.1 and Lemma 2.2.

We now prove part (2). By Theorem 3.2 there is a unitary map U with the
property that UH, (vg, w)U* = F_,(vg,w) & F,(vg,w). Let Uy = U*(V, & V)U.
Convergence to H and the uniform lower bound now follows from part (1) and
Lemma 2.2. Let Cy = \|w*1/21{w>m}vg”24 Then

| (Hy (vg, w) + Cq + i)_l — (Ho(vg,w) + Cy + i)_IH
= H(Uan(UmW)U; +Cy + i)_l - (UgHO(UgaW)Ug* +Cy+ i)_lH
which converges to 0. This finishes the proof. O

6. Proof of Theorem 4.5

In this chapter we prove Theorem 4.5. We will in this section assume that H =
L?*(X, F,u) where (X, F,u) is o-finite and countably generated. We will also
assume w is a multiplication operator which satisfies w > 0 almost everywhere.
We also fix v € D(w™1/2) and define

-1 v(xz) =0
h(z) = { (e (6.1)
—Tecg V@) #0

Note that h is measurable, ||= 1 and h*v = —|v|. Define also h(™ (ky,...,k,) =
h(ky1)...h(k,) and note

oo oo

rh)=@n™ rm=rn)=gn).

n=0 n=0
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Define
Cr ={v=w")e FRH) | >0,h™) ™ >0 a e forn>1}.
We have

Lemma 6.1. C is a selfddual cone inside Fy,(H). The strictly positive elements
are

Cso={v = @) € Fo(H) | @ >0, (h™)*¢™ >0 a. e forn>1}.
Proof. We note

Cy = D(hW){ = ()2 € Fo(H) | @ > 0,0 >0 a. e forn > 1}.
The result now follows by the theory developed in [16].

Lemma 6.2. Let g > 0 and T be a selfadjoint operator on Fy(H) such that

T = é T(n)
n=0

with T >~ a multiplication operator for all n € No. Assume gp(v) infinitesi-
mally T-bounded. Define H =T + gp(v). Then H is bounded below, selfadjoint
and (H —\)71Cy € Cy for all A < inf(o(H)). If v # 0 almost everywhere then
(H —N)71C:\{0} C Csp for all A < inf(a(H)). So if inf(o(H)) is an eigenvalue
then it is non degenerate and spanned by an element in Csgq.

Proof. The Kato Rellich theorem implies H is selfadjoint and bounded below.
For A < —v we note that (T'— \) ™! acts on each particle sector as multiplication
with a positive bounded map. Hence it will map C; into C;. Assume now that
¢ = (™) € ¢, ND(dI'(w)). Then we have almost everywhere that

(R DY (a0 ™) . k) = Vi /M|v<k>|(<h<">>*w(”>><k,kz, k)

() (=l () (ks g
1 n+1 7

=7 ; —h* (k) o(k) (K™Y ™) (ky, .kt kpgr)

which implies —gp(v)y € C4. In particular we obtain
(g ()(T = X)"H)"Cy C Cy

(=D"g" [ ] a* ()T =N~y c ey (6.2)
k=1

where fi, can be either a t or nothing. For A € R sufficiently negative we may

expand
oo}

(H=N""=> (T =N =gp)T -1 (6.3)

n=0
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Since each term preserves the closed set C, we find (H — A\)~!C; C Cy for A
small enough. Assume now v # 0 almost everywhere. Let I,, denote the integral
over M™ with respect to u®". For u € S,,(H®")\{0} with u € C; we have

(=1)™(ga()(T = p)~")"u (6.4)
=1, ((— T gt Tt )~ A)1>

which is strictly positive. Let u,w € C;\{0}. Pick ny such that (") # 0 and
ny such that w2 £ 0. Consider now the n = ny + ny term in equation (6.3).
This term can again be written as a sum of terms of the form (6.2) multiplied
to the left by (T'— A)~!. Since all terms are positivity preserving we find

<(T — )\)71U7 (—gaT (’U)(T — )\)*1)711 (—ga(v)(T _ /\)71)7ng>
= (T =N~ (=ga()(T = X)) " u, (—ga(v)(T = A)~")"w)

(u, (H = X~ w)

Y

Since u — u(™) € C; and w — w"?) € C; we find the following lower bound:
(1) = ) (~gae)(T = 1)) (~ga(w)(T = 1) 7))

which is strictly positive by Equation (6.4). Hence we have proven the lemma
for A\ sufficiently negative. Now fix A such that the lemma is true. For any
u € (N inf(o(H))) we can use standard theory of resolvents to write

oo
(H—p) ™ = (p=N"((H ="+
k=0
which is positivity preserving/improving since each term is. O

The following lemma can be found in [3].

Lemma 6.3. Define A= {v # 0}, pa(B) = p(ANB) and pa-(B) = p(A°NB).
Let Hy = L*(X,F,pa) and wi be multiplication with w but on the space H;.
Assume that n <0 and g > 0. Then

1. & (gv,w) = &Ey(gv,wr) and &,(gv,w) is an eigenvalue for F,(gv,w) if and
only if £,(gv,w) is an eigenvalue for F,(gv,w1). In this case the dimension
of the eigenspace is 1.

2. If o = (™) is a ground state for F,(gv,w), then ¢ = (1403 o is
a ground state for F,(gv,w).

We can now finally prove Theorem 4.5.

Proof (Proof of Theorem 4.5). Statement (1) follows from Lemmas 6.2 and 6.3
since go(v) = ¢(gv) and h defined in equation (6.1) does not depend on g as
long as g > 0. To prove statement (2) we let ) be a ground state for F;,(gv,w).
Define for A > 0 and ¢ € N the operator

Re(N) = (Fi-yey(gv,w) + X = Ey(gv,w)) ™"
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This makes sense since &, (gv, w) < €_,(gv,w) by Proposition 3.1. Using the pull
through formula found in [3] we find

alky, . kn)gn = go(ki) Ru(w(ky) + -+ w(kn))alky, ... ki, kn) g,
=1

where @, means that the variable k; is omitted. We proceed by induction to
show that ||a(ki, ..., kn)Yg||< q"% For k = 1 this follows since
En(gv,w) < E_p(gv,w) and so

[o()
=T

N gv(k)
lla(k)pg.qll= H F_)(gv,w) + w(k) + &, (gv,w)

Vg
Using the induction hypothesis we may now compute

= w(k;) n V()] Jo(kn)|
latks, kgl <3 wlky) + - +wlkn)? @) w(kn)

i=1
_ nlo(k)[- - Jo(ka)|
wlk) ... w(ky)

Now \/T?h/)é"y; (k1. k)< la(kr, ... kn)Wgn|l and so the desired inequality
follows.

Statement (3): By Theorem 3.2 and N = dI'(1) we see that the conclu-
sions about ¢4, follows from those of F,(gv,w). It is easily seen that 14 ¢ =
e=2 9l g (gw=10) and (gwlv) € D(f(N)) <« Qg fow < 00. This
proves the ” <=7 part. If ag f,,., < 0o then we may use the point wise bounds

to obtain n)
) F(n)?[|vgmn |12 3 f(n)*g*" |w o[>
n=0

< 00,

| = |
n: =0 n:

which proves the 7 = . O

7. Convergence in the massless case

In this section we will assume H = L2(RY, B(R¥), \¥) and that w is a selfadjoint,
non negative and injective multiplication operator on this space with m(w) = 0.
Fix an element v € D(w™1)\{0}. In [3] it is proven that if < 0 then F,(gv,w)
has a normalised ground state 1, for any g € R and &,(gv,w) = €_,(g9v,w).
Furthermore we will for 7, g € R write F}, 4 := F;)(gv,w) and &, 4 := &,(gv,w).

Lemma 7.1. Assume n < 0. Define U, = W (gw™'v,1) and i/)vg = Uyt)g. Then

0 < (g, dT(w)dy) < Inl(Wg, (= 1)tbg) = —n{tg, T (=1)tby),

and (g, I'(=1)1py) converges to 0 for g tending to oo. Furthermore, given any
sequence of elements {gn 52, C R tending to oo there is a subsequence {gn, }52,
such that

[0 (Fog, = Engn, + (K)o, = (k) M0y, 2= 0

almost everywhere.
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Proof. We have
UgFegUys + g°[lw™"/%0]?= dI (w) + nW (29w~ "v, =1) = Fy (29w v,w).

Note that
(2, F,(2gw™ v, w)2) = nexp(—2¢°[lw™"v[|*) <0

80 Ee g + g2l 0| = inf(a(ﬁn(ngflv,w))) < 0. This implies
0 < ($y, AT (W)ibg) < —n(thg, W (2gw ™0, =1)4hg) = Inl{tby, T (~L)ibg) < el.
Since 1, € D(N'/2) by Theorem 4.5 we find (see [3])
a(k)Uytby = Uga(k)by + gu(k)w(k) " Uy,
and so the pull through formula from equation (5.4) gives
a(k)ibg = ~gu(R)Uy(F_yg — Ecg +w(k) My + gu(k)w(k) ' Uyty.

Hence we find

(g, AL (w)ily)

=g /M wW(k) ()2 (Fop g (v,0) = Ee.g + w(k)) ™ g — w(k) ™ 4| k.

Since this remains bounded by |1| as ¢ tends to infinity, we conclude that the
integral converges to 0 as g tends to infinity. Thus existence of the desired subse-
quence follows from standard measure theory. Assume now that the conclusion
about convergence of (14, I'(—1)1,) is false. We may then pick € > 0 and se-
quence {g, }52; such that —e(tpy, , I'(—1)tpg, ) > € for all n and

2:0

Jim [0 () P[P, = ey, + (k) 0y, = (k)"0

for almost every k € R”. Let P, be the spectral measure of F_, , — & 4 =
F_, 4 —&_pg and define the measure py(A) = (g, Py(A)thg). Since v # 0 we
see

[(F_rygn = Eergn +w(k)) Mg, —w(k) 120y, |2
2

1 1
= /[o,oo> ‘A To®)  wm)| He™

converges to 0 for some k € R” where w(k) > 0. Since the integrals above
converges to 0, the numbers p,, ([e/2,00)) must converge to 0, as the integrand
has a positive lower bound on [¢/2, 00). In particular Py, ([0,e/2))tg, — tbg, will
converge to 0. Hence we find for n larger than some K that

—1(Py, ([0,/2))8g,, T (=1) Py, ([0,£/2))¢g,) = %IIP . ([0,6/2))¢g, |17
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Let 2, = P,,([0,£/2))1,, . By Lemma 2.2 we find dI'(w)+gp(v) + ¢ ||w™/?0||>>
0. Using this and &,y = £, < —g?|w™'/2v[|? we may calculate for n > K

(Eergn (v,w) +€/2)|2nll* 2= (@0, Fp.g,2n)
= =12, [ (=1)an) + Eng, zal®
+ (20, (AL(W) + gup(v) + gallw ™ 20]|*)z)
— (E-ngn + gl 20l?)
> =, [ (=1)an) + Eng, |zal®
> (32/4+ Ee g, (v,0))zall?,

which is the desired contradiction. O

Proof (Proof of Theorem 4.6). For each g > 0 we let 9, be a ground state

eigenvector for F, ;. Define U, = W(gw™tv,1) and v, = Uyth,. We see that
(g + 9%l 20| = |{dhg, Fy (29w~ 0, w)ibg) |

= (g, I'(=1)1hg) + (thg, dI'(w)hg)|
< 2n[(Yg, I'(—=1)¢g),
which converges to 0 for g tending to co by Lemma 7.1. It only remains to prove

the statement regarding the number operator. Let {g,}52; be any sequence
converging to co. Pick a subsequence {g,,}2, such that

T [o() 2 (F g, = Eegu, + () g, —w(k) "y, 2= 0
almost everywhere. Using equation (5.4) we see that

a(k)pg = —gu(k)(Fpg — Ee,g + W(k))ﬂl/’g

and so
[(¥g.,> Ny, ) — gm.llw™ ol?|
9
< [ ORI, = Eeg, + 8 4 P o), P
which goes to 0 as ¢ tends to infinity by dominated convergence. O

8. Proof of Theorem 4.7

In this section we will assume H = L?(R¥, B(R¥), \¥) and that w is a selfadjoint,
non-negative and injective multiplication operator on this space. Then mess(w) =
m(w) := m since o(w) = Tess(w) (See [3]). Furthermore we define P = |£2)(£2]
and P = 1— P. Then P clearly reduces dI'(w) and I'(=1). Let dI'(w) and I'(—1)
denote the restrictions to Fy(H) = PF,(H). For v € H we define p(v) as the
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restriction of Pyp(v)P to Fy(H). Note that it is symmetric and infinitesimally
dTI'(w) bounded when v € D(w™1/2). Hence we may define

Fyv,w) = dT(w) + 0l (=1) + 2(v),
which is selfadjoint on D(dI'(w)) and bounded below when v € D(w~1/?). Note

by the min-max principle that inf(c(F,(v,w))) > &,(v,w) and one may repeat
the argument for Lemma 6.2 to show that for every A < &,(v,w) we have

(F,(v,w) —\)"'PCy C PCy.
To summarise

Lemma 8.1. Ifv € D(w™Y/2) then F, (v,w) is selfadjoint selfadjoint and bounded

below by &,(v,w). Purthermore (F,(v,w) — A)"1PCy C PCy for every A\ <
En(v,w).

We shall also need the following lemma.

Lemma 8.2. For all A < &,(v,w) we have
0 < (92, (Fy(v,w) = N)7'92) = (e = A+ (v, (Fy(v,w) = ) 7'0) 7.

Proof. Let A < &, (v, w). One easily checks that (F,(v,w)—=\,dI"(w)+nI'(=1)=A)
is a Feshbach pair for P. Write T' = dI'(w) + nl'(—1) — A\, H = Fy(v,w) — A and
W = H — T = ¢(v). The Feshbach map F is now given by

F=PHP - PWP(F,(v,w) — \)"'PWP
=(e— NP+ (v, (Fy(v,w) — \) ") P.

This is invertible from Span({2) to Span({2) since H is invertible. To calculate
the inverse using we use the formula in [10] and find

F™'=PH'P = (2,(F,)(v,w) = \)"'Q)P.

If one identifies the the linear maps from Span({2) to Span(f2) with C we find
the desired relation. Positivity follows since H~! maps C, into C,, and we know
that the matrix element is not zero since the Feshbach map is invertible. O

We may now prove Theorem 4.7. The basic technique for proving this result
comes from the paper [24] where it is used for the translation invariant Nelson
model.

Proof (Proof of Theorem 4.7). Let n > 0 and assume the conclusion does not
hold. Since F_,(v,w) has a ground state by Theorem 3.2 the only option is that
F,(v,w) does not have a ground state. By Theorems 3.2 and 4.5 we note that
En(v,w) = inf(0ess(Fy (v, w))) = E—y(v,w) +m and that F_,(v,w) has a ground
state 1 which has non-zero inner product with {2. By Lemma 8.2 we find

A=n> (v, (Fy(v,w) = \)7'v)

for all A < &,(v,w) = E_,(v,w) +m, and so (v, (F,;(v,w) — A)~1v) is uniformly
bounded from above for all A < £_;(v,w) + m. We shall now prove that this
leads to a contradiction with the assumption in equation (4.2). The following pull
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through formula, holds for x € D(dI'(w)) such that (F,(v,w) — A\)z € D(N/?)
(see [3])

a(k)r =(F_,(v,w) + w(k) — A)fla(k)(Fn(v, w) — ANz (8.1)
—v(k)(F_y(v,w) +w(k) — ).

We note that

(Fy(v,w) = N)(Fp(v,w) = N) o = PF,(v,w)(Fy(v,w) = A) to+v € D(N'/?).

Hence we may apply equation (8.1) with z = (F,,(v,w) —A)"1v. Now a(k)P =0
so a(k)(F,(v,w) — Xz = v(k)f2. This implies
o(k)a(k)(Fy(v,w) = N) "o = [u(k) P (F_y (v,w) +w(k) +A) 7102

= [o(k)[*(F_y(v,w) + w(k) = X) T (Fy(v,w) = A) Mo

Taking the inner product with (2 for each k, we obtain two terms. Both are
non-negative by Lemmas 6.2 and 8.1 so

(2, v(k)a(k)(Fy(v,0) = N) 1) > [o(k) (92, (F-y(v,w) + w(k) = X) 7' £2)
> [(2,9)Plo(k) P (w(k) + E-p(v,w) = N).

Hence we find

(v, (Fy(v,w) —A\) 1) = / (2,v(k)a(k)(F,(v,w) — \) " v)dk

M
> {2, w)IQ/Mlv(k)\Q(w(k) +Ey(v,w) = A)dk,

which goes to infinity for A tending to £_,(v,w) 4+ m by the monotone conver-
gence theorem, equation (4.2) and the fact |(£2,%)|?# 0. This contradicts the
boundedness of (v, (F,(v,w) — A)~1v).

In the special case mentioned, let w(zg) = m be the global minimum of w.
Using Taylor approximations there is » > 0 such that for € B, (z) we have
0 < w(k) —m < Clk — z0|?. Switching to polar coordinates yields the result. [J

A. Various transformation statements.

In this appendix various useful transformation theorems is stated. Sources are
[19], [4] and [3].

Lemma A.1. Let U be unitary from H into some Hilbert space K. Then there
is a unique unitary map I'(U) : Fo(H) = Fp(K) such that I'(U)e(g) = e(Ug). If
w is selfadjoint on H, V is unitary and f € H then
rU)dr(w)ru) s =dr(Uwlr).
rOw(f,V)ruw): =wuf,uvur).
LU)p(NHIU)" =oUf).

Furthermore I'(U)(f1 ®s -+ Qs fn) =Uf1 Qs - Qs Ufn and U = 2.
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One may transform the field operators and second quantised observables by the
Weyl transformations. One then obtains the following important statements that
we shall need. The proof is an easy calculation using exponential vectors

Lemma A.2. Let f,h € H and U € U(H). Then
W (h, U)p(g)W (h,U)" = ¢(Ug) — 2Re((Ug, h))
W(h, U)a(g)W (h,U)* = a(Ug) — (Ug, h)
W(h,U)a' (9)W (h,U)* = a'(Ug) — (h,Ug)

Furthermore if w is selfadjoint, non negative and injective on H and h € D(wU*)
then

W (h, U)dL (@)W (h, U)* = d[(UwU*) — (UwU*h) + (h, UwU*h)
on the domain D(dI'(UwU™)).

In what follows we consider two fixed Hilbert spaces Hy and Hs. We will need
the following two lemmas.

Lemma A.3. There is a unique isomorphism U : F(H1®Hsa) — F(H1)@F (Ha)
such that U(e(f @ g)) = e(f) ® €(g). The map has the following transformation
properties. If w; is selfadjoint on H;, V; is unitary on H; and f; € H; then
UW(fl@f27‘/l®‘/2)U*7 (f17vl)®W(f27‘/2)
UdF(wléng)U* d (w1)®1+1®df(w2)
Ue(fr, 2)U" = o(f1) ©1+1@ ¢(f2)
Ua(f1, 2)U" = a(fi) ® 1+ 1®a(f2)

Ud'(f1, ) U =d' (fi) @ 1+ 1@ al(f2).

Lemma A.4. There is a unique isomorphism
F(H1) ® F(Ha) = F(H1) & @) F(H1) @ Sn(HS™)
n=1

such that -
Uw® {45"}52) = 0w & Pu o vf.

n=1
Let A be a selfadjoint operator on F(H1) and B be selfadjoint on F(Hsz) such
that B is reduced by all of the subspaces Sp,(HS™). Write B™ = B |Sn(H;®n).
Then

UA®1+1@B)U"=A+ B oPAe1+1 BM)

n=1

UA@BU*=A@B=B"Asc@Ae B™

n=1
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Abstract: In this paper we consider the massless translation invariant Nelson
model with ultraviolet cutoff. It is proven that the fiber operators have no ground
state if there is no infrared cutoff.

1. Introduction

In this paper we study the translation invariant massless Nelson model. The
model can (after a unitary transformation) be written as a direct integral of
fiber operators { H () }¢crs. The spectral properties of these operators were first
investigated by by J. Frolich in his Phd-thesis, which was published in the two
papers [5] and [6]. Frolich showed, that if the field is massive or there is an
infrared cut-off then H (&) has a ground state for £ in an open ball around 0. He
also proved, that if the field is massless, no infrared conditions are imposed and
a ground state exists for sufficiently many of the H (&), then one can reach some
physically unacceptable conclusions. The aim of this paper is to prove that H (&)
does not have a ground state if the field is massless and no infrared conditions
are assumed. We shall briefly review central results about existence of ground
states in the massless Nelson model.

In the paper [10], it is proven that ground states exists in a non-equivalent
Fock representation. A consequence of this result is that the usual ”taking the
massgap to 07 strategy for proving existence of ground states does not work.
This strongly indicates that there should be no ground state.

A proof of absence of ground states in a similar model was given by I. Herbst
and D. Hasler in the paper [8]. They consider the fiber operators of the massless
and translation invariant Pauli-Fierz model {#(£)}¢cps. They prove that H(&p)
has no ground state if { — inf(o(#H(€))) is differentiable at , and has a non-
zero derivative. One may easily work out the same problem for the Nelson model
and obtain the same conclusions. However proving the existence of a non-zero
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derivative is an extremely hard problem and such a result has only been achieved
for weak coupling and small £ (see [1]). Furthermore, £ = 0 is a global minimum
for £ — inf(o(H(€))) and therefore the derivative is 0. However, H(0) has no
ground states shall prove below.

In fact we shall prove that H (&) has no ground state for any non-zero coupling
strength and ¢ € R3. Our proof is based on strategy used by I. Herbst and D.
Hasler, but we remove the assumption regarding the existence of a non-zero
derivative. Instead we use rotation invariance of the map & — inf(o(H(€))), non
degeneracy of ground states and the HVZ-theorem.

2. Notation and preliminaries

We start by fixing the measure theoretic notation. Let (M, F, u) be a o-finite
measure space and X be a separable Hilbert space. We will write LP (M, F, u, X)
for the Hilbert space valued LP-space. If X = C it will be omitted from the
notation. In case M is a topological space we will write B(M) for the Borel
o-algebra.

Let H denote a Hilbert space and n > 1. We write H®" for the n-fold tensor
product. Write S,, for the set of permutations of {1,...,n} and let H be a Hilbert
Space. The symmetric projection is the unique bounded extension of the map

1
Sn(fhi® - ®fn)=— > fo) @ ® fotm)

T 0ES,

and Sy is the identity on H®™ = C. In certain cases we can realise tensor produces
as concrete spaces:

LM, Fop, X) = LM, F,p) @ X
(L*(M, F, 1))®" = L* (M, Fo 1®m).

with the tensor products f @z =k +— f(k)z and L1 ®---® fr, = (k1,...,kn) —
fi(k1) ... falks). In the case H = L2(M, F, ) we have for n > 1

(S f) sy kn) = o S Flhonys Ko

" 0ES,

We note that f € S, (L*(M,F,n)®") if and only if f € L2(M®? F&n [ On)
and f(k1,...,kn) = f(koqr), - .-, ko)) for any o € S,,. Write H®" = 5, (H®").
The bosonic Fock space is defined by

F(H) =P
n=0

where Sy = 1. We will write an element ¢ € F(#) in terms of its coordinates
as ¥ = () and define the vacuum 2 = (1,0,0,...). Furthermore, for D C H
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and f1,..., fn, € H we introduce the notation
Sn(fl®"'®fn):f1®s"'®sfn
e\Ji) = L

JD) ={2YU{f1 ®s - ®s fn | fi € D,n € N}
L(D) ={e(f)| f € D}

where f?° = 2. One may prove that if D C H is dense then £(D) is a linearly
independent total subset of (7). From this one easily concludes J (D) is total.

For g € H one defines the annihilation operator a(g) and creation operator
af(g) on symmetric tensors in F(H) using a(g)2 = 0,a’(g)2 = g and

a(g)(fl ®S®an):%2<gvfz>f1 ®s®sﬁ®s®sfn
=1
aT(Q)(fl®s®sfn): Vn+lg®sf1®s"‘®sfn

where ﬁ means that this element is omitted. One can show that these operators
extends to closed operators on F(#) and that (a(g))* = a'(g). Furthermore, we
have the canonical commutation relations which states

[a(f), a(g)] = 0 = [aT(f), a'(9)] and [a(f),a’(9)] = (/. 9)-

One now introduces the selfadjoint field operators

©(g) = alg) + a'(g).

If w is a selfadjoint operator on H with domain D(w) then we define the second
quantisation of w to be the selfadjoint operator

oo n
w) =00 (18 1w(@1)"F [yo.m . (2.1)

n=1k=1

If w is a multiplication operator on H = L2(M, F, ) we define w,, : M™ — R by
wo =0 and wy(k1,...,k,) = w(k1) + - -+ w(ky). Then dI'(w) acts on elements
in H®" as multiplication by wy,(k1,...,k,) = w(k1) + - - -+ w(ky,). The number
operator is defined as N = dI'(1). Let U be a unitary map from H to K. Then
we define the unitary map

U)=10PUa U |ye.n .

n=1

For n € Ny = NU {0} we define the operators dI"™(w) = dI'(w) |ye.» and
I'™(U) = I'(U) |yosn. The following lemma is important and well known (see
eg [2]):
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Lemma 2.1. Let w > 0 be selfadjoint and injective. If g € D(w=/2) then o(g),
a'(g) and a(g) are dI'(w)'/? bounded. In particular ¢(g) is N'/? bounded. We
have the following bound

lp(g)ll< 2[[(@™2 + 1)gllll(dr (w) + 1) >0l

which holds on D(dI'(w)Y/?). In particular, ©(g) is infinitesimally dI"(w) bounded.

Furthermore, o(dI'(w) + ¢(g)) = —|lw™'/2g||>+0(dI"(w)).

We have the following obvious lemma which is useful for calculations

Lemma 2.2. Let f,g € H. Then e¢(g) € D(N"™) for all n > 0. Furthermore:

(1) a(g)e(f) = (g, )e(f) and (e(g),e(f)) = eloI).

(2) If f € D(w) then e(f) € D(AT(w)) and dT (w)e(f) = aT(wfe(f). In particular
we find (e(g), dl'(w)e(f)) = (g,wf)e's .

Let A € B(R”). In this paper we shall mainly encounter spaces of the form

Ha=(R",BR"),1a\,)

where A, is the Lebesgue measure. Note HE" = L2((R¥)", B(RY)®™, 1 42 A®").
We also define

CSa={f €Ha|3R > 0such that 1,0 f = f 1a), almost everywhere}.

which is obviously a dense subspace inside H 4. We will also need the contraction
4 : Hrr — H 4 defined by

Py(v)=w
14X\, almost everywhere. Let w : R¥ — R be a measurable map. Then w4 is de-
fined to be multiplication by w on the space H 4. Define furthermore dI'(ka) =
(dl'((k1)a),...,dI'((ky)a)) where k; : RV — R is projection to the i’th coordi-
nate and let g™ : (R¥)™ — RY be given by ¢(»(0) = 0 and g™ (k) = ky+- - -+kjp
for n > 1. Then for K : R¥ — R we have

K (& —dI(ka)) @KA —g™)

where K 4(& — g(™) is to be interpreted as the corresponding multiplication
operator on H%S". In case A =R we will omit A from the notation.

We shall also encounter vectors of operators. Let By, ..., B, be operators on
a Hilbert space % and define B = (By,...,B,) from N ,D(B;) into H” by
By = (B1%, ..., Bntp). Note H” = @, _, H and is also a Hilbert space. For any
k € R” we define

In particular we find for ¢ € D(B)
k- B = Y (kiBy, ki Biw) < Y [killks || B 1B
ij=1 1,5=1

1 1
<> S [ElP 1Bl Bl + 5 ks | B |*= (IR Byl* - (2:2)

i,j=1
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3. The operator - basic properties and the main result

Fix K,w : R” — [0,00) measurable and let v € H. Define for A € B(R") and
¢ € R” the Hamiltonian

Hy(§,A) = K(§ —dI'(ka)) + dI'(wa) + pp(va)
where vg = Pa(v). We have
Lemma 3.1. Assume w > 0 )\, almost everywhere, v € D(w™'/?) and A €
B(R"”). Then wa > 0 is injective and vy € D(wzl/Q). Furthermore, H,, (¢, A) is
selfadjoint on D(Hy(&,A)) = D(dI'(w)) ND(AL(K(§ —dI'(ka))) and essentially

selfadjoint on any core for Hy(&, A). Also, H, (&, A) > —p?||w™/2v|| independent
of A and €.

Proof. We know {w < 0} is a A, 0 set and therefore a 14, 0 set. Hence wy > 0
is injective. That vs € D(w,/?) is obvious as w™1/2v is square integrable over
R¥. For each n € Ny we define a map Gén) = K(¢ — g™) + w,. and define the
selfadjoint operator Be = @, Gén) on F(Ha). Using max{K (& — g™),w} <

Gé") = K(¢ — ¢g™) + w, we note
D(B¢) = D(Ka(§ — dI'(k))) N D(dI'(w)) and Ho (€, A) = Be.

In particular, Hy(&, A) is selfadjoint. For ¢ € D(H(&, A)) we have ||dI"(w)y||<
|Ho (&, A)v|| and so we find via Lemma 2.1 and the Kato Rellich theorem that
Hﬂ(€7 A) = HO(é-a A) + AU‘QD(UA)
is selfadjoint on D(Hy(&, A)) and any core for Hy(§, A) is a core for H,. Using
Lemma 2.1 again we find H, (£, A) > 0 — p?||w™"20[|2> —p?||w™/20]]. O

Hypothesis 1: We assume
(1) K € C?(R”,R) is non negative and there is Cx > 0 such that ||[VK]?<

Ck(1+ K) and |D?K||< Ck where D?K is the Hessian of K.
(2) w:R” — [0,00) is continuous and w > 0 A, almost everywhere.
(3) v e D(w1/?).
Under these hypothesis we define maps

VE(§ —dl'(ka)) = (01 K (€ — dI'(ka)), ..., 0, K(§ — dI'(ka)))
Za(§) = inf(o(Hu(€, A)))

We have the following lemma
Lemma 3.2. Assume Hypothesis 1. The following holds

(1) D(K(§—dI'(ka))) C D(VEK(§ —dl'(ka))) and for ¢ € D(K(§ —dI'(ka))) we
have |VE(§ —dI'(ka))¥|*< Cx | K(€ — dI'(ka) v |I*+Cr |||
(2) D(K (€ — dI'(ka))) is independent of §&. On D(K(§ — dI'(k4))) we have

K(+a—dl(ka)) = K(€—dl(ka))+a-VEK(E —dl(ka)) + Ee,A(LE)
3.1

where | E¢ a(a)||< Ckllall?. In particular, D(H, (€, A)) is independent of €.
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(3) Let v € D(K(§ —dI'(ka))). Then

1K (€ + a—dI(ka)) — K(& — dI'(ka)) ||
< Cillal* K (€ — dI (ka))YlI*+(1 + [lal*)Cx lal* 12 [|*. (3.2)

Furthermore, £ — H, (&, A)Y is continuous for any ¢ € c¢D(H,(0,A)) and
& H,(& A) is continuous in norm resolvent sense. In particular, the map
& X a(€) is continuous.

(4) Let D C CSa be a dense subspace. Then L(D) and J(D) span cores for
H/t (57 A) :

Proof. To prove (1) we calculate for ¢ € D(K({ — dI'(ka)))

S5 [ W ma (e - o P ae”

i=1 n=0
< ; Crlp™ (KK (& = g™ (k))[PAAS™ + Ci [0
n=0 "

= Cx|K (& - dI'(k))Y|I*+Cx

This proves (1). To prove (2) we use the fundamental theorem of calculus twice
and arrive at

1 1
K(§+afk):K(ffk)Jra-VK(ffk)Jra./ / D2K(€ + sta — k)adsdt
0 0

Define G, (k) = a - fol fol D?K (k + sta)adsdt, and note |G o(k)|< Ckllal|? uni-
formly in & and €. Thus if we define E¢ a(a) = Ge o(§ — dI'(ka)) we find that
E¢ 4(a) is bounded with norm bound Ck||al|?. Let ¢ € D(K (§—dI'(k4))). Then
1 € D(K(E—dI'(ka))+ (a, VK (£ —dI'(ka))) + E¢ a(a)) by part 1. We have the
point wise identity:

(K(¢ —dI(ka)) +a- V(€ —dl(ka)) + Eg.a())™ = K(€ +a—g™)p™

showing K (¢ + a — g™ is square integrable and the sum of squared norms
is finite. Hence ¢ € D(K(§ + a — dI'(ka))) and equation (3.1) holds. We have
thus proven D(K(§+a—dIl(ka))) C D(K(§ —dI'(ka))) for all £ € R” however
using ¢ = € — a we find the other inclusion. This proves (2).

To prove (3) we note that equation (3.2) is easily obatined from statements
(1) and (2). Using

(Hu(§ +a,A) = Hy(& A))b = (K(§+a—dl'(ka)) — K(§ — dI'(ka)))¢

for any ¢ € D(H, (&, A)) and equation (3.2) we immediately obtain continuity for
& — H,u(& A)y. To prove the statement regarding norm resolvent convergence
we calculate using equation (3.2)
I(H (€ +a, A) + )" = (Hu(&,A) +40) 7
< Cxllall?Ka(§ = dI (k) (H, (€, A) + ) [+(1 + lal*) Cxllal®
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which goes to 0 for a tending to 0. Continuity of £ — inf(c(H, (£, A))) now fol-
lows from continuity of the spectral calculus and the existence of a £&-independent
lower bound by Lemma 3.1.

It only remains to prove statement (4). By Lemma 3.1 it is enough to check
that J (D) and L(D) span a core for Hy(§, A). Let f1,..., fn € CSa. Pick R >0
such that 1p,(0)fi = fi 14\, almost everywhere for all i € {1,...,n} and note
that 1g,(0)nf1 Qs -+ Qs fn = f1 ®s -+ Qs fr 1an AT almost everywhere. Let
C = supyep,(0)w(k). Using the fundamental theorem of calculus we find the
following point wise inequality for k € Br(0)"

[K(& = g" (k)= K + =g ®IVE ©)Il+]-¢" (®)|*Cx < C(1+n’R?)

Where C' = max{K (£ )+3IVE(E)|, (1+Ck)} and we used that | —g™ (k)||< nR
for k € Br(0)™. We thcrcforc find the following point wise estimates on Br(0)™ :

(K (€= g™) +wn)?|f1 @s - @y fal < (C(L+n2R?) +nCO)VP|fy @ -+ D fa

Integrating yields f1 ®s - ®; fn € D(Ho(¢, A)P) and
|Ho (&, A i @y - @y full< (GO + 0B +nCPLfy @ full - (33)

Multiplying by - and summing over p yields a finitie number so f; ®; - ®s fp
is analytic for HO(§ ). Now, §2 is an eigenvector for Hy(€) and therefore analytic
we see J (D) is a total set of analytic vectors for Hy(&, A) and therefore it spans
a core for Hy(&, A) by Nelson analytic vector theorem.

By equation (3.3) we see f®" € D(Hy(&, A)P) and

[ Ho(&, A)P £ < [(C(1 + n®R%) + nC)? || fo||*"
< (CY2(1+nR) + VnC)*|| f1]|>"

4p

This also holds for n = 0 as we in this case obtain ||Ho(¢, A)PQ2||?= \/K(¢) <
(Cl/ 2)4p Multiplying by i, and summing over n yields a finitie number so
e(f1) € D(Hp(&, A)P) for allp Now

oo o0 1 oo p N
;O {1 Ho(&, A)7e (fl)us;@ZOTHHo(a AP e

(7 (CY2(1 +nR) + VnC)*|| f1|"
—0
s ||f||n6 51/2 (14nR)+v/nC)

Snz m < 00

=0

Mg
M8 i

o

Thus e(f1) is semi analytic for Ho(€). This implies {e(f) | f € D} spans a
dense subspace of semi analytic vectors for Hy(¢, A), which is a core by the
Masson-McClary theorem. O

Hypothesis 2: We assume
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(1) K,w and v are rotation invariant. Furthermore k + e ~*5(*) is positive definite
for all ¢.
(2) w is sub-additive, w(z;) < w(xa) of |z1|< |w2|. Also C,, = limg_o |k ~tw(k)
exists and is strictly positive.
—1
(3) v ¢ Dl(wgy)
The physical choices for the 3-dimensional Nelson model are w(k) = |kl,
K € {k~ |k%k — /]k[>+m —m} and v = w™'/2x where x : RY — R is a
spherically symmetric ultra violet cutoff. It is well known that Hypothesis 1 and
2 are fulfilled in this case. We can now state the main theorem of this paper:

Theorem 3.3. Assume Hypothesis 1 and 2 along with v > 3. Then H, (&) has
no ground states for any & and p # 0.

4. Proof of Theorem 3.3

We start with proving series of lemmas which we shall need. We work under
Hypothesis 1 and 2. The first Lemma is known and we only sketch the proof.

Lemma 4.1. The map & — X(§) is rotation invariant.

Proof L. et O denote any orthogonal matrix with dimensions v. Define the uni-
tary map O : H — H by (Of)(k) = f(Ok) A\, almost everywhere. Let f,g € CS
and note Of,Og € CS. In particular, I'(O)e(f) = €(Of) € D(H,(£)) for all &.

One now easily calculates using Lemma 2.2

(e(9), D(O) Hu ()T (O)e(f)) = (e(g), Hu(OE)e(f)).

Now L(CS) is total so we find H,(O¢) = F(a)*Hu(f)F(a) on L£(CS) which is

spans a core for H,,(O¢) and so F(O)*H#(S)F(é) = H,(0¢). O

For any z € R"\{0} we write Z = ||z||~'z. The next small lemma is basically
spherical coordinates.

Lemma 4.2. Let U C RY be invariant under multiplication by elements in
(0,00). Then for any positive, rotation invariant, measurable map f we have

/ f(z)d\, (z) = n\, (U N B1(0)) /Oo fker)k"tda (k)
U 0

where ey 1is the first standard basis vector. If U is open then A, (U N B1(0)) # 0.

Proof. Consider the map g : R” — [0,00) given by g(xz) = |z|. Define the
transformed measure on ([0, 00), B([0, 00))) by

p=(1yA,)o 9_1

The transformation theorem implies

(0.a]) = M (aU N BL(0)) = AT 0 B0) [ (n
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By uniqueness of measures (see [13, chapter 5]) we find that p has density
v, (U N B1(0))r*~! with respect to A1. Using that f(g(z)e1) = f(x) we find

/\V(UﬂBl(O))u/OOC f(kel)k”*ld)\l(k):/ooo f(kel)du(k):/Uf(x)d)\,,(z)

as desired. If U is not empty we can pick k € U. If ||k||< 1 then k& € U N By(0).

If ||k||> 1 then ﬁk € UN B1(0) so UN By(0) # 0. Hence if U is open and not

empty we find U N B;(0) is open and non empty so A, (U N B1(0)) # 0. O
Lemma 4.3. X has a global minimum at £ = 0.

Proof. This result was proven in the paper [7] under the extra assumption that
there is m > 0 such that w > m. The proof used in [7] does however generalise
to our setting. Another way to derive it to consider w, = 1/n + w and let

Hy(§) = K(§ = dl'(k)) + dI'(wn) + pp(v)
Write X, (€) = inf(o(H,(€))). Now Span(J (CS)) is a common core for the H,,(£)
and H(£) by Lemma 3.2 and for ¢ in this set we see

lim (Hn(€) — H(€))b = Tim ~No = 0

n—00 n—o0o N

implying H, (&) converges to H(&) in strong resolvent sense by [11, Theorem
VIIL.25]. For any € > 0 we may pick ¢ € Span(J(CS)) such that

2n() +e = (b, Ha(§)9) = (¥, H(§)Y) = X(§)

In particular, X, (§) > X(&) for all n € N. By [11, Theorem VIIL.24] we find a
sequence {\, }>2, converging to X'(£) with \,, € o(H,(§)).

Hence 0 < X, (&) — X(&) < A\, — X(&) so X, (&) converges to X(&). Now X,
has a global minimum at £ = 0 and so

2(0) = lim X,(0) < lim ,(¢) = X(¢)

n—roo n—oo
finishing the proof. O

For every £ € R™ and 0 < € < 1 we define
Se(§) = {k € RN\{0} | [k - {[< (1 = 2)[[€]1}-
where k& = k /|k]l. The following Lemma is essential:
Lemma 4.4. Let £ € R”. Then
(1) (€ — k) +w(k) > X(¢) if k ¢ RE.
(2) For any 1 > ¢ > 0 there ezists D := D(e,€) < 1 and r := r(¢,§) > 0 such
that for all k € B,.(0) N Sc(§) we have

2(E—k) = X(§) = —Dw(k)
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Proof. We start by proving (1). Assume £ = 0 and k # 0. If w(k) = 0 then by
Hypothesis 2 we have w(k’) < 0 for all &' € By (0) which contradicts Hypothesis
1. So if £ = 0 the result is trivial since 2(§ — k) — X(§) > —jw(k) > —w(k)
holds for all k& # 0 by Lemma 4.3.

Assume now £ # 0 and let k ¢ RE. By rotation invariance of X (Lemma 4.1)
we may calculate

26~ 0) - 50 = 5 - ) - 2 (e~ 1) (4.1)
By Ille.mma A5 we have X¥(§—k)+w(k) € o(H(§)) and so X(§) < X(E—k)+w(k)
implying

(M Yo (el
5E—F) E(uf—ku“ ’“))2 (Hg—ku@ k)-¢ ’“)

E—k
o ((el-le-HpE=) (42

Now |||€]]—|I€ — E|||< ||| by the reverse triangle inequality. If equality holds we
have either [|¢]|= [[§ — K[ +[|k[| or [ — k||= [|€]|+][—k[|. By [14, Page 9] either k
and & — k are linearly dependent or k and ¢ are linearly dependent. In any case &
and k are linearly independent which ( as £ # 0) implies k& = af for some a € R.
So since k ¢ RE we find |||€]|—|I€ — k|||< ||k‘H and so

o ((lel-1s - ) e ) < i)

by Hypothesis 2. Combining this and equations (4.1) and (4.2) we find statement
(1). To prove statement (2) we continue to calculate for k € S¢(§) (which is
disjoint from R¢)

I = k=12 _ | ~€-E+ k] (1-e+ 181
—k=l€ll= - k(1
e = k== | e =k per | = " e —rlel| = FIV =< g
(4.3)
Pick n such that D := (1 +1/n)(1 — 1/n)"%(1 —¢/2) < 1 and R > 0 such that
Cull = 1m) K< w(k) < Cuto(1+ 1/n)|] (14)

for all k € Br(0). Pick r = min{Hf%,R}. Using equations (4.1), (4.2), (4.3) and
(4.4) we find

Y(E—-k) -2 >-C(1+1/n) (1 —e+ %) |k|> —Duw(k)

for k € B,(0) N S(8). O
The following lemma is well known see e.g. [4].

Lemma 4.5. Define A = {v # 0}. Assume H,(§, A) has a ground state for
some p# 0 and § € R”. Then the corresponding eigenspace is non degenerate.

We will now sharpen this result.
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Lemma 4.6. Assume H, () has a ground state for some p # 0 and § € R”.
Then the corresponding eigenspace is non degenerate if v > 2.

Proof. Define A = {v # 0}. By Lemma A.3 there is a unitary map

U:F(H) = F(Ha) & é F(Ha) @ HG:"
n=1
such that
UHL(U" = Hu(&, A) @ é Hp (€, A) |f(HA)®H‘§z" (4.5)
for all £ € R” where
Ho (6, A) = /j) Ho(€ —ky— o — b A) + (k) + - + w(kn) A (k)

Let 9 be any ground state for Hgv(£). We prove Uty = (1;(0),0,0, ...). Write
Uy = (zz(")) and assume towards contradiction that 12;(”) # 0 for some n > 1.
Then 3™ is an eigenvector for H,,. 4(§) corresponding to the eigenvalue X(§).
The spectral projection of H,, 4(§) onto X(§) is given by

@
/(Ae)n Lisen (H(E — by — - — k) w(kr) + -+ w(kn))AAE™ (k) # 0.

Hence X(§) is an eigenvalue for Hy,(§ — ki — -+ — kn, A) + w(ky) + -+ w(ky)
on a set of positive A®™ measure. Sub-additivity of w along with Lemmas A.3
and A.5 gives

D(€) 2 Ta€ by =+~ kn) +w(ky) + -+ w(kn)
2E(§—k1—"'_kn)+w(k1+"'+k")22(6)

most hold on a set of positive A®™ measure. By Lemma 4.4 we se that this can
only hold for k£ € (R¥)™ with k; + --- + k,, € Span(§). But the rank theorem
implies that the set of k satisfying this is a subspace of (R”)™ of dimension
vn — (v — 1) < vn. However such a subspace must have A, measure 0 which is
a contradiction.

‘We now finish the proof as follows. Assume 11, 15 are orthogonal eigenvectors
corresponding to the eigenvalue X (). Then Uv; = (¢4,0,0,....). Now U pre-

serves the inner product so ¢; and ¢ are orthogonal eigenvectors for H,, (¢, A)
corresponding to the eigenvalue X'(§) so in particular X'(£§) > X' 4(&). By equation
(4.5) we conclude that X'(§) = X 4 (&) and therefore H, (¢, A) has two orthogonal
ground states. This is a contradiction with Lemma 4.5. O

The next two Lemmas are an adapted version of the corresponding ones found
in [8]. For £ € R and k # 0 we define

Qo(k, &) = w(k)(H (&) — 2(&) +w(k) ™"
Py(§) = 1) (H())
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Lemma 4.7. Fiz ¢ € R” and R > 0. Then k-VK (é—dI(k))Qo(k, ) is uniformly
bounded for k in B(0, R)\{0}. We also have

s = lim k- VE (€ —dI'(k))Qo(k.§)(1 — Po(€) =0 (4.6)

Proof. Note k - VK (& —dI'(k))Qo(k) is bounded for k # 0 by the closed graph
theorem and Lemma 3.2. For ¢ € F(H) we find by equation (2.2) that

Ik - VK (€ = d(k)Qo(k, 9| < > 10K (€ — dI'(k)) Qo (k, )|
i=1
s0 it is enough to see 9; K (§—dI'(k))Qo(k, £) is uniformly bounded on B(0, R)\{0}

for any R > 0 and converges strongly to 9; K (£ — dI'(k))Py(£). We have

w(k)
H(&) = 2() +w(k) +1

1
H(E) — 2@ + w7120

0K (€ — dI'(k))Qo(k, &) = 9K (€ — dI'(k))

+ 0K (€ — dI'(k))

Now w is continous and goes to 0 as k tends to 0 so Qo(k,&) goes strongly to
Py(€). Hence it is enough to see ;K (£ — dI'(k))(H (&) — X(¢) +w(k) +1)71is
uniformly bounded in k and converges to 0; K (& — dI'(k))(H(€) — X(¢) +1)7!
in norm. But this is obvious from the equality

S = 0K (€~ AT (k) g
H(E) - X&) +wk)+1 H,(§) = X(€) +1

1 w(k)

Hy(§) = 2(§) + 1 Hp(§) — X(&) + 1+ w(k)

0K (§ — dI'(k))

+ 0;K(§ —dI'(k))

because the first term is constant and the other term is uniformly bounded and
goes to 0. O

For £ € R” and k ¢ R we may by Lemma 4.4 define
Q(k, &) = w(k)(H(E — k) — 2(&) +w(k))™"
Lemma 4.8. Fiz { € R”. There is a vector v(§) € R” such that
Po(©)k - VK (€ —dl (k) Po(€) = k- v(€) Po(€)

for any k € R"\{0}. Pick 0 < ¢ < 1 such that k- Cov(§) < % for all k €
S.(Cv(€)). Define

gg(&) = Ss(f) N SE(va(f)).

If v > 3 then S. is open, non-empty and invariant under positive scalings.
Furthermore,

w—  lim Q(k,&) — (1 —Cuk-v(&) ' Py(&) = 0. (4.7)
k—0,k€S. (€)
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Proof. As £ is fixed in this proof it will be omitted from the nation of Q, Qq, B
and Py. If Py = 0 we can pick v(§) = 0. If Py(§) = 0 then is has dimension
1 by Lemma 4.6 and is spanned by a vector ¢ € D(H(E)). Using Py = [¢)(¢|
we find that v(§); = (¢, 0;K(§ — dI'(k))y) does the trick. Furthermore, S, is
obviously open and invariant under positive scaling since this holds for S. (&)
and S¢(C,v(§)). Furthermore any non-zero vector which is orthogonal to £ and
v(€) is in S, and such vector will always exist if v > 3.

It remains only to prove equation 4.7. By Lemma 4.4 we may pick R(&,¢) > 0

such that for k € S-(£) N Bpe,)(0) we have
Lk —&) = 2(§) +w(k) = (1 - A&, €))w(k)
with D(€,e) < 1. Hence we find
QK| < (1= D(&,€)) ™" Vk € Sc(€) N Brie ) (0) (4.8)

Using Lemma 3.2 we may calculate for k € S. &):

Qk) = Qo(k) +w (k)™ Qo(k)(H (&) — H(E — k)Q(k) (4.9)
— L QE VK (€ - dre) - [ ECRQ®W)  (@10)
= Qul) + 5 Q- T~ dr@)QR) +ou(h)  (4.11)
where 01 (k) := —Qo(k)w(k) ™' E¢(—k)Q(k). We also have
Q(k) = Qo(k) +w(k) ™' QR)(H () = H(& — k))Qo(k) (4.12)
= Qu) + L QU TE(E — dr@)Q) +oall) (113
where 0a(k) := —Qo(k)w(k) ' E¢(—k)Q(k). Note 0;(k) goes to 0 in norm for

k tending to 0 in §E(§) by equation (4.8), Lemma 3.2 and the uniform bound
[1Qo(k)||< 1. Inserting equation (4.13) into equation (4.11) we find

Q(k) = Qo(k) + %Qo(k)(@ CVE(€ = dl(w)Qo(k) (4.14)
+ L QUE - VE(E ~ dr@)QURIE- (&~ dr@))Qh) + oft

Where
o(k) = Qo(k)(k - VK (€ — d'(w)))o2(k) + 01 (k)

_ _% o(k) (k- VK (& — AT () Qo (k) || Ee(—k)Q(k) + o1 (k)

Note o(k) goes to 0 in norm for k tending to 0 in S.(§) by equation (4.8), Lemmas
3.2 and 4.7, the uniform bound ||Qo(k)||< 1 and the fact that |k|w(k)~! has a
limit for k tending to 0. Using equation (4.14) and appealing to the limit found
in Lemma 4.7 along with the uniform bounds in Lemma 4.7 and equation (4.8)
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we now see (1 — FPy)Q(k) and Q(k)(1 — Fo) goes to 0 weakly for k tending to 0
inside S¢(§). Hence we find

w— lim  Q(k) — PyQ(k)P, = 0. (4.15)
k—0,keS: (&)

From equation (4.11) we find

PoQ(k)Py = PyQo(k) Py + —5 PoQo(k) (VK (§ — dI'(w))Q (k) Po + Poor(k)Po

( )
=Fo+ %Po@ VE(§ = dl(@))(1 = Po)Q(k) Py
+ (% - w) k- v(€)PoQ(k) Py + Cuk - v(€)PoQ(k) Py + Pooy (k) Py

Write Dy, = (1 — Cok - v(€))~! and that for k € S.(£) we have |Dy|< 2. A little
algebra yields

FoQ = il = D l?kl:) Po(k - VK (€ = dI'(@)))(1 = Po)Q(k) Py
+ Dy, (% - Cw) k- v(€)PyQ(k) Py + Dy Pyoy (k) Py

The second and third term converges to 0 in norm since for k tending to 0
inside Se(€) since Dy and k - v(§) PoQ(k) Py are uniformly bounded by equation

(4.8) and o1 (k) converges to 0 in norm since for k tending to 0 inside S.(¢).
Sandwiching the first term with two vectors ¢, € F(H) we find

Lkz (K (§ — AT (k) Pov, (1 = Po)Q(k) Pog)

Now (9; K(§—dI'(k))Poy, (1— Po)Q(k)Pog) converges to 0 for k going to 0 inside
S:(€) by equation (4.15) and %kl remains bounded as k goes to 0. Therefore
first term goes weakly to 0 for k going to 0 inside S. &). O

Proof (Theorem 3.3). Fix notation from Lemma 4.8. Assume that a ground state
¢ exist and pick n € D(N'/?) such that (¢,n) > 3. Then by Lemma B.14 in
Appendix B we have the pull through formula

_ v(k)

Now

lim_ (1, Q(k)Y) — (1 — Cuk-v(€) " n,¢) =0

k—0,keS. (€)
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and since (1 — Cok - v(€))"1(n, ) is uniformly bounded from below in S:(€) by
1 we find that there is R > 0 such that

[(n, Avip (k) P>

for all k € S.(¢) N Bg(0). Using Hypothesis 1 and 2 we see w(Re;)2 > 0 because
if that was not true then w < 0 on Bg(0) which is a contradiction. Hence we

find
2 2
o= [ PEIE, < 1 / |v(k)\2dz\u+/ PRIy,
Br(0)¢

re w(k)? 7 T w(Rey)? Bro) W(k)?

as v € H we find that the integral of w(k)~2|v(k)|? over Br(0) must be infinite.
Using Lemma 4.2 we find

v (k)[?
Br(0) w(k)?

‘U(k€1)|2 v—1
w(ker)? KA (k)

as A\, (B1(0)) we see that the latter integral must be infinite. Furthermore since

o0 =

d)\,, = )\,,(Bl(())) Am 1BR(0)(1‘€1)

S:(€) is open and not empty we have

wE)* < > [o(ke) -
/§(§)mBR(O) ()2 dX, —VAV(Se(f)ﬂBKO))/O 1BR(O)(x€1)Wk Y\

=00
by Lemma 4.2 so |{n, A11(k))|? is not integrable. On the other hand we find

[, Avp(R)) < (N + D20l [(N + 1)~ 2 A (k)|

= H(N+1)1/2n|\22/ [ (ke k) PANS™ Ry Een)
i=1 YR

(n—1)v

which is integrable with integral ||(N + 1)*/29||2(|4)||? by definition of the Fock
space norm. This is the desired contradiction. O

A. Partitions of unity and the essential spectrum.

In this section we prove a few technical ingredients. Hypothesis 1 will be assumed
throughout this section. Define Vs : H — Ha & Hac by

Va(f) = (Paf, Pacf).

Then V4 is unitary with Vi (f,g) = fla + glac A\¥ almost everywhere. The
following Lemma can be found in e.g. [9]:

Lemma A.1. There is a unique isomorphism U : F(Ha & Hae) = F(Ha) ®
F(Hae) with the property that U(e(f1 ® f2)) = €(f1) ® €(fa).

The following Lemma is obvious
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Lemma A.2. There is a unique isomorphism

U:F(Ha)® F(Ha) = F(Ha) & éf(m) ®HG"

n=1

such that

Ulw @ {¢™1320) = v Ow P w e .
n=1
Note that we may identify
F(Ha) @HG" = (1@ Sn) L2(R™, BR™), 1(acyn Anw, F(Ha))

where 1 ® S, acts on L2(R™, B(R™), Ay, F(H4)) like

(Snf) 1y .o kn) = % Z J(koqrys -+ s ko))
ocES,
Now we define
HP (€ by k) = Hu(€ — by — e — ko, )+ w(ka) + -+ w(kn)
which is strongly resolvent measurable in (ki,...,k,) € (A°)" since § — H(§)

is strong resolvent measurable by Lemma 3.2. In particular
Haa©) = §  HOE b k)N (b, )
(Ac)n

defines a selfadjoint operator on L2(R™, B(R™), A", F(H 4)) and it is reduced
by the projection 1 ® S,,. To see this we note that 1 ® S,, commutes with the

unitary group of H, 4(§) since HXL) (&, k1,...,kn) symmetric in the variables
ki,...,k,. Combining the above observations one arrives at the following lemma.

Lemma A.3. Let A € B(RY) and assume 14v = v A, almost everywhere. Define
Ji i Hi = Ha®Hae by ja(f) = (f,0) and jac(f) = (0, f) and define Q; = V3ji.
There is a unitary map

U:F(H) = F(Ha) © @ F(Ha) @ HG"
n=1
such that
UH,(U* = Hy(¢,A) & @D Hp a(6) | Feenensim = Galé) (A1)
n=1

for all € € RY. In particular X 4(§) > X(§) for all & € RY. Furthermore

Ulraay=1(Qa)-
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Let g1,...,9n € Hae and let K C CS4 be a subspace. Define
D :{QAcgl R+ Qg QA“gn}

U U{hl R Rs hy Ry QA“gl R+ Vs QAan | h; GIC}
b=1

If ¢ € Span(J(K)) we have

U*(¢¥ ® g) € Span(D). (A.2)
[(Hu (€ = k) = Hu(E) T (Qa)dll = (Hu(§ =k, A) — Hu(§ ANl (A3)
[(Hu (&) = NI(Qa)ell = [(Hu(& A) = Nl (A4)

where A € C.

Proof. Define U = UsUyI'(Va). Let f,h € CS and write for C' € {4, A°} fc =
Po(f),he = Po(h) € CSc. Then

Ue(f) = UaUre(fa, fac) = Uze(fa) @ e(fac) = e(fa) @ P e(fa) ® % i

n=1

which one may check is in D(G(€)). A long but easy calculation using Lemma
2.2 yields

(e(h), U"G(&)Ue(f)) = (Ue(h), G(E)UE(f)) = (e(h), H(E)e(f))

As L(CS) is total we find H,,(§) and U*G(§)U = H(€) on L(CS) which is spans
a core for H,(£). Hence U*G(§)U = H, () as both operators are selfadjoint.
This proves the claim regarding the transformations. The remaining statements
except equations (A.3) and (A.4) can be found in [3]. However equations (A.3)
and (A.4) follows from U |3 ,,)= I'(Q4) and equation (A.1). O

We have the following Lemma
Lemma A.4. Let ky,...,k; € R be different. If there is ¢ > 0 such that
(Be(k1) U -+~ U Be(ke)) N {v # 0} is a A\, O-set then X(§ —ky — -+ — k) +
wn(k,. .. ki) € 0ess(Hu(8)).
Proof. Pick € > 0 such that the balls B¢(k1), ..., Bc(k¢) are pairwise disjoint and
we have (B, (k1)U---UB.(ke))N{v # 0} isa A, O-set. Let €, = £, 0 = B., (ki),
B, =BM U UBY ko =k + -+ ke, A, = B x - x BYY and let

9\ = /\u(Bff)\By(;)d)_1/213&71)\3&1

A, ={feCS| f1<B’5LZ>>C = f A, almost everywhere for all s € {1,...,n}}

-
n=1

Note that CS C A, 50 Aw is a dense subspace of H. In particular, J(Aso)
spans a core for H,(§ — ko) by Lemma 3.2. For each p € N we may thus pick
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1y € J(Aoo) such that [|(H,(§ — ko) — X (€ —ko))¢p|< 1/p. By Lemma 3.2 there
is u1(p) such that

sup [[(H(E =21 — - — ) = H(E — Fo))¢hpl|<

z=(x1,...,x0)EA,

SRR

for all n > u1(p). Note now that ¢, may we written as

b c(p)

Yy = a(p)2+ )Y i (p)fl(p) ©s - ®s f(p)

i=1j=1

for some a(p),b(p),c(p), @i ;(p) constants and f(p) € As. Note that each
f](p) is in fact contained in some Ay ;,) by definition so defining ug(p) =
max; ;{l(¢,7,p)} we see that ¢, € Span(J(A;)) for any | > us(p). Define now u,
inductively by u; = max{ui(p), u2(p)} and u,41 = max{u;(p), uz(p), up—1}+ 1.

To summarise we have found vectors v, € D(H(£)) and a strictly increasing
sequence of numbers {u,}>2; C N such that

(1) [[(H (& = ko) = X (& — ko))tbplI< 1/p. )

(2) suPkep,, (b +-tho) (H(E = k) = H(E = ko))p[|< 5 and ley, <6

(3) ¥p € Span(J(Ay,)).

For each n € N and A € {By, B, } define V,, = Vp_ (x,)c and jn 4 : H; —

Hpe @Hp, by jn,g (f) = (f,0) and jn g, f = (0, f). Furthermore we set Qn,4 =
V) jn,a and let U, be the unitary map from Lemma A.4 corresponding to B¢.
Fix f € H. Then the following equalities holds A, almost everywhere:

Qn.5,Ps,(f) =V, (0,Ps,(f) =15,Pp,(f) =18, f (A.5)
Qn,Be Ppe (f) = V,; (PBe(f),0) = 1pe Ppe (f) = 1Be f (A.6)

since Pp,(f) = f 1p,)\-almost everywhere and Pp:(f) = f 1pcA,-almost
everywhere. For f € A, we have 1p: f = f and so we obtain the two equalities

I(Qn,e)I'(Ppg )Y = I'(1pg )t = ¢ Vo € Span(J (Ay)) (A7)
Qn,BnPBngr(zi> = 1Bng1(1i) = gr(zl> (AS)

for all ¢ € {1,...,¢}. We now define the Weyl sequence as follows:

ép = VOU; (T(Pp; ) © Pp, 9% @ - @, Pp, gi)

up
We will now prove
p is orthogonal to ¢, for p # r.

ll¢pll=1 for all p € N.
|(H(&) — 2(§ — ko) — wn(k1, ..., kn))dp|l converges to 0.
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(1): Define for all p € N the set

Cp :{gq(&)) ®s o ®s gq(fp)}

q=1

and let K, = PBﬁp Ay, C CSBﬁ,p since PB&,, maps CS into CSBEP' Using equation
(A.5) we find Q”p»Bﬁp Ky, = 1g,, Au, = Ay, and Lemma A.3 implies v, € C;, C
J(CS) C D(H,(E)) as required.

(2): Let r < p. Then ¢, € Span(C,) and ¢, € Span(Cp), so we just need to
see that every element in C,, and C). are orthogonal. Let ¢, € C), and 1), € C.
Note every tensor in C), has a factor g&) and that this factor is orthogonal to g&z)

for all 4 by construction. Furthermore for any h € A,,, we see that h is supported
in B C ng and hence g&)h =0, so g,(ulp) is orthogonal to any element in A,,,.
This implies 17 contains a factor orthogonal to all factors in ¥9 and thus 1 is
orthogonal to 5.
(3): Qu,,B;  and Qu, B, are isometrics and which implies I'(Qy,,p; ) and
up ’ 7T up

I'(@n,.B,,) are isometrics. Using equations (A.7) and (A.8) we calculate

up P up g'u.,

= VAIL(Quy55, )T Py Yl 1D (Quyir;, ) Pr, 92 @4 - @4 P, g0
= Vg, lllg) . - @4 gf1= 1

Up

6l = VO (Ppg Yl Pp., 9% ®s - ©s Pr,, 90|

where we used gq(fz and gffg are normalised and orthogonal if ¢ # j and

1 - - 1
96 00+ 0o = 3 ) @0 0l 800 =

oceS,

(4): Define the function g,, = gq(f,,) Qs+ Rs gffi,). Using Lemma A.3 we see

that |[(H(§) — (€ — ko) — wn(k1, ..., kn))opl is given by

\/Z!(/Bé I(Hpg (€= 21—+ —@e) +wel@r, .-, xe)

up

1/2
— S~ ko) —wilka, ... kmr(PB;p>wp||2|gup<x>|2dxu<x>) = Vil
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Using the triangle inequality, HF(PBSP Ypll= 1, F(an,ng)F(PB;p)q/)p = 1y
and Lemma A.3 we find v < Cy 4+ Cy + C3 where

1/2
B! 3 P Uy d

up

02_</B[

up

1/2
‘(wn(xlv ceey xf) - Wn(klv ) kf))|2|gup ($)|2d>‘v(l‘)>

1/2
Cs = |[(H(§ = ko) — 2(§ — ko)) ¥yl (/Be Igup(w)QdAu(w)>

Let f : (R¥)™ — R4 be non negative and symmetric. Using that the gg) have

disjoint support one finds

|Gu, (21, - - - @) [? €|2 Z ng,, () gz(fr( z;) = 02 Z H|g(n(1

o€S, i=1 g€eS, i=1

Thus using permutation invariance of f we find

/ F@lon @P) = [ 1o H\g”xz\fm

Thus V¢!C3 = ||(H (& — ko) — 2(€ — ko))¢p||< p~'. Furthermore
VaC, < sup |[(H(E —m1 — - — @) — H(E = ko)) plI<p~*

(z1,...,0n)EA

up

VACL < sup fwn(ereenrar) — wrlkree . ko)
(1,20 ) €AY,

By continuity of w we now see v/£!y goes to 0 for p tending to co. O
Lemma A.5. Let ky,..., k¢ € R”. Then X(§ —ky — -+ —k¢) +wp(ky,..., ko) €
UESS(H;L(@)'

Proof. Assume first kq,...,k¢ € R” are different elements and define A, =

Bijn(k1) U+ -+ U By, (ke). Let v, = 14cv and note that v,, € D(w~'/2) and

lim ||(v, — v)((.«Fl/2 +1))=0

n—00

by dominated convergence. Define

HM(€) = Q(& — dL(k)) +dI(w) + pp(vn) 2 =P lw™ 20,2 —p? ™/ 202
Ln(§) = inf(o(H(()))

Using Lemma 2.1 we find

(. (&) +0) 7 = (H™E) + )< llle(v = va) (Hu(€) +9)7H) 7|
< A (on = o) (@™ 2+ DAL (w) + 1)V (Hu () +8) 7|
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so H™(€) converges to H,(¢) in norm resolvent sense for all ¢ € RY. The
uniform lower bound of X, (§) and norm resolvent convergence now implies X, (&)
converges to X(¢) for all £.

By Lemma A.4 we have X, (6 —ky —- - - —k¢) +wn (K1, ..., ke) € Tess (HM(8)).
Now X, (& — k1 — - — k¢) + wp(k1, ..., k¢) converges to X(§ —ky — -+ — k¢) +
wn(ki, ..., k) and H™(€) converges to H(€) in norm resolvent sense so we are
done in the case where ki, ..., k¢ are different. The conclusion now follows since
X and wy are continous, {(k1,...,k¢) | k; # k; Vi, j} is dense and oess(H(€)) is
closed. O

B. Proof of pull though formula

This appendix is devoted to proving the pull through formula. The in case
K (k) = |k|* one could compute everything directly using tools as in [8]. However
the other possible choices of K require a more sophisticated approach ao we use
the formalised developed in [3] and the reader should consult this paper for the
proofs. Let H = L?(M,&, i), where (M, &, 1) is assumed to be o-finite. We
start by defining

Fo(H) = X O
n=0

with coordinate projections P, and H = L*(R”, B(R”), A,). For (™), (¢(™) €
F4(H) we define

(™), (6™) = T+ [0 — o]

n=0

where |[|-|| is the Fock space norm. This makes sense since P, (F4(H)) C F(H).
We now have

Lemma B.1. The map d defines a metric on Fy(H) and turns this space into
a complete separable metric space and a topological vector space. The topology
and Borel o-algebra is generated by the projections P,. If a sequence {1,}32 1 C
F(H) is convergent/Cauchy then it is also convergent/Cauchy with respect to d.
Also any total/dense set in Fp(H) will be total/dense in F(H) as well.

For each a € R we define
. f— 1 2a . 2
I lla+= lim_ (kz_o(k + 12RO ) :

which is measurable from F (H) into [0, cc]. Let

Far(M) ={v e FL(H) | ¥

la,+< 00}

Note ||:||q,+ restricts to a norm on F, 4 (#) that comes from an inner product.
In particular F, 4(H) is a Hilbert space and for a > 0 we have F, +(H) =
D((N +1)*). We summarise as follows
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Lemma B.2. |||, + defines measurable map from F(H) to [0, 00|, and restricts
to a norm on the spaces F, +(H) that comes from an inner product turning
Fa,+(H) into a Hilbert space.

The point of defining a metric on F;(H) and finding a dense set is that most
of the operations we will encounter in this chapter are continous on Fi(H).
Therefore many operator identities only needs to be proven on well behaved
vectors. Fix now v € H. We now define the following maps on F, (H)

at (V) (™) = (an ()" D)
ol (0)(@"™) = (0,05 (1), af (0)y D)
o1 () = () + al (v)
Where a,,(v) is annihilation from H®:(+1) to H®=" and af (f) is creation from
HEem 1o HEMH),
Lemma B.3. The maps a+(v),af+(v) and ¢4 (v) are all continuous. For B €
{a,a’, o} we have
By (w)g = Bo)w if ¥ € D(B(v)). (B.1)
Furthermore we have the commutation relations
lat(v), al(9)] = (v, 9)
[o+(v); p+(9)] = 2ilm((v, g))

We now move on to the second quantisation of unitaries and selfadjoint op-
erators. Let U be unitary on H and w = (wi,...,wp) be a tuple of strongly
commuting selfadjoint operators on H. We then define
dI'(w) = (dI'(w1), ..., d (wp))
Ar™(w) = (dr™ (wy),...,d0™ (w,))
which are now tuples of strongly commuting selfadjoint operators (this is easily

checked using the unitary group). Let furthermore f : RP — C be a map. We
then define

AT (@) = X F@0 (@) DA () = X DL (w)))

n=0 n=0
ry(U) =X rew).
n=0

If w: M — RP is measurable then we may identify w as such a touple of
commuting selfadjoint operators. In this case f(dI'™(w)) is multiplication by
the map f(w(k1)+ -+ w(ky)). The following lemma is now obvious.

Lemma B.4. The map I'y(U) is an isometry on F1(H) and is thus continuous.
Furthermore we have

Al (W) = fldl' (W), ¢ € D(f(dI'(w)))
I (U =ry, ¥ € Fu(H)
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We will now consider a class of linear functionals on F (). For each n € N we
let Q, : Fi(H) — N denote the linear projection which preserves the first n
entries of (1/)(”)) and projects the rest of them to 0. For 1) € N there is K € N
such that for n > K we have Q.1 = 9. For ¢ € F,(H) we may thus define the
pairing

K

(W, 0)4 = (¥, Quo) = > (¥, 0), (B:2)
i=0
where n > K.
Lemma B.5. The map Q,, above is linear and continuous into F(H). The par-
ing (-,-)+ is sesquilinear, and continuous in the second entry. If ¢ € F, +(H)
then ¥ — (1, @)+ is continous with respect to ||-||—q,+. Furthermore, the collec-
tion of maps of the form (1, )1 will separate points of F(H).

Corollary B.6. Let ¢ € F, +(H) for some a < 0, D C N be dense in F(H)
and assume (Y, ¢)+ =0 for all ¢ € D. Then ¢ = 0.

We also have the following formal adjoint relations

Lemma B.7. Let Yy e N, ¢ € F.(H), v € H and U be unitary on H. Then we
have

(@' ()Y, 8) 4 = (¥, a1(v)8) 4, (a(v), @)1 = <¢7GL(U)¢>+,
(W), ) = (¥, 04 (V)P) 4, (LU, )+ = @, I (U*)P) 4

Let w = (w1, ...,wp) be a tuple of commuting selfadjoint operators, f : RP — C,

Y e NND(f(dIM(w))) and ¢ € D(f(d}(w))) we have
(FdD (W)Y, d)+ = (¢, F(d4 (w)))+-

We now consider functions with values in F; (H). Let (X, X, v) be a o-finite and
countably generated measure space. Define the quotient

MX, X v)={f: X > FL(H)| fis X — B(F4(H)) mesurable}/ ~,

where we define f ~ g <= f = g almost everywhere. We are interested in the
subspace

CX, X, v)={f e M(X,X,v) |z — P,f(z) € L*(X, X, v, H®") Vn € Ny}

Lemma B.2 shows that x — || f(x)
and so the integral

|a,+ is measurable for functions f € C(X, X, v)

/ £ ()12 4 dv ()
X

always makes sense. If @ = 0 then it is finite if and only if f € L*(X, X, v, Fp(H)).
We write f € C(X,X,v) as (f™) where f(" = z — P,f(z). For f,g €
C(X,X,v) we define

d(f,g) = i i ”f(n) - g(n)”LQ(X,X,u,H@sn)
T L T = g e meen)

We can now summarise.
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Lemma B.8. d is a complete metric on C(X,X,v) such that C(X, X,v) becomes
separable topological vector space. The topology is generated by the maps f +—
(x = P.f(z)). Furthermore L*(X,X,v, Fy(H)) C C(X,X,v) and convergence
in L3(X,X,v, Fp(H)) implies convergence in C(X,X,v). Also the map =
| f(x)|la+ is measurable for any f in C(X,X,v) and a € R.

We now move on to discuss some actions on this space. This is strongly related
to the direct integral and readers should look up the results in [12]. Let n > 1,
v € H, U be unitary on H, w = (w1, ...,wp) a tuple of selfadjoint multiplication
operators on H, m : M"™ — RP measurable and g : RP — R a measurable map.
Then we wish to define operators on C(M?¢, £2¢, u®¢) for £ > 1 by

(al, () ) (k) = al(v) f (k)

(ag.c(v) f) (k) = ax(v) f (k)

(Po.e(v)F) (k) = 94 (V) f(K)

(Lo e(U) ) (k) = T (U) £ (k)
(9(dlg.0(w) +m) f)(k) = g(dls(w) + m(k)) £ (k)

We further define C(MO°,£%° 1®0) = F,(H) along with ag%o(v) = al(v),
ag,0(v) = a4 (v), pa,o(v) = g4 (v) and I'p g = I'L(U). We have the following
lemma.

Lemma B.9. The aéj(v)7a@,g(v)7gﬁ@j(v) and I'g (U) are well defined and

continuous for all £ € No. Let f € C(M*, E®, u®b). If f(k) € D(g(dl'y(w) +
m(k))) for all k then k — P,(g(dI't(w) + m(k))f(k)) is measurable. Thus as
domain of g(dl'g ¢(w) +m) we may choose

o]

ﬂ{f c C(MZ,(‘;'@E,M@Z)

£=0

f(k) € D(g(dy (w) + m(k))) for a.e. k € M*,

/ 1Pag(dly (w) + m(k)) f (k) |2 dp® (k) < OO}~
M/

We will now introduce the pointwise annihilation operators. For ¢ = (¢(™) e
F1(H) we define Agyp € C(MF,E®¢, 1®%) by

Po(Ae) (b1, k) =V + O)(n+ L= 1) (n+ DO (ke ks, )
which is easily seen to be well defined and take values in H®:". We can prove

Lemma B.10. A, is a continuous linear map from Fy(H) to C(ME,E2¢, u®t)
and from D(N2) into L2(M?, €9, u®t, F(H)). Furthermore i) € D(N/?) <
App € L2(ME EDE u®t F(H)) and if o € F(H) we have Agpp is almost every-
where F_y  (H) valued.

Fix v € H and ¢ € Nyg. We then define a map z(v) : C(M* E® u®f) —
C(M“l, 5®(£+1)’ M®(€+1)) by

(20(0)P) (k) = v(k) and (z¢(v)¢)(z, k) = v(z)(k)

when ¢ > 1. One may prove
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Lemma B.11. The map z(v) introduced above is linear and continuous. Both
as a map from C(M E® 1u®Y) into the space C(MH ERUHD 1 ®BE+DY g
from L2(ME, €2 128 F(H)) into the space L>(M !, €80+ @+ T ().
Lastly we look at permutation and symmetrisation operators. Let £ > 1 and o €
S¢ where Sy is the set of permutations of {1,...,¢}. Defining & : M — M* by
G(k1,. .. ko) = (ko(1)s- - ko(r)). Define G : C(M, EPE ®0) — C(MF, E2¢, ")
by
@)k, ke) = f(ko)s- - ko) = (foo) (k... k).

Define now

1 ~
Sg::mza.

ogeSy

One may prove:

Lemma B.12. Let £ € N. For o € S, the map & defines a linear bijective isome-
try from C(M®, %8 u®t) to C(MF, %4, u®t) and from L2(ME, €9 u®t F(H))
to L2(MFE E®E u®t F(H)). Also GAp) = Aph and if 7 € Sy then 76 = To 0.

Furthermore Sy is continuous and linear from C(M* €9, u®*) into the space
C(MFE E® u®Y) and it satisfies relation S? = £S,. Furthermore Sy is also con-
tinuous from L?(MF¥ %4 u® F(H)) into L2(ME, E®F u® F(H)).

We can now calculate commutators (more commutation relations can be found
in [3] but we will only cite those used here)

Lemma B.13. Let w : M — RP be measurable, v € H and let f : RP — R be
measurable. Then

Pa(v)AL = A1p4(v) — 20(v) (B.3)

Let ¢ > 1. If € D(f(dI'(w))) then App € D(f(dl'p(w) + we)) where we define
we(k, ... ke) = w(ky) + -+ +w(ke) and

fldlg(w) +we) Aep = Arf(dly(w))3).
We can now prove the pull-trough formula.

Lemma B.14. Let H = L?(R”, B(R¥), \,) and w,v, K satisfy Hypothesis 1 and
2 and let p e R, € R, v > 2. Assume ¢ is a ground state for H,(§). Then we
have

(A1) (k) = —pv(k) (Hu(€ = k) +w(k) — 2(6)) 19
almost everywhere.

Proof. First we note (H, (£ — k) +w(k) — X(£))~! exists as a bounded operator
away from the zero set R¢ by Lemma 4.4. Define the lifted operators on Fy (H)
and C(MF, E%¢, 1®%) respectively

Hi(€) = K(§ = dI'y (k) + dI (w) + peot(v)
Hg(§) = K(§—g—dlg1(k)) + dlg )1 (W) +w + f1og @)1
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where g : R” — R is given by g(k) = k. The domains are

D(H(£)) = D(dl' (w)) ND(K(§ — dI'y(9)))
D(Hg(€)) = D(dls1(w) +we) ND(K(§ — g — dlp1(9)))

By Lemma B.13 we have Ay € D(Hg(§)) since ¥ € D(H(E)) C D(H4(E)).
Using Lemmas B.3, B.4 and B.13 we also obtain

hi= (Ho(§) = D(€) A = —puz () + Ar(H(€) = D) = —pzo(v)d
which is Fock space valued. Let M be a zeroset such that:

1. Aypis F_q/9,4 (M) valued on M€ (see Lemma B.10).
2. h(k) = (Hy(E— k) +w(k)) (A1) (k) and h(k) € F(H) for k € M°.
3. (Hu(§ — k) +w(k) — X(€))" exists on M©.

Fix k € M¢. For any vector ¢ such that both (H,({ — k) +w(k) — X(£)) !¢ and
¢ is in A/ (this set is dense by Proposition 3.2) we find using Lemma B.7 that

(¢, Artp(k))+
= ((Hu(& = k) + w(k) = 2(€) (Ho(€ = k) + w(k) = 2(€) ', Arp(k))+
= ((Hu(§ = k) + w(k) = 2(€) ™" ¢, h(k))
= (&, (Hu(€ = k) + w(k) — (€))7 h(k))+-
Corollary B.6 finishes the proof.
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Abstract: We consider a new model for an impurity in a Bose-Einstein conden-
sate. The Hamiltonian is translation invariant and so it can be represented as a
direct integral of fiber Hamiltonians {H (&)}¢crs each corresponding to a fixed
value of total momentum. We prove selfadjointness of the Hamiltonian and fiber
operators and find the essential spectrum of the fiber Hamiltonians. We then ex-
tend (and correct) certain results on operators generating a positivity improving
semigroup and apply them to the model. From these results we obtain directly
that £ — inf(o(H(§))) has a global minimum at { = 0 and that H does not have
a ground state.

1. Introduction

The model we investigate in this paper is an extension of the usual polaron model
and has been used in the papers [5], [7], [10] and [19]. Informally, the Hamiltonian
appears using a Bogoliubov approximation but one still keeps some of the second
order terms that would normally be ignored. However these terms are important
to model Effimov physics and the new model does give rather good results when
compared with data (see [7]).

The point of departure of this paper is the model encountered immediately
after the formal manipulations have been finished. We then rewrite it in an
convenient form which is practical for proving the theorems we are after. The
reader is warned that the Hamiltonians in [19] contains a small misprint which
is eventually corrected in [10].

The first step is proving selfadjointness of the Hamiltonian and the fiber
Hamiltonians arising from the Lee-Low-Pines transformation. This is non trivial
because the ”perturbation” is a rather large expression. So it is not at all clear
that one ends up be a selfadjoint Hamiltonian.
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After proving selfadjointness we try to generalise the results from [8], [9]
and [12] to our setting. Especially the theory from [9] is used in [19] (without
proof that it is correct). The main problem is that the ”perturbation” is not a
multiplication operator. In fact, to generalise the results in [9] and [8] we actually
have to develop new abstract theorems on positivity improving semi groups. We
improve and correct results found in [4], [11] and [16] on the subject and apply
them along the lines found in [9] and [8].

One new point being made in this paper is the absence of ground states
for translation invariant Hamiltonians. From a physical perspective this sounds
trivial and actually there should be no bound states at all in translation invariant
systems. However our proof only works to exclude a ground state and the general
problem is future work.

2. Notation and preliminaries

We start by fixing notation. If X is a topological space we will write B(X) for
the Borel o-algebra. Furthermore, if (M, F,u) is a measure space and X is a
Banach space we will for 1 < p < oo write LP(M, F, u, X) for the vector valued
LP space. If X = C we will drop X from the notation. Also we will write B(X)
for the bounded linear operators from X to X.

Now let H1,...,H, be Hilbert spaces and let H1 ® - - - ® H,, denote the tensor
product. If D; C H; we will write

Dl®-~®pnzspan{fl®"'®fn | fi € D;}
We will be using the results from the following Theorem

Theorem 2.1. Let A; be a closable operator on H; for alli. Then

(1) There is a unique, closable map A1®...®A, on D1®...®@D,, such that if
fi € D; for all i then (A1®...@A4)1Q@ Q@ fn=4/1® - @A, fn. We
define

A1®.‘.®An:m~

Then A\ ®--- @A, =4, ® - @A, and A, ®---® A, is unitary if Ay,..., A,
are unitary.

(2) Define T; = (1) 14;(®1)" " = By ® - ® B, with B; = 1 ifi # j and
B; = A;. If A; is essentially selfadjoint then T; is selfadjoint and T; will
commute strongly with T;. Furthermore, for any f: R — C' we have

H(T) = (18) " F(A)(@1)"

In particular, o(T;) = o(4;).

(3) Define T = Ty + -+ + T, and assume A; is essentially selfadjoint for all
1<i<n. Then T is essentially selfadjoint on D1®...QD, and the unitary
group is given by el = ¢t @ ... @ tAn, Jf —co < \; := inf(o(4;)) for
all 1 < i < n then inf(o(T)) = X = M + -+ + Ay, T is selfadjoint and
et = et @...@e . If A; is a non degenerate eigenvalue of A; for all
1 <i<n, then \ is a non degenerate eigenvalue for T'.
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(4) Let Q; = (M, Fi, i) be a o-finite measure spaces for i € {1,2,...,n} and
H be a separable Hilbert space. Then we may identify

L2Q1)® - @L*(Qn) = L2(My X -+ X My, FL @+ @ Frypt1 @ -+ - @ fi,)
L}(Q1) ®@H =L*(Q1,H)

where (f1® @ fn)(@1,. .., 2n) = fi(xr)-- - f(zn) and fRY(x) = f(z). In
particular, one may identify L*(Myx Mo, F1®Fa, 1 Qua) = L*(Q1, L*(Q2))
where ¢ € L2(My x Mo, Fi @ Fa, i1 ® ) is identified with the element

z = P(x,-).
Proof. See [2], [18] and [21].

Of special interest to this paper is vector valued L? spaces. Let @ = (M, F, i) be
a o-finite measure space and H a separable Hilbert space. Let f : M — B(H) be
strongly measureable (i.e. z — f(z)1 is measurable for all ¢ € H) and bounded.
Then we define the direct integral

®
() = /M f(@)d(z)

as the bounded operator on L%(Q,H) defined by Ig(f)w(z) = f(x)y(x). One
also has a direct integral for unbounded selfadjoint operators. Let { Ay }zea be
a collection on selfadjoint operators on H. We say {A; }zea is strong resolvent
measurable if z +— (A, +i)~! is strongly measurable. Then we define

Ig(A)(z) = Aptp(2)
D(Ig(Az)) = {¢ € L*(Q,H) | () € D(A,) and = = || Az (z)||€ L*(Q)}

The following Theorem sums up the results about direct integrals we shall need

Theorem 2.2. Let { A, } e m be a collection on selfadjoint operators on H. Then
x = (Ay + 1)1 is strongly measureable if and only if x > e4v is weakly
measurable. In this case Ig(A,) is selfadjoint and x — (i + f(Ay)) ™! is strongly
measurable for all f : R — R. Furthermore

fIe(A)) = Is(f(As)).

If Ay > X for all © we find Ig(Ag) > A (use f = 1(_oon)). If A is selfadjoint
or bounded on H we may identify 1 ® A = Ig(A) and if V is a multiplication
operator on L*(Q) then V @ 1 = Ig(V).

Proof. See [16] and some easy calculations.

Throughout this paper we will write H for the state space of a single boson
which is always assumed to be a separable Hilbert space. Let n € N and H®" be
the n-fold tensor product. If B € B(H) we also write B®™ for the n-fold tensor
product of B. Write S,, for the set of permutations of {1,...,n}. The symmetric
projection .Sy, is the unique bounded map satisfying

1
Sn(fl@@fn)zﬁ Z fo’(l)®'“®fa(n) ::f1®s"'®sfn
T oES,
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We further define Sp = 1 = B®% on H®? = C and write H®" = S,,(H®"). Note
B®" maps symmetric tensors to symmetric tensors so BE™ |ye.n is well defined
as an operator on H®+0. This implies that if w is selfadjoint on 7 then (ei*«)®n
leaves H®=™ invariant so by Theorem 2.1 we may define

oo n (o)
=0a@P D (@) tw(@1)"* [ys.. and I'(B) =) B®" [ys.n -
n=1k=1 n=0

as operators on the bosonic (or symmetric) Fock space

- G
n=0

We will write an element ) € F,(#) in terms of its coordinates ¥ = (1(™) and
define the vacuum 2 = (1,0,0,...). For g € H we define a coherent state

-5

Let D C H be a dense subspace. We also define

®n

<Q

(2.1)

ﬂ\

N ={™)e FH)| 3K e Ns.t. ™ =0 for all n > K} (2.2)
J(D) ={QtU{fi®s & fu|neN f; € D}. (2.3)
E(D)={e(f) | f €D} (2.4)

One may prove N, J(D) and &(D) are dense. For g € H one defines the annihi-
lation operator a(g) and creation operator a'(g) on symmetric tensors in F,(H)
using a(g)2 = 0,af(g)2 = g and

a’(g)(fl B s fn) = %Z(gmﬂ)fl s ®sﬁ®s Qs fn
=1
a'(g)(f1 @+ ®s fu) =V 1g@s 1 s @4 [

where ﬁ means that f; is omitted from the tensor product. One can show that
these operators extends to closed operators on J,(H) and that (a(g))* = af(g).
One may thus define the symmetric operator

©(g) = alg) + a'(g).

Let U(H) be the unitaries from # into H. Fix now U € U(H) and h € H. Then
there is a unique unitary map W (h,U), called a Weyl operator, such that

W (h,U)e(g) = e IM*2=009¢(h 4 Ug).

for all g € H. The properties of the above operators are

Proposition 2.3. Let w and C be selfadjoint on H, U be unitary on H and
v,9 € H. Then
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(1) dI’(w) is selfadjoint, essentially selfadjoint on the span of J(D(w)) and e () =
I'(e™). If w > 0 then dI'(w) > 0 and e tdl(w) — T(e™). If w > 0 and in-
jective then 0 is a non degenerate eigenvalue. {2 spans the eigenspace.

(2) If w and B strongly commute then so does dI'(w) and dI'(B).

(3) p(v) is selfadjoint and e"$V) = W (—itv,0).

(4) The following commutation relations holds

[a(v),a(9)] = 0 = [aT(v), at(g)] and [a(v),al(g)] = (v,g). ~ (2.5)
[p(v),(9)] = 2ilm({v, g)). (2.6)
Furthermore, a'(v)a(v) = dI'(|v)(v]).
(5) If v € D(w) then N N D(w) C D([dI'(w), p(v)]) and
[A0 (W), ¢(v)] = —ip(iwr) (2.7)

(6) I'(U) is unitary and I'(U)p(v)I'(U)* = p(Uv).

(7) Assume w > 0 is selfadjoint an injective on H, D, E € {a,aT,cp} and let
g1,92 € D(w™2). Then D(g1)E(g2) is dI'(w) bounded and D(g1) is dI'(w)/?
bounded. In particular D(g1)E(gz) is N bounded so N' C D(D(g1)E(g2)). We
have the following bounds

ID(g1)9]| < 2[(w™% + Dga|[[|(dT(w) + 1) 9|
ID(g1) E(g2)0]| < 15[/(w™% + D)gu |||l (@™ % + V)gall| (T (w) + 1)

1

which holds on respectively D(dI'(w)z) and D(dI (w)). In particular ¢(g1) is
infinitesimally dI"(w) bounded. Furthermore dI'(w) + ¢(g1) > —|lw™ 2 g1|2.

Proof. See [1], [13] and some easy calculations.
Using the above results one can now easily conclude the following:

Proposition 2.4. Let Q = (M, F, u) be a sigma-finite measure space. Let x —
fo € H and x — g, € H be measurable, {wy}zem a be strong resolvent mea-
surable family of selfadjoint operators on H and x — U, € B(H) be strongly
measurable with ||U||< 1. Then

(1) {o(fo)Yeem, {a (fo)a(fe)yoem and {dT(wy)}eem are strong resolvent mea-
surable and x — I'(Ug) is strongly measurable. We will write pg(fs) =

Ie(o(f2)), ab(fo)a(fe) = To(al(fo)a(fs)), dla(ws) = Te(dl(w,)) and
Iy (Uz) = Is(I'(Us))
(2) If U, is unitary for all x then I'y,(Uy) is unitary and I's(Uy) g (fo) e (Ur)* =

(U f)-
(3) Assume x — f, and x — g, are bounded, wy > 0 is injective for all x € M,

fes 9z € D(w;1/2) for all x € M and the two maps x — w;1/2fx and x —
ws /%g, are bounded. Then e (fe) is dlg(w)'/? bounded, ¢g(gs)0e(fe) is
dI'g(w) bounded and aZB (92)ae(fz) is dl'g(w) bounded. We have the bounds

e (fe)yll < 2 SGH})A(H(MJ% + 1) o) (Al (w,) + 1) 24|

e (92) e (fa)ill <15 Sélﬁl(ll(wz F 4 Daillllws * + Dgall) (T (wr) + el

In particular, og(fz) is infinitesimally dI'g(w) bounded.
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We will need the following definition

Definition 2.5. Let £, = (RY, B(R”),\,) be the v-dimensional Lebesgue mea-
sure space. Let x — f, € H be bounded and measumble We say it is weakly

differentiable if for all i € {1,...,v} there is g € H such that for all
¢ € CP(RY) and ¢ € H we have

/am (W, £2)d ( /¢ (6, gD)dA ().

In this case we write Oy, f = gg(f).
We shall need the following result about differential operators

Lemma 2.6. Define
K = L*(RY, B(R"), \,, Fy(H)) = L*(R", B(R"), \,) ® Fp(H),

p; = —i0,, ® 1 and |p|= (=A)"/2 @ 1. Here A is the Laplace operator. Then

(1) D(|pl) = M=y D(pi) and for v € D(|p|) we have [[|ple]|*= 327, [|lpiv]|*.

(2) If v = fy is weakly differentiable the [pe(fs),pi] = —ipe(0x, f2) holds on
C(RY)®JT (D). In particular, og(f.)1 € D(|p|) for v € C(RV)RT (D).
Proof. To prove statement (1) we let ' denote the Fourier transform and define
the functions f(k) = |k| and f;(k) = k; form R” to R. By Theorem 2.2 we see

(Fopl(Fe1)" =Is(f) and (F @ pi(F ©1)" = Ig(fi) and so

(Fe1)D(p) = {¢ € K| [kP[[v(k)]*€ L' (R", B(R"), \,) }
= {v e L[ [k:]*[v(k)|*e L' (R, B(R), \y) Vi€ {1,...,v}}

1) m D(pi)
i=1
showing the domain identity. Now let ¢ € C$°(R”)@H. Then

Iplel*= (¥, —A ® 1y) = me Zupw (2.8)
=1

For general 1) € D(|p|) we may pick a sequence {1, }—1 C C3°(R”)&H approxi-
mating ¢ € |p| norm. Using equation (2.8) we see {, }n—1 is Cauchy in p; norm

for all i € {1,...,v}, so as the p; are closed we find {1, },—1 converges to ¢ in
p; norm for all ¢ € {1,...,v}. The result now follows taking limits in equation
(2.8).

Statement (2) is proven in [6] where the author concludes that wg(fs)¥ €
D(|p|?) for ¢ € C$*(RY)®J (D). This is not true, but his proof works well enough
to prove statement (2).
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3. The Hamiltonian(s) - definition and results

The full Hamiltonian is defined on L?(L,, F(H)) where H is for now taken to be
an abstract Hilbert space. Let {uy}zery, {Vs }zerr C H be strongly measurable
families and w be selfadjoint on H. The full Hamiltonian takes the form

1
v _ t
Hy o= (— 2MA —+ V) ®1+1®dlMN(w) + g19e(Ue — V) + g2a8 (Ve)ag (ve)

®
+ gzaé(um)a@(ux) — gg/ a(Uyv)a(Upu) + af (Upv)al (Uyu)dz

where V' is a multiplication operator. A priori it is not clear that this operator
makes sense on any domain since the last direct integral is not of a selfadjoint
operator. We shall show later that under certain assumptions it will make sense
however. Here V' = 0 corresponds to the translation invariant case.

We shall also need the fiber Hamiltonians. Let u,v € H and w be selfadjoint
on H. Let m = (m™,...,m®) be a touple of commuting selfadjoint operators
on H. Then we define

Hyp 00(€) =51 (€ — dD(m))? + dT() + gaip(u — ) + goal (wau)
+ g2a1 (v)a(v) — g2a(v)a(u) - gaal (v)a' (u)
where (£ —dI'(k))? = Y1_ (& — dI'(m™))? by definition.

Remark 3.1. For the reader comparing this to the papers [10] and [19] please
note that in this case W := (u—wv)(k) =4/ M and (u+v)(u—wv) =1 which

fixes the functions v and v. One then introduces a ultraviolet cutoff in u and v
to make sense of the operator.

Furthermore, defining U,y (k) = e**4)(k) we have u, = Uyu,v, = Uyv. The
operator w is multiplication by w(k) = /alk[2+[k|* and m® is multiplication by
the projection m(i)(k) = k; € R. All results except uniqueness of the minimum
obtained in Theorem 3.2 part (5) below applies to this situation. In particular
the Hamiltonians above are selfadjoint.

Hypothesis 1: Under Hypothesis 1 we assume

1. w,m® ..., m® are strongly commuting selfadjoint operators. Furthermore
w is non negative and injective. ‘ .
2. v,u € Dw™2)NDW'?) N ﬂ;zl D(mY) N D(w=1/2m),

Hypothesis 2: H = L?(R”,B(R¥),),), w is multiplication by a continuous
function and m() is multiplication by m) (k) = k;.

Hypothesis 3: Assume in addition (a, e—tweitim™ eit"m<y)b> € R for all t >
0, t1,...,t, € Rand a,b € {u,v}

Theorem 3.2. Assume Hypothesis 1 holds. If g1 € R, go > 0 and £ € R”
then Hg, 4,(€) is selfadjoint on D(dI'(w)) N D((dI'(m))?), bounded below and
essentially selfadjoint on D(dI"(w)) N D((dI'(m))?) N N. Furthermore, we also
have:
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(1) € = Hy, 4,(&) is an analytic family of type A, so the map & — (Hg, g, (£)+i) 71
is smooth.

(2) The map X(€) = inf(c(Hg, 4,(€))) is locally Lipshitz and almost everywhere
twice differentiable.

(3) Assume Hypothesis 2 holds as well. Then

Y=k = —ky) Fwlk) + - Fwky) € JESS(H91792(€))
for all ky, ... k, € R”. If in addition infgegr w(k) > 0 or w(0) =0 then

lnf(aess (H.lh,.llz (5))) = nléll\flig flen]l{” E(§ - k/'l - kn) + wn(kh sy kn)'

If w is also unbounded we have Tess(Hg, g,(€)) = [Inf(0ess(Hgy,g.(£))), 00).

(4) Assume Hypothesis 2 holds as well. Define u, = eimam® - giwem®y gng
Uy =€ W v. Then there is a unitary map (called the Lee Low

Pines transformation) such that

irxim iz,m®)

D
UHgl,gzU* = /]RV Hy, 4,(§)dN(§)

If in addition we assume Hypothesis 3 then thm has no ground state.
(5) Assume Hypothesis 3 holds as well. Then X has a global minimum at & = 0
and if Hy, 4,(0) has a ground state then it is non degenerate. If inf(c(w)) > 0

and we additionally assume Hypothesis 2 holds, then 0 is the unique minima.

Hypothesis 4: We assume the following minimal properties

1. Ve L} (RY) and —55; A+ V is essentially selfadjoint on C*°(R¥). Defining
V_ = max{0,—V} we also assume V2 s relatively (=527 A)Y/2 bounded
with bound smaller than 1.

2. w is selfadjoint, non negative and injective on H.

3. z+— v, and = — u, are weakly differentiable maps. Both maps takes values
in D(w=Y2)ND(w~1/2) and the partial derivatives takes values in D(w~1/2).
Furthermore

sup {](1 + w2+ W )| (14 w2 4 WP, ||} < oo
xERY

sup  {I[(1+ w2 vl 11+ w20, ug [} < o0
z€RY,ie{l,...,v}

Theorem 3.3. Assume Hypothesis 1 holds, that g1 € R and go > 0. Let S be
the selfadjoint closure of —ﬁA + V. Then S is bounded below and H;/l , 18
selfadjoint on D(S ® 1) N D(dlp(w)), bounded below and essentially selfadjoint
on any core for S ® 1+ dlp(w). One example of a core is C(RY)RT (D(w)).
Assume in addition that (a,e™™b) € R for allt > 0 and a,b € {vy}rerr U
{us }werr. If H;/l,gz has a ground state, then it is non degenerate and any eigen-
vector will have non zero inner product with any vector of the form ¢ ® 2 with

¢ # 0 and non negative.
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The reason for bringing a potential is the the particles are really confined by an
external potential so it is really of some interest to bring it along. The reason
for looking at compatible interactions is that it makes the notation somewhat
smoother and the argument is really the same.

The proofs of both Theorem 3.2 and Theorem 3.3 relies heavily on properties
of positivity improving semigroups which usually on gives information about
the bottom of the spectrum. Actually one should be able to prove that Hy = H
has no bound states, however this is not an easy task even though it seems
obvious that translation invariant systems cannot have bound states. To prove
that certain operators generate a positivity improving semigroup we shall prove
a perturbation theorem which will be presented below. Similar theorems can be
found in [4], [11] and [16]. However both [4] and [11] are missing a key assumption
about uniform lower bounds of approximating Hamiltonians in their proof. This
assumption is not appropriate for the setting in this paper which will become
apparent later. Let A be selfadjoint operator. In the following we will let ga
denote the quadratic form

qa (¥, ¢) = (Sign(A)|A|"*¢,|A[V?¢) D(ga) = D(A["/?)
Instead of working directly with operators it is easier to work directly with

quadratic forms. This results in the following two results which are each of
independent interest.

Theorem 3.4. Let A be bounded below and selfadjoint on L*(M,F, ). Let By
and B_ multiplication operators such that By is bounded below and assume

1. et is positivity improving for all t > 0

2. D(gp, ) contains a form core for qa and D(qa) ND(gp, ) C D(gp_).

3. The form q = qa + qB, + qB_ 1is closed and bounded below.

Then the operator H corresponding to q is bounded below and e tH

1mproving.
Theorem 3.5. Let A, B,C be selfadjoint operators in L*(M,F, ). Assume

1. A is bounded below and et is positivity improving for all t > 0.

2. B is a multiplication operator which is bounded from below.

3. —C >0 and C is a multiplication operator.

4. D(gp) contains a form core for ga and D(qa) N D(qs) C D(qc) C D(qc).
5. The form q = qa + qB + q¢ is closable and bounded below.

18 positivity

Then the operator H corresponding to q is bounded below and e tH

improving.

15 positivity

4. Proof of selfadjointness
We shall need the following Lemma.

Lemma 4.1. Assume v,u € D(w~'/?) where w is selfadjoint on H, injective
and non negative. The following identities hold on D(dI'(w))

p(u—v)? + p(i(u+v))* =4a’ (w)a(u) + 4a' (v)a(v) — 4(a’ (w)a’ (v) + a(u)a(v))
+ 2[[ul*+2]o]?
=da’ (u + v)a(u+v) + 20(0)p(w) + 2/ful*+2]v]?
+ 4Re((u, v)) + 2iIm((u, v))
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Proof. The following calculations holds on D(dI'(A))
pu—v)? + @(i(u+v))* = p()* +9(v)* = pV)p(u) — P(u)p(v)
+ o(iu)? + (iv)? + p(iv)p(iu) + (iu)p(iv).
Using Proposition 2.3 we find
p(u)? + p(in)? =a' (u)a(u) + a(u)a’ (u) + a (u)® + a(u)?
+a (iu)a(iu) + a(iu)a’ (iu) + o' (iu)® + a(iu)®
=at(w)a(u) + a(u)a’ (u) + a¥(w)® + a(u)?
+al (u)a(u) + a(u)a’ (u) — al (u)* — a(u)?
=4a’(u)a(u) 4 2||u|/?.

Furthermore,

pliv)e(iu) — p(v)p(u) =a' (iv)a(iu) + a' (iw)a(iv )+a (iu)a’ (iv) + a(iu)a(iv)
v)a(u) = a¥(w)a(v) - a’(u)a’ (v) — a(u)a(v)

:aT(v)a(u)JraT(U)a(v) a'(w)a' (v) — a(u)a(v)

(v) a'(w)a' (v) - a(u)a(v)

Thus we finally arrive at

o(u—0)? + p(i(u+v))* = 4a (u)a(u) + 4a' (v)a(v) — 4(a' (w)al (v) + a(u)a(v))
+2[[ul®+2lv ).

We may also calculate

(v —u) + p(i(v +u)* = (v —u)* + p(i(v + u)* + v + u)* — p(v +u)?
= da’(u+v)a(u +v) + 2|lu+ vl +o(v - u)? - p(v +u)?
=da’(u+ v)a(u +v) + 2|lu + v]|2+o(u)e@) + e(v)p(u)
= 4a (u+ v)a(u+ v) + 20()e(u) + 2||u|>+2||v||*+4Re((u, v)) + 2iIm((u, v))

finishing the proof. O
Before we proceed we will make the following definitions for u,v € H
1
Clu,v,92) = S (Ilul*+]v]*)

D(u,v,g2) := %((u, v) + Re({u, v)))

We will start with proving Hy, 4,(§) is selfadjoint under the given assump-
tions. The main calculations are contained in the following Lemma.
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Lemma 4.2. Let w,m be a selfadjoint and strongly commuting operators on H.
Assume w > 0 is injective and v € D(w™Y?) N D(w'/?) N D(m) N D(w=/2m).
Then

DRe((AT (), 9(0)0)) = —2 20l 6] € D(r(w) NN
2Re({(c — dl'(m))*, 0(v)*4)) > e(ll(c — dl'(m))*Y[*+[|dl (w)v]*) - K|lv ]
for alle >0, c € R and ¢ € D(d'(w)) N D(dI'(m)?) NN. Here we may choose
K =¢+16e 'R* + 64R*(1 + 8 ' R?)
as long |[v|, [|[mv|, |lw=/?mu]| are smaller than some R > 0.

Proof. Let v € Span(J(D(w))) and define wy = wljg g(w) via the spectral calu-
clus. Using Proposition 2.3 we calculate on N

Al (we)p(v)? = p(v)dD (we)p(v) — ip(iwev)p(v)
So
2Re((dI (we)th, p(v)*¥)) = 2|[dT (we) /> @(v)]|*+20m( (1, p(iwe)e(v)1))

Now

({3, i) p (o)) = 3 [p(iro), o(o)})
= 2T {icro, )
= —2llwy "l 111

So we end up with

2Re(dl (we ) (0)*)) > ~2ley ol []].

As £ goes to infinity we see Hw;mv” converges to ||w'/?v| by the functional
calculus. For ¢ € J(D(w)) one easily sees dI'(w¢)¢ converges to dI'(w)¢ applying
the functional calculus to each factor in the tensor product. Thus taking ¢ to
infinity yields the result for 1 € Span(J(D(w))). For general ¢ € D(dI'(w)) we
may find a sequence of elements {¢,,}52; C Span(J(D(w))) converging to
in D(dI'(w))-norm. As p(v)? is D(dI'(w)) bounded we see convergence holds in
©(v)%-norm as well. Taking n to infinity in

2Re({dL(w)thn, 0(v) ) = —2]lw™ 20|l[|¢n]?

yields the result.

Let ¥ € D(dI'(m)?) N D(dI’(w)) N N. Define dI.(m) = ¢ — dl.(m). Using
Proposition 2.3 and dI.(m)y € D(dIl.(m)) NN we find
(dl(m)*e, 0(v)*) =(p(v)dle(m)*, p(v)V)

dle(m)p(v)dle(m)i, p(v)) —i(p(imv)dl(m), p(v)y)
=llar. (@)@(v)l/)|| —i{p(imv)dI.(m)y, p(v)ih)
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Now
(i (imo)dL.(m)e, (v) ) = 2iTm((imv, v) )AL (m)eb, ) + (dL(m)e, () p(imu))
(p(imv)ip, dI(m)p(v)y) = —il|p(imv)p||*+(p(v)p(imv)y, dTe(m)y)

Defining a = (dI.(m)y, ¢(v)p(imwv)y) we finally arrive at

2Re((dle(m)*, p(v)*V)) =2[|de(m)p(v)y ]
+ 2Re(2Im((imv, v)) (¢, dI.(m)y) — ia)
+ 2Re(— || (imv)y||* —ia)
> — (mv, v) (¢, dle(m)y) + 2Im(a + @) — 2/ (imv)y |
= — 4(mo, v) (¢, dTe(m)e) — 2| p(imv)y|?
Using Proposition 2.3 we estimate
llp(mv)gl*< 411+ w2 )mo|?||(dI (w) + 1)V )?
<41+ w2 mo| PGP+l AT (@) [l)
< 27 el|dT (@) +4I(L + w2 )mo (1 + 2671+ w0 molP) [

We also estimate

[, m0) (6, AT (m))| < ol o4 (m)? + 1)
= (4 ol o ][>+47 &) o] +4 el d T (m)

This implies
2Re((dle(m)*, p(v)*¥)) > e(ldTe(m)* Y|P+l dl (w)y]?) - K|lv ]
where
K = &+ 165 ol 2 [mol| 216 (1 4w/ 2)mu]2(1 + 2671 [(1 + w ™ 2)mo|2)

We find the desired inequality when [[(1 + w™'/2)mul|? is estimated by 4R?,
|lmo]| is estimated by R and ||v|| is estimated by R.

Lemma 4.3. Assume Hypothesis 1. For ¢ € D(Hy(0)) and £ € RY we have

max {||dL(w)y |, (& — dI'(m))*¢||} < || Hoo(€)] (4.1)

1<i<v
There is a constant v independent of & such that
1
§\|Ho,o(§)¢\|2§ YNNI+ Ho, g2 ()9

for all ¢ € D(Hpp(0)) NN. Given R > 0 one may choose the same v for all
choices of u,v,w, m® where

el @l oo™ 2m @], oo 2all, o], [mDoll, ™ 2m o), o' 20]| < R
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Proof. As dI'(m(?) and dI'(w) commute strongly and dI'(w) > 0 we find from
the spectral theorem that

(& — dl(mD))*y, I (w)y) = 0.
Similarly (& — dI'(m))2y, (& — dT(m)))24) > 0 which implies

| Hoo (€)% = le (& — A (m™))?y|2+2Re({(& — dI'(m ™))%, dI'(w)1)))

+ Al (w)wl*+ E 2Re({(& — dI(m™))*y, (& — dl (mY)))*y))

> max {|ld0/@)v|2 (& — d(m)?w)*}

Define now a = u — v, b = i(u +v) and g = 47 1g4. For ¢» € N ND(Hp0(€)) we
calculate using Lemma 4.1

[[(Ho,g5 (€) = C(g2,u, 0))|*=[|Ho,o ()¢ *+? | (p(a)® + ¢ (0)*)y||?
+g2Re(dl (W), (¢(a)? + ¢(b)*)1))

+ Y g2Re(dI(k:)*¥, (9(a)* + ©(b)*)1))

i=1

sing Lemma 4.2 with ¢’ = we now arrive a
Using L 4.2 with ¢’ t

£
4vg(v+1)

[[(Ho.g, (&) — Clgz,u, 0))YlI*> [ Ho.o (¥l

—2(1)(||dr wu+2n (& — dI'(k w)-fﬂwn

where K is independent of £ and K may chosen to have the same value for all
choices of u,v,w, m® where

], llm @l oo™ 2m @], oo 2all, o, mDoll, o™ 2m @), ! 0] < R

Define v = V K+ C(g2,u,v) and use equation (4.1) along with the triangle
inequality to find the desired result.

Lemma 4.4. Assume Hypothesis 1. Then Hy, 4,(&) is closed on D(Hyg, 4,(0)) =
D(dI(w)) N iy DAL (mD)?) for go € [0,00), £ € C¥ and g1 € C. It is selfad-
joint and bounded below if g1 € R and § € RY. Furthermore, D(Hgy, 4,(0)) NN
8 a core.

Proof. We start by noting Hg ¢(0) is symmetric is a sum of non negative and com-
muting operators. Thus it is selfadjoint (see [14]). Both dI'(m®) dI'(w) strongly
commute with the number operator N by Proposition 2.3. Using [18, 5.26 and
527] we see l{Ngk}'l/] € D(Ho,o(O)) and HO,O(O)I{NSk}w = l{Ngk}HO,O(O)d] for
any @ € D(Ho(0)). Taking % to infinity shows 1;y<jy% converges to 1 in
Hp 0(0) norm so N'ND(Hp(0)) is a core for Hyo(0). By Lemmas 4.1, 4.3 and
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A.3 we see Hy,g4,(0) is selfadjoint, bounded below and has D(Hy, 4,(0)) NN as
a core. To finish the proof we note that

Hgl,gz (6) = HO,gz (O) + gl@(u - U) + Z u§12 + é’ld]—'(m(l))
=1

Now dI'(m() is infinitesimally dI'(m(?)? bounded and @(u — v) is infinitesi-
mally dI"(w) bounded. As both dI"(m®)? and dI'(w) are Hy4,(0) bounded by
[21, Theorem 5.9] we see that Hy, 4,(§) arises from Hy 4,(0) by an infinites-
imally bounded perturbation. Thus Hy, 4,(£) is closed on D(Hg,0(0)) and has
D(Hop,0(0))NN as a core. Selfadjointness in the case g1 € R, £ € R” and existence
of a lower bound follows directly from the Kato-Rellich theorem.

Lemma 4.5. Assume Hypothesis 1 holds. There is a constant v independent of
& such that

1 Ho.0(€)¢I1* < V(I Hgy g0 ()11 +]]1%)

for all v € D(Hpp(0)). Given R > 0 one may choose the same ~y for all
u,v7w7m(i) where

lal, Im @, o= 2m@ull, [ 2all, o], lm @]l ko= 2m v, /o)< R
and [l V/2ul], |~ 1/20]|< R,

Proof. By Lemma 4.4 it is enough to prove the statement for ) € D(Hp 0(0))NN
due to this being a core for Hy, 4,(£). By Lemma 4.3 there is v > 0 such that

1
3 [Ho,0(€)WI*< | Ho,g, ()0 ++" 1]

By Lemma 4.3 there is a > 0 depending only on g; /(1 + w™"/?)(u — v)|| such
that [lgip(u — v)¥||< §]|dI(w)||+al[¥]|. Using this we find

1 1

2 o0 €)W I1*< [ Hyy g, (O)¥Il+( + a)l[l1+7 [ Hoo (€)1l
rearranging yields the inequality with v = max{4,~" + a}.
We can now prove most of Theorem 1.

Proof (Proof of Theorem 1 parts (1)-(38)). The selfadjointness and existence on
a lower bound is clear from Lemma 4.4. Obviously £ — Hy, 4,(§)% is analytic
for any v € Dy and since Hy, 4,(£) is closed on this set for all £ statement (1)
follows. Statement (2) follows since

1 v
() — —¢£2 = 'fEiFi JHy,
(5) 2M§ ¢€D(1)I¢l”7//”:1 izlg <¢7 d (k )w> + <d} 91,92 (0)1/)>
we see X (&) — ﬁg is an infimum of concave functions and thus concave. In

particular is almost everywhere twice differentiable and locally Lipschitz. Thus
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the conclusion in (2) follows. To prove part (3) one should follow the calculations
in [3] to find that

Z(§ —ky— = kn) + w(k1) + -+ W(kn) [S Uess(Hgl,gz (5)) (4'2)

To prove the second part of (3) if inf(o(w)) > 0 is easily done in the same
way as [12]. The only thing one needs is Lemma 4.5 at some point during the
calculations. If inf(o(w)) = 0 and w(0) = 0 then X.ss(§) = X(§) by equation
(4.2) so the statement is obvious in this case.

We now consider the full Hamiltonian First we shall need a technical Lemma
Lemma 4.6. Assume Hypothesis 4 holds. Then the following holds

(1) S is bounded below. Write E = inf(o(S)).
(2) |p| is S ® 1 bounded.
(3) For any € > 0 there is vy € (0,00) such that

I8 ® DI+l dlew || < I1Hgol*+IElllv ] (4.3)
2Re((S ® 19, pa (f2)*¥)) 2 —e| Hy oI~ ]1¢| (4.4)
2Re((dlg (W)Y, v (f2)*1)) = —2/Sélﬂg(\lwmﬁxll)l\iﬁ\lz (4.5)

for ¢ € C5°(RV)®J (D(w))-
Proof. Define the form

a6, 6) = 512 (V=2 VAG) + Vi, Vi) — (V45 V )

which is closed on D((—A)Y2) N D(Vim) by the KLMN theorem and the fact
that adding two non negative, closed forms gives a closed form if the intersection
domain is dense (see [15]). Let A be the selfadjoint and lower bounded operator
corresponding to ¢ and note that A =S on C§°(R”). As S is selfadjoint we see
A=S. Now A is bounded below and D(A) € D(q) C (—A)/2 50 (~A)/?is §
bounded. From Lemma A.1 we see |p|= (—A)"/?®1is S® 1 = S ® 1 bounded.
This proves statements (1) and (2).
Fix ¢ € Cg°(R")®J (D(w)). We calculate

IHY 0 11?= 11(S @ 1) >+ ||dT g ||*+2Re({(S & 1), dT51)))
Using that
((S® 1w, dIp) = (S ® 1)dl g (w)'/*y, dTs (w) /) > E|¢|?

we have proven equation (4.3). Note that equation (4.5) follows from the point
wise estimate in 4.2. Thus we only need to prove equation (4.4). We calculate

2Re((S ® 19, 9o (f2)*¥)) =2Re((V} ©@ 19, 0o (f2)*V)) (4.6)
— 2Re((V_ ® 19, 9o (f2)°¥)) (4.7)

+ 2 2Re((pY, we (f2)*0)). (4.8)
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Let a € {£}. 9 takes values in A so

(Vo ® 19, 00 (fo)*) = /R Vallo(f2)2 (@)|PdA (@) = IV)? @ Loa (fo)0

Here the first equality ensures ¢g(fz) € D( al/ ’® 1). Furthermore, since

P3Py € C5°(RY)®J (D(w)) we may use Lemma 2.6 to calculate

(P30, 0o (f2)*0) =(pe (f2)P50, vo (f)¥)
:<(10€B(fx)pj¢7pj@0€9(fm)w> - <_i§0®(azj fm)pj'lpv ‘p@(fz)lm

:‘lpz(p®(f1)w||2
— (~19a (Or, f2)0j0, P& (fo)¥)
— (=19 (0, f2)0, Die (fo)1)

Write Uj(z) = Im((0, fz, f=)) and note that by Theorem 2.2 and Proposition
2.3 we have

(=100 (0r; f2)Pi 0, P (f2) V) = (P, i0e (fo) 0w (O, f2)1) + (pj1,i2i(U @ 1)¢)
(—i9a (0u, fo) ¥, pj 00 (fo)¥) = —(ive (fo)Pe (0u, fo) 1, p00) — |0 (Os, fo) 10|

Noting (ipe (fa)Pe (0, f2)t, pjtb) and (p;,ipe (fo)@e (D, f2)ib) are complex
conjugates we find that

2Re((Df9), o (f2)*¥)) = —4Re((p;, (U; @ 1)) + Il (O, fo) 0|12

Using Lemma 2.6 we new arrive at

Re((S ® 19, o (f2)28)) =|V/? @ oo (fo)0 P~ IV2? @ 1pe (fo)0l>  (4.9)

+ ﬁ\l\pls@@(fw)wl\z—le@(@%fx)wﬁ (4.10)
Jj=1
+ D ~2Re((p9, (U; © 1Y) (4.11)

Using Lemma A.1 we find constants b > 0 and a < 1 such that

IV @ 196 (fo)ul*< 537 llIplos (f) oI +bll0e (o)l

which implies

N

Re((S @ 19, 00 (f2)*¥) 2 ) ~llvw (0x, f) VI ~2Re((p;v, (U; @ 1)¢))

=1

bllps (fo)l

<.
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Write b = max{b, 1}

R = max q sup [|(1 + w2 + w1/2)fz||7 sup (1 + w_1/2)azj fzll
TeRY z€RY,je{1,..,v}

Using Proposition 2.3, 2a8 < e~'a? + ¢f? for all €,a, 8 > 0 and equation (4.3)
we find

max{b]l e 0z, f2) 0|12, 00w (fo) ]2}
< 4bR?||(dTg (w) + 1)1/29|
< B4R ([ 9]+ ||| dL e (w)]])

~ 160°R (v + 1
< GaR? + el B+ 4 g I
By statement 2 we find ¢, d € [0, 00) such that
1P (8 © DI+l (4.12)

Using this, Cauchy-Schwatz, [|U; @ 1||< R?, 2a8 < e la?+ep? foralle,a, 8 > 0
equation (4.3) we find

2cv?R*
ZI pi, (U @ 1))| < ¥ Jr*\llzolw\l2

2cvR* + de

€
< 2 e S
Defining
1 202a2Ri+d ~ 16b2R* (v + 1)2
5’}/ = % + 4bR2(I/ + 1) + (V + 1)5‘E‘+$

we have the desired inequality.
We can now prove selfadjointness of Hy . and the decomposition.

Lemma 4.7. HY  is selfadjoint on D(S®1)ND(dIy(w)) and essentially self-

adjoint on any core for H(Yo-

Assume now vy (k) = e Fv(k), uy(k) = e *u(k) where u,v € D(W*F/?) N
N, D(k;) N D(w™2k;). Define F to be the Fourier transform and let U =
(F ® 1)I's(e~"**) be the Lee-Low-Pines transformation. Then

UH, g1 792 / g1 7H2
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Proof. We start by noting Hg, is selfadjoint on Dy = D(S ® 1) N D(dl 5 (w))
as it is the sum of two semibounded, selfadjoint and strongly commuting oper-
ators (see [14] and Theorem 2.1). By Proposition 2.3 and Theorem 2.1 we see
C°(RV)®J (D(w)) is a core for Hygy. Using Lemma 4.1 we realise that

1
H;/lvﬂz = (7WA + V) ®1+1® dF(w) +gl%"@(“ac - vz)

+ 2o (ur —v2) + Foailus +0:) +C@1

where C is multiplication by = — C(ug, v., g2). Selfadjointness now follows from
Lemmas 4.6 and A.3.

To prove the next part let U, denote multiplication by e?**# and note that U,
is a unitary and strongly continous representation of R”. Furthermore, since v,, =
U_,v,u, = U_,u we see v, u, are continuously differentiable by the domain
properties of u and v with derivatives 9y, u; = Uy (iz;u), Oy, 05 = Uy (iz;v). The
w2 norms of ug, v, and the w12 norm of the derivatives does not depend
on z, so Hypothesis 4 is fulfilled. Let z — a; € {z — uy — vz, — i(uy + v}
Note that U_,a, = a independent of x so by Proposition 2.4 we see

Upg(a)U" = (F @ 1)pe(a)(F@1)" =18 ¢(a) = pg(a)

Using this equality, that C(g2,u,,v,) is a constant and that the statement is
true for Hy, o(0) we find U*(§) € D(Hyg, 0(§)) = D(Hy, ,g,(£)) for all £ and

(UHY, ,, U () =Hy, o(E)9(€) — Clga, u, )9 (€)

+ Zootu—0)0(©) + Zplilu+ ) ()

:H!h g2 (é)w(f)
this finishes the proof.

5. Abstract results on positivity

In this section we will fix a o-finite measure space (M, F, ) and write H =
L?(M, F, it). Define
LA(M,F,p) == {f € L*(M, F,u) | f(k) € R almost everywhere} = Hg
L3 (M, F,p) = {f € L*(M,F,p) | f(k) > 0 almost everywhere} = H_.
L2o(M, F,p) = {f € L*(M,F,pn) | f(k) >0 almost everywhere} = H~g

the following definition is central and con be found in [15]:

Definition 5.1. Let f,g € H we say f > g if f —g € Hy. A € B(H) is called
positivity preserving if AH+ C Hy, positivity improving if AH\{0} C H=o and
ergodic if for all ¥, ¢ € H4\{0} we have (v, A"¢) > 0 for some n € N.

We now define two maps abs : # — M4 and R, : H — Hgr by abs(f)(z) =
|f ()|, R(f)(z) = Re(f(z)) and S(f)(z) = Im(f(z)) for almost all x € M. The

following lemma is essential
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Lemma 5.2. Let (X, X,7) be a o-finite measurable space and A € B(H) be
positivity preserving. The following hold

(1) feHy <= (f,9) >0 for all g € Hy. In particular H is closed.

(2) abs, & and R are well defined and continous. If f,g € H and abs(f) < g then
g €W, and ||fI< gl

(3) For all f € H there is a multiplication operator ¢y with |¢p,(x)|= 1 for all
x € M, ¢sabs(f) = f and abs(f) = ¢3f. If f € Hy then ¢y = 1 so
abs(f) = f. If a € C then abs(af) = |a|abs(f)

(4) If f,ge H and f < g then Af < Ag.

(5) R and S are real linear and 1 = R+ If f € Hgr then Af € Hr,R(f) = f
and R(if) = 0.

(6) RA = AR and for all f € H we have abs(Af) < A(abs(f)).

(7) if z — f(x) € LY(X, X, 7,H) then x — abs(f(z)) € LY (X, X,7,H) and

(/ flx)dr(x )_/ abs(f(x))dr(z)

(8) If x — f(x),x+— g(z) € LY(X, X, 7, H) and f(x) < g(x) for all x € X then

/X f(@)dr(z) < /X g(w)dr(x)

Proof. (1): The implication ” = ” in is clear. To prove the other implication
we assume that it is false. Then p({f < 0}) # 0. Now p is o-finite so there is
B C {f < 0} such that 0 < p(B) < co. Thus we now have 0 < (1p, f) < 0 (see
(17]) which is a contradiction. Now Hy = (¢, {¢ € H | (¢, ¢) = 0} which is
closed.

(2): Let C € {abs, R, 3}. We see

/|cf(m> C(m)Pdu(m /|f m)Pdu(m) = || — g
M

Thus C is well defined and continous. Let g be a representative for g and fa
representative for f. Then by assumption g(k) — |f(k)|> 0 almost everywhere,
so g(k) = g(k) — | f(k)|[+|f(k)|> 0 almost everywhere. Hence

gl =1 £1*= /M g(k)* = |f (k)] du(k)=/M(§(/€)+\f(/€)l)(§(k)*If(k)l)du(k)

which is non negative. B B
(3): Fix some representative f of f. Define ¢s(k) = 1if f(k) = 0 and ¢;(k) =
ik
I£]
see that ¢; is measurable. Furthermore, the following calculations hold almost
everywhere

otherwise. Note ¢y = 1 almost everywhere if f € H, . As fis measurable we

o7 (k)abs(f) (k) = oy (k)| f(k)|= f(k) = f(k)
op(k)* f(k) = pp (k) F(k) = |F(k)|= | £ (k)]
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showing ¢rabs(f) = f and & f = abs(f). Now, af is a representative for af

so abs(af)(k ) laf(k)|= |alabs(f)(k) almost everywhere. Hence |alabs(f) =
abs(af) proving (3).

(4): Wesee g— f € Hy,s0 A(g— f) € Hy.

(5): Let f,g € H and a,b € R. Let f and g be representatives of f and g
respectively. Then af—o— bg is a representative for af + bg and

Re(af + bg) = aRe(f) + bRe(§) Im(af + bg) = aIm(f) + bIm(g)

so for ¢ € {R,3} we have almost everywhere C(af + bg)(k) = ( c(f) +
bC(g)) (k). Furthermore, f = Re(f)+ilm(f) showing f(k) = R(f)(k)+iS(f)(k)

almost everywhere so 1 = R + iS.

Let f € Hr. Then f = fi — f- with fy € Hy C Hrso Af = Afy —Af_ €
Hy —Hy = Hg. Furthermore f(k) = Re(f)(k) and 0 = Re(if)(k) for almost all
k implying f = R(f) and 0 = R(if).

(6). Using (5) we find

R(AS) = RAR(S)) + REAS(S)) = AR(f) + 0 = AR(f)

Let © € Q and f € H. Let f be a representative for f and note R(e*® f(k)) <
|f(K)| for all k. As R(e*® f(k)) is a representative for R(e’® f) we see from (4)
that R(e® Af) = AR(e'® f) < A(abs(f)).

Let g be a representative for Af and h be a representative for A(abs(f)).
As R(e*®g) is a representative of R(e*® Af) we see R(e?® Af) < h except on a
nullset Cg. Let C' = |Jgeqy Co which is still a nullset. For k ¢ C' we have

lg(k)|= sup R(e"®g(k)) < h(k)
0cQ

As C is a null-set we have abs(Af) < A(abs(f)).
(7): & — abs(f(z)) is measurable since abs is continous. We also see

[ absrelarte) = [ 5@t

Let g = [y f(z)dr(z),v = [y abs(f(x))dr(z) and h € H,. Then

(h, abs(g)) = /X (h 65 £ (2))dr(z) < /X (h, abs(f (2)))dr (z)

where we used [(h, ¢y f(x))|< (h,abs(f(x ))) By (1) we now see v — g € H.
(8): Write u = [y f(x)dr(x),v = [y g(x)dr(x) and let h € H,.. Then we see
(hv—w) = [y (hoglw) — f(x))dr(z) > O proving (8).

We now have a new definition

Definition 5.3. Let A be selfadjoint and bounded below. We say A generates a
positivity preserving (respectively ergodic or positivity improving) semigroup if
et is positivity preserving, (respectively ergodic or positivity improving) for all
t>0.
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The following Lemma is essential. The proof can be found in [16]

Theorem 5.4. Let A be selfadjoint, bounded below and generates a positivity
preserving semi group. Write X = inf(c(A))

1. If X is a non degenerate eigenvalue and a ground state v € Hso exists then
A generates a positivity improving semi group.

2. If A generates an ergodic semigroup then it generates a positivity improving
Semigroup.

3. If A generates a positivity improving semigroup and X is an eigenvalue then
it s non degenerate and the eigenspace is spanned by an element ¥ € Hsg.

The following result is found combing the results in [16] with in [4, Theorem 3].
Theorem 5.5. Let A, C be bounded below and selfadjoint. Assume

1. et s positivity improving for all t > 0

2. There is bounded multiplication operators {By}>2, such that A + B, and
C — B, are uniformly bounded below and converges to respectively C and A
in strong resolvent sense.

Then C' generates a positivity improving semi group.
We will now prove Theorems 3.4 and 3.5.

Proof (Theorem 3.4). Step 1. We start by assuming B_ = 0. Then

q=qa+4B, (5.1)

is closed on D(qa) N D(gp, ) since D(qa) N D(gp, ) is dense (see [15]). Let H
be the corresponding selfadjoint and lower bounded operator. Define B, =
1(~o0,n)(B4+)B. Then B, is a bounded multiplication operator and ¢, = g4 +
4B, = qA+B, is increasing. On D(q) we see g, converges to ¢ so A+ B, has a
uniform lower bound and converges strongly to C' by [15, Theorem S.14].

Furthermore, ¢ — gp, will be decreasing and converge to g4 restricted to
D(qa) ND(gs,)- D(qa) N D(gp, ) is a form core for g4 so by [15, Theorem S.16]
we see C — B,, converges to A in strong resolvent sense. We also note, that
q—qB, > qa so H — B, is uniformly bounded below and so we may now apply
5.5 to finish the proof in the case B_ = 0.

Step 2. Letting H be the operator associated with g4 + gp, we see that

H,, BT =0,B~ := B_ satisfies the assumptions in the Theorem. Hence we may
assume B, = 0 and write B := B_. We now define B,, = 1(_;, «)(B+)B,. Then
qa + qB,, is decreasing with limit ¢ = ¢4 + ¢p. This shows A + B,, is uniformly
bounded below and converges to C' in strong resolvent sense. Furthermore, g —
¢B,, is increasing with limit ¢ = ga. This shows C' — B,, is uniformly bounded
below and converges to A in strong resolvent sense. So we may apply Theorem
5.5 to finish the proof.

Proof (Theorem 8.5). Pick v so large that ¢ > —v and set ¢ = g4 + gp. Then
we note that

lac (V)= —qc (V) < qa(¥) + a(¥) +v(¥, ¢)

For any 0 < a < 1 we note that g,c = a?q¢ is relativity ¢ bounded with
bound smaller than a? < 1. Hence ¢, = g4 + qB + aqc is closed and uniformly
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bounded below by ¢ > —~. Let H, be the operator corresponding to g4. By
Theorem 3.4 we know that H, generates a positivity improving semigroup and
thus (H, + v+ £)~! is positivity improving for all 0 < a < 1,£ > 0 (see [15]).
Now the collection of closed forms ¢, is uniformly bounded below and con-
verges monotonously to ¢, which is closable. By [15, Theorem S.14] we find that
(Ho+v+£)~1 converges strongly to (H +~+1)~! for all £ > 0 and so this map
is positivity preserving. Using standard theory of forms (see [20]) we have
(Ho+v+ 1) ' —(Hy+~v+1)7"
=a®(|C["*(Ho +~+ 1)) O] (Hy + v+ 1)
Now since |G|~ (Hg+~v+1)7%, |B|7Y2(H, +~v+1)~! are positivity preserving
we find for fixed element in v € H,\{0} that
(Ho+v+ 1) — (Ho+y+ 1) "W eHy
taking the limit a tending to 1, we find
(H+~y+1)""— (Hy+vy+1) "y e Hy.
Since (Ho + 7+ 1)1 € H~o we are finished.
The following Corollary is useful

Corollary 5.6. Let A, B and C be selfadjoint. Assume A and C are bounded
below and

1. et is positivity improving for all t > 0
2. B is a multiplication operator with D(B) C D(A) and C = A+ B.
Then C' generates a positivity improving semi group.
Proof. Let B_ = 1(_o0)(B)B and By = 1jg,)(B)B. Note that D(B+) C D(A)
and so D(gp, ) C D(ga) (see [21, Theorem 9.4]). It only remains to see that
gc =qa+4qB, +4B_-

However this holds on D(C) = D(A) obviously and using D(ga) = D(gc) C
D(gp..) (see [21, Theorem 9.4]) we can extend the equality by continuity (use
[21, Theorem 5.9]).

We will use the following two lemmas

Lemma 5.7. Let Ay, ..., A, be strongly commuting selfadjoint operators on ‘H
which are bounded below. Assume also C is selfadjoint operators on H an that
B=A+---4+ A, + C is essentially selfadjoint. If Ay, .., A,,C all generate a
positivity presering semigroup we find B generates one as well.

Proof. A=Ay +---+ A, is selfadjoint (see [14]) and using the joint functional
calculus for B = (Ay,...,A,) wesee e “AH, = et et C H, . Using
trotters product formula we have

€7t§’¢ = lim (en_ltAen_IC)n,lp
n—o00

As H, is closed and (e" *4em C)nH, C Hy we find e~'B preserves Hy.
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Lemma 5.8. Assume M = My XMs, F = F1Q@F2 and p1 @us. Leti,j € {1,2}
with i # j. Then

1.If B : My — B(L*(May, Fa, u2)) is strongly measurable and B, is positivity
preserving for all x then so is Ig(By).

2.1 B; € B(L*(M;, Fi,11;)) is positivity preserving so is B ® 1, B, ® By and
1® B2

Proof. (1): Let ¢ € H. ¢ is identified with the element = +— 1 (x,-) under the
identification H = L2(My, F1, pi1, L?(Ma, Fa, 12)). Noting that

0= u{lol# v} = /M pa ([ (@, ) (e, )} (2)

we see (x,-) € L2(Ma, Fa, i2)+ for almost all z. Let ¢ € H, as well. Then we
see

(O o(B.)0) = [ (0t ). Bt (@) > 0
1
we are now finished by Lemma 5.2.

(2): By Theorem 2.2 we have dealt with the case 1 ® By in (1). Let U be
the unitary map from H to L?(Ms x My, F = Fa ® Fi, o ® 1) defined by
Ui(z,y) = ¥(y,x). U obviously have the inverse U~ '4(y,z) = 1(z,y) and is
isometric by fubinis theorem. As U(¢Y ® ¢) = ¢ ® ) we see U*1®@ B1U = B; ® 1
since this will hold on simple tensors and simple tensors are total in H.

Now U maps Hy to L?,_(Mg X M1, F = Fo ® Fi,pe ® p1) and U* maps
Li(/\/lg X My, F=Fs® Fp,p2 @ p1) to Hi. As 1 ® By is positivity preserving
by statement 1 we find B; ® 1 is positivity preserving. Now B; ® BaHy =
(B1 ®1)(1 ® Ba)H4 C Hy shows By ® By is positivity preserving.

6. Application of positivity results

In order to apply the above theorems one needs to find an L? space to work in.
The following Theorem is well known and can be found in [1]

Theorem 6.1. There is a probability space Q = (¥,2),P) and a unitary map U
from Fp(H) to L?(Q) with the following properties

1.UN=1.

2. If B is a bounded operator on H with |B||< 1 which maps Hr to Hr then
UI'(B)U* is positivity preserving.

3. For all v € Hg the operator Up(v)U* acts like multiplication by a random
variable ®(v). Furthermore, the collection {®(v)}yen, is normally distributed
with covariance function E[@(v)®(u)] = (v, u).

Lemma A.4 in the appendix gives conditions for specific spaces to exist. We may
now prove

Lemma 6.2. Let (M, F,u) be a o-finite measurable space and A be a multipli-
cation operator on this space. Assume x +— vy € L° (M, F, u, Hr) and let U be
the isomorphism from Theorem 6.1. Then (1@ U)pg(v:)(1 @ U)* and A® 1 is
a multiplication operator on L2(M x YV, F@,1 2 P).
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Proof. Let f be a strictly positive element in L?(M, F, ) which exists since
(M, F, ) is sigma finite. Define ¢(z) = f(z)P(v.) € L2(RY, B(RY), \,, L*(Q))
since [|¥()||?= |f(z)|?||v.]|?> which is integrable. Under the identification

L*(R", B(R"), A, L*(Q)) = P (M x Y, F®Y,u®P)

there is a jointly measurable map p(z, y) such that p(z,-) = f(z)®(v,) for almost
all x € R”. Define V(z,y) = p}?ﬁ) and note that V(z,-) = ®(v,) in L2(Q).
Obviously

D
(18 V)pa()100) = [ 8e.)dr (@)

v

Using standard properties of direct integrals we see

vepw) = [ [y pP@ma. e <o

53]

= [ 19 )P e) < 0o weD( / @(w)dxum)

Furthermore, for almost all x we have V(z, )¢ (x, ) = @(v,)(z,-) when 9 €
D(V). This proves (1 ® U)pg(v,)(1 ® U)* is multiplication by V.

We now check A ® 1 is multiplication by V(z,y) = A(x). For ¢ € D(A),¢ €
L2(Q) wesee (AR 1)Y® ¢ = AYp ®@ ¢ = (z,y) — A(z)¥(z)d(y). This implies
(2,9) = A@)O()6(y) = V (2, 5)b(2)6(y) is square integrable so % @ ¢ € D(V)
and VY ®¢ = (A®1)Y@¢. As A®1 and V are selfadjoint and A® 1 essentially
selfadjoint on D(A)RL?*(Q) wesee AR1=1V.

Lemma 6.3. There a bounded function V,, : R” — R such that —(2M) 1 A4V,
has a ground state.

Proof. By [15, Theorem XIII.11] the Lemma holds if ¥ = 1 and in this case the
ground state eigenvalue is a negative number a. Let 1 denote a ground state
eigenvector. Define

Vu(xlw’ . 7$l/) = ‘/i(xl) +e+ Vi(mu)

Then ¥, (z1,...,1,) = 1 (x) - -- 1 () is an eigenvector for —(2M) A+ V
corresponding to the eigenvalue va < 0. As the essential spectrum of —(2M )1 A+
V is [0,00) (see [20]) the conclusion is obvious.

Lemma 6.4. Let v € H. If v € Hp then e 11 maps Hg to Hp.

Proof. We may calculate

il _ i M =1+ Clv)(v]
—~ n!

where C' € R depends on ¢ and ||v||. This clearly maps Hg to Hg.

The remaining part of Theorem 3.3 will now be proven in the following Lemma.
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Lemma 6.5. The remaining conclusion of Theorem 3.3 is true.

Proof. Define w, = |u; + v;)(uy + vz|. Applying Lemma 4.7 with g4 = 0, u), =
Uy + u, and v}, = 0 we find

HY = 8@ 1+ dlg(w) + godl g (ws)

is selfadjoint on D(S ® 1) ND(dl g (w)) and C°(RY)RT (D(w)) is a core. Let V,,
be the potential from Lemma 6.3 and note that

H +V,@1=H" (6.1)

Pick Hg such that v,,u, € Hg for all z € R¥ and e *Hi C Hg. Let Q be the
corresponding probability space from Theorem 6.1. Write U for the unitary map
from JF,(H) to L?(Q) and note that

A=(1QU)(H+V, @ 1)(1eU)*
= (-2M) A+ V) @14 Ig(UdIN(w)U*) + gole(UdI (w,)U™)

By corollary 5.6 we see —(2M)~1A + V,, generates a positivity improving semi
group. Combining this with theorem 6.1 and Lemmas 5.7 and 6.4 we see that
A generates a positivity preserving semigroup. So A will generate a positivity
improving semigroup if we can show that H° 4V, ® 1 has a ground state ¢ such
that (1 ® U)¢ is strictly positive and any other ground state is a multiple of ¢.

Let A = inf(o(—(2M)"1A +V,)) < 0 and let 9 be a strictly positive eigen-
vector (such a vector exists because —(2M) ™1 A + V,, generates a positivity im-
proving semi group). By Theorems 2.1 and 6.1 we see H > X and ¥ ® 2 is a
ground state satisfying (1 ® U)y ® {2 is positive.

Let now ¥ be a ground state for H° 4+ V,, ® 1. Then

A=, (~CM) A+ V) @ 10) 4+ (T, dl o (w)P) + (¥, dTe (w,)P)

Since (—(2M)71A+V,)®1 > A, dI'p(w) > 0 and dI'g(w,) > 0 we must have the
equalities (¥, (—(2M)1A+V,)®1¥) = X and (¥, d[p(w)¥) = 0. In particular,

A= (T, (—~(2M) A+ V,) @ 10) + (I, dT (w)¥) = (¥, Hy W)

By Theorem 2.1 we see A = inf(0(Hy0(V,))) is a non degenerate eigenvalue for
Hyo(V,). Now ¥ must be a ground state for Hg (V) since it minimizes the
quadratic form and ¥ ® {2 is also a ground state for Hyo(V,). In particular ¥
must be proportional to ¢ ® 2. Thus we have now established that A generates
a positivity improving semigroup. Noting that V,, ® 1 acts like bounded multi-
plication operator we find (1® U)(H)(1® U)* generates a positivity improving
semigroup (use Corollary 5.6).

Let V € {0,V} and define a form on Dy = D(|p|) N D(Ig(UdI(w)U*)/?) N
DV w1)

q" = QIg(Udr(w)U*) t lgale(UdI (w,)U*) T 4—2M) 1401 T 4y, o1 — 97_g1
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where we used D(dl g (wy)'/?) C D(dIg(w)*/?) by [21, Theorem 9.4]. The first
four terms are non negative and thus defines a closed form. Using V_ ® 1 is
—(2M)"'A® 1 form bounded with bound a < 1 strictly smaller than 1 we see
(using Lemma A.1) that

q‘7_®1(¢71/)) S aq-(QM)*lA@)l(wvd)) + wa”2§ a(Q(¢7¢) + q\7_®1(¢>’¢))) + wa”2

SO q‘7 is becomes closed by the KLMN theorem. Write AV for the corresponding
operator. For ¢ € Cg°(R) ® J(D(w)) and ¢ € Dy we see that

¢V (¢, ) = (1e U)HY 10 U)",¢)

Hence (1@ U)HV(1 @ U)* = AV on CF(R) @ (1 ® U)J(D(w)) which is a
core for (1@ U)HY (1 @ U)*, implying (1® U)HY (1 ® U)* = AV. Noting that
C5°(R) ® UJ(P(w)) C D(gv, 1) is a core for gz, = ¢ by Lemma A.2 we
find via Theorem 3.4 that (1® U)H" (1 ® U)* generates a positivity improving
semigroup.

To finish the proof note that (1@ U)H) , (1@U)*—(1® U)HY (1@U)* is a
multiplication operator that is relatively (1 ® U)dIg(w)(1 ® U)* bounded (use

Lemmas 4.1 and 6.2). In particular, it is (1 ® U)HY (1 ® U)* bounded by [21,
Theorem 5.9] and so we may apply Corollary 5.6 to see (1QU)H" (1QU)* gener-
ates a positivity improving semi group. Note that for all ¢ € L% (RY, B(R¥), A,)
we have (1 ® U)y ® {2 is non negative.

Lemma 6.6. Let A = (A;,...,A,) be a touple of commuting and selfadjoint
operators on H and assume Hr C H is a real Hilbert space satisfying H =
Hr +iHgr. Let Q be the probability space from Theorem 6.1 corresponding to Hgr
and U : Fp(H) — L%(Q) the isomorphism. Assume lastly that Hg is invariant
under the action of e*P1 ... eBn,

(1) Define K(&) = U*%(¢ — dI'(B))?U. Then K(€) is selfadjoint, bounded below
and e =5 O) s positivity preserving for all t. Furthermore, for any ¢ € L*(Q)
abs(e K (©y) < e tK O abs(1).

(2) Define the measure spaces X1 = (Z¥,B(Z"),7) and Xo = (T",B(T"),h)
where T is the counting measure and TV is the v dimensional torus with nor-
malised Haar measure h. Let F : L?(X1) — L?*(Xa) be the furrier transform

and A be a diagonal matriz with diagonal entries ay,...,a, > 0. Then
®
K=(F®eU) / (Aa — dI(B))?dr(a)(F @ U)* (6.2)
74

is positivity preserving on L?(Xa) ® L2(Q).

Proof. (1): Let Ny be the density of a v-dimensional normally distributed vector

with variance %I and mean 0. By Lemma A.7 we find

e*tK(E)w _ U*eﬁ(E*dF(B))QUw

— Nt(x)e’ing*eiwldF(Al) L eiIVdF(Au)deAV(.’L')
RY
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Using Proposition 2.3, Lemma 5.2 and Theorem 6.1 we see

abs(e 7 ©)y) < / abs(Ni(x)eS U (&4 ... e @ AN T)dN, ()

< | Ny(2)U*D(ef14 .. el A Tabs(y)dA, ()
RV
= e KO ahs(v)
If ¢ € L% (Q) we see abs(¢)) = 1) by Lemma 5.2 so e K¢ € L2 (Q) by Lemma
5.2.

(2): For (¢1,...,¢,) € T we define the unitary map V (1, ..., ¢,) on L?(X5)
given by (V(¢1,...,0,)0)(b1,...,by,) = (d1b1,...,¢uby). It is well known (see
folland) that this is a strongly continous, unitary representation. The observation
(t1,...,tn) = (e1,... ") € T™ is continuous a continous homomorphism
shows (t1,...,t,) — V(e ... €'") is a strongly continous homomorphism. Let
V(z) = V(e ... ). Define now the map

m(z) = V(Az) @ U [(e®141 ... giavAv)
— V(Al?)wl ® U*e—iw1dF(A1) . e—iw,,dF(A,,)U

which is strongly continous by Lemmas A.5 and A.6. We can now define an
operator bounded B; on L?(X3) ® L?(Q) by
Byp = | N(x)m(z)pdA, (z)
RV

since | Ny(z)(V(Az) @ U*I(e®*141 ... @A) U)ep||= Ny(x)||e| which is inte-
grable and z — Ni(x)7 ()1 is continous.

We claim e~ = B,. Clearly {1{a} }acz« is an orthonormal basis for L?(X).
Now F'l{s} = fo Where

fa(¢17-~-7¢u) = (111 ¢SV

This implies A = {fo @ % | a € Z",9 € L?(Q)} spans a dense subspace of
L?(X5) ® L*(Q), so it is enough to check

(Frany @ U1, €7 frany @ 2) = (flar} ® VY1, Bif{a,} ® 1h2)
for all oy, e € Z¥ and 1,2 € L?(Q). We calculate

<f{(11} @ wlu eith{(l/Q} @ 1P2>
@ -
= <1{m} ® U*wh/ emtmr (Aa=dlA) (@)1, ® U*1/)2>
74
— <1{a1} ® []*,l/)l7 1{02} ® e—tz]W(Aa1—dF(A))2U*¢2>

= Oorion | Ne(@)e AT (3 UD (14 .. i@ AN T iy ) d A, ()
RU

= [ Ni(@)e (frary @ U1, flagy @ UL (€A - e AT o) d, (x)
Ru
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Now piA,Bw — pifB-Ax

AT (b1, by) = 3L goretnTIO | gl — V(A fo (1, ..., H)
So
(Flany @ U1, fray ®1ba)
= /R Ne(@){frany ®¥1, V(AZ) flaz) @ UD(e"™ A e AN T o) d, ()
= (fron} ® V1, Bt fian} ® ¥2)
Now V (Az) is positivity preserving and so is UI'(e?*141 ... ¢4\ " Tt follows

(by Lemma 5.8) that 7(z) is positivity preserving for all . Thus we may use
Lemma 5.2 to see that for ¢ € L2 (T% x Y, B(T") ® 2, h ® P) we have

since A is symmetric. Furthermore

v

abs(e—"K ) < / abs(Ns (2)7(2)0)dA (2)

< » Ny(z)m(x)abs(1)d\, (z) = e~ Fabs(yh) = e 4.

Hence e=*%4 € L2(T" x Y, B(T") ® Y, h @ P).

Lemma 6.7. Let aq,...,a, € (0,00) and A be the diagonal matric with A, ; =

a;. Let w > 0 be injective and selfadjoint on H and let m™), ..., m®) be selfad-
joint operators on H such that w,m®) . ,m®) are strongly commuting. Assume
v,u € D(w )N D(W?) NN, D(mD) N D(mPw=1/2) and that

itim(D itom® _
(u,e”tm 7 e ivm em bty € R

for all t1,...,t, € R and t,4+1 > 0. Let M = (Z",B(Z"),7) where T is the
counting measure on Z' and define

2
Hyvge = | Hopgn (Acir(e) = Iy, s (A0)).

=0

91,92

Then H,

91,92

Hy, 4o =I5 ((Aa — dI'(m))?) + dTs () + gaaly (u+ v)ag (u + v)
+ 9200 (V) e (1) + g19e (v — v) + D(g2,u,v)

where

and Hg, 4, can have at most one ground state counted with multiplicity.

Proof. Clearly flgl,gz is well defined on Dy = D(Ig((Aa—dI'(m))?))ND(dl s (w)).
%)

Let 9 € Dy. For each o € Z¥ we see ¢(«) € D(dI'(w)) N D((Aa — dI'(m)
D(Hy, 4, (Aa)) and (using Lemma 4.1) we see

(Hy, g,0) () = Hy, g, (Aa)ip(cx)

50 = |[Hy, g, (Aa)i(@) [*= a1 |[(Hy, 4,1)(e)|* is integrable. Thus Hy, g, C
Hyg, 4, To prove equallity we fix ¢ € D(Hy, 4,) and note that ¢(a) € D(dI'(w))N



D.6. Application of positivity results

Rigorous Results on the Bose-Polaron 29

D((Aa — dI'(m))?) = D(Hy, 4,(Aa)) for each a € Z”. Using Lemmas 4.5 and
4.3 we find v independent of a such that

max{[|dL (w)(a)|%, [[(Aer = d'(m))* () |7} < V][ Hyy g, (Aa)tb(a) [P +]|90 (o) 2

which is integrable by assumption. Hence ¢ € Dy proving Hyg, 4, = ﬁgh”.
Taking g1 =0, v/ = u + v and v’ = 0 we find

K = Ip((Aa — dI(m))?) + dIg (W) + gaal (u + v)ag (u + v)
= Ip((Aa —dI'(m))?) + dl's(w) + g2dI5(@)

is selfadjoint on Dy where & = |v+u){u+v|. Let F : L?(M) — L?(T",B(T"),h)
be the furrier transform. Here TV is the v-dimensional torus and h is the nor-
malised Haar-measure so for a € Z¥ we see F(1,) = (¢1,...,¢n) = @71, ..., ¢S,
Pick a real Hilbert space Hr C H as in Lemma A.4, let @ be the probability
space corresponding to Hgr from Theorem 6.1 and let U be the isomorphism.
Using Theorem 6.1 and Lemmas 5.7, 6.4 and 6.6 we see (F @ U)K(F ® U)*
generates a positivity preserving semi group. Define 1) = 170y ® §2. To prove that
(F@U)K(F ® U)* generates a positivity improving semi group it is enough
to see (F ® U)y is strictly positive, that K¢ = 0 and any eigenvector for K
corresponding to the eigenvalue 0 is a multiple of 1.

Now (F®U)y = 1®1 = 1. Furthermore, since dI"'(C') 2 = 0 for any selfadjoint
C we see

(K9)(a) = 1{oy(a)(Aa — d[(m))*2 =0
for all « € Z" proving K¢ = 0. Now let ¢ be a ground state for K. Then
0= (¢, K¢) = (6, (A = dT'(m))*)9) + (¢, dT 5 (w) D) + g2 (o, A5 (@) )

as all terms are non negative we see that each of the must be 0. In particular

0= [ldI'(w)"g(a)]*.

a€eZv

By Proposition 2.3 we see that for all o € Z% we must have ¢(a) = f(a)f2 for
some f(a) € C. Thus

0= (¢, Is((Aa — dI'(m)*)¢) = Y |f(a)*(Aa)?
a€gZv

and hence f(a) = 0 for all o # 0. This implies ¢ = f(0)10y @42 = f(0)¥ proving
(FRU)K(F ®U)* generates a positivity improving semi group. By Lemma 6.2
and Theorem 6.1 we see

(F®U)Hy, ¢,(FRU)" —(FRU)K(F®U)*

is a multiplication operator which is relatively bounded to dI'g(w). In particular
(FQU)Hg, 4,(F®U)* generates a positivity improving semi group by Corollary
5.6 finishing the proof.

We can now prove part (5) of Theorem 3.2
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Proof (Theorem 3.2 part (5)). Define @ = |u 4+ v){u + v|, let m € {0,m} and
define the operators

K(m) = dI(m)? + dI"(w) + g2dI'(@)
P(m) = dI(m)? 4 dI'(w) + g2dI (@) — gasp(v)o(u) + g1ip(y — v) + D(ga, u,v)

which are both selfadjoint using Lemma 4.4. Pick a real Hilbert space Hg C H as
in Lemma A.4, let Q be the probability space corresponding to Hg from Theorem
6.1 and let U be the isomorphism. Using Theorem 6.1 and Lemmas 5.7 and
6.6 we see UK (m)U* generates a positivity preserving semigroup. Furthermore,
K(m)f2 =0 and K(m) > 0 showing {2 is a ground state an eigenvector. If ¢ is
a ground state we have

0= (4, K(m)y) 2 (b, dl(w)y) = ||dL (w)1/2¢]|*> 0

Thus dI'(w)'/?1 = 0 and which implies 1 is proportional to £2 by Proposition
23. As U2 =1 > 0 we see UK(m)U* generates a positivity improving semi-
group. Now U(P(m)—K (m))U* is a multiplication operator which is UdI" (w)U*-
bounded. Since U*dI'(w)U* is U*K (m)U bounded by [21, Theorem 5.9] we see
U(P(m) — K(m))U* is U*K(m)U bounded. Corollary 5.6 now gives UP(m)U*
generates a positivity improving semi group. This yields that the ground state
of P(m) = Hyg, 4,(0) must have dimension 0 or 1. Furthermore, {2 is mapped to
a strictly positive element ad advertised.

Let abs denote the action from Lemma 5.2. Using Lemmas 5.2 and 6.6 we see
that

abs(e*tHyl.gz(f)w) = lim abs(eitnilp(o)e*tnil(f*df(m))gw)

n—00

< lim e_t"AP(O)e_t”il(d”m))?abs(w) = e Ha1.92 (O abs (1))

n— 00
which implies
e ©]|= sup e~ Oyl sup [le= o o2 Oabs()< e~ 20|
llll=1 llwll=1
So e~ (&) = e Hor.02(O||< |le=Ho1.02(0) || = =¥ proving 0 is a global mini-

mum.

It remains to prove that 0 is a unique minimum in case w is a multiplication
operator with inf(w(k)) > 0 and m(® (k) = k;. Assume that & # 0 is an other
minimum for X. Then there is a1, ...,a, > 0 and an element o € Z¢ such that
Aap = & where A is the diagonal matrix with A; ; = a;. Using part (3) of Theo-
rem 3.2 we that if X is minimal at a point z then Xes5(2) — X (z) > inf(w(k)) > 0
so Hg, g,(z) has a ground state. In particular Hyg, 4,(0) and Hg, 4,(£) has a
ground state vy and 9. Let M = (Z”,B(Z"),7) where 7 is the counting mea-
sure on Z" and define

52
H(/h.‘]Z = ~/Z” H!h,!]z (Aa)dr(a) = IEB(H‘h,.(]z (Aa))

Now Hy, 4, > X(0) = Y(Aay) and X(0) = ¥(Aap) is an eigenvalue for Hy, 4,
with two orthogonal eigenvectors 179y ®g and 14,3} ®. This is a contradiction
with Lemma 6.7 finishing the proof.
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A. Collection of facts

In this chapter we collect some small results which are used throughout the
paper. We begin by the following lemma

Lemma A.1. Let A be selfadjoint on H1 with domain D(A) and B be closed on
H1 with domain D(B). Assume B is A-bounded with bound b. If Hs is an other
Hilbert space then B® 1 is A ® 1 bounded with bound b.

Proof. See Appendix B of [2].

We will be working quite extensively with forms in the last part of the paper.
For this reason we will need a few general results on the square roots of operators.

Lemma A.2. Let A and B be closed operators with domains D(A),D(B) C H.

1. If D(A) = D(B) then any core for A is a core for B.
2. If A is selfadjoint and bounded below then any core D for A is a core for qa.

Proof. (1): We note A and B have equivalent graph norms by [21, Theorem 5.9].
Thus Dy is dense in (||-||a,D(A)) <= Dy is dense in (||-|, D(B)). (1) now
follows by definition of a core.

(2): Let y be a lower bound of A. By [18, Proposition 10.5] we see Dy is a core
for g4 of and only if it is a core for (A — 4)/2. Now D((A — 7)'/?) = D(qa) =
D(]A|*?) by [18, Proposition 10.5] so by (1) we see Dy is a core for g4 of and
only if it is a core for |A[Y/2.

Let Dy be a core for D(A). Noting that D(|A|'/?) € D(JA]) = D(A) we see
|A|'/? is A bounded by [21, Theorem 5.9], so since Dy is dense in (||-||4, D(A))
we see that it is also dense in ([||||4j1/2, D(A)). By [18, Proposition 3.18] we see
D(|A]) = D(A) is dense in (||| 4j2/2, D(|A['/?)) so in total Dy is a core for |A['/2.

Lemma A.3. Let B be selfadjoint on H. Assume C, D are symmetric operators
on H such that D(B) C D(C),D(D) and D is infinitesismally B-bounded. As-
sume also that there is a core D for B such that for all ¢ > 0 there is b, such
that

2Re((By,CY)) > —¢|| BY|*~bey

for allyp € Dy. Then Hyj, = B + gC + hD is selfadjoint on D(B) for all g > 0
and h € R. Furthermore Hg ), is essentially selfadjoint on any core for B.

Proof. We start by proving Hy o is closed for all g > 0. It is clearly true for
g = 0 so we fix ¢ > 0. We note Hy is symmetric and therefore closable.
To see Hyo = Hgo it is enough to see D(Hyo) = D(Hyo) = D(B) where
D(B) C D(H,p) is obvious. For ¢ € D(H,,) there is a sequence {¢,}>,
converging to ¢ such that {H, ¢, }32, is Cauchy. Note that for any ¢ > 0 we
have

2Re((By, gC)) > || BY|*=be |11
for all ¢ € Dy. Using this with e = 1/2 we find

1
1H 0%11*= [BY[*+9° [C¥[*+2Re((BY, gC) > S BYI*~b12q) [0]1* (A1)
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for all ¢ € Dy. Let ¢ € D(B). As Dy is a core for B we may for is a sequence
{¥n}52, converging to ¢ in the graph norm of B. As gC' is B-bounded we see
Hg 1)y, converges to Hg 1. Taking limits we see

1
by 2g) 11+ Ho 0¥ l|*> 5| By (A.2)

on for all ¢ € D(B). In particular we now see { B¢, }52, is cauchy so ¢ € D(B)
as we wanted to prove. By Wiist theorem we see Hy g is selfadjoint on D(B) for
all g > 0.

By [21, Theorem 5.9] we see A is Hy o bounded, so we get hD is infinitesimally
H, o bounded. Thus Hy j, is selfadjoint on D(B). By Lemma A.2 we see any core
for B is a core for H, ; finishing the proof.

Lemma A.4. Let {za}acr C H and A C B(H). Assume A is closed under
multiplication, A is closed under taking adjoins, and for all o, 8 € I and A € A
we have (xq, Axg) € R. Then there is a real hilbertspace Hg C H such that
{Za}acr C Hr, Hr is invariant under A and H = Hg + iHg.

Proof. Let

H' = Spang{Az, | A€ A a €T}
Note that H' is a real Hilbert space since A is closed under multiplication and
taking adjoints. For every f € (H')1\{0} we define
H(f) = Spang{Af | A€ A.
It is clear that the elements of A maps H' to H' and H(f) to H(f), since it
maps the spanning set to the spanning set. Furthermore we define
B={Bc H)" |H(f) LH(9) ¥ [#g€ A}

We partially order B by inclusion and take a maximal totally ordered subset C.
Let C be the union of all elements in C. If f, g € C, then there is an element in C
that contains both f and g (since C is totally ordered). This implies H(f) L H(g)
and so B € C and is clearly the largest element. Define now

Hr :i=H & @H(a),

a€B

which is clearly a real Hilbert space containing {z, }oer and it is left invariant
by A since each component is. Assume now towards contradiction that there is
an element f € Hg\{0}. Then for every A;, As € A, h € C we would have

(Ao f, Arh) = (f, A3A1h) =0

and so H(f) is orthogonal to H(h) for all h € C. In particular C U {f} € B,
and so CU{C U{f}} is larger than C and totally ordered which is not possible.
Hence Hg\{0} = 0.
Let {e,}X_; be an orthonormal basis for Hg (N < oo) which is then also an

orthonormal basis for . Hence we may write any element in H as

N N N

f = Z(aj + ibj)ej = Zajej +iijej
j=1 j=1 j=1

as desired. This finishes the proof.
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Lemma A.5. Let H be a Hilbert space and (X,d) a metric space. Let U(H)
be the set of unitary operators on H and assume w; : X — U(H) is strongly
continous fori € {1,...,n}. Then n(z) = w1 (z) ... 7y (x) is strongly continous

Proof. Let {z,}22, C X converge to z € X. For ¢ € H we have

7 (zn)ip — ()] =

Zm(mn) . ~7Ti—1(xn)(7ri(xn) — 7TZ'(£L'))7T1'+1($) . ﬂn(m)'l/}H

< lmiwn) — mi(@) i (@) - (2)3|
i=1

which goes to 0.

Lemma A.6. Let H1,Ha be a Hilbert space and (X, d) a metric space. Let U(H,;)
be the set of unitary operators on H; and assume m; : X — U(H,;) is strongly
continous for i € {1,2}. Then w(x) = m1(z) ® ma(x) is strongly continous and
takes values in the unitary operators on Hi @ Ha.

Proof. m(x) is unitary for all 2y € X by Theorem 2.1. Let {z,,}7%,; C X converge
to z € X. For a simple tensor ¢ ® ¥y we see

|7 (20 )11 ® Yo — m(@0)th1 @ ol < |71 (zn)tn ||| (m2(2n) — w2 (o))l
+ (71 (2n) — m1(20))¥1l[|72(20) 91 ||

as ||m1(xn)¥1||= ||¢]] we find the above converges to 0. Thus one sees m(x)y
is continous when 1 is a simple tensor. If ) is a linear combination of simple
tensor then 7(z) is a line combination of continous maps and so continous.
Hence (2) is continous for ¢ € H,&Hs. Let 1 € Hy @ Ho and pick {1, }52,
converging to . For any € > 0 pick Ny such that ||¢) —¢n, ||< /3. Pick now N
such that ||(7(z,,) — 7(x0))¥n, | < /3. Then

(7 (20) = m(@o))ll < [[7(2n) (¥ — ) |1+ (7 (2n) — 7w (20)) ¥, ||
+ |7 (zo) (¥ — ¥, )< e

finishing the proof.

Lemma A.7. Assume B = (Ay, ..., Ay) be selfadjoint and strongly commuting
onH, E€R” and M > 0. Then

1

_ 1 2
A—m (& — Ay)

j— 2 e —_
(&1 — A1)+ +2]VI

is selfadjoint and bounded below. Let Ny : R¥ — R be the density of a Gaussian
random variable with mean 0 and variance %I. Then for all p € H

et = Nt(m)eif‘”"ef"'”"lAl o eii“"””A"zle)\(z) (A.3)
RY
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Proof. A is a sum of non negative and strongly commuting selfadjoint operators
so it is non negative and selfadjoint (see [14]). Let P be the spectral measure of
B. Then

1 1
A:/RV m(&l _)\1)2dP()\) —|—...+‘/]RV m(fn _)\n)QdP()\)
C /RU ﬁ(fl - )\1)2 + ... ﬁ(fn _)\n)QdP(/\)

By selfadjointness of A we see equality must hold. In particular, we must have
e tA = / o= (€=M ==k (€A g p( ).
Let ¢ € H and p, be the measure p,,(C) = (3, P(C)). Using that

e 7h (G2 ==y (6 =2n)? — Ni(x)ei®me i emimnAd)(z)
RYv

we see

(1h, e~ t4) = / [ M@)ot e ez @)y (3

The aboslute value of the integrand is Ny(z) which integrates to uy(R”) = [|9]|*.
Thus we may use fubini to obtain

(¥, e M) = 8 Ni(@)e'* (, et em Ay d\ ()

For any v € H we see z — e @141 ¢7@n4nq) is continous by Lemma A.5
and the fact x — z; is continous. Furthermore, | N;(z)e™ 141 .. e~ @nAny)||=
N (z)||®|| which is integrable with integral ||¢||. Hence vector valued integral in
equation (A.3) exists for each ¢ and defines a bounded linear operator C; with
norm smaller than 1. What we have proven so far is that (1, e=*44)) = (¢, Cya))
for all ¥ € H so Cy = e~ t4
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