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TORIC SURFACES AND CODES,
TECHNIQUES AND EXAMPLES

JOHAN P. HANSEN

ABSTRACT. We treat toric surfaces and their application to construction of
error-correcting codes and determination of the parameters of the codes, sur-
veying and expanding the results of [4].

For any integral convex polytope in R? there is an explicit construction of
a unique error-correcting code of length (g — 1)? over the finite field F,. The
dimension of the code is equal to the number of integral points in the polytope.

The code can be considered as obtained by evaluation of rational functions
on a (not uniguely determined) toric surface associated to the given polytope.
Intersection theory on the toric surface will in two different ways be applied
to bound the minimal distance of the code. In some cases we even obtain the
precise minimal distance of the code.

The techniques are illustrated by several examples

1. TORIC CODES

Let M ~ Z2 be a free Z-module of rank 2 over the integers Z. Let [0 be an
integral convex polytope in Mr = M ®z R, i.e. a compact convex polyhedron such
that the vertices belong to M.

Let g be a prime power and let £ € F; be a primitive element. For any ¢ such that
0<i<g—1andany jsuch that 0 < j <g—1, welet P;; = (¢",&) e F,* x F,".
Let my,mo be a Z-basis for M. For any m = Aymq + Aame € M N O, we let
e(m)(Py;) = (€)M (&),

Definition 1.1. The toric code Cq associated to [ is the linear code of length
n = (q — 1)? generated by the vectors

{(e(m)(Psj))i=o,....g—1;j=0,....q—1 | m € M NO}.

In [4] we obtain the following results with precise determination of the parameters
of two families of toric codes.

Theorem 1.2. Let d be a positive integer and let O be the polytope in My with
vertices (0,0), (d,0), (0,d), see figure 1. Assume that d < ¢ — 1. The toric code C
has length equal to (g—1)? , dimension equal to #(MNO) = eréﬂ ( the number

of lattice points in ) and the minimal distance is equal to (¢ —1)? —d(q — 1).

Theorem 1.3. Let d,e,r be positive integers and let [ be the polytope in My with
vertices (0,0),(d,0), (d,e+rd), (0,e), see figure 2. Assume that d < q—1, that e <
q—1 and that e+rd < q—1. The toric code Ct has length equal to (g—1)?, dimension

Document version: January 2, 2004.
1991 Mathematics Subject Classification. 14M25, 94Bxx.
Key words and phrases. Toric Surfaces, Error-correcting Codes. Intersection Theory.

1



JOHAN P. HANSEN

R R B A R IR S NN IR
_\, [ e e e e e | | e e
e B et i Bl i i e B
- [ [ |
,,! I~ r TT7171 |
= I=1= = T A |
”\ [ | |
- . L
- ETEEEE ”
- [ |
- [ | |
- [ |
- T |
,\ 1 |
L I | |
! | O P | Il |
r [ I |
" [ N | [ |
I B N N B RN B
[ T e T I R B | [ [
Tﬂ44\,\,\,\,\_\ﬂlﬂJ\,\,\\,\jﬂﬂI_J\,
e e e el e s ey Mt el Al s e s ey B M
bt —l— =+ + 4 ===+ + o
L4+ 4 ddl-l—4+ -4+ 4 d-0]—+ 4+ 4L 44
[ N o

FIGURE 1. The convex polytope of Theorem 1.2 with vertices (0,0), (d,0), (0, d).
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the number of lattice points in ) and the minimal distance is greater or equal to

2d), see figure 8. Assume that 2d < q — 1. The toric code
(¢—1)*—2d(g - 1) = (¢ - 1)(
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FIGURE 2. The convex polytope of Theorem 1.3 with vertices

(0,0),(d,0),(d,e + rd), (0,e).
Using various intersection techniques on suitable chosen toric surfaces, we obtain

the following new results.
Theorem 1.4. Let d be a positive integers and let (I be the polytope in Mg with

the minimal distance is equal to Min{(¢—1—d)(¢—1—e),(g—1)(¢—1—e—rd)}.
vertices (0,0), (d,0), (0

equal to #(MNO) = (d+1)(e+1) Jrrd(d;l) (the number of lattice points in ) and

Theorem 1.5. Let d, e, f be positive integers such that

O be the polytope in Mp with vertices

Co has length equal to (



TECHNIQUES AND EXAMPLES

TORIC SURFACES AND CODES,

FIGURE 3. The convex polytope of Theorem 1.4 with vertices (0,0), (d,0), (0, 2d).
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FIGURE 4. The convex polytope of Theorem 1.5 with vertices
f—e

(070)v (da f - d)?(

4. Assume that d < ¢ — 1, that e < ¢ — 1 and that f;re < q— 1. The toric code C

has length equal to (q — 1)2, dimension equal to

+1/2ef —1/4f2+ fd+1/2f+1/2d+1/2e+1

#MNDO)=—-1/2d* - 1/4¢*

D. Joyner has in [6] presented

))(q—l—d)-

fte
2

(the number of lattice points in O) and the minimal distance is greater than or equal
In [3] and [4] we presented general methods to obtain the dimension and a lower

to (q —-1- (
bound for the minimal distance of a toric code.

extensive MAGMA calculations on toric codes.
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2. TORIC VARIETIES

For the general theory of toric varieties we refer to [1] and [7]. Here we recollect
some of the theory of relevance for the present purpose.

Let k be an algebraically closed field and let T = (k*)" be the n-dimensional
torus. A toric variety is a compactification X of T" with an action T' x X — X of
T on X that extends the natural action of T" on itself.

The character group is

M ={x:T — k*|x is a group homomorphism}
and the group of 1-parameter subgroups is
N ={\:k* — T|\ is a group homomorphism} .

We remark, that M ~ Z", where the n-tuple m = (mq,...,m,) € Z" corre-

sponds to the character
e(m) (t1,...,ty) =" - oot

Also N ~ 7", where the n-tuple v = (uy,...,u,) € Z" corresponds to the 1-
parameter subgroup
Au)(t) = (7, ... tem).
For x € M and X\ € N there is an integer < x, A >, such that the composition
xoA:k* — k* is of the form

XOoA(t) =t<xA>,

This gives a perfect pairing < —, — > M x N — Z and in the notation above, we
have that < e(m), A(u) >= myui+- - -+mpu,. Let Mg = M®zR and Ng = N@zR
with canonical R - bilinear pairing < —, — >: Mg X Ng — R.

2.1. Convex polytopes and support functions. Fans, normal fans and
refined normal fans. Given a n-dimensional integral convex polytope O in Mp.
The support function of the polytope is the function

hg: Ng — R
ho(n) = inf{< m,n > |m € O}.
The convex polytope [ can be reconstructed from the support function :
Op={me M| <m,n>> h(n) Vne N}

The support function hp is piecewise linear in the sense that Ng is the union of
a non-empty finite collection of strongly convex polyhedral cones in Nr such that
hp is linear on each cone.

A fan is a collection A of strongly convex polyhedral cones in Nk such that every
face of o € A is contained in A and o N’ € A for all 0,0’ € A.

The normal fan A of the convex polytope [ is the coarsest fan such that the
support function A is linear on each o € A, i.e. for all o € A there exists [, € M
such that

ho(n) =<ly,n> Vn€o.

The 1-dimensional cones p € A are generated by unique primitive elements
n(p) € N N p such that p = R>on(p).

Upon refinement of the normal fan, we can assume that for every ¢ € A there
exists a Z-basis {n1,...,n,} of N and s < r such that o = R>oni + - + R>ons.
In the 2-dimensional case it means that two successive pairs of n(p)’s generate the
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FIGURE 5. The normal fan and the refined normal fan with primi-
tive generators of the 1-dimensional cones of the polytope in figure
3. The added 1-dimensional cone in the refined fan is shown as a
dotted halfline.

lattice and we obtain the refined normal fan. In the 2-dimensional case there is a
method using continued fractions to obtain the refinement, see [7, Sec. 1.6].

2.1.1. Pick’s formula for the number of lattice points in a convex polytope. It will
be important to calculate the number of lattice points #[J in a convex polytope.
In the 2-dimensional case Pick’s formula gives that

Perimeter(0J)
2

In calculating the perimeter one should take into account that the length of an
edge of O is one more that the number af lattice points lying strictly between the
endpoints of the edge. See [1, p.113] and [7, p.101].

In the case of the polytope of Theorem 1.4, shown in figure 3, we get

2d-d d+2d+d
A==+ 2

In the case of the polytope of Theorem 1.5, shown in figure 4, we get

#0O = voly(O) + +1.

+1=d>+2d+1.

#0 = [g(e+d)—d—;—(e‘fIQd)Q]Jrf*j*eH
= —1/2d*—1/4e*+1/2ef —1/4 >+ fd+1/2f+1/2d+1/2e+1

2.1.2. Support functions and fans associated to the polytope of Theorem 1.4 shown
in figure 3. Let d, e be a positive integers and let [J be the polytope in My with
vertices (0,0), (d,0), (0, 2d), see figure 3. Assume that 2d < ¢ — 1. In figure 5 the
normal fan and the refined normal fan of the polytope are shown together with the
primitive generators of the 1-dimensional cones in the refined normal fan

n(p1) = (é) ;n(p2) = (?) ;n(ps) = (01) ;n(pa) = (?) :
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FIGURE 6. The normal fan and the refined normal fan with primi-
tive generators of the 1-dimensional cones of the polytope in figure
4. The added 1-dimensional cone in the refined fan is shown as a
dotted halfline.

Let o1 be the cone generated by n(p1) and n(p2), o2 be the cone generated
by n(p2) and n(ps) , o3 the cone generated by n(ps) and n(ps) and o4 the cone
generated by n(ps) and n(p1).

The corresponding support function is:

0
. " if " € oy,
0 na UP)
h <”1> D (™) (™) eouo
O No 0 . o o 2 3
0
. " if " € 04.
2d no no

2.1.3. Support functions and fans associated to the polytope of Theorem 1.5 shown
in figure 4. Let d,e, f be positive integers such that f > e and f — e is even. Let
O be the polytope in Mg with vertices (0,0), (d, f — d), (fge, f;re), (0, e) see figure
4. Assume that d < ¢ — 1, that e < ¢ — 1 and that f;re <q-—1.

In figure 6 the normal fan and the refined normal fan of the polytope are shown

together with the primitive generators of the 1-dimensional cones in the refined

normal fan o) — ((1)> nlps) = (2) ,n(ps) = (Ol)

o) = (1) nton) = () entow = ()

Let o1 be the cone generated by n(p1) and n(pz2), o2 be the cone generated by
n(p2) and n(ps) , o3 the cone generated by n(ps) and n(ps), o4 the cone generated
by n(ps) and n(ps), o5 the cone generated by n(ps) and n(ps) and og the cone
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generated by n(ps) and n(p1). The corresponding support function is:

0 n n
. ! if ! coy,
0 N9 N9
d n . [n
! if ! € 09,
0 n2 n2
n d n . [n
ho (1) = A7) i () eos
n2 f—d no no
f—e
ni . ni
2
. if coq4Uos
f;”) n2 n2
0 n . [n
A if e 6.
(& N9 N9

2.2. Toric varieties defined by fans associated to polytopes. The toric va-
riety X associated to the refined normal fan A of O is

Xg =UsealUs
where U, is the F,-valued points of the affine scheme Spec(F,[S,]), i.e.
Uy = {u: S, — Fylu(0) = 1, u(m + m') = u(m)u(m’) Vm,m’ € S,},
where S, is the additive subsemigroup of M
Se={me M| <m,y>>0y € o}.

The toric variety X is irreducible, non-singular and complete, see [7, Chapter 1].
If 0,7 € A and 7 is a face of o, then U, is an open subset of U,. Obviously Sy = M
and Uy = Ty such that the algebraic torus T is an open subset of Xp.
Tn acts algebraically on Xp. On u € U, the action of t € Ty is obtained as
(tu)(m) :=t(m)u(m) m € S,

such that tu € U, and U, is Tn-stable. The orbits of this action is in one-to-one
correspondance with A. For each o € A let
orb(o) :=={u: MnNo — Fq*|u is a group homomorphism}.

Then orb(o) is a Ty orbit in Xg. Define V(o) to be the closure of orb(o) in Xp.

2.3. Support functions and Cartier divisors on toric varieties. A A-linear
support function h gives rise to the Cartier divisor Dp. Let A(1) be the 1-
dimensional cones in A then

Dy:i=— > h(n(p)V(p).
pEA(1)
In particular
D, =div(e(—m)) m € M.
Following [7, Lemma 2.3] we have the lemma.
Lemma 2.1. Let h be a A-linear support function with associated Cartier divisor
Dy, and convex polytope Oy, defined in (2.1). The vector space H°(X, Ox (D)) of

global sections of Ox(Dy), i.e. rational functions f on Xg such that div(f)+ Dp >
0 has dimension #(M NOy) and has {e(m)lm € M N0} as a basis.
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The lemma and the results of 2.1.1 gives that the Cartier divisor associated to
the polytope of Theorem 1.4 is

Dypi=— Y h(n(p)V(p) =dV(ps) +2dV(ps)
pEA(1)
and
dimH®(X, Ox(Dp)) = d* + 2d + 1,

whereas the Cartier divisor associated to the polytope of Theorem 1.5 is

D=~ 3 () Vi) = aVipa) + Vi) + (15 ) Vi) + Vi)
)

2
peEA(1
and
dim H°(X, Ox(Dy,)) =

—1/2d* —1/4e*+1/2ef —1/Af2+ fd+1/2f+1/2d+1/2e+ 1.
2.4. Intersection theory and the number of rational zeroes of a rational
function. For a fixed linebundle £ on X, given an effective divisor D such that
L = Ox(D), the fundamental question to answer is: How many points from a fixed
set P of rational points are in the support of D. This question is treated in general
in [5] using intersection theory, see [2]. Here we will apply the same methods when
X is a toric surface.

For a A-linear support function & and a 1-dimensional cone p € A(1) we will
determine the intersection number (Dp; V(p)) between the Cartier divisor Dy and
V(p)) = P This number is obtained in [7, Lemma 2.11]. The cone p is the
common face of two 2-dimensional cones o', 0" € A(2). Choose primitive elements
n',n” € N such that

n' +n" €Rp
o' +Rp=Rson’ +Rp
" +Rp=Rson” +Rp
Lemma 2.2. For any l, € M, such that h coincides with [, on p, let h=h- lp.
Then
(Dn; V(p)) = = (h(n') + h(n").

In the 2-dimensional non-singular case let n(p) be a primitive generator for the

1-dimensional cone p. There exists an integer a such that
n’ +n" +an(p) =0,

V(p) is itself a Cartier divisor and the above gives the self-intersection number

V(p); V(p)) = a.
More generally the self-intersection number of a Cartier divisor Dy, is obtained

in [7, Prop. 2.10].

Lemma 2.3. Let Dy be a Cartier divisor and let [, be the polytope associated to
h, see (2.1). Then
(Dh; Dh) =2 VOlQ(Dh),

where voly is the normalized Lesbesgue-measure.
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In the situation of Theorem 1.4 there are four 1-dimensional cones (2.1.2) and
the intersection table becomes

|V(Pl) V(p2) Vips) V(pa)

Vi) | 2 1 0 1
Vipa) | 1 0 1 0
Vips)| 0 1 -2 1
Vips)| 1 0 1 0

In the situation of Theorem 1.5 there are six 1-dimensional cones (2.1.3) and the
intersection table becomes

Vip1) Vi(p2) Vips) Vips) Vips) Vi(ps)
Vipy) | -1 1 0 0 0 1
Vipa) | 1 0 1 0 0 0
Vips) | 0 1 -1 1 0 0
Vips) | 0 0 1 1 1 0
Vips) | 0 0 0 1 -1 1
Vips) | 1 0 0 0 1 -1

2.5. Determination of parameters. We start by exhibiting the toric codes as
evaluation codes.

Foreacht € T ~F, xF, ,we can evaluate the rational functions in H*(X, Ox (Dy))

HO(X, 0x(Dw)) — B
fo= f).

Let HO(X, Ox (Dy,))Fr°P denote the rational functions in H(X, Ox(Dy)) that are
invariant under the action of Frobenius, that is functions that are F, linear combi-
nations of the functions (e)(m) of Definition 1.1.

Evaluating in all points in T'(IF,) we obtain the code Cp:

HO(X7 OX(Dh))Frob _ CEI I (]Fq*)#T(IE‘q)
o= (f®)ere,

and the generators of the code is obtained as the image of the basis:

e(m) — (e(m)(t))ier(,)-
as in (1.1).

Let m1 = (1,0). The F,-rational points of T' ~ Fq* X Fq* belong to the ¢ — 1
lines on Xg given by [], 5 (e(m1) —n) = 0. Let 0 # f € HY(X, Ox(Dy)) and
assume that f is zero along precisely a of these lines. As e(m;)—n and e(m;) have
the same divisors of poles, they have equivalent divisors of zeroes, so

(div(e(m1) —n))o ~ (div(e(m1)))o.
Therefore
div(f) + Dy — a(div(e(my)))o > 0
or equivalently
f € HY(X, Ox(Dy, — a(div(e(m;)))o).

On any of the other ¢ — 1 — a lines the number of zeroes of f is according to [5]

at most the intersection number:

(Dn — a(div(e(m1)))o; (div(e(m1)))o)- (1)

This number can be calculated using Lemma 2.2 and Lemma 2.3.
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2.5.1. Determination of a lower bound for the minimal distance in the situation of
Theorem 1.4. Let my = (1,0). The F,-rational points of T ~F,” x F,” belong to
the ¢ —1 lines on Xp given by [], .5 (e(m1)—n) =0. Let 0 # f € HO(X, Ox(Dy))
and assume that f is zero along precisely a of these lines. As seen above this implies
that
f € HY(X, Ox(Dy — a(div(e(m1)))o),

which implies that a < d according to Lemma 2.1.

On any of the other ¢ — 1 — a lines the number of zeroes of f is according to [5]
at most the intersection number:

(Dn — a(div(e(m1)))o; (div(e(m1)))o) =
(dV(p3) +2dV(ps) —aV(pr)iaV(p1)) =
2d —2d

calculated using the first intersection table of 2.4. The total number of zeros for f
is therefore at most

alg—1)+(g—1—a)(2d —2a) < (¢ —1)2d.
This implies that the evaluation map
HO(X, Ox(Dp))™ —  Coc (F")#TF
fo= (f(t))tGT(]Fq)

is injective and the dimension and the lower bound for the minimal distances of the
toric code is greater than or equal to

(g—1)* = (g—1)2d = (¢ —1)(g — 1 —2d).

2.5.2. Determination of a lower bound for the minimal distance in the situation of
Theorem 1.5. Let mq = (1,0). The F,-rational points of T' ~ Fq* X Fq* belong to
the ¢ — 1 lines on X given by [], . (e(m1) —n) = 0. Let 0 # f € H(X, Ox(Dy))
and assume that f is zero along precisely a of these lines. As seen above this implies
that
f € H(X, Ox(Dy, — a(div(e(m;)))o),

which implies that a < d according to Lemma 2.1.

On any of the other ¢ — 1 — a lines the number of zeroes of f is according to [5]
at most the intersection number:

(D — a(div(e(m1)))o; (div(e(m1)))o) =

@V + V(o0 + (L5) Vioa+ e Vion) V(o) + Vi) -
f+e
2

calculated using the second intersection table of 2.4. The total number of zeros for
f is therefore at most

alg=1)+(¢—1-a) (%) Sd(q1)+(q1d)<f+e>-

2

This implies that the evaluation map
HO(X, OX(Dh))Frob — CpcC (]Fq*)#T(]Fq)
fo= (f®))ere,)
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is injective and the dimension and the lower bound for the minimal distances of the
toric code is greater than or equal to

(q—l)z—d(q—1)+(q—1—d)(f;(i) = <q—1—(f;6>)(q—l—d)-
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