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INTRODUCTION

SØREN GALATIUS

My scientific work can all be placed under the heading “Characteristic classes
of surface bundles”, and I will begin this introduction be explaining what that
means, and by what methods it has been studied in the last years. Along the way
I shall try to explain my own contributions. This introduction is supposed to be
understandable for non-experts. It is not supposed to be precise in any way.

The subject can be seen from at least two quite different points of view: the
topological point of view and the algebraic geometrical point of view. Histori-
cally it began in algebraic geometry; the “Mumford conjecture” was formulated
completely in algebraic geometrical terms. The latest major breakthrough in the
subject, the Madsen-Weiss theorem, is topological in nature (both its formulation
and proof), but has implications in algebraic geometry. In particular it proves
the Mumford conjecture. I will try to give an idea what the Mumford conjecture
and the Madsen-Weiss theorem say.

1. Bundles

A bundle over B consists, loosely speaking, of an object Ex for each x ∈ B
such that Ex “depends continuously on x”. These are put together into a “total
space” E which maps to B via π : E → B such that Ex = π−1(x). The bundle
is a vector bundle if each Ex is a vectorspace, and it is a surface bundle if each
Ex is a surface, etc. Two properties of being a bundle are very important. The
first is that two bundles over B can be isomorphic. Usually π : E → B and
π′ : E ′ → B are called isomorphic if there is a map ϕ : E → E ′ which is over X
(i.e. π′ ◦ ϕ = π) with an inverse that is also over X. The second is that bundles
can be pulled back: If E → B is a bundle and f : X → B is a map, then there
is a bundle f ∗E → X and a diagram

f ∗E E

X B.

Pullback is usually constructed by letting f ∗E be the bundle over X whose fi-
bre over x is Ef(x). Pullback is associative up to isomorphism: (f ◦ g)∗(E) is
isomorphic to g∗(f ∗E). This means that we get a contravariant functor

B 7→ {bundles E → B}/isomorphism.
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The above discussion was deliberately vague, for two reasons. Firstly because I
didn’t specify what kind of bundles I am considering, i.e. what do the fibres look
like. Secondly because I didn’t specify to what category B belongs. Depending
on point of view, B may be a variety (over some ground field k), it may be a
smooth manifold, or it may be any topological space.

As a well understood example, let us consider first vector bundles. In algebraic
geometry a vector bundle over B is a locally free sheaf on X. Isomorphism and
pullback makes sense for these. In the topological situation it is a fibre bundle
with fibre

�
n and structure group Gln(�) (or Gln(

�
)).

For surface bundles we would in algebraic geometry (notice that an algebraic
geometer calls a curve what a topologist calls a surface), mean a proper smooth
morphism π : E → X such that all the fibres are curves. In the manifold situation
we would consider proper submersions π : E → B such that all the fibres are
connected oriented surfaces (and thus determined up to diffeomorphism by their
genus g). Let us, for the moment, write V and S for the associated contravariant
functors:

V (B) = {vector bundles E → B}/isomorphism

S(B) = {surface bundles E → B}/isomorphism

Wishfully, one would like to calculate V (B) and S(B) for “reasonable” B.
Then we could say that two bundles are isomorphic if and only if they define the
same class in V (B) or S(B). In practice that appears to be impossible for all but
the most trivial cases (e.g. when B is a point), unfortunately. Instead, one looks
for characteristic classes.

2. Characteristic classes

Very generally, a characteristic class with values in some contravariant functor
h is a natural transformation c : V → h or c : S → h. Usually, h has the property
of being computable: h(B) can be explicitly determined for a reasonable class
of B’s. Then the characteristic class combines the nice property of V or S that
they are related to bundles with the nice property of h that it is computable. In
algebraic geometry, h(B) would typically be the Chow ring A(B) or some version
of cohomology. In topology h would typically be some kind of cohomology, e.g. de
Rham cohomology or more generally cohomology with coefficients in some ring.
Or maybe K-theory.

An example is the Chern characters chi. They associate to a vectorbundle
E → B a class chi(E) in H2i(B, �) (or de Rham cohomology), or in A(B) ⊗ � .
They can be constructed in several ways, cf [MS] or [RH]. Some of their properties
are listed in the following theorem.

Theorem 2.1.

(i) chi(E ⊕ E ′) = chi(E) + chi(E
′).
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(ii) Any characteristic class c of vectorbundles satisfying c(E ⊕ E ′) = c(E) +
c(E ′) is a unique linear combination of the chi.

(iii) Any characteristic class of vectorbundles is a unique polynomial in the chi.
(iv) Characteristic classes for n-dimensional vector bundles are exactly the poly-

nomials in ch1, . . . , chn.

Thus we have a complete description of the ring of characteristic classes of
vectorbundles with values in H∗(−;�). The properties (i) and (ii) uses that the
functor V takes values in monoids: Two vector bundles can be added by taking
fibrewise direct sum.

Now let us ask if there is a theorem similar to Theorem 2.1, but for surface
bundles instead of vector bundles. The answer to that question has two sides:
Firstly we should define some characteristic classes. Secondly we could try to
prove a uniqueness property similar to that of the Chern characters in the theorem
above. Historically, the relevant definition was first given by Mumford in algebraic
geometry. He also conjectured a uniqueness property similar to theorem 2.1
above. The definition in the manifold case was given by Miller and Morita. I
will give a rough sketch of the definition of the κ-classes (also known as the
MMM-classes, named after Mumford, Miller and Morita).

3. Miller-Morita-Mumford classes

At the heart of the definition is a construction that to a surface bundle π :
En+2 → Bn associates a map

π! : Hk+2(E) → Hk(B)

called “integration along the fibre”, “transfer”, “shriek” or something similar. It
can be defined in several ways. For instance if E and B are oriented manifolds,
then they satisfy Poincaré duality: Hk+2(E) ∼= Hn−k(E) and Hk(B) ∼= Hn−k(B).
Then π! can be defined as π∗ : Hn−k(E) → Hn−k(B) using that Hn−k is covariant.
This definition has an analogue in algebraic geometry. Alternatively if we use de
Rham cohomology we can map the (k + 2)-form ω ∈ Ωk+2(E) to the k-form
∫

F
ω ∈ Ωk(B) given by

(
∫

F

ω

)

x

(ξ1, . . . , ξk) =

∫

Ex

(ω(ξ1, . . . , ξk,−,−))

where
∫

Ex

: Ω2(Ex) →
�

is the usual integration.
Then we can associate to the surface bundle π : E → B a characteristic class

κi(E) ∈ H2i(B) by

κi(E) = π!(e
i+2)

where e ∈ H2(E) is the Euler class (= first Chern character) of the “tangent
bundle along the fibre” T πE. This is a vector bundle over E whose restriction to
Ex ⊆ E is the tangentbundle T (Ex).
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This defines a series of characteristic classes κi for surface bundles, i.e. natural
transformations

κi : S(B) → H2i(B).

With the proper interpretation, the above definition makes sense also in algebraic
geometry.

The classes κi have many of the formal properties that chi have for vector
bundles. It is natural to ask to what extend one can formulate and prove an
analogue of Theorem 2.1 for the κ-classes. Recall that properties (i) and (ii)
used that V took values in monoids because vectorbundles can be added. We
shall make S monoid-valued in the following way (which does not work in alge-
braic geometry). Let us consider bundles π : E → B whose fibres are surfaces
with boundary. The boundary should consist of one “incoming” circle and one
“outgoing”. Thus ∂E = B× (S1qS1). Then S is monoid-valued: Given bundles
E → B and E ′ → B we let E ∪∂ E ′ be the manifold obtained by gluing the
outgoing boundary of E to the incoming boundary of E ′. This is again a bundle
over B, and this glueing is associative up to isomorphism. In particular we can
always increase the genus of the fibre by glueing the trivial bundle B×F1,g whose
fibre F1,2 is a torus with two boundary components. Then we have the following
theorem about characteristic classes with values in H∗(−;�) (or H∗(−;

�
) or de

Rham cohomology).

Theorem 3.1.

(i) κi(E ∪∂ E ′) = κi(E) + κi(E
′). In particular if E ′ = B × F1,2 is the trivial

bundle whose fibre is a torus with two boundary circles, then κi(E) = κi(E∪∂

(B × F1,2)).
(ii) Any characteristic class κ satisfying κ(E ∪∂ E ′) = κ(E)+ κ(E ′) is a unique

linear combination of the κi.
(iii) Any characteristic class κ satisfying κ(E ∪∂ E ′) = κ(E) + κ(E ′) when E ′ =

B × F1,2 is a unique polynomial in the κi.
(iv) Characteristic classes of surface bundles of genus g are, for ∗ < (g − 1)/2,

exactly the polynomials in the κi.

This theorem is an analogue for surface bundles of Theorem 2.1. Direct sum
is replaced by glueing, and dimension of vector bundles is replaced by genus of
surfaces. Property (i) is a rather direct consequence of the definition. Given (i),
(ii) and (iii) are equivalent. They are not, however easy to prove. In fact they
are equivalent to the Mumford conjecture (which is now a consequence of the
Madsen-Weiss theorem). Property (iv) is noticeable weaker than its analogue
for Chern characters: We do not claim to have a complete description of the
characteristic classes of bundles of a given genus. Only of the classes in the
“stable range”. This is related to the Harer stability theorem.
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4. Madsen’s conjecture and the Madsen-Weiss theorem

Next let me say something about the proof of Theorem 3.1. A key observation
is that π : E → B really does not quite need to be a bundle for the definition
of κi(E) to make sense. Slightly less will do. In fact we consider instead of
S the contravariant functor that takes B to the set of equivalence classes of
proper smooth maps π : E → B together with an epimorphism of vectorbundles
Π : TE ×

�
j → TB ×

�
j, j ≥ 0. The kernel of Π (which is a vector bundle

over E) is required to be oriented. The equivalence relation is firstly that we are
allowed to increase j by crossing Π with

�
. Secondly, we can change (π, Π) by

a concordance. This means that if π̃ : Ẽ →
�

× B is a proper smooth map and
Π̃ : TẼ×

�
j → T (B×

�
)×

�
j is an epimorphism of vectorbundles with oriented

kernel, then if π̃ is transverse to {0, 1} × B then we identify E0 = π̃−1(0) with
E1 = π̃−1(1).

It is clear that there is a natural transformation S → S̃, namely we can set
j = 0 and let Π be the differential of π (this is an epimorphism of vectorbundles

TE → TB because π : E → B is a surface bundle). While at first S̃ may look
more complicated than S, it really is much easier to understand. This is because
it is a cohomology theory. This means roughly that if B = B1 ∪B2 where Bi ⊆ B
are open submanifolds, then S̃(B) is related to S̃(B1), S̃(B2) and S̃(B1 ∩B2) by
a Mayer-Vietoris long exact sequence. Furthermore it is a cohomology theory of
a kind which is rather well understood. It is namely a cobordism theory. This
kind of cohomology theories were invented by Thom in his celebrated work on
cobordism in the 1950’s. It would lead too far away from the subject to try to
describe this in any generality, so I will just mention that given this, by now
classical, theory (in particular the “Thom isomorphism theorem”), it is easy to
prove theorem 3.1 (ii) for S replaced by the functor S̃.

Now the situation is as follows. We have defined the characteristic classes κi

as natural transformations S → H2i(−). We have noted that they extend to
natural transformations S̃ → H2i(−), and we have proved Theorem 3.1 for S̃
in place of S. Now in [MT], Madsen proposed the following conjecture (slightly
reformulated):

If h∗ is any cohomology theory, then natural transformations κ : S → h∗ satis-

fying κ(E∪∂ E ′) = κ(E)+κ(E ′) when E ′ = B×F1,2 are in bijection with natural

transformations S̃ → h∗.

Given what we have said, this clearly implies the Mumford conjecture (by
setting h∗ = H∗(−; �)). Madsen’s conjecture was proved by Madsen and Weiss
in [MW].

All my scientific work has been closely related to the Madsen-Weiss theo-
rem. The first obvious question is to let h∗ be a cohomology theory other than
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H∗(−;�). An obvious cohomology theory is H∗(−; �p) for p a prime. I gave the
answer in [G1], calculating “all” characteristic classes with values in H∗(−; �p).
The answer has the advantage of being complete, i.e. determining all character-
istic classes, and the disadvantage of being abstract, in the sense that the answer
is rather large and it is difficult from [G1] to pick a single characteristic class
and evaluate it on a given bundle. [G2] is an attempt to compensate for that by
defining explicit characteristic classes λi : S → H∗(−; �p). They associate to a
bundle π : E → B a characteristic class λiE ∈ H2i(p−1)−2(B; �p). These classes
have the interesting property that under the map

H∗(B; �/p)
p
→ H∗(B; �/p2)

they map to the reduction of κi(p−1)−1 mod p2.
The paper [GMT] goes in another direction. Inside the � -vectorspace H∗(B;�)

there is an integral lattice, namely the image of H∗(B; �). If π : E → B is a
bundle, then κi(E) will lie in that lattice (in fact it is a well defined class in
H∗(B; �)). It is natural to ask how divisible κi(E) is, i.e. what is the largest nat-
ural number Di such that κi(E)/Di ∈ H∗(B;�) is always in the integral lattice.
The answer is given in [GMT] and is somewhat surprising. We recall it here.

The expression log( ez−1
z

) defines a holomorphic function on the disk of radius
2π and is given by a power series

log

(

ez − 1

z

)

=

∞
∑

i=1

αi

zi

i!

It is easy to see that the coefficients αi are rational numbers (related to the
socalled Bernoulli numbers), so they may be written uniquely as a fraction in
lowest terms

αi =
Ni

Di

Then the main theorem of [GMT] is that this Di is the largest number such that
κi(E)/Di ∈ H2i(B;�) is always in the integral lattice.

Finally in my last paper [G3] I consider a variation of the Madsen-Weiss the-
orem. Instead of considering bundles π : E → B with oriented fibres, one may
consider bundles of surfaces with some other structure. The structure that I con-
sider in [G3] is that of a spin structure. This may be relevant to physics. A spin
structure is an extra structure on a manifold, like an orientation. In [G3] I prove
the analogue of the Madsen-Weiss theorem for such surfaces. I also carry out the
analogue of [G1], namely determine “all” characteristic classes (in an abstract
way) with values in H∗(−; �p) for p a prime. For p odd there is no difference
between the answer for oriented surfaces and the answer for spin surfaces.
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5. Historical notes

This final section of my introduction is meant to be slightly more precise and
“historically correct”, but also slightly more technical. I will try to highlight the
important theorems of the subject.

All the functors in the preceding sections are representable, and usually the-
orems are expressed in terms of the representing spaces instead of the functors
themselves. Let me briefly introduce the representing spaces.

In topology the functor SF sending a space B to the set of isomorphism classes
of bundles E → B with fibre F is represented by a space BDiff(F ). This means
that there is a natural bijection

SF (B) ∼= [B, BDiff(F )]

where [X, Y ] denotes the set of homotopy classes of maps X → Y . Here Diff(F )
is the topological group of (orientation preserving) diffeomorphisms of F which
fixes ∂F pointwise. B(−) is a certain functor from (topological) groups to spaces.
By the “Yoneda lemma” there is a bijections between h(BDiff(F )) and the set
of natural transformations SF → h, where h is any contravariant functor from
spaces to sets. In particular H∗(BDiff(F )) is the set of characteristic classes of
fibre bundles with fibre F .

Now we can let F = Fg,b be a surface of genus g and with b boundary compo-
nents. Then we define

Γg,b = π0Diff(Fg,b)

to be the group of components of Diff(Fg,b). Then a theorem of Earle and
Eells [EE] states that the natural map

BDiff(Fg,b) → BΓg,b

is a homotopy equivalence when g ≥ 2.
A very important theorem in the subject is the Harer stability theorem. To

explain it, notice that if b > 0 and Fg,b → Fg+g′,b′ is an embedding, then there is
an induced map Diff(Fg,b) → Diff(Fg+g′,b′) and in turn a map

BΓg,b → BΓg+g′,b′ .

The Harer stability theorem [JH] states that the induced map

H∗(BΓg+g′,b′) → H∗(BΓg,b)

is an isomorphism for ∗ < (g − 1)/2. In fact Harer only proved this for ∗ <
(g−1)/3; the bound was later improved by Ivanov [I]. Combined with the Earle-
Eells theorem this implies that the map BDiff(Fg,b) → BDiff(Fg+g′,b′) induces an
isomorphism in H∗ when ∗ < (g − 1)/2, and thus that the set of characteristic
classes for surface bundles is independent of the genus in a “stable range”.

The current approach to the subject, which has now lead to a proof of the
Mumford conjecture, began with Tillmann’s paper [T]. To explain the main
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result, consider the monoid-value functor S from section 3. It is represented by
the topological monoid

M =
∐

g≥0

BDiff(Fg,2).

The operation − ∪∂ (B × F1,2) of glueing a torus to all the fibres is represented
by a map M → M and we can form the direct limit

� × BΓ∞ := colim

(

∐

g≥0

BDiff(Fg,2)

)

where the colimit is over the map M → M glueing tori. Then H∗(�×BΓ∞) will
be the set of characteristic classes κ of surface bundles satisfying

κ(E ∪∂ E ′) = κ(E) + κ(E ′) when E ′ = B × F1,2.

Tillmann’s theorem says that there is an “infinite loop space” Ω∞E and a map

� × BΓ∞ → Ω∞E

which is an isomorphism in H∗. Being an infinite loop space means roughly that
the functor [−, Ω∞E] is a cohomology theory.

Thus the Mumford conjecture becomes equivalent to a statement about the
cohomology of Ω∞E. Tillmann’s insight lead to the more ambitious hope of
determining completely the space Ω∞E, not just its rational cohomology. In fact
Madsen in [MT] conjectured that Ω∞E = Ω∞�P∞

−1, where Ω∞�P∞
−1 is a certain

(well understood) infinite loop space. The space Ω∞�P∞
−1 is the infinite loop

space representing the functor S̃ from section 4 above:

S̃(B) ∼= [B, Ω∞�P∞
−1]

and what became known as Madsen’s conjecture says that

� × BΓ∞ → Ω∞�P∞
−1

is an isomorphism in H∗. This is what Madsen and Weiss proved in [MW]. My
own paper [G1] calculates H∗(Ω

∞�P∞
−1; �p) for any prime p.

Finally a few words about algebraic geometry. Here the functor S, whose value
at a variety B is the set of isomorphism classes of smooth proper morphisms
E → B whose fibres are curves of genus g, is represented by the moduli space
Mg. It is an irreducible variety of dimension 3g − 3. Strictly speaking it is not
really a representing object, it is only a “coarse moduli space”. For k = � there
is a direct construction of Mg as the quotient

Mg = Tg/Γg.

Here Tg is the socalled Teichmüller space and is homeomorphic to
�6g−6. The

mapping class group Γg = π0Diff(F ) acts on Tg. It is known that the action has
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finite isotropy groups, i.e. for all x ∈ Tg, the subgroup {ϕ ∈ Γg | ϕx = x} is finite.
This implies that the canonical map

BΓg → Tg/Γg = Mg

is an isomorphism in H∗(−;�). Hence by the Earle-Eells theorem we have

H∗(BDiff(F );�) ∼= H∗(Mg;�)

which provides a direct connection between characteristic classes in topology and
characteristic classes in algebraic geometry, at least rationally. Mumford in [M]
originally defined the classes κi in H∗(Mg;�) (in fact he defined them in a
compactification M̄g of Mg) and conjectured that the induced map

� [κ1, κ2, . . . ] → H∗(Mg;�)

were an isomorphism when g is large compared to ∗.
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MOD p HOMOLOGY OF THE STABLE MAPPING CLASS

GROUP

SØREN GALATIUS

Abstract. We calculate the homology H∗(Γg,n;
�

p) of the mapping class
group Γg,n in the stable range. The calculation is based on Madsen and Weiss’
proof of the “Generalised Mumford Conjecture”: Γg,n has the same homology
as a component of the space Ω∞�P∞

−1 in the stable range.

1. Introduction

Let Fg,n be an oriented surface of genus g and with n boundary components.
Let Diff(Fg,n, ∂) be the topological group of orientation preserving diffeomor-
phisms of Fg,n fixing pointwise a neighbourhood of the boundary. The mapping
class group is the group Γg,n = π0Diff(Fg,n, ∂) of components. There are group
maps

Γg,n → Γg,n−1 and Γg,n → Γg+1,n

induced by gluing a disk, resp. a torus with two boundary components, to one
of the boundary components of Fg,n. By a theorem of Harer and Ivanov, these
maps induce isomorphisms in H∗(−; �) for ∗ ≤ (g − 1)/2, and thus there is a
stable range in which the group homology H∗(Γg,n; �) is independent of g and
n. In this range it agrees with H∗(Γ∞; �) where Γ∞ = colimg Γg,1 is the stable
mapping class group.

1.1. Madsen-Weiss’ theorem. The Mumford conjecture predicts that

H∗(Γ∞;�) ∼= � [κ1, κ2, . . . ]

for certain classes κi ∈ H2i(Γ∞). This was recently proved by Madsen and Weiss,
but their result gives more. To state the full result, consider the classifying
space BΓ∞. Its homology is the group homology of Γ∞. By the Quillen plus-
construction we get a simply connected space BΓ+

∞ and a map BΓ∞ → BΓ+
∞

inducing an isomorphism in homology. The Madsen-Weiss theorem determines
the homotopy type of � × BΓ+

∞ to be that of Ω∞�P∞
−1. The space Ω∞�P∞

−1 (to
be defined below), can be examined by methods from stable homotopy theory.
In particular it is easy to calculate H∗(Ω∞�P∞

−1;�). This implies the Mumford
conjecture.

Key words and phrases. mapping class groups, moduli spaces, Thom spectra, homology of
infinite loop spaces.
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In this paper we calculate H∗(Ω
∞�P∞

−1; �p) for any prime p and hence by the
above H∗(Γg,n; �p) for ∗ ≤ (g − 1)/2.

1.2. Outline and statement of results. Let p be a prime number, and let
H∗ = H∗(−; �p).

Let L be the canonical complex line bundle over �P∞ and let �P∞
−1 = �h(−L)

be the Thom spectrum of the −2-dimensional virtual bundle −L. Inclusion of a
point in �P∞ induces a map S−2 → �P∞

−1 and the zero section of the line bundle
L induces a map

�P∞
−1 = �h(−L)→ �h(−L + L) = Σ∞�P∞

+

These fit together into a cofibration sequence

S−2 → �P∞
−1 → Σ∞�P∞

+

and there is an induced fibration sequence of infinite loop spaces

Ω∞Σ�P∞
−1

ω
// Q(Σ�P∞

+ )
∂

// QS0 (1.1)

where we write Q = Ω∞Σ∞. This fibration sequence is the starting point for the
calculation of the mod p homology of Ω∞Σ�P∞

−1 and Ω∞�P∞
−1.

The mod p homology of QΣ�P∞
+ and QS0 is completely known ([1], [3], [2]),

as is the induced map ∂∗ in homology ([6]). The first main result of this paper
is a calculation of the Hopf algebra H∗(Ω

∞Σ�P∞
−1; �p). We need to introduce

the following notation to state the results (see Section 2 for further details).
All Hopf algebras will be commutative and cocommutative. The Hopf algebra
cokernel and kernel of a map f : A → B of Hopf algebras will be denoted B//f
and A\\f , respectively. PA is the vectorspace of primitive elements, and QA is
the vectorspace of indecomposable elements. For a graded vectorspace V , s−1V
will denote the desuspension of V : (s−1V )ν−1 = Vν . We also need to introduce
the following functors from vectorspaces to algebras. Let V be a non-negatively
graded vectorspace and let B ⊆ V0 be a basis for the degree zero part of V . Let
V = V + ⊕ V − be the splitting of V into even and odd dimensional parts. Then
E[V −] is the exterior algebra generated by V − and �p[V

+] is the polynomial
algebra generated by V +. Furthermore �p[B, B−1] is the algebra of Laurent
polynomials in the elements of B and �p[V

+, B−1] = �p[V
+]⊗�

p[B] �p[B, B−1] is
the polynomial algebra generated by V +, with the elements of B inverted. The
free commutative algebra generated by V is S[V ] = E[V −]⊗ �p[V

+, B−1].
The calculations use the theory of homology operations. These are defined

on the mod p homology of infinite loop spaces, and are natural with respect to
infinite loop maps, cf. [1], [3], [2]. The basic operations are

βεQs : Hn(X)→ Hn+2s(p−1)−ε(X), (p > 2)

Qs : Hn(X)→ Hn+s(X), (p = 2)



MOD p HOMOLOGY OF THE STABLE MAPPING CLASS GROUP 3

where ε ∈ {0, 1} and s ∈ �≥ε. Given a sequence I = (ε1, s1, . . . , εk, sk) (with all
εi = 0 if p = 2) there is an iterated operation QI = βε1Qs1 . . . βεkQsk . The mod
p homology of QS0 then has the following form: Let ι ∈ H0(QS0) be the image
of the non-basepoint in S0. Then H∗(QS0) is the free commutative algebra on
the set

T = {QIι|I admissible, e(I) + b(I) > 0} (1.2)

(see section 3 for the definition of e(I), b(I) and the notion of admissibility).
As a step towards calculating H∗(Ω

∞Σ�P∞
−1) we determine the Hopf algebra

cokernel of ∂∗ : H∗(QΣ�P∞
+ ) → H∗(QS0). In the following theorem, Q0S

0 ⊆
QS0 is the basepoint component. Then H∗(QS0) = H0(QS0)⊗H∗(Q0S

0).

Theorem 1.1. Let T be as in (1.2). Let H∗(QS0)(0) denote the subalgebra of
H∗(QS0) generated by the set

{QIι ∈ T|all εi = 0} (p > 2)

{QIι ∈ T|all si even} (p = 2)

Then the composite

H∗(QS0)(0) → H∗(QS0)→ H∗(QS0)//∂∗

is an isomorphism. In particular the Hopf algebra H∗(QS0)//∂∗ is concentrated in
degrees ≡ 0 (mod 2(p − 1)). Similarly for H∗(Q0S

0)//∂∗. Furthermore the dual
algebra H∗(Q0S

0)\\∂∗ is a polynomial algebra.

Theorem 1.2. The sequence

�p
// H∗(Ω

∞Σ�P∞
−1)\\ω∗

// H∗(Ω
∞Σ�P∞

−1)
ω∗

// H∗(QΣ�P∞
+ )\\∂∗

// �p

is an exact sequence of Hopf algebras. It is split but not canonically. Furthermore
there is a canonical isomorphism

H∗(Ω
∞Σ�P∞

−1)\\ω∗
∼= E[s−1P (H∗(QS0)//∂∗)]

In particular, H∗(Ω
∞Σ�P∞

−1) is primitively generated and for p > 2 it is free
commutative.

Theorem 1.1 is an algebraic consequence of the known structure of H∗(QΣ�P∞
+ )

and H∗(QS0) and the induced map ∂∗ in homology. The proof of Theorem 1.2
uses the Eilenberg-Moore spectral sequence of the fibration sequence (1.1).

Next we calculate H∗(Ω
∞�P∞

−1).

Theorem 1.3. For p = 2, the sequence

�2
// H∗(Ω

∞�P∞
−1)

Ωω∗
// H∗(Q

�P∞
+ )

Ω∂∗
// H∗(ΩQS0) // �2

is exact. In particular Ωω∗ induces an isomorphism

H∗(Ω
∞�P∞

−1)
∼=

// H∗(Q
�P∞

+ )\\Ω∂∗
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The short exact sequence in Theorem 1.3 determines H∗(Ω
∞�P∞

−1; �2) com-
pletely. Indeed, as part of the proof of Theorem 1.3 we determine H∗(ΩQS0) and
the induced map Ω∂∗ in homology. The result can be summarised by the diagram

QH∗(Q
�P∞

+ )
Q(Ω∂∗)

//

∼=
��

QH∗(ΩQS0)

∼=
��

PH∗(QΣ�P∞
+ )

P (∂∗)
// PH∗(QS0)

(1.3)

where the vertical isomorphisms in (1.3) are the homology suspensions. The
homology H∗(Ω0QS0) of the basepoint component of ΩQS0 is a divided power
algebra, i.e. its dual is a primitively generated polynomial algebra.

For odd primes p our results are less precise in that H∗(Ω
∞�P∞

−1; �p) is only
determined up to algebra isomorphism. The main technical theorem is the fol-
lowing

Theorem 1.4. For odd primes p, the homology suspension

σ∗ : QH∗(Ω
∞�P∞

−1)→ PH∗(Ω
∞Σ�P∞

−1)

is surjective.

Proving Theorem 1.4 is the most difficult part of the paper. It uses that σ∗

commutes with the homology operations βεQs.

Corollary 1.5. Let Y ⊆ H∗(Ω
∞�P∞

−1) be a subset such that σ∗(Y ) is a basis of
PH∗(Ω

∞Σ�P∞
−1). Then H∗(Ω

∞�P∞
−1) is the free commutative algebra on the set

Y ∪ {βQsy|y ∈ Y −, deg(y) = 2s− 1}

Corollary 1.5 is a formal consequence of Theorem 1.4 and the fact that the
Hopf algebra H∗(Ω

∞Σ�P∞
−1) is primitively generated. The proof uses the “Kudo

transgression theorem”, cf. [2], Theorem 1.1(7): If deg(y) = 2s − 1, then in
the Leray-Serre spectral sequence we have that σ∗(y) transgresses to y and that
(σ∗y)p−1 ⊗ y transgresses to −βQsy.

1.3. Acknowledgements. This calculation is part of my phd-project at the
University of Aarhus. It is a great pleasure to thank my thesis advisor Ib Madsen
for his help and encouragement during my years as a graduate student.

2. Recollections

In this introductory section we collect the results we need later in the paper. We
start by recalling some important results on the structure of Hopf algebras from
[5] and proceed to review the functor Cotor and the closely related Eilenberg-
Moore spectral sequence, cf. [4], [8].
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2.1. Hopf algebras. Here and elsewhere, the field �p with p elements is the
ground field, and ⊗ = ⊗�

p
. Until further notice, p is assumed odd. Algebras and

coalgebras are as in [5] and in particular they always have units resp. counits.

Definition 2.1. When A is a coalgebra and MA, AN are A-comodules with struc-
ture maps ∆M : M → M ⊗ A and ∆N : N → A ⊗ N , the cotensor product is
defined by the exact sequence

0 // M�AN // M ⊗N // M ⊗A⊗N

where the right-hand morphism is ∆M ⊗N −M ⊗∆N . The functors M�A− and
−�AN are left exact functors from A-comodules to �p-vectorspaces in general,
and to A-comodules when A is cocommutative.

Definition 2.2. For a morphism f : A→ B of Hopf algebras, define the kernel
and cokernel

A\\f = A�Bk, B//f = B ⊗A k

A priori, the kernel and cokernel are vectorspaces, but when A and B are
commutative and cocommutative, they become Hopf algebras and are the kernel
and cokernel in the categorical sense. Hopf algebras that are both commutative
and cocommutative are called abelian, and the category of those is an abelian
category (this essentially follows from [5, Prop. 4.9]).

The Hopf algebras appearing in this paper will (except for R and R defined
below) be of the form A = H∗(X; �p) for X an infinite loop space. Such Hopf
algebras will always be abelian. We will often have that H∗(X, �p) is of finite
type, and in this case H∗(X; �p) will also be a Hopf algebra. However, if π0(X)
is infinite, H∗(X; �p) will not be a Hopf algebra (e.g. X = QS0 with π0X = �).
Usually it will then be the case that the basepoint component X0 ⊆ X is of
finite type, and thus we can consider H∗(X0; �p). Hopf algebras A with Ai = 0
for i < 0 and A0 = �p are called connected. In general we will have a natural
splitting of Hopf algebras H∗(X) = H∗(X0)⊗�p{π0X} where �p{π0X} = H0(X)
is the group algebra.

Definition 2.3. For an algebra A with augmentation ε, let IA = Ker(ε : A→ k)
and dually for a coalgebra A with augmentation η, let JA = Cok(η : k → A).
Let Q and P be the functors defined by the exact sequences

IA⊗ IA
ϕ

// IA // QA // 0

and

0 // PA // JA
∆

// JA⊗ JA

P and Q satisfies P (A⊗ B) = PA⊕ PB and Q(A ⊗ B) = QA⊗ QB, and as
functors from abelian Hopf algebras to vectorspaces, Q is right exact and P is left
exact ([5, Prop 4.10]). When A is connected, PA ⊆ A is the subset consisting of
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elements x satisfying ∆x = x ⊗ 1 + 1 ⊗ x. If A = �p{π0X} is a group algebra,
then PA = 0.

The functors P and Q are related by the short exact sequence of [5, Thm.
4.23]:

Theorem 2.4. For an abelian Hopf algebra A, let ξ : A → A be the Frobenius
map x 7→ xp and let λ : A → A be the dual of ξ : A∗ → A∗. Let ξA ⊆ A be
the image of ξ and let A→ λA be the coimage of λ. Then there is the following
natural exact sequence

0 // PξA // PA // QA // QλA // 0 (2.1)

In particular PA → QA is an isomorphism except possibly in degrees ≡ 0
(mod 2p) if p > 2. For p = 2 it is an isomorphism in odd degrees.

Finally, we recall Borel’s structure theorem ([5, Theorem 7.11])

Theorem 2.5. Any connected abelian Hopf algebra A is isomorphic as an algebra
to a tensor product of algebras of the form E[x], �p[x] and �p[x]/(xpn

), n ≥ 1.

Corollary 2.6. A connected abelian Hopf algebra A is isomorphic as an algebra
to a polynomial algebra if and only if ξ : A → A is injective. Dually if A is of
finite type, A∗ is polynomial if and only if λ : A→ A is surjective. �

2.2. The functor Cotor. When A is a coalgebra and B and C are left resp. right
A-comodules, the functor

CotorA(B, C)

is defined as the right derived functor of the cotensor product �A. To be explicit
(and to fix grading conventions), choose an injective resolution 0 → B → I0 →
I−1 → . . . of B in the category of right A-comodules and set

CotorA
n (B, C) = Hn(I∗�AC)

When A, B and C are in the graded category, Cotor gets an inner grading and
is thus bigraded with CotorA

n,m(B, C) = (CotorA
n (B, C))m. When A, B, C are all

positively graded, Cotor is concentrated in the second quadrant.
When A, B and C are of finite type over a field, this functor is dual to the

more common Tor:

CotorA(B, C) =
(

TorA∗

(B∗, C∗)
)∗

This follows immediately from the duality between �A and ⊗A∗ .
We shall consider Cotor as a functor from diagrams of cocommutative coalge-

bras

S =











B

��

C // A










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to coalgebras. The external product is an isomorphism (see [10, Theorem 3.1, p.
209])

CotorA(B, C)⊗ CotorA′

(B′, C ′)→ CotorA⊗A′

(B ⊗ B′, C ⊗ C ′)

and under this isomorphism the comultiplication in CotorA(B, C) is given by the
comultiplication ∆ : S → S ⊗S in the diagram S .

Dually, when S is a diagram of Hopf algebras, CotorA(B, C) is a Hopf algebra
with multiplication induced by the multiplication ϕ : S ⊗S → S of the diagram
S .

Later we will need the structure of CotorA(B, �p) where �p denotes the trivial
Hopf algebra and f : B → A is a morphism of Hopf algebras. From the change
of rings spectral sequence and [5, Theorem 4.9] we get

Proposition 2.7. For a map f : B → A of Hopf algebras, there is a natural
isomorphism of Hopf algebras

CotorA(B, �p)
∼=

// B\\f ⊗ CotorA//f (�p, �p)

�

To complete the description of CotorA(B, �p) we need to calculate the Hopf
algebra CotorA(�p, �p). This is easily done by applying Borel’s structure theorem
to the dual algebra A∗ and using Lemma 2.8 below. The Hopf algebra Γ[x] is dual
to a polynomial algebra: Γ[x] = (k[x∗])∗ and s−ν denotes bigraded desuspension:
(s−νV )−ν,n = Vn for a singly graded object V .

Lemma 2.8. The following isomorphisms hold as Hopf algebras

TorE[x](�p, �p) = Γ[s−1x]

Tor
�

p[x](�p, �p) = E[s−1x]

Tor
�

p[x]/(xpn
)(�p, �p) = E[s−1x]⊗ Γ[s−2xpn

]

�

By the duality between Tor and Cotor we obtain the Hopf algebra structure
of CotorA(�p, �p) in terms of a set of generators of the dual algebra A∗.

Corollary 2.9. For any connected Hopf algebra A of finite type, CotorA(�p, �p)
is freely generated by the primitive elements in CotorA

−1,∗(�p, �p) and CotorA
−2,∗.

Choosing generators of A∗ (according to Borel’s structure theorem), the generators
of CotorA(�p, �p) are in bidegrees

(−1, k) for x ∈ A∗
k an odd generator

(−1, k) for x ∈ A∗
k an even generator

(−2, pmk) for x ∈ A∗
k an even generator of height pm
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The primitive elements of CotorA(k, k) are in bidegrees

pn(−1, k) for x ∈ A∗
k an odd generator

(−1, k) for x ∈ A∗
k an even generator

pn(−2, pmk) for x ∈ A∗
k an even generator of height pm

�

More functorially, one defines for p > 2 the functor P̂A = PCotorA
−2,∗(�p, �p).

Then the result in Corollary 2.9 is that CotorA(�p, �p) ∼= S[s−1PA]⊗ S[s−2P̂A]

combined with the facts that Q̂(�p[x]) = Q̂(E[x]) = 0 and that Q̂(�p[x]/(xpn

)) =

�p.{x
pn

}, where Q̂A = (P̂A∗)∗.
In particular, the only primitive elements of odd total degree are in bidegrees

(−1, k) for even generators x ∈ A∗
k.

Finally, we shall need a criterion for left exactness of the functor Q, namely

Proposition 2.10. Let

k → A→ B → C → k

be a short exact sequence of abelian Hopf algebras. If C is a free commutative
algebra, then the sequence

0→ QA→ QB → QC → 0

is short exact.

Proof. Since C is free, we may split B → C with a map of algebras. Thus
B ∼= A ⊗ C as an algebra, and Q(B) depends only on the algebra structure of
B. �

A peculiar consequence of Corollary 2.6 is that if A is a Hopf algebra that is
free as an algebra, then any Hopf subalgebra of A is also free as an algebra.

2.3. The spectral sequence. In this section, we recall the spectral sequence of
[4] and some of its properties.

We consider homotopy cartesian squares

C =











F //

��

E

��

X // B











of connected spaces, and with B simply connected (homotopy cartesian means
that F ' holim(X → B ← E). One can always find a model that is a fibre
square, i.e. where E → B is a fibration, and F → X is the pullback fibration).
In the following, H∗ denotes H∗(−; �p).
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Definition 2.11. The Eilenberg-Moore spectral sequence Er is a functor from
fibre squares C as above to spectral sequences of coalgebras. It has

E2 = CotorH∗(B)(H∗(E), H∗(X))

and converges as coalgebra to H∗F .

Theorem 2.12 ([4, Proposition 16.4]). The external product induces an isomor-
phism

Er(C )⊗ Er(C ′)→ Er(C × C ′)

Under this isomorphism, the coalgebra structure is induced by the diagonal ∆ :
C → C × C . �

Dually, when C is a diagram of H-spaces and H-maps (here meaning maps
commuting strictly with the multiplication such as loop spaces and loop maps),
there is a multiplication m : C × C → C inducing a multiplication ϕ = m∗ :
Er(C ) ⊗ Er(C ) → Er(C ). In this case, the spectral sequence is one of Hopf
algebras. Furthermore it is clear that on the E2-term, the Hopf algebra structure
is the same as the one on Cotor described above.

2.4. The loop suspension. We shall use the spectral sequence only in the case
when X is a point. This corresponds to a fibration sequence

F → E → B

and the spectral sequence computes homology of the fibre. When E is also a
point, we have the path-loop fibration sequence

ΩX → ∗ → X

In this case, the line

E2
0,∗ = Cotor

H∗(X)
0,∗ (�p, �p) = �p�H∗(X)�p = �p

is concentrated in degree 0 and hence there is a “secondary edge homomorphism”

H∗(ΩX)→ E∞
−1,∗ ↪→ E2

−1,∗
∼= PH∗X (2.2)

Proposition 2.13 ([11, Proposition 4.5]). The morphism in (2.2) is the loop
suspension

σ∗ : QH∗(ΩX)→ PH∗X

�

We shall also need

Lemma 2.14. Let C∗ be a connected differential graded Hopf algebra. If x is
an element of minimal degree with dx 6= 0, then x is indecomposable and dx is
primitive.

Proof. Immediate from the Leibniz rules for product and coproduct. �
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Corollary 2.15. Minimal differentials in the spectral sequence of a path-loop
fibration correspond to minimal elements in the cokernel of σ∗.

Proof. Since dx is primitive and not in E2
−1,∗ it is of even total degree and x is

of odd total degree. By Corollary 2.9, the only odd dimensional indecomposable
elements are in E2

−1,∗ and the result follows. �

3. Unstable R-modules

As sketched in the introduction, homology of an infinite loop space has homol-
ogy operations βεQs. In this section we recall the precise definitions and explain
how to express homology of QX as a free algebra on certain iterated operations on
the homology of X. We follow the notation from [2]. In this section we consider
only p > 2. Small changes, which we recall later, are needed for p = 2.

We define several categories of graded vectorspaces with a set of linear trans-
formations {βεQs | ε ∈ {0, 1}, s ∈ �≥ε} of degree 2s(p− 1)− ε.

Q-unstable R-modules //

��

Q-unstable R-modules

��

unstable R-modules // unstable R-modules

��

R-modules

��

graded vectorspaces

(3.1)

Here, R is the free non-commutative algebra on the set {βεQs | ε ∈ {0, 1}, s ∈
�≥ε}, and the various entries in (3.1) differ in what relations the action of the
operations βεQs are assumed to satisfy. It is the left part of the diagram that is
geometrically relevant, since the homology of an infinite loop space X is naturally
an unstable R-modules, and so is the vectorspace of primitive elements PH∗(X).
The space of indecomposable elements QH∗(X) is naturally a Q-unstable R-
module.

All of the above forgetful functors to graded vectorspaces have left adjoint
“free” functors. From R-modules it is the functor V 7→ R ⊗ V , and the other
four are quotients thereof.

In 3.2, we define the algebras R and R and the four categories of unstable
modules. In 3.3 we construct the four adjoint functors D , D ′, D and D′. Finally,
in 3.4 we recall the computation of H∗(QX) in terms of H∗(X). It should be
noted that the algebra R and the related categories are needed only in the proof
of Theorem 4.4. It is R that is geometrically relevant but R has the property
that a submodule of a free R-module is again free and similarly for submodules
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of free (Q-)unstable R-modules. This makes R simpler from the viewpoint of
homological algebra.

3.1. Araki-Kudo-Dyer-Lashof operations. Recall that an infinite loop space
is a sequence E0, E1, . . . of spaces and homotopy equivalences ΩEi+1 → Ei. One
thinks of E0 as the “underlying space” of the infinite loop space. In particular,
E0 = Ω2E2 is a homotopy commutative H-space. Thus, as mentioned in the
introduction, H∗(E0) is a commutative algebra under the Pontrjagin product.
Furthermore H∗(E0) naturally carries a set of linear transformations βεQs, ε ∈
{0, 1}, s ∈ �≥ε. These linear transformations are commonly called Dyer-Lashof
operations (or Araki-Kudo operations) and are operations

βεQs : Hn(E0)→ Hn+2s(p−1)−ε(E0)

natural with respect to infinite loop maps. They measure the failure of chain
level commutativity of the Pontrjagin product.

They satisfy a number of relations that makes H∗(E0) an unstable R-module,
the notion of which is defined below.

3.2. The algebras R and R and categories of unstable modules.

Definition 3.1. Let R be the free (non-commutative) algebra generated by sym-
bols

βεQs, ε ∈ {0, 1}, s ∈ �≥ε.

and write βQs = β1Qs and Qs = β0Qs. R is a graded algebra with

deg(βεQs) = 2s(p− 1)− ε

It will occasionally be convenient to consider R as a bigraded algebra with grad-
ings

degQ(βεQs) = 2s(p− 1), degβ(βεQs) = −ε

R is a cocommutative Hopf algebra with comultiplication

∆(βεQs) =
∑

ε1+ε2=ε
s1+s2=s

βε1Qs1 ⊗ βε2Qs2

Remark 3.2. R is a Hopf algebra in the sense of [5], i.e. a monoid object in the
category of cocommutative coalgebras. Notice however that R is not a group
object, since Q0 is not invertible.

Definition 3.3. An R-module is called unstable, if

βεQsx = 0 whenever 2s− ε < deg(x) (3.2)

It is called Q-unstable if furthermore

Qsx = 0 whenever 2s = deg(x) (3.3)
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On homology of an infinite loop space we also have the relation

Qsx = xp whenever 2s = deg(x) (3.4)

For an infinite loop space X, H∗(X) is naturally an unstable R-module and
QH∗(X) is Q-unstable because of (3.4). However, the ideal in R of elements with
universally trivial action is nonzero, and hence the action of R on H∗X factors
through a quotient of R. This quotient is the Dyer-Lashof algebra R.

Definition 3.4. For each r, s ∈ � and ε ∈ {0, 1} with r > ps, define elements in
R

A (ε,r,0,s) = βεQrQs −

(

r+s
∑

i=0

(−1)r+i(pi− r, r − (p− 1)s− i− 1)βεQr+s−iQi

)

For r ≥ ps define elements

A (0,r,1,s) = QrβQs −

( r+s
∑

i=0

(−1)r+i(pi− r, r − (p− 1)s− i)βQr+s−iQi

−
r+s
∑

i=0

(−1)r+i(pi− r − 1, r − (p− 1)s− i)Qr+s−iβQi

)

and

A (1,r,1,s) = βQrβQs −

(

−

r+s
∑

i=0

(−1)r+i(pi− r − 1, r − (p− 1)s− i)βQr+s−iβQi

)

where (i, j) = (i + j)!/(i!j!). These elements are the socalled Adem relations.

Let A ⊆ R be the �p-span of all Adem elements. This is a bigraded subspace
of R. Let 〈A 〉 ⊆ R be the two-sided ideal generated by A . Let J ⊆ R be the
two-sided ideal (or equivalently the left ideal) generated by the relations (3.2) (for
x ∈ R). J is the smallest ideal such that R/J is unstable as a left R-module.

Definition 3.5. The Dyer-Lashof algebra is the quotient

R = R/(〈A 〉+ J )

The action of A and hence 〈A 〉 on homology of infinite loop spaces is trivial by
results from [2], dual to Adem’s result for the Steenrod algebra. So is the action
of J . Hence H∗(X) is an R-module when X is an infinite loop space. Conversely
([1], [3]) the map R→ H∗(QS0) induced by acting on the zero-dimensional class
ι, corresponding to the non-basepoint of S0, is an injection, so there are no further
relations.

The set of all products of generators form a vector space basis of R. To have
an explicit basis for R, we recall the notion of admissible monomials, [2, p. 16].

A sequence
I = (ε1, s1, . . . , εk, sk)
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of integers εi ∈ {0, 1} and si ∈ �≥εi
determines the iterated homology operation

QI = βε1Qs1 . . . βεkQsk ∈ R

This sequence is called admissible if for all i = 2, . . . , k,

si ≤ psi−1 − εi−1 (3.5)

The corresponding iterated homology operations QI ∈ R are called admissible
monomials. The length and excess of I are

`(I) = k, e(I) = 2s1 − ε1 −

k
∑

j=2

[2sj(p− 1)− εj]

Furthermore, define

b(I) = ε1

Using the Adem relations one may rewrite an arbitrary element of R as a linear
combination of admissible monomials. Applying Adem relations does not raise
the excess.

There is a natural quotient map R → R. Thus R-modules are also R-modules.

Definition 3.6. An R-module is called unstable, respectively Q-unstable, if it is
so as an R-module.

3.3. Free functors.

Definition 3.7. For a graded vectorspace V we define DV to be the quotient of
R ⊗ V by the relations (3.2) and D ′V to be the quotient of DV by the relations
(3.3). Define also

DV = R⊗R DV, D′V = R⊗R D ′V

The functor D is left adjoint to the forgetful functor from unstable R-modules
to vectorspaces. Thus DV is the “free unstable R-module” generated by V .
Similarly, D is left adjoint to the forgetful functor from unstable R-modules to
graded vectorspaces. Analogous remarks apply to D ′ and D′. The functors
appear in the following exact sequences, natural in V

〈A 〉 ⊗R DV → DV → DV → 0 (3.6)

〈A 〉 ⊗R D ′V → D ′V → D′V → 0 (3.7)

When V = �pι for a homogeneous element ι, DV has basis

{QIι | I admissible, e(I) ≥ deg(ι)}

Together with additivity of D, this describes DV as a �p-vectorspace. Since
R ∼= D�p as a left R-module, we also have a basis of R over �p.



14 SØREN GALATIUS

3.4. Homology of QX. Here we recall the computation of H∗(QX). It can
be expressed as a functor of H∗(X) which is left adjoint to a suitable forgetful
functor, forgetting the Pontrjagin product and the R-action, see [2]. We shall
give a non-functorial description in terms of a basis of JH∗(X).

Theorem 3.8. Let B ⊆ JH∗(X) be a basis consisting of homogeneous elements.
Then H∗(QX) is the free commutative algebra on the set

T = {QIx|x ∈ B, I admissible, e(I) + b(I) > deg(x)}

�

Corollary 3.9. The natural map

ϕQ : D′JH∗(X)→ QH∗(QX)

is an isomorphism of Q-unstable R-modules.
If X is connected and H∗(X) has trivial comultiplication (e.g. if X is a sus-

pension), then the natural map

ϕP : DJH∗(X)→ PH∗(QX)

is an isomorphism of unstable R-modules. �

Remark 3.10. QX is connected if and only if X is connected. More generally the
group of components of QX is determined by the short exact sequence

0→ � → �[π0X]→ π0(QX)→ 0

where the first arrow is induced by the inclusion of the basepoint in X. When X
is nonconnected we are sometimes only interested in homology of the component
Q0X of the basepoint in QX. This can be described as follows. Let τ : QX →
Q0X be the map that on a component QiX, i ∈ π0(QX) multiplies by an element
of Q−iX. This defines a welldefined homotopy class of maps QX → Q0X which is
left inverse to the inclusion. Then we have that H∗(Q0X) is the free commutative
algebra on the set

T̃ = {τ∗Q
Ix|x ∈ B, I admissible, e(I) + b(I) > deg(x), deg(QIx) > 0}

4. Homological algebra of unstable modules

The map
Q(∂∗) : QH∗(QΣ�P∞

+ )→ QH∗(Q0S
0)

was computed in [6, Theorem 4.5]. The left hand side is D′JH∗(Σ
�P∞

+ ) and the
right hand side is D′�p. The starting point of our theorems is

Theorem 4.1 ([6]). Let as ∈ Hs(Σ
�P∞

+ ) be the generator, s odd. Let ι ∈
JH0(S

0) be the generator. Then

Q(∂∗)(as) =

{

(−1)rβQrι s = 2r(p− 1)− 1

0 otherwise
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Proof. The map ∂ : Σ�P∞
+ → QS0 coincides with the universal S1-transfer

denoted t0 in [6]. The formula for Q(∂∗)(as) in the theorem now follows from
ignoring all decomposable terms in [6, Theorem 4.5]. �

4.1. Main technical theorems. To state the theorems, recall from subsec-
tion 3.2 that R may be bigraded by deg = degQ + degβ . Since the Adem relations
are homogeneous with respect to degQ and degβ, there is an induced bigrading
of R. If V is bigraded, R ⊗ V is a bigraded left R-module. Since the unstability
relations (3.2) are homogeneous, there is an induced bigrading of DV . Similarly
for D ′V , DV and D′V . Thus by Corollary 3.9 a bigrading of JH∗(X) will induce
a bigrading of QH∗(QX) and, for X a suspension, a bigrading of PH∗(QX).
However, H∗(QX) will only have degβ welldefined up to multiplication with p
because of the unstability relation (3.4).

For bigraded modules V with deg = degQ + degβ as above, we shall write V i,j =

{x ∈ V | degQ(x) = i, degβ(x) = j} and V n = ⊕i+j=nV i,j and V (n) = ⊕iV
i,n. We

will only consider gradings in the fourth quadrant, i.e. V i,j = 0 unless i ≥ 0 and
j ≤ 0. Write V (−) = ⊕n<0V

(n).

Theorem 4.2. Bigrade JH∗(S
0) by setting degβ(ι) = 0 and give QH∗QS0 the

induced bigrading. Then we have

Im(Q(∂∗)) = QH∗(QS0)(−)

Proof. The inclusion Im(Q∂∗) ⊆ QH∗(QS0)(−) is immediate from Theorem 4.1.
The other inclusion follows from Lemma 4.3 below. Indeed, the two-sided ideal
in R generated by the set {βQs | s ≥ 1} is spanned by operations QI with at
least one β. By Lemma 4.3 below, any such operation is also in the left ideal
with the same generators, i.e. is a linear combination of elements of the form
QJβQs. In particular, any element in QH∗(QS0)(−) is also in Im(Q∂∗) because
Q∂∗ is R-linear. �

Lemma 4.3. The left ideal in R generated by the set {βQs | s ≥ 1} is also a
right ideal.

Proof. Write I ⊆ R for the left ideal generated by {βQs | s ≥ 1}.
For r ≤ ps, consider the Adem relation A (0,ps,1,r−(p−1)s):

QpsβQr−(p−1)s = βQrQs

+
∑

i>s

λiβQr+s−iQi

+ terms of form Qr+s−iβQi

where we have singled out the term in the Adem relation corresponding to i = s,
and where the λi ∈ k are certain binomial coefficients. This shows that in the
left R-module R/I we can write βQrQs as a linear combination of βQaQb with
a < r. In particular, βQ1Qs = 0 ∈ R/I and by induction βQrQs = 0 ∈ R/I.
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Thus we have βQrQs ∈ I whenever βQrQs is admissible. Since a nonadmissible
βQrQs is a linear combination of admissible ones, we have βQrQs ∈ I for any
r, s. This shows that I is invariant under right multiplication with Qs. Since it
is obviously invariant under right multiplication with βQs it follows that I is a
right ideal. �

The kernel of Q∂∗ is harder to determine explicitly. The partial information
contained in Theorem 4.4 below suffices for the calculation.

Notice that for any R-module V , the augmentation of R gives a natural quo-
tient map V → �p ⊗R V identifying �p ⊗R V with the quotient of V by the
relations βεQsx = 0 for x ∈ V, ε ∈ {0, 1}, s ≥ ε. The functor �p ⊗R − agrees
with the functor �p⊗R− on R-modules. Thus the vectorspace �p⊗RV = �p⊗RV
measures the dimensions of a minimal set of R-module generators of an unstable
R-module V .

In the next theorem, as ∈ JHs(Σ
�P∞

+ ) denotes the generator for s odd.

Theorem 4.4. Bigrade JH∗(Σ
�P∞

+ ) by concentrating it in degβ = −1 and give
QH∗(QΣ�P∞

+ ) the induced bigrading. Then the bigraded vectorspace

�p ⊗R Ker(Q∂∗) = �p ⊗R Q(H∗(QΣ�P∞
+ )\\∂∗)

is concentrated in bidegrees degβ = −1 and degβ = −2. In particular Ker(Q∂∗) is
generated as an R-module by the elements as ∈ Ker(Q∂∗) with s 6≡ −1 (mod 2(p−
1)) together with elements of degree ≡ −1 and ≡ −2 (mod 2(p− 1)).

Proof. The equality Ker(Q∂∗) = Q(H∗(QΣ�P∞
+ )\\∂∗) in the theorem follows

from Proposition 2.10 because H∗(QS0) is a free commutative algebra.
The last statement of the theorem follows from the first. Indeed the elements

QIas are all in the kernel of Q(∂∗) when s 6≡ −1 (mod 2(p − 1)) because as

is in the kernel. These elements give rise to one “tautological” element as ∈
Fp ⊗R Ker(Q∂∗). On the span of the QIas with s ≡ −1 (mod 2(p − 1)) the
claim about degrees of generators follows since on these elements deg ≡ degβ

(mod 2(p− 1)). Thus we need only prove the first statement of the theorem.
We have the short exact sequence of Q-unstable R-modules

0 // Ker(Q∂∗) // QH∗(QΣ�P∞
+ )

Q∂∗
// QH∗(QS0)(−) // 0 (4.1)

If were to apply the functor �p ⊗R − from R-modules to vectorspaces, we would
get a long exact sequence involving TorR

∗ (�p,−), and a determination of the map
induced by Q∂∗ in Tor1 would give the result. This is more or less what we do,
except that it is technically more convenient to replace the functor �p ⊗R − by
�p⊗R− and to replace Tor by a suitable functor taking unstability into account.
We proceed to make these ideas precise.

The category of Q-unstable R-modules is abelian and has enough projectives.
The functor �p ⊗R − from Q-unstable R-modules is right exact, hence the
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left derived functors Lr(�p ⊗R −) are defined. These are unstable versions of
TorR

r (�p,−). For brevity, let us write TR
1 (�p,−) = L1(�p ⊗R −).

With these definitions, applying the functor �p ⊗R − to the sequence (4.1)
induces the exact sequence

0 // Cok(TR
1 (�p, Q∂∗)) // �p ⊗R Ker(Q∂∗) // Ker(�p ⊗R Q∂∗) // 0

(4.2)
Claim 1. The elements as ∈ Ker(Q∂∗) with s 6≡ −1 (mod 2(p−1)) maps in (4.2)
to a generating set in Ker(�p ⊗R Q∂∗).

Proof of Claim 1. This is the kernel of the map

�p ⊗R Q∂∗ : �p ⊗R QH∗(QΣ�P∞
+ )→ �p ⊗R QH∗(Q0S

0)(−)

Clearly, the natural map JH∗(Σ
�P∞

+ )→ k⊗RQH∗(QΣ�P∞
+ ) is an isomorphism,

and by Lemma 4.3 we get that �p⊗R QH∗(QS0)(−) is spanned by {βQsι | s ≥ 1}.
Thus Claim 1 follows from Theorem 4.1. �

Claim 2 : Cok(TR
1 (�p, Q∂∗)) is concentrated in degβ = −1 and degβ = −2.

Proof of Claim 2. We will compute TR
1 (�p, Q∂∗) using suitable free resolutions.

For brevity, write V = JH∗(Σ
�P∞

+ ). By Corollary 3.9 we may consider Q∂∗ as a

map from D′V onto D′� (−)
p . Let W ⊆ (D ′�p)

(−) denote the subspace with basis
{βQs1Qs2 . . . Qsk | s1 ≥ 1, s2, . . . , sk ≥ 0}. In the diagram

W

��

D′V

Q∂∗

��

0 // (〈A 〉 ·D ′�p)
(−) // D ′� (−)

p
// D′� (−)

p
// 0

(4.3)

in which the lower exact sequence is an instance of (3.7), we may choose a lifting
ρ : W → D′V since Q∂∗ is surjective. Writing V = V0⊕ V1 where V0 = span{as |
s ≡ −1 (mod 2(p − 1))} and V1 = span{as | s 6≡ −1 (mod 2(p − 1))}, we may
choose the lifting ρ to have ρ(W ) ⊆ D′V0 since D′V = D′V0⊕D′V1 and since Q∂∗

vanishes on D′V1. We may also choose the lifting to have ρ(βQs) = a2s(p−1)−1

and extend (4.3) to the following exact diagram

0 // Ker(ρ)

σ

��

j
// D ′W

��

ρ
// D′V0

Q∂∗

��

// 0

0 // (〈A 〉 ·D ′�p)
(−) i

// D ′� (−)
p

// D′� (−)
p

// 0

(4.4)

Note that the middle map in (4.4) is an isomorphism.
Next we apply the functor �p ⊗R − to (4.4). This gives a diagram involving

the left derived functor TR
1 (�p,−) = L1(�p⊗R −). This functor vanishes on the
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middle part of (4.4) since these (isomorphic) objects are free. Thus, a part of the
induced diagram looks like this

0 // TR
1 (�p, D

′V0)

T R
1 (�p,Q∂∗)

��

// �p ⊗R Kerρ

σ∗

��

j∗
// �p ⊗R D ′W

∼=
��

0 // TR
1 (�p, D

′� (−)
p ) // �p ⊗R (〈A 〉 ·D ′�p)

(−) i∗
// �p ⊗R (D ′�p)

(−)

(4.5)
where a star in subscript is shorthand for �p⊗R − on morphisms. Thus we have

represented TR
1 (�p, D

′V0) and TR
1 (�p, D

′� (−)
p ) as the kernels of j∗ and i∗, and

the map TR
1 (�p, Q∂∗) as the restriction of σ∗.

To calculate the cokernel of TR
1 (�p, Q∂∗) and to prove Claim 2, note that

(〈A 〉 ·D ′�p)
(−) = R(−) ·A (0) ·D ′� (0)

p + R ·A (−) ·D ′� (0)
p + R ·A ·D ′� (−)

p

This is generated over R by the subspace

R(−1) ·A (0) ·D ′� (0)
p + A (−) ·D ′� (0)

p + A ·D ′� (−)
p (4.6)

The corresponding R-indecomposable classes will span �p⊗R (〈A 〉·D ′�p)
(−) as a

vectorspace, and since the first and the second term in (4.6) has degβ ∈ {−1,−2},

it suffices to prove that the last term A ·D ′� (−)
p does not contribute to the cokernel

of TR
1 (�p, Q∂∗).

To this end, notice that A ·D ′� (−)
p corresponds to A ·D ′W under the middle

isomorphism in (4.4), and that A ·D ′W is in the kernel of ρ since the action of A
is trivial in D′V . Notice also that A ·D ′W vanishes under the projection D ′W →
�p ⊗R D ′W and thus by exactness of (4.4) and (4.5) the classes corresponding

to A · D ′� (−)
p in �p ⊗R (〈A 〉 · D ′�p)

(−) lifts all the way to TR
1 (�p, D

′V0) and
therefore does not contribute to the cokernel of TR

1 (�p, Q∂∗). �

Now Theorem 4.4 follows from the exact sequence (4.2) and the Claims above.
�

5. Homology of Ω∞Σ�P∞
−1

The spectral sequence associated to the fibration (1.1) has

E2 = CotorH∗(Q0S0)(H∗(QΣ�P∞
+ ), �p)⇒ H∗(Ω

∞Σ�P∞
−1) (5.1)

By Proposition 2.7 the E2-term splits as

E2 ∼= CotorH∗(Q0S0)//∂∗(�p, �p)⊗H∗(QΣ�P∞
+ )\\∂∗ (5.2)

In this section, p is odd so after localising the fibration (1.1), the base-space is
simply connected and the spectral sequence converges.

As explained in the introduction, we will first prove Theorem 1.1 about the
coalgebra structure on H∗(Q0S

0)//∂∗, or, equivalently the algebra structure of
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H∗(Q0S
0)\\∂∗, and then use this to prove that the spectral sequence (5.1) col-

lapses. Then a close examination of the E∞ = E2 term will prove Theorem 1.2.

5.1. The Hopf algebra cokernel of ∂∗. To state the results, let us introduce a
bigrading of H∗(QS0). Recall that H∗(QS0) is the free commutative algebra on
the set

{QIι | I admissible, e(I) + b(I) > 0}

Make it a bigraded algebra by setting degβ(QI ι) = degβ(QI). By the Cartan

formula for the coproduct we get that the subalgebra H∗(QS0)(0) is a Hopf sub-
algebra, but notice that H∗(QS0) is not a bigraded R-module because of the
relation (3.4). We are now ready to prove Theorem 1.1 in the case p > 2.

Proof of Theorem 1.1 for p > 2. We first prove that the composition

H∗(QS0)(0) → H∗(QS0)→ H∗(QS0)//∂∗ (5.3)

is an isomorphism of Hopf algebras.
With the bigrading introduced above, we have H∗(QS0) = H∗(QS0)(0) ⊕

H∗(QS0)(−) where the first summand is a subalgebra and the second is an ideal.
Since Im(∂∗) ⊆ �p ⊕H∗(QS0)(−), the composition (5.3) is injective.

To see surjectivity, note that Q(H∗(QS0)//∂∗) = Cok(Q∂∗) since Q is right
exact. By Theorem 4.2 we have Im(Q∂∗) = QH∗(QS0)(−) and hence Cok(Q∂∗) =
(QH∗(QS0))(0) = Q(H∗(QS0)(0)).

To prove that H∗(Q0S
0)//∂∗ is dual to a polynomial, notice that we have

H∗(Q0S
0)//∂∗

∼= H∗(Q0S
0)(0) and that it suffices to prove that λ : H∗(Q0S

0)(0) →
H∗(Q0S

0)(0) is surjective. λ is given by the dual Steenrod operations: If deg(x) =
2ps, λx = Ps

∗x. By the Nishida relations ([2, Theorem 1.1 (9)]), one gets
λQps = Qsλ and thus

λ(Qps1Qps2 . . . Qpsk [1] ∗ [−pk]) = Qs1Qs2 . . . Qsk [1] ∗ [−pk]

Thus λ hits the generators of H∗(Q0S
0)(0) and since it is a map of algebras, it is

surjective. �

5.2. The spectral sequence. We are now ready to compute the E2-term of the
spectral sequence (5.1) and to prove that it collapses at the E2-term.

Theorem 5.1. The spectral sequence collapses at the E2-term. The E2-term is
given by

E2 = H∗(QΣ�P∞
+ )\\∂∗ ⊗ E[s−1P (H∗(QS0)//∂∗)]

as a Hopf algebra.

Proof. We need to identify the factor CotorH∗(Q0S0)//∂∗(�p, �p) in the splitting (5.2)
of the E2-term. By Theorem 1.1, the dual algebra H∗(Q0S

0)\\∂∗ is polynomial
and hence by Corollary 2.9 we get

CotorH∗(Q0S0)//∂∗(�p, �p) ∼= E[s−1P (H∗(QS0)//∂∗)]
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as claimed.
In this E2-term, primitives and generators are concentrated in bidegrees (0, ∗)

and (−1, ∗) and hence by Lemma 2.14 there can be no non-zero differentials in
the spectral sequence. �

Proof of Theorem 1.2. By Theorem 5.1 we get that the sequence

�p
// H∗(Ω

∞Σ�P∞
−1)\\ω∗

// H∗(Ω
∞Σ�P∞

−1)
ω∗

// H∗(QΣ�P∞
+ )\\∂∗

// �p

is exact (i.e. ω∗ is onto).
To identify H∗(Ω

∞Σ�P∞
−1)\\ω∗ recall that the spectral sequence defines a fil-

tration F0 ⊇ F−1 ⊇ . . . on H∗(Ω
∞Σ�P∞

−1) and hence on H∗(Ω
∞Σ�P∞

−1)\\∂∗ and
an isomorphism of graded vectorspaces

s−1P (H∗QS0//∂∗)→ F−1(H∗(Ω
∞Σ�P∞

−1)\\∂∗)/F−2

Choosing any lifting

s−1P (H∗QS0//∂∗)
l

// H∗(Ω
∞Σ�P∞

−1)\\∂∗

we will get an isomorphism of algebras

E[s−1P (H∗QS0//∂∗)]→ H∗(Ω
∞Σ�P∞

−1)\\∂∗

and since H∗(Ω
∞Σ�P∞

−1)\\ω∗ is a Hopf algebra, Theorem 2.4 defines a unique
choice of lifting l into P (H∗(Ω

∞Σ�P∞
−1)\\ω∗).

The splitting follows from Lemma 5.2 below. �

Lemma 5.2. Let

�p
// A // B

π
// C // �p

be a short exact sequence of Hopf algebras. If either A or C is exterior, the
sequence is split exact in the category of Hopf algebras.

Proof. Assume C is exterior. Then by Theorem 2.4 we have that PC ∼= QC and
the diagram

PB
Pπ

//

��

PC //

∼=
��

0

QB // QC // 0

is exact since Q(−) is right exact. Thus PB → PC is surjective and a choice of
splitting PC → PB of Pπ induces a splitting C ∼= E[PC]→ B of π.

The case where A is exterior follows by duality. �

Corollary 5.3. The vectorspace

Ker(Pω∗) = P (H∗(Ω
∞Σ�P∞

−1)\\∂∗) = Q(H∗(Ω
∞Σ�P∞

−1)\\ω∗)

is concentrated in degrees ≡ −1 (mod 2(p− 1))

Proof. This follows from Theorem 1.1 and Theorem 1.2. �
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6. Homology of Ω∞�P∞
−1

The goal of this section is to prove Theorem 1.4 and Corollary 1.5.
As mentioned in the introduction, we will consider the Eilenberg-Moore spec-

tral sequence of the path-loop fibration over Ω∞Σ�P∞
−1. From the fibration (1.1)

one easily gets that π1(Ω
∞Σ�P∞

−1) = � and therefore we have a homotopy equiv-
alence

Ω∞Σ�P∞
−1 ' S1 × Ω̃∞Σ�P∞

−1

where Ω̃∞Σ�P∞
−1 → Ω∞Σ�P∞

−1 is the universal covering map. Furthermore we

have Ω(Ω̃∞Σ�P∞
−1) = Ω∞

0
�P∞

−1, the basepoint component of Ω∞�P∞
−1. Similarly

QΣ�P∞
+ ' S1 × Q̃Σ�P∞

+ and under these splittings the map ω in the fibra-
tion (1.1) restricts to a map S1 → S1 of degree 2. Since p is odd, the effect
of replacing Ω∞Σ�P∞

−1 and QΣ�P∞
+ by their universal convering spaces is to

remove a factor of H∗(S
1) = E[σ], σ = [S1] ∈ H1(S

1), from each of the terms
H∗(Ω

∞Σ�P∞
−1) and H∗(QΣ�P∞

+ )\\∂∗ in Theorem 1.2.
The Eilenberg-Moore spectral sequence associated to the path-loop fibration

over Ω̃∞Σ�P∞
−1 is

E2 = CotorH∗(Ω̃∞Σ	P∞

−1
)(�p, �p)⇒ H∗(Ω

∞
0
�P∞

−1) (6.1)

and by Theorem 1.2, the E2-term splits (non-canonically) as

E2 ∼= CotorH∗(Ω∞Σ	P∞

−1
)\\ω∗(�p, �p)⊗ CotorH∗(Q̃Σ	P∞

+
)\\∂∗(�p, �p) (6.2)

More canonically there is a short exact sequence of Cotor’s, but for the following
arguments we will assume that a splitting has been chosen.

I claim it must collapse. As before, we consider a possibly nonzero differential
dx = y 6= 0 with deg(x) minimal. We will reach a contradiction in a number of
steps. The argument is based on Theorem 4.4 and a careful analysis of degrees
modulo 2(p− 1) in the spectral sequence.

By Theorem 1.2 and Lemma 2.9, the first factor in (6.2) is a polynomial algebra
on generators of total degree ≡ −2 (mod 2(p − 1)). To gain information about
the second factor, we map the spectral sequence (6.1) into the spectral sequence

of the path-loop fibration over Q̃Σ�P∞
+ via the map ω : Ω̃∞Σ�P∞

−1 → Q̃Σ�P∞
+ .

This is a map Er(ω) of spectral sequences whose restriction to the first factor
in the splitting (6.2) is zero, and whose restriction to the second factor in (6.2)

is induced by the inclusion H∗(Q̃Σ�P∞
+ )\\∂∗ → H∗(Q̃Σ�P∞

+ ). The next lemma
says that this second factor in (6.2) injects under E2(ω).

Lemma 6.1. Let f : A→ B be an injection of primitively generated Hopf alge-
bras. Then Cotorf (�p, �p) : CotorA(�p, �p)→ CotorB(�p, �p) is also injective.

Proof. By Theorem 2.4, A∗ and B∗ are tensor products of exterior algebras and
polynomial algebras truncated at height p. Thus we can split f ∗ : B∗ → A∗

in the category of algebras (since a splitting can be chosen on the generators
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of A∗). Dually, f : A → B is split injective as a map of coalgebras and thus
Cotorf(�p, �p) is injective. �

Corollary 6.2. Relative to the splitting (6.2), a differential dx = y 6= 0 with x
of minimal degree will have x in the right factor and y in the left.

Proof. Recall that P and Q are additive: P (A⊗B) = PA⊕PB and Q(A⊗B) =
QA ⊕ QB. Thus x and y does not contain products between the two factors in
(6.2).

Since y is primitive and in bidegree (≤ −3, ∗), it must be of even total degree
by Corollary 2.9, and thus x is of odd total degree. By Theorem 1.2 this is only
possible if x is in the right factor.

By Lemma 6.1, the right factor injects into the spectral sequence of QΣ�P∞
+ ,

and since all differentials vanish in this spectral sequence, y must map to 0 there,
and hence y is in the left factor. �

The remaining part of the collapse proof is to eliminate the possibility of dif-
ferentials from the right factor to the left. This is the hardest part of the proof,
the main ingredient of which is Theorem 4.4.

Theorem 6.3. The spectral sequence (6.1) collapses.

Proof. Assume there is a differential dx = y 6= 0 with deg(x) minimal. Then y

is a primitive element in CotorH∗(Ω̃∞Σ	P∞

−1
)(�p, �p). By Corollary 6.2 and Corol-

lary 2.9 it is of the form

y = (s−1z)pk

for a z ∈ P (H∗(Ω̃
∞Σ�P∞

−1)\\ω∗). By Theorem 1.2 we must have deg(z) ≡ −1
(mod 2(p− 1)). Write

deg(z) = 2n(p− 1)− 1

Then

deg y = pk(2n(p− 1)− 2) = 2pk(n(p− 1)− 1) ≡ −2 (mod 2(p− 1))

and thus deg x ≡ −1 (mod 2(p− 1)) because the differential has degree −1. By
Proposition 2.14 we get that x corresponds to a minimal element in the cokernel
of σ∗ : QH∗(Ω

∞
0
�P∞

−1) → PH∗(Ω̃
∞Σ�P∞

−1), of degree ≡ 0 (mod 2(p − 1)). By
Corollary 6.2, x is also a minimal element in the cokernel of the composition

QH∗(Ω
∞
0
�P∞

−1)
σ∗

// PH∗(Ω̃
∞Σ�P∞

−1)
Pω∗

// P (H∗(Q̃Σ�P∞
+ )\\∂∗)

By minimality this element is not a pth power and hence maps to a non-zero
element of Q(H∗(Q̃Σ�P∞

+ )\\∂∗). Again by minimality, and because the loop
suspension σ∗ is R-linear, this element is R-indecomposable and hence since σ∗

has degree 1, x will map to a nonzero element of degree ≡ 0 (mod 2(p− 1)) in

�p ⊗R Q(H∗(Q̃Σ�P∞
+ )\\∂∗)

in contradiction with Theorem 4.3. �
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Theorem 1.4 no follows from Theorem 6.3 and Proposition 2.15.

Proof of Corollary 1.5. This is completely analogous to the inductive step in the
classical calculations of homology of QX or of cohomology of K(�p, n). We sketch
the details.

Consider the Leray-Serre spectral sequence

E2 = H∗(Ω
∞Σ�P∞

−1)⊗H∗(Ω
∞�P∞

−1)⇒ H∗(point) (6.3)

Since σ∗ is onto, we can pick a basis B ⊆ PH∗(Ω
∞Σ�P∞

−1) and for each x ∈ B
pick an element τx ∈ H∗(Ω

∞�P∞
−1) with σ∗(τx) = x. We can now form a model

spectral sequence

Ẽ2 =
⊗

x∈B

Er(x)

where, if x ∈ B has odd degree,

E2(x) = E[x]⊗ �p[τx]

with the differential determined by requiring that x transgresses to τx. If x has
even degree deg(x) = 2s, we set

E2(x) = �p{1, x, . . . , xp−1} ⊗E[τx] ⊗ �p[βQs(τx)]

with the differential determined by requiring that x transgresses to τx and that
xp−1 ⊗ τx transgresses to βQs(τx).

The choices of τx ∈ H∗(Ω
∞Σ�P∞

−1) determines a map of spectral sequences

Ẽr → Er and the comparison theorem implies that it is an isomorphism and then
Corollary 1.5 follows. �

7. The case p = 2

At the prime 2, the calculation of H∗(Ω
∞�P∞

−1) and H∗(Ω
∞Σ�P∞

−1) can also
be made. Some details are quite different however. In particular, we will use the
looped fibration

Ω∞�P∞
−1 → Q(�P∞

+ )→ ΩQS0 (7.1)

to compute H∗(Ω
∞�P∞

−1), instead of the path-loop fibration over Ω∞Σ�P∞
−1. At

p = 2 our base spaces in the fibrations are no longer simply connected. The
following lemma deals with this

Lemma 7.1. As spaces we have

QS0 ' � × 
P∞ × Q̃0S
0

ΩQS0 ' �/2× 
P∞ × Ω̃0QS0

where X̃ → X denotes the universal covering.
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Proof. Let X be an (n− 1)-connected H-space with πn(X) = G. There is an H-
map X → K(G, n) inducing an isomorphism in πn and with fibre the n-connected
cover X〈n〉. If one can find a map K(G, n)→ X inducing an isomorphism in πn,
this map will give a splitting X ' X〈n〉 ×K(G, n).

For n = 0 this is automatic.
For X = Q2S

0 ' Q0S
0, π1(X) = �/2 and the definition of the Dyer-Lashof

operation Q1ι ∈ H1(Q2S
0; �2) gives a map


P∞ = B�/2→ Q2S
0 ' Q0S

0

inducing an isomorphism in H1 and thus by the Hurewicz theorem an isomor-
phism in π1 and the splitting of QS0 follows.

For X = Ω0Q0S
0, π1(X) = �/2. The Hopf map gives an infinite loop map

η : Q(S1)→ Q0S
0. I claim it is nonzero in π2. To see this it suffices to show that

(η〈1〉)∗ is nonzero in H2 which can be seen as follows. Let σ ∈ H1(QS1) be the
fundamental class. Since QS1 ' S1×QS1〈1〉, the element Q1σ ∈ H2(QS1) must
be in the image from H∗(QS1〈1〉). Since η∗(Q

1σ) = Q1(Q1[1] ∗ [−2]) 6= 0, η〈1〉∗
is indeed nonzero in H2.

Hence, Ω0η : Q0S
0 → Ω0Q0S

0 is nonzero in π1 and thus the composition


P∞ → Q0S
0 → Ω0Q

0S0

is nonzero in π1 and the splitting of ΩQS0 follows. �

Lemma 7.1 ensures that our spectral sequences has trivial local coefficients and
hence that the spectral sequences converges.

7.1. Recollections. The Dyer-Lashof algebra is slightly different at p = 2. Let
R be the free non-commutative algebra on the set {Qs | s ≥ 0} with deg(Qs) = s.
The Adem relation A (0,r,0,s) in Definition 3.4 still makes sense, and we let A ⊆ R
be the span of the A (0,r,0,s). The unstability relations at p = 2 are

Qsx =

{

x2 if deg x = s

0 if deg x > s

and the algebra R is defined from these data as before. Corresponding to I =
(s1, s2, . . . , sk) there is an iterated operation QI = Qs1 . . . Qsk , and this operation
is called admissible if si ≤ 2si for all i. The definition of excess at p = 2 is

e(I) = s1 −

k
∑

j=2

sj

Given a basis B ⊆ JH∗(X), then H∗(QX) is the polynomial algebra on the set

T = {QIx | x ∈ B, I admissible, e(I) > deg(x)}

and similarly for H∗(Q0X).
One pleasant feature of p = 2 is the following
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Lemma 7.2. The cohomology algebra H∗(Q0X) is polynomial if the Frobenius
ξ : H∗(X)→ H∗(X) is injective.

Proof. This is because the Nishida relation λQ2s = Qsλ makes λ : H∗(Q0X) →
H∗(Q0X) surjective if λ : H∗(X)→ H∗(X) is surjective. �

In particular, H∗(Q0S
0) and H∗(Q0

�P∞
+ ) are both polynomial.

The calculation in Theorem 2.8 is valid with the remark that �2[x]/(x2) must
be interpreted as E[x] and thus it does not produce generators of Cotor in bidegree
(−2, ∗). Only truncations at height pn, n ≥ 2 does that.

An important difference is that for odd primes, CotorA(�p, �p) is automatically

a free algebra. This is no longer true for p = 2, since Tor
�

2[x](�2, �2) = E[s−1x],
and exterior algebras are not free in characteristic 2.

One consequence of the above remarks is the following

Proposition 7.3. Let X be a simply connected space with H∗(X) polynomial.
Then H∗(ΩX) is an exterior algebra and the suspension

σ∗ : QH∗(ΩX)→ PH∗(X)

is an isomorphism. The spectral sequence

CotorH∗(X)(�2, �2)⇒ H∗(ΩX)

collapses.

Proof. This is because

CotorH∗(X)(�2, �2) ∼= E[s−1PH∗(X)]

has generators and primitives in bidegrees (−1, ∗). Together with Lemma 2.14,
this proves the collapse claim and that σ∗ is an isomorphism. Dually we have
that

σ∗ : QH∗(X)→ PH∗(ΩX)

is an isomorphism and since the image generates H∗(ΩX) as an algebra, H∗(ΩX)
is primitively generated. By Theorem 2.4 we get that H∗(ΩX) is exterior. �

In particular this applies to X = Q̃0S
0.

Similarly, we have

Proposition 7.4. For any space X, the spectral sequence

CotorH∗(Q̃ΣX)(k, k)⇒ H∗(Q0X)

collapses and the suspension

σ∗ : QH∗(QX)→ PH∗(QΣX)

is an isomorphism.
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Proof. σ∗ is surjective since it hits JH∗(ΣX) and since it is R-linear. Thus by
Corollary 2.15, the spectral sequence must collapse. Now H∗(QΣX) is primitively
generated, so by Theorem 2.4 we get that H∗(QΣX) is exterior and hence the
spectral sequence has

E2 = CotorH∗(Q̃ΣX)(�2, �2) ∼= �2[s
−1PH∗(Q̃ΣX)]

Since this is free as an algebra, there are no extension problems in homology, and
since QH∗(Q0X) is in linear bijection with E∞

−1,∗, we get that σ∗ is injective. �

7.2. Homology of Ω∞�P∞
−1. The lemmas in subsection 7.1 imply the following

diagram

QH∗(Q0
�P∞

+ )
Q(Ω0∂)∗

//

∼=
��

QH∗(Ω0QS0)

∼=
��

PH∗(Q̃Σ�P∞
+ )

P∂∗
// PH∗(Q̃0S

0)

(7.2)

in which the vertical isomorphisms are the suspensions and in which H∗(Ω0QS0)
is an exterior algebra, dual to a polynomial algebra.

The formula for ∂∗ has an extra term because of the Hopf map η. We quote
the result from [6, Theorem 4.4]:

Theorem 7.5 ([6]). Let as ∈ H∗(
�P∞

+ ) be the generator, s odd. Then

Q(∂∗)(as) = Q2s+1ι + Qs+1Qsι = Q2s+1ι + Q2sQ1ι

�

We shall need a lemma analogous to Lemma 4.3.

Lemma 7.6. The left ideal in R generated by {Q2s+1 | s ≥ 0} is also a right
ideal.

Proof. This is completely analogous to the proof of Lemma 4.3. One uses the
Adem relation

Q2sQr−s = QrQs +
∑

i>s

λiQ
r+s−iQi

valid for r ≤ 2s, for r odd and s even. �

Lemma 7.7. Let b2s+1 ∈ PH∗(QS0) = PH∗(Q0S
0) be the unique primitive ele-

ment with b2s+1 −Q2s+1ι decomposable. Then PH∗(QS0) is generated over R by
the set {b2s+1 | s ≥ 0}.

Proof. Let λ : QH∗(Q0S
0) → QH∗(Q0S

0) be the dual of the squaring. By the
Nishida relation λQ2s = Qsλ, the coimage of λ has basis

{QIι|I admissible, e(I) > 0, 2|I}
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where 2|I means that all entries of I are even. Thus Theorem 2.4 implies that
the image of PH∗(QS0)→ QH∗(QS0) has basis

{QIι | I admissible, e(I) > 0, 2 6 |I}

and by Lemma 7.6, this is generated over R by the subset

{Q2s+1ι | s ≥ 0}

Thus the subspace of PH∗(QS0) generated over R by {b2s+1 | s ≥ 0} contains
all indecomposable primitives. But this generated subspace is clearly preserved
by the Frobenius map ξ : x 7→ x2, so it contains all primitives and the claim
follows from Theorem 2.4. �

We are now ready to prove the mod 2 analogue of Theorem 1.1. The result is
much simpler, and the extra term in Theorem 7.5 does not give much trouble.

Theorem 7.8. The map

P∂∗ : PH∗(QΣ�P∞
+ )→ PH∗(QS0)

is surjective.

Proof. By the previous lemma, it suffices to prove that Q∂∗ hits the classes Q2s+1ι.
Indeed, any indecomposable class mapping to Q2s+1ι is odd-dimensional and thus
by Theorem 2.4 has a unique primitive representative that will map to b2s+1.

For s = 0, this is immediate, since ∂∗(a1) = (Q1ι) ∗ ι−2. For general s we use
the Adem relation Q2sQ1 = Qs+1Qs to get

Q(∂∗)(a2s+1) = Q2s+1ι + Qs+1Qsι

= Q2s+1ι + Q2sQ1ι

Thus we have

Q(∂∗)(as −Q2sa1) = Q2s+1ι

�

Remark 7.9. The claim of [6, Cor. 7.5] that ∂∗ and thus P (∂∗) is injective is
incorrect. The QIQ2r+1 of [6, Cor. 7.4] is not necessarily admissible, and in fact
an application of the Adem relations shows that

∂∗(Q
3a1 −Q2Q1a1) = 0

Together with the diagram (7.2), Theorem 7.8 makes the spectral sequence

CotorH∗(Ω̃QS0)(H∗(Q̃
�P∞

+ ), k)⇒ H∗(Ω
∞
0
�P∞

−1) (7.3)

very simple. We can now prove Theorem 1.3.
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Proof of Theorem 1.3. It follows from diagram (7.2) and Theorem 7.8 that the
map Q(Ω0∂∗) is surjective. Therefore the E2-term of the Eilenberg-Moore spectral
sequence is

E2 = CotorH∗(Ω0QS0)(H∗(Q0
�P∞

+ ), �2) ∼= H∗(Q0
�P∞

+ )\\Ωω∗

and is concentrated on the line E2
0,∗. Therefore it collapses and we get the short

exact sequence

�2
// H∗(Ω

∞�P∞
−1)

Ωω∗
// H∗(Q

�P∞
+ )

Ω∂∗
// H∗(ΩQS0) // �2

�

7.3. Homology of Ω∞Σ�P∞
−1. This part of the calculation is similar to the

odd primary case. We consider again the spectral sequence (5.1) with the split-
ting (5.2). Notice that the fibration (1.1) splits off the fibration S1 → S1 → 
P∞

and hence it has trivial local coefficients. As for odd primes, we need to determine
the coalgebra structure on H∗(QS0)//∂∗,so we first prove Theorem 1.1 in the case
p = 2.

Proof of Theorem 1.1, p = 2. Since Q is right exact we have Q(H∗(QS0)//∂∗) =
Cok(Q∂∗), and from the calculation in the proof of Theorem 7.8 it follows that the
image of Q∂∗ contains all QIι where I has at least one odd entry, and therefore
that the composition in Theorem 1.1 is surjective.

To prove injectivity, consider again the dual squaring λ : H∗(Q0S
0)→ H∗(Q0S

0).
It is a map of Hopf algebras, and since λQ2s = Qsλ and λQ2s+1 = 0 we get that

λ : H∗(QS0)(0) → H∗(QS0)

is an isomorphism. Hence

H∗(QS0) = H∗(QS0)(0) ⊕Ker(λ)

where the first summand is a subalgebra and the second is an ideal. Now the
injectivity of the map in the theorem follows from the fact that Ker(λ) is an ideal
and that Im(∂∗) ⊆ �2 ⊕Ker(λ). �

Theorem 7.10. H∗(Q0S
0)//∂∗ is dual to a polynomial algebra.

Proof. This follows since λ : H∗(Q0S
0)→ H∗(Q0S

0) is surjective. �

Notice that H∗(Q0S
0) itself is polynomial. This is in contrast to the odd pri-

mary case, where only the subalgebra H∗(Q0S
0)\\∂∗ ⊆ H∗(Q0S

0) is polynomial.

Proof of Theorem 1.3, p = 2. Completely as for odd primes, Theorem 7.10 makes
the spectral sequence collapse, and the collapse gives a short exact sequence of
Hopf algebras

�2
// H∗(Ω

∞Σ�P∞
−1)\\ω∗

// H∗(Ω
∞Σ�P∞

−1)
ω∗

// H∗(QΣ�P∞
+ )\\∂∗

// �2

(7.4)
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Since H∗(QΣ�P∞
+ ) is primitively generated, so is H∗(QΣ�P∞

+ )\\∂∗. Hence the
sequence is split if and only if P (ω∗) is surjective. We have the diagram

QH∗(Ω
∞�P∞

−1) //

σ∗

��

QH∗(Q
�P∞

+ ) //

∼=
��

QH∗(ΩQS0) //

∼=
��

0

PH∗(Ω
∞Σ�P∞

−1) // PH∗(QΣ�P∞
+ )

P∂∗
// PH∗(QS0) // 0

which we know is exact except possibly at PH∗(QΣ�P∞
+ ). But it follows from

the rest of the diagram that it is also exact at PH∗(QΣ�P∞
+ ). Since Ker(P∂∗) =

P (H∗(QΣ�P∞
+ )\\∂∗) we get that the sequence (7.4) splits. �

References

[1] S. Araki, T. Kudo: Topology of Hn-spaces and Hn-squaring Operations, Mem. Fac. Sci.
Kyushu Univ. Ser. A, 10 (1956), 85–120.

[2] F. R. Cohen, T. J. Lada, J. P. May: The Homology of Iterated Loop Spaces, Lecture
Notes in Mathematics 533, Springer-Verlag, 1976.

[3] E. Dyer, R. Lashof: Homology of Iterated Loop Spaces, Amer. J. Math. 84 (1962), 35–88.
[4] S. Eilenberg, J. C. Moore: Homology and Fibrations I Coalgebras, cotensor products and

its derived functors, Comm. Math. Helv. 40 (1965), 199–236.
[5] J. Milnor, J. C. Moore: On the Structure of Hopf algebras, Ann. Math. 81 (1965), 211–

264.
[6] B. M. Mann, E. Y. Miller, H. R. Miller: S1-equivariant function spaces, Trans. Amer.

Math. Soc. 295 (1989), 233–256.
[7] I. Madsen, U. Tillmann: The Stable Mapping Class Group and Q(�P∞

+ ), Invent. Math.
145 (2001), 509–544.

[8] J. C. Moore, L. Smith: Hopf Algebras and Multiplicative Fibrations II, Amer. J. Math.
90 (1968), 1113–1150.

[9] I. Madsen, M. Weiss: Cohomology of the Stable Mapping Class Group, in preparation.
[10] H. Cartan, S. Eilenberg: Homological algebra, Princeton University Press, 1956.
[11] L. Smith: Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer.

Math. Soc. 129 (1967), 58–93.

Aarhus University, Aarhus, Denmark

E-mail address : galatius@imf.au.dk





SECONDARY CHARACTERISTIC CLASSES OF SURFACE

BUNDLES

SØREN GALATIUS

Abstract. The Miller-Morita-Mumford classes associate to an oriented sur-
face bundle E → B a class κi(E) ∈ H2i(B;

�
). In this note we define for

each prime p and each integer i ≥ 1 a secondary characteristic class λi(E) ∈
H2i(p−1)−2(B;

�
)/
�
κi(p−1)−1(E). The mod p reduction λi(E) ∈ H∗(B;�p)

has zero indeterminacy and satisfies pλi(E) = κi(p−1)−1(E) ∈ H∗(B;
�
/p2).

1. Introduction and statement of results

Recall that any bundle π : E → B of oriented surfaces with finite dimensional
base B has an embedding j : E → B × �N+2 over B. For N large, j is unique
up to isotopy. A choice of embedding j induces a transfer (“collapse”) map

B+ ∧ SN+2
π!

Th(νj).

The embedding j : E → B × �N+2 also induces classifying maps

T πE
cl(T πE)

SO(N + 2) ×SO(N)×SO(2) �2

E SO(N + 2)/(SO(N) × SO(2))

and

νj
cl(νj)

SO(N + 2) ×SO(N)×SO(2) �N

E SO(N + 2)/(SO(N) × SO(2)).

For brevity, write U = UN = SO(N + 2) ×SO(N)×SO(2) �2 and U⊥ = U⊥
N =

SO(N + 2) ×SO(N)×SO(2) �N . We get the composition

α = Th(cl(νj)) ◦ π! : B+ ∧ SN+2 → Th(U⊥
N ).

Recall that there is a Thom class uU⊥ ∈ HN(Th(U⊥), ?; �) and that we have
HN+∗(Th(U⊥), ?; �) = �[e(U)].uU⊥ for ∗ < N . The definition of the κ-classes is

κi(E) = α∗(e(U)i+1.uU⊥) = π∗
! (e(T

πE)i+1.uνj) ∈ H2i(B; �).



2 SØREN GALATIUS

In this paper we define secondary characteristic classes of surface bundles. The
definition involves Toda brackets. In section 2 we recall some generalities about
Toda brackets. By a surface bundle we shall mean a smooth fibre bundle with
closed oriented two-dimensional fibres.

Lemma 1.1. Let p be a prime, and let P i denote the Steenrod power operation.
When p = 2, write P i = Sq2i and βP i = Sq2i+1. Given a surface bundle π : E →
B, let α : B+ ∧ SN+2 → Th(U⊥

N ) be as before and let u : Th(U⊥
N ) → K(�, N) be

the Thom class. Then the Toda bracket

{βP i, u, α} ⊆ H2i(p−1)−2+N (B+ ∧ SN+2; �) = H2i(p−1)−2(B; �)

is defined with indeterminacy �κi(p−1)−1(E).

Definition 1.2. With notation as in Lemma 1.1 define

λi(E) = (−1)i{βP i, u, α} ∈ H2i(p−1)−2(B; �)/�κi(p−1)−1(E).

Theorem 1.3. The mod p reduction λi(E) ∈ H∗(B; �p) has zero indeterminacy
and satisfies

pλi(E) = κi(p−1)−1(E) ∈ H∗(B; �/p2).

More generally we have in integral cohomology that

pλi(E) = (1 + p�)κi(p−1)−1(E).

Theorem 1.4.

(i) If π : E → B and π′ : E ′ → B are surface bundles, then

λi(E q E ′) = λi(E) + λi(E
′).

(ii) Let E1, E2 and E ′
2 be bundles of compact surfaces with boundary and assume

that the oriented boundaries satisfy ∂E1 = ∂E2 = ∂E ′
2. Then we can form

the surface bundles
E = E1 ∪∂ Ē2,

E = E1 ∪∂ Ē ′
2,

and
D = E ′

2 ∪∂ Ē2,

where the bars denote orientation reversal. In this case we have

λi(E
′) = λi(E) + λi(D).

(iii) If π : E → B is a bundle of compact surfaces with boundary satisfying ∂E =
S0 × S1 × B, then

λi(E ∪∂ (D1 × S1 × B)) = λi(E ∪∂ (S0 × D2 × B)).

The additivity properties (ii) and (iii) above are formally the same as those of
the κ-classes.

As an application of secondary classes we prove the following strengthening of
a theorem of [GMT].
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Theorem 1.5. Let p be a prime and s ≥ 1. Then the reduction of κps(p−1)−1(E)
mod p2 vanishes:

κps(p−1)−1(E) = 0 ∈ H∗(B; �/p2).

Theorem 1.5 proves part of the following conjecture.

Conjecture 1.6. Let s ≥ 1 and v ≥ 0. Then

κpvs(p−1)−1(E) = 0 ∈ H∗(B; �/pv+1).

If the conjecture is true, then κpvs(p−1)−1(E) can be divided by pv+1. In [GMT]
we prove that this holds modulo torsion. It is also proved in [GMT] that the
statement of Conjecture 1.6 is best possible in the sense that if s 6≡ 0 (mod p),
then κpvs(p−1)−1(E) 6= 0 ∈ H∗(B; �/pv+2). I hope to return to Conjecture 1.6 at
a later time.

Acknowledgements. The author acknowledges John Rognes for very inspiring
conversations during the author’s visit to the University of Oslo.

2. Secondary composition

We recall the definition of secondary compositions (Toda brackets). For further
details see [Toda].

All spaces and all maps in this section are pointed. The reduced suspension SX

is regarded as the pushout of X ∧ [−1, 0] X X ∧ [0, 1] where −1 ∈

[−1, 0] and 1 ∈ [0, 1] are the basepoints. Thus, two nullhomotopies F : X ∧
[−1, 0] → Y and G : X ∧ [0, 1] → Y induce a map G − F : SX → Y .

For a sequence of maps

X
f

Y
g

Z
h

W

with g ◦ f ' 0 and h ◦ g ' 0, a choice of null-homotopies F : g ◦ f ' 0 and
G : h ◦ g ' 0 determines a map

h ◦ F − G ◦ (f ∧ [−1, 0]) : SX → W.

We define the secondary composition to be the subset {h, g, f} ⊆ [SX, W ] of
homotopy classes of maps obtained in this fashion, as F, G ranges over all null-
homotopies.

Recall that [SX, W ] = [X, ΩW ] is a group.

Lemma 2.1. {h, g, f} depends only on the homotopy classes of h, g, and f . If
{h, g, f} is defined, then it gives a unique element in the double coset,

{h, g, f} ∈ h ◦ [SX, Z] \ [SX, W ]/[SY, W ] ◦ Sf.

If [SX, W ] is abelian, then

{h, g, f} ∈ [SX, W ]/
(

h ◦ [SX, Z] + [SY, W ] ◦ Sf
)

.

Proof. See [Toda, Lemma 1.1]. �
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Proposition 2.2. For a sequence of maps

X
f

Y
g

Z
h

W
k

V

we have

(i) {k, h, g} ◦ f ⊆ {k, h, g ◦ f}
(ii) {k, h, g ◦ f} ⊆ {k, h ◦ g, f}
(iii) {k ◦ h, g, f} ⊆ {k, h ◦ g, f}
(iv) k ◦ {h, g, f} ⊆ {k ◦ h, g, f}

Proof. See [Toda, Proposition 1.2]. �

Proposition 2.3. Let

K(�, n)
p

K(�, n)
ρ

K(�p, n)
β

K(�, n + 1)

represent multiplication by p, reduction mod p, and the mod p Bockstein, respec-
tively. Then

id ∈ {β, ρ, p} ⊆ [SK(�, n), K(�, n + 1)] = [K(�, n), K(�, n)]

�

Corollary 2.4. Let c : X → K(�, n) represent a cohomology class. Let ρ and β
be as in Proposition 2.3. Then

{β, ρ, c} = 1
p
c + �c ⊆ Hn(X) = [SX, K(�, n + 1)],

where
1
p
c = {c′ | pc′ = c}

Proof. Clearly the two sides have the same indeterminacy �c + βHn−1(X; �p),
so all we need to check is that if pc′ = c, then c′ ∈ {β, ρ, c}. But this follows from
Propositions 2.2 and 2.3:

{β, ρ, p ◦ c′} ⊇ {β, ρ, p} ◦ c′ 3 c′ �

3. Elementary properties of the secondary classes

Consider the oriented Grassmannian SO(N + 2)/(SO(N) × SO(2)). Let U =
UN = SO(N + 2) ×SO(N)×SO(2) �2 be the canonical oriented 2-dimensional vec-
torbundle and let U⊥ = U⊥

N = SO(N + 2) ×SO(N)×SO(2) �N be its orthogonal
complement.

Lemma 3.1 ([GMT]). In H∗(Th(U⊥), ?; �p) we have that

P iuU⊥ = (−1)iei(p−1)uU⊥.
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Proof. Let P =
∑

i P
i. Then P(uU) = (1+e(U)p−1)uU . Since uU⊕U⊥ = uU ^uU⊥

we get

uU ^uU⊥ = uU⊕U⊥ = P(uU⊕U⊥) = P(uU)^P(uU⊥) = (1+e(U)p−1)uU ^P(uU⊥)

and hence

P(uU⊥) = (1 + e(U)p−1)−1uU⊥ =

(

∑

i

(−1)ie(U)i(p−1)

)

uU⊥. �

Proof of Lemma 1.1. Clearly u ◦ α ' 0. It follows from Lemma 3.1 that P iu is
the reduction of an integral class, so βP i◦u ' 0. Therefore {βP i, u, α} is defined.

The indeterminacy can be computed from Lemma 2.1. Indeed we have

βP i[B+ ∧ SN+3, K(�, N)] = 0

and

[STh(U⊥), K(�, N + 2i(p − 1) + 1)] ◦ α = α∗HN+2i(p−1)(Th(U⊥); �)

= α∗(�ei(p−1)uU⊥) = �κi(p−1)−1(E).

�

Proof of Theorem 1.3. This follows from Proposition 2.2 and Corollary 2.4 and
the diagram

B+ ∧ SN+2 α

κi(p−1)−1

Th(U⊥
N )

u

ei(p−1)u

K(�, N)

Pi

K(�, N + 2i(p − 1))
ρ

K(�p, N + 2i(p − 1))

β

K(�, N + 2i(p − 1) + 1).

Indeed, Proposition 2.2 gives the inclusions

{β, ρ, κi(p−1)−1(E)} = {β, ρ, (ei(p−1)u) ◦ α} ⊆ {β, ρ ◦ (ei(p−1)u), α}

= (−1)i{β,P iu, α} ⊇ (−1)i{βP i, u, α} = λi(E).

Then Lemma 2.1 proves that the first inclusion is an equality since the two sides
have the same indeterminacy Im(β) + �κi(p−1)−1. Therefore by Corollary 2.4

λi(E) ⊆ {β, ρ, κi(p−1)−1(E)} = 1
p
κi(p−1)−1(E) + �κi(p−1)−1(E),

and hence

pλi(E) ⊆ (1 + p�)κi(p−1)−1(E).

Since they have the same indeterminacy, they are equal. �
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Proof of Theorem 1.4. (i) follows from the additivity of α under disjoint union,
i.e. the property that

α(E q E ′) = α(E) + α(E ′) ∈ [B+ ∧ SN+2, Th(U⊥
N )].

Similarly (ii) follows from the “additivity” of α under glueing. Explicitly, a choice
of embedding j∂ : ∂E1 → B × �N+1 over B will induce a map

α∂ : B+ ∧ SN+1 → Th(U⊥).

A choice of embedding jE1 : E1 → B × [0,∞)× �N+1 extending j∂ will induce a
nullhomotopy αE1 of α∂ . Then, in the notation of paragraph 2 we have

αE = αE1 − αE2,

αE′ = αE1 − αE′

2
,

αD = αE′

2
− αE2.

Thus we get

αE′ = αE + αD ∈ [B+ ∧ SN+2, Th(U⊥)].

Finally (iii) follows from (ii) because

D1 × S1 × B ∪S0×S1×B S0 × D2 × B = S2 × B

and λi(S
2 × B) = 0. �

4. A variant of λps

The goal of this section is to prove Theorem 1.5. The definition and properties
of λi proves that κi(p−1) is divisible by p. When i = ps, a variant of λps can be
used to prove that κps(p−1)−1 is divisible by p2.

Definition 4.1. Let s ≥ 0 and let Ap be the Steenrod algebra. When p = 2 we
write P i = Sq2i and βP i = Sq2i+1 as before. Define θs ∈ Ap by

θs =

s
∑

j=0

(−1)j

(

(p − 1)(s − j)

j

)

Pps−jPj = Pps + terms of length 2.

Define vectors vs, ws ∈ A s+1
p by

ws = (P0, . . .Ps), vs = (Pps, . . . , (−1)j

(

(p − 1)(s − j) − 1

j

)

Pps−j, . . . ,P(p−1)s).

Lemma 4.2.

(i) In H∗(Th(U⊥), ?; �p) we have that θsuU⊥ = eps(p−1)uU⊥.
(ii) vT

s βws = βθs.

Proof. (i) This is similar to Lemma 3.1, using the fact that the admissible terms
of length 2 act trivially on uU⊥. Formula (ii) is the Adem relation for P(p−1)sβPs.

�
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Definition 4.3. Let α, u, θs be as above. Define the secondary characteristic
class

λ̃ps(E) = (−1)s{βθs, u, α} ∈ H2ps(p−1)−2(B, �)/�κps(p−1)−1(E).

Notice that λ̃ps satisfies the same formal properties as λps. In particular pλ̃ps =

(1 + p�)κps(p−1)−1. In general λ̃ps 6= λps.

Proof of Theorem 1.5. We have

(−1)sρ ◦ {βθs, u, α} ⊆ (−1)s{ρ ◦ βθs, u, α} = (−1)s{vT
s βws, u, α}

⊇ (−1)svT
s {βws, u, α}

and it is seen that all the inclusions are equalities since the indeterminacy van-
ishes. Since

(−1)s{βws, u, α} ∈

s
∏

i=0

HN+2i(p−1)(B+ ∧ SN+2; �p) =

s
∏

i=0

H2i(p−1)−2(B; �p),

vT will vanish because H∗(B; �p) is an unstable Ap-module.

Hence the mod p reduction of λ̃ps(E) vanishes, so κps(p−1)−1(E) = pλ̃ps(E) =
0 ∈ H∗(B; �/p2). �
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MOD 2 HOMOLOGY OF THE STABLE SPIN MAPPING CLASS

GROUP

SØREN GALATIUS

Abstract. The aim of this paper is twofold. Firstly we adapt the proof
in [MW] to cover spin mapping class groups, that is, mapping class groups
of surfaces with spin structures. The result is that in a stable range, the
spin mapping class groups has the same homology as Ω∞

�
h(−USpin(2)). Here

USpin(2) = ESpin(2) ×Spin(2)

�2 is the canonical Spin(2) vectorbundle over
BSpin(2), and −USpin(2) is the −2-dimensional virtual inverse. Secondly we
calculate the mod 2 homology of the space Ω∞

�
h(−USpin(2)) in analogy with

[G].

1. Introduction and statement of results

The main result of this paper is a calculation of the mod 2 homology of the
“spin mapping class groups” in a stable range, in the spirit of [G], which rests
heavily on [MW]. The paper consists of two parts. In the second part we adapt
the proof in [MW] to the case of surfaces with a spin structure1. The result is
that these groups have the same homology, in a stable range, as the infinite loop
space Ω∞�h(−USpin(2)) where USpin(2) = ESpin(2) ×Spin(2) �2 is the canonical
Spin(2)-vectorbundle over BSpin(2) and −USpin(2) is the −2-dimensional virtual
inverse. �h(−USpin(2)) is the Thom spectrum with Thom class in dimension −2
(see section 2 for a more precise definition). In the first part of the paper we
calculate the mod 2 homology of the infinite loop space Ω∞�h(−USpin(2)). Let us
introduce some notation before giving a more precise description of our results.

Let θ : P3 → B3 be a principal Gl3(�)-bundle. For the moment it can be arbi-
trary, but we shall later specialise to the case θ = θSpin : ESpin(3) → BSpin(3).
Let U3 → B3 be the associated vectorbundle. Let B2 = P3/Gl2(�) and U2 =
P3×Gl2(�)�2. Then B2 fibres over B3 with fibre Gl3(�)/Gl2(�) ' S2. In fact B2

is fibre homotopy equivalent to the sphere bundle of U3, but it has the advantage
that we have a canonical homeomorphism

Bun(V, U2) = Bun(V × � , U3)

where Bun denotes the space of bundle maps.

1The version of [MW] on which this manuscript is based, only treats oriented surfaces. A
new version of [MW] that handles surfaces with a more general tangential structure, equivalent
to the “θ-structures” considered in the second part of this paper, is soon to be available.
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Definition 1.1. Let F be a surface, possibly with boundary, and let θ : U3 → B3

be as above. Then the space of θ-structures on F is the space Bun(TF, U2)
of bundle maps (these are suppose to be standard near the boundary if F has
boundary). This has a left action of Diff(F ). The space of (F, θ)-surfaces is the
space

M
θ(F ) := EDiff(F )×Diff(F ) Bun(TF, U2).

The space M θ(F ) is the classifying space for pairs (π, ξ) of a fibre bundle
π : E → X with fibre F and a bundle map ξ : T πE → U2, where T πE denotes
the fibrewise tangentbundle of E. Notice that Bun(TF, U2) may be empty. This
will be the case e.g. if U2 is orientable but F is not. Notice also that M θ(F ) may
be non-connected. We describe its components.

The action of Diff(F ) on Bun(TF, U2) induces an action of Diff(F ) on
π0Bun(TF, U2). For γ ∈ π0Bun(TF, U2) we write Diff(F, γ) ⊆ Diff(F ) for the
subgroup that fixes γ. Define

M
θ(F, γ) = EDiff(F, γ)×Diff(F,γ) Bunγ(TF, U2)

This is a connected space, and in general we have

M
θ(F ) '

∐

γ

M
θ(F, γ),

where the disjoint union is over one γ ∈ π0Bun(TF, U2) in each Diff(F )-orbit.
There is a fibration sequence

Bunγ(TF, U2)→M
θ(F, γ)→ BDiff(F, γ). (1.1)

In particular (for genus ≥ 2), M θ(F, γ) is a K(π, 1) if and only if Bunγ(TF, U2)
is. In this case we have M θ(F, γ) = BΓθ(F, γ) where Γθ(F, γ) = π1M

θ(F, γ) is
what we could call the mapping class group of (F, γ).

The parametrised Pontryagin-Thom construction defines a map

α : M
θ(F, γ)→ Ω∞�h(−U2)

and in favorable cases this will be an isomorphism in Hn(−; �) when n is small
compared to the genus of F .

The case θ = θSO : ESO(3)×SO(3) �3 → BSO(3) is equivalent to the case con-
sidered in [MW]: An element γ ∈ π0Bun(TF, U2) is an orientation of F , and
M θ(F, γ) ' BDiff(F, γ) is the classifying space of the group of orientation pre-
serving diffeomorphisms. Furthermore Ω∞�h(−U2) = Ω∞�P∞

−1. The homology
of this space is calculated in [G].

For the rest of this introduction we specialise to the case θ =
θSpin : ESpin(3) ×Spin(3) �3 → BSpin(3). Then an element γ ∈ π0Bun(TF, U2)
is a “spin structure” on F , given equivalently by a “quadratic refinement of the
intersection form” on H1(F, �2) cf [J]. Any two spin structures on F differ by an
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element in H1(F, �2) so there are 4g spin structures. There are only two Diff(F )-
orbits, however. They are distinguished by the Arf invariant of the quadratic
form. Therefore

M
θ(F ) = M

θ(F, γ0)qM
θ(F, γ1)

where γ0 is an Arf invariant 0 spin structure and γ1 is an Arf invariant 1 spin
structure.

The fibration sequence (1.1) specialises to

�P∞ →M
θ(F, γ)→ BDiff(F, γ)

and in case F has genus ≥ 2 these are all K(π, 1)-spaces. The fundamental
groups of M θ(F, γ) and BDiff(F, γ) could both be called “spin mapping class
groups”. Both are studied in [B] who uses the notation Gγ(F ) = π1BDiff(F, γ) =

π0Diff(F, γ) and G̃γ(F ) = π1M
θ(F, γ) and attributes the latter to Gregor Mas-

baum. [H] and [B] proves homological stability of these groups: If F ′ is obtained
from F by glueing along boundaries of F , then the natural maps Gγ(F )→ Gγ(F

′)

and G̃γ(F )→ G̃γ(F
′) are both isomorphisms in Hk(−; �) when g ≥ 2k2 +6k−2,

where g is the genus of F . [H] proves this in the case where F ′ has boundary, and
[B] extends Harer’s proof to the case where ∂F ′ = ∅. He also proves homological

stability for the groups G̃γ(F ).
The parametrised Pontryagin-Thom construction defines a map

α : M
θ(F, γ)→ Ω∞�h(−USpin(2)) (1.2)

and we prove that (on components) it is an isomorphism in Hk(−; �) whenever
g ≥ 2k2 + 6k − 2. The number 2k2 + 6k − 2 is the stability range of G̃γ(F ) in
[B], and an improvement of the stability range would give an improvement of the
isomorphism range of the map (1.2).

It is easily seen (using e.g. the fibration sequence (1.3) below) that
π0Ω

∞�h(−USpin(2)) ∼= � × �/2. One may verify that the image of the map (1.2)
is in the component given by the genus of F and the Arf invariant of γ.
We conclude this introduction by stating the theorems about the homology of
Ω∞�h(−USpin(2)), and thus the homology in a stable range, of M θ(F, γ).

The starting point of the calculation is a fibration sequence of infinite loop
spaces

Ω∞�h(−USpin(2))
Ωω

Q(BSpin(2)+)
Ω∂

ΩQ(S(USpin(2))+). (1.3)

Here S(USpin(2)) is the sphere bundle of USpin(2) and Q denotes the functor Ω∞Σ∞.
If we identify BSpin(2) with �P∞ then USpin(2) = L⊗�L, where L is the canonical
complex line bundle, and S(USpin(2)) = �P∞. We give a concrete description
of (1.3) in Section 2.

For brevity we shall write U for USpin(2). In the following, all Hopf algebras are
commutative and cocommutative. Recall that any map f : A→ B of such Hopf
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algebras have a kernel denoted A\\f and a cokernel f//f in the category of Hopf
algebras. Homology and cohomology is always with coefficients in �2.

Theorem 1.2. The fibration sequence (1.3) induces a short exact sequence of
Hopf algebras

H∗(Ω
∞�h(−U))\\Ωω∗ H∗(Ω

∞�h(−U))
Ωω∗

H∗(Q(BSpin(2)+))\\Ω∂∗
(1.4)

and dually

H∗(Q0(BSpin(2)+))//Ω∂∗
Ωω∗

H∗(Ω∞
0
�h(−U)) H∗(Ω∞

0
�h(−U))//Ωω∗.

(1.5)

It remains to determine the Hopf algebras H∗(Q(BSpin(2)+))\\Ω∂∗ and
H∗(Ω

∞�h(−U))\\Ωω∗. The next theorem determines the Hopf algebra
H∗(Q(BSpin(2)+))\\Ω∂∗. We also produce an explicit splitting of the se-
quence (1.4), although the splitting is only as algebras, not as Hopf algebras.

The action of Spin(3) = SU(2) on S2 gives an S2-bundle ESpin(3)×Spin(3)S
2 →

BSpin(3). The vertical tangent bundle ESpin(3)×Spin(3)TS
2 has a canonical spin-

structure, and the classifying map ESpin(3)×Spin(3)S
2 → BSpin(2) is a homotopy

equivalence. Consequently we get a map BSpin(3)→M θ(S2). The composition

BSpin(3)→M
θ(S2)

α
→ Ω∞�h(−U)→ Q(BSpin(2)+)

is the Becker-Gottlieb transfer for the fibration sequence S2 → BSpin(2) →
BSpin(3).

Before stating the next theorem, let us recall that for a Hopf algebra A over �2

there is a Frobenius map ξ : A→ A given by ξx = x2 which is a morphism of Hopf
algebras. Write ai ∈ H2i(BSpin(2)) and bi ∈ H4i(BSpin(3)) for the generators,
i ≥ 0. Recall that H∗(Q(BSpin(2)+)) is the free commutative algebra on the set
T2 of generators given by

T2 = {QIai | i ≥ 0, I admissible, e(I) > 2i},

where QI are the iterated Dyer-Lashof operations (see [CLM] for definitions and
proofs). Similarly H∗(Q(BSpin(3)+)) is the free commutative algebra on the set
of generators given by

T3 = {QIbi | i ≥ 0, I admissible, e(I) > 4i}.

Theorem 1.3.

(i) We have H∗(Q(BSpin(2)+))\\∂∗ = ξH∗(Q(BSpin(2)+)). Both the algebra
H∗(Q(BSpin(2)+))\\∂∗ and the dual algebra H∗(Q0(BSpin(2)+))//∂∗ are free
commutative.

(ii) The composition

H∗(Q(BSpin(3)+))→ H∗(Ω
∞�h(−U))→ H∗(Q(BSpin(2)+))\\∂∗

is surjective. It maps bi to a2
i and more generally it maps Q2Ibi to (QIai)

2.
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It remains to describe the Hopf algebra H∗(Ω
∞�h(−U))\\Ωω∗ in Theorem 1.2.

This is done by first describing the (co-)homology of ΩQ(�P∞
+ ) and Ω2Q(�P∞

+ ).
To state the results about ΩQ(�P∞

+ ) and Ω2Q(�P∞
+ ), let us recall a certain

functor from [MM]. It is called V in [MM, definition 6.2], but we shall call it A.
We shall as usual let PA denote the vectorspace of primitive elements in A and
QA denote the vectorspace of indecomposable elements in A.

Definition 1.4 ([MM]). Let V be a graded vectorspace and ξ : V → V a linear
map such that ξVn ⊆ V2n. Let SV denote the free commutative (i.e. polynomial)
algebra generated by V , and let I ⊆ SV be the ideal generated by the elements
x2 − ξx, x ∈ V . Let AV = A(V, ξ) = SV/I.

The functor A satisfies A(V ⊕ V ′) = AV ⊗ AV ′ and therefore the diagonal
V → V ⊕ V induces a comultiplication on AV making it a Hopf algebra. The
vectorspace of primitive elements is V itself, PAV = V .

Theorem 1.5.

(i) The suspension

σ∗ : QH∗(Q0�P∞
+ )→ PH∗(ΩQ�P∞

+ )

is an isomorphism (of degree −1).
(ii) The suspension σ∗ above induces an isomorphism

A(s−1QH∗(Q0�P∞
+ ), s−1Sq1)

∼= H∗(ΩQ�P∞
+ ).

Here s−1 denotes desuspension of graded vector spaces and Sq1 is the Steen-
rod operation given by Sq1(x) = Sqk−1(x) if deg(x) = k.

(iii) The Hopf algebra H∗(Ω0Q(�P∞
+ )) is primitively generated and polynomial.

(iv) The suspension induces an isomorphism

σ∗ : Coker(Sq1)→ QH∗(ΩQ�P∞
+ ).

Theorem 1.6.

(i) The suspension

σ∗ : QH∗(Ω0Q�P∞
+ )→ PH∗(Ω2Q�P∞

+ )

is an isomorphism (of degree −1).
(ii) The suspension σ∗ above induces an isomorphism

A(s−2Coker(Sq1), s
−2Sq2)

∼= H∗(Ω2Q�P∞
+ ).

Here Sq2 : Coker(Sq1) → Coker(Sq1) is the Steenrod operation given by
Sq2(x) = Sqk−2(x) if deg(x) = k.

(iii) The Hopf algebra H∗(Ω0Q(�P∞
+ )) is primitively generated but not polyno-

mial.
(iv) The suspension induces an isomorphism

σ∗ ◦ σ∗ : Coker(Sq2)→ QH∗(Ω2Q�P∞
+ )

of degree −2.
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Using this description of H∗(Ω2Q�P∞
+ ) we describe the Hopf algebra

H∗(Ω
∞�h(−U))\\ω∗ and its dual H∗(Ω∞�h(−U))//ω∗.

Theorem 1.7.

(i) The Hopf algebra H∗(Ω
∞�h(−U))\\Ωω∗ is precisely the image of

H∗(Ω
2Q�P∞)→ H∗(Ω

∞�h(−U)).
(ii) H∗(Ω∞

0
�h(−U))//Ωω∗ injects into H∗(Ω2

0Q(�P∞
+ )) and is primitively gen-

erated.
(iii) Under the isomorphism in Theorem 1.6.(ii), H∗(Ω∞

0
�h(−U))//Ωω∗ is pre-

cisely the subalgebra generated by the double suspension of the sub vec-
torspace

Ker
(

Q∂∗ : QH∗(Q�P∞
+ )→ QH∗(QΣ(BSpin(2)+))

)

of QH∗(Q�P∞
+ ).

Finally we can combine the above to conclude the following corollary.

Corollary 1.8. The infinite loop map

Ω2Q(�P∞
+ )×Q(BSpin(3)+)→ Ω∞�h(−U),

which on the first factor is the map Ω2Q(�P∞
+ )→ Ω∞�h(−U) induced by (1.3)

and which on the second factor is the map Q(BSpin(3)+) → Ω∞�h(−U) from
Theorem 1.3, induces an injection

H∗(Ω∞�h(−U))→ H∗(Ω2Q(�P∞
+ ))⊗H∗(Q(BSpin(3)+)).

2. A cofibration sequence

Let us first describe a concrete model for the maps of spectra underlying the
fibration sequence (1.3).

Let q : �P n → �P n denote the map q([z0 : · · · : zn]) = [z2
0 : · · · : z2

n]. Let
Ln denote the canonical complex line bundle over �P n and L⊥

n its orthogonal
complement. There is a bundle map

Ln ⊗ Ln
q̂

Ln

�P n
q �P n

where q̂ : (z0, . . . , zn)⊗(w0, . . . , wn) 7→ (z0w0, . . . , znwn). Thus q̂ identifies Ln⊗Ln

with q∗Ln. We shall write L2
n = q∗Ln and L2

n
⊥

= q∗L⊥
n .

There is an obvious bundle map

L⊥
n−1 ×

� L⊥
n

�P n−1 �P n
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and an induced bundle map

L2
n−1

⊥
× � L2

n
⊥

�P n−1 �P n

These gives maps of Thom spaces Th(L⊥
n−1) ∧ S

2 → Th(L⊥
n ) and Th(L2

n−1
⊥
) ∧

S2 → Th(L2
n
⊥
). Therefore we get spectra �h(−L) and �h(−L2) with (2n+2)-nd

space Th(L⊥
n ) and Th(L2

n
⊥
), respectively. The associated infinite loop spaces are

Ω∞�h(−L) = colim Ω2n+2�h(L⊥
n )

and Ω∞�h(−L2) = colim Ω2n+2�h(L2
n
⊥
)

(2.1)

The bundle L → �P∞ above is isomorphic to USO(2) = ESO(2) ×SO(2) �2 →
BSO(2) and L2 → �P∞ is isomorphic to USpin(2) = ESpin(2) ×Spin(2) �2 →
BSpin(2). The map q above is induced from the double cover Spin(2)→ SO(2).
Therefore we shall write Ω∞�h(−USO(2)) and Ω∞�h(−USpin(2)) for the spaces
of (2.1).

For a vector bundle ξ → X, let Th(ξ) = ξ ∪ {∞} be the one-point compactifi-
cation of the total space.

Lemma 2.1. Let ξ and η be vector bundles over X. Then there is a cofibration
sequence

Th(ξ)
z

Th(ξ ⊕ η)
∂

Th(� ⊕ ξ|S(η))

where z is induced from the zero section of η and ξ|S(η) denotes pullback of ξ to
the sphere bundle of η. If ξ⊕η = �n×X, then ∂ is the parametrised Pontryagin-
Thom construction of the sphere bundle S(η)→ X.

Proof. The normal bundle of the embedding S(η)→ η is � ×S(η). This embeds
via “polar coordinates” onto η −X. Therefore the normal bundle of the compo-
sition S(η) → η → η ⊕ ξ is � ⊕ ξ|S(η) and this embeds onto ξ ⊕ η − ξ ⊆ ξ ⊕ η.
This defines a homeomorphism

Th(ξ ⊕ η)/Th(η) = (ξ ⊕ η − η) ∪ {∞} ∼= Th(� ⊕ ξ|S(η))

If ξ ⊕ η = X × �n, then ∂ is exactly the Thom-Pontryagin construction applied
to the embedding S(η) ⊆ X × �n over X. �

Lemma 2.2. The map �P 2n+1 → �P n × �n+1 given by

[x0 : y0 : · · · : xn : yn] 7→ ([z0 : · · · : zn], (z2
0 , . . . , z

2
n)),

where zj = xj + iyj, is a homeomorphism onto S(L2
n) ⊆ �P n × �n+1. Thus

S(L2
n)→ �P n is identified with the quotient map

�P 2n+1 = S2n+1/{±1} → S2n+1/S1 = �P n

�
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Corollary 2.3. There is a cofibration sequence

Th(� ⊕ L2
n
⊥
)

z
Σ2n+3�P n

+
∂

Σ2n+2�P 2n+1
+ (2.2)

Proof. Let ξ = �⊕L2
n
⊥

and η = L2
n in Lemma 2.1. Then ξ⊕η = �P n×�n+1×�

and �⊕ξ|S(η) = �⊕L2
n
⊥
|S(L2

n) = L2
n⊕L

2
n
⊥
|S(L2

n) = S(L2
n)×�n+1, using the canonical

trivialisation of L2
n|S(L2

n). Now lemmas 2.1 and 2.2 gives the desired result. �

Corollary 2.4. There is a cofibration sequence of spectra

Σ�h(−L2) Σ∞+1(�P∞
+ ) Σ∞�P∞

+

and associated fibration sequences

Ω∞Σ�h(−L2)
ω

QΣ(�P∞
+ )

∂ Q�P∞
+ (2.3)

and

Ω∞�h(−L2)
Ωω

Q(�P∞
+ )

Ω∂ ΩQ�P∞
+ (2.4)

Proposition 2.5. The map

∂ : QΣ�P∞
+ → Q�P∞

+

is the “S1-transfer” denoted t1 in [MMM]

Proof. The map t1 in [MMM] is exactly the pretransfer of the S1-bundle ES1×S1

(S1/{±1})→ BS1, and this is ∂. �

Theorem 2.6 ([MMM]). Let ār ∈ H2r+1(Σ
�P∞

+ ) and er ∈ Hr(�P∞) be the
generator. Then

∂∗(ār) ≡ e2r+1 +Qr+1er

modulo decomposable elements.

Proof. This follows from [MMM, Theorem 4.4] by ignoring the decomposable
terms. �

Corollary 2.7. The map

∂∗ : H∗(QΣ�P∞
+ )→ H∗(Q�P∞

+ )

is injective.

Proof. This follows from Theorem 2.6 and the known structure of H∗(QΣ�P∞
+ )

and H∗(Q�P∞
+ ), cf [CLM]. �
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3. Cohomology of ΩQ�P∞
+ and Ω2Q�P∞

+

The goal of this section is to prove Theorems 1.5 and 1.6. This is done via the
following proposition.

Proposition 3.1. Let X be a simply connected, homotopy commutative, homo-
topy associative H-space. Assume that H∗(X) and H∗(ΩX) are of finite type.
Then H∗(X) is a polynomial algebra is and only if ξ : PH∗(X) → PH∗(X) is
injective. In this case we have

(i) The suspension

σ∗ : QH∗(X)→ PH∗(ΩX)

is an isomorphism (of degree −1).
(ii) The suspension σ∗ above induces an isomorphism

A[s−1QH∗(X), s−1Sq1]
∼= H∗(ΩX).

Here s−1 denotes desuspension of graded vectorspaces and Sq1 : QH∗(X)→
QH∗(X) is the Steenrod operation given by Sq1(x) = Sqk−1(x) if deg(x) = k.

(iii) The Hopf algebra H∗(ΩX) is primitively generated. It is polynomial if and
only if Sq1 : QH∗(X)→ QH∗(X) is injective.

Proof. It follows from Borel’s structure theorem that H∗(X) is polynomial if
and only if ξ : H∗(X) → X∗(X) is injective. And this happens if and only if
ξ : PH∗(X)→ PH∗(X) is injective. The proof of the proposition is based on the
Eilenberg-Moore spectral sequence, see [EM] or the review in [G]. The E2-term
is TorH∗(X)(�2, �2) and it converges to H∗(ΩX).

When H∗(X) is a polynomial algebra, the E2-term of the spectral sequence is

TorH∗(X)(�2, �2) = E[s−1QH∗(X)]

which has generators and primitives concentrated on the line E−1,∗
2 . Therefore it

must collapse, because it is a spectral sequence of Hopf algebras. The suspension
can be identified with the map

QH∗(X) ∼= Tor−1,∗
H∗(X)(�2, �2) = E−1,∗

2 → E−1,∗
2 ⊆ H̃∗(ΩX)

and the image is within the vectorspace of primitive elements. Therefore σ∗ is
injective because E2 = E∞.

The image of σ∗ generated the algebra H∗(ΩX) since it even does so after a
filtration. In particular we have proved that H∗(ΩX) is primitively generated.

The suspension σ∗ commutes with Steenrod operations. In particular we have

(σ∗(x))2 = σ∗(Sq1x)

so the image of σ∗ is closed under the Frobenius map ξ : x 7→ x2. That σ∗ is
surjective now follows from the Milnor-Moore exact sequence,

0→ PξH∗(ΩX)→ PH∗(ΩX)→ QH∗(ΩX)→ 0.
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Namely, if σ∗ were not surjective, there would be an element of minimal degree
in PH∗(ΩX) not in the image of σ∗. This element would have to map to zero in
QH∗(ΩX) because the image of σ∗ generates. Hence, by the exact sequence, it
would have to be a square of some other element. But this contradicts minimality
because the image of σ∗ is closed under ξ.

We have proved (i) and the first part of (iii). Now (ii) follows from the fact
that H∗(ΩX) is primitively generated and that ξ : PH∗(ΩX) → PH∗(ΩX) cor-
responds under σ∗ to Sq1. Finally, by (ii) we have that ξ : H∗(ΩX) → H∗(ΩX)
is inective if and only if Sq1 : QH∗(X)→ QH∗(X) is injective. �

Remark 3.2. Without the assumption on simple connectivity the above proposi-
tion is generally false. It does hold in the following very special case, however.
Namely, if π1X is an �2-vectorspace and X splits as X ' X̃ × Bπ1X. In this
case we have PH1(X) = H1(X) = π1(X) and QH0(ΩX) = π0(ΩX) = π1(X),
and for k ≥ 2 we have PHk(X) = PHk(X̃) and QHk−1(ΩX) = QHk−1(ΩX̃).

Let er ∈ Hr(�P∞) be the generator. Recall from [CLM] that H∗(Q�P∞
+ ) is

the free commutative algebra on the set

T = {QIer | r ≥ 0, I admissible, e(I) > r}

We shall also need a basis for PH∗(Q�P∞
+ )

Definition 3.3. Let p2r+1 ∈ PH∗(Q�P∞
+ ) be the unique primitive class with

p2r+1 − e2r+1 decomposable. For an admissible sequence of the form I = (2s +
1, 2I ′) with e(I) ≥ 2i, let p(I,2i) be the unique primitive class with p(I,2i) −Q

Ie2i

decomposable. For an admissible sequence I = (I ′, 2s + 1, 2I ′′) with e(I) ≥ 2i,
let p(I,2i) = QI′p(2s+1,2I′′,2i).

Thus p(I,i) ∈ PH∗(Q�P∞
+ ) is defined for alle (I, i) with 2 6 |(I, i).

Lemma 3.4. The set

{p(I,i) | i ≥ 0, I admissible, e(I) ≥ i, 2 6 |(I, i)}

is a basis of PH∗(Q�P∞
+ ) = PH∗(Q0�P∞

+ ).

Proof. This is well known. That p(I,i) spans all of PH∗(Q�P∞) follows from the
Milnor-Moore exact sequence. See [G] for more details �

Definition 3.5. Define operations H∗(Q�P∞)→ H∗(Q�P∞) by

λx = Sqk
∗x, deg(x) = 2k,

λ′x = Sqk
∗x, deg(x) = 2k + 1

λ′′x = Sqk
∗x, deg(x) = 2k + 2

We write λ, λ′ and λ′′ for the induced operations on PH∗(Q�P∞
+ ) andQH∗(Q�P∞

+ )
also. These are dual to ξ = Sq0, Sq1, and Sq2 on cohomology, respectively.
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Lemma 3.6. In H∗(�P∞) we have

λe2r = er

λ′e2r−1 = rer

λ′′e2r−2 =

(

r

2

)

er

Proof. This is dual to the formula Sqkwn
1 =

(

n
k

)

wn+k
1 ∈ H∗(�P∞). �

Lemma 3.7. The operations λ, λ′ and λ′′ satisfiy the relations

λQ2sx = Qsλx (3.1)

λ′Q2sx = Qsλ′x (3.2)

λ′Q2s−1x = (degQsλx)Qsλx (3.3)

λ′′Q2sx = Qsλ′′x, if λx = 0 (3.4)

λ′′Q2s−1x = (1 + degQsλ′x)Qsλ′x (3.5)

Proof. This follows from the Nishida relations (cf [CLM]). �

Proposition 3.8. λ : QH∗(Q�P∞
+ )→ QH∗(Q�P∞

+ ) is surjective.

Proof. This is because λ : H∗(�P∞) → H∗(�P∞) is surjective. Explicitly, (3.1)
and Lemma 3.6 implies that

λQ2Ie2r = QIer

so the basis T of QH∗(Q�P∞
+ ) is hit. �

Proposition 3.9. λ′ : PH∗(Q�P∞
+ )→ PH∗(Q�P∞

+ ) is surjective.

Proof. Lemma 3.6 and Lemma 3.7 imply that

λ′e4r+1 = e2r+1

and that
λ′(Q4s+1Q4I′e2i) = Q2s+1Q2I′ei

Hence, since λ′ preserves decomposables

λ′p4r+1 = p2r+1

and
λ′p(4s+1,4I′,4i) = p(2s+1,2I′,2i)

and hence
λ′p(2I′,4s+1,4I′′,4i) = p(I′,2s+1,2I′′,2i)

Therefore, by Lemma 3.4, λ′ is surjective. �

Proposition 3.10. λ′′ : PH∗(Q�P∞
+ )→ Ker(λ′) is not surjective.
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Proof. The element p3 = e3 + e1e2 + e31 satisfies λ′(p3) = Q2e1 = p(1,1) and the
element p(2,1) satisfies λ′p(2,1) = p(1,1). So p(2,1) + p3 ∈ Ker(λ′). But PH4(Q�P∞)
has basis {Q3e1, Q

2Q1e1} and λ′′(Q3e1) = λ′′(Q2Q1e1) = 0, so p(2,1) + p3 is not
hit by λ′′. �

Proof of Theorem 1.5. This follows from Proposition 3.1, using Propositions 3.8
and 3.9. �

Proof of Theorem 1.6. This follows from Proposition 3.1, using Theorem 1.5.
That H∗(Ω2

0Q(�P∞
+ )) is not polynomial follows from proposition 3.10. Indeed

there must be an a generator of degree two with square zero. �

4. The spectral sequence

The aim of this section is to prove theorems 1.2 and 1.7. The starting point is
the fibration (1.3). None of the spaces in the fibration are connected. In fact we
have

π0(ΩQ�P∞
+ ) = �/2× �/2, π0Q(BSpin(2)+) = �, π0Ω

∞�h(−U) = � × �/2
and

π1Q(BSpin(2)+) = �/2, π1(ΩQ(�P∞
+ )) = �/2× �/2

The claim in theorem (1.3) is clearly equivalent to the claim that the sequence

H∗(Ω
∞�h(−U))

Ωω∗

H∗(Q(BSpin(2)+))
Ω∂∗

H∗(ΩQ(�P∞
+ )) (4.1)

is exact (both means that Ωω∗ maps onto the kernel of Ω∂∗). This is equivalent
to proving that the sequence

H∗(Ω
∞
0
�h(−U))

Ωω∗

H∗(Q0(BSpin(2)+))
Ω∂∗

H∗(Ω̂0Q(�P∞
+ )) (4.2)

is exact. Here Ω̂0Q(�P∞
+ ) is the double cover of Ω0Q(�P∞

+ ) corresponding to the
image of Ω∂ in π1. This is equivalent because there is a map from (4.2) to (4.1),
the kernel of which is the sequence

H0(Ω
∞�h(−U))

Ωω∗

H0(Q(BSpin(2)+))
Ω∂∗

H0(ΩQ(�P∞
+ ))⊗H∗(�P∞)

which is exact.
Now (4.2) corresponds to the following modified version of (1.3)

Ω∞
0
�h(−USpin(2))

Ωω
Q0(BSpin(2)+)

Ω0∂
Ω̂Q(�P∞

+ ).

To this fibration there is an associated Eilenberg-Moore spectral sequence

E2 = CotorH∗(Ω̂0Q�P∞

+
)(H∗(Q0

�P∞
+ ), �2)

∼= CotorH∗(Ω̂0Q�P∞

+
)//Ω∂∗(�2, �2)⊗H∗(Q(BSpin(2)+))\\Ω∂∗

⇒ H∗Ω
∞
0
�h(−U)

(4.3)
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Lemma 4.1. The dual algebra H∗(Ω̂0Q�P∞
+ )\\Ω∂∗ is polynomial.

Proof. It is a subalgebra of H∗(Ω̂0Q(�P∞
+ )) which again is a subalgebra of

H∗(Ω0Q(�P∞
+ )) because Ω0Q(�P∞

+ ) ' �P∞ × Ω̂0Q(�P∞
+ ). Therefore the

lemma follows from Theorem 1.5. �

Proof of Theorem 1.2. From Lemma 4.1 we get that

CotorH∗(Ω̂0Q�P∞

+
)//Ω∂∗(�2, �2) = E[s−1P (H∗(Ω̂0Q�P∞)//Ω∂∗)]

Therefore the spectral sequence (4.3) has primitives and generators concentrated
in E2

0,∗ and E2
−1,∗. Since it is a spectral sequence of Hopf algebras, it must collapse.

Therefore the map

Ωω∗ : H∗(Ω0
�h(−U))→ H∗(Q0(BSpin(2)+))\\Ω∂∗

is surjective. �

We next prove Theorem 1.7. We need a lemma.

Lemma 4.2. The map

PH∗(Ω̃0Q�P∞
+ )→ P (H∗(Ω̂0Q�P∞

+ )//Ω∂∗)

is surjective.

Proof. The fuctor P is left exact and has a right derived functor P̂ . See [G] for a
survey and references. The important property is that it vanishes when the dual
algebra is polynomial. There is an exact sequence of Hopf algebras

�2 Im(Ω∂∗) H∗(Ω̂0Q�P∞
+ ) H∗(Ω̂0Q�P∞

+ )//Ω∂∗ �2

Now (Im(Ω∂∗))
∗ = Im(Ω∂∗) is a subalgebra of H∗(Q0(BSpin(2)+)) and hence is

polynomial. Therefore P̂ (Im(Ω∂∗)) = 0 and the lemma follows. �

Corollary 4.3. The map

CotorH∗(Ω̃0Q�P∞

+ )(�2, �2)→ CotorH∗(Ω̂0Q�P∞

+ )//Ω∂∗(�2, �2)

is surjective.

Proof. This is because CotorA(�2, �2) = E[s−1PA] when A∗ is polynomial. �

Proof of Theorem 1.7. The spectral sequence gives a filtration F 0 ⊇ F−1 ⊃ . . .
of H∗(Ω

∞
0
�h(−U)) which restricts to a filtration of H∗(Ω

∞
0
�h(−U))\\Ωω∗. With

respect to this filtration we have

E0(H∗(Ω
∞
0
�h(−U))\\Ωω∗) ∼= CotorH∗(Ω̂0Q�P∞

+ )//Ω∂∗(�2, �2)
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There is a map of fibrations

Ω2
0Q�P∞

+ ∗ Ω̃0Q�P∞
+

Ω∞
0
�h(−U)

Ωω
Q0(BSpin(2)+)

Ω∂
Ω̂0Q�P∞

+

and an associated map of spectral sequences which on the E2-term is

CotorH∗(Ω̃0Q�P∞

+ )(�2, �2)→ CotorH∗(Ω̂0Q�P∞

+ )//Ω∂∗(�2, �2)⊗H∗(Q(BSpin(2)+))\\∂∗

Since both spectral sequences collapse, we get that the map

H∗(Ω
2
0Q�P∞

+ )→ H∗(Ω
∞
0
�h(−U))\\Ωω∗ (4.4)

is filtered and on filtration quotients the map is identified with

CotorH∗(Ω̃0Q�P∞

+ )(�2, �2)→ CotorH∗(Ω̂0Q�P∞

+ )//Ω∂∗(�2, �2)

Since this is surjective by Lemma 4.2, then also the map (4.4) is surjective.
This proves (i). (ii) is just the dual statement of (i). To prove (iii) we see that

the quotient

QH∗(Ω
2Q(�P∞

+ ))→ Q(H∗(Ω
∞�h(−U))\\Ωω∗)

is identified under suspension with

PH∗(ΩQ(�P∞
+ ))→ P (H∗(ΩQ(�P∞

+ ))//Ω∂∗)

which again by suspension is mapped to

PH∗(Q(�P∞
+ ))→ P (H∗(Q(�P∞

+ ))//∂∗) = Coker(P∂∗).

By dualising we get Ker(Q∂∗) as claimed. �

5. Proof of Theorem 1.3

We know from theorem 1.5 that H∗(ΩQ(�P∞
+ )) is an exterior algebra. We

also know that H∗(QBSpin(2)+) is a polynomial algebra. We have the following
commutative diagram

QH∗(Q(BSpin(2)+))
Q(Ω∂∗)

∼=

QH∗(ΩQ(�P∞
+ ))

∼=

PH∗(QΣ(BSpin(2)+))
P (∂∗)

PH∗(Q(�P∞
+ ))

It follows thatQ(Ω∂∗) is injective. These three facts prove thatH∗(Q
�P∞

+ )\\Ω∂∗ =
ξH∗(Q

�P∞
+ ). We calculate the Becker-Gottlieb transfer of the bundle

ESpin(2)×Spin(2) S
2 → BSpin(2).
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Lemma 5.1. Let N, S : BSpin(2)→ ESpin(2)×Spin(2) S
2 denote the sections at

the north and south pole, respectively. Then the Becker-Gottlieb transfer is

τ = N + S ∈ [BSpin(2), Q(ESpin(2)×Spin(2) S
2
+)]

Proof. This is similar to the Becker-Gottlieb calculations in [GMT]: S2 is the
Spin(2)-equivariant pushout ofD2 ← S1 → D2 and therefore the bundle ESpin(2)×Spin(2)

S2 is the fibrewise pushout of ESpin(2) ×Spin(2) D
2 ← ESpin(2) ×Spin(2) S

1 →
ESpin(2) ×Spin(2) D

2. Then properties (A1)–(A3) in [GMT, p. 15] proves the
proposition. Indeed the transfer of ESpin(2)×Spin(2) S

1 vanishes by (A3) and the
transfer of ESpin(2)×Spin(2) D

2 is the section at the center of D2 by (A1). Then
the additivity (A2) proves that the transfer of the whole bundle is N + S. �

Corollary 5.2. Let ESpin(2) ×Spin(2) S
2 → BSpin(2) classify the vertical tan-

gentbundle. Then

α = ι+ c ∈ [BSpin(2), Q(BSpin(2))]

where ι is the usual inclusion of BSpin(2) and c is the orientation reversal map.

Proof of theorem 1.3. We have ι∗ai = ai and c∗ai = (−1)iai. Therefore

(ι+ c)∗ai =
∑

r+s=i

(−1)saras

Reducing mod 2 we get

(i+ c)∗(a2i) = a2
i and (i+ c)∗a2i+1 = 0

Since BSpin(2)→ BSpin(3) maps a2i 7→ bi, we have proved that the composition
in theorem 1.3 maps bi to a2

i as claimed.
Then it will also map Q2Ibi to (QIai)

2 and hence the composition is surjective.
Both H∗(Q(BSpin(2)+)) and H∗(Q0(BSpin(2)+)) are free commutative. This

follows from the fact that λ : H∗(BSpin(2)) → H∗(BSpin(2)) is surjective, simi-
larly to the case of Q(�P∞

+ ). But then

ξ : H∗(Q(BSpin(2)+))→ ξH∗(Q(BSpin(2)+))

is an isomorphism so the same holds for ξH∗(Q(BSpin(2)+)). �

Proof of Corollary 1.8. By the exact sequence in Theorem 1.2 and by Theo-
rem 1.7, the kernel of

H∗(Ω∞
0
�h(−U))→ H∗(Ω2

0Q(�P∞
+ ))

is exactlyH∗(Q0(BSpin(2)+))//Ω∂∗. By theorem 1.3 (ii), this injects intoH∗(Q(BSpin(3)+)).
�
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6. Adapting [MW]

This is the second part of the paper, and the aim is to adapt the proof in
[MW]. As explained in the introduction we can let θ = θSO and then for genus
≥ 2 we have M θ(F, γ) = BΓ(F, γ), where γ is an orientation of F and Γ(F, γ) =
π0Diff(F, γ) is the oriented mapping class group of F . Then we can let F = Fg,2

and let Γ∞,2 = colim Γg,2 where the colimit is over glueing an oriented torus.
Then [MW] proves that there is a homology equivalence

� ×BΓ∞,2 → Ω∞�h(−USO)

For θ = θSpin we can again let F = Fg,2 and let

M
θ(F∞,2) := hocolimM

θ(Fg,2)

where the hocolim is over glueing a torus. There are two essentially different
ways of doing this because we can choose either an Arf invariant 0 torus or an
Arf invariant 1 torus. Which one we use is not important however, because the
composition of two tori will be a surface of genus 2 and with an Arf invariant 0
spin structure anyhow.

Then we adapt the proof to showing that there is a homology equivalence

� ×M
θ(F∞,2)→ Ω∞�h(−USpin(2))

Since the M θ(−) satisfies Harer stability, we also get that M θ(F, γ) has the same
homology as Ω∞�h(−USpin(2)) in a stable range.

Most of the modifications are straightforward and the proofs are valid for any
vectorbundle θ : U3 → B3. Only at the very end shall we specialise to the case
θ = θSpin. The idea is roughly as follows. All the sheaves in [MW] are made
out of either submersions π : E → X with oriented three-dimensional fibres, or
surface bundles q : M → X with oriented two-dimensional fibres, with some extra
structure. Then we can modify the definition by removing the word “oriented”
anbd instead include a bundle map T πE → U3 or T qM → U2. The original case
in [MW] can the be recovered by setting θ = θSO (the sheaves will be slightly
fattened versions of those in [MW]).

This procedure works very well, and for most of the chapters we shal just
give the modified definitions and claim that the proofs work in our more general
situation as well. There is one point that needs attention, however. Namely the
definition of Erg and the sheaf map LT → WT in [MW, Chapter 5]. To do this
properly in the added generality we shall need to give a new definition of fibrewise
surgery. Also [MW, Chapter 6] about the “connectivity problem” need attention.

7. The sheaves

This section defines the appropriate generalisations of the sheaves on X defined
in [MW, Section 2]. Let θ : U3 → B3 be a 3-dimensional real vectorbundle with
inner product. Let q0 : T (S1 × [0, 1]× �)→ U3 be a fixed bundle map, constant
in the [0, 1]× � -directions.
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Definition 7.1. Let Vθ be the sheaf on X defined such that V(X) is the set of
(π, f, q) such that (π, f) : Ek+3 → Xk × � is a proper smooth map, π : E → X
is a graphic submersion, f is fibrewise regular, and q : TπE → U3 is a bundle
map. We assume that near the boundary of E, (π, f) agrees over X × � with
S1 × [0, 1]× � and q agrees with q0.

Define hVθ, Wθ, hWθ, Wθ
loc and hWθ

loc similarly.

Remark 7.2. For θ = ESO(3)×SO(3)�3 → BSO(3), the map q : TπE → U induces
an orientation on the fibres of π : E → X. Thus for this θ there is a sheaf map

Vθ → V

and this is a weak equivalence. Thus Vθ is a fat version of the sheaf V in [MW].

Following [MW] we get a diagram of classifying spaces

|Vθ
c | |Wθ| |Wθ

loc|

|hVθ| |hWθ| |hWθ
loc|

where the vertical maps are induced by taking the 2-jet prolongation of f .
We aim at generalising [MW] to the statement ΩB|Vθ

c | ' |hV
θ|.

Lemma 7.3. Let �h(−U2) denote the Thom spectrum of the vitual bundle −U2

over B(2). Then

|hVθ| ' Ω∞�h(−U2)

Lemma 7.4. We have

|Vθ
c | '

∐

F

M
θ(F ).

where the disjoint union is taken over surfaces with two boundary components,
one in each diffeomorphism class.

If U → B is orientable, this means that the disjoint union is over the surfaces
Fg,2, g ≥ 0.

Proof. This is proved similarly to the case considered in [MW]. �

8. Adjusting the proof

Most of the proof given in [MW] goes through with little or no change also
in this more general situation. We describe the necessary changes chapter for
chapter.
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8.1. Chapter 3. [MW] determines the homotopy types of |hV|, |hW| and |hWloc|
and proves that

|hV| → |hW| → |hWloc|

is a homotopy fibre sequence.
Let Bun(�3, U3) denote the space of bundle maps from �3, considered as a

bundle over a point, to the bundle U3. As in [MW] we let S(�3) be the vectorspace
of quadratic forms on �3 and ∆ ⊆ S(�3) be the subset of degenerate quadratic
forms.

Define an O(3)-space Aθ(�3) by

Aθ = ((�3)∗ × S(�3)− {0} ×∆)× Bun(�3, U3)

and define

GWθ(3, n)) = O(n + 3)×O(n)×O(3) A
θ(�3).

Thus a point in GW(3, n) is a quadruple (V, l, q, ξ) where V ⊆ �3+n is a three-
dimensional subspace, l : V → � is a linear map, q : V → � is a quadratic map,
and ξ : V → U3 is a bundle map, subject to the condition that q is non-degenerate
if l = 0.

Example 8.1. For U3 = EO(3)×O(3) �3, the space Aθ(�3) has the same (equi-
variant) homotopy type as the A(�3) of [MW]. For U3 = ESO(3)×SO(3) �3, the
space GWθ(3, n) has the same homotopy type as GW(3, n) of [MW].

Let Σθ(3, n) ⊆ GWθ(3, n) be the subspace corresponding to {0} × (S(�3) −
∆)× Bun(�3, U3) ⊆ Aθ(�3), and let

GVθ(3, n) = GWθ(3, n)− Σθ(3, n)

Let Uθ
n → GWθ(3, n) be the universal bundle. We get a cofibration sequence

Th(Uθ
n

⊥
|GVθ(3, n))→ Th(Uθ

n

⊥
)→ Th(Uθ

n

⊥
⊕ Uθ

n

∗
|Σθ(3, n))

and an associated fibration sequence of infinite loop spaces

Ω∞hVθ → Ω∞hWθ → Ω∞hWloc
θ

as in [MW, Paragraph 3.1].
We have the following generalisations of [MW]:

Theorem 8.2.

(i) |hWθ| ' Ω∞hWθ

(ii) |hVθ| ' Ω∞hVθ

(iii) |hWθ
loc| ' Ω∞hWloc

θ

(iv) |Wθ
loc| ' Ω∞hWloc

θ

Proof. Similar to [MW]. �
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8.2. Chapter 4. In 4.2, we define WA
θ and hWA

θ in the obvious way. These are
sheaves of posets.

In 4.3, we define a sheaf T A
θ as in [MW, Definition 4.3.1], but with the added

data of a bundle map q : T πE → U3. Notice that this is a small errata to [MW]:
Their T A should consist of (π, ψ) : E → X × � such that π : E → X is a
submersion with oriented fibres.

With these modifications, the proof in [MW, Section 4.3] goes through without
further difficulties. Thus we get

Theorem 8.3. |Wθ| ' |hWθ|

8.3. Chapter 5: Surgery. [MW, Chapter 5.2] is about fibrewise surgery. The
idea is roughly as follows. Given a bundle q : M → X of manifolds, a finite set T ,
a Riemannian vectorbundle ω : V → T ×X with isometric involution ρ : V → V ,
and an embedding e : D(V ρ)×T×XS(V −ρ)→ M−∂M , then one performs surgery
by removing the interior of the embedded D(V ρ)×T×X S(V −ρ) and replacing it
with S(V ρ)×T×X D(V −ρ).

In our generalised setting, M will be equipped with a bundle map ξ : T qM →
U2. We would like to perform surgery in a way that we end up with a bundle
q̄ : M̄ → X, equipped with a bundle map ξ̄ : T q̄M̄ → U2. We describe how to do
this.

8.3.1. Saddles. Choose once and for all a smooth function τ : [0, 1]→ [0, 1] which
is 0 near 0 and 1 near 1. Let Y be a manifold and ω : V → Y a Riemannian
vectorbundle with isometric involution ρ : V → V . Let g : Y → � be smooth. As
in [MW] we define the saddle of V to be the subset

Sad(V ) = {v ∈ V | |v+||v−| ≤ 1}

Define three smooth functions by

f0(v) = gω(v) + |v+|
2 − |v−|

2

f+(v) = gω(v) +
1

|v−|2
(

|v+|
2|v−|

2τ(|v+||v−|) + (1− τ(|v+||v−|))
)

− |v−|
2

f−(v) = gω(v) + |v+|
2 −

1

|v+|2
(

|v+|
2|v−|

2τ(|v+||v−|) + (1− τ(|v+||v−|))
)

The map f0 is defined on all of Sad(V ) and is fibrewise regular except at the
zero section of V , where it has a Morse singularity with critical value given by
gω. The maps f± is defined on Sad(V ) − V ±ρ, is fibrewise regular and proper,
and agrees with f0 near ∂Sad(V ). The following picture shows the level curves
of f0 in V . Sad(V ) ⊆ V is the shaded area.
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f0 = 0

f0 = −1

f0 = +1

V −

V +

This should be compared with the level curves of f+ and f−, shown in the fol-
lowing pictures.

f+ = 0

f+ = −1

f+ = +1

V −

V +

f− = 0

f− = −1

f− = +1

V −

V +

Moreover, f+ defines a diffeomorphism

Sad(V )− V ρ → D(V ρ)×Y S(V −ρ)× �
v 7→ (|v−|v+, |v−|

−1v−, f+(v))
(8.1)

Similarly, f− defines a diffeomorphism

Sad(V )− V −ρ → S(V ρ)×Y D(V −ρ)× �
v 7→ (|v+|v+, |v+|

−1v−, f−(v))
(8.2)

Remark 8.4. Comparing (8.1) to equation [MW, equation (5.3)] we see that, up to
diffeomorphism, the process of removing V ρ and replacing f with f+ is equivalent
to glueing D(V ρ) ×Y S(V −ρ) × � to Sad(V ) − V ρ along [MW, equation (5.3)].
Similarly for (8.2) and [MW, equation (5.4)].
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Definition 8.5. Given a vectorbundle ω : V → Y and a smooth g : Y → � as
above, we let

M+(V, g) = f−1
+ (0) ⊆ Sad(V )

M−(V, g) = f−1
− (0) ⊆ Sad(V )

By our earlier remarks we see that both M+(V, g) and M−(V, g) agrees near
∂Sad(V ) with f−1

0 (0). By restriction of (8.1) we get a diffeomorphism over Y

M+(V, g)→ D(V ρ)×Y S(V −ρ)

and the fibrewise differential induces an isomorphism

T ωM+(V, g)× � → T ωV|M+(V,g)

Similarly for M−(V, g).
This gives an alternative description of surgery. Namely, given a surface bundle

q : M → X, a finite set T , a Riemannian vectorbundle V → T ×X with isometric
involution ρ : V → V , a smooth function g : T ×X → � , and an embedding over
X λ : M+(V, g)→M−∂M , then one performs surgery by replacing the embedded
M+(V, g) by M−(V, g). Since M+(V, g) and M−(V, g) agree near their boundary,
this gives a welldefined smooth bundle q̄ : M̄ → X. Moreover the following is
true. If M is equipped with a bundle map ξ : T qM → U2 and V is equipped with
ξ : T ωV|Sad(V ) → U3, and the fibrewise differential of λ is over U2, then M̄ gets a
canonical map T q̄M̄ → U2.

8.3.2. The sheaves. Keeping these remarks in mind, we make the following defi-
nitions. Wθ

loc,T (X) is the set of

(i) ω : V → T ×X a Riemannian vector bundle with isometric involution ρ, as
in [MW].

(ii) g : T ×X → � a smooth function.
(iii) ξ : T ωV|Sad(V ) → U3 a vectorbundle map

and Wθ
T (X) is the set of

(1) (V, g, ξ) ∈ Wloc,T (X)
(2) q : M → X a bundle of surfaces
(3) ξ : T qM → U2 a bundle map
(4) e : M+(V, g) → M − ∂M an embedding over X such that the fibrewise

differential De is over U2.

8.3.3. The proofs. We go through the definitions and proofs in [MW, Chapter 5]
and describe what modifications are needed in this more general situation. Again



22 SØREN GALATIUS

this is summarised in the diagram

Wθ Wθ
loc

Lθ Lθ
loc

hocolimLθ
T hocolimLθ

loc,T

hocolimWθ
T hocolimWθ

loc,T

(8.3)

8.3.4. Second row. Define Lθ
loc(X) to be the set of

(i) (p, g) : Y → X × � proper smooth maps such that p is etale and graphic
and such that g is smooth.

(ii) ω : V → Y is a Riemannian vectorbundle with isometric involution ρ : V →
V .

(iii) ξ : T ωV|Sad(V ) → U3 a bundle map

and let Lθ(X) be the set of

(i) (π, f, ξ) ∈ Wθ(X) with (π, f) : E → X × � , ξ : T πE → U3.
(ii) (p, g, V, ξ) ∈ Lθ

loc(X)
(iii) λ : Sad(V ) → E − ∂E an embedding over X × � such that the fibrewise

differential Dλ is over U3.

The proofs given in [MW] of [MW, Proposition 5.3.3] and [MW, Proposition
5.3.7] goes through with the obvious changes and proves that the sheaf maps
Lθ

loc →W
θ
loc and Lθ →Wθ are weak equivalences.

8.3.5. Third row. Let Lθ
loc,T (X) be the set of

(i) (p, g, V, ξ) ∈ Lθ
loc(X)

(ii) h : S ×X → Y an embedding over 3×X
(iii) δ : Y − Im(h)→ {±1} continuous

and let Lθ
T (X) be the set of

(i) (p, g, V, ξ, h, δ) ∈ Lθ
loc,T (X)

(ii) (π, f, ξ) ∈ Wθ(X)
(iii) λ : Sad(V )→ E− ∂E embedding over X ×� such that the fibrewise differ-

ential Dλ is over U3.

The proofs given in [MW] of [MW, Proposition 5.4.2] and [MW, Proposition
5.4.4] goes through with the obvious changes and proves that the sheaf maps
hocolimLθ

loc,T → L
θ
loc and hocolimLθ

T → L
θ are weak equivalences.
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8.3.6. Fourth row, right hand column. [MW, Lemma 5.5.2] and [MW, Corollary
5.5.3] goes through as in [MW].

8.3.7. Fourth row left hand column. This is more technical, and more changes are
needed to adapt the proof in [MW]. The modified definitions of Wθ

T and Wθ
loc,T

were made with this in mind. The problem is to give a definition of Erg and to
define a sheaf map Lθ

T →W
θ
T , natural in T ∈ K .

Take an element of Lθ
T (X). This consists of (p, g, V, ξ, h, δ) ∈ Lθ

loc,T (X),

(π, f, ξ) ∈ Wθ(X), and λ : Sad(V ) → E − ∂E. Define Y0, Y+, Y− ⊆ Y and
V+, V−, V0 ⊆ V as in [MW]. Define Erg, f rg in the following way

• On the embedded Sad(V+), remove V ρ
+ and replace f by f+.

• On the embedded Sad(V−), remove V −ρ
− and replace f by f−.

• On the embedded Sad(V0), remove V ρ
+ and replace f by f+.

This defines a bundle (πrg, f rg) : Erg → X ×� of smooth compact surfaces. Now
let M = (f rg)−1(0). This is a bundle of smooth compact surfaces over X, and is
equipped with the following extra structure

(i) A bundle map ξ : T πM → U2

(ii) A Riemannian vectorbundle ω : h∗V0 → T ×X with isometric involution ρ.
(iii) A bundle map ξ : T ω(h∗V0)|Sad(V ) → U3.
(iv) A smooth function g : T ×X → Y → � .
(v) An embedding (over X) e : M+(V, g)→M such that the fibrewise differen-

tial is over U2.

That is, we have an element of Wθ
T (X). This defines a sheaf map Lθ

T → W
θ
T

which is natural in T ∈ K . Just as in [MW] one proves that Lθ
T → W

θ
T is an

equivalence.

8.3.8. Using the concordance lifting property. To prove that the sheaf mapsWθ
T →

Wθ
loc,T has the concordance lifting property we need the following lemma

Lemma 8.6. Let A ⊆ X be a cofibration and let V → [0, 1]×X be a vectorbundle.
Let U → B be another vectorbundle. Then any bundle map ξ : V|{0}×X∪[0,1]×X →
U extends to a bundle map V → U

Proof. Choose a retraction r : [0, 1] × X → {0} × X ∪ [0, 1] × A. Now the fibre
bundle Iso(V, r∗V )→ [0, 1]×A has a canonical section over {0}×X ∪ [0, 1]×A.
This section extends over all of [0, 1]×X because {0}×X∪ [0, 1]×A→ [0, 1]×X
is a trivial cofibration. This section defines a bundle map

V
r̂ V|{0}×X∪[0,1]×A

[0, 1]×X
r
{0} ×X ∪ [0, 1]× A

and we can compose ξ with r̂. �
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Proposition 8.7. The map Wθ
T →W

θ
loc,T has the concordance lifting property.

Proof. Let χ ∈ Wθ
T be an element given by

• (V, ξ) ∈ Wθ
loc,T (X) with ω : V → T ×X and ξ : T ωV|Sad(V ) → U3

• q : M → X a surface bundle (with certain boundary conditions).
• ξ : T qM → U2 a bundle map
• e : M+(V, g)→M an embedding over X such that the fibrewise differen-

tial De is over U2.

Suppose given a concordance of (V, ξ). This will be given by a vectorbundle

ω̃ : Ṽ → (0, 1)× T ×X and ξ̃ : T ωṼ|Sad(Ṽ ) → U . We can choose an isomorphism

Ṽ ∼= (0, 1)× V over (0, 1)× T ×X. Put M̃ = (0, 1)×M and q̃ = (0, 1)× q. Let

g̃ = g ◦ prT×X : (0, 1)× T ×X → � . Then we have the isomorphism M+(Ṽ , g̃) ∼=
(0, 1)×M+(V, g) and we can set ẽ = (0, 1)× e : M+(Ṽ , g̃) ∼= (0, 1)×M+(V, g)→
(0, 1)×M .

It remains to define a bundle map T q̃M̃ → U2 which is specified on T q̃M̃|{0}×M∪[0,1]×M+(V,g).
This can be done by the previous lemma, using that M+(V, g)→M is a cofibra-
tion. �

8.4. Chapter 6: The connectivity problem. We describe how to adapt the
definition of the sheaf CM and prove that it is contractible. Let �2× � have the
standard euclidean metric and involution ρ = diag(1, 1,−1). For any finite set T
and a manifold X we have the trivial vectorbundle V = �2 × � × T × X over
T ×X and we have canonical identifications

• Sad(V ) = Sad(�2 × �)× T ×X.
• T ωV|Sad(V ) = �2 × � × Sad(V )
• D2 × S0 × T ×X ∼= M+(0) ⊆ Sad(V )

Thus to promote V to an element of Wθ
loc,T with T → {1} we must specify a

bundle map T ωV|Sad(V ) → U3, or equivalently a map Sad(V )→ Bun(�2×� , U3).

Definition 8.8. Let M be a surface and TM → U2 a bundle map. Let Cθ,M be
the sheaf whose value at a connected manifold X is the set of

• A finite set T
• A map Sad(V )→ Bun(�2×� , U3), where V = �2×� ×T ×X as above
• An embedding eT : M+(0)→ (M−∂M)×X over X such that the fibrewise

differential DeT is over U2 and such that surgery along eT results in a
connected surface bundle over X.

We want to prove that B|Cθ,M | ' |βC
op
θ,M | is contractible. We proceed as in

[MW]: Given a closed set A ⊆ X and a germ s0 ∈ colimU βC
op
θ,M(U) we extend

this germ to an element of βCop
θ,M(X). The germ s0 consists of a locally finite

open cover (Uj)j∈J of U and objects ϕRR ∈ Cθ,M(UR) for each finite non-empty
R ⊆ J , and for each R ⊆ S a morphism ϕRS : ϕSS → ϕRR|US

satisfying the
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cocycle condition. Each of the ϕRR defines an embedding

D2 × S0 × TR × UR
∼= M+(0)→ (M − ∂M) × UR

(really there should be one finite set TR for each component of UR, but we will
suppress this from the notation).

[MW] shows how to extend this to an element of their βCop
M (X) by choosing

contractible open sets Vj ⊆ X and embeddings

D2 × S0 ×Qj × Vj → (M − ∂M) × Vj (*)

and by taking coproducts they get an element of their βCop
M (X) which restricts to

the given germ. To finish the proof that our βCop
θ,M(X) is contractible we have to

promote (*) to an object of our βCop
θ,M(Vj). This can be done by the next lemma.

Lemma 8.9. Let M be a surface and TM → U2 a bundle map. Let X be
contractible and let V = �2× � × T ×X be the trivial vectorbundle over T ×X.
Then for any embedding

e : D2 × S0 × T ×X → (M − ∂M)×X

overX there exists a bundle map T ωV|Sad(V ) → U3 and a diffeomorphism h : M+(0)→
D2 × S0 × T ×X such that the fibrewise differential of e ◦ h is over U2.

Proof. First let h be the inverse of the standard diffeomorphism given by (8.1).
The requirement thatD(e◦h) is over U2 defines a unique bundle map T ωV|M+(0) →
U , or equivalently a map M+(0)→ Bun(�2 × � , U3). After possibly composing
h with an orientation preserving diffeomorphism of D2 we can extend this to
M+(0) ∪ ({0} ×D1 × T ×X). Now the inclusion

M+(0) ∪ ({0} ×D1 × T ×X)→ Sad(V )

is a trivial cofibration so we can extend to all of Sad(V ). �

8.5. Chapter 7: Stabilisation. This is almost as in [MW]. Start by choosing
an element z ∈ W∅(∗) of genus 2. This is a torus with two boundary components
and with a spin structure. As already explained in paragraph 6, there are two
essentially different choices of such tori, but which one we pick is not important
for stabilisation.

As in [MW] we get a fibration sequence

|z−1hV| → hocolim z−1|WT | → hocolim z−1|Wloc,T |

where |z−1hV| ' Ω∞�h(−U) and where

hofib(z−1|WT | → z−1|Wloc,T |) ' � ×M
θ(F∞,2+2|T |).

When the spaces M θ(F∞,2+2|T |) satisfies Harer stability, i.e. if any morphism
S → T in K induces homology equivalences M θ(F∞,2+2|T |) → M θ(F∞,2+2|S|),
then the proof in [MW] goes through and proves that

� ×M
∞(F∞,2)→ Ω∞�h(−U)
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is a homology equivalence.
And we know from [H] and [B] that for θ = θSpin this Harer stability indeed

does hold.
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Divisibility of the stable Miller-Morita-Mumford classes

Soren Galatius, Ib Madsen, Ulrike Tillmann*

Abstract. We determine the sublattice generated by the Miller-Morita-Mumford
classes κi in the torsion free quotient of the integral cohomology ring of the sta-
ble mapping class group. We further decide when the mod p reductions κi ∈
H∗(BΓ∞; Fp) vanish.

1. Introduction and results.

Let Γs
g,b denote the mapping class group of a surface of genus g with b ordered

boundary components and s marked points. We will supress s or b when their
value is zero. Gluing a disk or a torus with two boundary components to one of
the boundary components induces homomorphisms

(1.1) Γs
g,b−1 ←− Γs

g,b −→ Γs
g+1,b.

Recall that by Harer-Ivanov’s stability theory both homomorphisms induce a ho-
mology isomorphism in dimensions ∗ with 2 ∗ +1 < g, cf. [H2], [I]. Let Γ∞ :=
lim g→∞Γg,2 be the stable mapping class group.

Mumford in [Mu] introduced certain tautological classes in the cohomology of
moduli spaces of Riemann surfaces. Miller [Mi] and Morita [Mo] studied topological
analogues. Let e ∈ H2(BΓ1

g,b; Z) be the Euler class of the central extension

(1.2) Z −→ Γg,b+1 −→ Γ1
g,b

which is induced by gluing a disk with a marked point to one of the boundary
components. Define

κi := π!(e
i+1) ∈ H2i(BΓg,b; Z)

where π! is the Umkehr (or integration along the fibre) map associated to the
forgetful map Γ1

g,b → Γg,b. These correspond under the maps of (1.1) and hence

define classes in H∗(BΓ∞; Z). We will only be concerned with these stable classes
in this paper.

By the solution of the Mumford conjecture [MW],

H∗(BΓ∞; Q) ' Q[κ1, κ2, . . . ].

In contrast, little is known about κi in integral cohomology. It follows from [H1]
that κ1 is precisely divisible by 12 (cf. [MT, p. 537]). The following theorem

*The third author was supported by an Advanced Fellowship of the EPSRC.
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determines the maximal divisor of κi in the torsion free cohomology for all i ≥ 1.
We write

H∗free(BΓ∞) := H∗(BΓ∞; Z)/Torsion

for the integral lattice in H∗(BΓ∞; Q). This is a Hopf algebra. The graded mod-
ule of primitive elements P (H∗free(BΓ∞)) is a copy of Z in each even degree,

and κi is a primitive element of H∗free(BΓ∞). However, it is not a generator of

P (H2i
free(BΓ∞)).

Let Di be the positive integer defined in terms of its p-adic valuation by the
formula

(1.3) νp(Di) =

{

1 + νp(i+ 1) if i+ 1 ≡ 0 mod (p− 1)

0 if i+ 1 6= 0 mod (p− 1).

Theorem 1.1. The class κi is Di times an additive generator of P (H2i
free(BΓ∞)).

D2i = 2 for all i, while the numbers D2i−1 are related to Bernoulli numbers as
follows. Let

log(
ex − 1

x
) =

∞
∑

i=1

αi
xi

i!
.

Then α1 = 1/2, α2i+1 = 0 and α2i = (−1)i−1Bi/2i where Bi is the i-th Bernoulli
number. Then D2i−1 is the denominator of α2i when expressed as a fraction in its
lowest terms, see e.g. [A2]. So D1 = 22 · 3, D3 = 23 · 3 · 5, D5 = 22 · 32 · 7, . . . .

Our Theorem 1.1 is inspired by a conjecture of T. Akita [Ak] which we also
prove:

Theorem 1.2. κi as an element in H2i(BΓ∞; Fp) vanishes if and only if i+ 1 ≡
0 mod (p− 1).

The structure of the Hopf algebra H∗free(BΓ∞) is not completely understood at
present, but we have the following partial result. There is an isomorphism of Hopf
algebras over the p-adic numbers

(1.4) H∗free(BΓ∞)⊗ Zp ' H∗(BU ; Zp)

for each odd prime p. Indeed this follows from the main result of [MW], listed
in Theorem 2.4 below, and from Theorem 7.8 of [MS] combined with Bott peri-
odicity. The precise structure of H∗free(BΓ∞) ⊗ Z2 is unknown. Low dimensional

calculations reveal that (1.4) fails for p = 2: the algebra is not polynomial.

In outline, the proofs of the above theorems depend on previous results as follows.
For Theorem 1.2, the proof of the “if” part in Section 2.5 is a calculation using
characteristic classes which relies on the fact that there is a map of infinite loop
spaces α : Z × BΓ+

∞ → Ω∞CP∞−1 (compare [T] and [MT] or Theorems 2.1 and
2.2 below). The “only if” part is implied by Theorem 1.1: if p divides κi then in
particular it must divide its reduction to the free part.
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For Theorem 1.1, the main theorem of [MT] (here Theorem 2.2), implies that the
maximal divisor of κi as an element inH2i

free(BΓ∞) is less or equalDi. For i even we
haveDi = 2, and so the reverse inequality is implied by the “if” part of Theorem 1.2.
For i odd, the reverse inequality follows readily by a well-known relation between
the κi classes and the symplectic characteristic classes for surface bundles, (stated
as Theorem 3.2), albeit up to a factor of 2. To eliminate this indeterminacy the
main theorem of [MW] (here Theorem 2.4), as well as calculations from [G1] (see
(3.3)) and a stronger version of the main result of [MT] (given in Theorem 3.5) are
used.

Given the interest in the mapping class groups also outside the topology commu-
nity we have strived to make this paper as self contained as possible. In particular
we have spelled out some of the more obscure parts of [MT].

2. The kappa classes and spectrum cohomology.

2.1. Universal surface bundles. The methods used in this and the surrounding
papers do not use the mapping class groups directly but rather the topological
groups of orientation preserving diffeomorphisms of surfaces. We briefly review the
correspondence.

Let Fg,b be a connected surface of genus g with b boundary circles. We write
Diff(Fg,b; ∂) for the topological group of orientation preserving diffeomorphisms
that keep (a neighborhood of) the boundary pointwise fixed. For g ≥ 2, results
from [EE] and [ES] yield

BΓg,b ' BDiff(Fg,b; ∂)

so that BΓg,b classifies diffeomorphism classes of smooth fibre bundles π : E → X
with fibre Fg,b and standard boundary behavior:

∂E = X ×tb
1S

1, π|∂E = projX .

Similarly,
BΓs

g,b ' BDiff(Fg,b; ∂ t {x1, . . . , xs})

where x1, . . . , xs are distinct interior points of Fg,b. Take s = 1. Since Diff(Fg,b; ∂)
acts transitively on the interior of Fg,b,

E(Fg,b) := EDiff(Fg,b; ∂)×Diff(Fg,b;∂) Fg,b ' BDiff(Fg,b; ∂ t {x}) ' BΓ1
g,b.

The forgetful map π : BΓ1
g,b → BΓg,b corresponds to the universal smooth Fg,b

bundle

(2.1) Fg,b −→ E(Fg,b) −→ BDiff(Fg,b; ∂).

The central extension (1.2) is classified by “the differential at x”,

Diff(Fg,b; ∂ t {x}) −→ GL+(TxFg,b) ' SO(2).

Hence the circle bundle induced from (1.2) by applying the classifying space functor
corresponds to the circle bundle of the vertical tangent bundle associated with (2.1).
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2.2. Spectra and spectrum cohomology. Let E = {En, εn} be a CW-spec-
trum1 in the sense of [A1]: En is a sequence of pointed CW-complexes and εn :
SEn → En+1 a (pointed) isomorphism onto a subcomplex, where S(−) denotes
suspension. The associated infinite loop space is the direct limit

Ω∞E = colim ΩnEn

of the n-th loop space of En; the limit is taken over the adjoint maps ε′n : En →
ΩEn+1.

The k-th homotopy group of E is defined to be the direct limit of πn+k(En). It
is equal to the k-th homotopy group of the space Ω∞E. In particular, the group of
components of Ω∞E is the direct limit of πn(En). For α ∈ π0(Ω

∞E) we let Ω∞α E
be the component determined by α. In particular we write Ω∞0 E for the component
of the zero element.

The homology and cohomology groups of E are

Hk(E) = lim H̃k+n(En), Hk(E) = lim H̃k+n(En)

where the limits are induced from the maps εn together with the suspension iso-
morphisms. In contrast to homotopy groups the cohomology groups of a spectrum
are usually much simpler than the cohomology groups of Ω∞E.

The evident evaluation map from SnΩnEn to En induces maps

(2.3) σ∗ : H∗(E) −→ H̃∗(Ω∞0 E), σ∗ : H̃∗(Ω
∞
0 E) −→ H∗(E).

If we use field coefficients in the cohomology groups then H∗(Ω∞0 E) is a con-
nected Hopf algebra and the image of σ∗ is contained in the graded vector space
PH∗(Ω∞0 E) of primitive elements. We shall be particularly concerned with the
torsion free integral homology and cohomology groups

H∗free(Ω
∞
0 E) = H∗(Ω∞0 E; Z)/Torsion, Hfree

∗ (Ω∞0 E) = H∗(Ω
∞
0 E; Z)/Torsion.

They are lattices in H∗(Ω∞0 E; Q) and H∗(Ω
∞
0 E; Q) and are dual Hopf algebras.

Moreover, the image of σ∗ is contained in the module of primitive elements

σ∗ : H∗free(E) −→ P (H∗free(Ω
∞
0 E)),

and dually σ∗ factors over the indecomposable elements of Hfree
∗ (Ω∞0 E).

Given a pointed space X we have the associated suspension spectrum S∞X
whose n-th term is SnX with infinite loop space Ω∞S∞X . There is an obvious
inclusion i : X → Ω∞S∞X inducing a splitting of σ∗ (and σ∗):

(2.4) H∗(S∞X)
σ∗

−→ H̃∗(Ω∞0 S
∞X)

i∗
−→ H̃∗(X)

is the suspension isomorphism.
The spectra of most relevance to us are CP∞−1 and the suspension spectrum

S∞CP∞+ of CP∞ t {+}. We recall the definition of the former. There are two

1If one does not assume the spaces to be CW-complexes then one should assume that εn is a

closed cofibration.
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complex vector bundles over the complex projective n-space CPn, namely the tau-
tological line bundle Ln and its n-dimensional complement L⊥n in CPn × Cn+1.
Its Thom space (or one point compactification) is denoted by Th(L⊥n ). Since the
restriction of L⊥n to CPn−1 ⊂ CPn is equal to L⊥n−1⊕C where C denotes the trivial
line bundle over CPn−1 we get a map

ε : S2Th(L⊥n−1) −→ Th(L⊥n ).

The spectrum CP∞−1 has

(CP∞−1)2n = Th(L⊥n−1), (CP∞−1)2n+1 = STh(L⊥n−1)

and the structure map ε2n+1 is given by the above ε. The associated infinite loop
space is

Ω∞CP∞−1 = colim ε Ω2nTh(L⊥n−1).

The inclusion of L⊥n−1 into L⊥n−1⊕Ln−1 = CPn−1×Cn via the zero section of Ln−1

induces a map from Th(L⊥n−1) into S2n(CPn−1
+ ) and hence a map

ω : Ω∞CP∞−1 −→ Ω∞S∞(CP∞+ ).

This map fits into a fibration sequence

(2.5) Ω∞CP∞−1
ω
−→ Ω∞S∞(CP∞+ )

∂
−→ Ω∞S∞−1

where the right-hand term is the direct limit of ΩnSn−1. Indeed the inclusion
of a fibre Cn → L⊥n induces a map S2n → Th(L⊥n ), and a map of its cofibre
Th(L⊥n )/S2n → Th(L⊥n ⊕Ln). One checks on cohomology that this map is (4n+1)-
connected and gets a cofibre sequence of spectra S∞(S−2)→ CP∞−1 → S∞CP∞+ →
S∞(S−1). (2.5) is the associated fibration sequence of infinite loop spaces.

The component groups of (2.5) are

0 −→ Z
π0(ω)
−→ Z

π0(∂)
−→ Z/2 −→ 0

so π0(ω) is multiplication by ±2, depending on the choice of generators. There is
a canonical splitting of infinite loop spaces

(2.6) Ω∞S∞(CP∞+ ) = Ω∞S∞(CP∞)×Ω∞S∞.

We fix the generator of π0Ω
∞S∞(CP∞+ ) to be the element that maps to +1 under

the isomorphisms

π0(Ω
∞S∞(CP∞+ ))

π0(c)
−→ π0(Ω

∞S∞)
degree
−→ Z,

where c collapses CP∞ to the non-base point of S0. We fix the generator of
π0(Ω

∞CP∞−1) so that π0(ω) is multiplication by −2.
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2.3. Review of results used. Our divisibility result of theorem 1.1 is based upon
the following three theorems.

Theorem 2.1. [T]. The spaces Z × BΓ+
∞ and BΓ+

∞(= {0} × BΓ+
∞) are infinite

loop spaces.

Here the superscript (+) denotes Quillen’s plus construction, cf. [B]. For each
prime p we pick a positive integer k = k(p) so that −k reduces to a generator of the
units (Z/p2)× when p is odd. We pick k = 3 when p = 2. Write ψ−k for the self
map of CP∞ that multiplies by −k on the second cohomology group. Composing
with the inclusion into Ω∞S∞(CP∞) and using the loop sum we have a map

1 + kψ−k : CP∞ −→ Ω∞S∞(CP∞),

and, since the target is an infinite loop space, an extension to a self map of
Ω∞S∞(C∞P∞), again denoted 1 + kψ−k.

Theorem 2.2. [MT]. There are infinite loop maps

α : Z×BΓ+
∞ −→ Ω∞CP∞−1, µp : Ω∞S∞(CP∞+ ) −→ (Z×BΓ+

∞)∧p

such that the composition ω ◦ α ◦ µp and the self map

(

1 + kψ−k ∗
0 −2

)

: CP∞ × Ω∞S∞ −→ CP∞ ×Ω∞S∞

become homotopic after p-adic completion.

The reader is referred to [BK] for the notion of p-adic completion (also called
Fp-completion). For infinite loop spaces Ω∞E of finite type one has

[X, (Ω∞E)∧p ] = [X,Ω∞E]⊗ Zp, H∗((Ω∞E)∧p ; Z) = H∗(Ω∞E; Zp).

Remark 2.3. The homotopy class of the map α in Theorem 2.2 is uniquely deter-
mined by its composition with Z×BΓ∞ → Z×BΓ+

∞. Indeed since Ω∞CP∞−1 is an
infinite loop space the induced map

[Z×BΓ+
∞, Ω∞CP∞−1] −→ [Z×BΓ∞, Ω∞CP∞−1]

is an isomorphism. This is a standard property of the plus construction.

Theorem 2.4. ([MW]). The map α is a homotopy equivalence.

We may view Γg,2 as the mapping class group of surfaces with one incoming and
one outgoing boundary component. Gluing the incoming boundary component of
one surface to the outgoing component of the other defines a map

Γg,2 × Γh,2 −→ Γg+h,2
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and a corresponding map of classifying spaces that makes the disjoint union
⊔

BΓg,2

over all g ≥ 0 into a topological monoid. Consider the map
⊔

g≥0

BΓg,2 −→ Z×BΓ+
∞

that sends BΓg,2 into the component {g} × BΓ+
∞ by the stabilization map (1.1)

followed by the map into the plus construction. The infinite loop space structure on
Z× BΓ+

∞ is compatible with the monoidal structure on
⊔

BΓg,2, and the induced
map

ΩB(
⊔

g≥0

BΓg,2) −→ Z×BΓ+
∞

is a homotopy equivalence. (Indeed, the monoid is a subcategory of the symmetric
monoidal surface category S defined in [T], and the proof the homotopy equivalence
ΩBS ' Z× BΓ+

∞ in [T] easily adopts to this subcategory; cf. also proposition 4.1
of [T].)

2.4. The map α and the kappa classes. The map α : Z × BΓ∞ → Ω∞CP∞−1

constructed in Section 2 of [MT] restricts to a map αg,2 : BΓg,2 → Ω∞g CP∞−1 that
is homotopic to the composition

(2.7) αg,2 : BΓg,2 −→ BΓg+1
αg+1

−→ Ω∞g CP∞−1.

The left hand map is induced from gluing the two parametrized boundary circles
together.

We next recall a description of αg+1 which is well-suited for identifying the
kappa classes. Let π : E → X be a smooth surface bundle with closed fiber F .
Thus E = P ×Diff(F ) F where P is a principal Diff(F ) bundle over X . We do not
assume that X is smooth or finite dimensional, only that X is paracompact (or a
CW-complex).

We denote by Emb(F,Rn) the space of smooth embeddings in the C∞-topology,
and let R∞ and Emb(F,R∞) be the colimits of Rn and Emb(F,Rn), respectively.
We shall consider fiberwise embeddings e : E → X × R∞, that is, fiberwise maps
such that each ex : Ex → {x} × R∞ is an embedding and such that the adjoint
map P → Emb(F,R∞) is continuous. Such an e is equivalent to a section of
P ×Diff(F ) Emb(F,R∞).

An embedding ex : F ↪→ Rn+2 extends to a map from the normal bundle Nnex =
{(p, v)|v⊥TpF} into Rn+2 by sending (p, v) to ex(p) + v. We call the embedding
ex fat if this map restricts to an embedding of the unit disk bundle D(Nnex).
The subspace of fat embeddings Embf (F,R∞) ⊂ Emb(F,R∞) is contractible, since
the inclusion is a homotopy equivalence by the tubular neighborhood theorem and
since Emb(F,R∞) is contractible by Whitney’s embedding theorem. A fibrewise
fat embedding e : E → X × R∞ is then a section of the fibre bundle P ×Diff(F )

Embf (F,R∞).
Suppose first that e : E → X×Rn+2 is a fibrewise fat embedding of codimension

n. The Pontryagin-Thom construction associates a “collapse ” map onto the Thom
space of the fibrewise normal bundle,

cπ,e : X+ ∧ S
n+2 −→ D(Nn

π e)/S(Nn
π e) = Th(Nn

π e).
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We are particularly interested in its adjoint map X → Ωn+2Th(Nn
π e).

Let G(2, n) be the Grassmann manifold of oriented 2-dimensional subspaces of
Rn+2, and let Un and U⊥n be the two complementary bundles over it of dimension
2 and n, respectively. The fat embedding induces bundle maps

TπE −→ Un, Nn
πE −→ U⊥n

and a commutative diagram

(2.8)

X+ ∧ S
n+2 cπ,e

−−−−→ Th(Nn
πE)

s
−−−−→ Th(TπE ⊕N

n
πE)

∥

∥

∥





y





y

X+ ∧ S
n+2 cn−−−−→ Th(U⊥n ) −−−−→ Th(Un ⊕ U

⊥
n ).

In the general case of a fiberwise fat embedding e : E → X × R∞, the base space
X is the colimit of the subspaces

Xn := {x ∈ X |ex(Ex) ⊂ {x} ×Rn+2},

and the diagram
(Xn)+ ∧ S

n+2 −−−−→ Th(U⊥n )




y





y

(Xn+1)+ ∧ S
n+3 −−−−→ Th(U⊥n+1)

is commutative since U⊥n+1|G(2,n) = U⊥n . Taking adjoins we get

απ,e : X −→ colimΩn+2Th(U⊥n ).

Since Embf (F,R∞) is contractible, all sections of P ×Diff(F ) Embf (F,R∞) are ho-
motopic, and consequently the homotopy class [απ,e] is independent of the choice
of e.

Realification gives a (2n− 1) connected map from CPn into the oriented Grass-
mannian G(2, 2n) covered by a bundle map L⊥n → U⊥2n. Thus G(2,∞) ' CP∞

and
Ω∞CP∞−1 = colimΩ2n+2Th(L⊥n )

'
−→ colimΩ2n+2Th(U⊥2n)

is a homotopy equivalence. Altogether we have a well-defined homotopy class

απ : X −→ Ω∞CP∞−1.

For x = BDiff(Fg+1) ' BΓg+1 this is the map αg+1 of (2.7).
Let us check that the image of αg+1, and hence the image of αg,2, lie in the

g-component of Ω∞CP∞−1, or equivalently that the composition

proj ◦ ω ◦ αg+1 : BΓg+1 −→ Ω∞S∞(CP∞+ ) −→ Ω∞S∞

lands in the −2g component (with identification of components chosen at the end of
Section 2.2). Consider (2.8) with X a single point and E = Fg+1. The component
is given by

< c∗πs
∗(UT · UN ), [S2n+2] > =< c∗π(e(TFg+1) · UN , [S

2n+2] >

=< e(TFg+1), [Fg+1] >= −2g,
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as claimed.
Next we compute the maps αg,2 and αg+1,2 under the map BΓg,2 → BΓg+1,2

induced from gluing a torus with two boundary circles F1,2 to Fg,2. Considering
F1,2 as a fibre bundle over a point the construction above gives an element [1] ∈
Ω∞1 CP∞−1. Loop sum with [1] in Ω∞CP∞−1 translates the g component into the
(g + 1) component and

(2.9)

BΓg,2
αg,2

−−−−→ Ω∞g CP∞−1




y

∗[1]





y

BΓg+1,2
αg+1,2

−−−−→ Ω∞g+1CP∞−1

is homotopy commutative. To see this observe that the left hand map in (2.7) is
homotopic to the composition

BDiff(Fg,2; ∂) −→ BDiff(Fg+1;S
1 × I) −→ BDiff(Fg+1)

where the middle space classifies Fg+1-bundles that are trivialized on a band S1 ×
I ⊂ Fg+1. The diagram (2.9) then factors as

BDiff(Fg,2; ∂) −−−−→ BDiff(Fg+1;S
1 × I) −−−−→ Ω∞g CP∞−1





y





y

∗[1]





y

BDiff(Fg+1,2; ∂) −−−−→ BDiff(Fg+2) −−−−→ Ω∞g+1CP
∞
−1,

where the middle hand vertical map replaces the band S1 × I by the torus F1,2

with two boundary circles. It is evident from the construction of απ that the right
hand square homotopy commutes, and hence that (2.9) is homotopy commutative.

The restriction of α in Theorem 2.2 to the zero component is then

[α̃] = lim ([α̃g,2]) ∈ [BΓ∞,Ω
∞
0 CP∞−1],

where α̃g,2 = (∗[−g]) ◦ αg,2.
We can now relate the kappa classes to spectrum cohomology. Consider

BΓg,2
α̃g,2

−→ Ω∞0 CP∞−1
ω
−→ Ω∞0 S

∞(CP∞+ )

and recall the cohomology suspension from Section 2.2

σ∗ : H̃2i(CP∞; Z) ' H2i(S∞CP∞+ ) −→ H2i(Ω∞0 S
∞(CP∞+ )).

Theorem 2.5. The Miller-Morita-Mumford class κi is equal to (σ ◦ ω ◦ α̃g,2)
∗(ei)

where e ∈ H2(CP∞; Z) is the Euler class of the canonical line bundle.

Proof: Let π : E → X be a smooth fibre bundle with fibre Fg+1, classified by
fπ : X → BΓg+1. By definition

f∗π(κi) = π!(e(TπE)i+1) ∈ H2i(X ; Z)
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where π! is the composition

H̃2i+2(E; Z)
'
−→ H̃2i+2n+2(Th(NπE); Z)

c∗π,e

−→ H2i+2n+2(S2n+2(X+); Z)

followed by the (2n + 2)-nd desuspension, where cπ,e is as in (2.8). Moreover, for
x ∈ H∗(CPn; Z) = H∗(G(2, 2n); Z) (n large)

s∗(Σ2n+2(x)) = s∗(λL⊥
n
· λLn

· x) = λL⊥
n
· e(Ln) · x.

Here the λ’s denote the cohomology Thom classes. Apply (2.8) and take x = ei to
complete the proof. �

2.5. Characteristic classes and one part of Akita’s conjecture. Let H(Z, k)
denote the Eilenberg-MacLane space with non-trivial homotopy Z in dimension k.
The Thom class λn = λL⊥

n
is represented by a map from Th(L⊥n ) to H(Z, 2n). We

let Y2n+2 be its homotopy fibre, so that there is a fibration sequence

Y2n+2
j2n+2

−→ Th(L⊥n )
λn−→ H(Z, 2n).

The spaces Y2n+2 are the (2n+ 2)-nd terms of a spectrum Y and the j2n+2 define
a map j : Y → CP∞−1 of spectra. Since Ω2n+2H(Z, 2n) has vanishing homotopy
groups

(2.10) Ω∞Y
Ω∞j
−→ Ω∞CP∞−1

is a (weak) homotopy equivalence.

For our next theorem we need the relation between Steenrod operations and
Stiefel-Whitney classes and their mod p analogues. Recall the i-th Steenrod oper-
ation:

P i : Hk(X ; Fp) −→ Hk+2i(p−1)(X ; Fp), p odd,

Sqi : Hk(X,F2) −→ Hk+i(X,F2).

Let E be an oriented vector bundle over X and λE its cohomology Thom class.
One defines vi(E) ∈ H2i(p−1)(X ; F2), respectively vi(E) ∈ Hi(X ; F2) by

P i(λE) = vi(E)λE, Sqi(λE) = vi(E)λE.

For an oriented 2-plane bundle (or complex line bundle) L,

v1(L) = e(L)p−1 for p odd,

v2(L) = e(L) and v1(L) = 0 for p = 2.

Moreover, the total class

v(E) = 1 + v1(e) + v2(E) + · · · ∈ H∗(X ; Fp)

takes direct sums of oriented vector bundles into (graded) products.
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Theorem 2.6. The modulo p reduction of κi ∈ H
2i(BΓ∞; Fp) is zero when i+1 ≡

0 (mod p− 1).

Proof:2 By (2.10) the bottom vertical map in the commutative diagram

H2i(CP∞−1; Fp)
j∗

−−−−→ H2i(Y,Fp)

σ∗





y σ∗





y

H2i(Ω∞0 CP∞−1; Fp)
(Ω∞j)∗

−−−−−→ H2i(Ω∞Y ; Fp)

is an isomorphism. Theorem 2.5 shows that

σ∗(ei+1λL⊥) = κi,

so it suffices to prove that j∗ vanishes when i+1 ≡ 0 (mod p− 1). Equivalently, we
must show that ei+1λn is in the image of

λ∗n : H∗(H(Z, 2n); Fp) −→ H∗(Th(L⊥n ); Fp)

in the stated dimensions. This is implied by

v(L⊥n ) = v(Ln)−1 =

{

(1 + ep−1)−1, p > 2

(1 + e)−1, p = 2

Since P i(λn) ∈ image (λ∗n) the result follows. �

Remark 2.7. The relation P i(λL⊥) = κi(p−1)−1λL⊥ used above is further ex-
ploited in [G2] to define secondary classes µi with pµi = κi(p−1)−1 in cohomology

with Z/p2Z coefficients.

Theorem 2.6 proves half of Akita’s conjecture mentioned in the introduction.
The other half is implied by Theorem 1.1 which is proved below.

3. Proof of the main theorem.

3.1. Segal’s splitting. Given an infinite loop space B = Ω∞E the inclusion
i : B → Ω∞S∞B admits a canonical retraction

θ : Ω∞S∞B −→ B.

The inclusion of CP∞ in BU that represents the reduced canonical line bundle (of
virtual dimension zero) extends to a map

l : Ω∞S∞(CP∞) −→ Ω∞S∞(BU)
θ
−→ BU

where we have used that BU is an infinite loop space via Bott periodicity. We shall
need

2We thank John Rognes for this proof; it replaces a more cumbersome earlier argument.
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Theorem 3.1 ([S]). The map l has a left inverse up to homotopy. In the resulting

decomposition

Ω∞S∞(CP∞) ' BU × Fib(l)

the homotopy fiber Fib(l) has vanishing rational cohomology.

In particular, this gives an identification of Hopf algebras

(3.1) H∗free(Ω
∞S∞(CP∞)) ' H∗(BU ; Z)

induced by l∗. The graded module of primitive elements of the right hand side is
a copy of Z in each even degree generated by the integral Chern character class
si = i!chi. Since l ◦ i represents the (reduced) line bundle and chi(L) = 1

i!
ei, (3.1)

implies that
i∗ : H∗free(Ω

∞S∞(CP∞)) −→ H∗(CP∞; Z)

sends the primitive generator si to ei. Note from (2.4) that we also have that

H∗(CP∞; Z) = H∗(S∞CP∞; Z)
σ∗

−→ P (H∗free(Ω
∞S∞(CP∞)))

maps ei to si.

3.2. The odd primary case. The action of Γg+1 on H1(Fg+1; Z) induces the
standard symplectic representation, and then a representation of Γg,2 via the map
Γg,2 → Γg+1 used above. We may let g →∞ and obtain

BΓ∞ −→ BSP(Z)

which can be composed with the map into BSP(R). Now BSP(R) ' BU so that
we have a map

η : BΓ∞ −→ BU

Theorem 3.2 ([Mo], [Mu]). In H∗(BΓ∞; Q) one has the relation

η∗(s2i−1) = (−1)i(
Bi

2i
) κ2i−1.

The isomorphisms

H∗(BU ; Q)
l∗
−→ H∗(Ω∞0 S

∞(CP∞+ ); Q)
ω∗

−→ H∗(Ω∞CP∞−1; Q)

together with Theorem 2.4 gives an isomorphism

H∗(BΓ∞; Q) ' H∗(BU ; Q)

of Hopf algebras. Hence P (H∗free(BΓ∞)) is a copy of Z in each even degree. We
choose a generator

τi ∈ P (H2i
free(BΓ∞)).
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As in Section 2.3, let k be a positive integer such that −k generates (Z/p2)× for
odd p and let k = 3 when p = 2. We have the following well-known table of p-adic
valuation (see e.g. [A2]):

νp(Bi/2i) = −(1 + νp(2i)) if 2i = 0 (mod p− 1)

νp(Bi/2i) ≥ 0 if 2i 6= 0 (mod p− 1)

νp(1− (−k)i) = 1 + νp(i) if i = 0 (mod p− 1), p odd(3.2)

= 2 + ν2(i) if p = 2

νp(1− (−k)i) = 0 if i 6= 0 (mod p− 1).

We are now ready to prove the p-primary part of Theorem 1.1 when p is an odd
prime.

Proposition 3.3. Let κi = Diτi in P (H2i
free(BΓ∞)). For odd primes p,

νp(Di) = 1 + νp(i+ 1) if i+ 1 ≡ 0 (mod p− 1)

and νp(Di) = 0 otherwise.

Proof: If i + 1 ≡ 0 (mod p − 1) then i = 2j − 1 and Theorm 3.2 together with
(3.2) gives νp(D2j−1) ≥ 1 + νp(2j). The converse inequality and the rest of the
proposition is a consequence of Theorem 2.2: there is a factorization

1 + kψ−k : CP∞
µp

−→ (BΓ+
∞)∧p

ω◦α
−→ Ω∞0 S

∞(CP∞+ )∧p
proj
−→ Ω∞S∞(CP∞)∧p .

Since Ω∞S∞(CP∞) is of finite type

H∗free(Ω
∞S∞(CP∞)∧p ) = H∗free(Ω

∞S∞(CP∞))⊗ Zp.

It follows from Theorem 2.5 and the discussion at the end of Section 3.1 that µ∗p(κi)
is the image of the generator si under

(1 + kψ−k)∗ : H2i
free(Ω

∞S∞(CP∞))⊗ Zp −→ H2i(CP∞; Zp).

Both groups are Zp and (1+kψ−k)∗ in dimension 2i is multiplication by 1+k(−k)i =
1 − (−k)i+1. If i + 1 ≡ 0 (mod p − 1) then νp(1 − (−k)i+1) = 1 + νp(i + 1). This
proves the reverse inequality: νp(Di) ≤ 1 + νp(i+ 1). If i+ 1 6= 0 (mod p− 1) then
νp(1− (−k)i+1) = 0. �

3.3. Diagonalizing the splitting map µp. It remains to determine the divisi-
bility of κi at 2 for the argument of Theorem 3.3 gives only

1 + ν2(2j) ≤ ν2(D2j−1) ≤ 2 + ν2(2j).

This requires two extra results. Firstly that

(3.3) H∗(Ω
∞
0 CP∞−1; F2)

ω∗−→ H∗(Ω
∞
0 S
∞(CP∞+ ); F2)
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is injective, and secondly that µ2 can be chosen so that

(3.4) (ω ◦ α ◦ µ2)∗ : H∗(CP
∞; F2) −→ H∗(Ω

∞
0 S
∞(CP∞+ ); F2)

is zero in degrees ∗ ≡ 2 (mod 4).
The first result (3.3) is contained in theorem 7.10 of [G1]. The second result (3.4)

requires a strengthening of Theorem 2.2: We need to calculate the undetermined
map

Ω∞S∞ −→ Ω∞S∞(CP∞)

denoted by (∗) in Theorem 2.2.

Theorem 3.4. For every prime p, ω ◦ α ◦ µp in Theorem 2.2 is homotopic to the

diagonal self-map Diag(1 + kψk,−2) after p-adic completion.

The rest of this subsection contains a proof of this theorem. The proof we give
is a variation of the proof of Theorem 2.2 from sections 3.1-3.3 in [MT].

We first describe Riemann surfaces Σ with holomorphic actions of the q-th roots
of unity µq ⊂ C×. This gives maps Bµq → BDiff(Σ).

Consider a divisor D = Σnipi of CP 1 with support A = {p0, p1, . . . , pk}, ni ∈ Z

and n0 + n1 + · · · + nk = 0. Let q be an integer and assume for simplicity that
gcd(q, ni) = 1 for i = 0, 1, . . . , k. Let ΣD be the branched cover associated with the
Galois extension

C(z) ↪→ C(z)[T ]/(F (T )), F (T ) = T q −Π(z − pi)
ni

(see e.g. [F], chap. 1.8). The Galois group is the group µq. The surface ΣD has a
holomorphic action of µq with orbit space CP 1. The induced map π : ΣD → CP 1

is holomorphic, branched over A, and π−1(pi) is a single point (since we assumed
gcd(ni, q) = 1). Thus the µq action of ΣD is free outside A, and A is fixed pointwise
by all elements in µq.

Let γi be a small loop in CP 1 around pi. The fundamental group CP 1 \A is the
free group of rank k generated by γ0, . . . , γk with the single relation Πγi = 1. The
covering Σd \ A → CP 1 \ A is classified by the map from π1(CP

1 \ A) to µq that

sends γi to e2πini/q. The complex tangent line Tpi
ΣD at pi is a µq representation;

u ∈ µq multiplies by ū = un̄i where n̄i ∈ Z/q is the multiplicative inverse of ni.
If D and D′ are two divisors and q divides their difference D −D′ then there is

a biholomorphic map between ΣD and ΣD′ that is equivariant w.r.t. the µq action.

Thus it is only the class of D in H̃0(A; Z/q) that matters.
Recall from Section 2.4 that given a surface bundle π : E → X there is a diagram

(3.5)

X −−−−→ Ω∞(Th(TπE
⊥)) −−−−→ Ω∞S∞(E+)

∥

∥

∥





y

Tπ





y

X
αpi−−−−→ Ω∞CP∞−1

ω
−−−−→ Ω∞S∞(CP∞+ )

where Ω∞(Th(TπE
⊥)) = colimΩn+2(Nn

πE). The upper horizontal composition is
the Becker-Gottlieb transfer map tE = tπ : X → Ω∞S∞(E+).
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We need the following properties of the Becker-Gottlieb transfer for smooth
manifold bundles with compact fiber and compact Lie structure group:

(A1) Let f : E → E′ be a fiberwise homotopy equivalence. Then

tE′ = Ω∞S∞(f+) ◦ tE ∈ [X,Ω∞S∞(E′+)].

(A2) Suppose

E12
j1

−−−−→ E1

j2





y

i1





y

E2
i2−−−−→ E

is fiberwise homotopy coCartesian. Then

tE = Ω∞S∞(i1+) ◦ tE1
+ Ω∞S∞(i2+) ◦ tE2

− Ω∞S∞(i12+) ◦ tE12

in [X,Ω∞S∞(E+)] where i12 = j1 ◦ i1 = j2 ◦ i2.
(A3) If the tangent bundle along fibers TπE admits a non-zero section, then

tE ∈ [X,Ω∞0 S
∞(E+)] is constant.

The proof of (A1) and (A2) can be found in [LMS], p. 189-190 or in [BS].
Property (A3) is much simpler. It follows because

Th(NπE) −→ Th(NπE ⊕ TπE)

is homotopic to the constant map at∞ whenever TπE has an everywhere non-zero
section.

Let Σ = ΣD be the µq-surface constructed aboce. We shall study the transfer of
the associated smooth surface bundle

π : Eµq ×µq
Σ −→ Bµq.

To shorten notation we write

tΣ : Bµq −→ Ω∞(E+), E = Eµq ×µq
Σ

for the associated transfer.
Let D = Σnipi and q ∈ N satisfy A = supp(D) = {p0, . . . , pk}, n0+ · · ·+nk = 0,

gcd(q, ni) = 1 for i = 0, . . . , k. For each i, the inclusion of Eµq×µq
{pi} ⊂ E induces

a map
p̂i : Bµq −→ E −→ Ω∞S∞(E+).

The principal µq bundle Eµq → Bµq induces a transfer from Bµq to Ω∞S∞(Eµq+)
' Ω∞S∞, and hence

t̂q : Bµq −→ Ω∞S∞ −→ Ω∞S∞(E+)

upon choosing a point of E.
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Lemma 3.5. The transfer tΣ is equal to Σp̂i + (1− k)t̂q in [Bµq,Ω
∞S∞(E+)].

Proof. We make a cell decomposition of S2 = CP 1 with two 0-cells {0,∞}, k + 1
1-cells Ii and k + 1 2-cells Di such that pi ∈ int Di.

pk

p1
p2

Figure 3.6

There are obvious coCartesian diagrams

t∂Ii −−−−→ tIi t∂Di −−−−→ tDi




y





y





y





y

{0,∞} −−−−→ G G −−−−→ S2

where G denotes the 1-skeleton. This cell structure lifts to a cell structure of Σ:

(3.7)

t∂Ĩi −−−−→ tĨi t∂D̃i −−−−→ tD̃i




y





y





y





y

{0,∞}∼ −−−−→ G̃ G̃ −−−−→ Σ

with G̃ = π−1(G) etc. We can apply the functor Eµq ×µq
(−) to (3.7) and use

(A1-3) to evaluate tG̃ and tΣ. First by (A1) and (A2),

tG̃ = (1 + k)t̂q + 2t̂q − 2(k + 1)t̂q = (1− k)t̂q,

since Ĩi = µq×Ii, ∂Ĩi = µq×∂Ii and {0,∞}∼ = µq×{0,∞}. Second, the inclusion of

pi in D̃i is a homotopy equivalence, so tD̃i
= p̂i. Moreover, Eµq×µq

∂D̃i = Eµq×S
1

has trivial vertical tangent bundle, so t∂D̃i
is homotopically constant. One more

application of (A1-2) completes the proof. �

The tangent representation Tpi
Σ is given by multiplication with e2πin̄i/q, so an

application of (3.5) gives
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Corollary 3.6. The homotopy class of

Bµq −→ Ω∞CP∞−1 −→ Ω∞S∞(CP∞+ )

is Σψn̄i + (1− k)tµq
. Here ψn̄i is the composition

ψn̄i : Bµq −→ CP∞ −→ Ω∞S∞(CP∞+ )

with the left hand map induced from the group homomorphism µq → S1 that sends

u to un̄i . �

We are now ready to complete the proof of Theorem 3.4. As in section 3.3 of
[MT] we let q = pn be a prime power and consider the divisor

D = p0 +mp1 + · · ·+mpk, m ≡ −1/k(mod pn).

We use the notation

F (n) = ΣD, Cpn = µpn , τnt̂pn

and consider diagram (3.5) with

X = BDiff(F (n)), E = EDiff(F (n))×Diff(F (n)) F (n).

Composing with the map BCpn → BDiff(F (n)) induced by the Cpn action on F (n),
and using that BΓg(n) ' BDiff(F (n)) with g(n) = 1/2(pn − 1)(k − 1) we get the
diagram

BΓg(n)
αn−−−−→ Ω∞g(n)−1CP∞−1

T
−−−−→ Ω∞0 CP∞−1

µn

x





ω





y

ω





y

BCpn −−−−→ Ω∞2−2g(n)S
∞(CP∞+ )

T
−−−−→ Ω∞0 S

∞(CP∞+ ).

The right-hand horizontal maps are translations of the indicated component into
the zero component. The lower horizontal composition is by Corollary 3.6 equal to

(1 + kψ−k, τ̃n) ∈ [BCpn ,Ω∞0 S
∞(CP∞+ )]

with τ̃n = T ◦ τn.

Lemma 3.7. Let in−1 : BCpn−1 → BCpn be the map associated with Cpn−1 ⊂ Cpn .

Then

[τn ◦ in−1] = p[τn−1] ∈ [BCpn−1 ,Ω∞S∞].

Proof: Let E be a contractible space with a free action of Cpn , e.g. the union of
odd dimensional spheres E =

⋃

m≥1 S
2m−1. Consider the diagram

E
πn−1

−−−−→ BCpn−1

in−1

−−−−→ BCpn

î

x




în−1

x





in−1

x





⊔p
1 E −−−−→

⊔p
1 BCpn−1 −−−−→ BCpn−1
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where BCpn−1 and BCpn are the orbit spaces E/Cpn−1 and E/Cpn and in−1 is
represented by the obvious quotient map. The lower sequence in the above diagram
is the pull-back of the upper sequence, and in−1 ◦ πn−1 = πn. The transfer of a
composition is the composition of transfers, and transfers are natural for pull-backs.
Thus [τn] is the transfer of the lower sequence composed with î. This comes out to
be p[τn−1]. �

The Ivanov-Harer stability theorems imply that the map of plus constructions,

BΓ+
g(n)−1,2 −→ BΓ+

g(n)

is bn-connected with bn = [ g(n)−1
2

]. Thus

[BC
(bn)
pn , BΓ+

g(n)−1,2] ' [BC
(bn)
pn , BΓ+

g(n)]

where the superscript indicates the bn-skeleton. Let µn,2 : BC
(bn)
pn → BΓ+

g(n)−1,2

correspond to µn so that

(3.9) T ◦ ω ◦ αn,2 ◦ µn,2 = (1 + kψ−k, τ̃n)

in [BC
(bn)
pn ,Ω∞0 S

∞(CP∞+ )].

Consider the subset Gn of [BC
(bn)
pn , (BΓ+

∞,2)
∧
p ] of elements that satisfy (3.9). It

is a non-empty and finite (or at least compact), so lim
←
Gn 6= ∅. We pick µ̃p ∈

lim
←
Gn. Since colimBC

(bn)
pn = BCp∞ has p-adic completion homotopy equivalent

to (CP∞)∧p , the map µ̃p extends to a map

µ̃p : Ω∞S∞(CP∞) −→ (BΓ+
∞,2)

∧
p

and
T ◦ ω ◦ α ◦ µp ' (1 + kψk , 0).

This proves that the first row in the matrix described in Theorem 2.2 is (1+kψ−k, 0).
The second row corresponds to the homotopy class of

(3.10) Ω∞S∞
µ
−→ Z×BΓ+

∞,2
α
−→ Ω∞CP∞−1

ω
−→ Ω∞S∞(CP∞+ ).

An infinite loop map with source Ω∞S∞ is determined by its restriction to S0 =
{−1,+1} ↪→ Ω∞S∞. The µ above maps the base point +1 of S0 into (0, ∗) and
the non-base point into (1, ∗). The composition (3.10) maps the base point into
the base point of Ω∞0 S

∞(CP∞) and the non-base point into the base point of
Ω∞−2S

∞(CP∞+ ). This shows that the second row of the matrix in Theorem 2.2 is
(0,−2) as claimed. �

3.4. The case p=2. The difficulty with the divisibility of κi at 2 is that the
2-adic valuation of Bi/2i is one less than the 2-adic valuation of (32i − 1). The
argument used in Proposition 3.3 thus contains an indeterminacy of one factor 2.
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Proposition 3.6. With the notation of Proposition 3.3, ν2(Di) = 1 + ν2(i+ 1).

Proof: The inequality ν2(Di) ≥ 1+ν2(i+1) follows from Theorem 2.6 and Theorem
3.2. We prove the reverse inequality. As in the proof of Proposition 3.3 we have

1− (−3)i+1 : P (H2i
free(Ω

∞S∞CP∞+ )))⊗ Z2
(ω◦α)∗

−→ P (H2i(BΓ+
∞))⊗ Z2

µ∗

2−→H2i(CP∞; Z2).

All groups are copies of Z2, κi = Diτi with τi a generator and κi = (ω ◦ α)∗(si)
where si is the generator of the left term.

For even i, ν2(1 − (−3)i+1) = 1 and by Theorem 2.6 ν2(Di) = 1 as claimed.
For odd i = 2j − 1 suppose that ν2(Di) = 2 + ν2(i + 1). Then µ∗2(τi) would be a
generator and dually

µ2∗ : H2i(CP
∞; F2) −→ Hfree

2i (BΓ+
∞)⊗ F2

would be non-zero. Then

µ2∗ : H2i(CP
∞; F2) −→ H2i(BΓ+

∞)⊗ F2

would also be non-zero. Now apply Theorem 2.4 together with the injectivity of
(3.3) to conclude that

H4j−2(CP
∞; F2)

(ω◦α◦µ2)∗
−→ H4j−2(Ω

∞
0 S
∞(CP∞+ ); F2)

would be non-zero under the assumption that ν2(D2j−1) = 2 + ν2(2j). This con-
tradicts Theorem 3.4. Indeed the self map ψ−3 of CP∞ induces the identity on
H∗(CP

∞; F2). Hence 1 + 3ψ−3 induces the same map on F2 homology as

4i : CP∞ −→ Ω∞S∞(CP∞).

But (4i)∗ = 0 on F2-homology in dimension 4j − 2. �
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