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Preface

This thesis documents most of my work during the PhD program. To explain
the nature of the work, what follows is a short history of the project.

I first heard the word “matroid” about four years ago. I had mainly taken
courses in algebra during my undergraduate studies in Århus, when in the fall of
2001 Jørgen Brandt held a one-semester introductory course in combinatorics.
The few brief encounters I had had with the field prior to this, I had found
intriguing, and Jørgen’s course immediately caught my interest. One third
of the course material consisted of matroid theory. When at the end of the
semester, I was about to apply for a PhD, I made a quick decision and asked
Jørgen to supervise me. He agreed and suggested Rota’s Conjecture as the
subject of my studies.

I quickly learned, that matroid theory is fairly inaccessible to someone inex-
perienced, since it draws on concepts and methods of several diverse branches of
mathematics, such as linear algebra, graph theory and finite geometry. One has
to adopt each of these different viewpoints to fully understand many matroid
problems.

Since I was quite alone in Århus with my interest in matroids, I spent most
of my time reading the matroid literature on my own, without getting any
“hands-on experience”. In an early stage of the project, in an effort to make
things more concrete, I developed a matroid calculator, a computer program
that performs basic operations on matroids. Though it was a helpful exercise
to me, the program has found little use since then.

My main focus, Rota’s Conjecture, turned out to be an ambitious one.
Indeed, it is perhaps the most important open problem in matroid theory. I
was naturally led to reading the recent papers of Geelen, Gerards and Whittle,
documenting their progress towards resolving the conjecture. These often quite
difficult and technical papers consumed much of my time, and halfway through
the course of my studies I wrote my progress report on “Rota’s Conjecture:
branch-width and grids”.

At about the same time I contacted Jim Geelen and Geoff Whittle, both
of whom offered to give me supervision. In January 2004 I left for Waterloo,
Ontario to visit Jim Geelen for a period of six months.

Working with Jim brought new insights and quickly advanced my under-
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iv Preface

standing of matroid theory. Among many other things, he taught me the geo-
metric perspective on matroids. While I was used to drowning in technicalities
and lacking intuition, Jim worked mostly by doing drawings on the blackboard.
Most importantly, I gradually became confident, that I could work on matroid
problems myself.

I visited Jim in Waterloo a second time in the spring of 2005 for three
months. On both occasions we obtained results which I later, back in Denmark,
worked out in detail and wrote two papers on. During my first stay in Canada,
we worked on an extremal problem related to a result of Jim and his colleagues
from their work on Rota’s Conjecture. The second time, we mainly worked on
different extremal problems related to the Growth Rate Conjecture by Kung.
Thus, my project has in the end been concentrated on extremal matroid theory,
though it was motivated by extremal aspects of Rota’s Conjecture.

During my stays in Canada, with Jim’s support, I was also fortunate enough
to attend a couple of workshops as well as a major combinatorics conference in
Nashville, Tennessee.
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1 Introduction

The field of extremal matroid theory is a broad one, offering many interesting
problems and methods. Some of the extremal problems are matroid coun-
terparts of problems in extremal graph theory and many of the methods are
derived from there as well. As I know of no precise definition, I shall try here
to explain loosely what I consider extremal matroid theory to be.

Extremal matroid theory concerns questions of how different parameters or
numerical attributes of matroids behave or relate to each other. Often such
questions are studied for certain classes of matroids.

The most common such question and the main focus of Kung’s founding
paper [30] on the subject is “what is the maximum number of points given the
rank of a matroid in M”, where M is a given class of matroids. A fundamental
result of this type is Kung’s Theorem, which bounds the number of points of
a rank-n matroid with no U2,q+2-minor, by a function of q and n. When q is a
prime-power the bound is exact, otherwise it is not.

Another example of an extremal result, which we shall treat, is a matroid
version of a theorem of Erdös and Pósa on graphs: A matroid with sufficiently
high rank, containing none of a certain set of matroids as a minor, has many
disjoint co-circuits.

A third example is the recent theorem of Geelen, Gerards and Whittle,
which says that a GF(q)-representable matroid with sufficiently large branch-
width contains the cycle matroid of a large grid as a minor.

These examples illustrate, that for some extremal problems an exact rela-
tionship can be determined, whereas in other cases one is satisfied simply with
the existence of a bound on some parameter. The more difficult extremal prob-
lems often fall in the latter category. Therefore the proof techniques tend to be
wasteful; one will choose a simpler argument over a better bound.

Nearly all of the contents of this thesis fall under the above description of
extremal matroid theory.

1



2 Chapter 1. Introduction

1 Outline and main results

The thesis is organized into the following chapters.

Chapters 2 and 3

These chapters present the outcome of my joint work with Jim Geelen. The
main results are stated in the introductions to the chapters. Chapter 2 is based
on [19], The Erdös-Pósa Property for matroid circuits, and Chapter 3 is based
on [18], Projective geometries in dense matroids.

The exposition given here differs in a number of respects from that in the
papers. It is structured differently and many considerations and remarks have
been added, the proofs are somewhat more detailed, the notation differs in
some places, and finally, several figures have been added.

Chapter 4

The fourth chapter considers size functions of classes of matroids and Kung’s
Growth Rate Conjecture. Results of the previous chapters are placed in this
context, and two new partial results to the quadratic case of the conjecture
are presented. The chapter also contains some minor extensions of Kung’s
Theorem.

Chapter 5

The fifth chapter briefly surveys the history of Rota’s Conjecture and discusses
the recent progress, that there has been on the subject. The chapter contains
no new material. As described in the preface, I spent much time during the
first half of the PhD program studying these matters, and I have included this
chapter, in part for my own sense of completeness of the project. The chapter
also serves to state some classical matroid results that are referenced elsewhere
in the thesis.

2 Prerequisites and notation

The reader is assumed familiar with standard matroid theory, as described in
Oxley’s excellent book [37], and also Aigner [1] and Welch [53]. Basic results
in these sources will be used without reference. We follow the notation and
terminology of Oxley, with the exception that we denote the simplification of a
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matroid M by si(M). In particular a graph means a multigraph, that is, loops
and parallel edges are allowed.

The phrase “M contains an N -minor” means that M has a minor isomorphic
to N . If N1, . . . , Nn are matroids, we denote by EX (N1, . . . , Nn) the class of
matroids with no Ni-minor, for i = 1, . . . , n. We introduce names for some of
the more common classes of matroids as follows.

G : The graphic matroids
G∗ : The co-graphic matroids
R(F) : The F-representable matroids, where F is a field.
R(q) : Short for R(GF(q)), where q is a prime-power.
U(q) : Short for EX (U2,q+2), where q is a positive integer.

If q is a prime-power, then U2,q+2 is the shortest line, not representable over
GF(q). Hence, R(q) is contained in U(q).

We denote by N the set of positive integers, and by N0 the set of non-negative
integers.

The text contains a number of figures to illustrate various structures. Apart
from a few which picture graphs, the figures are all geometric representations
of matroids. Strict geometric representations (as in [37]) can only be drawn
for matroids of rank at most 4. In many cases I have attempted to picture
matroids of higher rank by a mixture of Venn diagrams and points, lines and
planes. These figures are of a more vague nature; flats of higher rank are drawn
as planes and only selected dependencies are shown (see, for instance, page 32).
However, the figures are only illustrations, and their intended interpretations
should be clear from the context.





2 The Erdös-Pósa Theorem for matroids

This chapter presents a result obtained jointly with Jim Geelen. It is the subject
of the article [19], which was written by me. The proof of this result takes up
most of the chapter. This exposition is different and somewhat more detailed
than the one given in [19]. The last section on Mader’s Theorem for matroids
concerns a related result by Geelen, Gerards and Whittle.

1 The Erdös-Pósa property

The number of disjoint co-circuits in a matroid is bounded by its rank. We
prove the following theorem, which is a partial converse to this relationship.

Theorem 1.1. There exists a function γ : N3 → N such that, if M is a matroid
with no Ua,2a-, M(Kn)-, or B(Kn)-minor and r(M) ≥ γ(k, a, n), then M has
k disjoint co-circuits.

Here B(Kn) denotes the bicircular matroid of Kn (to be defined below).
A circuit-cover of a graph G is a set X ⊆ E(G) such that G − X has no

circuits. Thus the maximum number of (edge-) disjoint circuits in a graph
is bounded by the minimum size of a circuit cover. This bound is not tight
(consider K4), but Erdös and Pósa in [10] proved that the maximum number
of disjoint circuits is qualitatively related to the minimum size of a circuit cover.

The Erdös-Pósa Theorem. There is a function c : N → N such that, if
the size of a minimal circuit-cover of G is at least c(k), then G has k disjoint
circuits.

A circuit-cover of a matroid is defined analogously. Let M be a matroid.
A set X ⊆ E(M) intersects each circuit of M if and only if E(M) − X is
independent. Hence, X is a minimal circuit-cover of M if and only if E(M)−X
is a basis of M . So, a minimal circuit-cover of M is a basis of M∗. The Erdös-
Pósa Theorem can now be rephrased in matroid terminology as follows (note
that the statement has been dualized):

Corollary 1.2. There exists c : N→ N such that, if M is a co-graphic matroid
with r(M) ≥ c(k), then M has k disjoint co-circuits.

5



6 Chapter 2. The Erdös-Pósa Theorem for matroids

This was generalized by Geelen, Gerards, and Whittle [15] who proved the
following.

Theorem 1.3. There exists a function c : N3 → N such that, if M is a matroid
with no U2,q+2- or M(Kn)-minor and r(M) ≥ c(k, q, n), then M has k disjoint
co-circuits.

Tutte’s excluded minor characterization of the class G of graphic matroids
(see Chapter 5), shows that a co-graphic matroid has no U2,4- or M(K5)-minor,
so this is indeed a generalization.

The result does not extend to all matroids. A matroid is round if it has no
two disjoint co-circuits. Equivalently, M is round if each co-circuit in M is a
spanning set of M . Or M is round if no two hyperplanes of M cover E(M).
There are round matroids of arbitrarily large rank.

Remark 1.4. The matroid Ur,n, where n > 2(r − 1) is round, since it cannot
be covered by two hyperplanes (in particular Ua,2a is round). Also, for each
positive integer n, M(Kn) is a round matroid. Generally, for a graph G, a
co-circuit of M(G) is a minimal edge-cut of G. If G is simple it is easily seen,
that G has no two disjoint edge-cuts if and only if G is complete (see Figure 1).
So M(G) is round if and only if G is complete.

e

Figure 1: The dotted lines indicate two edge-cuts of the
graph. If the edge e is removed, the edge cuts are disjoint.

Let G = (V, E) be a graph. Define a matroid B̃(G) on V ∪ E where V
is a basis of B̃(G) and, for each edge e = uv of G, place e freely on the line
spanned by {u, v} (if e is a loop of G, so u = v, place e in parallel with u). Now
B(G) := B̃(G)\V is the bicircular matroid of G. A different characterization
of B(G) is the following, which gives rise to the term “bicircular”. It is easily
verified (see [37, Prop. 12.1.6]).

Remark 1.5. Let G be a graph. C is a circuit of B(G) if and only if G[C] is
a subdivision of one of the following graphs.



2. Considerations on the main theorem 7

The matroid B̃(Kn) is also round. The bicircular matroid B(Kn) is not
round, but it has no three disjoint co-circuits, for n 6= 3. These claims will be
proved in section 4 of this chapter.

2 Considerations on the main theorem

Before we begin the proof of the main theorem, Theorem 1.1, we make a few
observations.

The main theorem is a generalization of Theorem 1.3, as B(Kn) has a
U2,q+2-minor, for n large (this is shown in Figure 2). It is, in some sense, best
possible. Note that each of the families {M(Kn) : n ≥ 1}, {B(Kn) : n ≥ 1},
and {Ua,2a : a ≥ 1} have unbounded rank but they have a bounded number of
disjoint co-circuits. Hence, these families must be excluded (from some fixed
rank and up), for the Erdös-Pósa property to hold. The main theorem does
this by excluding them as minors.

v0

v1

v2

v3

vn−1

vn

y1

y2

yn−1

Figure 2: The graph G above is a subgraph of Kn+1. It
satisfies B(G)/ {y1, . . . , yn−1} ' U2,n.

Also, we claim that none of the three families are superfluous when we
exclude the families as minors. That is, none of the families satisfies, that
members of sufficiently high rank contain a high-rank member from one of the
other families as a minor.

First consider {Ua,2a : a ≥ 1}. For n ≥ 4, M(Kn) is non-uniform, and
for n ≥ 5, so is B(Kn), which is easily verified. Thus, the uniform family is
necessary.
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Consider next {M(Kn) : n ≥ 1}. For a ≥ 2, Ua,2a contains a U2,4-minor,
and for n ≥ 4, so does B(Kn) (we saw this above for n ≥ 5, and it is easily
checked that B(K4) ' U4,6). Hence, none of these can be graphic, and so the
graphic family is necessary.

Finally consider {B(Kn) : n ≥ 1}. One can show, that if G is a graph
and e an edge of G, then B(G\e) = B(G)\e and if e is not a loop of G, then
B(G/e) = B(G)/e. It follows, that any loop-less minor of a bicircular matroid
is bicircular. It is not hard to check that neither M(K4) nor U3,7 is bicircular
(and thus neither is U4,8). So the bicircular family is also necessary.

3 Covering number

The proof of Theorem 1.1 takes up most of this chapter. We shall work with
dense matroids in the proof. This section develops tools for measuring the size
and density of a matroid.

A simple GF(q)-representable matroid M of rank-r has at most qr−1
q−1

elements, since M is isomorphic to a restriction of the projective geometry
PG(r − 1, q), which has precisely that many elements. A fundamental result
of extremal matroid theory by Kung [30] is the extension of this bound to the
class U(q) of matroids with no U2,q+2-minor. The bound then holds for all
integers q ≥ 2.

Kung’s Theorem. Let q ≥ 2 be an integer. If M ∈ U(q) is a simple rank-r
matroid, then

|E(M)| ≤ qr − 1
q − 1

.

Proof. The proof is by induction on r, the cases r = 0 and r = 1 being trivial.
Assume r ≥ 2 and let M be given. Let e ∈ E(M). For each line L of M
containing e, L − e is a rank-1 flat of M/e, and since M ∈ U(q), we have
|L− e| ≤ q. Hence, |E(M)| ≤ 1 + q |E(si(M/e))|. By induction, |E(M)| ≤
1 + q qr−1−1

q−1 = qr−1
q−1 .

For q = 1, there is a trivial bound, since the simple matroids in U(1) are
the free matroids {Un,n : n ∈ N} up to isomorphism. As mentioned, the bound
in Kung’s Theorem is sharp if q is a prime-power. Kung also proves, that the
bound is attained only by projective spaces. By the Fundamental Theorem
of Projective Geometry (see Theorem 5.2 of Chapter 3), this implies that for
r ≥ 4, the bound is only sharp if q is a prime-power.
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To bound the size of rank-r matroids, it is necessary to restrict the length
of lines, or we can have arbitrarily many elements in a rank-2 matroid. As we
shall be excluding a uniform matroid of higher rank, we need a new measure of
size, for an analogue of Kung’s Theorem to hold.

Definition 3.1. Let a be a positive integer. An a-covering of a matroid M is a
collection (X1, . . . , Xm) of subsets of E(M), with E(M) = ∪Xi and rM (Xi) ≤ a
for all i. The size of the covering is m. The a-covering number of M , τa(M) is
the minimum size of an a-covering of M . If r(M) = 0, then we put τa(M) = 0.

Note that for a matroid M , τ1(M) = |E(si(M))|, so the a-covering number
extends the usual notion of size. If M has non-zero rank r(M) ≤ a, then
τa(M) = 1. Our first lemma bounds τa(M) in the case r(M) = a + 1.

Lemma 3.2. Let b > a ≥ 1. If M is a matroid of rank a + 1 containing no
Ua+1,b-minor, then

τa(M) ≤
(

b− 1
a

)
.

Proof. Choose X ⊆ E(M) maximal with M |X ' Ua+1,l. Then l ≤ b − 1. For
an x /∈ X, by the maximality of X, there exists Y ⊆ X with |Y | = a such that
Y ∪ x is dependent, and thus x ∈ clM (Y ).

It follows that (clM (Y )|Y ⊆ X, |Y | = a) is an a-covering of M . It has size(
l
a

) ≤ (
b−1
a

)
.

We obviously always have the inequality τa+1(M) ≤ τa(M). For matroids
with no large rank-(a+1) uniform restriction, using Lemma 3.2, we get a bound
in the other direction.

Lemma 3.3. Let b > a ≥ 1. If M is a matroid with no Ua+1,b-restriction, then

τa(M) ≤
(

b− 1
a

)
τa+1(M).

Proof. Let (X1, . . . , Xk) be a minimal (a + 1)-covering of M . By Lemma 3.2
each M |Xi has an a-covering (Xi

1, . . . , X
i
mi

) of size mi ≤
(
b−1
a

)
. Combining

these we get an a-covering (Xi
j |j = 1, . . . , mi, i = 1, . . . , k) of M . Thus, we

have τa(M) ≤ ∑
mi ≤

(
b−1
a

)
k.

The next result extends Kung’s Theorem. The bound we obtain is not
sharp, though (in the case where U2,q+2 is excluded, it reduces to the expression
(q + 1)r−1, which exceeds Kung’s bound for r ≥ 3).
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Proposition 3.4. Let b > a ≥ 1. If M is a matroid of rank r ≥ a with no
Ua+1,b-minor, then

τa(M) ≤
(

b− 1
a

)r−a

.

Proof. The proof is by induction on r. The case r = a is trivial since (E(M))
is an a-covering of size 1.

Now let r > a and assume that the result holds for rank r − 1. Let x
be a non-loop element of M . Then r(M/x) = r − 1 and we get by induction
τa(M/x) ≤ (

b−1
a

)r−1−a
.

Let (X1, . . . , Xk) be a minimal a-covering of M/x, so rM/x(Xi) ≤ a for
all i. This implies rM (Xi ∪ x) ≤ a + 1, and so (Xi ∪ x|i = 1, . . . , k) is an
(a + 1)-covering of M . We conclude τa+1(M) ≤ τa(M/x).

Finally, from Lemma 3.3 we have τa(M) ≤ (
b−1
a

)
τa+1(M) and combining

inequalities we get the desired result.

Definition 3.5. Let a ∈ N. The matroid M is called a-simple, if M is simple
and M has no Uk,2k-restriction for k = 2, 3, . . . , a.

Equivalently, M is a-simple if it is loop-less and has no Uk,2k-restriction for
k = 1, 2, 3, . . . , a. This concept is just an abbreviation. We shall not define an
“a-simplification” operation, since for a ≥ 2 it would not be well-defined up to
isomorphism. For a-simple matroids, the size is proportional to τa:

Lemma 3.6. There exists an integer-valued function σ(a) such that, if a ∈ N
and M is a-simple, then |E(M)| ≤ σ(a)τa(M).

Proof. Define σ by

σ(a) =
a∏

k=2

(
2k − 1
k − 1

)
.

Since M has no Uk,2k-restriction for k = 2, . . . , a, Lemma 3.3 gives

τk−1(M) ≤
(

2k − 1
k − 1

)
τk(M), k = 2, . . . , a.

Putting these together, we get |E(M)| = τ1(M) ≤ σ(a)τa(M).

We shall need one more specialized result, which is completely similar to
the previous Lemma.
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Lemma 3.7. There exists an integer-valued function σ2(a, b) such that, if b ≥
a ≥ 1 and M is loop-less and has no Uk,b-restriction for k = 1, . . . , a, then
|E(M)| ≤ σ2(a, b)τa(M).

Proof. Define σ2 by

σ2(a, b) = (b− 1)
a∏

k=2

(
b− 1
k − 1

)
.

Now use |E(M)| ≤ (b− 1)τ1(M) and apply Lemma 3.3.

4 Round matroids

In this section we investigate the concept of roundness. We first list a few
properties.

• If M is round and Y ⊆ E(M), then M/Y is round.
• If N is a spanning minor of M and N is round, then M is round.
• If M is round, then si(M) is round.

These properties are easily checked directly, but they also follow as special cases
from Proposition 4.2 below.

We shall sometimes consider matroids that are only “nearly round”. This
is made precise using two matroid parameters, that we define next.

Definition 4.1. Let M be a matroid. The rank-deficiency of a set of elements
X ⊆ E(M) is r−M (X) = r(M)− rM (X). Denote by Γ(M) the maximum rank-
deficiency among the co-circuits of M . For an integer t we say that M is t-round
if Γ(M) ≤ t. By Θ(M) we denote the maximum number of disjoint co-circuits
of M .

Notice that a matroid M is round if and only if Γ(M) = 0, that is, M is
0-round. Also, M is round if and only if Θ(M) = 1. The two parameters are
related by

1 ≤ Θ(M) ≤ Γ(M) + 1 ≤ r(M).

For some integer k, let C1, . . . , Ck be disjoint co-circuits of M . We then have
r(M\(C1 ∪ · · · ∪ Ck)) ≤ r(M) − k. Notice that, if Γ(M) ≤ k − 1, so that
rM (C) > r(M)− k for each co-circuit C of M , then Θ(M) ≤ k. From this, the
inequality Θ(M) ≤ Γ(M) + 1 follows. Equality does not hold, as can be seen
by considering M = U4,5, for which Θ(M) = 2 and Γ(M) = 2. The following
result lists hereditary properties of the two parameters.
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Proposition 4.2. Let M be a matroid and let X, Y ⊆ E(M). Then
(i) Θ(M/Y ) ≤ Θ(M) and Γ(M/Y ) ≤ Γ(M).
(ii) Θ(M\X) ≥ Θ(M) and Γ(M\X) ≥ Γ(M), if X is co-independent.
(iii) Θ(M\X) = Θ(M) and Γ(M\X) = Γ(M), if for some positive integer a,

X is minimal w.r.t. inclusion, such that M\X is a-simple.

Proof. Every co-circuit C of M/Y is a co-circuit of M . A short calculation
shows that r−M/Y (C) ≤ r−M (C), so the first assertion of the lemma holds.

To prove the second and third assertions, it is enough to consider X = {x},
where x is not a co-loop of M . If C is a co-circuit in M , then C − x contains a
co-circuit in M\x. Thus Θ(M\x) ≥ Θ(M) and also Γ(M\x) ≥ Γ(M).

We turn to the third assertion. Assume that x ∈ W , where M |W ' Uk,2k,
for a k ∈ N. If C is a co-circuit of M\x, then C = C ′ − x for a co-circuit C ′ of
M , that is, either C or C ∪ x is a co-circuit of M . We look at two cases:

• If C ∩ (W −x) = ∅, then C is a co-circuit of M , since the complement of
a co-circuit is closed and x ∈ clM (W − x).

• If C ∩ (W − x) 6= ∅, then we have |(W − x)− C| < k, as M |(W − x) '
Uk,2k−1 and the complement of C is closed. Hence, |C ∩ (W − x)| ≥ k.

Note that the second case can happen at most once in a collection of disjoint
co-circuits. So, given a collection of disjoint co-circuits of M\x, by adding x
to at most one of them, we get a collection of disjoint co-circuits of M . Thus
Θ(M) ≥ Θ(M\x). Note also, that for a co-circuit C of M\x, if C ∪ x is a
co-circuit of M , then we are in the second case, and rM (C ∪ x) = rM\x(C).
Thus Γ(M) ≥ Γ(M\x). Finally, since no co-circuit can contain a loop, deleting
loops also preserves Θ and Γ.

To prove that B̃(Kn) is round and B(Kn) nearly round, we shall use the
following lemma.

Lemma 4.3. Let M be a matroid, and H1,H2 distinct hyperplanes of M , with
H1 ∪H2 6= E(M). If Θ(M |H1) ≤ m and Θ(M |H2) ≤ m, then Θ(M) ≤ m.

Proof. Let e ∈ E(M)− (H1 ∪H2). We may assume, that E(M) = H1 ∪H2 ∪ e,
by Proposition 4.2 (ii). Suppose that there exists a collection C of m+1 disjoint
co-circuits of M .

If C is a co-circuit of M and C ∩ H1 6= ∅, then C ∩ H1 is a co-circuit of
M |H1. Since |C| > Θ(M |H1), one member of C must be C1 = E(M) − H1.
Similarly, we argue that C2 = E(M)−H2 ∈ C. But e ∈ C1 ∩C2, contradicting
that the members of C are disjoint.
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Let M be a matroid and F a flat in M . We say that F is a round flat of M
if M |F is round. Taking k = 1 in the above lemma, we get the following result
from [23].

Lemma 4.4. Let M be a matroid, and H1,H2 distinct round hyperplanes of
M , with H1 ∪H2 6= E(M). Then M is round.

We now define a family of matroids, that we call Dowling-cliques. They are
special cases of a class of combinatorial geometries (simple matroids) introduced
by Dowling in [9].

Definition 4.5. A matroid M with basis V is a Dowling-clique, if E(M) =
V ∪ X, where V = {v1, . . . , vn}, and X = {eij : 1 ≤ i < j ≤ n} satisfies that
{vi, vj , eij} is a triangle, for all i < j. We shall sometimes refer to a Dowling-
clique by writing (M,V ), to emphasize the basis V .

The matroid B̃(Kn) is a Dowling-clique by construction. Consider M =
M(Kn). Let v be a vertex of Kn, and let V be the set of edges incident with
v. Then V is a basis of M , and (M, V ) is a rank-(n − 1) Dowling-clique. It
satisfies M\V ' M(Kn−1).

Lemma 4.6. Dowling-cliques are round. In particular, M(Kn) and B̃(Kn)
are round. For n > 3, Θ(B(Kn)) = 2.

Proof. We first prove that a Dowling-clique (M, V ) is round by induction in
the rank r. The case r = 1 is trivial, so assume r ≥ 2. Consider a hyperplane
H of M spanned by V −v for some v ∈ V . Then (M |H, V −v) is a rank-(r−1)
Dowling-clique. So H is round by induction. Two such hyperplanes do not
cover E(M), so M is round by Lemma 4.4.

It is easily verified, that B(K4) ' U4,6, and so Θ(B(K4)) = 2. Let (M, V ) be
the Dowling-clique B̃(Kn) and let N = M\V = B(Kn). Consider a hyperplane
H of M spanned by V − v for some v ∈ V . Using Remark 1.5, it is easy to
show, that H − V is a hyperplane of N and N |(H − V ) ' B(Kn−1). As above,
a simple induction shows, that Θ(N) ≤ 2, this time using Lemma 4.3. Since
B(Kn) is not round, Θ(B(Kn)) = 2.

The first step in the proof of the main theorem, Theorem 1.1 is to show,
that a matroid of large enough rank either has k disjoint co-circuits or a large
minor N which is “nearly round”, in the sense that r(N) is large compared to
Γ(N).
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Lemma 4.7. Let g : N0 → N0 be a non-decreasing function. There exists
a function fg : N → N such that for any k ∈ N, if M is a matroid with
r(M) ≥ fg(k), then either

(a) M has k disjoint co-circuits or
(b) M has a minor N = M/Y with r(N) ≥ g(Γ(N)).

Proof. Let g be given and define fg as follows: fg(1) = 1 and

fg(k) = g(fg(k − 1)), k ≥ 2.

The proof is by induction on k. If r(M) ≥ 1, then M has a co-circuit, so the
result holds for k = 1. Now let k ≥ 2 and r(M) ≥ fg(k) = g(fg(k − 1)).

If Γ(M) ≥ fg(k − 1), then pick a co-circuit C of M with r−M (C) = Γ(M).
Then r(M/C) = r−M (C) ≥ fg(k−1). If M/C has the desired contraction minor,
then we are done. If not, then by induction M/C has k− 1 disjoint co-circuits.
These, together with C, give k disjoint co-circuits of M .

If Γ(M) ≤ fg(k−1), then as g is non-decreasing, we have r(M) ≥ g(Γ(M)).

5 Building density

The goal of this section is to prove, that a high-rank nearly round matroid
with no Ua+1,b-minor contains a dense minor. We think of a matroid as being
dense, if its a-covering number is large compared to the rank (for a = 1, this
is the usual concept of density). For “nearly round”, we use the condition
Γ(M) ≤ 1

2r(M). We first prove two technical lemmas.

Lemma 5.1. Let b > a ≥ 1. Let M be a matroid with no Ua+1,b-minor and let
C be a co-circuit of M of minimal size. If C1, . . . , Ck are disjoint co-circuits of
M\C with |C1| ≤ · · · ≤ |Ck|, then |Ci| ≥ |C| /(a

(
b−1
a

)
) for i = a, . . . , k.

Proof. Let C and C1 . . . , Ck be given and let i ∈ {a, . . . , k}.
As C1 is co-dependent in M\C\Ci, there exists a co-circuit C ′

1 ⊆ C1 of
M\(C ∪ Ci).

Now, C2 is co-dependent in M\C\(Ci∪C ′
1). So there is a co-circuit C ′

2 ⊆ C2

of M\(C ∪ Ci ∪ C ′
1).

Continuing in this fashion, for each j = 2, . . . , a − 1 we pick a co-circuit
C ′

j ⊆ Cj of M\(C ∪ Ci ∪ C ′
1 ∪ · · · ∪ C ′

j−1).
Denote by F the set E(M) − (C ∪ Ci ∪ C ′

1 ∪ · · · ∪ C ′
a−1) (see Figure 3).

Deleting a co-circuit of a matroid drops its rank by 1, so we get r−M (F ) = a+1.
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Hence N = M/F has rank r(N) = a+1. Since C is a co-circuit of N of minimal
size, E(N)− C must be a rank-a set of N of maximal size. We now have

|C| ≤ |E(N)| ≤ τa(N) |E(N)− C|
= τa(N)

∣∣Ci ∪ C ′
1 ∪ · · · ∪ C ′

a−1

∣∣

≤
(

b− 1
a

)
a |Ci|

using Lemma 3.2. This proves the desired result.

Lemma 5.2. There exists an integer-valued function κ(λ, a, b) such that the
following holds: Let b > a ≥ 1 and λ ∈ N. Let M be an a-simple matroid with
no Ua+1,b-minor, satisfying Γ(M) ≤ 1

2r(M). Let C be a minimal sized co-circuit
of M . If M\C has κ(λ, a, b) disjoint co-circuits, then τa(M) > λr(M).

Proof. Let a, b and λ be given and define

κ(λ, a, b) = κ = 2a

(
b− 1

a

)
σ(a)λ + a− 1.

Let M and C be given and let C1, . . . , Cκ be disjoint co-circuits of M\C, in
non-decreasing order by size. Note that

|C| ≥ rM (C) ≥ r(M)− Γ(M) ≥ r(M)/2.

By Lemma 3.6 and the above lemma we have

σ(a)τa(M) ≥ |E(M)|

> |Ca|+ · · ·+ |Cκ| ≥ (κ− a + 1)
r(M)

2a
(
b−1
a

) = σ(a)λr(M),

and the result follows.
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The next lemma is the main result of this section.

Lemma 5.3. There exists an integer-valued function δ(λ, a, b) such that the
following holds: Let b > a ≥ 1 and λ ∈ N. If M is a matroid with no Ua+1,b-
minor, such that Γ(M) ≤ 1

2r(M) and r(M) ≥ δ(λ, a, b), then M has a minor
N with τa(N) > λr(N).

Proof. Let a, b and λ be given and fixed, and let us define δ(λ, a, b). First, we
define a sequence of functions gn : N0 → N0. Let g0(m) = 0, and for n ≥ 1
define gn recursively by

gn(m) = max(2m, δn),
where δn = 2(fgn−1(κ(λ, a, b)) + 1) ∈ N.

Finally, let δ(λ, a, b) = δn0 , where n0 = 2σ(a)λ. The functions σ, κ and fgn are
defined in previous lemmas. We first prove a partial result.
Claim. Let n ≥ 0. If M is a matroid with no Ua+1,b-minor, such that r(M) ≥
gn(Γ(M)), then either

• M has a minor N with τa(N) > λr(N) or
• there exists a sequence of matroids M = M0,M1, . . . ,Mn, such that for

i = 0, . . . , n − 1, Mi+1 = Mi\Ci/Yi, where Ci is a co-circuit of Mi that
spans Mi/Yi.

We prove the claim by induction on n. The case n = 0 is trivial, so assume
n ≥ 1 and that the result holds for n− 1.

Let X ⊆ E(M) be minimal such that M\X is a-simple. Pick a co-circuit
C0 of M with |C0 −X| minimal. Note, that C = C0−X is a co-circuit of M\X
of minimal size.

Choose a basis Z of M/C0 and let M ′ = M/Z. Then C0 spans M ′, and
since r(M) ≥ gn(Γ(M)),

r(M ′) = rM (C0) ≥ r(M)− Γ(M) ≥ 1
2r(M) ≥ 1

2δn.

Now r(M ′\C0) = r(M ′) − 1 ≥ fgn−1(κ(λ, a, b)), so by Lemma 4.7 one of the
following holds:

(a) M ′\C0 has κ(λ, a, b) disjoint co-circuits.
(b) M ′\C0 has a minor M1 = M ′\C0/Y with r(M1) ≥ gn−1(Γ(M1)).
Assume first that (a) holds. Since M ′\C0 = M\C0/Z, by Proposition 4.2(i),

M\C0 has κ(λ, a, b) disjoint co-circuits. We claim, that X−C0 is co-independent
in M\C0. If not, then there exists a co-circuit D ⊆ X ∪ C0 of M with
D ∩ (X −C0) 6= ∅, contradicting our choice of C0. Now, by Proposition 4.2(ii),

Θ((M\X)\C) = Θ(M\(C0 ∪X)) ≥ Θ(M\C0) ≥ κ(λ, a, b).
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The proposition also gives Γ(M\X) ≤ 1
2r(M\X). We can now apply Lemma 5.2

to N = M\X, and get the desired result.
Assume now that (b) holds. Letting Y0 = Z ∪ Y , we have M1 = M\C0/Y0

and C0 spans M/Y0. Applying the induction hypothesis to M1 now gives the
claim.

Let M be given as in the lemma, and note that r(M) ≥ gn(Γ(M)), where
n = 2σ(a)λ. By the claim, either we are done or there is a sequence of matroids
M = M0, . . . , Mn, such that for i = 0, . . . , n − 1, Mi+1 = Mi\Ci/Yi, where Ci

is a co-circuit of Mi that spans Mi/Yi.
Let M ′ = M/(Y0 ∪ · · · ∪ Yn−1). Notice, that for i = 0, . . . , n − 1, Ci is

a spanning co-circuit of M ′\(C0 ∪ · · · ∪ Ci−1). Thus rM ′(Ci) = r − i, where
r = r(M ′). For all i, choose a basis Bi for M ′|Ci, and define N = M ′|(∪Bi).
Then

|E(N)| =
n−1∑

i=0

(r − i) >
nr

2
.

We claim that N is a-simple. Suppose N |W ' Uk,2k for a W ⊆ E(N) and
k ∈ N. Then |W ∩B0| ≤ k, as B0 is independent. So |W ∩ (E(N)−B0)| ≥ k,
and since E(N)−B0 is closed, W ∩B0 = ∅. Repeat this argument in N\B0 to
see, that W ∩B1 = ∅ etc. We end up with W ⊆ Bn−1, a contradiction.

Finally, by Lemma 3.6,

σ(a)τa(N) ≥ |E(N)| > nr

2
= σ(a)λr(N),

and the result follows.

6 Arranging circuits

We wish to identify some more concrete structure in a dense matroid. To do
this, we need to be able to disentangle some of the many low-rank sets in the
matroid.

For a matroid M , we call sets A1, . . . , An ⊆ E(M) skew if rM (∪iAi) =∑
i rM (Ai). This is analogous to subspaces of a vector-space forming a direct

sum. The first result of this section is a tool for finding sets in a matroid, that
are close to being skew. This is made precise using the following definition.
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We define a function µM on collections of subsets of E(M) as follows. For
sets A1, . . . , An ⊆ E(M), let

µM (A1, . . . , An) = rM (
⋃

j

Aj)−
∑

i

(
rM (

⋃

j

Aj)− rM (
⋃

j 6=i

Aj)
)

= rM (
⋃

j

Aj)−
∑

i

rM/(∪j 6=iAj)(Ai − ∪j 6=iAj)).

This function can be thought of as a generalized connectivity function. For
n = 2 , µM equals the connectivity function λM (A1, A2) = rM (A1)+ rM (A2)−
rM (A1 ∪A2). For n ≥ 2 a recursive formula holds,

µM (A1, . . . , An) = λM (A1, A2 ∪ · · · ∪An) + µM/A1
(A2, . . . , An).

In showing this, to ease notation, we may assume that A1, . . . , An are disjoint
(otherwise we can add elements in parallel wherever the sets intersect, and
make them disjoint).

µM (A1, . . . , An) = rM (
⋃

j

Aj)−
∑

i

rM/(∪j 6=iAj)(Ai)

= rM (A1)− rM/(A2∪···∪An)(A1)

+ rM/A1
(A2 ∪ · · · ∪An)−

n∑

i=2

rM/A1/(∪j 6=1,iAj)(Ai)

= λM (A1, A2 ∪ · · · ∪An) + µM/A1
(A2, . . . , An).

The function µM measures in a way the rank of the “overlap” of the sets,
though this may not be an actual set in the matroid (see Figure 4). Notice,
that µM (A1, . . . , An) = 0 if and only if A1, . . . , An are skew. More generally, if
there is a set W ⊆ E(M) such that A1 −W, . . . , An −W are skew in M/W ,
then µM (A1, . . . , An) ≤ rM (W ).

Lemma 6.1. There exists an integer-valued function α1(n, r, a, b) such that the
following holds: Let b > a ≥ 1, and let r and n be positive integers. If M is a
matroid with no Ua+1,b-minor, and F is a collection of rank-r subsets of E(M)
with rM (∪X∈FX) ≥ α1(n, r, a, b), then there exist X1, . . . , Xn ∈ F satisfying

(a) Xi * clM (∪j 6=iXj) for i = 1, . . . , n and
(b) µM (X1, . . . , Xn) ≤ (r − 1)a.

The bound µM (X1, . . . , Xn) ≤ (r − 1)a is best possible. To see this, let
m ≥ a, and consider the matroid

M = Ua,m ⊕ · · · ⊕ Ua,m ⊕ e1 ⊕ · · · ⊕ em,
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consisting of r− 1 skew copies of Ua,m and m co-loops e1, . . . , em. Then M has
no Ua+1,b-minor. For i = 1, . . . ,m, let Wi ⊆ E(M) consist of a unique element
from each copy of Ua,m along with ei. For any collection X1, . . . , Xn of distinct
members of F = {Wi} with n > a, it is easily seen that µM (X1, . . . , Xn) =
(r − 1)a.

Proof. For any positive integers n, c, k, we let R(n, c, k) denote the following
Ramsey number: The minimal R, such that if X is a set with |X| = R, then
for any c-coloring of [X]n, X has a monochromatic subset of size k. Here [X]n

denotes the set of all subsets of X of size n. By a monochromatic subset of X,
we mean a subset Y ⊆ X such that the sets in [Y ]n all have the same color.
This number exists by Ramsey’s Theorem (see [40] or [7, 9.1.4]).

Let n, r, a, b be given and let us define α1(n, r, a, b). First we define numbers
si, li for i = 1, . . . , r. Let sr = 0, lr = n, and for i = r − 1, r − 2, . . . , 1 define
recursively:

si = si+1 + li+1, ui =
(

b− 1
a

)rsi−a

, li = n

(
ui

r − i

)
.

Let m = s1 + l1. So, we have 0 = sr < sr−1 < · · · < s1 < m. Next, define
numbers k1, . . . , km as follows. Let km = m and define recursively:

ki−1 = R(i, r, ki), for i = m,m− 1, . . . , 2.

Finally, let α1(n, r, a, b) = rk1.
In the following, for a set of subsets X ⊆ 2E(M), we use the shorthand

notation rM (X ) = rM (∪X∈XX).
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Let M and F be given, with rM (F) ≥ α1(n, r, a, b) = rk1. We can choose
sets Y1, . . . , Yk1 ∈ F , such that Yi /∈ clM (Y1∪· · ·∪Yi−1). Let F1 = {Y1, . . . , Yk1}
and put a0 = 0, a1 = r. We shall iteratively construct sequences:

F1 ⊇ F2 ⊇ · · · ⊇ Fm, a0 < a1 < a2 < · · · < am,

such that for i = 1, . . . ,m, |Fi| = ki, and if F ′ ⊆ Fi with |F ′| = i, then
rM (F ′) = ai. This clearly holds for F1. Let i ≥ 2, assume that Fi−1 and ai−1

satisfy the above, and let us find Fi and ai.
Note, that rM (F ′) ∈ {ai−1 + 1, . . . , ai−1 + r}, for F ′ ⊆ Fi−1 with |F ′| = i.

This defines an r-coloring of [Fi−1]i. Since |Fi−1| = ki−1 = R(i, r, ki), there
exists Fi ⊆ Fi−1 such that, every set in [Fi]i has the same rank, and we let ai

be that number.
For i = 1, . . . ,m let bi = ai−ai−1. Notice that, by submodularity, this gives

a decreasing sequence (ai+1 + ai−1 ≤ ai + ai),

r = b1 ≥ b2 ≥ · · · ≥ bm ≥ 1.

Hence, by definition of the pairs (si, li), there exists an r′ ∈ {1, . . . , r}, such
that

bs+1 = · · · = bs+l = r′, where s = sr′ and l = lr′ .

If r′ = r, then we get b1 = · · · = bn = r. Thus, if we choose any n members
X1, . . . , Xn ∈ Fm, then they are skew and we are done.

Assume r′ < r. Choose s sets Z1, . . . , Zs ∈ Fm, and let F = ∪s
i=1Zi. Choose

another l sets X1, . . . , Xl ∈ Fm − {Z1, . . . , Zs}. Since bs+1 = bs+l = r′, the sets
X1 − F, . . . , Xl − F are skew of rank r′ in M/F . For i = 1, . . . , l, choose an
independent set Bi ⊆ Xi of size r′, skew from F . Expand this set to a basis
Bi ∪Bi of Xi, so |Bi| = r0 = r − r′.

Let M ′ = M/(∪iBi) and B = ∪iBi. Then Bi ⊆ clM ′(F ), and thus
rM ′(B) ≤ rM ′(F ) ≤ sr. Let (W1, . . . , Wu) be a minimal a-covering of M ′|B.
By Proposition 3.4, we have

u = τa(M ′|B) ≤
(

b− 1
a

)sr−a

= ur′ .

For each Bi, we can find a set of indices Ii ⊆ {1, . . . , u} of size r0, such that
Bi ⊆ ∪j∈IiWj . There are

(
u
r0

) ≤ ( ur′
r−r′

)
possible choices for Ii, and l = n

( ur′
r−r′

)
.

By a majority argument, there must exist I ⊆ {1, . . . , u}, such that Ii = I for
all i ∈ J , where J ⊆ {1, . . . , l} has size n. By possibly re-ordering the Xi

′s and
the Wj

′s we can assume, that B1, . . . , Bn ⊆ W1 ∪ · · · ∪Wr0 .
Let W = W1 ∪ · · · ∪Wr0 . Then the sets X1 −W, . . . , Xn −W are skew in

M/W . It follows, that µM (X1 . . . , Xn) ≤ rM (W ) ≤ ar0 ≤ a(r− 1), and we are
done.



6. Arranging circuits 21

The next lemma shows how, by doing suitable contractions, a large collec-
tion of nearly (but not completely) skew circuits, can yield a set of nearly skew
triangles containing a common element. The idea is to put points in the “over-
lap” by contracting some of the circuits. The overlap can then be contracted
to a point.

Lemma 6.2. There exists an integer-valued function α2(l, r,m) such that the
following holds: Let r ≥ 2 and l, m be positive integers. If n ≥ α2(l, r,m) and
C1 . . . , Cn are rank-r circuits of a matroid M satisfying

(a) 1 ≤ rM (∪jCj)− rM (∪j 6=iCj) < r for all i, and
(b) µM (C1, . . . , Cn) ≤ m,

then M has a minor N = M/Y with an element x ∈ E(N) and triangles
D1, . . . , Dl of N , such that

• x ∈ Di for all i, and rN (∪iDi) = l + 1,
• for all i, Di − x ⊆ Cj for some j ∈ {1, . . . , n}.

Proof. Let l and m be fixed. For r ≥ 2, define α2(l, r,m) recursively as follows

α2(l, r,m) = 2m(qr(r − 1) + 1),

q2 = l, qr = α2(l, r − 1, r − 2), for r > 2.

To facilitate induction, the lemma is proved from the following weaker set of
assumptions:
Let n ≥ α2(l, r,m), and C1 . . . , Cn be circuits of M with 2 ≤ rM (Ci) ≤ r.
Assume there is a set F ⊆ E(M), such that

(a) 1 ≤ rM ((∪jCj) ∪ F )− rM ((∪j 6=iCj) ∪ F ) < rM (Ci)− 1 for all i.
(b) µM (C1, . . . , Cn, F ) ≤ m.

These assumptions are indeed weaker, since the phrasing in the lemma is the
case where F = ∅ and rM (Ci) = r for all i. The proof is by induction on r. Let
r = 2 or let r > 2 and assume the result holds for r − 1.

Let ci = rM ((∪jCj) ∪ F ) − rM ((∪j 6=iCj) ∪ F ) for each i. We first do an easy
reduction. If not ci = 1 for all i, then for each i choose a set Yi ⊆ Ci of size
ci − 1, which is skew from (∪j 6=iCj) ∪ F . We may then work with the circuits
Ci − Yi of M/(Y1 ∪ · · · ∪ Yn) instead. So without loss of generality, we may
assume ci = 1 for all i.

Choose zi ∈ Ci − clM (∪j 6=iCj) for each i, and let M = M/ {z1, . . . , zn}.
Letting W = ∪i(Ci − zi) we have

rM (W ) = rM (∪iCi)− rM ({z1, . . . , zn}) = µM (C1, . . . , Cn, F ) ≤ m.
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Let B be a basis of M |W and choose a basis Bi of M |(Ci − zi) for each i.
Now expand Bi to a basis Bi ∪ Xi of M |W using elements of B. For all i
we have chosen Xi ⊆ B among the 2|B| ≤ 2m subsets of B. Hence, there
exists an X0 ⊆ B, such that Xi = X0 for i ∈ I, where |I| = n′ ≥ n/2m. Let
M1 = M/X0 and put r′ = |B| − |X0|+ 1. Then rM1(Ci) = r′ for all i ∈ I, and
µM1(Ci : i ∈ I) = r′ − 1. By possibly reordering the circuits, we can assume
I = {1, . . . , n′}.

Pick an element of one circuit, z ∈ Cn′−clM1(∪j<n′Cj) and let M2 = M1/z.
Define

Z = clM2(Cn′ − z) ⊆ clM2(Ci), for i = 1, . . . , n′ − 1,

so rM2(Z) = r′−1. Choose a non-loop element x ∈ Z and elements yi ∈ Ci−Z
for i = 1, . . . , n′−1. Since x ∈ clM2(Ci), Ci∪x is connected, so there is a circuit
C ′

i of M2 with

{x, yi} ⊆ C ′
i ⊆ Ci ∪ x, and rM2(C

′
i) ∈

{
2, . . . , r′

}
.

Notice that C ′
i * clM2(∪j 6=i,j<n′C

′
j), since yi ∈ C ′

i.
By another majority argument, there exists s ∈ {2, . . . , r′}, such that

rM2(C
′
i) = s for i ∈ J , where |J | ≥ (n′ − 1)/(r − 1) ≥ qr. We now have

two cases:
s = 2: Since qr ≥ q2 = l we can choose J ′ ⊆ J with |J ′| = l. We are now

done with {D1, . . . , Dl} = {C ′
i : i ∈ J ′} and N = M2.

2 < s ≤ r′: Let M3 = M2/x and let Ci = C ′
i − x for i ∈ J . Then Ci is a

rank-(s− 1) circuit of M3, with Ci ⊆ Ci. Letting F ′ = Z − x we have,

µM3(Ci : i ∈ J, F ′) ≤ rM3(F
′) = r′ − 2 ≤ r − 2.

As |J | ≥ α2(l, r − 1, r − 2) we get by induction the desired minor.

The following result is just a corollary to Lemmas 6.1 and 6.2, that we state
for easier reference.

Lemma 6.3. There exists an integer-valued function α3(s, l, a, b) such that the
following holds: Let b > a ≥ 1 and let s, l be positive integers. If M is a matroid
with no Ua+1,b-minor, and C is a set of circuits of M of rank at most a + 1,
with rM (∪C∈CC) ≥ α3(s, l, a, b), then either:

(i) there exist s skew circuits C1, . . . , Cs ∈ C, or
(ii) M has a minor N = M/Y with an element x ∈ E(N) and triangles

D1, . . . , Dl of N , such that
• x ∈ Di for all i, and rN (∪iDi) = l + 1, and
• For all i, Di − x ⊆ C for some C ∈ C.
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Proof. Define α3(s, l, a, b) = α3 by

α3 =
a+1∑

r=1

α1(nr, r, a, b), where nr = s + α2(l, r, (r − 1)a),

and let M , C be given. By a majority argument, there exists a number
r ∈ {1, . . . , a + 1} and C′ ⊆ C, such that rM (C) = r for all C ∈ C′, and
rM (∪C∈C′C) ≥ α1(nr, r, a, b).

Now, by Lemma 6.1, there are C1, . . . , Cn ∈ C′, where n = nr = s +
α2(l, r, (r − 1)a), satisfying

ci = rM (∪jCj)− rM (∪j 6=iCj) ≥ 1,

for all i, and µ(C1, . . . , Cn) ≤ (r − 1)a.
Let I = {i : ci = r} and J = {i : ci < r}. If |I| ≥ s, then case (i) holds,

since the Ci with i ∈ I are skew. Otherwise, |J | ≥ α2(l, r, (r− 1)a), and the Ci

with i ∈ J still satisfy

rM (∪j∈JCj)− rM (∪j∈J−{i}Cj) < r.

Lemma 6.2 now gives case (ii) of the result.

7 Nests

A line in a matroid is long if it contains at least 3 points (rank-1 flats). So, a
long line in a simple matroid is a line with at least 3 elements. Also, a line is
long if and only if it contains a triangle. We need a lot of long lines to construct
clique-like structures. We first aim to build an intermediate structure called a
nest.

Definition 7.1. A matroid M is a nest if M has a basis B = {b1, . . . , bn} such
that, for each pair of indices i, j ∈ {1, . . . , n}, i < j, the set {bi, bj} spans a
long line in M/ {b1, . . . , bi−1}. The elements in B are called the joints of the
nest M .

A Dowling-clique (M, V ) is clearly a nest with joints V (the elements in V
can be taken in any order, to satisfy Definition 7.1). The main result of this
section is the following.

Lemma 7.2. There exists an integer-valued function ν(n, t, a, b) such that the
following holds: Let b > a ≥ 1 and let n, t be positive integers. If M is a t-round
matroid with no Ua+1,b-minor and r(M) ≥ ν(n, t, a, b), then M has a rank-n
nest as a minor.
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b1

b2

b3

b4

e12

e13e14

e24
e34

e23

Figure 5: A rank-4 nest, where {bi, bj , eij} is a triangle of
M/ {b1, . . . , bi−1}.

We obtain a nest by finding one joint at a time using the next lemma.

Lemma 7.3. There exists an integer-valued function ν1(m, t, a, b) such that the
following holds: Let b > a ≥ 1 and m, t be positive integers. If M is a t-round
matroid with no Ua+1,b-minor, r(M) ≥ ν1(m, t, a, b) and B is a basis of M ,
then M has a rank-m minor N , with a basis B′ ⊆ B ∩ E(N) and an element
b1 ∈ B′, such that {b1, d} spans a long line in N for each d ∈ B′ − b1.

Let us start by seeing how this result is used to prove Lemma 7.2.

Proof of Lemma 7.2. Let t be fixed. Let ν(1, t, a, b) = 1 and for n ≥ 2 define ν
recursively by

ν(n, t, a, b) = ν1(ν(n− 1, t, a, b) + 1, t, a, b).

To facilitate induction, we prove the stronger statement:

If M is a t-round matroid with no Ua+1,b-minor, r(M) ≥ ν(n, t, a, b) and B is
a basis of M , then M has a rank-n nest M/Y as a minor, with joints contained
in B.

The proof is by induction on n. For n = 1 the result is trivial, as any rank-1
matroid is a nest. Let n ≥ 2 and assume the result holds for n− 1. Let M and
B be given as above.

By Lemma 7.3, M has a minor N1 of rank ν(n− 1, t, a, b) + 1, with a basis
B1 ⊆ B and b1 ∈ B1 such that {b1, d} spans a long line in N1 for d ∈ B1 − b1.
We can write N1 = M/Y1\X1, where X1 is co-independent. Since B1 is also a
basis of M/Y1, we can assume N1 = M/Y1.
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Let N ′
1 = N1/b1. Since t-roundness is preserved under contractions, N ′

1 is
t-round. Now r(N ′

1) = ν(n − 1, t, a, b) so by induction, N ′
1 has a rank-(n − 1)

nest N2 = N ′
1/Y2 as a minor, with joints B2 ⊆ B1 − b1.

Now, let Y = Y1 ∪ Y2 and N = M/Y , so we have N2 = N/b1. Then N
satisfies the following

• b1 ∪B2 ⊆ B is a basis of N ,
• For each d ∈ B2, {b1, d} spans a long line in N ,
• N/b1 = N2 is a nest with joints B2.

Now write B2 = {b2, . . . , bn} in accordance with Definition 7.1 for N2. Then,
N is easily seen to be a nest with joints {b1, . . . , bn}.

We shall consider coverings of matroids by connected sets. A loop is a triv-
ial connected component of a matroid, that we wish to avoid counting. For a
matroid M denote by τ c

a(M) the minimum size of an a-covering (X1, . . . , Xm)
of M\ {loops}, where X1, . . . , Xm are connected sets. Clearly τ c

a(M) ≥ τa(M).
Note also, that a loop-less rank-a matroid N has at most a connected compo-
nents, so τ c

a(N) ≤ a. Thus, we have in general for a matroid M :

τa(M) ≤ τ c
a(M) ≤ aτa(M).

We need a technical lemma before we prove Lemma 7.3.

Lemma 7.4. Let b > a ≥ 1. Let M be a matroid with no Ua+1,b-minor, and
let e ∈ E(M). Let F be the collection of all connected rank-(a + 1) sets in M
containing e. If n = rM (∪X∈FX), then

τ c
a(M)− τ c

a(M/e) ≤ a2

(
b− 1

a

)n−a

+ 1.

Proof. If e is a loop, then the result is trivially true, so let e be a non-loop
element. We may assume, in fact, that M is loop-less.

Let (X1, . . . , Xk) be a minimal a-covering of M/e\ {loops} by connected
sets. We shall construct an a-covering of M by connected sets. Consider the
following cases:

(1) e /∈ clM (Xi). Then Xi is connected already in M , and rM (Xi) =
rM/e(Xi) ≤ a.

(2) e ∈ clM (Xi). In this case Xi ∪ e is connected in M , and it has rank
rM (Xi ∪ e) = rM/e(Xi) + 1 ≤ a + 1. Now either,
(2a) rM (Xi ∪ e) ≤ a or
(2b) rM (Xi ∪ e) = a + 1.
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We can assume, after possibly reordering the sets, that X1, . . . , Xm satisfy
(2b), and Xm+1, . . . , Xk satisfy (1) or (2a). For i = 1, . . . , m we have

τ c
a(M |(Xi ∪ e)) ≤ aτa(M |(Xi ∪ e)) ≤ a

(
b− 1

a

)
.

The elements of M destroyed when forming M/e\ {loops} is the connected set
clM ({e}). It is now clear, that we can get an a-covering of size s of M by
connected sets, where

τ c
a(M) ≤ s ≤ ma

(
b− 1

a

)
+ (k −m) + 1

≤ ma

(
b− 1

a

)
+ τ c

a(M/e) + 1.

If m = 0, we are done, so assume m ≥ 1. Define M ′ = (M/e)|(∪m
i=1Xi)

and note, that (X1, . . . , Xm) is a minimal a-covering of M ′ by connected sets.
Hence, by Proposition 3.4,

m = τ c
a(M ′) ≤ aτa(M ′) ≤ a

(
b− 1

a

)r(M ′)−a

.

Also, r(M ′) = rM (∪m
i=1(Xi ∪ e))− 1 ≤ n− 1, since Xi ∪ e ∈ F for i = 1, . . . , m.

Now, combining the inequalities gives the desired result.

Let M be a matroid, k ∈ N and let B ⊆ E(M). We say that B k-dominates
M , if for any element x ∈ E(M) there is a set W ⊆ B with rM (W ) ≤ k, such
that x ∈ clM (W ). A k-dominating set clearly has to be spanning.

It is easily verified, that k-domination is preserved under contractions in
the following sense: If B, Y ⊆ E(M) and B k-dominates M , then B − Y
k-dominates M/Y .

Proof of Lemma 7.3. Let m, t, a and b be given, and define the following con-
stants,

r4 = α3(m + 1,m, a, b), l = m + r4, r3 = α3(2, l, a, b),

λ = a2

(
b− 1

a

)r3−a

+ 1, r1 = max(2t, δ(λ, a, b)),

and let us define ν1(m, t, a, b) = ν1 = σ(a)
(
b−1
a

)r1−a
. Let M and B be given.

We first make a quick observation:
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(z) It is enough to find a minor N ′ of M , with an element z ∈ E(N ′) and an
m-set B′ ⊆ B ∩ E(N ′), such that B′ ∪ z is independent in N ′ and {z, d}
spans a long line in N ′ for each d ∈ B′.

To see this, we may assume that B′ ∪ z is a basis of N ′ (otherwise, we restrict
to clN ′(B′ ∪ z)). Now choose b1 ∈ B′ and an element y, such that {z, b1, y} is
a triangle in N ′. Let N = N ′/y, and note, that z and b1 are parallel in N . So
{b1, d} spans a long line in N for d ∈ B′−d. Since B′ is a basis of N we are done.

We start by proving the following.

Claim. M has a t-round minor N1 with r(N1) ≥ r1 and B ⊆ E(N1), such that
B (a + 1)-dominates N1.

Let N1 be a minimal minor of M satisfying, that N1 is t-round and a-
simple and B ⊆ E(N1). Such a minor exists, since we can choose X ⊆ E(M)
minimal, such that M\X is a-simple, and as B is independent we can take X
with X ∩B = ∅. We then have Γ(M\X) = Γ(M) ≤ t.

To see that B (a+1)-dominates N1, let f ∈ E(N1)−B. N1/f is t-round, as
N1 is t-round. Now (N1/f)|B cannot be a-simple: If it is, then we may choose
X ⊆ E(N1/f)−B minimal, such that N1/f\X is a-simple. But then N1/f\X
is t-round by Proposition 4.2, contradicting the minimality of N1. N1 is simple,
so N1/f is loop-less. Since (N1/f)|B is not a-simple, there must be a W ⊆ B,
with

(N1/f)|W ' Uk,2k,

for a k ∈ {1, . . . , a}. Then rN1(W∪f) = k+1, and we must have rN1(W ) = k+1.
If not, then N1|W ' Uk,2k, but N1 is a-simple. Thus, f ∈ clN1(W ), and B
(a + 1)-dominates N1.

By Lemma 3.6, we have

σ(a)τa(N1) ≥ |E(N1)| ≥ |B| = r(M) ≥ ν1,

and so, τa(N1) ≥
(
b−1
a

)r1−a
> 1. Clearly, r(N1) > a, so we can apply Proposi-

tion 3.4, and get r(N1) ≥ r1. This proves the claim.

Now let N1 be given. By definition of r1, we have Γ(N1) ≤ t ≤ 1
2r(N1) and

r(N1) ≥ δ(λ, a, b). Lemma 5.3 gives a dense minor N2 of N1 that satisfies
τa(N2) > λr(N2). We may assume, that N2 = N1/Y1. Now, N2 also satisfies
τ c
a(N2) > λr(N2). Let Y2 ⊆ E(N2) be maximal, with

τ c
a(N2/Y2) > λr(N2/Y2),
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and let N3 = N2/Y2. N3 must be loop-less, since Y2 is maximal. Pick an
element e ∈ E(N3). Then,

τ c
a(N3)− τ c

a(N3/e) > λr(N3)− λr(N3/e) = λ.

Let F denote the collection of all connected rank-(a + 1) sets in N3 containing
e, and let n = rN3(∪X∈F ). By Lemma 7.4, we then have λ < a2

(
b−1
a

)n−a
+ 1,

and by definition of λ, this yields n ≥ r3.
Denote by C the collection of all circuits of N3 of rank at most a + 1 con-

taining e. For each X ∈ F and non-loop y ∈ X− e, since X is connected, there
exists a circuit C ⊆ X containing e and y, so C ∈ C. Hence, rN3(∪C∈CC) ≥ n.

Since n ≥ r3 = α3(2, l, a, b) we can apply Lemma 6.3. As no two circuits in
C are skew, we get case (ii): There is a minor N4 = N3/Y3, with x ∈ E(N4)
and triangles D1, . . . , Dl of N4, such that x ∈ Di and rN4(∪iDi) = l + 1. Pick
an element hi ∈ Di − x for i = 1 . . . , l.

Let I = {i : hi ∈ B}. If |I| ≥ m, then we can choose an m-set B′ ⊆
{hi : hi ∈ B} and we are done by (z), taking N ′ = N4 and z = x. So, assume
|I| ≤ m. By possibly re-ordering the Di, we may assume h1, . . . , hr4 /∈ B.

By the remark preceding the proof, B∩E(N4) (a+1)-dominates N4. So, for
each i ∈ {1, . . . , r4}, hi is in the closure of a subset of B of rank at most a + 1.
Choose a circuit Ci of N4 containing hi, with rN4(Ci) ≤ a + 1 and Ci ⊆ B ∪ hi

(see Figure 6). Since {h1, . . . , hr4} is independent, we have rN4(∪iCi) ≥ r4. As
r4 = α3(m + 1,m, a, b) we can apply Lemma 6.3 again, and we get one of two
cases.

x

h1

h2

h3

h4

hr4

C1

C2
C3

C4

Cr4

Figure 6

Consider case (i): There are s = m + 1 skew circuits among C1 . . . , Cr4 in
N4. After possibly re-ordering we may assume C1, . . . , Cs are skew. We would
like x to be skew from the Ci’s. If not {x} and ∪s

i=1Ci are skew, we omit one of
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the Ci’s: Assume x ∈ clN4(∪s
i=1Ci) and let B∗ be a basis for ∪s

i=1Ci in N4. Then
there is a unique circuit C∗ ⊆ B∗ ∪ x. Again, after re-ordering, we can assume
C∗ ∩ Cs 6= ∅. Then x /∈ clN4(B∗ − Cs) = clN4(∪s−1

i=1Ci), and so C1, . . . , Cm, {x}
are skew sets in N4.

For i = 1, . . . , m, pick an element bi ∈ Ci − hi, and let Ki = Ci − {hi, bi}.
Define N5 = N4/(∪iKi). Then hi and bi are parallel in N5. Letting B′ =
{b1, . . . , bm} we are done by (z), with N ′ = N5 and z = x.

Consider now case (ii): N4 has a minor N5, with z ∈ E(N5) and triangles
D′

1, . . . , D
′
m in N5, such that z ∈ D′

i and rN5(∪iD
′
i) = m + 1. Also, for each i,

D′
i − z ⊆ Cj for some j. Thus, D′

i − z ⊆ B ∪ hj and we can pick an element
bi ∈ (D′

i − z) ∩ B. Taking B′ = {b1, . . . , bm} and N ′ = N5, we are again done
by (z).

8 Dowling-cliques

The goal of this section is to extract from a nest the general kind of clique,
that we call a Dowling-clique (defined in Section 4). To do this, we shall first
go through yet another intermediate structure.

Definition 8.1. Let n ∈ N. A matroid M is an n-storm, if its ground set is
the disjoint union E(M) = F ∪C1 ∪ · · · ∪Cm, where rM (F ) = n and each Ci is
a size-(n + 1) independent co-circuit of M , with F ⊆ clM (Ci). We call the Ci

clouds of M .

In an n-storm, the set F must be closed, since it is an intersection of
hyperplanes. Note also, that C1, . . . , Cm are skew in M/F , and hence that
µM (C1 . . . , Cm) = n.

F

C1

C2 Cm

Figure 7: An n-storm with m clouds.
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We shall first see that nests contain storms as restrictions.

Lemma 8.2. Let m and n be positive integers. If M is a nest of rank at least
n + m, then M has an n-storm N with m clouds as a minor.

Proof. Let M be a rank-r nest with joints B = {b1, . . . , br}, where r = n + m.
For each pair (i, j), 1 ≤ i < j ≤ r, pick an element eij , such that {bi, bj , eij} is
a triangle of M/ {b1, . . . , bi−1}. We need two observations:

(1) e1k, e2k, . . . , ek−1,k /∈ clM (B − bk), for k = 2, . . . , r.

(2) clM ({b1, . . . , bi, bk}) = clM ({e1k, . . . , eik, bk}), for i < k.

To see that (1) holds, let i, k be given, with 1 ≤ i < k. By definition
of eik we have eik /∈ clM ({b1, . . . , bi}), but eik ∈ clM ({b1, . . . , bi, bk}). So the
fundamental circuit of eik in M with respect to the basis B, must contain bk.
Hence, eik /∈ clM (B − bk).

We prove (2) by induction on i with k fixed. The case i = 1 is trivial,
since {b1, bk, e1k} is a circuit in M . Suppose 1 < i < k and (2) holds for
i − 1. Again, by definition of eik we have eik /∈ clM ({b1, . . . , bi−1, bk}), but
eik ∈ clM ({b1, . . . , bi, bk}). Thus, by the matroid axioms for closure,

clM ({b1, . . . , bi, bk}) = clM ({b1, . . . , bi−1, bk, eik})
= clM ({e1k, . . . , ei−1,k, bk, eik}),

where the induction hypothesis is used in the second step.

b1
b2

bnF

bn+1 br

bn+2

ei,n+1

ei,n+2

ei,r

Cn+1

Cn+2

Cr

Figure 8

Let S = {b1, . . . , bn} and F = clM (S), and for each k = n + 1, . . . , r define
Ck = {e1k, . . . , enk, bk} (see Figure 8).
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Notice that by (1), Ck ∩ F = ∅ for all k, and Ck ∩ Cl = ∅ for k 6= l. From
(2) we gather, that Ck is independent with F ⊆ clM (Ck) for all k. Define
N = M |(F ∪Cn+1 ∪ · · · ∪Cr). It is easily checked, that the Ck’s are co-circuits
of N .

In the case n = 2, the concept of an n-storm is similar to that of a “book”,
used by Kung in [29], and an analogue of one of his ideas is part of the proof
of the following result (the notion of book mentioned here differs slightly from
the one we mention in Chapter 4, Section 5).

Lemma 8.3. There exist integer-valued functions φ1(n, a, b), φ2(n, a, b) such
that the following holds: Let b > a ≥ 1 and let n be a positive integer. If M
is a φ1(n, a, b)-storm with φ2(n, a, b) clouds, and M has no Ua+1,b-minor, then
M contains a rank-n Dowling clique N as a minor.

Proof. Let n, a, b be given and let us define φ1 and φ2. First, let l = na. For
r = 1, . . . , a, let sr = α1(n, r, a, b) and let s =

∑a
r=1 sr. Define a sequence of

numbers m0, . . . ,ms recursively as follows: let ms = l, and

mk = σ2(a, mk+1)
(

b− 1
a

)s−a

+ 1, for k = s− 1, . . . , 1, 0.

Finally, let φ1(n, a, b) = s and φ2(n, a, b) = m0.

Let M be an s-storm with m = m0 clouds. Denote the clouds by C1, . . . , Cm

and their elements Ci =
{
ei
0, e

i
1, . . . , e

i
s

}
.

Define M ′ = M/
{
e1
0, e

2
0, . . . , e

m
0

}
. So r(M ′) = s. Let I0 = {1, . . . , m}. We

wish to find a subcollection of the clouds, such that elements with the same
index lie on a uniform restriction of M ′. We shall construct a sequence of
subsets,

I0 ⊇ I1 ⊇ · · · ⊇ Is, where |Ik| = mk,

such that for k = 1, . . . , s, M ′|{ei
k : i ∈ Ik

} ' Urk,mk
, for some number rk ∈

{1, . . . , a}. Let k ≥ 1, suppose Ik−1 has been defined and let us see how to find
Ik. Let W =

{
ei
k : i ∈ Ik−1

}
and suppose M ′|W has no Ur,mk

-restriction for
r = 1, . . . , a. Lemma 3.7 and Proposition 3.4 then give

mk−1 = |W | ≤ σ2(a,mk)τa(M ′|W ) ≤ σ2(a,mk)
(

b− 1
a

)s−a

,

contradicting our definition of mk−1. So, take U ⊆ W such that M ′|U is
isomorphic to Urk,mk

, and let Ik =
{
i : ei

k ∈ U
}
.
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After possibly re-ordering the clouds in M , we may assume that Is =
{1, . . . , l}. Let then Lk =

{
e1
k, . . . , e

l
k

}
for k = 1, . . . , s, so M ′|Lk ' Urk,l. Now,

by a majority argument, there exist r ∈ {1, . . . , a}, and a subset J ⊆ {1, . . . , s}
with |J | ≥ sr, such that rk = r, for all k ∈ J . Define L = {Lk : k ∈ J}. Since
C1 − e1

0 is independent in M ′, we have

rM ′(∪L∈LL) ≥ |L| = |J | ≥ sr = α1(n, r, a, b).

We now apply Lemma 6.1 and get a subcollection L′ ⊆ L of size n, such that
L * clM ′(∪L′∈L′−LL′), for each L ∈ L′. After possibly permuting the elements
of each cloud, we can assume L′ = {L1, . . . , Ln}. Let Di =

{
ei
0, e

i
1, . . . , e

i
n

} ⊆ Ci

(see Figure 9).
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e
1
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e
1

1
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1
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e
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n
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e
l

n

e
l

1

L1

Ln

Figure 9

By our arrangement of the Lk’s, we can find a set B ⊆ ∪n
k=1Lk independent

in M ′, such that rM ′(Lk ∪ B) − rM ′(B) = 1, for each k ∈ {1, . . . , n}, and the
sets L1 −B, . . . , Ln −B are skew in M ′/B.

Now Lk * clM ′(B), and since M ′|Lk is rank-r uniform, we must have
|Lk ∩ clM ′(B)| ≤ r − 1. Define IB ⊆ {1, . . . , l} by

IB = {i : Di ∩ clM ′(B) 6= ∅} .

Then B ⊆ ∪i∈IB
Di and |IB| ≤ n(r − 1) ≤ n(a − 1) = l − n. Notice, that for

i /∈ IB, Di and B are skew in M ′. We may assume, again after re-ordering the
clouds, that {1, . . . , n} ⊆ {1, . . . , l} − IB. Let

M1 = M/
{
ei
0 : i ∈ IB

}
/B.

Then, by construction, the elements in
{
ei
k : i = 1, . . . , n

}
are in parallel in

M1/
{
ei
0 : i = 1, . . . , n

}
, for each k = 1, . . . , n (see Figure 10).
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Figure 10

Let pk = en
k , for k = 1, . . . , n, and define

M2 = M1/en
0 |(D1 ∪ · · · ∪Dn−1 ∪ {p1, . . . , pn}).

Now, M2 is an n-storm with clouds D1, . . . , Dn−1. It satisfies, for each i =
1, . . . , n− 1, and each k = 1, . . . , n, that pk is on the line through ei

0 and ei
k.

We shall make {p1, . . . , pn} the basis of a Dowling clique. Let

N = M2/
{
e1
1, e

2
2, . . . , e

n−1
n−1

}
.

Then {p1, . . . , pn} is a basis for N . Let (i, j) be given with 1 ≤ i < j ≤ n.
In N , ei

0 and pi are parallel, so ei
j ∈ clN (

{
ei
0, pj

}
) = clN ({pi, pj}), and the set

{pi, pj , e
i
j} is a triangle in N . So, N has a rank-n Dowling clique restriction.

9 Cliques

We need Mader’s Theorem [36] to extract graphic cliques.

Mader’s Theorem. Let H be a graph. There exists λ ∈ N such that, if G is
a simple graph with no H-minor, then |E(G)| ≤ λ |V (G)|.

An easy corollary is the following matroid version of the theorem. We take
H to be a complete graph, and write the contrapositive statement.

Corollary 9.1. There exists an integer-valued function θ(n) such that, if M
is a graphic and simple matroid with |E(M)| > θ(n)r(M), then M has an
M(Kn)-minor.
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Let M be a matroid and V a basis of M , and let X = E(M)− V . We call
(M, V ) a Dowling matroid if each x ∈ X is on a triangle with two elements of V ,
and any two elements of V span at most one element of X (again, this is only a
special case of Dowling’s combinatorial geometries [9]). By the associated graph
of (M,V ) we mean the graph G on the vertex set V with edge set labeled by
X, such that x ∈ X labels {b1, b2} if x is on the line through b1 and b2 in M .
In particular, the associated graph of a rank-n Dowling-clique is the complete
graph Kn.

We shall use the following lemma to recognize graphic matroids.

Lemma 9.2. Let M be a Dowling matroid with basis V , X = E(M) − V . If
V ∩ clM (X) = ∅, then M |X is graphic.

Proof. Let G be the associated graph of (M,V ). We claim that M(G) = M |X.
It suffices to prove, that each circuit of M(G) is dependent in M |X, and that
each independent set of M(G) is independent in M |X.

Let C be a cycle of G with vertex set V ′ and edge set X ′. Clearly X ′ ⊆
clM (V ′) and by the assumption V ′ ∩ clM (X ′) = ∅. Since V ′ and X ′ have equal
size, X ′ must be dependent in M .

Let T be a forest in G. We prove by induction on |E(T )| that E(T ) is
independent in M . Let e be a leaf edge in T and assume E(T )−e is independent
in M . Let b be a leaf of T incident on e. Then E(T ) − e ⊆ clM (V − b), but
e /∈ clM (V − b), so E(T ) is independent in M .

In a similar fashion, using Remark 1.5, the following lemma is easily proved.

Lemma 9.3. Let M be a Dowling matroid with basis V , X = E(M) − V .
Let G be the associated graph of (M, V ). If for each cycle C in G, E(C) is
independent in M , then M |X = B(G) (in fact M = B̃(G)).

We are ready for the final step in the proof of the main theorem.

Lemma 9.4. There exists an integer-valued function ψ(n) such that, if M
is a Dowling-clique with rank at least ψ(n), then M contains an M(Kn)- or
B(Kn)-minor.

Proof. Let n be given, and define ψ(n) = nl, where l = 2mθ(n) + 1 and
m = 2nn!. Let M be a Dowling clique with basis V and assume that r(M) = nl.
Let X = E(M)− V .

Partition V into n sets, V1, . . . , Vn of equal size, |Vi| = l. We shall contract
each Vi to a point. Let Mi = M | clM (Vi) (see Figure 11(a)). Choose Yi ⊆
E(Mi) ∩ X such that Vi is a set of parallel elements in Mi/Yi (e.g. take the
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edges of a spanning tree in the associated graph of (Mi, Vi)). Define M ′ =
M/(Y1∪ · · · ∪Yn) and pick a bi ∈ Vi for i = 1, . . . , n. For each pair i < j, define

Xij = {x ∈ X : x ∈ clM (b, d), b ∈ Vi, d ∈ Vj} .

Note, that for each x ∈ Xij , {bi, bj , x} is a triangle in M ′ (see Figure 11(b)).
We consider two cases.

(a) (b)

M1 M2

M3Mn

b1 b2

b3bn

X12

X23
X1n

X3n

X13
X2n

M : M
′
:

Figure 11

(1). τ1(M ′|Xij) > m, for all pairs i < j. Put V ′ = {b1, . . . , bn}. We shall
choose a set X ′ = {xij : 1 ≤ i < j ≤ n}, where xij ∈ Xij , such that the Dowling-
clique M ′|(V ′ ∪X ′) with basis V ′ is B̃(Kn). Let X ′ ⊆ ∪Xij be maximal, such
that |X ′ ∩Xij | ≤ 1 for all i < j, and the cycles in the associated graph of
M ′|(V ′∪X ′) all have edge sets independent in M ′. We claim, that X ′∩Xij 6= ∅
for all i < j, and thus M ′|(V ′ ∪X ′) ' B̃(Kn) by Lemma 9.3.

Assume that X ′ ∩Xij = ∅ for some i < j. Let G be the associated graph
of M ′|(V ′ ∪X ′). If Z ⊆ X ′ is the edge set of a path from bi to bj in G, then
rM ′(clM ′(Z)∩Xij) ≤ 1. There can be at most m such Z, since a simple graph on
n vertices has no more than 2nn! = m cycles. Thus, we can pick xij ∈ Xij skew
from each such Z. So, the cycles created in the associated graph, when adding
xij to X ′ all have edge sets independent in M ′, contradicting the maximality
of X ′.

(2). τ1(M ′|Xij) ≤ m, for some pair i < j. As |Xij | = l2, there is a parallel
class P ⊆ Xij of M ′, with |P | ≥ l2/m. Now, since V ∩ clM ′(P ) = ∅, also
V ∩ clM (P ) = ∅, and Lemma 9.2 gives, that M |P is graphic. And r(M |P ) ≤
|Vi ∪ Vj | = 2l. We have then

|E(M |P )| ≥ l2/m > l2θ(n) ≥ θ(n)r(M |P ),

and by Corollary 9.1, we get an M(Kn)-minor.
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Finally, we restate and prove Theorem 1.1.

Theorem 9.5. There exists an integer-valued function γ(k, a, n) such that, if
M is a matroid with r(M) ≥ γ(k, a, n), then either M has k disjoint co-circuits
or M has a minor isomorphic to Ua,2a, M(Kn) or B(Kn).

Proof. Let k, a, n be positive integers. If a = 1, then we let γ(k, a, n) = k. If
a ≥ 2, then we define the following numbers: Put a′ = a − 1 and b = 2a. Let
k = ψ(n) and let m1 = φ1(k, a′, b) and m2 = φ2(k, a′, b). Let r = n + m and
define g : N→ N by g(t) = ν(r, t, a′, b). Finally, γ(k, a, n) = fg(k).

Let M be given with r(M) ≥ γ(k, a, n). If a = 1, the result is trivial, since
in a matroid with no U1,2-minor, every element is a loop or a co-loop.

If a ≥ 2, then by Lemma 4.7, either M has k disjoint co-circuits or a minor
N with r(N) ≥ g(Γ(N)). Assume the second case. Also, if N has a Ua′+1,b-
minor we are done, so assume this is not the case. Applying Lemmas 7.2, 8.2,
8.3 and 9.4 in succession, we obtain an M(Kn)- or a B(Kn)-minor of N .

10 Mader’s Theorem for matroids

In this section we treat a result of Geelen and Whittle [23], that extends Mader’s
Theorem from graphs (or graphic matroids) to the class U(q). We present their
proof of this result with minor changes. To avoid talking about the number of
elements in a simple matroid, we shall denote by ε(M) the number of points
(rank-1 flats) in M . That is, ε(M) = |E(si(M))|. With the notation from
earlier in this chapter, ε(M) = τ1(M). Geelen and Whittle proved:

Theorem 10.1. Let n and q be positive integers. There exists an integer λ
such that, if M ∈ U(q) has ε(M) > λr(M), then M has an M(Kn)-minor.

Kung had proved this previously in the case n = 4 in [29], and in the case
n = 5 for binary matroids (q = 2) in [28]. By Theorem 1.3, a round matroid
in U(q) of sufficiently high rank contains an M(Kn)-minor. Hence, to prove
Theorem 10.1 it suffices to prove the following.

Lemma 10.2. Let m and q be positive integers. There exists an integer λ such
that, if M ∈ U(q) has ε(M) > λr(M), then M has a round rank-m minor.

Recall that a flat F of M is called round if M |F is round. The idea behind
the proof of the lemma, is to construct round flats of increasing rank using
Lemma 4.4. A rank-1 flat or point is always round. A rank-2 flat or line L is
round if and only if it contains at least three points, that is, L is a long line.
The following lemma provides the first step in the proof.
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Lemma 10.3. Let λ ∈ N and let M ∈ U(q) be minor-minimal with ε(M) >
λr(M). Then the number of long lines in M is greater than λ

q2 ε(M).

Proof. Note that by the minor-minimality, M is simple. For e ∈ E(M) let
δ(e) denote the number of long lines through e in M . Let e ∈ E(M). When
e is contracted each line through e becomes a point. Hence, the number of
points destroyed is ε(M)− ε(M/e) ≤ 1 + (q− 1)δ(e). By the minimality of M ,
ε(M)− ε(M/e) > λ. So δ(e) ≥ λ/(q − 1). Since this holds for each e ∈ E(M),
the number of long lines in M is at least

1
q + 1

∑

e∈E(M)

δ(e) >
λ

q2
|E(M)| ,

as required.

In the next lemma we shall need an upper bound on the number of hy-
perplanes of a matroid in U(q). Let hq(r) denote the maximum number of
hyperplanes in a rank-r matroid in U(q). Since a hyperplane is spanned by a
set of r − 1 elements, using Kung’s Theorem, we get the rough bound:

hq(r) ≤
( qr−1

q−1

r − 1

)
≤ qr(r−1).

Let M be a matroid and F a collection of flats of M . We call a rank-k
flat F of M F-constructed, if there are rank-(k− 1) flats F1, F2 ∈ F , such that
F = clM (F1 ∪ F2), but F 6= F1 ∪ F2. If the flats in F are round, Lemma 4.4
implies that any F-constructed flat is round.

Lemma 10.4. There exists a function λ : N3 → N such that the following
holds: Let q, n ≥ 2 and c ≥ 0 be integers. If M ∈ U(q) satisfies ε(M) >
λ(n, c, q)r(M), then M has a minor N with a collection F of round rank-
(n− 1) flats of N , such that the number of F-constructed flats in N is greater
than c |F|.

Proof. Let λ(2, c, q) = q2c and for n ≥ 2 define λ recursively by

λ(n + 1, c, q) = λ(n, qn + q(n+1)2c, q).

The proof is by induction on n. Consider the case n = 2. We may assume, that
M is minor-minimal with ε(M) > q2cr(M). By Lemma 10.3, the number of
long lines in M is greater than cε(M). Let F be the set of points in M . Then
each long line in M is F-constructed, and we are done.
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Now, let n ≥ 2, assume the lemma holds for n and let us prove it for
n+1. Let M be given with ε(M) > λ(n+1, c, q)r(M) = λ(n, c′, q)r(M), where
c′ = qn + q(n+1)2c. By induction, M has a minor N with a set F of round
rank-(n− 1) flats of N , such that the number of F-constructed flats is greater
than c′ |F|. Choose N minor-minimal with this property. In particular, N is
simple.

Let F1 denote the set of F-constructed flats, and let F2 be the set of F1-
constructed flats. For each e ∈ E(N), let Fe be the set of rank-(n− 1) flats in
N/e, that correspond to flats in F , that is

Fe =
{
clN/e(F ) : F ∈ F , e /∈ F

}
.

The flats in Fe are round in N/e. Let F1
e denote the set of Fe-constructed flats.

Note that F1
e =

{
clN/e(F ) : F ∈ F1, e /∈ F

}
. Finally, let

∆ =
∑

e∈E(N)

(|F| − |Fe|) and ∆1 =
∑

e∈E(N)

(
∣∣F1

∣∣− ∣∣F1
e

∣∣).

We now prove a number of inequalities, that will imply the result.

∆1 > c′∆. (C1)

By the choice of N ,
∣∣F1

∣∣ > c′ |F|, and as N is minor-minimal with this
property,

∣∣F1
e

∣∣ ≤ c′ |Fe|, for each e ∈ E(N). Thus,
∣∣F1

∣∣− ∣∣F1
e

∣∣ > c′(|F|− |Fe|).
Adding up, we get inequality (C1).

∆ ≥ ∣∣F1
∣∣ . (C2)

Consider F ∈ F1. By definition, there are flats F1, F2 ∈ F with F =
clN (F1 ∪ F2) and an element e ∈ F − (F1 ∪ F2). Clearly clN/e(F1) = clN/e(F2),
so F1 and F2 give rise to the same flat in Fe. Thus, they contribute to the
difference |F| − |Fe|. This proves (C2).

∆1 ≤ qn
∣∣F1

∣∣ + q(n+1)2
∣∣F2

∣∣ . (C3)

For e ∈ E(N) we wish to measure the difference
∣∣F1

∣∣− ∣∣F1
e

∣∣, which reflects
the fact, that not all flats in F1 give rise to a flat in F1

e , and that multiple flats
in F1 may give rise to a single flat in F1

e .
Consider the first case. A flat F ∈ F1 does not give rise to a flat in F1

e

if e ∈ F . By Kung’s Theorem, F has at most qn−1
q−1 ≤ qn elements, so F is

counted no more than qn times in the expression of ∆1.
Consider the second case. Let F1, F2 ∈ F1 be flats of N not containing e,

such that F1, F2 give rise to the same rank-n flat in N/e. Then F = clN (F1∪F2)
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has rank n + 1 and e ∈ F , so F ∈ F2. Now F has no more than qn+1 elements
and by the observation preceding the lemma, F contains no more than qn(n+1)

rank-n flats of N . Hence, the rank-n flats in F1 contained in F are counted
no more than qn+1qn(n+1) = q(n+1)2 times in the expression of ∆1. This proves
(C3).

Finally, combining (C1), (C2) and (C3), we get

qn
∣∣F1

∣∣ + q(n+1)2
∣∣F2

∣∣ ≥ ∆1 > c′∆ ≥ (qn + q(n+1)2c)
∣∣F1

∣∣ .

It follows, that
∣∣F2

∣∣ > c
∣∣F1

∣∣, so F1 is the desired set of flats in N .

Lemma 10.2 now follows immediately by taking λ = λ(0, m, q) in the last
result, since a single rank-m constructed flat gives rise to a round minor of rank
m.

With the main theorem of this chapter, Theorem 1.1 in mind, we conjecture
the following generalization of Theorem 10.1.

Conjecture 10.5. Let b > a and n be positive integers. There exists an integer
λ such that, if M has no Ua+1,b-minor and τa(M) > λr(M), then M has an
M(Kn)- or a B(Kn)-minor.

By Theorem 1.1, a round matroid with no Ua+1,b-minor, of sufficiently high
rank contains an M(Kn)- or a B(Kn)-minor. So, in analogy with the proof of
Theorem 10.1, Conjecture 10.5 would follow from the weaker conjecture below.

Conjecture 10.6. Let b > a and m be positive integers. There exists an
integer λ such that, if M has no Ua+1,b-minor and τa(M) > λr(M), then M
has a round rank-m minor.

In fact, this conjecture can be weakened further to state: Let b > a and m, t
be positive integers. There exists an integer λ such that, if M has no Ua+1,b-
minor and τa(M) > λr(M), then M has a t-round rank-m minor. This would
be enough to imply Conjecture 10.5, as can be seen by a closer inspection of
the proof of Theorem 1.1.





3 Projective geometries in dense matroids

This chapter presents joint work with Jim Geelen. The proofs given here are
generally expanded versions of the proofs given in the article [18], which was
written by me. The way the theorems are expressed differs from [18], where the
results are stated in an equivalent way in terms of size functions of minor-closed
classes of matroids. This relationship will be clarified in Chapter 4.

1 The main results

We denote by ε(M) the number of points of M , i.e. the number of elements in
the simplification of M , ε(M) = |E(si(M))|. With the notation from Chapter 2,
ε(M) = τ1(M), the 1-covering number of M .

The main result of the chapter is the following theorem.

Theorem 1.1. Let q and q∗ be integers with q ≥ q∗ ≥ 2, and let n be a
positive integer. There exists an integer α such that, if M ∈ U(q) satisfies
ε(M) ≥ αq∗r(M), then M contains a PG(n − 1, q′)-minor, for some prime-
power q′ > q∗.

While the values of α we obtain are astronomical, the lower bound on the
number of elements of M has the correct order of magnitude: Note that we
may always take q∗ to be a prime-power without weakening the statement of
the lemma. In that case, the base q∗ in the exponential function αq∗r(M) is
optimal, since the matroids PG(r − 1, q∗) have in the order of q∗r elements.

Kung’s Theorem of Chapter 2 can be rewritten in the following way.

Kung’s Theorem. Let q ≥ 2 be an integer, and let M ∈ U(q) be a rank-r
matroid. Then

ε(M) ≤ qr − 1
q − 1

.

We already know, that if q is not a prime-power, the bound is not exact.
As a consequence of Theorem 1.1, we get an asymptotic improvement on the
bound in that case:

41
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Corollary 1.2. Let q ≥ 2 be an integer, and let M ∈ U(q) be a rank-r matroid.
Then

ε(M) < cq∗r.

where q∗ is the greatest prime-power with q∗ ≤ q, and c is an integer depending
only on q.

Proof. Let q and q∗ be given, and let n = 2. We take c = α, the number given
by Theorem 1.1. Since M can have no PG(1, q′)-minor (that is, U2,q′+1-minor)
for a prime-power q′ > q∗, we get the desired bound.

Kung in [30] conjectured that the exact bound is q∗r−1
q∗−1 for sufficiently large

r (the bound may not hold for small values of r, indeed it easily fails if r = 2
and q > q∗). This conjecture would follow from Kung’s stronger Growth Rate
Conjecture, that we treat in Chapter 4. It has only been verified in the first
non-prime-power case q = 6. The result is from [5].

Theorem 1.3. Let M ∈ U(6) be a simple rank-r matroid, where r ≥ 3. Then

|E(M)| ≤ 5r − 1
5− 1

.

Using the same techniques as we do in the proof of Theorem 1.1 we also
prove the following theorem. For binary matroids it was proved independently
by Sauer [45] and Shelah [48].

Theorem 1.4. Let q and n be positive integers. There exist integers γ, m such
that, if M ∈ U(q) satisfies ε(M) > γr(M)m, then M contains a PG(n− 1, q′)-
minor, for some prime-power q′.

The polynomial bound we prove here is not asymptotically correct. The
order of the bound has been conjectured by Kung [30] to be quadratic, that is,
m should be 2. This is part of his Growth Rate Conjecture, that we consider in
Chapter 4. Note that we could omit γ in the statement of the theorem, since
the constant can be compensated for by raising the exponent. However, we
keep the constant to facilitate the proof.

The following sections contain the proof of Theorem 1.1.

2 Long lines

Let M be a matroid. For a subset A ⊆ E(M), we write εM (A) = ε(M |A). A
line L of M is a rank-2 flat of M . The length of L is the number of points on
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L, that is εM (L). As in the previous chapter, we call a line L of M long if it
has length at least 3. For e ∈ E(M) denote by δM (e) the number of long lines
in M containing e. For an integer q∗ ≥ 2, we say that a line L is q∗-long, if L
has length at least q∗ + 2.

Lemma 2.1. Let q ≥ q∗ ≥ 2. If M ∈ U(q) is minor-minimal with ε(M) ≥
λq∗r(M), then

δM (e) ≥ λ

2q
q∗r(M), for each e ∈ E(M),

and the number of q∗-long lines in M is at least λ
q+1q∗r(M).

Proof. Note that, by the minor-minimality, M is simple. Consider e ∈ E(M).
Let δ+ denote the number of q∗-long lines through e, and let δ− = δM (e)− δ+

be the number of long lines through e of length at most q∗ + 1.
When contracting e, each line L containing e becomes a point, and so |L|−2

points on L other than e are lost. The number of points destroyed is

ε(M)− ε(M/e) ≤ 1 + δ−(q∗ − 1) + δ+(q − 1).

By the minimality of M , we have

ε(M)− ε(M/e) > λq∗r(M) − λq∗r(M)−1 = λ(q∗ − 1)q∗r(M)−1.

The above inequalities together yield

δ−(q∗ − 1) + δ+(q − 1) ≥ λ(q∗ − 1)q∗r(M)−1. (1)

In particular, inequality (1) gives

δM (e) = δ− + δ+ ≥ λ
q∗ − 1
q − 1

q∗r(M)−1,

which easily implies the first claim of the lemma.
Again, by the minimality of M ,

δ− + δ+ ≤ ε(M/e) < λq∗r(M)−1. (2)

Now notice that if δ+ = 0, then the inequalities (1) and (2) contradict. So we
must have δ+ > 0. Since this holds for all e ∈ E(M) and since lines have at
most q + 1 elements, the number of q∗-long lines in M is at least ε(M)/(q + 1).
This gives the second claim.
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Let M be a simple matroid, e ∈ E(M) and A ⊆ E(M)− e a set of elements
of M . We consider the problem of finding a large subset of A, that does not
span e in M . Equivalently, we seek a hyperplane H not containing e, such that
|A ∩H| is large.

Suppose that M is representable over GF(q). Then M is isomorphic to a
restriction of PG(r − 1, q), where r = r(M). We can assume for convenience,
that M is PG(r − 1, q). Let H be the collection of hyperplanes of M not
containing e. The automorphism group of PG(r−1, q) is doubly transitive, that
is, there is an automorphism mapping any pair of elements to any other pair.
This implies, that for an element a ∈ E(M)−e, the number # {H ∈ H : a ∈ H}
does not depend on a. Therefore,

1
|H|

∑

H∈H
|A ∩H| = 1

|H|
∑

a∈A

# {H ∈ H : a ∈ H}

=
1
|H|

|A|
|E(M)− e| |H|

qr−1 − 1
q − 1

=
1
q
|A|

which is easily verified by a direct computation. By a majority argument, there
exists H ∈ H with |A ∩H| ≥ 1

q |A|.
We do not have representability and need a different argument that works

in U(q). This is provided by the next lemma.

Lemma 2.2. Let q ≥ q∗ ≥ 2. Let M ∈ U(q) and let e be a non-loop element
of M . If A ⊆ E(M) − e satisfies εM (A) ≥ λq∗rM (A), then there exists X ⊆ A
such that e /∈ clM (X) and εM (X) ≥ λ

q q∗rM (X).

Proof. We may assume that A is minimal with εM (A) ≥ λq∗rM (A). This implies,
that M |A is simple. We can also assume, that E(M) = A ∪ e. Assume that A
spans e, as otherwise we are done with X = A.

Choose a flat W not containing e, with rM (W ) = r(M)−2. Let H0,H1, . . . ,
Hm be the hyperplanes of M containing W . It is easily seen, that the sets
Hi−W are a disjoint cover of E(M)−W . Also, si(M/W ) ' U2,m+1 and since
M ∈ U(q), we have m ≤ q.

Assume that e ∈ H0. By the minimality of A, |H0 ∩A| < λq∗r(M)−1 and so

|A−H0| > λ(q∗ − 1)q∗r(M)−1.

Since the sets H1, . . . , Hm cover E(M)−H0, there exists a k ∈ {1, . . . , m} with

|Hk ∩A| ≥ 1
m
|A−H0| > λ

q
(q∗ − 1)q∗r(M)−1.
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Taking X = Hk ∩A, we have the desired result.

3 Pyramids

We now define some intermediate structures that we shall build on our way to
constructing a projective geometry.

Definition 3.1. M is a pyramid with joints (b1, . . . , bn), if {b1, . . . , bn} is a
basis of M and for each i = 2, . . . , n, bi is on a long line with every point of
clM ({b1, . . . , bi−1}). For q∗ ≥ 2, M is a q∗-strong pyramid, if each pair of joints
spans a q∗-long line.

Pyramids could be defined recursively as follows. The matroid M is a
pyramid if M has a hyperplane H and an element b /∈ H, such that every point
of H is on a long line with b and M |H is a pyramid. It follows by an easy
induction, that a rank-r pyramid has at least 2r − 1 points. In particular, if M
is a binary pyramid of rank r, then si(M) is isomorphic to PG(r − 1, 2), as M
has the maximal number of points.

b1b2

b3

b4

Figure 1: A pyramid of rank 4.

Definition 3.2. M is an (n, λ, q∗)-prepyramid if it has a basis B ∪{b1, . . . , bn}
such that

• F = clM (B) satisfies εM (F ) ≥ λq∗rM (F ) and
• for each i = 1, . . . , n, bi is on a long line with every point of

clM (B ∪ {b1, . . . , bi−1}).
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So a prepyramid is a pyramid “on top of” a dense flat. The first step in the
proof of Theorem 1.1 is to construct a prepyramid.

Lemma 3.3. Let q ≥ q∗ ≥ 2 be given. If n ≥ 0 and λ ≥ 1 are integers and
M ∈ U(q) satisfies ε(M) ≥ λq2nq∗r(M), then M has an (n, λ, q∗)-prepyramid as
a minor.

Proof. The proof is by induction on n. The case n = 0 is trivial, so suppose
n > 0 and that the result holds for n − 1. We may assume that M is minor-
minimal with ε(M) ≥ λq2nq∗r(M). In particular M is simple.

Choose an element bn ∈ E(M), and let A ⊆ E(M) − bn be the set of
elements on long lines through bn. By Lemma 2.1,

|A| ≥ 2δM (bn) ≥ λq2n

q
q∗r(M).

By Lemma 2.2, there exists a set X ⊆ A with bn /∈ clM (X) and

|X| ≥ λq2n

q2
q∗rM (X) = λq2(n−1)q∗rM (X).

By the induction hypothesis M |X has a minor M1, which is an
(n − 1, λ, q∗)-prepyramid. We let Z = E(M1), and so M1 can be written
M1 = (M |X)/Y |Z. Let W ⊆ E(M) denote the elements that are on a line
through bn and an element z ∈ Z in M . Then N = M/Y |W is an (n, λ, q∗)-
prepyramid, since bn /∈ clN (Z) and every element z ∈ Z is on a long line
with bn.

4 Getting a strong pyramid

We repeat the definition of skew sets given in the previous chapter. For a
matroid M , we call sets A1, . . . , An ⊆ E(M) skew if rM (∪iAi) =

∑
i rM (Ai).

This is analogous to subspaces of a vector-space forming a direct sum.
The goal of this section is to obtain a strong pyramid from a pre-pyramid.

For the first lemma, we shall need a limit on the total number of lines of a
matroid in U(q). Let mq(n) denote the maximum number of lines of a rank-
n matroid in U(q). From Kung’s Theorem, we easily get the following crude
upper bound

mq(n) ≤
( qn−1

q−1

2

)
.
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Lemma 4.1. There exists an integer-valued function θ1(s, λ, q) such that the
following holds: Let q ≥ q∗ ≥ 2. If s and λ are positive integers and M ∈ U(q)
satisfies ε(M) ≥ θ1(s, λ, q)q∗r(M), then either

• M has a minor N with s skew q∗-long lines or
• M has a minor N with a non-loop element e ∈ E(N) such that the

number of q∗-long lines through e in N is at least λq∗r(N).

Proof. Define θ1(1, λ, q) = 1 and for s ≥ 2,

θ1(s, λ, q) = (q + 1)4(s− 1)mq(2s− 1)λ.

We assume that M is minor-minimal with ε(M) ≥ θ1(s, λ, q)q∗r(M). Let L
denote the collection of q∗-long lines in M . By Lemma 2.1,

|L| ≥ θ1(s, λ, q)
q + 1

q∗r(M).

In the case s = 1 we are now done, since |L| > 0, so assume s ≥ 2 in the
following.

If L contains s skew lines, then we are done, so assume this is not the case.
Pick a maximal set of skew lines from L and let F be the flat spanned by these
lines in M . Let t = rM (F ) ≤ 2(s − 1). Let L′ ⊆ L be the lines not contained
in F (see Figure 2). Then

∣∣L′∣∣ ≥ |L| −mq(t) ≥ 1
2 |L| ,

provided that |L| ≥ 2mq(t), which follows easily from the above.

F

M :

e

N :

Figure 2

Let B be a basis of F in M . For each L ∈ L′ pick BL ⊆ B with |BL| = t−1,
such that BL and L are skew (this can be done by expanding a basis of L to
a basis of L ∪ F using elements of B). By a majority argument, there is a
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subcollection L′′ ⊆ L′ with the sets BL = B0 identical for L ∈ L′′ and such
that ∣∣L′′∣∣ ≥ 1

t

∣∣L′∣∣ .

Let e be the single element in B − B0 and let N = M/B0. Then each line
L ∈ L′′ spans a q∗-long line through e in N . Two lines L1, L2 ∈ L′′ give rise
to the same line in N if clM (B0 ∪ L1) = clM (B0 ∪ L2). Hence, the number of
q∗-long lines through e in N is at least

|L′′|
mq(t + 1)

.

By concatenating the inequalities, we get the desired result.

We now use the previous lemma to construct a strong pyramid. This is
done in exactly the same way as a prepyramid was constructed in Lemma 3.3.

Lemma 4.2. There exists an integer-valued function θ(s, n, q) such that the
following holds: Let q ≥ q∗ ≥ 2. If s and n are positive integers and M ∈ U(q)
satisfies ε(M) ≥ θ(s, n, q)q∗r(M), then either

• M has a minor N with s skew q∗-long lines or
• M has a rank-n minor N , such that N is a q∗-strong pyramid.

Proof. Let θ(s, 1, q) = 1, and for n ≥ 2 define θ recursively by

θ(s, n, q) = θ1(s, qθ(s, n− 1, q), q).

The proof is by induction on n, the case n = 1 being trivial. Suppose n ≥ 2
and that M does not have a minor with s skew q∗-long lines.

By Lemma 4.1, M has a minor M ′ with a non-loop element bn, such that
the number of q∗-long lines through bn is at least

qθ(s, n− 1, q)q∗r(M
′).

Let A ⊆ E(M ′) − bn be the set of elements on q∗-long lines through bn.
Lemma 2.2 gives a set X ⊆ A with bn /∈ clM ′(X), such that

εM ′(X) ≥ θ(s, n− 1, q)q∗rM′ (X).

By induction, M ′|X has a minor M1, which is a q∗-strong rank-(n − 1)
pyramid. We let Z = E(M1), and so M1 can be written M1 = (M ′|X)/Y |Z.
Let W ⊆ E(M ′) denote the elements that are on a line in M ′ through bn and
an element z ∈ Z. Then N = M ′/Y |W is a rank-n pyramid, since bn /∈ clN (Z)
and every element z ∈ Z is on a long line with bn. It is surely q∗-strong, since
all the lines through bn are q∗-long.
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Lemma 4.3. Let q ≥ q∗ ≥ 2. If n and λ are positive integers with λ ≥
θ(

(
n
2

)
, n, q) and M ∈ U(q) is an (n, λ, q∗)-prepyramid, then M has a rank-n

minor N , such that N is a q∗-strong pyramid.

Proof. Let M be an (n, λ, q∗)-prepyramid w.r.t. the basis B ∪{b1, . . . , bn}, and
let F = clM (B).

We apply Lemma 4.2 to M |F and get one of two outcomes. If M |F has
a rank-n q∗-strong pyramid minor, then we are done, so assume this is not
the case. Then M |F has a minor M |F/Y (we can assume it is a contraction)
containing

(
n
2

)
skew q∗-long lines. Let B′ be a basis for M |F/Y . Then M ′ =

M/Y is an (n, λ′, q∗)-prepyramid with respect to the basis B′ ∪{b1 . . . , bn}, for
some λ′. If we let F ′ = clM ′(B′) = F − Y , then M ′|F ′ has

(
n
2

)
skew q∗-long

lines. Since we make no reference to λ in the following, we may assume that
Y = ∅ and M ′ = M . We shall also assume that M is simple.

Let Lij , for 1 ≤ i < j ≤ n denote skew q∗-long lines in M |F . We shall
contract these lines in place between b1, . . . , bn. For each pair of indices i < j
choose two different elements xij , yij ∈ Lij . Also, choose points on the lines
between bi, bj and Lij as follows (see Figure 3),

eij ∈ clM ({bi, xij})− {bi, xij} ,

fij ∈ clM ({bj , yij})− {bj , yij} .

F

M : bi bj

eij fij

xij yijLij

Figure 3

Notice, that {b1, . . . , bn}∪{eij , fij : i < j} is an independent set. We define
the minor N in the following way:

N = M/ {eij , fij} |W,

where W = clM ({b1, . . . , bn}) ∪ (∪i<jWij),
Wij = clM (Lij ∪ {bj+1, . . . , bn}), 1 ≤ i < j ≤ n.
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We leave it to the reader to verify in details, that N is a pyramid with joints
(b1, . . . , bn). To do this, note that

Wij ∩ clN ({b1, . . . , bk}) =





∅ if k < i,

{xij} if i ≤ k < j,

clM (Lij ∪ {bj+1, . . . , bk}) if j ≤ k.

The pyramid N is q∗-strong, since the line spanned by bi and bj contains Lij .

5 Pyramids contain projective geometries

Let M be a pyramid with joints (b1, . . . , bn), and for each i, let
Hi = clM ({b1, . . . , bi}). We call M modular if for each i, if x, y ∈ Hi−Hi−1 are
non-parallel elements, then the line through x and y intersects Hi−1 in a point.

The first step towards getting a projective geometry minor of a pyramid,
will be to find a modular pyramid.

Lemma 5.1. Let q ≥ 2 and let m be a positive integer. If M ∈ U(q) is a
pyramid with r(M) ≥ mq(

m
2 ), then M has a rank-m modular pyramid minor

N . If for some number q∗ ≥ 2, M is q∗-strong, then N is q∗-strong.

Proof. Let m be a fixed positive integer. To each pyramid N ∈ U(q) of rank
r(N) = n ≥ m with joints (a1, . . . , an), we assign a vector

Q(N) = (εN (H2), εN (H3), . . . , εN (Hm−1)) ∈ Zm−2,

where Hk = clN ({a1, . . . , ak}). By Kung’s Theorem, the number of values that
Q(N) can attain is bounded by

m−1∏

k=2

qk − 1
q − 1

≤
m−1∏

k=2

qk ≤ q(
m
2 ).

We shall also consider the lexicographic ordering on Zm−2 defined by:

(a1, . . . , am−2) <LEX (b1, . . . , bm−2)

if there is a k ∈ {1, . . . , m− 2}, such that ai = bi for i = 1, . . . , k − 1 and
ak < bk. This is a total order.

Let N ∈ U(q) be a pyramid with joints (a1, . . . , an), n ≥ 2m, and let Hk =
clN ({a1, . . . , ak}). Assume that the pyramid N |Hm with joints (a1, . . . , am) is
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not modular. We now describe an operation, that gives a minor of N , with
an increased value of Q(·) in the above order. We can assume, that N is
simple. There exists an i ≤ m and an element y ∈ Hi − Hi−1, such that∣∣clsi(N/y)({a1, . . . , ai−1})

∣∣ > |Hi−1|. Choose k ∈ {2, . . . , i− 1} minimal, with
∣∣clsi(N/y)({a1, . . . , ak})

∣∣ > |Hk| .
See Figure 4. Now let B′ = (a1, . . . , ak, ai+1, . . . , an) and define

N ′ = N/y| clN/y(B
′).

By construction, N ′ is a pyramid with joints B′, which is easily verified. It has
a higher value in the order Q(N) <LEX Q(N ′), and rank r(N ′) ≥ r(N) −m.
Also, if N is q∗-strong, N ′ is q∗-strong.

bi

b1b2

bk

Hk

N : y

x

Figure 4

Now, let M ∈ U(q) be a pyramid, with r(M) ≥ mq(
m
2 ). By the bound on the

number of possible values of Q(·), the process of repeating the above operation
must terminate with a rank-m modular pyramid minor. This pyramid is q∗-
strong if M is q∗-strong.

The projective geometries PG(n−1, q) are examples of projective spaces. We
shall not define this concept in general, only state that a matroid is a projective
space if every line has at least three points, and every pair of coplanar lines
intersect.

The following theorem is the finite case of what is sometimes referred to
as the Fundamental Theorem of Projective Geometry (see [6, pp. 27–28] for a
detailed account of the theorem and [2, cpt. VII] for a proof. Note that there
is at least one other theorem that goes by the same name). The result does not
hold in rank 3.
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Theorem 5.2. Every finite projective space of rank n ≥ 4 is isomorphic to
PG(n− 1, q′) for some prime-power q′.

In the next lemma we use the theorem to identify a projective geometry in
a modular pyramid.

Lemma 5.3. There exists an integer-valued function ψ(n, q) such that the fol-
lowing holds: Let q ≥ 2. If M ∈ U(q) is a modular pyramid with r(M) ≥
ψ(n, q), then M has a PG(n− 1, q′)-restriction for some prime-power q′. If for
some number q∗ ≥ 2, M is q∗-strong, then q′ > q∗.

Proof. For n ≥ 4, define

ψ(n, q) = (q − 1)(n− 1) + 2,

and let ψ(n, q) = ψ(4, q), for n = 1, 2, 3. Hence, the cases n = 1, 2, 3 follow
from the case n = 4, so let n ≥ 4 be given in the following.

Let M be a modular pyramid with joints (b1, . . . , br), where r = r(M) ≥
ψ(n, q). Assume that M is simple. Let Hi = clM ({b1, . . . , bi}), for i = 1, . . . , r.

Notice first, that every line L ⊆ Hr−1 has length at least 3. Otherwise, look-
ing at the plane spanned by L and br, we find a contradiction to the modularity
of M .

Define a sequence of numbers l2, . . . , lr−1, by li = min {|L| : L ⊆ Hi}, where
the minimum is over all lines of M contained in Hi. The sequence is clearly
descending,

q + 1 ≥ l2 ≥ l3 ≥ · · · ≥ lr−1 ≥ 3.

Since r− 2 ≥ (q− 1)(n− 1), by a majority argument there must be a constant
subsequence of length n− 1,

lk = lk+1 = · · · = lk+n−2 = l

with value l. Choose a line L∗ ⊆ Hk with |L∗| = l, and let p1, p2 ∈ L∗ be
different elements. Let p3 = bk+1, . . . , pn = bk+n−2. We define the minor
N = M | clM ({p1, . . . , pn}). By construction, N is a modular pyramid. Let
Fi = clN ({p1, . . . , pi}) for each i.

We claim that every line in N has length l. Clearly, there are no shorter
lines. Suppose the claim fails and let i be minimal, such that there is a line
L ⊆ Fi with |L| > l. We must have i > 2, since F2 = L∗ has length l. Choose
an element x ∈ Fi − Fi−1, not on L (note, that this is possible). Now, by
modularity each element in L is on a line through x that intersects Fi−1 in a
point. This gives |L| colinear points in Fi−1, contradicting the minimality of i
(see Figure 5a).
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Observe, that if M is a q∗-strong pyramid, l ≥ q∗ + 2, since N contains the
line spanned by bk+1 and bk+2 which is a q∗-long line of M .

(a) (b)

Fi−1

x

L

Fi−1

x

L1 L2

Figure 5

To prove that N is a projective space, we show that coplanar lines intersect.
Let L1 and L2 be coplanar lines of N and let P = clN (L1∪L2). Let i be minimal
with P ⊆ Fi. If L1 is contained in Fi−1, then L2 must intersect L1 by the
modularity of N . Similarly if L2 is contained in Fi−1. Suppose L1, L2 * Fi−1,
and assume that L1 and L2 do not intersect. Let x ∈ L2 − Fi−1. Each point
on L1 is on a line through x than intersects Fi−1 in a point. These, together
with the point of intersection of L2 and Fi−1 account for l +1 points of the line
P ∩ Fi−1, a contradiction (see Figure 5b).

Finally by Theorem 5.2, N is isomorphic to PG(n−1, q′), and we must have
l = q′ + 1.

Theorem 1.1 is now proved by applying Lemmas 3.3, 4.3, 5.1 and 5.3 in
succession. The bound α in the theorem, depending on n and q becomes:

α = λq2n′ ,

where λ = θ(
(

n′

2

)
, n′, q),

n′ = mq(
m
2 ) and m = ψ(n, q).

6 Proof of the polynomial result

We now turn to Theorem 1.4. To prove the theorem, by the previous results, it
is enough to get a large pyramid. This is done in the same way that we obtained
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a prepyramid in Lemma 3.3, the proof of which rested on Lemmas 2.1 and 2.2.
The arguments are the same, only the calculations differ. The following result
parallels Lemma 2.2.

Lemma 6.1. Let q ≥ 2 and let λ and n be positive integers. Let M ∈ U(q) and
let e be a non-loop element of M . If A ⊆ E(M)−e satisfies εM (A) > λrM (A)n,
then there exists X ⊆ A such that e /∈ clM (X) and εM (X) > λn

q rM (X)n−1.

Proof. The proof mimics the proof of Lemma 2.2. We may assume that A
is minimal with εM (A) > λrM (A)n, implying that M |A is simple. We also
assume, that E(M) = A∪ e. Assume that A spans e, as otherwise we are done.

Choose a flat W not containing e, with rM (W ) = r−2, and let H0,H1, . . . ,
Hm be the hyperplanes of M containing W . Then si(M/e) ' U2,m+1 and so
m ≤ q, since M ∈ U(q).

We may assume e ∈ H0. By the minimality of A, |H0 ∩A| ≤ λ(r− 1)n and
thus

|A−H0| > λ(rn − (r − 1)n) ≥ λn(r − 1)n−1,

where we have used the inequality (x + 1)n − xn ≥ nxn−1 for a non-negative
number x. Since the sets H1, . . . , Hm cover E(M)−H0, by a majority argument
we have

|Hi ∩A| ≥ 1
m
|A−H0| > λn

q
(r − 1)n−1,

for some i, and we are done with X = Hi ∩A.

In the following lemma a pyramid is constructed.

Lemma 6.2. There exists an integer-valued function φ(n, q) such that the
following holds: Let q ≥ 2 and n be positive integers. If M ∈ U(q) has
ε(M) > φ(n, q)r(M)2(n−1), then M has a rank-n pyramid minor.

Proof. Let φ(1, q) = 1, and for n ≥ 2 define

φ(n, q) =
q2φ(n− 1, q)

4n− 6
.

The proof is by induction on n. The case n = 1 is trivial, so assume n ≥ 2, and
that the result holds for n− 1. We write φ = φ(n, q) for brevity.

Let r = r(M), and let k = 2(n − 1). We may assume that M is minimal
with ε(M) > φrk. Choose an element e of M . Then ε(M/e) ≤ φ(r − 1)k and

ε(M)− ε(M/e) > φ(rk − (r − 1)k) ≥ φrk−1.
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When contracting e, |L| − 2 points other that e are lost from each line L
containing e. Hence ε(M)− ε(M/e) ≤ 1 + (q − 1)δM (e) and

(q − 1)δM (e) ≥ φrk−1.

Let A ⊆ E(M) − e be the set of points on long lines through e. Then
|A| ≥ 2δM (e) > 2φ

q rk−1. The previous lemma now gives a set X ⊆ A, with
e /∈ clM (X) and

|X| > 2φ(k − 1)
q2

rM (X)k−2 = φ(n− 1, q)rM (X)2(n−2).

Applying the induction hypothesis to M |X we get a minor of M |X that is
a rank-(n−1) pyramid. We can now argue, as in the proofs of Lemmas 3.3 and
4.2, that M has a rank-n pyramid minor.

When q ≥ 2, Theorem 1.4 now follows from Lemmas 6.2, 5.1 and 5.3. For
the case q = 1, note that a simple matroid M in U(1) has no circuits, and thus
|E(M)| = r(M). So, taking γ = m = 1, the condition |E(M)| > γr(M)m of
the theorem is never satisfied.





4 The Growth Rate Conjecture

This chapter considers a number of problems in the field of extremal matroid
theory. It is largely motivated by (and contains numerous references to) Kung’s
founding paper [30] on the subject. The main focus of the chapter is on Kung’s
Growth Rate Conjecture, that we state in Section 2. We begin with a few
observations about graphs.

For a graph G, let v(G) denote the number of vertices in G and let e(G)
denote the number of edges in the simplification of G. For any graph G, e(G)
is bounded by a function of v(G), namely e(G) ≤ (

v(G)
2

)
. Given a class of

graphs C, one can ask for a better bound on e(G) as a function of v(G), for
G ∈ C. Exact bounds of this sort are known for many common classes of
graphs. Turán’s Theorem [50] (or see [7]) gives the exact bound for the class of
graphs with no Km-subgraph. This bound is quadratic in v(G) for m ≥ 3. The
theorem illustrates that, except for some degenerate cases, for a class of graphs
defined by excluding certain graphs as subgraphs, the bound is quadratic.

Mader’s Theorem states that, given a graph H, if C is the class of graphs
with no H-minor, then e(G) ≤ cv(G) for each G ∈ C, where c is a constant
depending only on H. This shows that any minor-closed class C of graphs
satisfies a linear bound, unless C is the class of all graphs. So there is a gap
in the possible bounds for minor-closed classes of graphs between linear and
quadratic functions. We shall see that this phenomenon arises for minor-closed
classes of matroids as well.

1 Size functions of classes of matroids

For classes of matroids we are interested in the maximum number of points as
a function of the rank. Since, for a connected graph G, the rank of M(G) is
v(G)−1, this is the natural counterpart of the above question for graphs. When
we talk of a class of matroids in the following, we shall mean a set of matroids
closed under isomorphism, and containing members of any rank; this is to avoid
degenerate cases in definitions and theorems. We shall be particularly interested
in minor-closed classes of matroids. Any minor-closed classM contains the free
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matroids {Un,n : n ∈ N0}. It follows that arbitrary intersections and unions of
minor-closed classes are again minor-closed classes.

For a class of matroids M, Kung (see [30],[31]) defines the size function
h(M; ·) : N0 → N0 ∪ {∞} by

h(M; r) = max {ε(M) : M ∈M, r(M) = r} ,

if the maximum exists, and h(M; r) = ∞ otherwise. SinceM contains matroids
of any rank, h(M; r) ≥ r for all r. Clearly, h(M; 0) = 0 and h(M; 1) = 1.

Let M be a minor-closed class of matroids. To bound the number of points
in rank 2 is to bound the length of lines. If h(M; 2) is finite, then M does not
contain arbitrarily long lines, that is, M ⊆ U(q) for some integer q. On the
other hand, by Kung’s theorem, if M⊆ U(q) for some q, then h(M; r) is finite
for all r. One can imagine minor-closed classes for which h(M; 2) = ∞, but
h(M; r) is finite for higher ranks (e.g. M = G ∪ {U2,q+2 : q ∈ N}). However,
every common class of matroids has non-decreasing size function; this is the
case, in particular, if the class is closed under direct sums. So, apart from these
exceptions, the classes U(q) are the largest minor-closed classes for which the
study of size functions makes sense.

Exact size functions are known for some classes of matroids. Denote by R
the class of regular matroids.

h(G∗; r) = 3r − 3, for r ≥ 2 h(G; r) =
(

r + 1
2

)

h(R; r) =
(

r + 1
2

)
h(R(q); r) =

qr − 1
q − 1

The linear bound for the class of co-graphic matroids was proved by Jaeger
(see [30] for a reference). Since graphic matroids are regular, h(R; r) ≥ (

r+1
2

)
.

That equality holds, can be deduced from Seymour’s famous decomposition
theorem for regular matroids [47]. Alternatively, it follows from a result we
prove in Section 4. Let F7 denote the Fano plane PG(2, 2). We prove, that
h(R(2)∩EX (F7); r) ≤

(
r+1
2

)
. Tutte’s excluded minor characterization of regular

matroids (see Chapter 5) says R = EX (U2,4, F7, F
∗
7 ). Hence, R is contained in

R(2) ∩ EX (F7) and both classes must have size function
(
r+1
2

)
. For exact size

functions of several other classes of matroids, see [30].
Kung’s Theorem states that for q ≥ 2,

h(U(q); r) ≤ qr − 1
q − 1

,

with equality for all r if q is a prime-power. If q is not a prime-power, we
obtained an asymptotic improvement on the size function in Corollary 1.2 of
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Chapter 3,
h(U(q); r) ≤ cq∗r,

where q∗ denotes the greatest prime-power with q∗ ≤ q, and c is a constant
depending on q. Since R(q∗) ⊆ U(q), we have the lower bound h(U(q); r) ≥
q∗r−1
q∗−1 . Hence, h(U(q); r) has order of magnitude q∗r. Bonin in [4] proves a
number of more specific bounds on h(U(q); r), where q is not a prime-power.
However, each of these bounds have order of magnitude qr.

2 The Growth Rate Conjecture

For each of the classes above, the size function is either linear, quadratic or an
exponential function with a prime-power base. When we call a function linear,
quadratic or exponential, we mean up to order of magnitude. For instance, h is
quadratic if there are positive constants c1, c2, such that c1r

2 ≤ h(r) ≤ c2r
2 for

all r ≥ 1. There is currently no minor-closed class for which the size function
is known to be cubic or any order of magnitude other than linear, quadratic or
exponential. This observation leads us to the following beautiful conjecture of
Kung.

The Growth Rate Conjecture. Let M be a minor-closed class of matroids,
that does not contain arbitrarily long lines.

(1) If G *M, then h(M; r) is linear.
(2) If G ⊆ M and R(q) * M for every prime-power q, then h(M; r) is

quadratic.
(3) If for some prime-power q, R(q) ⊆M and q is maximal with this prop-

erty, then h(M; r) = qr−1
q−1 for all r sufficiently large.

The conjecture says, that for any minor-closed class in U(q), the size func-
tion is either linear, quadratic or exponential. Kung first made this conjecture
for binary matroids in [28] and later in a version equivalent to the above in [30]
(though it is phrased quite differently). By the term growth rate of a minor-
closed class M, Kung refers to the difference function h(M; r)− h(M; r − 1).
If this function is bounded, then h(M; r) is linear. We shall not be using the
concept of growth rate here.

Notice that the conjectured bounds on h(M; r) in case (1) and (2) are up
to order of magnitude, while in case (3) it is exact (for r sufficiently large).
It is necessary to allow arbitrarily large constants in the linear and quadratic
bounds. In the linear case, this is true already for classes of graphic matroids,
since there are lower bounds on the constant in Mader’s Theorem, that tend to
infinity with the size of the clique being excluded. For the quadratic case, Kung



60 Chapter 4. The Growth Rate Conjecture

in [30] constructs minor-closed classes in R(q) with quadratic size functions
with arbitrarily large constants (“framed gain-graphic matroids”).

Case (1) in the conjecture follows from the extension of Mader’s Theorem to
U(q) by Geelen and Whittle. The two main results of Chapter 3 imply weaker
versions of (2) and (3). We accumulate these results in the following weakened
modification of the conjecture.

Theorem 2.1. Let M be a minor-closed class of matroids, that does not con-
tain arbitrarily long lines.

(1) If G *M, then h(M; r) is linear.
(2) If G ⊆ M and R(q) * M for every prime-power q, then there is an

integer m such that
(
r+1
2

) ≤ h(M; r) ≤ rm for all r.
(3) If for some prime-power q, R(q) ⊆M and q is maximal with this prop-

erty, then h(M; r) has order of magnitude qr.

Proof. Let M be given. Since M does not contain arbitrarily long lines, we
have M⊆ U(q) for some q.

To prove (1) assume that M does not contain all graphic matroids. Since
any graph is a minor of a complete graph, there exists an integer n, such that
M(Kn) /∈ M. By Theorem 10.1 of Chapter 2, there exists an integer λ, such
that h(M; r) ≤ λr for all r. Since h(M; r) ≥ r, the size function is linear.

Consider (2). For each prime-power q′ ≤ q, M does not contain R(q′), so
there is an integer nq′ , such that PG(nq′ − 1, q′) /∈M. Let n be the maximum
of these integers nq′ over prime-powers q′ ≤ q. So PG(n− 1, q′) /∈M for every
prime-power q′. By Theorem 1.4 of Chapter 3, there exists an integer m, such
that h(M; r) ≤ rm. Since G ⊆M, h(M; r) ≥ (

r+1
2

)
.

Case (3) follows in much the same way as (2). Let q∗ be the maximal
prime-power with R(q∗) ⊆ M. For each prime-power q′ with q∗ < q′ ≤ q,
choose nq′ , such that PG(nq′ − 1, q′) /∈M, and let n be the maximum of these
integers. So PG(n− 1, q′) /∈M for every prime-power q′ > q∗. By Theorem 1.1
of Chapter 3, there exists an integer α, such that h(M; r) ≤ αq∗r. Since
R(q∗) ⊆M, h(M; r) ≥ q∗r−1

q−1 ≥ 1
q∗ q∗

r. We conclude that the size function has
order of magnitude q∗r.

The conjectured exact size function in case (3) of the Growth Rate Con-
jecture seems very difficult to prove. If true, case (3) of the conjecture would
readily imply the weaker conjecture mentioned in Chapter 3:

Let q ≥ 2 and let q∗ be the largest prime-power with q∗ ≤ q. Then

h(U(q); r) =
q∗r − 1
q∗ − 1

,
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for all sufficiently large r.

We shall see next, that if we assume representability over some finite field,
the gaps between possible orders of magnitude of the size function become much
larger. Let q be a prime-power and F a field. Then

R(q) ⊆ R(F) if and only if GF(q) is a subfield of F.

The “if” assertion is trivial. The “only if” assertion follows from the fact, that
the projective plane PG(2, q) is representable only over extension fields of GF(q)
(this holds for the projective plane over an infinite field as well. See [1], and [2,
Cpt. 7] for a proof). Furthermore, it is well known that GF(q) is a subfield of
GF(q′) if and only if there is a prime p, such that q = pd, q′ = ps and d divides
s (see for instance [33]).

Corollary 2.2. Let p be a prime, s a positive integer and let M be a minor-
closed class of matroids with R(p) ⊆ M ⊆ R(ps). Then h(M; r) has order
of magnitude qr, where q = pd and d is the largest divisor in s, such that
R(pd) ⊆M.

Proof. Let q be the largest prime-power with R(q) ⊆M. By the third case in
Theorem 2.1, h(M; r) has order of magnitude qr. Since R(q) ⊆ R(ps), by the
observation above, q can be written q = pd, where d divides s.

The fewer divisors there are in s, the fewer possible orders of magnitude
there are for h(M; r). As an example, taking p = 2 and s = 5 in the corollary,
we can deduce the following. Given a positive integer n, there exists an integer
λ such that, if M ∈ R(32) satisfies ε(M) > λ2r(M), then M has a PG(n−1, 32)-
minor.

3 Extensions of Kung’s Theorem

Kung’s Theorem provides a bound on the number of points as a function of
the rank. As we have seen, it does this, in some sense, in the widest setting
possible, namely for matroids in U(q).

The results on covering numbers in Chapter 2 show one direction in which
Kung’s Theorem can be extended. Proposition 3.4 gives an exponential bound
on the a-covering number as a function of the rank, for matroids in the minor-
closed class EX (Ua+1,b). The matroid M = Ua+1,b has a-covering number
τa(M) = d b

ae. This shows that it is necessary to exclude Ua+1,b for some b,
for a bound on τa to hold. So EX (Ua+1,b) is the largest minor-closed class for
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which the a-covering number is bounded by a function of the rank, generalizing
our considerations on Kung’s Theorem.

The covering number results also show that we can bound the number of points
without excluding a line as a minor. The following is another extension of
Kung’s Theorem, which is similar to Lemma 3.7 of Chapter 2.

Proposition 3.1. Let a, b be positive integers with b ≥ 2a. Let M be a matroid
with no Uk,b-restriction for k = 2, . . . , a and no Ua+1,b-minor. Then

ε(M) ≤
(

b− 1
a

)r(M)−1

.

Proof. Assume first that r(M) ≥ a. Recall that ε(M) = τ1(M). By Lemma 3.3
and Proposition 3.4 of Chapter 2, we have

τ1(M) ≤
a∏

k=2

(
b−1
k−1

)
τa(M) ≤

a∏

k=2

(
b−1
k−1

)(
b−1
a

)r(M)−a ≤ (
b−1
a

)r(M)−1
.

In case r(M) < a, the result follows just by applying Lemma 3.3.

For b > a ≥ 1, let Ma,b be the class of matroids in EX (Ua+1,b) that have
no Uk,b-restriction for k = 2, . . . , a. Then by the proposition, if b ≥ 2a,

h(Ma,b; r) ≤
(
b−1
a

)r−1
.

If b < 2a, then Ma,b ⊆ Ma,2a and we get another bound, so in any case Ma,b

has finite size function. Yet, if a and b are large enough, Ma,b is not contained
in U(q) for any q, as we show below. This does not contradict our earlier
conclusions, since Ma,b is not a minor-closed class.

Consider M2,7, the class of matroids having no U2,7-restriction and no
U3,7-minor. We observed in Chapter 2, that no bicircular matroid B(G) has
a U3,7-minor. It is immediate from the definition of bicircular matroids, that
every three element set of B(Kn) is independent. In particular B(Kn) has no
7-point line-restriction. Hence, M2,7 contains all bicircular cliques. We also
showed in Chapter 2, that B(Kn+1) has an n-point line-minor. So M2,7 is not
contained in U(q) for any q.

We now mention one last direction in which Kung’s Theorem can be extended.
Let k be a positive integer. We consider the problem of bounding the number of
rank-k flats of a matroid as a function of the rank. In the class of all matroids
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there is clearly no such bound. The rank-(k + 1) matroid M = Uk−1,k−1 ⊕U2,b

has at least b rank-k flats (b+k−1 to be exact). This shows that if we consider
minor-closed classes, then it is necessary to exclude a line, for a bound to hold
(at least if the class is closed under direct sums; exceptions can be constructed,
e.g. R(2) ∪ {U2,b : b ∈ N}).

On the other hand, excluding a line as a minor is sufficient for a bound to
hold. Let M be a rank-r matroid in U(q). Then ε(M) ≤ qr−1

q−1 ≤ qr, by Kung’s
Theorem. Since a rank-k flat is spanned by k points, we get the following rough
bound on the number of rank-k flats in M ,

(ε(M)
k

) ≤ ε(M)k ≤ qkr(M).

The number of rank-k flats in the projective geometry PG(n− 1, q) is given
by the Gaussian coefficient

[
n

k

]

q

=
k−1∏

i=0

qn−i − 1
qk−i − 1

.

Hence, any rank-r matroid in R(q) has at most
[
r
k

]
q

rank-k flats. Since for q a
prime-power, the maximal number of points among rank-r matroids of U(q) is
attained by PG(r − 1, q), the following conjecture of Bonin [4] is natural.

Conjecture 3.2. Let q ≥ 2. Any rank-r matroid in U(q) has at most
[
r
k

]
q

rank-k flats.

The Gaussian coefficient
[
n
k

]
q

is defined by a rational function of q. In fact,
it is a polynomial in q with integer coefficients. When evaluated in q = 1,
this polynomial yields the binomial coefficient

(
n
k

)
(see [35]). Therefore, it is

custom to define
[
n
k

]
1

=
(
n
k

)
. The conjecture can then be extended to q ≥ 1.

A simple rank-r matroid in U(1) is isomorphic to the free matroid Ur,r, which
has precisely

(
r
k

)
rank-k flats.

For q = 2 the conjecture is true, since U(2) = R(2), the binary matroids.
The case k = 1 in the conjecture is Kung’s Theorem. To my knowledge, the
conjecture is unsettled for k ≥ 2. I have proved the first non-trivial case (besides
Kung’s Theorem), the case k = 2 and q = 3. That is, counting lines of matroids
in U(3).

Theorem 3.3. Any rank-r matroid M ∈ U(3) has at most
[
r
2

]
3

lines.

We start by showing how the full conjecture would be implied by the fol-
lowing conjecture.
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Conjecture 3.4. For any q, k ≥ 1, if M ∈ U(q) has rank k+1 and e ∈ E(M),
then the number of rank-k flats in M avoiding e is at most

[
k+1

k

]
q
− [

k
k−1

]
q

= qk.

Note that this conjecture holds for PG(k, q) and thus for all rank-(k + 1)
matroids in R(q).

Proof that 3.4 implies 3.2. Conjecture 3.2 is trivial in case k = 0, so assume
k > 0. The proof is by induction on r. The result is trivial if r ≤ k, so assume
r > k and that the result holds for r− 1. Let e ∈ E(M) be a non-loop element.

Each rank-k flat in M containing e gives rise to a unique rank-(k − 1) flat
in M/e. So, by induction, there are at most

[
r−1
k−1

]
q

such flats.
A rank-k flat in M avoiding e gives rise to a rank-k flat in M/e. Two of

these give rise to the same flat in M/e if and only if they are contained in the
same rank-(k+1) flat in M . So by induction on M/e and Conjecture 3.4, there
are at most qk

[
r−1
k

]
q

rank-k flats in M avoiding e.
Adding up, we get the desired bound

[
r
k

]
q

=
[
r−1
k−1

]
q
+ qk

[
r−1
k

]
q
.

This formula, which is a q-analogue of the well-known recursive formula for the
binomial coefficient, can be found in [35] (or verified directly).

The above proof shows, that to prove Theorem 3.3, it is sufficient to show
that a rank-3 matroid in U(3) has no more than 32 = 9 lines avoiding a given
element. I can do this by a case analysis which, unfortunately, I haven’t been
able to complete for higher values of q or k.

A quicker way to realize it (which has no chance of generalizing to a proof
of the full conjecture), is to use the excluded minor characterization of ternary
matroids (see Chapter 5):

M ∈ R(3) if and only if M has no U2,5-, U3,5-, F7- or F ∗
7 -minor.

The matroids U3,5 and F7 have rank 3, and F ∗
7 has rank 4. Hence, if M is a

rank-3 matroid in U(3), then either M ∈ R(3) or M is an extension of U3,5 or
F7.

It is easy to check, that neither of U3,5 and F7 can be extended by a point
without creating a matroid with a 5-point line-minor. Thus, if M ∈ U(3) is a
simple rank-3 matroid, then either M ∈ R(3) or M is isomorphic to U3,5 or
F7. In any case, M has no more than 9 lines avoiding a given element. This
concludes the proof of Theorem 3.3.
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U3,5
F7

4 The quadratic conjecture

We shall refer to the second case in the Growth Rate Conjecture as “the
quadratic conjecture”. The remainder of the chapter is concerned with this
conjecture, and some partial results will be presented. The conjecture can be
stated in the following equivalent way.

The quadratic conjecture. Let q ≥ 2 and n be positive integers. There
exists an integer λ such that, if M ∈ U(q) with ε(M) > λr(M)2, then M has a
PG(n− 1, q′)-minor for some prime-power q′.

This conjecture implies case (2) in the Growth Rate Conjecture with the
exact same argument we used in the proof of Theorem 2.1. The reverse impli-
cation is realized by defining a class M given q and n as follows

M = U(q) ∩ EX (PG(n− 1, q′) : q′ a prime-power),

and then applying case (2) in the Growth Rate Conjecture to M.
The quadratic conjecture is trivial in the case n = 2, since if ε(M) > r(M),

then M contains a circuit with at least three elements, and hence a U2,3-minor,
which is a PG(1, 2)-minor. Kung has proved the conjecture in the case where
n = 4 and q = 2 (M is binary), and in the restricted case n = 3 and M ∈ R(q)
(M is representable). These results are mentioned without proof in [30]. The
only easy non-trivial case is the case n = 3 and q = 2, that we prove below.

Lemma 4.1. If M is a binary matroid with ε(M) >
(
r(M)+1

2

)
, then M has an

F7-minor.

Proof. Let M be minor-minimal with ε(M) >
(
r(M)+1

2

)
. In particular, M is

simple. Let r = r(M) and consider e ∈ E(M). By the minimality of M , we
have

ε(M)− ε(M/e) >

(
r + 1

2

)
−

(
r

2

)
= r.

As M is binary, ε(M) − ε(M/e) = 1 + δM (e), so δM (e) ≥ r. Let x1, . . . , xr ∈
E(M) − e be elements on different long lines through e. Then {x1, . . . , xr} is
dependent in M/e, so after contracting some of the xi from M , we obtain a
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minor N with three long coplanar lines through e. So N has a plane P ⊆ E(N)
with at least 7 points. Since N is binary, si(N |P ) ' F7.

This implies h(R(2) ∩ EX (F7); r) ≤
(
r+1
2

)
, as mentioned in Section 1.

The proof of the above lemma uses a technique, which Kung calls “the method
of cones”. We have seen similar arguments in the constructions of pyramids
in Chapter 3 and also in the proof of Mader’s Theorem for U(q) in Chapter 2.
The key observation is, that a matroid M ∈ U(q) with a certain minimum
density contains a minor N with an element e, such that δN (e) is large. It
gives a method for finding more concrete structures in a dense matroid. Kung
attributes this idea to Mader among others.

A matroid C is a cone if it has a non-loop element a called the apex, such
that every other element of C is on a long line with a. For instance, a projective
geometry is a cone with any point as the apex. We review the basic argument
in obtaining a cone.

Let M be a matroid in U(q) and e ∈ E(M) a non-loop element. The number
of long lines through e estimates the number of points lost when contracting e,

1 + δM (e) ≤ ε(M)− ε(M/e) ≤ 1 + (q − 1)δM (e).

Suppose that M satisfies a lower bound on the density given by an increasing
function f , that is ε(M) > f(r(M)). If M is minor-minimal with this property,
then

ε(M)− ε(M/e) > f(r(M))− f(r(M)− 1) ≈ f ′(r(M)− 1),

provided f is smooth (if f is convex, ‘≈’ can be replaced by ‘≥’). Thus, M has
a cone-restriction C with apex e, and roughly f ′(r(M)− 1) lines through e (up
to a constant).

We can now contract e in C, and C/e has at least f ′(r(C)) points (up to
a constant). With quadratic density this argument can be done twice, to yield
two “nested” cones. As we saw in the above lemma, this is enough to construct a
rank-3 projective geometry in the binary case. However, to construct projective
geometries of higher rank, something more is needed.

The following sections present two partial results to the quadratic conjecture,
that I have obtained in my failed attempts to prove it. Interestingly, they
utilize ideas and results used in the proofs of the linear and exponential cases
in Theorem 2.1.

Both results provide a “second half” of a proof of the conjecture. That
is, they reach the conclusion in the quadratic conjecture from a different or
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stronger set of assumptions than quadratic density. This reflects, that I have
not been able to exchange quadratic density for a more concrete and sufficiently
strong structure, as in the exponential case, where the method of cones basically
yields pyramids. In the linear case, this was difficult as well, and the concept
of roundness was the key.

5 Books

The following special case of the quadratic conjecture has been solved by Kung
(it is mentioned in [30]).

Theorem 5.1. There is an integer λ such that, if M is a simple binary matroid
with |E(M)| > λr(M)2, then M contains a PG(3, 2)-minor.

The proof of this is in [32], and uses the concept of a book defined as follows.
A simple matroid B ∈ R(2) is a book if it has a collection of flats called the
pages, whose union is E(B), such that for each page X, B|X is isomorphic
to M(K4) or F7, and such that all the pages contain the same 3-point line L,
called the spine. The proof is in two steps:

(a) Given λ1, λ2 there exists λ, such that if M is simple and binary with
δM (e) > λr(M) for all elements e ∈ E(M), then one of the following
holds.
• M has a cone minor C, with at least λ1r(C)2 points.
• M has a book minor B, with at least λ2r(B) pages.

(b) There exists λ2 such that, if B is a book with at least λ2r(B) pages, then
B has a PG(3, 2)-minor.

Step (a) is the tricky part, while (b) is an easy argument. Note, that a cone C
with apex a and at least λ1r(C)2 points (λ1 large) yields a PG(3, 2)-minor, by
applying Lemma 4.1 to C/a.

Inspired by Kung’s definition, we define a more general notion of book.

Definition 5.2. Let k be a positive integer. A matroid B is a k-book with
spine S, if S is a rank-k flat of B. The rank-(k + 1) flats of B containing S are
called its pages.

The condition of being a k-book is rather weak. Indeed, each rank-r ≥ k
matroid is a k-book, with any rank-k flat as the spine. We shall be interested in
k-books where all the pages are round flats. The roundness serves to guarantee,
that the flats are somewhat dense.

Let M be a simple binary rank-3 matroid. If M is round, then it is isomor-
phic to M(K4) or F7 (If M has less than 6 points, then it is isomorphic to a
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proper restriction of M(K4), which is not round by Remark 1.4 of Chapter 2).
Hence, a matroid B is a book in Kung’s sense, if B is a simple binary 2-book
with round pages. A 1-book with round pages is a cone, whose apex is the
spine.

For a k-book B we denote by π(B) the number of pages of B. This number
depends implicitly on the choice of spine S, and π(B) = ε(B/S). The following
result generalizes part (b) of Kung’s proof. The result was first conjectured
together with Jim Geelen.

Theorem 5.3. Let q ≥ 2 and let n be a positive integer. There exist integers k
and λ such that, if B ∈ U(q) is a k-book with round pages and π(B) ≥ λr(B),
then B has a PG(n− 1, q′)-minor for some q′.

The proof of this theorem occupies the next section. With this in place,
we needed a suitable extension of part (a). The idea in Kung’s argument is
roughly as follows. Consider a cone C, with the number of lines through the
apex linear in the rank. Let a be the apex of C and pick another point a′ on
a line L of C through a. Let y be a third point on L, and let C ′ be the cone
with apex a′ (see Figure 1).

C

C ′

a

y

a′

L

Figure 1

The idea is to add lines to C by contracting y. Two things can happen:
Either a linear (in the rank) number of lines of C ′ are co-planar with lines of C,
giving rise to pages of a book with spine L. Or a linear number of lines of C ′

become new lines of C by contracting y (at the same time the number of lines
is reduced by a constant factor, as lines get identified). Iterating this operation
a linear number of times (e.g. 1

2r(M) times) gives the result.
We proposed the following generalization of (a).
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(a*) Given k, λ1, λ2, λ3, there exist λ, λ′, such that: If M ∈ U(q) has a k-
book restriction B with round pages and π(B) ≥ λr(B), and if δM (e) >
λ′r(M) for all e ∈ E(M), then one of the following holds.
• M has a cone minor C, with at least λ1r(C)2 points.
• M has a minor N with a (k+1)-book restriction B∗ with round pages

and π(B∗) ≥ λ2r(B∗), and where δN (e) > λ3r(N) for all e ∈ E(N).

This would be sufficient to prove the quadratic conjecture. Unfortunately,
we were unable to prove this or a similar generalization using the technique
described above. Still, I feel Theorem 5.3 is interesting, since k-books with
dense pages are quite natural structures to consider.

6 Proof of the book result

This section contains the proof of Theorem 5.3. The following lemma is the
key to the proof.

Lemma 6.1. Let B be a k-book with spine S. If r(B) = k + 2 and B has
exactly three pages X1, X2 and X3, then one of the following holds.

(i) There exists an element y /∈ S, such that ε(B/y) > ε(B|Xi), for some
i ∈ {1, 2, 3}.

(ii) There is a subset S′ ⊆ S, such that in B\S′, every line is long.

Proof. We may assume that B is simple. Suppose (i) fails and let us prove that
(ii) holds. We define

S∗ = {e ∈ S : e is on a long line L,L * S} ,

and let S′ = S − S∗. Let x and y be different elements of B\S′ and let L be
the line through x and y. We consider a number of cases.

If x ∈ X1 − S and y ∈ X2 − S, then L intersects X3, as otherwise we have
ε(B/y) > |X3|. Thus, L is long. This argument holds for any permutation of
X1, X2 and X3.

If x, y ∈ Xi − S, then L intersects S, as otherwise ε(B/y) > |Xj | for j 6= i.
Thus, L is long.

Assume x ∈ X1−S and y ∈ S∗. Suppose y is on a long line with z ∈ X2−S.
Let z′ ∈ X2 − S be another point on this line. The line through x and z meets
X3 in a point w, and the line through w and z′ meets X1 in a point, which must
be on L, proving it long (see Figure 2a). Again, by repeating this argument
with X1, X2 and X3 permuted, we have covered the cases where x ∈ Xi − S
and y ∈ S∗.
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Figure 2

Finally, assume x, y ∈ S∗. Choose a point z /∈ S. Let x′ and y′ be other
points on the lines through {z, x} and {z, y} respectively (see Figure 2b). The
line through x′ and y′ meets S∗ in a point on L, so it is long.

Remark 6.2. We make a few easy observations concerning the above lemma:
• If a matroid M satisfies, that every pair of points is on a long line, then

M is a pyramid with respect to any basis as the set of joints.
• If B is a k-book with spine S and X is a round page, then since X − S

is a co-circuit in B|X, we have rB(X − S) = k + 1.
Hence, if all three pages are round, case (ii) in the lemma gives a pyramid-minor
of rank k + 2.

Theorem 5.3 is an immediate consequence of the next result and the result of
Chapter 3, that a pyramid in U(q) of sufficiently large rank has a PG(n−1, q′)-
minor for some prime-power q′ (Lemmas 5.1 and 5.3 of Chapter 3).

Proposition 6.3. Let q ≥ 2 and let k be a positive integer. There exists an
integer λ, such that if B ∈ U(q) is a k-book with round pages and π(B) ≥ λr(B),
then B has a rank-(k + 2) pyramid-minor.

Notice that, for q = 2 and k = 2 the proposition gives part (b) of Kung’s
proof, since a simple binary rank-4 pyramid is isomorphic to PG(3, 2). Another
corollary is the following easy fact (taking q = 2 and k = 1): There is a λ, such
that a binary cone C with ε(C) > λr(C) has an F7-minor.

Proof of Proposition 6.3. Let q and k be given, and define

m =
qk+1 − 1

q − 1
+ 1, n = β(k, m), λ = λ(n, q),
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where β is given by the lemma following this proof, and λ is given by Theo-
rem 10.1 of Chapter 2 (Mader’s Theorem for U(q)). Let B be given satisfying
the assumptions in the lemma, and let S be the spine of B. Then

ε(B/S) = π(B) ≥ λr(B) > λ(n, q)r(B/S).

By Theorem 10.1 of Chapter 2, B/S contains an M(Kn)-minor. Choose Y
independent, such that B/S/Y has an M(Kn)-restriction, and let B′ = B/Y .
Then B′ is a k-book with spine S′ = clB′(S).

We now apply the technical lemma below to B′. This gives either a rank-
(k + 2) pyramid-minor, or a rank-(k + 1) minor with at least m points. By the
choice of m and Kung’s Theorem, the latter case is impossible.

Lemma 6.4. There exists a function β(k,m) defined on positive integers k and
m, such that the following holds: Let B be a k-book with spine S and round
pages. If B/S has an M(Kn)-restriction, where n = β(k,m), then either

(i) There is a page X of B, and a set Y ⊆ E(B) skew from X, such that
ε(B/Y | clB/Y (X)) ≥ m, or

(ii) B has a rank-(k + 2) pyramid-minor.

Proof. We define β(k, m) = 2 for m ≤ k + 1, and recursively β(k,m) =
3β(k, m − 1) for m > k + 1. The proof is by induction on m. For the ba-
sis case (m ≤ k + 1), note that (i) holds trivially, since there is at least one
page, and any rank-(k + 1) flat has k + 1 points.

Let m > k + 1 and let B and S be given, where B/S has an M(Kn)-
restriction and n = 3n′ = 3β(k, m−1). We can assume, after possibly renaming
elements, that B/S|W = M(G), where G is a Kn graph and W = E(G). Let
G1, G2 and G3 be vertex-disjoint complete subgraphs of G on n′ vertices (see
Figure 3a).

For each w ∈ W , let Xw denote the page in B corresponding to w, that is
Xw = clB(S∪w). Let Wi = E(Gi) for i = 1, 2, 3. Then W1,W2,W3 are skew in
B/S. We define three sub-books B1, B2 and B3 with spine S by Bi = ∪w∈WiX

w.
We can now apply induction to each Bi. If any of the Bi satisfies (ii), we are
done, so assume otherwise. Then Bi has a page Xi and and a set Yi ⊆ E(Bi),
skew from Xi, such that

ε(Bi/Yi| clBi/Yi
(Xi)) ≥ m− 1.

We can take Yi to be independent. The sets X1, X2 and X3 are pages of B.
Let e1, e2, e3 ∈ W be the elements with Xi = Xei .
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Let Y∗ = Y1 ∪ Y2 ∪ Y3 and let B∗ = B/Y∗. Then B∗ is a k-book and
ε(B∗| clB∗(Xi)) ≥ m − 1 for i = 1, 2, 3. Note that Y∗ is independent in B/S,
and every element y ∈ Y∗ is in parallel with a w ∈ W in B/S. So, there is a
Z ⊆ W with

B/S/Z = B/S/Y∗ = B∗/S.

Hence B∗/S has as a restriction M(G/Z). The edges e1, e2 and e3 are vertex-
disjoint in the complete graph G/Z, so they lie together on a 6-edge cycle. Let
the last three edges of the cycle be c1, c2, c3 ∈ W (see Figure 3b).

Let B′ = B∗/c1, c2, c3 and let X ′
i = clB′(Xi) be the page in B′ corresponding

to Xi for i = 1, 2, 3. Since {e1, e2, e3} is the edge-set of a triangle in the graph
G/Z/c1, c2, c3, it is a circuit of B′/S. Hence rB′(X ′

1 ∪X ′
2 ∪X ′

3) = k + 2.

We now apply Lemma 6.1 to the 3-page k-book B′|(X ′
1 ∪X ′

2 ∪X ′
3) and get

one of two outcomes. In the first case, there is an element y whose contraction
throws at least one more point into one of the pages. Since ε(B′|X ′

i) ≥ m − 1
for i = 1, 2, 3, we have proved (i) taking Y = Y∗ ∪ {c1, c2, c3, y}. In the second
case, we obtain a rank-(k + 2) pyramid-minor as noted in Remark 6.2.

We could still achieve Theorem 5.3 with a weaker assumption in place of
roundness of the pages. What is needed in Remark 6.2, is a lower bound on the
rank of X −S for each page X, that grows with k. It is sufficient, for instance,
that the pages be near-round.
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7 A spanning clique-minor

The following theorem is another partial result to the quadratic conjecture,
obtained by me. Its proof is based on an idea for binary matroids by Jim
Geelen, Bert Gerards and Geoff Whittle, explained to me by Jim Geelen. It
gives strong evidence to the conjecture, and seems more promising than the
book result, to be part of a complete proof of the conjecture.

Theorem 7.1. Let q and n be positive integers. There exists an integer λ such
that, if M ∈ U(q) has a spanning clique-minor and satisfies ε(M) > λr(M)2,
then M has a PG(n− 1, q′)-minor for some prime-power q′.

By a spanning clique-minor, we mean a spanning Dowling-clique-restriction.
That is, we shall need M to have a basis V , such that every pair of elements
of V is on a long line in M . This is satisfied, for instance, if M has a spanning
M(Km)-minor.

With this result, the quadratic conjecture would follow from the weaker
conjecture:

Conjecture 7.2. Let q ≥ 2 and λ′ be given. There exists an integer λ such
that, if M ∈ U(q) satisfies ε(M) > λr(M)2, then M has a minor N with a
spanning clique-minor, and ε(N) > λ′r(N)2.

We know from Mader’s Theorem for U(q), that high linear density (with a
sufficiently large constant) is enough to guarantee a large graphic clique-minor.
Unfortunately, I have been unable to obtain such a minor, while preserving the
quadratic density.

The next result is similar to the above theorem. It has a different set of
assumptions, that I have tried (in vain) to reach from quadratic density. It will
follow by a short argument during the proof of Theorem 7.1.

Theorem 7.3. Let q and n be positive integers. There exists an integer λ such
that, if M ∈ U(q) contains a set X with εM (X) > λr(M) and every pair of
elements of X is on a long line, then M has a PG(n − 1, q′)-minor for some
prime-power q′.

The proof of Theorem 7.1 occupies the next two sections.

8 Support-sets

Let M be a matroid with basis V . For e ∈ E(M)− V , define Ve = Ce(V )− e,
where Ce(V ) denotes the fundamental circuit of e with respect to V . The choice
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of (M, V ) is not reflected by this notation, but will be clear from the context.
The set Ve can be thought of as the “support” for e. Given (M, V ), we call a
set X ⊆ V a support-set, if X = Ve for some e ∈ E(M)− V .

Note, that there is a Dowling-clique on V in M if and only if every subset
of V of size 2 is a support-set. Our first lemma shows how support-sets can be
used to build a dense minor.

Lemma 8.1. There exists a function ψ : N→ N such that, if M is a matroid
with basis V , there is a Dowling-clique on V in M and M has at least ψ(k)
disjoint support-sets X ⊆ V , with |X| ≥ 3, then M has a rank-k minor N , with
ε(N) = 2k − 1.

Proof. Define

ψ(k) =
k∑

i=3

(
k

i

)
(i− 2).

Let (M, V ) be given and let X ⊆ 2V be a collection of disjoint support-sets of
size at least 3, with |X | = ψ(k). We may assume that |X| = 3 for all X ∈ X
(otherwise, contract points in X).

We first describe an operation to “merge” two support-sets into one of larger
size. Let e, e′ ∈ E(M) − V be given, with Ve and Ve′ disjoint and |Ve| = i,
|Ve′ | = 3. Choose points v ∈ Ve and v′ ∈ Ve′ , and let y be a third point on the
line through v and v′. Then v and v′ are parallel in M ′ = M/y. Note that
C = Ve ∪ e and C ′ = (Ve′ − v′) ∪ {v, e′} are circuits in M ′ and C ∩ C ′ = {v}
(see Figure 4).

v
e
′e

C C
′

Figure 4

By the (weak) circuit elimination axiom, C ∩ C ′ − v contains a circuit of
M ′. We can write C ∩ C ′ − v = V∗ ∪ {e, e′}, where V∗ = (Ve − v) ∪ (Ve′ − v′).
Observe, that every proper subset of V∗ ∪ {e, e′} is independent in M ′, and
hence V∗ ∪ {e, e′} must be a circuit of M ′.
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Let M1 = M ′/e′ and note that V1 = V − {v, v′} is a basis of M1. The set
V∗ is a support-set of (M1, V1) with respect to e, and |V∗| = i + 1.

Using the above operation we can build a support-set of size i ≥ 3 (in a minor of
M with a basis contained in V ) out of i−2 sets from X . Thus we may assume,
that M,V,X are given, such that X is a collection of disjoint support-sets of
(M, V ), and X contains

(
k
i

)
sets of size i, for i = 3, . . . , k (and no sets of other

sizes).
Let W0 ∈ X be the unique member with |W0| = k. To each set W ∈ X−W0,

we assign a subset XW ⊆ W0, with |XW | = |W |, such that this assignment is
one-to-one. Also, choose a set YW ⊆ E(M) − V with |YW | = |W | as follows:
pair up the elements of W and XW , and for each pair let YW contain a third
point on the line through the two points (see Figure 5).

XW

W0
W

YW

Figure 5

Let M0 = M/ ∪W∈X−W0 YW , and define N = M0| clM0(W0). Then W0 is a
basis for N and every X ⊆ W0, with |X| ≥ 2 is a support-set for (N, W0), and
thus determines a unique point of N . Hence,

ε(N) ≥ k + # {X ⊆ W0 : |X| ≥ 2} = 2k − 1,

which concludes the proof.

The next lemma is a corollary to the previous one.

Lemma 8.2. There exists a function φ : N2 → N such that, if M ∈ U(q)
has basis V , there is a Dowling-clique on V in M and M has at least φ(n, q)
disjoint support-sets X ⊆ V , with |X| ≥ 3, then M has a PG(n− 1, q′)-minor
for some q′.

Proof. Let n and q be given. By Theorem 1.4 of Chapter 3, there are integers
a,m such that any matroid N ∈ U(q) with ε(N) > ar(N)m has a PG(n−1, q′)-
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minor. Since

lim
k→∞

2k

km
= ∞,

we can pick a k ∈ N with 2k − 1 > akm. We then define φ(n, q) = ψ(k).
The result now follows by applying the previous lemma and Theorem 1.4

of Chapter 3.

We can now prove Theorem 7.3.

Proof of Theorem 7.3. Let q and n be given. Define m = 3φ(n, q) + 1, and let
λ = λ(m, q), the function given by Mader’s Theorem for U(q) (Theorem 10.1
of Chapter 2). Let M and X be given, where ε(M |X) > λr(M) and every pair
of elements of X is on a long line.

By Mader’s Theorem for U(q), M |X has an M(Km)-minor. Hence, M has
a contraction minor N , such that N |XN ' M(Km), where XN ⊆ X ∩ E(N)
and XN spans N .

Choose a basis V ⊆ XN of N corresponding to the edges incident with a
fixed vertex in Km. So, there is a Dowling-clique on V in N in which every pair
of elements is on a long line of N . It follows easily, that every 3-element subset
of V is a support-set of (N, V ). The result now follows from Lemma 8.2.

We return focus to the main theorem, Theorem 7.1. The next result is
where the quadratic density is brought to use. We first make an observation.
Let λ be a positive integer, and let M ∈ U(q) satisfy ε(M) > λr(M)2. Then, if
e is a non-loop element of M ,

ε(M/e) ≥ ε(M)− 1
q

≥ λr(M)2

q
>

λ

q
r(M/e)2.

So M/e has quadratic density with the constant reduced by a factor q.

Lemma 8.3. There exists a function θ1 : N3 → N such that, if M ∈ U(q) has
basis V , there is a Dowling-clique on V in M , |Ve| ≤ d for all e ∈ E(M)− V ,
and ε(M) > λr(M)2 where λ = θ1(n, d, q), then M has a PG(n − 1, q′)-minor
for some q′.

Proof. For d ≤ 2 let θ1(n, d, q) = q, and for d ≥ 3 define θ1 recursively by

θ1(n, d, q) = qφ(n,q)dθ1(n, d− 1, q).
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Let (M,V ) be given. We may assume, that M is simple. The proof is by
induction on d. Consider first the case d ≤ 2. Then every point of E(M)− V
is on a line with two points of V , and since M ∈ U(q),

ε(M) ≤ r(M) +
(

r(M)
2

)
(q − 1) ≤ qr(M)2.

By definition of θ1, this contradicts our assumptions.
Consider next the case d ≥ 3 and assume the result holds for d − 1. Let

e1, . . . , em ∈ E(M) − V be a maximal collection, satisfying that Ve1 , . . . , Vem

are disjoint and that |Vei | ≥ 3 for all i. Let m0 = φ(n, q). We look at two cases.
If m ≥ m0, we are done by Lemma 8.2. Assume now that m ≤ m0. Let

Y = Ve1 ∪· · ·∪Vem ⊆ V . Then, by assumption |Y | ≤ m0d. Now, in M ′ = M/Y
with basis V − Y , all support-sets have size at most d− 1. And by the remark
preceding the lemma,

ε(M ′) >
λ

qm0d
r(M ′)2 = θ1(n, d− 1, q)r(M ′)2.

So, we can apply induction to M ′, and we are done.

Let M be a matroid with basis V . For e, f ∈ E(M)−V , we define a notion
of distance:

dV (e, f) = min
{|Y | : Y ⊆ V and rM/Y (e, f) < 2

}
.

Observe, that M is simple if and only if dV (e, f) > 0 for all e 6= f . Also,
trivially dV (e, f) ≤ |Ve| , |Vf |.

As an example, suppose M is represented by the matrix A over some field,
and V labels the columns of an identity sub-matrix. Then V can be thought
of as labeling the rows, and Ve is then the support of the column labeled by e.
Note, that dV (e, f) is the minimum number of rows of A, whose deletion makes
the columns {e, f} dependent.

The next lemma generalizes Lemma 8.3.

Lemma 8.4. There exists a function θ : N4 → N such that, if M ∈ U(q) has
basis V , there is a Dowling-clique on V in M , and ε(M) > λr(M)2 where
λ = θ(n,m, d, q), then either

(1) M has a PG(n− 1, q′)-minor for some q′, or
(2) there are e1 . . . , em ∈ E(M)− V , with dV (ei, ej) > d for i 6= j.
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Proof. Define θ by

θ(n,m, d, q) = m(d + 1)qθ1(n, d, q).

Let M and V be given and assume that M is simple. Let e1, . . . , es ∈ E(M)−V
be a maximal collection of elements satisfying dV (ei, ej) > d for all i 6= j, and
|Vei | > d for each i (note that, by the remarks preceding the lemma, the second
condition is superfluous in case s ≥ 2).

If s ≥ m, then we are done immediately, since (2) is satisfied. If s = 0, then
|Ve| ≤ d for all e ∈ E(M)− V . Since θ(n,m, d, q) ≥ θ1(n, d, q) we are done by
Lemma 8.3 in this case.

Suppose now, that 1 ≤ s ≤ m. Let X = E(M) − V − {e1, . . . , es}. Since
λ > m by definition, we easily get |X| > λ(r(M)−1)2. Now, by the maximality
of s, for every element f ∈ X, dV (ei, f) ≤ d for some i = 1, . . . , s. By a majority
argument, there is a set X ′ ⊆ X and an i ∈ {1, . . . , m}, such that dV (e, f) ≤ d
for all f ∈ X ′, where e = ei, and |X ′| ≥ 1

m |X|.
For each element f ∈ X ′, choose Yf ⊆ V minimal such that Yf ∪ {e, f} is

dependent in M . So |Yf | = dV (e, f) ≤ d. Since |Ve| ≥ d + 1, by a majority
argument, there is a set X ′′ ⊆ X ′ and an element v ∈ Ve, such that v ∈ Ve−Yf

for all f ∈ X ′′, and |X ′′| ≥ 1
d+1 |X ′|.

Since v ∈ Ve, V ′ = V −v is a basis of M ′ = M/e. For any f ∈ X ′′, Yf ⊆ V ′,
and Yf∪f is dependent in M ′, which shows that the support-set of f in (M ′, V ′)
is contained in Yf , and so has size at most d. By the preceding inequalities, we
get

ε(M ′|X ′′) ≥ |X ′′|
q

>
λ

m(d + 1)q
(r(M)− 1)2 = θ1(n, d, q)r(M ′)2.

Hence, we can apply Lemma 8.3 to M ′|(V ′ ∪X ′′), and we are done.

9 Pseudo-matrices

We now define a generalized type of matrix representation of a matroid, that
need not be representable over a field. This construction is equivalent to the no-
tion of “abstract matrix” in Truemper [49], though Truemper defines abstract
matrices from a set of axioms.

The proofs in this section make extensive use of figures to describe special
structures of such matrix representations. The proofs are dependent on the
figures and cannot be read without them. I have found this circumstance
hard to avoid, as the information described by some of these figures would
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be exceedingly cumbersome to present in the text, which would clutter the
exposition.

Definition 9.1. Let M be a matroid on the ground set E, and let V be a basis
of M . By the pseudo-matrix of (M, V ), we shall mean the symbolic matrix A,
with rows indexed by V and columns indexed by E − V , characterized by its
rank function rA : 2V ×2E−V → N, that associates a number to each sub-matrix
of A, its rank.

E − V

V A

The rank-function is given by rA(Y, X) = rM/(V−Y )(X).

Notice, that rA(Y, X) ≤ |Y | , |X|. The entries of A have no values, but we
shall view them as being zero or non-zero depending on whether the rank is 0
or 1. An entry A[v, e] is non-zero if and only if v ∈ Ve, the support-set of e. In
our figures, when an entry is marked by a “0” or a “1”, it means the entry has
rank 0 or 1, respectively.

Suppose M is representable over some field, and it is represented by [I|B],
where V labels the columns of I (the identity-matrix). Then we can view V
as labeling the rows of B. Note, that if Y ⊆ V and X ⊆ E − V , then the
sub-matrix B[Y, X] has rank exactly rA(Y, X). So, the pseudo-matrix can be
thought of as a generalized matrix representation.

Remark 9.2. Let M,V and A be given as above. If Y ⊆ V is held fixed, then
rM (Y, ·) is the rank-function of a matroid on E − V , namely M/(V − Y )\Y .
On the other hand, let X ⊆ E − V be fixed, and let Z = V ∪X. We calculate
the rank-function of (M |Z)∗ on Y ⊆ V :

r(M |Z)∗(Y ) = |Y | − r(M |Z) + rM |Z(Z − Y )

= |Y | − |V |+ rM (V ∪X − Y )
= rM (V − Y ∪X)− rM (V − Y )
= rA(Y, X).

Thus rA(·, X) is also the rank-function of a matroid.
A consequence of these observations, that we shall use extensively is the

following. If a pseudo-matrix has three non-zero columns a, b, c,

| | |
a b c

| | |
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and the sub-matrices [ab] and [bc] have rank 1, then [ac] has rank 1. The same
thing holds if we look at rows instead of columns.

Let A be the pseudo-matrix of (M,V ). Then the sub-matrix of A, obtained
by deleting rows Y0 ⊆ V and columns X0 ⊆ E(M) − V is the pseudo-matrix
of a minor of M , namely M/Y0\X0 with basis V − Y0. When we picture sub-
matrices of a pseudo-matrix, we allow permutations of the rows and of the
columns.

If the matroid M with basis V has as pseudo-matrix, a 2 × m matrix, in
which every 2 × 2 sub-matrix has rank 2, then M\V ' U2,m. Thus, M can
have no sub-matrix of this form with m = q + 2, if M ∈ U(q). We use this fact
in the following Ramsey-like lemma.

Lemma 9.3. There exists a function κ1 : N2 → N such that, if A is the pseudo-
matrix of a simple matroid in U(q), and A has a row (denoted v) with at least
s non-zero entries, where s = κ1(t, q), then A has a (t + 1) × t sub-matrix, of
one of the following forms:

(I) :

v 1 1 · · · 1
β α · · · α

α β
. . .

...
...

. . . . . . α

α · · · α β

or (II) :

v 1 1 · · · 1
β α · · · α

β β
. . .

...
...

. . . α

β β · · · β

where 2× 2 sub-matrices of the following forms have the indicated rank:

v 1 1
α α

rank 1
v 1 1

β β
rank 1

v 1 1
β α

rank 2 (?)

Note, that entries marked “α” or “β” may be zero or non-zero, and both
can occur at once in different entries. Also, we say nothing about the rank of
2× 2 sub-matrices, that are not of one of the forms in (?).

Proof. Define κ1(t, q) = (q + 1)t1 , where t1 = (q + 1)t2 and t2 = 3t.
Let A be the pseudo-matrix of a simple matroid M ∈ U(q). We may assume,

that v is the first row of A, v has no zero entries, and A has width s = κ1(t, q).
That M is simple implies that no two columns of A are parallel (i.e. the sub-
matrix consisting of any two columns has rank 2). We first prove the following.
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Claim. Let d ∈ N. If s ≥ (q + 1)d, then A has a (d + 1)× d sub-matrix of the
form:

v 1 1 · · · 1
β α · · · α

? β
. . .

...
...

. . . . . . α

? · · · ? β

(1)

where 2× 2 sub-matrices satisfy (?).
The proof of the claim is by induction on d, the case d = 1 being trivial.

Let d > 1 and assume the claim holds for d − 1. Choose a row v′ in A, such
that the 2 × s matrix with rows v, v′ has rank 2 (if this is not possible, A has
rank 1, contradicting that M is simple).

We define a relation on the columns of A as follows. Two columns are
related, e1 ∼ e2 if the 2× 2 sub-matrix,

e1 e2

v 1 1
v′ ? ?

(2)

has rank 1. By Remark 9.2, this is an equivalence relation. By the choice of v′,
there are at least two equivalence classes. Also, since M ∈ U(q), the number
of classes is at most q + 1. By a majority argument, we can find a class X of
size at least s/(q + 1). Let e be a column not in X. Deleting all columns not
in X ∪ e, we obtain the sub-matrix:

A′ :

e X

v 1 1 1 · · · 1
v′ β α α · · · α

?
... ?
?

Consider the matrix A′′ obtained by deleting column e and row v′ from A′. Note,
that A′′ has no parallel columns, as otherwise A would. Since, |X| = (q+1)d−1,
by induction A′′ has a d × (d − 1) sub-matrix of the form (1). Hence, A′ has
the desired sub-matrix. This concludes the proof of the claim.

By definition of κ1, A has a sub-matrix B of the form (1), such that B has
width t1. We prove another partial result.
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Claim. Let d ∈ N. If t1 ≥ (q + 1)d, then B has a (d + 1)× d sub-matrix of the
form:

v 1 1 · · · 1
β α · · · α

γ β
. . .

...
...

. . . . . . α

γ · · · γ β

v 1 1
γ γ

rank 1 (3)

where the entries marked β or α are subsets of the corresponding entries in B,
and where in addition to (?), 2×2 sub-matrices of the form shown on the right
have rank 1.

The proof is by induction on d. The case d = 1 is trivial, so assume d > 1
and that the claim holds for d − 1. Let v′ denote the bottom row in B, and e
the right-most column.

We define an equivalence relation on the set of columns excluding e, as
before, by e1 ∼ e2 if the sub-matrix shown in (2) has rank 1. By a majority
argument, there exists a class X of size at least (q + 1)d−1, since

t1 − 1 > ((q + 1)d−1 − 1)(q + 1).

By deleting the columns not in X ∪ e, and the corresponding rows (meeting at
the diagonal marked β), we get the sub-matrix:

B′ :

X e

v 1 1 · · · 1 1
β α · · · α α

? β
. . .

...
...

...
. . . . . . α

...
? · · · ? β α

v′ γ γ · · · γ β

Let B′′ be given by deleting column e and row v′ from B′. Then, by induction
B′′ has a sub-matrix of the form (3), and of width d− 1, which shows that B′

has the desired sub-matrix.

By definition of t1, B has a sub-matrix C of the form (3), such that C has
width t2. Let Y denote the set of rows of C excluding v. Observe that, for a
fixed row w ∈ Y , 2× 2 sub-matrices of the form:

v 1 1
w γ α
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either all have rank 1 or all have rank 2. Let us say, that w has type 1/type 2
respectively (the top and bottom row of Y have both).

If there is a set Y ′ ⊆ Y of t type 1 rows, then by deleting the rows in
Y − Y ′ and the corresponding columns, we arrive in case (I), and we are done.
Otherwise, there is a set Y ′ ⊆ Y of 2t type 2 rows. Delete first the rows in
Y − Y ′ and the corresponding columns, to obtain a sub-matrix C ′ of the form
(3), of width 2t, and where every row has type 2. We then delete the entries
marked β, by deleting every other row and column in the following fashion
(rows and columns to be deleted are marked by a “∗”):

∗ ∗
1 · 1 · 1

∗ β · · · ·
γ β α · α

∗ · · β · ·
γ · γ β α

−→
1 1 1
γ α α

γ γ α

This gives a (t + 1)× t sub-matrix as in case (II), and the lemma is proved.

In the next lemma we assume instead an upper bound on the number of
non-zero entries in a row, and get a result about 0/1-matrices.

Lemma 9.4. There exists a function κ2 : N2 → N such that, if A is a 0/1-
matrix, with no 0-columns, where no row has more than s non-zero entries,
and A has width at least m, where m = κ2(t, s), then A has a t × t identity
sub-matrix.

Proof. Define κ2(t, s) = s(t − 1) + 1. The proof is by induction on t, the case
t = 1 being trivially true. Let t > 1 be given and assume the result holds for
t− 1.

Let A be given, with width m = κ2(t, s). We may assume, that A has
a column with only one non-zero entry (if not, we can delete rows without
creating 0-columns, until it holds). After permuting the rows and the columns,
moving this entry to the top left corner, we obtain the sub-matrix:

1 1 1 · · · 1 0 0 · · · 0
0
... ? A′

0
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Since the first row has at most s non-zero entries, A′ has width at least m−s =
κ2(t − 1, s). By induction, A′ has a (t − 1) × (t − 1) identity sub-matrix, and
we are done.

Remark 9.5. The above lemma marks one of the rare occasions in this text,
where the bound in an extremal result is exact. Let It denote the t× t identity
matrix, and consider the matrix consisting of s copies of It−1, as follows:

It−1 It−1 · · · It−1

This matrix has no It sub-matrix, so we must have κ2(t, s) > s(t− 1).

We are now ready for the last part of the proof of Theorem 7.1. We first
make a few observations. Let M be a matroid with basis V , and let A be the
pseudo-matrix of (M,V ). A sub-matrix of A corresponds to a minor of M ,
formed by contracting a subset of V and deleting a subset of E(M) − V . In
the next result we shall need to contract elements of E(M) − V as well. The
effect on the pseudo-matrix is analogous to pivoting in a real matrix:

Let v ∈ V and e, f ∈ E(M)−V , and suppose that v ∈ Ve, that is, the entry
A[v, e] is non-zero. Then V − v is a basis of M/e. Let B be the pseudo-matrix
of M/e\v with respect to V − v. Suppose the entry A[v, f ] is zero. Then f is
spanned by V − v, so the support-set Vf of f is unchanged by the contraction
(in the figure below, a and a′ have the same 0/1-pattern).

e f

v 1 0

V − v a

/e−→
f

V − v a′

If we do not assume, that A[v, f ] is zero, then we need to consider 2 × 2 sub-
matrices. Let w ∈ V − v. If the sub-matrix of A,

e f

v 1 ?
w ? ?

has rank 2, then the entry B[w, f ] is non-zero, and if the sub-matrix has rank 1,
then the entry is zero.
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Finally, notice that 2×2 pseudo-matrices of the following forms always have
the indicated rank:

1 ?
0 0

rank 1
1 ?
0 1

rank 2

Lemma 9.6. There exists a function κ : N2 → N such that, if M ∈ U(q)
has basis V , there is a Dowling-clique on V in M , and there are elements
e1, . . . , em ∈ E(M)− V , with dV (ei, ej) > 4 for i 6= j, where m = κ(n, q), then
M has a PG(n− 1, q′)-minor for some q′.

Proof. Let n and q be given. We first define a function w : N→ N by

w(1) = 3, w(d) = (w(d− 1) + 1)(q + 1)3 + 3, for d > 1.

Next, we define numbers b0, b1, b2, b3 by

b0 = w(φ(n, q)) + 1, bi = κ1(bi−1, q), for i = 1, 2, 3.

Let s = b3, and define numbers t0, t1, t2, t3 by

t0 = φ(n, q), ti = κ2(ti−1, s), for i = 1, 2, 3.

Finally, let κ(n, q) = t3.
Let (M,V ) be given, and let X = {e1, . . . , em}, where m = κ(n, q). Let A

be the pseudo-matrix of M |(V ∪X) with respect to V .
Note that, since |Vei | ≥ 5 > 2, for all i, the Dowling-clique on V contains

no elements from X. Any construction of minors that we do in the proof
is a combination of the following operations: contracting elements of V , and
deleting or contracting elements of X. Note that every such minor, N has a
basis contained in V , and thus has a spanning clique-minor. When we consider
the pseudo-matrix of such a minor below, we always restrict the column set to
elements in X (as in the definition of A above). We consider three cases in the
proof.

Case 1: No row in A has more than s non-zero entries. Mark the entries in A
“0” or “1”, depending on whether they are zero or non-zero. Every column in
A has at least 5 ≥ 3 non-zero entries. Since m = t3 = κ2(t2, s), by Lemma 9.4
A has a t2 × t2 identity sub-matrix. Thus, A has the sub-matrix,

I

A′
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where A′ has width t2, and every column in A′ has at least 2 non-zero entries.
We now apply Lemma 9.4 to A′ and repeat the argument. After applying the
lemma three times, we obtain the sub-matrix of width t0:

I

I

I

This shows, than M has a minor N with basis V ′ ⊆ V such that, there is a
Dowling-clique on V ′ in N , and t0 = φ(n, q) elements with disjoint support-sets
of size 3. Lemma 8.2 now gives the desired PG-minor.

Case 2: There is a row v in A with at least s non-zero entries, and A has no
sub-matrix of width b0 of the form (II), shown in Lemma 9.3. Since s = b3 =
κ1(b2, q), by Lemma 9.3, A has a sub-matrix of width b2 of one of the forms
(I) and (II) shown in the lemma. Because b2 ≥ b0, the first must be the case.
Hence, A has a sub-matrix (formed only by deleting columns) of width b2, of
the form:

v 1 · · · 1

Y B

A′

where

v 1 · · · 1

Y B
has type (I).

Let A′′ be the sub-matrix obtained by deleting the set of rows Y in the above.
Notice, that in a pseudo-matrix of type (I), any pair of columns can be made
parallel by deleting two rows. It follows that no pair of columns {e, f} of A′′ can
have rank < 2, since in that case, the elements e, f of M satisfy dV (e, f) ≤ 2,
contradicting our assumptions.

We can now apply Lemma 9.3 to A′′, and get a sub-matrix of A′′ of width
b1 of the form (I). We repeat the above argument (this time using the fact that
dV (e, f) > 4, for distinct elements e, f ∈ X), and apply Lemma 9.3 a third
time. This shows, that A has a sub-matrix C of width b0, of the form shown
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below.

C :

e

v 1 1 · · · 1
β α · · · α

α β
. . .

...
...

. . . . . . α

α · · · α β

β α · · · α

α β
. . .

...
...

. . . . . . α

α · · · α β

β α · · · α

α β
. . .

...
...

. . . . . . α

α · · · α β

D :

1 · · · 1

I

1 · · · 1

I

1 · · · 1

I

Let V ′ be the row set and X ′ the column set of C. Now, M has a minor M ′

with basis V ′, satisfying the restrictions described first in the proof, such that
C is the pseudo-matrix of M ′ with respect to V ′ (actually of M ′|(V ′∪X ′)). By
the observations preceding the lemma, the minor formed by contracting e has
pseudo-matrix D of the form shown above, with respect to V ′ − v.

Now, delete the three 1-rows in D. Since the resulting sub-matrix has width
b0 − 1 ≥ φ(n, q), Lemma 8.2 now yields the desired PG-minor, as in Case 1.

Case 3: There is a row v in A with at least s non-zero entries, and A has a
sub-matrix B of width b0 of the form (II), shown in Lemma 9.3. Let e denote
the first column of B as below:

B :

e

v 1 1 · · · 1
β α · · · α

β β
. . .

...
...

. . . α

β β · · · β

C1 :
1 · · · 1

0
. . .

...
...

. . . 1
0 · · · 0

Now, B is the pseudo-matrix of a minor M1 of M , with basis V1. Let C1 be
the pseudo-matrix of M1/e with the basis V1 − v (as always, restricted to the
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column set in X). Then C1 has the form shown above. Let C be the sub-matrix
obtained by deleting the last row of C1. We call C upper-triangular, meaning
that C is square and an entry of C is non-zero if and only if it lies on or above
the diagonal. We prove an intermediate result:

Claim. Let d ∈ N. Let C be the pseudo-matrix of a minor N1 of M (satisfying
the restrictions made first in the lemma), with basis contained in V . If C is
upper-triangular, with width at least w(d), then N1 has a minor N with basis
contained in V , and pseudo-matrix of width d, of the form:

I

I

I

(1)

The proof of the claim is by induction on d, the case d = 1 being trivial,
since w(1) = 3. Let d > 1, and assume the claim holds for d − 1. Let N1 and
C be given. Let v0, v1, v2 and v3 be the top four rows of C, in that order. Let
X1 denote the set of columns of C excluding the leftmost three columns. For
each i ∈ {1, 2, 3} we define an equivalence relation ∼i on X1, by e1 ∼i e2 if the
2× 2 sub-matrix,

e1 e2

v0 1 1
vi 1 1

has rank 1. Since M ∈ U(q), ∼i defines at most q + 1 equivalence classes.
Define e1 ∼ e2, if e1 ∼i e2, for i = 1, 2, 3. Then ∼ is an equivalence relation
on X1 with at most (q + 1)3 classes. Hence, there exists a class X2 ⊆ X1, with
|X2| ≥ |X1| /(q + 1)3. So, C has a sub-matrix C ′:

C ′ :

e

v0 1 α α · · · α

v1 1 α α · · · α

v2 1 α α · · · α

v3 0 α α · · · α

0 0 1 · · · 1
...

. . . . . .
...

0 0 · · · 0 1

D :

v0 1
v1 1 0
v2 1

0 1 1 · · · 1
0 0 1 1
...

...
. . . . . .

...
0 0 · · · 0 1

where the set of columns of C ′ excluding the first is X2, and such that entries
marked “α” are non-zero, and 2 × 2 sub-matrices with all entries marked “α”
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have rank 1. Suppose C ′ is the pseudo-matrix of a minor M2 of M with basis
V2. Then MD = M2/e with basis V2 − v3 has pseudo-matrix D of the form
shown above. Let f denote the first column of D.

Deleting the top three rows and the first column of D, we get an upper-
triangular sub-matrix of width |X2|−1 ≥ w(d−1). Hence, by induction we get
a minor with pseudo-matrix of width d − 1 of the form (1). By the structure
of D, we can construct this minor from MD, keeping the elements v0, v1, v2

and f , without affecting the support-set of f . Hence, N1 has a minor with
pseudo-matrix of width d, of the form (1). This concludes the proof of the
claim.

Now, C has width b0−1 = w(φ(n, q)), so by the above, M has a minor with
pseudo-matrix of the form (1), and of width φ(n, q). Again, by Lemma 8.2, we
are done.

Theorem 7.1 now follows immediately from Lemmas 8.4 and 9.6.





5 Rota’s Conjecture, branch-width and grids

Already in his 1935 seminal paper on matroid theory [54], On the abstract prop-
erties of linear dependence, Whitney considered the problem of characterizing
the matroids representable over a given field. This problem has been at the
heart of matroid theory ever since. The central task in this area has become
to resolve a 1971 conjecture of Rota. There has been recent progress toward
settling Rota’s Conjecture, which we shall describe in this chapter, without
going into technicalities.

1 Rota’s Conjecture

The problem of determining whether a given matroid is representable over a
given field is far from trivial. Even for the simple class of uniform matroids
Ur,n, the answer is not known in general.

Problem 1.1. Let n ≥ r and let F be a field. Is Ur,n F-representable?

This problem has received much attention in projective geometry, where
the term k-arc is used for a set X of points in PG(r − 1, q), which satisfies
PG(r− 1, q)|X ' Ur,k. Hirschfeld has written a survey paper [26] on the cases
of Problem 1.1 that have been settled.

In [54], Whitney gave a characterization of binary matroids in terms of
their circuits. Tutte [51] later used Whitney’s result to prove, that a matroid
is binary if and only if it has no U2,4-minor. This characterization is possible,
since the class of binary matroids is minor-closed. Any minor-closed class M
of matroids may be described by listing the minor-minimal matroids not in M
(up to isomorphism). These are called excluded minors for M. Such excluded
minor characterizations have proved quite successful.

We first mention the situation for graphs. In their Graph Minors project,
Robertson and Seymour [43] proved the following amazing theorem.

Graph Minor Theorem. In any infinite set of graphs there is one that is
isomorphic to a minor of another.

A set of graphs or a set of matroids is called an antichain if no member of the
set is isomorphic to a minor of another member of the set. (The relation H 4 G
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if H is isomorphic to a minor of G defines a quasi-order on graphs or matroids,
that is, a partial order that may lack anti-symmetry. We consider antichains
in this order). So the Graph Minor Theorem says, that there is no infinite
antichain of graphs. It follows, that any minor-closed class of graphs has a finite
number of excluded minors, as these form an antichain. This was known as
Wagner’s Conjecture. Tutte [52] obtained the excluded minor characterization
of the graphic matroids G.

Theorem 1.2. A matroid is graphic if and only if it has no minor isomorphic
to any of the matroids U2,4, F7, F ∗

7 , M∗(K5) and M∗(K3,3).

By dualizing, we get the excluded minors for the co-graphic matroids G∗.
The last two of the excluded minors are related to Kuratowski’s (see [7]) char-
acterization of planar graphs: A graph G is planar if and only if G has no
K5- or K3,3-minor. By the above two theorems, we can conclude that any
minor-closed class of graphic matroids has a finite number of excluded minors.
In particular, using Kuratowski’s Theorem, one can determine the excluded
minors for the planar matroids (i.e. cycle matroids of planar graphs). Tutte in
[51] also characterized the regular matroids.

Theorem 1.3. A matroid is regular if and only if it has no minor isomorphic
to any of the matroids U2,4, F7 and F ∗

7 .

We return to the question of characterizing R(F). In 1979 Bixby [3] and
Seymour [46] independently published the excluded minor characterization for
the ternary matroids. The quaternary matroids were characterized in 2000 by
Geelen, Gerards and Kapoor [11]. We summarize the results in the following
theorem.

Theorem 1.4. The binary, ternary and quaternary matroids have the excluded
minor characterizations,

(a) R(2) = EX (U2,4)
(b) R(3) = EX (U2,5, U3,5, F7, F

∗
7 )

(c) R(4) = EX (U2,6, U4,6, P6, F
−
7 , (F−

7 )∗, P8, P
=
8 )

See [11] or [38] for a description of the matroids in (c). Proving (b) and
especially (c) was far more difficult than proving (a). The major obstruction lies
in the fact, that matroids inR(q) lack unique representability, for q ≥ 4 (see [37]
for the definition and a short treatment of unique representability). Kahn [27]
showed that 3-connected matroids in R(4) are uniquely representable, which is
crucial in the proof of (c). Kahn also conjectured, that for each prime-power
q, there is a bound n(q) on the number of inequivalent representations of any
3-connected matroid in R(q). This conjecture was proved by Oxley, Vertigan
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and Whittle [39] in the case q = 5 with n(q) = 6, and disproved for all q > 5
by constructing counterexamples. Attempts have been made to overcome this
obstacle by introducing a notion of connectivity stronger than 3-connectivity,
yet weaker than the very restrictive property of 4-connectivity. Among others,
the paper [21] considers sequentially 4-connected matroids, and in [25] a variant
called fork-connectivity is suggested.

Continuing along the lines of Theorem 1.4 seems exceedingly difficult, since
the current approach for each of the cases in the theorem relies heavily on unique
representability. Instead, attention has turned to the following conjecture of
Rota [44], which he boldly made after (a) and (b) had been announced.

Rota’s Conjecture. For a prime-power q, the set of excluded minors for R(q)
is finite.

In other words, given q there are matroids N1, . . . , Nk, such that R(q) =
EX (N1, . . . , Nk). The conjecture remains open for q ≥ 5. Theorem 1.4 and
Rota’s Conjecture contrast with the result of Lazarson [34], that there are
an infinite number of excluded minors for R(Q) (or R(F), for any field F of
characteristic zero).

Lazarson’s result also shows, that a generalization of the Graph Minor The-
orem to the class of all matroids is impossible. Another infinite antichain of
matroids is the set {PG(2, p) : p prime} (it is an antichain by an observation in
Chapter 4, Section 2). A more modest possible generalization is the following.

Problem 1.5. Let q be a prime power. Is there no infinite antichain in R(q)?

This is of course a difficult question, as it extends the Graph Minor Theorem,
whose proof is long and difficult. The above problem asks about the existence
of an infinite antichain within the class R(q), while Rota’s Conjecture concerns
an antichain of matroids not in R(q). The results that we shall discuss in
this chapter add weight to the plausibility of both Rota’s Conjecture and the
non-existence of an infinite antichain in R(q).

2 A new approach

As mentioned, progress has recently been bade on Rota’s Conjecture. Much
of this work utilizes ideas and techniques developed by Robertson and Sey-
mour during their Graph Minors project. The following generalization of Ku-
ratowski’s Theorem on planar graphs is an immediate consequence of the Graph
Minor Theorem; it was proved earlier in the Graph Minors project [43].
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General Kuratowski Theorem. For any surface Σ, the class of graphs that
embed in Σ has finitely many excluded minors.

Here, a surface is a compact connected 2-manifold without boundary. By
Kuratowski’s Theorem, if Σ is the plane or equivalently the sphere, then there
are two excluded minors, K5 and K3,3. If Σ is the projective plane, it is known
that there are 103 excluded minors! (see [43] for a reference).

The above theorem is similar in nature to Rota’s Conjecture. There is
now a relatively short proof based on Robertson and Seymour’s ideas, that we
describe next. Let #m denote the m by m grid, a graph defined as follows. The
vertex set is V (#m) = {vij : i, j = 0, . . . ,m} and the edge set E(#m) is

{eij : i = 1, . . . ,m, j = 0, . . . , m} ∪ {fij : i = 0, . . . , m, j = 1, . . . , m} ,

where eij labels {vi−1,j , vij}, and fij labels {vi,j−1, vij}. Grids are universal
among planar graphs in the sense, that grids themselves are planar and any
planar graph is isomorphic to a minor of some grid (see [7]). The notion of
tree-width introduced by Robertson and Seymour is an integer parameter for
a graph. Roughly speaking, it measures how much the graph looks like a tree
(see [7] for the definition). The new proof of the General Kuratowski Theorem
is a 3-part argument, that can be summarized as follows.

(1) Let k be an integer. The class of graphs with tree-width at most k contains
no infinite antichain.

(2) For any integer m, there exists an integer k such that, if G is a graph with
tree-width at least k, then G contains a #m-minor.

(3) For any surface Σ there exists an integer m ∈ N such that, if G is an
excluded minor for the graphs embeddable in Σ, then G has no #m-minor.

Geelen, Gerards and Whittle proved Part (1) in [14]. A surprisingly simple
proof of part (2) was given by Diestel, Jensen, Gorbunov and Thomassen [8].
Finally, a short proof of part (3) was given first by Thomassen and later by
Geelen, Richter and Salazar [20].

The concept of tree-width has an analogue called branch-width. Robertson
and Seymour [42] showed, that they are equivalent in the sense, that a set of
graphs has bounded tree-width if and only if it has bounded branch width.
However, while tree-width has perhaps the more intuitive definition of the two,
branch-width extends naturally to matroids (we avoid the definition here, see
for instance [14]).

The 3-part proof outlined above has suggested an analogous strategy for
proving Rota’s Conjecture. A matroid M is almost representable over the field
F if M has an element e, such that M\e and M/e are F-representable. We
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denote by AR(q) the class of almost GF(q)-representable matroids. Note that
R(q) ⊆ AR(q) and that also excluded minors for R(q) belong to AR(q).

(i) Let q be a prime-power and k an integer. The matroids in AR(q) with
branch-width at most k contain no infinite antichain.

(ii) Let q be a prime-power and m an integer. There exists an integer k
such that, if M ∈ R(q) has branch-width at least k, then M contains
an M(#m)-minor.

(iii) Let q be a prime-power. There exists an integer m ∈ N, such that no
excluded minor for R(q) contains an M(#m)-minor.

We first argue that these three steps would prove Rota’s Conjecture. Part (i)
implies, that among the excluded minors for R(q) there are finitely many with
branch-width at most k. A basic property of branch-width is, that deleting
an element of a matroid drops it’s branch-width by at most one. Thus, if
k is sufficiently large, by (ii), an excluded minor for R(q) with branch-width
exceeding k contains an M(#m)-minor. If m is sufficiently large, by (iii), this
is impossible.

The first two parts have both been proved recently by Geelen, Gerards and
Whittle. This promising progress leaves only the third part, which clearly has
to hold if Rota’s Conjecture is true. Opinion has previously been divided on
the plausibility of Rota’s Conjecture, but now it seems unlikely that (iii) should
fail.

Let Bk denote the class of matroids with branch-width at most k. In [14] it
was proved, that R(q) ∩ Bk contains no infinite antichain. As representability
is crucial in this proof, it was not clear how to cover excluded minors for R(q).
However, using basically the same techniques, in [22] the result was extended
to AR(q)∩Bk, by associating GF(q)-representable 2-polymatroids to matroids
in AR(q). This establishes part (i). The fact that R(q) ∩ Bk contains no
infinite antichain is also an important step towards resolving Problem 1.5. The
finiteness of the field is necessary in this result. Indeed, in [14], an infinite
antichain (of “spikes”) is constructed within the class R(F)∩B3 for any infinite
field F.

We discuss Part (ii) in the next section. Geelen, Gerards and Whittle [17]
have also proved a partial result to part (iii).

Theorem 2.1. Let q be a prime-power. There exists an integer n ∈ N, such
that no excluded minor for R(q) contains a PG(n− 1, q)-minor.

While there is still quite a gap between grids and projective geometries, it
now remains to show, that (given q and n, there exists an m such that) no
excluded minor for R(q) has an M(#m)-minor and no PG(n− 1, q)-minor.
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3 The Grid Theorem

The notion of branch-width for matroids has some desirable properties. It is
invariant under duality and non-increasing under taking minors. Thus Bk is
a minor-closed class, closed under duality. Furthermore, Bk is closed under
direct sums and 2-sums (see for instance [24] for proofs). It is shown in [42],
that B2 is the class of direct sums of series-parallel networks. The class B3

is much larger and, as noted earlier, contains infinite antichains. Nonetheless,
Hall, Oxley, Semple and Whittle [24] proved that B3 has finitely many excluded
minors, by showing that they have size at most 14. This was extended to Bk

for k arbitrary by Geelen, Gerards, Robertson and Whittle [12].
Define U∗(q) = EX (Uq,q+2), the dual class of U(q). It can be shown, that

the branch-width of M(#m) is m. Thus a large grid-minor is a certificate for
large branch-width. On the other hand, the following result states that within
the class U(q) ∩ U∗(q), sufficiently large branch-width implies the existence of
a large grid-minor. Thus, within this class grid-minors provide a qualitative
characterization of large branch-width.

The Grid Theorem. Let q and m be positive integers. There exists an integer
k such that, if M ∈ U(q) ∩ U∗(q) has branch-width at least k, then M contains
an M(#m)-minor.

The theorem was proved by Geelen, Gerards and Whittle in [16] as the
culmination of a series of papers ([15], [23], [12], [13]). The proof is long
and technical. Part (ii) in the three-part proof sketch of Rota’s Conjecture is
implied by the theorem, since R(q) ⊆ U(q) ∩ U∗(q) for a prime-power q.

The Grid Theorem also has consequences for Problem 1.5. Let q be a prime-
power and let H be any planar graph. Since H is a minor of some grid, by the
Grid Theorem, there is an integer k, such that R(q)∩EX (M(H)) ⊆ R(q)∩Bk.
Since the latter contains no infinite antichain, R(q) ∩ EX (M(H)) contains no
infinite antichain.

Though considering the class U(q) ∩ U∗(q) is sufficient for the purpose of
Rota’s Conjecture or Problem 1.5, a generalization of the Grid Theorem to
the class of all matroids would be of interest. In this case, a grid-minor can
not be the only certificate for large branch-width. It is easily seen, that Un,2n

has branch-width at least 2
3n, but no M(#2)-minor for all n. So we need to

consider uniform minors as well. The dual of a grid, M∗(#n) also has branch-
width n. However, the plane dual of the graph #n clearly has a #n−1-subgraph.
So M(#∗

n) has an M(#n−1)-minor, and we can ignore duals of grids. Another
type of matroid for which the branch-width grows with the size is the bicircular
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matroid of a grid B(#n) or its dual. Johnson, Robertson and Seymour have
made the following conjecture (unpublished, see [38]).

Conjecture 3.1. Let n be a positive integer. There exists an integer k such
that, if M has branch-width at least k, then M contains a minor isomorphic to
Un,2n, M(#n), B(#n) or B(#n)∗.

This would indeed be a generalization of the Grid Theorem, since both Un,2n

and B(#n) contains a U2,n+2-minor for n ≥ 2 (see Chapter 2). Moreover, it
would in a sense be best possible, as it gives a qualitative characterization of
large branch-width for all matroids.

Two extremal results that we have treated play a part in the proof of the
Grid Theorem. Namely the Erdös-Pósa Theorem and Mader’s Theorem for
matroids in U(q) (Theorems 1.3 and 10.1 of Chapter 2). Note that #m is a
subgraph of Kn, where n = (m + 1)2. Hence, by Mader’s Theorem for U(q),
(given q and m there exists a λ, such that)

if M ∈ U(q) satisfies ε(M) > λr(M), then M has an M(#m)-minor.

The proof of the Grid Theorem considers a number of different cases, many of
which are handled using the above implication.

It is my hope, that our generalization of the Erdös-Pósa Theorem and con-
jectured generalization of Mader’s Theorem (Theorem 1.1 and Conjecture 10.5
of Chapter 2) may serve a similar purpose in a proof of Conjecture 3.1. When
Un,2n is excluded, we have developed tools for measuring the size and density
of matroids, using the a-covering number (with a = n− 1). Hopefully this will
contribute to the derivation of a general grid theorem.





Summary

Dansk resumé

Afhandlingen omhandler aspekter af den matematiske disciplin kaldet matroide-
teori, som blev p̊abegyndt i 1935 af Hassler Whitney. Matroider abstraherer
kombinatoriske egenskaber ved en række forskellige typer matematiske objek-
ter, som for eksempel grafer, matricer og endelige geometrier.

Ekstremal matroide teori beskæftiger sig med sammenhænge mellem forskel-
lige numeriske parametre knyttet til matroider, s̊asom størrelse og rang. Afhand-
lingen præsenterer resultater indenfor dette emne, herunder en generalisation
af et klassisk resultat af Erdös og Pósa i graf teori samt en svagere version af
Kungs “vækstrate formodning”.

Summary in English

This thesis is associated to the area of mathematics known as matroid theory.
It was founded in 1935 by Hassler Whitney, and has since then grown to be
one of the major branches of combinatorics.

Matroids abstract combinatorial properties of a number of different types
of mathematical objects, such as graphs, matrices, and finite geometries. Many
key concepts carry over to matroids, including circuits, rank, and points and
lines.

Extremal matroid theory deals with questions of how different parameters of
matroids relate to each other. Many such questions are derived from extremal
graph theory.

The Growth Rate Conjecture posed by Kung concerns bounds on the num-
ber of points as a function of the rank within different classes of matroids. The
thesis presents several partial results to this conjecture, as well as some minor
related results.

It also contains a matroid generalization of a classical graph-theoretic result
known as the Erdös-Pósa Theorem. This result relates the rank of a matroid
to the number of disjoint circuits in the dual matroid. In the process, tools are
developed for measuring the size of matroids without a given uniform matroid
as a minor.
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