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Introduction

Let G be a reductive algebraic group over an algebraically closed field k of
characteristic p ≥ 0 and B a Borel subgroup of G. Each character λ of B induces a
line bundle L(λ) on the flag variety G/B, and the cohomology group H•(G/B,L(λ))
has a natural G-structure.

In the case where char(k) = 0 the representation theory of G is well understood.
Each rational G-module is semi-simple. The simple G-modules are classified by their
highest weights, and one has a character formula for these simple modules. Further-
more, the Borel-Weil-Bott theorem [16] (cf. also [19]) gives a complete description
of the vanishing behaviour of the cohomology group H•(G/B,L(λ)).

The situation in prime characteristic is much less understood. The simple G-
modules are still classified by their highest weights, but a character formula is far
from known, and the Borel-Weil-Bott theorem fails completely. In this thesis we
collect some well-known results about the vanishing behaviour of the cohomology of
line bundles on G/B, and we demonstrate that many of these results can be carried
over to the quantum case.

The first result concerns the first cohomology group associated to characters of
the quantized Borel subalgebra. We prove that it, if non-zero, contains a unique
simple submodule and give a complete description of the vanishing behaviour of
this cohomology. Next, we give a fundamental theorem on relations between the
cohomology groups in question. It involves the quantum Frobenius homomorphism
[29], and it implies an interesting nonvanishing theorem. This result is analogous to
the main theorem in [1].

Related to the problem of describing the cohomology of line bundles on G/B
is the calculation of the B-cohomology H•(B,λ) = Ext•B(k, λ) of 1-dimensional
B-modules λ. When char(k) = 0, there is an easy well-known description of this
cohomology because we can compare with the corresponding G-cohomology and
take advantage of the fact that H i(G,−) = 0 for all i > 0 (G is reductive). But
when char(k) = p > 0, this approach fails completely. Except for degrees 0 and 1,
the problem of determining H i(B,λ) is in this case wide open.

Our contribution in this thesis is to give a couple of general results on the
behaviour of H•(B,λ) and to calculate H2(B,λ) and H3(B,λ) explicitly when p is
larger than the Coxeter number for G. Our results are based on a combination of
several methods, see Section 2.2 below. The main ingredient is the spectral sequence
relating B-cohomology to the cohomology for the first Frobenius kernel B1 of B.
We take here advantage of the fact that the cohomology H•(B1, λ) was completely
determined in [9].

iii



iv INTRODUCTION

Our approach works equally well for quantum groups. Let Uq denote the quan-
tum group corresponding to G with parameter q ∈ k×, and let Bq be the Borel
subalgebra in Uq corresponding to the negative roots. When q is not a root of unity,
we can determine H•(Bq, λ) exactly as in the above characteristic 0 case. So we
consider the case where q is an l-th root of unity. Then the problem of describing
H•(Bq, λ) is again wide open in general. But our methods allow us to obtain similar
results as described above for B.

Moreover, when char(k) = 0, we will also compute H4(Bq, λ) for all characters
λ. But this requires a different argument than the one given in the modular case.

Summary
This thesis contains two parts. The first part deals with the modular case, while

the second part deals with the quantum case.

Chapter 1. We fix the notation and recall several well-known facts about the coho-
mology theory of line bundles on G/B. We are especially interested in the vanishing
behaviour of the cohomology group H•(G/B, λ). The vanishing behaviour depends
on whether k is a field of characteristic 0 or of characteristic p > 0. We shall discuss
both cases.

Chapter 2. In this chapter we want to compute the B-cohomology H•(B,λ) of 1-
dimensional B-modules determined by a Borel character λ. Again, the computations
here depend on the characteristic of k. We shall discuss both cases, and in the case
where char(k) > 0 we shall for each λ ∈ X determine an upper bound i for the
degree in which the cohomology H i(B,λ) can be non-zero and compute all such
cohomology in degrees at most 3 when p is larger than the Coxeter number for G.
This chapter represents joint work with Henning Haahr Andersen [14].

Chapter 3. We denote by Uq the quantum group with parameter q ∈ k× corre-
sponding to G. By this we mean the specialization at q of the Lusztig integral
form of the quantized enveloping algebra attached to the corresponding root system
R. Let Bq be the Borel subalgebra in Uq corresponding to the negative roots. In
this chapter we will introduce the induction functor from Bq and state some of its
properties.

Chapter 4. Just as for B any λ in the corresponding root lattice X defines a Borel
character. This chapter deals with the first cohomology groups associated to char-
acters of the Borel subalgebra Bq. We give a complete description of the vanishing
behaviour of these cohomology groups. Moreover, we prove that whenever they are
non-zero they contain a unique simple submodule. These results are analogous to
the classical case [2], and the proofs here follow the same lines as in the classical
proofs.

Chapter 5. The vanishing behaviour of H•
q (λ) = H•(Uq/Bq, λ) depend on whether

q is a root of unity or not. Andersen, Polo and Kexin proved in [11] that the
Borel-Weil-Bott theorem holds for all characters λ when q is not a root of unity,
and hence we have a complete description of the vanishing behaviour of H i

q(λ).
But when q is a root of unity, the Borel-Weil-Bott is no longer true. In fact, the
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problem of describing the vanishing behaviour of the cohomology groups associated
to characters of the Borel subalgebra Bq is still wide open. In this case we will prove
that the main theorem in [1] has an analogue in the quantum case.

Let X+ be the set of dominant weights. In Section 5.3 we will prove that if
λ ∈ X+ lies far away from the walls of the dominant Weyl chamber, then we have
for each w ∈ W that H•

q (w · λ) is non-zero in exactly one degree. Here W is the
corresponding Weyl group, and the dot action is given by

w · λ = w(λ+ ρ) − ρ for all λ ∈ X.

As usual ρ denotes half the sum of the positive roots. (see below for the precise
definitions). Again, the inspiration comes from the modular case, see [8].

Chapter 6. In this chapter we study theBq-cohomology H•(Bq,−) of 1-dimensional
Bq-modules determined by a Borel character λ ∈ X. Note that H0(Bq,−) is now
the fixed point functor for Bq in the Hopf algebra sense. Since there is an easy well-
known description of H•(Bq, λ) of this cohomology, we will in this chapter focus
on the root of unity case. We will prove that the results in Chapter 2 have direct
analogues for Bq.

Moreover, when char(k) = 0, we will compute H4(Bq, λ) explicitly, and deter-
mine a lower bound i for the degree in which the cohomology H i(Bq, λ) can be
non-zero. We shall here take advantage of the fact that for any finite dimensional
B̄-module M we have an isomorphism of vector spaces

H i(B̄,M) � HN−i(B̄,M∗ ⊗−2ρ) for all i ≥ 0.

Here B̄ is the Borel subgroup in the corresponding complex semisimple group Ḡ, N
is the number of positive roots, and M∗ is the dual module.

Appendix A. This appendix is a continuation of Chapter 3. Here we derive further
consequences of the strong linkage principle. Again, the inspiration comes from the
modular case [7], and the proofs run along the same lines. Among these results, we
will prove that for any dominant weight λ and for any w ∈W the cohomology group
H
l(w)
q (w · λ) is always non-zero. Here l(w) denotes the length of w. This result will

be used in Chapter 5.

Appendix B. In this appendix we collect some properties of the Steinberg module
which will be needed in Chapter 5.

Appendix C. In [11] Andersen, Polo and Kexin proved some important results on
base change for the derived functors of induction. We prove that these results have
analogues for the B-cohomology.

Acknowledgments
This thesis presents the results that I have obtained during my graduate studies

at University of Aarhus, 2004-2007. Most of the thesis is joint work with my advisor
Henning Haahr Andersen, and I would like to thank him for his invaluable help. I
also wish to thank Jens Cartsen Jantzen for answering questions from time to time.

During my graduate studies I visited University of Lyon 1. I take here the
opportunity to acknowledge the support I received at the mathematical department.



vi INTRODUCTION

In particular, I would like to thank Olivier Mathieu for informative discussions
during my stay in Lyon.



CHAPTER 1

Cohomology of line bundles on G/B

Let B be a Borel subgroup in a reductive algebraic group G over an algebraically
closed field k. In this chapter we fix the notation and state well-known results in the
cohomology theory of line bundles on the flag variety G/B. Among these results,
the vanishing behaviour of the cohomology H•(G/B, λ) of 1-dimensional B-modules
λ. In characteristic zero, the Borel-Weil-Bott theorem completely describes this
cohomology whereas the corresponding problem in characteristic p > 0 is still wide
open.

1.1. Basic notation
Let k be an algebraically closed field k of characteristic p ≥ 0, and let G be a

reductive algebraic group over k. Let T be a maximal torus in G and B a Borel
subgroup containing T . The root system for (G,T ) is denoted by R, and we choose
a set of positive roots R+ of R in such way that B corresponds to the negative roots
R− = −R+.

The Euclidean space associated with R will be denoted by E, and the inner
product on E will be denoted by 〈, 〉. Let X be the integral weight space lattice
obtained from R. We have a partial order on X given by

λ ≥ µ⇔ λ− µ can be written as a sum of positive roots.

Let S be the corresponding set of simple roots, and let W be the Weyl group. A
weight λ ∈ X is called dominant if 〈λ, α∨〉 ≥ 0 for all α ∈ S. Here α∨ = 2α/〈α,α〉 is
the coroot of α. For each α ∈ R we let sα be the reflection associated to α. There are
two actions ofW on E. The first one is the natural one given by sα(λ) = λ−〈λ, α∨〉α
for all α ∈ R and λ ∈ E. The second one is the “dot action” given by

w · λ = w(λ+ ρ) − ρ for all λ ∈ E, w ∈W.

Here ρ denotes half the sum of the positive roots. Note that since 〈ρ, α∨〉 = 1 for
all α ∈ S, we have sα · λ = sα(λ) − α for all λ ∈ E.

The set of dominant weights X+ parametrizes the simple G-modules via highest
weight. For each λ ∈ X+ we let L(λ) be the simple G-module of highest weight λ.

1.2. The affine Weyl group
In this section we assume that k is a field of characteristic p > 0.

1



2 1. COHOMOLOGY OF LINE BUNDLES ON G/B

1.2.1. The affine Weyl group. For all α ∈ R and n ∈ Z we let sα,n denote the
affine reflection given by

sα,n · λ = sα · λ+ npα for all λ ∈ E.

The affine Weyl group Wp is then the group generated by all sα,n with α ∈ R and
n ∈ Z.

1.2.2. Alcoves. Let h be the Coxeter number for R. We define Cp to be

Cp = {λ ∈ E | 0 <
〈
λ+ ρ, α∨〉 < p for all α ∈ R+},

and its closure

C̄p = {λ ∈ E | 0 ≤ 〈λ+ ρ, α∨〉 ≤ p for all α ∈ R+}.
The set Cp is called the fundamental alcove, and its closure is a fundamental domain
for the action of Wp. Note that Cp 	= ∅ if and only if p ≥ h.

An alcove C ⊂ E is a subset of the form C = w · Cp for some w ∈ Wp. The
closure of C is then C̄ = w · C̄p.
1.2.3. Weyl chambers. For any α ∈ R we let Hα be the reflection hyperplane
of sα for the “dot action” on E. The connected components of the complement of
∪α∈R+Hα in E are called the (open) Weyl chambers. The closure of each chamber
is a fundamental domain for W .

1.2.4. Finally, for each r ≥ 0 we let Xr be the set of pr-restricted weights

Xr = {λ ∈ X | 0 ≤ 〈λ, α∨〉 < pr for all α ∈ S}.
For each weight λ ∈ X there is a unique decomposition λ = λ0 + prλ1 with λ0 ∈ Xr

and λ1 ∈ X. Later we shall also need the “dot action” of pr on λ ∈ X given by

pr · λ = pr(λ+ ρ) − ρ.

Note that pr · w · λ = w · pr · λ for all r ≥ 0, λ ∈ X and w ∈W .

1.3. Induced representations
In this section k will be an arbitrary algebraically closed field. Any rational B-

module M defines a sheaf L(M) on G/B whose cohomology group H0(G/B,L(M))
has a G-structure and H0(G/B,L(M)) � IndGBM . The induction functor IndGB
from the category of B-modules to the category G-modules is left exact. It turns
out that (see e.g. [22, 5.12])

H i (G/B,L(M)) � Ri IndGBM for all i ≥ 0.

We shall then write H i(M) in short for Ri IndGBM . We shall use the convention
H i(M) = 0 if i < 0.

1.3.1. The generalized tensor identity. For any G-module V we have

H i (M ⊗ V ) � H i (M) ⊗ V for all i ≥ 0. (1.1)

For more details and for a proof we refer to [1].
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1.3.2. Serre duality. Let N = dimG/B = #R+. Serre duality [24, III. 7.7] then
says that

H i (M)∗ � HN−i (M∗ ⊗−2ρ) for all i ≥ 0. (1.2)
Here M∗ is the dual module of M with the contragredient action. Recall that we
have

H i(M) = 0 for all i > N. (1.3)
This is Grothendieck’s vanishing theorem [24, III. 2.7].

1.3.3. Degree zero. We have B = TU where U is the unipotent radical of B.
Then any character λ of T extends uniquely to B (by λ(U) = 1). The 1-dimensional
B-module, where B acts via λ, is denoted by λ or sometimes kλ. In particular, the
trivial B-module k may also be written k0.

It is well-known that H0(λ) is non-zero if and only if λ is dominant. If so,
H0(λ) has a unique simple submodule with highest weight λ. Serre duality for line
bundles then implies that HN (λ) is non-zero if and only if λ is antidominant, i.e.
λ ∈ −X+ − 2ρ, and in this case it has a unique simple quotient with highest weight
−λ− 2ρ.

1.3.4. Degree one. By studying the structure of the cohomology groups for groups
of rank one, Andersen proved in [2] that the first cohomology H1(λ), if non-zero,
contains a unique simple submodule and gave a complete description of the vanishing
behaviour of H1(λ) for all λ ∈ X. We shall recover this result in Section 1.5.

1.3.5. Kempf’s vanishing theorem. If λ ∈ X+, then

H i (λ) = 0 for all i > 0. (1.4)

In characteristic zero, Kempf’s vanishing theorem had been known for a long time,
but it was only in 1976 that Kempf proved this theorem in characteristic p > 0,
see [28]. In 1979 Andersen and Haboush independently found a short proof of this
theorem, see [1] and [23].

1.3.6. The Borel-Weil-Bott theorem. Suppose for a second that k is a field of
characteristic zero. Let λ ∈ X and choose w ∈ W such that w(λ + ρ) ∈ X+. The
Borel-Weil-Bott theorem [16] (cf. also [19]) then says

H i(λ) �
{
H0(w · λ) if i = l(w),
0 otherwise. (1.5)

Here l(w) denotes the length of w.
This result does not generalise to positive characteristic. In fact, it can be shown

that there are cases where H i(λ) is non-zero for several values of i, see Figures 2
and 3.

However, Andersen proved in [8] that if λ ∈ X+ lies far away from the walls
of the dominant Weyl chamber, then we have for each w ∈ W that H•(w · λ) is
non-zero in exactly one degree. More precisely, let λ ∈ X+ and write λ = λ0 + pλ1

for some λ0 ∈ X1 and λ1 ∈ X. We say that λ is generic if

4(h− 1) ≤ 〈λ1, α
〉 ≤ p− 4(h− 1) for all α ∈ R+.

Note that generic weights exist only if p > 8(h− 1).
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Now, if λ ∈ X+ is generic, one can show that for each w ∈W we have

H i(w · λ) 	= 0 if and only if i = l(w). (1.6)

For more details and for a proof we refer to [8, Proposition 2.1].

1.4. The strong linkage principle
We assume that k is a field of positive characteristic. Let λ, µ ∈ X. We say that

λ is linked to µ if λ ∈ Wp · µ, and λ is strongly linked to µ if λ = µ or if there are
reflections s1, . . . , sr+1 ∈Wp such that

λ ≤ s1 · λ = λ1 ≤ s2 · λ1 = λ2 ≤ · · · ≤ sr · λr−1 = λr ≤ sr+1 · λr = µ.

The following theorem was proved by Andersen in [3]:

Theorem 1.1 (The strong linkage principle). Let λ ∈ X+−ρ and µ ∈ X+. If L(µ)
is a composition factor of some H i(w · λ) with w ∈W and i ∈ N, then µ is strongly
linked to λ.

The strong linkage principle implies that the Borel-Weil-Bott theorem holds for
small weights, i.e. λ ∈ C̄p (for details see e.g. [5]). Using some standard homological
methods together with the fact that

Ext1G(L(µ),H0(λ)) = 0 if µ 	> λ,

the strong linkage principle implies (see e.g. [5] or [22])

Proposition 1.2. Let λ, µ ∈ X+. If Ext1G(L(λ), L(µ)) 	= 0, then λ is linked (but
not equal) to µ.

As a direct consequence of the above proposition, we have the following corollary:

Corollary 1.3 (The linkage principle). Let λ, µ ∈ X+. If L(λ) and L(µ) occur as
composition factors of the same indecomposable module, then λ is linked to µ.

1.5. The vanishing behaviour
We no longer assume that char(k) > 0. The exact vanishing behaviour of the

cohomology H•(λ) is still not known, but there are few known cases. In this section
we shall summarize what is known in general.

1.5.1. Rank 1. Let P be a parabolic subgroup containing B. Then any rational B-
module M defines a sheaf L(M) on P/B whose cohomology groups will be denoted
by H i(P/B,M).

Fix α ∈ S and let P = Pα be the minimal parabolic subgroup corresponding
to α. We write Hα(−) in short for H i(Pα/B,−). The following results completely
describe the well-known vanishing behaviour of H•

α(λ), and they were proved by
Andersen in [2].

Proposition 1.4. Let λ ∈ X and let λα = 〈λ, α∨〉 for some α ∈ S. Then H0
α(λ)

is non-zero if and only if λα ≥ 0. If so, dimk(H0
α(λ)) = λα + 1, and the weights of

H0
α(λ) are λ, λ− α, . . . , sαλ.
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Proposition 1.5. Let λ ∈ X and set λα = 〈λ, α∨〉 for α ∈ S. Then H i
α(λ) = 0

for all i > 1. Moreover, H1
α(λ) is non-zero if and only if λα < −1. If so, we have

dimk(H1
α(λ)) = −λα − 1, and the weights of H1

α(λ) are λ+ α, λ+ 2α, . . . , sα · λ.
1.5.2. The general case. Set for all i ≥ 0

Dp(i) = {λ ∈ X | H i(λ) 	= 0}.
Independently of p, Grothendieck’s vanishing theorem (1.3), Serre duality (1.2)

and Kempf’s vanishing theorem (1.4) say

Dp(i) = ∅ for all i > N,

Dp(i) = −Dp(N − i) − 2ρ for all i ≥ 0.

Dp(i) ∩X+ = ∅ for all i > 0.

We further have for all p

Dp(0) = X+,

Dp(N) = −X+ − 2ρ = w0 ·X+.

Here w0 is the longest element in the Weyl group W .

1.5.3. Characteristic zero. Suppose first that char(k) = 0. The Borel-Weil-Bott
theorem can be stated as follows:

D0(i) =
⋃

w∈W , l(w)=i

w ·X+ for all i ≥ 0.

Example 1.6. Let G be of type B2, and let α, β be the simple roots with α short.
Figure 1 illustrates the Borel-Weil-Bott theorem for groups of type B2. The number
n in the chamber indicates that the weight in this chamber has non-vanishing Hn.

1

0

2

3

3

4

1

2

β

α

Figure 1. The Borel-Weil-Bott theorem for B2.
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1.5.4. Characteristic p > 0. Set for all i ≥ 0

Ep(i) =
⋃
r≥0

(pr ·D0(i) ±Xr) .

From above, we get that Dp(0) = Ep(0) and Dp(N) = Ep(N).
As mentioned before, Andersen gave in [2] a complete description of the vanish-

ing behaviour of the first cohomology group, and it can be stated as follows

Dp(1) = Ep(1). (1.7)

Using Serre duality, we further get

Dp(N − 1) = −Dp(1) − 2ρ

= −Ep(1) − 2ρ

=
⋃
r≥0

(−pr ·D0(i) − 2ρ±Xr)

=
⋃
r≥0

(pr · (−D0(i) − 2ρ) ±Xr)

=
⋃
r≥0

(pr ·D0(N) ±Xr)

= Ep(N − 1).

The figure below illustrates the vanishing behaviour of H1 and HN−1 for groups
of type B2. We labelled the alcove C with the number n iff C ⊂ Dp(n). The figure
only covers the set of weights λ ∈ X with |〈λ+ ρ, α∨〉| ≤ p2 for all α ∈ R.
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Figure 2. Dp(1) and Dp(N − 1) for groups of B2.
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Summarizing, we have

Dp(i) = Ep(i) for all i ∈ {0, 1, N − 1, N}. (1.8)

Note that the above equality completely describes Dp(i) for groups of type A2.
In [7] Andersen described the vanishing behaviour of all such cohomology for groups
of type B2 and G2. The description of Dp(2) showed that the above equality does
not hold in general.
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Figure 3. Dp(2) for groups of type B2

1.5.5. We continue to assume that char(k) = p > 0. We shall now recall the main
theorem in [1]. We shall later prove the quantum version of this result, and the
proof is almost identical. We shall therefore omit the details here. The details can
also be found in [1] or [6].

Let r ≥ 0 and set σr = (pr − 1)ρ. We shall call this the Steinberg weight. The
corresponding simple G-module is called the Steinberg module and denoted Str. As
an easy consequence of the strong linkage principle, we have Str � H0(σr) (cf. e.g.
[22, II. 3.19]).

Let Fr : G → G be the r-Frobenius homomorphism. When M is a G-module,
we denote by M (r) the Frobenius twist of M , i.e. the same vector space but with
action composed with Fr.

g ·m = Fr(g)m for all g ∈ G and m ∈M.

Theorem 1.7 ([1, Theorem 2]). Let M be a B-module and let i, r ≥ 0. Then there
is a natural G-isomorphism H i(M)(r) ⊗ Str � H i(M (r) ⊗ (pr − 1)ρ).
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LetM1,M2 beB-modules. Using Frobenius reciprocity [22], the evaluation maps
H0(M1) →M1 and H0(M2) →M2 give a homomorphism

H0(M1) ⊗H0(M2) → H0(M1 ⊗M2)

which is functorial in both M1 and M2. By a simple induction on i + j, we obtain
a natural homomorphism (the cup-product)

∪i,j : H i(M1) ⊗Hj(M2) → H i+j(M1 ⊗M2).

The Frobenius homomorphism Fr clearly gives rise to natural maps

F∗
r : H

i
(M1)(r) → H i(M (r)

1 ) for all i ≥ 0.

The above theorem implies an interesting non-vanishing result:

Proposition 1.8 ([6, Corollary 2.6]). For any i ≥ 0 we have Ep(i) ⊂ Dp(i).

Proof (Sketch). Suppose now that H i(λ) is non-zero for some λ ∈ X, and we
claim that so is H i(prλ+ µ) for all µ ∈ Xr. Since Str is simple, the cup-product

H0(µ) ⊗H0(σr − µ) → H0(σr) � Str .

is surjective. Hence we have the following commutative diagram of G-modules

H i(λ)(r) ⊗H0(µ) ⊗H0(σr − µ) �� ��

��

H i(λ)(r) ⊗ Str

��
H i(prλ+ µ) ⊗H0(σr − µ) �� H i(pr · λ)

The theorem above implies that the right vertical map is an isomorphism. Since
the top horizontal homomorphism is surjective, then so is the bottom horizontal
homomorphism. The claim follows.

By semi continuity [24, III. 12], we get D0(i) ⊂ Dp(i) for all i. Serre duality
then completes the proof.



CHAPTER 2

B-cohomology

In this chapter we shall study the B-cohomology H•(B,−) = Ext•B(k,−), i.e.
the derived functors of the B-fixed point functor H0(B,−). We are especially inter-
ested in the B-cohomology of simple B-modules. In characteristic zero, this is an
easy well-known description of this cohomology whereas the corresponding problem
in characteristic p > 0 is wide open. We shall introduce some new techniques which
enable us to compute all such cohomology in degrees at most 3 when p is larger than
the Coxeter number h.

In Section (2.5) we determine for each λ ∈ X an upper bound i for the degree
in which the cohomology H i(B,λ) can be non-zero. It turns out that this upper
bound is the best possible when p is larger than h.

This chapter represents joint work with Henning Haahr Andersen, and it was
originally published in [14].

2.1. Known results
In this section we have gathered well-known results about the B-cohomology.

Let ht : X → Z be the height function on X which takes 1 on all simple roots.

2.1.1. Characteristic zero. For any B-module M we have the spectral sequence
[22, I.4.5]

Hr(G,Hs(G/B,M)) =⇒ Hr+s(B,M). (2.1)

Suppose now that char(k) = 0. The complete reducibility of G (cf. e.g. [22, II.
5.6]) implies that Hr(G,−) = 0 for all r > 0. The above spectral sequence (2.1)
then degenerates and gives us isomorphisms of B-modules

Hr(B,M) � H0(G,Hr(G/B,M)) for all r ≥ 0. (2.2)

Consider the case whereM is the 1-dimensional B-module determined by λ ∈ X.
Since the only dominant weight µ for which there is a non-trivial G-fixed point in
H0(G/B,µ) is µ = 0, the Borel-Weil-Bott theorem (1.5) implies that

Hr(B,λ) �
{
k if λ = w · 0 for some w ∈W with l(w) = r,
0 otherwise. (2.3)

For details see [4, Proposition 2.2].

2.1.2. Characteristic p > 0. From now on, we assume that char(k) = p > 0.

9
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2.1.3. The linkage principle. The strong linkage principle implies that all com-
position factors of Hr(G/B, λ) have highest weights in W · λ+ pZR. Furthermore,
it also gives that for each simple G-module L(µ) we have H•(G,L(µ)) = 0 unless
µ ∈W · 0 + pZR. Hence the spectral sequence (2.1) shows that

H•(B,λ) = 0 unless λ ∈W · 0 + pZR. (2.4)

Remark 2.1. As observed in [4], the strong linkage principle also implies that we
have the following characteristic p-analogue of (2.3)

Hr(B,w · 0) �
{
k if r = l(w),
0 otherwise. (2.5)

2.1.4. Let k[U ] denote the coordinate ring of U . We identify k[U ] with the in-
duced module IndBT k of the trivial T -module k. Tensoring the “standard” injective
resolution

k → k[U ] → k[U ] ⊗ k[U ] → · · ·
of the trivial B-module k by a weight λ ∈ X, we get

H•(B,λ) = 0 unless λ ≤ 0. (2.6)

In fact, each term in the resulting resolution of the B-module λ has weights ≥ λ.
Hence there are no T -fixed points (and so certainly no B-fixed points either) unless
λ ≤ 0.

Remark 2.2. A little more careful argument (see e.g. [18, Lemma 2.3]) shows that
in fact we have

H i(B,λ) = 0 unless λ ≤ 0 and i ≤ − ht(λ). (2.7)

2.1.5. The first cohomology group. It is clear that H0(B, k) = k and that
H0(B,λ) = 0 for all λ 	= 0. The first cohomology group H1(B,λ) is also completely
known (see [4]).

H1(B,λ) �
{
k if λ = −prα for some α ∈ S, r ≥ 0,
0 otherwise. (2.8)

This may be deduced from the spectral sequence (2.1) by using the fact that
the G-socle of H1(λ) is known, see [2]. In particular, H0(G,H1(λ)) = 0 unless
λ = −prα for some α ∈ S and r ≥ 0.

2.1.6. The second cohomology group. One of the main results in [15] is a com-
plete description of H2(B,λ). When p > h, we shall recover this result in Section
2.4. One of the features is that for any λ its second B-cohomology group is at most
1-dimensional (as was the case for H1, see (2.8)).

We emphasize that [15] describes H2(B,λ) for all p whereas we focus in this
chapter only on the case p > h.
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2.1.7. SL2 and SL3. The only Borel subgroup B for which the full story about
H•(B,λ) is known is the Borel subgroup of SL2. Since (in general) U is normal in B
and T is reductive, we have H i(B,λ) = H i(U, k)−λ. Now, when U is 1-dimensional,
the cohomology H•(U, k) is completely described in [32].

In the SL3 case the cohomology H•(Bq, λ) was calculated in [6]. Here Bq denotes
the Borel subalgebra of the quantum group corresponding to SL3, and q is assumed
to be a complex root of unity of odd order at least 3, see Chapter 3. Many of the
calculations for this case can easily be carried over to the characteristic p situation
giving a start for the determination of B-cohomology for a Borel subgroup B of
SL3(k).

2.2. Methods
Even though the spectral sequence (2.1) is not so effective in characteristic p, it

has the following very useful variant.
Note that we may replace G by any parabolic subgroup corresponding to α ∈ S.

Fix α ∈ S and let P = Pα be the minimal parabolic subgroup corresponding to
α ∈ S. Writing H i

α(−) in short for H i(Pα/B,−), we get in this way for all i ≥ 0

H i(B,λ) � H i(Pα,H0
α(λ)) if 〈λ, α∨〉 ≥ 0, (2.9)

H i+1(B,λ) � H i(Pα,H1
α(λ)) if 〈λ, α∨〉 ≤ −2, (2.10)

H i(B,λ) = 0 if 〈λ, α∨〉 = −1. (2.11)

Note also that H i(Pα,M) � H i(B,M) for all i ≥ 0 when M is a Pα-module.
This follows from the same spectral sequence argument by observing that for such
M we have H0

α(M) �M and H1
α(M) = 0.

Recall that when −1 ≤ 〈λ, α∨〉 < p, then H0
α(λ) � H1

α(sα · λ). Using this
together with (2.9)-(2.11), we get for all i ≥ 0

H i(B,λ) � H i+1(B, sα · λ) whenever − 1 ≤ 〈λ, α∨〉 < p. (2.12)

2.2.1. Let B1 denote the first Frobenius kernel in B. This means that B1 is the
subgroup scheme obtained as the kernel of the Frobenius homomorphism F1 on B.
When M is a B-module, we denote by M (1) the Frobenius twist of M , i.e. the
same vector space M but with action composed with F1. Similarly, if N is a B-
module whose restriction to B1 is trivial, then N (−1) is the B-module such that
(N (−1))(1) = N .

We have for each B-module M the Lyndon-Hochschild-Serre spectral sequence
[22, II. 12.2]

Hr(B,Hs(B1,M)(−1)) =⇒ Hr+s(B,M). (2.13)

2.2.2. Consider now the case where M = λ for some λ ∈ X. If p > h, then the
cohomology H•(B1, λ) is completely known for all λ ∈ X. According to (2.4), we
only need to consider λ’s of the form λ = w · 0 + pµ for some w ∈W and µ ∈ pRZ.
Then we have (see [9])

Hr(B1, w · 0 + pµ)(−1) � S(r−l(w))/2(u∗) ⊗ µ. (2.14)
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Here u∗ denotes the dual of the Lie algebra u = Lie(U) with the adjoint B-action,
Sr denotes the r-th symmetric power, and we interpret Sr to be 0 whenever r /∈ N.

2.2.3. When we combine (2.14) and the spectral sequence (2.13), we obtain

Proposition 2.3 ([6, Theorem 4.3.ii]). Suppose p > h. Let w ∈ W, µ ∈ X. Then
we have for all i

H i(B,w · 0 + pµ) � H i−l(w)(B, pµ).

This result reduces the problem of computing H•(B,λ) to the case where λ ∈
pX. Note also that this proposition reproves Remark 2.1 when p > h.

2.2.4. In order to effectively take advantage of the spectral sequence (2.13), we need
by (2.14) to determine the B-cohomology of Snu∗ ⊗ λ for λ ∈ X. This we don’t
know how to do in general, but the following short exact sequence will allow us to
settle some cases.

Let α ∈ S. Note that the line of weight α in u∗ is a B-submodule and that the
quotient Vα = u∗/α is a Pα-module. This leads to an exact sequence of B-modules
for each n > 0

0 → Sn−1u∗ ⊗ α→ Snu∗ → SnVα → 0. (2.15)

Tensoring by a weight λ ∈ X, we get

0 → Sn−1u∗ ⊗ (α+ λ) → Snu∗ ⊗ λ→ SnVα ⊗ λ→ 0. (2.16)

This gives H i(B,Snu∗ ⊗λ) = 0 unless H i(B,Sn−1u∗ ⊗ (λ+α)) or H i(B,SnVα⊗λ)
is non-zero.

As an easy consequence of (2.9)-(2.11), we get that if λ satisfies 〈λ, α∨〉 ≥ −1,
then we have for all i, n

H i(B,SnVα ⊗ λ) � H i(B,SnVα ⊗H0
α(λ)),

H i+1(B,SnVα ⊗ sα · λ) � H i(B,SnVα ⊗H1
α(sα · λ)).

If −1 ≤ 〈λ, α∨〉 < p, then H0
α(λ) � H1

α(sα · λ). Hence we obtain for such λ

H i(B,SnVα ⊗ λ) � H i+1(B,SnVα ⊗ sα · λ). (2.17)

Lemma 2.4 ([14, Lemma 3.2]). Suppose p > h and let λ ∈ X. Then we have

H0(B,Vα ⊗−λ) = 0 unless λ ∈ {R+ \ {α} | λ− α /∈ R+}.
Proof. Let Lα denote the Levi subgroup of Pα. Since Vα is a Lα-module and p > h
we get from the linkage principle that Vα � ⊕Lα(γ) as Lα-modules. Here γ runs
through those roots in R+ \{α} for which γ+α /∈ R+ and Lα(γ) denotes the simple
Lα-module of highest weight γ. Note that if Bα = B ∩ Lα, then

H0(Bα, Lα(γ) ⊗−λ) = 0 unless λ = sα(γ).

Then the lemma follows.
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2.3. B-cohomology of Snu∗ ⊗ λ

In the rest of this chapter we assume that char(k) = p > 0. As mentioned
before, in order to calculate H2(B,λ) and H3(B,λ) explicitly, we need to compute
some low degree cohomology of Snu∗ ⊗ λ. This is what we do in this section.

2.3.1. Degree zero.

Proposition 2.5 ([14, Proposition 4.1]). Fix n ∈ N and λ ∈ X. Then

H0(B,Snu∗ ⊗ λ) �
{
k if n = − ht(λ) and λ ≤ 0,
0 otherwise.

Proof. Since the weights of Snu∗ are all ≥ 0, we can apply (2.6) to conclude that
H0(B,Snu∗ ⊗ λ) = 0 unless λ ≤ 0. So we may assume λ is not dominant. Choose
then α ∈ S such that 〈λ, α∨〉 < 0. The exact sequence (2.16) gives

H0(B,Snu∗ ⊗ λ) � H0(Sn−1u∗ ⊗ (α+ λ)).

Now an easy induction on n proves the proposition.

Remark 2.6. Proposition 2.5 remains true when char(k) = 0.

2.3.2. Degree 1. For each α, β ∈ S we let

aβα =
〈
β, α∨〉 .

Note that for each α, β ∈ S we have

α+ β ∈ R+ if and only if aβα < 0.

Proposition 2.7 ([14, Proposition 4.3]). Assume p > h and let λ ∈ X. Then

H1(B,u∗ ⊗ λ) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k if λ = −β − pnα for α, β ∈ S and n > 0,
k if λ = −β − α for α, β ∈ S with aβα < 0,
k if λ = −2α for α ∈ S,
k2 if λ = −β − α for α, β ∈ S with aβα = 0,
k if λ = sαsβ · 0 for α, β ∈ S with aβα < 0,
0 otherwise.

Proof. We begin by checking each of the first five cases where the proposition claims
that the cohomology is non-zero. So consider first the case where λ = −β − pnα for
some α, β ∈ S and n > 0. We have the following exact sequence

0 → (β + λ) → u∗ ⊗ λ→ Vβ ⊗ λ→ 0. (2.18)

We note that −λ is not a weight of Vβ and that no weights of Vβ ⊗ λ have the form
−pmγ with γ ∈ S and m ≥ 0. Using (2.8), we then have

H0(B,Vβ ⊗ λ) = H1(B,Vβ ⊗ λ) = 0.

This together with the long exact sequence arising from (2.18) give

H1(B,u∗ ⊗ λ) � H1(B,−pnα) � k.
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Consider now λ = −β−α for some α, β ∈ S with α+β ∈ R+. In this case we still
have that H0(B,Vβ⊗λ) = 0, see Lemma 2.4. We claim that H1(B,Vβ⊗−α−β) = 0.
To see this, we consider the exact sequence

0 → α→ Vβ → Q→ 0. (2.19)

Noting that α + β is a minimal weight of Q (with multiplicity 1), it follows imme-
diately that H0(B,Q⊗ (−β − α)) � k. No weights of Q⊗ (−β − α) have the form
−pmµ with µ ∈ S and m ≥ 0. Therefore we get H1(B,Q ⊗ (−β − α)) = 0, and
hence the long exact sequence coming from (2.19) gives H1(B,Vβ ⊗ −β − α) = 0.
Combining this claim with the exact sequence (2.18), we get

H1(B,u∗ ⊗ (−β − α)) � H1(B,−α) � k.

Next, consider that λ = −β − α for some α, β ∈ S with α + β /∈ R+. Arguing
as before, we get that H0(B,Vβ ⊗ −α − β) = 0, but this time we also have that
H0(B,Q ⊗ (−β − α)) = 0. Note that if β = α, then 2α is not a weight of Vα. In
this case we get H1(B,Vα ⊗−2α) = 0. Weight considerations as before imply that
if α 	= β, then H1(B,Vβ ⊗−α−β) � k. Inserting in the long exact sequence arising
from (2.18), we get the desired conclusions because H2(B,−α) � H1(B, k0) = 0.

Finally, consider λ = sαsβ · 0 for some α, β ∈ S with aβα < 0. Then 〈λ, α∨〉 =
aβ,α − 2 < 0. By (2.17), the exact sequence (2.16) gives

H1(B,u∗ ⊗ λ) � H1(B,Vα ⊗ λ) � H0(B,Vα ⊗ sα · λ)

because H1(B,λ+ α) = H2(B,λ+ α) = 0. Since sα · λ = −β, we have

H0(B,Vα ⊗ sα · λ) � k

This settles the last of the non-vanishing cases.
Assume now that H1(B,u∗ ⊗ λ) 	= 0 for some λ ∈ X. To finish the proof, we

need to show that we are then in one of the above five cases.
Weight considerations show via (2.8) that if H1(B,u∗ ⊗ λ) is non-zero for some

λ ∈ X, then λ = −β− pnα for some β ∈ R+, α ∈ S, n ≥ 0. We claim that if n > 0,
then β ∈ S (i.e. we are in the first case listed in the proposition). If β /∈ S, then
(2.8) gives H1(B,λ+ α) = 0, and hence the exact sequence (2.16) implies

H1(B,u∗ ⊗ λ) ⊆ H1(B,Vα ⊗ λ) � H0(B,Vα ⊗H1
α(λ)).

The claimed isomorphism comes from the fact that 〈λ, α∨〉 = −aβα − 2pn < 0.
Arguing as in the proof of Lemma 2.4 (using the notation from that proof), we

get that
V ∗
α �

⊕
Lα(−γ) as Lα-modules.

Here the sum extends over those γ ∈ R+ for which γ − α 	∈ R+. Hence it follows
that H0(B,Vα ⊗ H1

α(λ)) � HomB(V ∗
α ,H

1
α(λ)) = 0 unless the Lα-socle of H1

α(λ)
contains such an Lα(−γ). However, we get from [2] that this socle is Lα(−β) if
〈λ, α∨〉 ≥ −2pn (i.e. if aβα ≤ 0), Lα(sα · λ) if 〈λ, α∨〉 = −2pn − 1 (i.e. if aβα = 1),
and Lα(−β + pnα) if 〈λ, α∨〉 < −2pn − 1 (i.e. if aβα ≥ 1). In the two last cases
the highest weight of the socle is not in −R+. In the first case the above conditions
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on γ implies β − α 	∈ R+. To investigate this case further, we tensor the sequence
(2.15) by H1

α(λ) and obtain the exact sequence

H0(B,u∗ ⊗H1
α(λ)) → H0(B,Vα ⊗H1

α(λ)) → H1(B,α⊗H1
α(λ)).

By Proposition 1.5, the weights of H1
α(λ) are λ + α, λ + 2α, . . . , sα · λ. Then

Proposition 2.5 implies that the first term in the above sequence is 0 unless we have
−β − pnα + aα = −γ for some a > 0 and γ ∈ S. This means β = γ + bα for
some b ≥ 0. But if b > 0, then we see that β − α ∈ R+, and since this is not
the case, we conclude that β ∈ S. Similarly, by (2.8) the third term is 0 unless
α + (−β − pnα) + aα = −prγ for some a > 0, r ≥ 0 and γ ∈ S. This again means
β = γ + bα for some b ≥ 0. As before, we deduce from the fact β − α 	∈ R+ that
b = 0. Our claim follows.

On the other hand, if n = 0, then we claim that we are in one of the remaining
four cases. Since −β − α /∈ X+, we may choose γ ∈ S such that 〈λ, γ∨〉 < 0. As
〈λ, γ∨〉 > −p we get from (2.17)

H1(B,Vγ ⊗ λ) � H0(B,Vγ ⊗ sγ · λ). (2.20)

Using our assumption that H1(B,u∗⊗λ) 	= 0, the sequence (2.16) relative to γ gives
that either H1(B,λ+ γ) 	= 0 or H1(B,Vγ ⊗ λ) 	= 0.

Suppose first that H1(B,λ + γ) 	= 0. Then λ = −γ − pmδ for some δ ∈ S and
m ≥ 0. Since λ = −β − α, we have m = 0 and β ∈ {γ, δ} ⊆ S. This means that we
are in one of the cases 2, 3 or 4 on the list.

Suppose H1(B,Vγ ⊗λ) 	= 0. By (2.20), we get H0(B,Vγ ⊗ sγ · λ) 	= 0. Then the
sequence

H0(B,u∗ ⊗ sγ · λ) → H0(B,Vγ ⊗ sγ · λ) → H1(B, γ + sγ · λ).

gives either H0(B,u∗ ⊗ sγ · λ) 	= 0 or H1(B, γ + sγ · λ) 	= 0. This means that either
sγ ·λ = −δ or γ+ sγ · λ = −pmδ for some δ ∈ S, m ≥ 0. The first possibility means
that λ = sγ · (−δ) = sγsδ · 0 , i.e. we are in case 4 or 5 on our list. The second
possibility can only occur with m = 0, and then sγ · λ = −γ − δ. But in that case

H0(B,Vγ ⊗ sγ · λ) = H0(B,Vγ ⊗−δ − γ),

and this is 0 according to Lemma 2.4.

The same arguments as in Proposition 2.7 give

Proposition 2.8 ([14, Proposition 4.4]). Let λ ∈ X. If char k = 0 then

H1(B,u∗ ⊗ λ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k if λ = −2α for α ∈ S,
k if λ = −β − α for α, β ∈ S with aβα < 0,
k2 if λ = −β − α for α, β ∈ S with aβα = 0,
k if λ = sαsβ · 0 for α, β ∈ S with aβα < 0,
0 otherwise.

2.4. H•(B,λ) in degrees 2 and 3
In this section we assume p > h. We shall compute H2(B,λ) and H3(B,λ) for

all λ ∈ X.
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2.4.1. Degree 2.

Theorem 2.9 ([14, Theorem 5.1]). Let λ ∈ X. Then

H2(B,λ) �

⎧⎪⎪⎨
⎪⎪⎩

k if λ = pn(−α) for α ∈ S and n > 0,
k if λ = pn(w · 0) for w ∈W with l(w) = 2, n ≥ 0,
k if λ = pn(−α− pmβ) for α, β ∈ S, n ≥ 0,m > 0,
0 otherwise.

Proof. If λ 	∈ pX, then we use Proposition 2.3 to reduce to a lower degree cohomol-
ogy group. These are described in Section 2.1. So suppose λ = pµ for some µ ∈ X.
We then use the spectral sequence (2.13) to compute H2(B,λ). By (2.14), there
are only two E2-terms that may contribute, namely H2(B,µ) and H0(B,u∗ ⊗ µ).
If µ ∈ −S, then the first of these terms vanishes (by Proposition 2.3) whereas the
second equals k. Hence H2(B,−pα) = k for all α ∈ S.

On the other hand, if µ 	∈ −S, then we have that the second term vanishes
(according to Proposition 2.5) and H2(B,λ) � H2(B,µ). We repeat this argument
if µ ∈ pX (note that this gives H2(B, pµ) � H2(B, p2µ) � · · · � H2(B, pnµ) for
all µ ∈ X and all n > 0). Otherwise, H2(B,µ) identifies with a lower degree
cohomology group as before. It is now a matter of bookkeeping to see that this
leads to the statement in the theorem.

2.4.2. Degree 3.

Theorem 2.10 ([14, Theorem 5.2]). Let λ ∈ X. Then

H3(B,λ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = pn(−2α) for α ∈ S and n > 0,
k2 if λ = pn(−β − pmα) for α, β ∈ S and n,m > 0,
k if λ = pn(−β − α) for α, β ∈ S with

aβα < 0 and n > 0,
k2 if λ = pn(−β − α) for α, β ∈ S with

aβα = 0 and n > 0,
k if λ = pn(sαsβ · 0) for α, β ∈ S with

aβα < 0 and n > 0,
k if λ = pn(w · 0) for w ∈W with

l(w) = 3 and n ≥ 0,
k if λ = pn(w · 0 − pmα) for α ∈ S, w ∈W with

l(w) = 2 and n ≥ 0,m > 0,
k if λ = pn(pmw · 0 − α) for α ∈ S, w ∈W with

l(w) = 2 and n ≥ 0,m > 0,
k if λ = −β − pnα for α, β ∈ S, n > 0,
k if λ = pn(−α− pmβ − plγ) for α, β, γ ∈ S and

n ≥ 0,m > l > 0,
0 otherwise.

Proof. Suppose that λ = pµ for some µ ∈ X. Consider the spectral sequence (2.13).
The only E2-terms that contribute to H3(B,λ) are H3(B,µ) and H1(B,u∗ ⊗ µ).
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The latter vanishes if µ ∈ pX. Hence we get H3(B, pµ) � · · · � H3(B, pnµ) for all
µ ∈ X and all n > 0.

For those µ listed in Proposition 2.7, we have that unless µ = −β−pnα for some
α, β ∈ S, n > 0, and in that case we have H3(B,µ) = 0. Hence

H3(B, pµ) � H1(B,u∗ ⊗ µ).

Suppose now that µ = −β − pnα with α, β ∈ S and n > 0. Proposition 2.7 and
Theorem 2.9 (combined with Proposition 2.3) yield that both of the above terms
equal k. In this situation we have an exact sequence

0 → H3(B,µ) → H3(B, pµ) → H1(B,u∗ ⊗ µ) → 0

i.e. we have H3(B, pµ) � k2.
On the other hand, if µ is not one of those weights listed in Proposition 2.7, then

the second term vanishes. In this case we have H3(B, pµ) � H3(B,µ). Arguing as
in Theorem 2.9, the stated results follow.

2.5. Upper bound
In this section we determine for each λ ∈ X an upper bound i for the degree in

which the cohomology H i(B,λ) can be non-zero.

2.5.1. Upper bound. Suppose now that char (k) = p > 0.

Theorem 2.11 (Compare [14, 6]). Let λ ∈ X and w ∈W . Then

H i (B,w · 0 + pλ) = 0 for all i > l(w) − 2 ht(λ).

Proof. Since H i(B,w · 0 + pλ) � H i−l(w)(B, pλ), we see that H•(B,w · 0 + pλ) is
zero unless λ ≤ 0. In particular, we may assume that ht(λ) ≤ 0.

We proceed by induction on n = l(w)− 2 ht(λ). If n = 0, then w = 1 and λ = 0.
In this case the claim is true.

Now, assume that i > n > 0 and set µ = w · 0 + pλ. Since µ 	∈ X+, we can
choose α ∈ S with 〈µ, α∨〉 < 0, and then we set

a = max{j | jp ≤ 〈sα · µ, α∨〉} =
{ −〈λ, α∨〉 if l(sαw) = l(w) − 1,

−〈λ, α∨〉 − 1 if l(sαw) = l(w) + 1.

We have
H i (B,µ) � H i−1

(
B,H1

α(µ)
)
.

The weights ofH1
α(µ) are µ+α, µ+2α, . . . , sα ·µ. Note that the weights which belong

to W · 0 + pZR have the form υ = µ+ jpα with j ∈ {1, . . . , a} or υ = sα · µ− jpα
with j ∈ {0, . . . , a}.

Consider first υ = µ+ jpα for some j ∈ {1, . . . , a}. Then υ = w · 0 + p(λ+ jα).
Since i− 1 > n− 1 ≥ l(w)− 2 ht(λ+ jα), we get by induction that H i−1(B, υ) = 0.

Consider now that υ = sα · µ− jpα for some j ∈ {0, . . . , a}. Then

υ = sαw · 0 + p(sα(λ) − jα) = sαw · 0 + p(λ− (〈λ, α∨〉 + j)α).
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Note

l(sαw) − 2 ht(λ) + 2(〈λ, α∨〉 + j) ≤ l(sαw) − 2 ht(λ) + 2(〈λ, α∨〉 + a)

=
{
n− 1 if l(sαw) = l(w) − 1,
n− 1 if l(sαw) = l(w) + 1.

Hence by induction H i−1(B, υ) = 0.
We conclude that H i−1(B,H1

α(µ)) = 0. This completes the proof.

2.5.2. In [14] we expected this upper bound to be the best possible. As evidence
we pointed to the rank 1 computations in [32] and to the quantum case, see [14,
Remark 7.1]. This is in fact true when p > h. To see this, we need to note that any
weight of Sju∗ has height at least j. From Remark 2.2 we can then derive that

H i(B,Sju∗ ⊗ λ) = 0 unless λ ≤ 0 and ht(λ) ≤ −i− j. (2.21)

Proposition 2.12. Suppose p > h. Let λ ∈ X with λ ≤ 0. Then we have

H−2 ht(λ)(B, pλ) � k.

Proof. Let i, j ∈ N such that −2 ht(λ) = i+ 2j. From (2.21) it follows that

H i(B,Sju∗ ⊗ λ) = 0 unless i = 0 and j = − ht(λ).

Combining this with the spectral sequence (2.13) and Proposition 2.5, we get

H−2 ht(λ) (B,λ) � H0(B,S− ht(λ)u∗ ⊗ λ) � k.

The proposition is proved.



CHAPTER 3

Quantum groups and their representations

Let Uq be the quantum group corresponding to G, and let Bq be the Borel
subalgebra corresponding to the negative roots (see below for the precise definitions).
The induction functor H0

q from Bq behaves so nicely that some key results in the
cohomology theory of line bundles on the flag variety G/B can be carried over
to the quantum case. These include analogues of Serre duality, Grothendieck’s
vanishing theorem, Kempf’s vanishing theorem and the strong linkage principle.
Moreover, when q is not a root of unity, the Borel-Weil-Bott theorem (1.5) holds for
all characters λ ∈ X.

In this chapter we shall introduce the quantum group Uq and its Borel subalgebra
Bq. We shall also introduce the induction functor H0

q from Bq and review some of
its properties. The main references are [11] and [13].

3.1. Quantum groups
Let (aij) denote the Cartan matrix of our root system R of rank n and set

I = {1, . . . , n}. Since (aij) is symmetrizable, then we may choose d1, . . . , dn ∈ N

minimal such that (diaij) is symmetric. Hence we have that di ∈ {1, 2} for all i ∈ I
unless R has an irreducible component of type G2. In this case we have di = 3 for
some i ∈ I.

Let S = {α1, . . . , αn} be the set of simple roots, and for each λ ∈ X we set

λi =
〈
λ, α∨

i

〉
for all i ∈ I.

3.1.1. Gaussian binomial coefficients. Let v be an indeterminate over Q. Con-
sider the fraction field Q(v) of the polynomial ring Q[v]. Set for all i ∈ I

[a]i =
vdia − v−dia

vdi − v−di
for a ∈ Z,

[a]i! = [a]i · · · [1]i for a ∈ N,

and the Gaussian binomial coefficients[
r
a

]
i

=
[r]i · · · [r − a+ 1]i

[a]i!
for r ∈ Z, a ∈ N.

One can check that all elements defined above belong to the subring Z[v, v−1] of
Q(v), see [21, Chapter 0].

19
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3.1.2. The first quantum group. The quantum group Uv over Q(v) associated
to (aij) is the Q(v)-algebra with generators Ei, Fi,Ki and K−1

i (for all i ∈ I) and
the following relations (for all i, j ∈ I)

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi, (3.1)

KiEjK
−1
i = vdiaijEj, KiFjK

−1
i = v−diaijFj , (3.2)

EiFj − FjEi = δij
Ki −K−1

i

vdi − v−di
, (3.3)

and for i 	= j

1−aij∑
s=0

(−1)s
[
aij − 1
s

]
i

E
1−aij−s
i EjE

s
i = 0, (3.4)

1−aij∑
s=0

(−1)s
[
aij − 1
s

]
i

F
1−aij−s
i FjF

s
i = 0. (3.5)

The quantum group Uv is a Hopf algebra with comultiplication ∆, counit ε and
antipode ι such that for all i ∈ I (cf. [21, 4.11]):

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ε(Ei) = 0, ι(Ei) = −K−1
i Ei,

∆(Fi) = Fi ⊗K−1
i + 1 ⊗ Fi, ε(Fi) = 0, ι(Fi) = −FiKi,

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, ι(Ki) = K−1
i .

Lemma 3.1. There is a unique involutory Q(v)-antiautomorphism τ of Uv with
τ(Ei) = Fi, τ(Fi) = Ei and τ(K±

i ) = K±
i for all i ∈ I.

Proof. One can easily check that the images of the generators satisfy the rela-
tions (3.1)-(3.5) in the opposite algebra Uopv . The uniqueness is obvious. Since all
generators of Uv are fixed under τ2, then τ2 = 1.

Example 3.2. Consider the simplest possible case, namely (aij) = (2). Then the
corresponding quantum group Uv has 4 generators E,F,K and K−1 and the follow-
ing relations

KK−1 = 1 = K−1K,

KEK−1 = v2E,KFK−1 = v−2F,

EF − FE =
K −K−1

v − v−1
.

3.1.3. The second quantum group. Consider the ring A = Z[v, v−1] and define
UA to be the A-subalgebra of Uv generated by all E(r)

i , F
(r)
i ,Ki and K−1

i with i ∈ I
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and r ∈ N. Here we use the notation

E
(r)
i =

Eri
[r]i!

for r ∈ N, i ∈ I,

F
(r)
i =

F ri
[r]i!

for r ∈ N, i ∈ I.

The quantum group UA is sometimes called the Lusztig A-form of Uv.
One can show that the restrictions of ∆, ε and ι to UA make UA into a Hopf

algebra. Set now[
Ki; c
t

]
=

t∏
s=1

Kiv
di(c−s+1) −K−1

i v−di(c−s+1)

vdis − v−dis
for c ∈ Z, t ∈ N, i ∈ I.

Then define U+
A , U

−
A and U0

A as follows:

U+
A is the subalgebra generated by all E(r)

i with i ∈ I and r ∈ N,

U−
A is the subalgebra generated by all F (r)

i with i ∈ I and r ∈ N,

and

U0
A is the subalgebra generated by all K±1

i ,

[
Ki; 0
r

]
with i ∈ I and r ∈ N.

Hence we have a triangular decomposition of UA, meaning that the multiplication
map defines an isomorphism of vector spaces

UA = U−
AU

0
AU

+
A . (3.6)

This is a consequence of Kac’s formula (cf. [29, Lemma 6.5 (a2)]):

E
(r)
i F

(s)
i =

min(s,r)∑
t=0

F
(s−t)
i

[
Ki; 2t− s− r

t

]
i

E
(r−t)
i for all i ∈ I and r, s ∈ N.

We set BA = U−
AU

0
A. We will call this the Borel subalgebra of UA.

3.1.4. The third quantum group. Let now R be a commutative algebra over A.
The quantum group over R associated with the Cartan matrix (aij) is the R-algebra

UR = UA ⊗A R,
which is clearly a Hopf algebra (with comultiplication, counit and antipode induced
from UA and denoted by the same symbols as for Uv).

Similarly, we set

U−
R = U−

A ⊗A R, U+
R = U+

A ⊗A R, U0
R = U0

A ⊗A R,
and

BR = BA ⊗A R.
In this thesis we shall restrict ourselves to the case where R is a field. So let k be

an arbitrary field, and let q ∈ k× be a non-zero element. We make k into A-algebra
by specializing v to q and define

Uq = UA ⊗A k.
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We abuse the notation and write E(r)
i , F

(r)
i and K±1

i for the images in Uq for these
generators.

3.1.5. Borel characters. Just as for the Borel subgroup B, each λ ∈ X defines a
character of Bq as follows: We have a k-algebra homomorphism χλ : U0

q → k given
by (for all i ∈ I) (see e.g. [11])

χλ
(
K±1
i

)
= q±diλi

χλ

([
Ki; c
t

])
=
[
λi + c
t

]
i

for all c ∈ Z, t ∈ N,

The 1-dimensional U0
q -module, where U0

q acts via λ, is denoted by λ or sometimes
kλ. In particular, the trivial U0

q -module k may also be written k0. This extends to
a Bq-module with the trivial U−

q -action.

3.2. Representations of quantum groups
3.2.1. Weight spaces. Let U0

q ⊂ U ′ be a subalgebra of Uq and let M be a U ′-
module. For each λ ∈ X we define the λ-weight space of M by

Mλ = {m ∈M | um = χλ(u)m,u ∈ U0
q }.

We say that λ ∈ X is a weight of M if Mλ 	= 0, and a maximal weight of M if we
further have

E
(r)
i Mλ = 0 for all i ∈ I and r > 0.

A Uq-module is said to be a module of highest weight λ if it is generated by an
element v ∈M with maximal weight λ.

3.2.2. Integrable modules. Let J ⊂ I = {1, . . . , n} and denote by Uq(J) the
subalgebra of Uq generated by Bq together with

{E(r)
j | j ∈ J, r ∈ N}.

A Uq(J)-module M is called integrable if M is the direct sum of its weight spaces
and there exists for any m ∈M an integer rm ∈ N such that

E
(r)
i m = F

(r)
i m = 0 for all r > rm and i ∈ J.

The category of integrable Uq(J)-modules will be denoted by Cq(Uq(J)). Using
some standard homological arguments, one can show that the category Cq(Uq(J))
has enough injective, cf. [11].

Remark 3.3. Clearly, if M is an integrable Uq(J)-module M , then any Uq(J)-
submodule V ⊂M is integrable, and we have Vλ = Mλ ∩ V for all λ ∈ X.

We are mainly interested in the following categories, for which we introduce a
special notation:

C−
q = Cq(Bq) and Cq = Cq(Uq).

Lemma 3.4. For any M ∈ Cq the Weyl group W acts on the set of weights of V .

For a proof we refer to [11, lemma 1.13].



3.2. REPRESENTATIONS OF QUANTUM GROUPS 23

Remark 3.5. If we want to be more precise, the category Cq is in fact the category
of integrable Uq-modules of type 1. For each ω = (ω1, . . . , ωn) with ωi = ±1 for
i ∈ I we define an automorphism σω : Uq → Uq by

σε(Ei) = εiEi, σε(Fi) = εiFi and σε(Ki) = εiKi

for all i ∈ I.
If M is a Uq-module, then we set

Mλ,ω = {m ∈M | um = σω(u)χλ(u)m,u ∈ U0
q }

for all ω and λ. So each Mσ,ω is a subspace of M that we call a weight space of M .
For any Uq-module M we let Mω be the Uq-module that is equal to M as a

vector space, and where each u ∈ Uq acts on Mω as σω(u) acts on M . It is clear
that (Mω)ω � M , and M is simple if and only if Mω is simple. We say that a
Uq-module M has type ω if M = Mω. It is easy to see, however, that this twisting
with σω is an equivalence of categories between the category of Uq-modules of type
1 and those of type ω. We shall therefore restrict ourselves from now on to modules
of type 1.

3.2.3. Finally, we define the functor F from the category of Uq(J)-modules to the
category of integrable Uq(J)-modules by

F (M) =

{
m ∈

⊕
λ∈X

Mλ | E(r)
i m = F

(r)
i m = 0 for r � 0, i ∈ J

}
.

This is an integrable Uq(J)-submodule of M , see [11]. This is in fact the largest
integrable Uq(J)-submodule of M .

3.2.4. The small quantum group. Suppose for a second that q is a primitive
root of unity, and l is the order of q2. For each αi ∈ S we set li = l/(l, di). It
is well-known that for any root β in R there exist w ∈ W and αi ∈ S such that
β = w(αi), and then we let lβ = li.

The small quantum group uq is the subalgebra generated by all E(r)
i , F

(r)
i and

K±
i with 0 ≤ r < li. From [29] we get that uq is a finite dimensional Hopf algebra

over k, and we have a triangular decomposition

uq = u−q u
0
qu

+
q .

Here the subalgebras u+
q , u0

q and u−q are defined in the obvious way.
Let now Cq(Bqu+

q ) denote the category of Bqu+
q -modules. Note that M belongs

to this category if M is a Bqu
+
q -module whose restriction to Bq belongs to the

category C−
q .

A uqU
0
q -module M is said to be integrable if it is the direct sum of all Mλ with

λ ∈ X. The category of integrable uqU0
q is denoted by Cq(uqU0

q ). Denote also by F
the functor which takes any uqU0

q -modules M to

F (M) =
⊕
λ∈X

Mλ.
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Similarly we define Cq(u−q U0
q ), Cq(U0

q ) and F as we did for Cq(uqU0
q ).

3.3. Induced representations
In this section we let U1 ⊂ U2 ⊂ U3 be three algebras among those defined in

3.2.2 an 3.2.4. For each i we let Mi be an integrable Ui-module.

3.3.1. Induction functors. We make

HomU1

(
U2,M1

)
=
{
f ∈ Homk

(
U2,M1

) | f(ux) = uf(x) for u ∈ U1, x ∈ U2
}

into a U2-module via

(yf)(x) = f(xy), x, y ∈ U2, f ∈ HomU1(U2,M1).

The U2-module induced by M1 is

H0
q

(
U2/U1,M1

)
= F

(
HomU1

(
U2,M1

))
.

This is a left exact covariant functor. The induction functor H0
q was constructed in

[11] and [12].
Choose now an injective resolution Q• of M1 in Cq(U1). Then we set

H i
q

(
U2/U1,M1

)
= H i

(
H0
q

(
U2/U1, Q•

))
for all i ≥ 0.

It turns out that H i
q

(
U2/U1,M1

)
is independent of the chosen resolution. We shall

write H i
q in short of H i

q (Uq/Bq,−).

3.3.2. Properties. The induction functor H0
q has the following basic properties

whose proofs can be found in [11], [12] and [13].
(1) Frobenius reciprocity: The map

HomU2

(
M2,H

0
q

(
U2/U1,M1

))→ HomU1 (M2,M1) (3.7)
ϕ �→ Ev ◦ ϕ

is an isomorphism of vector spaces. Here Ev is the evaluation map

Ev : H0
q

(
U2/U1,M1

)→M1 (3.8)

f �→ f(1).

(2) The tensor identity: We have an isomorphism of U2-modules

H i
q

(
U2/U1,M2 ⊗kM1

) �M2 ⊗k H
i
q

(
U2/U1,M1

)
for all i ≥ 0. (3.9)

Similarly, one obtains an isomorphism of U2-modules

H i
q

(
U2/U1,M1 ⊗kM2

) � H i
q

(
U2/U1,M1

)⊗kM2 for all i ≥ 0. (3.10)

(3) Induction is transitive: We have

H0
q

(
U3/U2,H0

q

(
U2/U1,M1

)) � H0
q

(
U3/U1,M1

)
. (3.11)

(4) If M1 is injective, then so is H0
q

(
U2/U1,M1

)
, and all higher cohomology

Hj
q

(
U2/U1,M1

)
with j > 0

are zero.
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(5) Finally, we have the following spectral sequence

H i
q

(
U3/U2,Hj

q

(
U2/U1,M1

))⇒ H i+j
(
U3/U1,M1

)
. (3.12)

We shall sometimes use these properties in the subsequent chapters without referring
to them.

3.3.3. Further properties. Many of the vanishing results of H0 in the modular
case can be carried over to the quantum case, e.g. H0

q (λ) is non-zero if and only if
λ ∈ X+, and H0

q (λ) is finite dimensional and contains a unique simple submodule
of highest weight λ that we denote by Lq(λ). Furthermore, the set of dominant
weights parametrizes the simple Uq-modules via highest weight.

One can also prove that Kempf’s vanishing theorem (1.4), Serre duality (1.2)
and Grothendieck’s vanishing theorem (1.3) have analogues for Uq. And when q is
not a root of unity, the Borel-Weil-Bott theorem holds for all characters λ ∈ X, and
H0
q (λ) is simple for each λ ∈ X+. The Borel-Weil-Bott theorem fails in the root of

unity case, and the simplicity of H0
q also breaks down in general.

Most of these results were proved under some restrictions on k and l in [11] by
reduction to the classical case. The mixed case, i.e. the case where the ground field
k is of positive characteristic prime to l is investigated in [13] and [34]. These results
were proved under some restrictions on l by specialization to the modular case. For
the case where one also allows even l, we refer to [10].

However, these methods fail to give a generalization of Kempf’s vanishing the-
orem in the mixed case when l ≤ h. Ryom-Hansen proved in [33] the quantized
analogue of Kempf’s vanishing theorem. His proof involves using Kashiwara’s crys-
tal bases [27] to analyse the Demazure modules.

3.4. The strong linkage principle
In this section we assume that q is a primitive root of unity, and we set l equal

the order of q2. We present the quantum version of the strong linkage principle and
some of its consequences.

3.4.1. The affine Weyl group. The affine Weyl group Wl is the group generated
by the affine reflections sβ,m given by

sβ,m · λ = sβ · λ+ klββ,m ∈ Z, β ∈ R,λ ∈ X.

Note that if li = l for all i ∈ I, then Wl is the usual affine Weyl group of R. But in
general Wl is the affine Weyl group of the dual root system R∨, for more details we
refer to [13].

Let λ ∈ X+ − ρ and set

Π(λ) = {µ ∈ X | w(µ) ≤ λ for all w ∈W } .

Note that Π(λ) = ∅ unless there exists µ ∈ X+ such that µ ≤ λ.

Theorem 3.6 ([5, Theorem 3.9]). Let λ ∈ X+ − ρ. If w ∈ W and j ∈ N, then all
weights of Hj

q (w · λ) are in Π(λ), and all weight spaces of these modules are finite
dimensional.
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It follows immediately from the above theorem that

Corollary 3.7 ([5, Corollary 3.10]). If M ∈ C−
q is finite dimensional, then so is

H i
q(M) for all i.

3.4.2. The linkage. Let λ, µ ∈ X. We say that λ is linked to µ if λ ∈ Wl · µ.
Furthermore, λ is said to be strongly linked to µ if λ = µ or if there are reflections
s1, . . . , sr+1 ∈Wl such that

λ ≤ s1 · λ = λ1 ≤ s2 · λ1 = λ2 ≤ · · · ≤ sr · λr−1 = λr ≤ sr+1 · λr = µ.

The following lemma summarizes some basic properties of the strong linkage:

Lemma 3.8. Let λ ∈ X. We have

(1) λ− lαα is strongly linked to λ for all α ∈ R+.
(2) If λ ∈ X+−ρ, then we have that w ·λ is strongly linked to λ for all w ∈W .

Proof. (1) Write 〈λ+ ρ, α∨〉 = alα+ b where a, b ∈ Z and 0 < b ≤ lα. We have that
sα,a · λ = λ− bα, and this shows that λ− bα is strongly linked to λ. On the other
hand, if b < lα, then we have that sα,(a−1) · (λ − bα) = λ − lαα. Hence λ − lαα is
strongly linked to λ− bα, and then strongly linked to λ.

(2) This can be proved by a simple induction on l(w). For l(w) = 0 there
is nothing to prove. Suppose now that l(w) > 0, then there exists a simple root
α ∈ S such that l(sαw) = l(w) − 1, and this means that w−1(α) < 0. Then
〈w(λ + ρ), α∨〉 = 〈λ+ ρ,w−1(α)∨〉 ≤ 0. Hence w · λ is strongly linked to (sαw) · λ.
Using induction, we get that w · λ is strongly linked to λ.

Theorem 3.9 (The strong linkage principle). Let λ ∈ X+ − ρ. All composition
factors of H i

q(w · λ), i ∈ N, w ∈W , have highest weights strongly linked to λ.

For more details and for a proof of the strong linkage principle for the quantum
case, we refer to [5]. By combining the strong linkage principle and Frobenius
reciprocity, one can easily show that

Corollary 3.10 ([5, Corollary 4.4]). Suppose that M is an indecomposable Uq-
module. If λ, µ ∈ X+ such that Lq(λ) and Lq(µ) both are composition factors of M ,
then µ ∈Wl · λ.
3.4.3. The Euler character. Now, let M ∈ C−

q be a finite dimensional module.
We define the formal character of M

ch(M) =
∑
λ∈X

dimk (Mλ) eλ ∈ Z[X].

Here {eλ | λ ∈ X} denotes the standard basis of the group ring Z[X]. Since each
H0
q (λ) has λ as its unique highest weight, then ch

(
H0
q (λ)

)
with λ ∈ X+ form a basis

of the ring of W -invariants in Z[X], cf. [22, II. 5].
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We denote the Euler character of M by χ(M)

χ(M) =
∑

i≥0
(−1)i ch

(
H i
q(M)

)
.

According to Grothendieck’s vanishing theorem, we have H i
q(M) = 0 for all i > N ,

and this shows that χ is well defined.
For any λ ∈ X the Euler character χ(λ) of kλ is given by Weyl’s character

formula, see the argument in [22, II.5].

χ(λ) =
∑

w∈W (−1)l(w)ew(λ+ρ)
/∑

w∈W (−1)l(w)ew(ρ).

Note that Kempf’s vanishing theorem implies that

χ(λ) = ch
(
H0
q (kλ)

)
for all λ ∈ X+. (3.13)

This shows that the set of weights of H0
q (kλ) is independent of l and of k. Using this

together with [25, 21.3], we see that this set is saturated in the sense of [25, 13.4],
and it is equal to Π(λ).





CHAPTER 4

The first cohomology of simple Bq-modules

The vanishing behaviour of the cohomology group H•
q (λ) of simple Bq-modules

depends on whether q is a root of unity or not. In the case where q is not a root
of unity, the Borel-Weil-Bott theorem gives both the vanishing behaviour and the
Uq-structure of all such cohomology groups, whereas we know rather little about
this cohomology group when q is a root of unity.

In this chapter we assume that q ∈ k× is a primitive root of unity, and we let l be
the order of q2, see Section 3.4. We shall prove that H1

q (λ), if non-zero, contains a
unique simple submodule and compute its highest weight. We shall also completely
describe the vanishing behaviour of H1

q (λ). Our results depend on whether k is a
field of characteristic 0 or of characteristic p > 0.

4.1. Rank 1
This section deals with the rank 1 case. Fix αi ∈ S and let Uq,i be the “parabolic”

subalgebra generated by Bq and

{E(r)
i | for all r ∈ N}.

The Uq,i-module induced by kλ is denoted by H0
q,i(λ). The category of integrable

Uq,i-modules will be denoted by Cq(i).
Our aim is to prove that H1

q,i(λ), if non-zero, contains a unique simple submod-
ule, and then extend this result to the general case.

4.1.1. First we state two results from [11] which completely describe the Uq,i-
structure of H•

q,i(λ).

Theorem 4.1. Let λ ∈ X. Then Hj
q,i(λ) = 0 for all j > 1. Moreover, H0

q,i(λ) is
non-zero iff. λi ≥ 0. If so, H0

q,i(λ) is (λi+1)-dimensional with a basis {e0, . . . , eλi
}.

We have for all j ∈ {0, . . . , λi}
(1) ej ∈ H0

q,i(λ)λ−jαi
,

(2) E(r)
i ej =

[
j
r

]
i

ej−r for all r ∈ N,

(3) F (r)
i ej =

[
λi − j
r

]
i

ej+r for all r ∈ N,

(4) F (r)
t ej = 0 for all r ∈ N and t 	= i.

We set ej = 0 if j < 0 or j > λi.

29
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As mentioned before, H0
q,i(λ), if non-zero, contains a unique simple module that

we denote by Lq,i(λ). Furthermore, each simple Uq,i-module is isomorphic to Lq,i(λ)
for some λ ∈ X with λi ≥ 0.

Theorem 4.2. Let λ ∈ X. Then H1
q,i(λ) is non-zero iff. λi < −1. If so, H1

q,i(λ)
is −(λi + 1)-dimensional with a basis {f0, . . . , f−λi−2}. For all j ∈ {0, . . . ,−λi − 2}
we have

(1) fj ∈ H1
q,i(λ)λ+(j+1)αi

,

(2) E(r)
i fj =

[
j + r
r

]
i

fj+r for all r ∈ N,

(3) F (r)
i fj =

[−λi − 2 − j + r
r

]
i

fj−r for r ∈ N,

(4) F (r)
t fj = 0 for all r ∈ N and t 	= i.

We set fj = 0 if j < 0 or j > −λi − 2.

4.1.2. Now, let λ ∈ X with λi ≥ 0 and set si = sαi . By Frobenius reciprocity, we
have

HomUq,i(H
1
q,i(si · λ),H0

q,i(λ)) � HomBq(H
1
q,i(si · λ), kλ).

From Theorem 4.2 we get that λ is a maximal weight of H1
q,i(si · λ), and this

means that this Hom-space is 1-dimensional and generated by the following Uq,i-
homomorphism

fj �→
[
λi
j

]
i

eλi−j. (4.1)

Proposition 4.3. Let λ ∈ X with λi ≥ 0. Then

Lq,i(λ) = spank

{
ej |
[
λi
j

]
i

	= 0
}

⊂ H0
q,i(λ).

Proof. Let Lq,i(λ) be the subspace defined in the proposition. Noting that[
λi
j

]
i

=
[

λi
λi − j

]
i

for all j ≤ λi,

we get from (4.1) that Lq,i(λ) is a Uq,i-submodule of H0
q,i(λ). Clearly, it would be

enough to show that each submodule 0 	= L of H0
q,i(λ) contains Lq,i(λ).

Let µ be minimal among weights of L. Then

F
(r)
i Lµ = 0 for all r > 0.

Combining this with Theorem 4.1, it follows immediately that Lµ = Lsi(λ) = keλi
.

Since

E
(r)
i eλi

=
[
λi
r

]
i

eλi−r =
[

λi
λi − r

]
i

eλi−r for all r ≤ λi,

the proposition follows.
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4.1.3. Exactly as in [30, Proposition 3.2], we get

Lemma 4.4. Let m,n ∈ N with m ≥ n. Write m = m2 + lim1 and n = n2 + lin1

with 0 ≤ m2, n2 ≤ li − 1. Then we have[
m
n

]
i

=
(
m1

n1

)[
m2

n2

]
i

.

Note that the above lemma also holds when li = 1. In this case we have[
m
n

]
i

=
(
m
n

)
.

Remark 4.5. Suppose that li > 1 and −(a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N.
Hence ali ≤ −λi − 2 ≤ (a + 1)li − 2. This implies that fali−1+r = 0 for all r ≥ li.
We get from Lemma 4.4[

ali − 1 + r
r

]
i

=
(
a
0

)[
r − 1
r

]
i

= 0 for all r = {1, . . . , li − 1}.

Using this together with Theorem 4.2, it follows immediately that λ + aliαi is a
maximal weight of H1

q,i(λ).

E
(r)
i fali−1 =

[
ali − 1 + r

r

]
i

fali−1+r = 0 for all r > 0.

Therefore we conclude that H1
q,i(λ) is not simple for such λ since si · λ 	= λ+ aliαi.

4.1.4. Characteristic zero. Let k be an arbitrary field of characteristic 0.

Theorem 4.6. Let λ ∈ X with λi < −1. Then H1
q,i(λ) contains a unique simple

submodule M . The highest weight µ of M is

µ =
{
si · λ if λi ≥ −li or λi ≡ −1mod li,
λ+ aliαi if − (a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N.

Note that the second case listed in Theorem 4.6 does not make sense unless
li > 1, and if li = 1, then we are in the first case, namely λi ≡ −1mod li.

Proof. (1) Suppose first that λi ≥ −li or λi ≡ −1mod li. Using Lemma 4.4, we get
that [−λi − 2

j

]
i

	= 0 for all j ∈ {0, . . . ,−λi − 2}. (4.2)

When we combine Proposition 4.3 and (4.1), we get that H1
q,i(λ) is simple with

highest weight si · λ.
(2) Suppose now that −(a + 1)li ≤ λi ≤ −ali − 2 for some a ≥ 1. Remark 4.5

implies in this case that H1
q,i(λ) is not simple and that λ+aliαi is a maximal weight

of H1
q,i(λ).

Let M be a simple submodule of H1
q,i(λ) with highest weight µ. It follows

immediately from Theorem 4.2 that µ 	= si ·λ. We want to prove that µ = λ+aliαi.
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Using the notation from Theorem 4.2, we let fj ∈Mµ for some j < −λi − 2. So

E
(r)
i fj =

[
j + r
r

]
i

fj+r = 0 for all r > 0.

In particular, we have that [j + 1]i = 0 since fj+1 	= 0. Hence j ≡ −1mod li, and
this implies that j = bli − 1 for some b ∈ N with 1 ≤ b ≤ a. We want to prove that
b = a. We prove this by contradiction. If b < a, then f(b+1)li−1 is non-zero, and

E
(li)
i fbli−1 =

[
bli − 1 + li

li

]
i

f(b+1)li−1

=
[
li − 1

0

]
i

(
b
1

)
f(b+1)li−1 = bf(b+1)li−1 	= 0.

This shows that λ+ bliαi is not a maximal weight of M unless b = a.
It remains to show that M is unique. Suppose that M1 and M2 are simple

submodules of M , then

0 	= H1
q,i(λ)λ+aliαi

⊂M1 ∩M2.

Hence we conclude that M is unique, and this completes the proof.

Remark 4.7. When λi < −1, it follows immediately from the proof of the above
theorem that H1

q,i(λ) is simple with highest weight si · λ if and only if λi ≥ −li or
λi ≡ −1mod li.

4.1.5. Characteristic p. Let k be an arbitrary field of characteristic p > 0. We
shall prove that Theorem 4.6 has an analogue in positive characteristic.

Lemma 4.8. Let a and b be non-negative integers. If a = a1 + a2p with 0 ≤ a1 < p
and b = b1 + b2p with 0 ≤ b1 < p, then(

a
b

)
≡
(
a1

b1

)(
a2

b2

)
mod p.

Proof. In characteristic p, we have

(X + Y )a = (X + Y )a1(Xp + Y p)a2 .

By looking at the coefficient of XaY a−b in both sides, the lemma follows.

Note that if a =
∑
k≥0

akp
k and b =

∑
k≥0

bkp
k are the p-adic expansions of a and b,

then (
a
b

)
≡
∏
k≥0

(
ak
bk

)
mod p.

Hence
(a
b

) ≡ 0mod p if and only if there exists k ≥ 0 such that ak < bk.
Let a ∈ Z and d ∈ N. Write a = a1 + da2 with 0 ≤ a1 < d. Then we set

〈a〉d = a2. Note that 〈−〉d is well defined, and 〈a〉1 = a for all a ∈ Z.
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Theorem 4.9. Suppose that λi < −1. Then H1
q,i(λ) contains a unique simple

submodule M . The highest weight µ of M is

µ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

si · λ if λi ≥ −li,
si · λ if λi ≡ −1mod li and 〈−λi − 2〉li < p,
si · λ if λi ≡ −1mod li and 〈−λi − 2〉li = pm − 1 for some m ∈ N,
λ+ apmliαi if λi ≡ −1mod li and apm ≤ 〈−λi − 2〉li ≤ (a+ 1)pm − 2

for some a,m ∈ N with a < p,
λ+ bpmliαi if − (a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N and

bpm ≤ a < (b+ 1)pm where m ≥ 0 and b ∈ N with b < p.

To prove this theorem, we need the following lemma:

Lemma 4.10. Let 〈−λi − 2〉li =
m∑
k=0

akp
k be the p-adic expansion of 〈−λi − 2〉li .

(1) If λi satisfies condition (4) listed in Theorem 4.9, then µ 	= si · λ is a
maximal weight of H1

q,i(λ) if and only if µ is of the form

λ+

(
m∑
k=t

akp
k

)
liαi,

for some t with m ≥ t > s = min{k | ak < p− 1} ≥ 0.
(2) If λi satisfies condition (5) listed in Theorem 4.9, then µ 	= si · λ is a

maximal weight of H1
q,i(λ) if and only if µ is of the form

λ+

(
m∑
k=t

akp
k

)
liαi,

for some t with m ≥ t ≥ 0.

Proof. (1) First, note that s is well defined. Let µ 	= si · λ be a maximal weight
of H1

q,i(λ). Using the notation from Theorem 4.2, we let fj ∈ H1
q,i(λ)µ for some

j < −λi − 2. Then

E
(r)
i fj =

[
j + r
r

]
i

fj+r = 0 for all r > 0.

In particular, we have that [j + 1]i = 0 because fj+1 	= 0. This implies that
j ≡ −1mod li. Hence j = bli− 1 for some b ∈ N with 1 ≤ b ≤ 〈−λi − 2〉li + 1. Since
µ 	= si · λ, we have that b 	= 〈−λi − 2〉li + 1. Therefore j = bli − 1 for some b ∈ N

with 1 ≤ b ≤ 〈−λi − 2〉li . We now want to show that

b = 〈−λi − 2〉li =
m∑
k=t

akp
k

for some t > s. So let

b =
m∑
k=0

bkp
k
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be the p-adic expansion of b and set t = min{k | bk 	= 0}. We claim that ak = bk
for all k ≥ t. Assume by contradiction that there exists r ∈ N with t ≤ r ≤ m and
br < ar. Hence b+ pt ≤ 〈−λi − 2〉li , and this means that f(b+pt)li−1 	= 0.

On the other hand, we get from Lemma 4.8 that[
bli − 1 + ptli

ptli

]
i

=
[
li − 1

0

]
i

(
b+ (pt − 1)

pt

)
	= 0. (4.3)

So

E
(ptli)
i fj =

[
bli − 1 + ptli

ptli

]
i

f(b+pt)li−1 	= 0. (4.4)

This contradicts the assumption that µ is a maximal weight of H1
q,i(λ). Therefore

we have that bk ≥ ak for all k ≥ t.
Now, assume that there exists r ∈ N with br > ar. Since b ≤ 〈−λi − 2〉li , it

follows immediately that there exists another r′ ∈ N with r < r′ ≤ m and br′ < ar′ .
But this is impossible. Hence

b =
m∑
k=t

akp
k.

It remains to prove that t > s. Again, we assume by contradiction that t ≤ s.
Then

b+ pt =

(
m∑
k=t

akp
k

)
+ pt

=

(
m∑
k=t

akp
k

)
+ 1 +

(
t−1∑
k=0

(p− 1)pk
)

= 1 +
m∑
k=0

akp
k (because t ≤ s)

= 1 + 〈−λi − 2〉li .
This implies that f(b+pt)li−1 	= 0. So

E
(ptli)
i fj =

[
bli − 1 + ptli

ptli

]
i

f(b+pt)li−1

=
[
li − 1

0

]
i

(
b+ (pt − 1)

pt

)
f(b+pt)li−1 	= 0.

Thus we conclude that j has to be of the form(
m∑
k=t

akp
k

)
li − 1

for some t > s.
Conversely, suppose that j is of the form(

m∑
k=t

akp
k

)
li − 1
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for some t with s < t. We shall use Lemma 4.8 to prove that

E
(r)
i fj =

⎡
⎣
(

m∑
k=t

akp
k

)
li − 1 + r

r

⎤
⎦
i

fj+r = 0 for all r > 0.

Write r = r1 + r2li with 0 ≤ r1 < li. If r1 	= 0, then⎡
⎣
(

m∑
k=t

akp
k

)
li − 1 + r

r

⎤
⎦
i

=
[
r1 − 1
r1

]
i

⎛
⎝ m∑
k=t

akp
k + r2

r2

⎞
⎠ = 0.

Suppose now that r1 = 0 and let

r2 =
m∑
k=0

rkp
k 	= 0

be the p-adic expansion of r2. Set h = min{k | rk 	= 0}. If h < t, then we have
⎡
⎣
(

m∑
k=t

akp
k

)
li − 1 + r

r

⎤
⎦
i

=

⎛
⎜⎜⎝

m∑
k=t

akp
k +

m∑
k=h+1

rkp
k + (rhph − 1)

m∑
k=h+1

rkp
k + rhp

h

⎞
⎟⎟⎠ = 0.

On the other hand, if h ≥ t, then we have
m∑
k=t

akp
k + r2 ≥

m∑
k=t

akp
k + pt

=
m∑
k=t

akp
k +

t−1∑
k=0

(p − 1)pk + 1 > 〈−λi − 2〉li + 1.

The last inequality comes from the assumption that s < t. In this case we have that
fj+r = 0, and this settles the first case.

(2) Suppose now that λ satisfies condition (5) listed in Theorem 4.9. This implies
that ali ≤ −λi − 2 ≤ (a+ 1)li − 2, and hence 〈−λi − 2〉li = a.

Let µ 	= si · λ be a maximal weight of H1
q,i(λ) and let fj ∈ H1

q,i(λ)µ for some j.
The same argument as before gives that µ is of the form

λ+

(
m∑
k=t

akp
k

)
liαi for some t ≥ 0.

Conversely, suppose that j is of the form(
m∑
k=t

akp
k

)
li − 1 for some t ≥ 0.

We shall use Lemma 4.8 to prove that

E
(r)
i fj =

⎡
⎣
(

m∑
k=t

akp
k

)
li − 1 + r

r

⎤
⎦
i

fj+r = 0 for all r > 0.
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Write r = r1 + r2li with 0 ≤ r1 < li. If r1 	= 0, then⎡
⎣
(

m∑
k=t

akp
k

)
li − 1 + r

r

⎤
⎦
i

=
[
r1 − 1
r1

]
i

⎛
⎝ m∑
k=t

akp
k + r2

r2

⎞
⎠ = 0.

Suppose now that r1 = 0 and let

r2 =
m∑
k=0

rkp
k 	= 0

be the p-adic expansion of r2. Set h = min{k | rk 	= 0}. If h < t, then we have

⎡
⎣
(

m∑
k=t

akp
k

)
li − 1 + r

r

⎤
⎦
i

=

⎛
⎜⎜⎝

m∑
k=t

akp
k +

m∑
k=h+1

rkp
k + (rhph − 1)

m∑
k=h+1

rkp
k + rhp

h

⎞
⎟⎟⎠ = 0.

If h ≥ t, then we have
m∑
k=t

akp
k + r2 ≥

m∑
k=t

akp
k + pt ≥ 〈−λi − 2〉li + 1.

Therefore we get that fj+r = 0 since −λi− 2 	≡ −1mod li. The lemma is proved.

Proof of Theorem 4.9. The uniqueness of M is obvious since all weights of
H1
q,i(λ) occur with multiplicity 1, see the argument given at the end of the proof of

Theorem 4.6.
(1) Suppose that λi ≥ −li. Hence −λi − 2 ≤ li − 2. We then get that[−λi − 2

j

]
i

	= 0 for all j ∈ {0, . . . ,−λi − 2}.

This shows that H1
q,i(λ) is simple with highest weight si ·λ, cf. the argument in the

proof of Theorem 4.6.
(2) Suppose that λi ≡ −1mod li and 〈−λi − 2〉li < p. When we combine Lemma

4.4 and Lemma 4.8, we get that[−λi − 2
j

]
i

=
[
li − 1
j1

]
i

(〈−λi − 2〉li
j2

)
	= 0 for all j ∈ {0, . . . ,−λi − 2}

where j = j1 + j2li. Note that if j ≤ −λi − 2, then j2 ≤ 〈−λi − 2〉li . Therefore
H1
q,i(λ) is simple with highest weight si · λ.

(3) Suppose that λi ≡ −1mod li and 〈−λi − 2〉li = pm− 1 for some m ∈ N. The
same argument as before gives that H1

q,i(λ) is simple with highest weight si · λ.
Now, let

〈−λi − 2〉li =
m∑
k=0

akp
k

be the p-adic expansion of 〈−λi − 2〉li .
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(4) Lemma 4.10 shows that H1
q,i(λ) is not simple. So let M be a simple submod-

ule of H1
q,i(λ) with highest weight µ. It follows immediately from Theorem 4.2 that

µ 	= si · λ. By Lemma 4.10, we get that µ is of the form of

λ+

(
m∑
k=t

akp
k

)
liαi,

for some t with t > s = min{k | ak < p − 1}. Clearly, we are done if we can prove
that λ+ apmliαi is already a weight of M .

We have

F

�
m−1�
k=t

akp
k

�
li

i f� m�
k=t

akpk

�
li−1

=

⎡
⎢⎢⎣

(−λi − 2) −
((

m∑
k=t

akp
k

)
li − 1

)
+
(
m−1∑
k=t

akp
k

)
li(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎡
⎢⎢⎣

(li − 1) + 〈−λi − 2〉li li −
(

m∑
k=t

akp
k

)
li + 1 +

(
m−1∑
k=t

akp
k

)
li(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎡
⎢⎢⎣
li +

(
m∑
k=0

akp
k

)
li −

(
m∑
k=t

akp
k

)
li +

(
m−1∑
k=t

akp
k

)
li(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎡
⎢⎢⎣
li +

(
m−1∑
k=0

akp
k

)
li(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎛
⎜⎜⎝
m−1∑
k=0

akp
k + 1

m−1∑
k=t

akp
k

⎞
⎟⎟⎠ fapmli−1 	= 0 (because s < t).

This shows that λ+ apmliαi is a weight of M .
Using this together with the assumption that M is simple, we get µ = λ +

apmliαi.
(5) If −(a + 1)li ≤ λi ≤ −ali − 2, then ali ≤ −λi − 2 ≤ (a + 1)li − 2. There

exist b ∈ N and m ∈ N0 such that bpm ≤ a < (b+ 1)pm with b < p. Again, Lemma
4.10 shows that H1

q,i(λ) is not simple. Let M be a simple submodule of H1
q,i(λ) with

highest weight µ. As before, we get from Theorem 4.2 that µ 	= si · λ. Lemma 4.10
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then gives that µ is of the form of

λ+

(
m∑
k=t

akp
k

)
liαi

for some t ≥ 0. Similarly, it will be enough to show that λ + bpmliαi is already
weight of M . Set r = (−λi − 2) − 〈−λi − 2〉li < li − 1, and then

F

�
m−1�
k=t

akp
k

�
li

i f� m�
k=t

akpk

�
li−1

=

⎡
⎢⎢⎣
(−λi − 2) −

((
m∑
k=t

akp
k

)
li − 1

)
+
(
m−1∑
k=t

akp
k

)
lifapmli−1(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎡
⎢⎢⎣
r +
(

m∑
k=0

akp
k

)
li −

(
m∑
k=t

akp
k

)
li + 1 +

(
m−1∑
k=t

akp
k

)
lifapmli−1(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎡
⎢⎢⎣
r +
(
m−1∑
k=0

akp
k

)
li + 1fapmli−1(

m−1∑
k=t

akp
k

)
li

⎤
⎥⎥⎦
i

fapmli−1

=

⎛
⎜⎜⎝
m−1∑
k=0

akp
k

m−1∑
k=t

akp
k

⎞
⎟⎟⎠
[
r + 1

0

]
i

fapmli−1 	= 0.

Arguing as before, we conclude that µ = λ+ bpmliαi, and this finishes the proof.

Remark 4.11. It follows immediately from the proof of the above theorem that
H1
q,i(λ) is simple with highest weight si·λ if and only if one of the following conditions

is satisfied
(1) λi ≥ −li,
(2) λi ≡ −1mod li and 〈−λi − 2〉li < p,
(3) λi ≡ −1mod li and 〈−λi − 2〉li = pm − 1 for some m ∈ N.

4.2. The general case
We now return to the case of an arbitrary Cartan matrix. In the following we

shall write Hj
q (n/i,−) instead of Hj

q (Uq/Uq,i,−).

4.2.1. For any Uq,i-module M we get from the spectral sequence (3.12)

Hj
q (M) � Hj

q,i(Uq/Uq,i,M) for all j ≥ 0. (4.5)
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This follows by observing that for such M we have H0
q,i(M) �M and H1

q,i(M) = 0.
When we apply Theorem 4.1 and Theorem 4.2 to the spectral sequence (3.12),

it follows easily that
(1) If λi ≤ −1 for some i ∈ I, then we have an isomorphism of Uq-modules

Hj
q (n/i,H

1
q,i(λ)) � Hj+1

q (kλ) for all j ≥ 0. (4.6)

(2) If λi ≥ 0 for some i ∈ I, then we have an isomorphism of Uq-modules

Hj
q (n/i,H

0
q,i(λ)) � Hj

q (λ) for all j ≥ 0. (4.7)

(3) If λi = −1 for some i ∈ I, then

Hj
q (λ) = 0 for all j ≥ 0. (4.8)

Corollary 4.12. Let i ∈ I. If H1
q,i(λ) is simple, then

Hj+1
q (λ) � Hj

q (si · λ) for all j ≥ 0.

Proof. From Remark 4.7 and Remark 4.11, we get that

Hj+1
q (λ) � Hj

q (n/i,H
1
q,i(λ)) (see (4.6))

� Hj
q (n/i,H

0
q (si · λ))

� Hj
q (si · λ) (see (4.7)).

The corollary then follows.

4.2.2. Let λ ∈ X and suppose that λi ≤ −1 for some i ∈ I. We define Evi to be
the evaluation map

Evi : H1
q (λ) � H0

q (n/i,H
1
q,i(λ)) → H1

q,i(λ)

given by
Evi(f) = f(1) for all f ∈ H0

q (n/i,H
1
q,i(λ)).

It is a Ui-homomorphism.

Proposition 4.13. Let λ ∈ X and suppose that λi ≤ −1. Then Evi restricted to
the subspace consisting of U+

q -invariants

H1
q (λ)U

+
q =

{
x ∈ H1

q (λ) | ux = ε(u)x, u ∈ U+
q

}
is injective.

Proof. Let ϕ ∈ H1
q (λ) be a non-zero U+

q -invariant. Choose x ∈ Uq such that
ϕ(x) 	= 0. We then get from (3.6) that x = bu for some b ∈ Bq and u ∈ U+

q . Hence

ϕ(x) = ϕ(bu) = bϕ(u) = bϕ(1) 	= 0.

Therefore Evi(ϕ) = ϕ(1) 	= 0.

As an easy consequence of the above proposition, it follows that if H1
q (λ) 	= 0 for

some λ ∈ X, then there exists a unique simple root αi ∈ S with λi = 〈λ, α∨
i 〉 < −1.

We get the existence of αi from Kempf’s vanishing theorem because if λ ∈ X+,



40 4. THE FIRST COHOMOLOGY OF SIMPLE Bq-MODULES

then H1
q (λ) = 0. Choose now i ∈ I such that λi ≤ −1. If Evi(H1

q (λ)µ) 	= 0, then
µ has to be a weight of H1

q,i(λ). Therefore the uniqueness of αi follows easily from
Proposition 4.13 and Theorem 4.2.

4.2.3. Characteristic zero. Let k be an arbitrary field of characteristic 0.

Theorem 4.14. Suppose that H1
q (λ) 	= 0 for some λ ∈ X and let i ∈ I such that

λi < −1. Then H1
q (λ) contains a unique simple submodule M . The highest weight

µ of M is

µ =
{
si · λ if λi ≥ −li or λi ≡ −1mod li,
λ+ aliαi if − (a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N.

Proof. The uniqueness ofM follows immediately from Theorem 4.6 and Proposition
4.13.

Let M be a simple submodule of H1
q (λ), and pick a maximal weight µ of M .

This is possible because H1
q (λ) is finite dimensional, see Corollary 3.7. Let ϕ ∈Mµ

be non-zero. Proposition 4.13 then implies that Evi(ϕ) is a non-zero U+
q,i-invariant.

Using this together with Theorem 4.6, we get that

µ =
{
si · λ if λi ≥ −li or λi ≡ −1mod li,
λ+ aliαi or si · λ if − (a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N.

Suppose that −(a + 1)li ≤ λi ≤ −ali − 2 for some a ∈ N. We want to prove
that µ = λ+ aliαi. We prove this by contradiction. Assume that µ = si · λ and set
ν = λ+ aliαi.

First, we show that ν is already a weight of M . Let r ∈ N such that rαi = µ−ν.
We get from Theorem 4.2 that

Evi

(
F

(r)
i ϕ

)
= F

(r)
i Evi(ϕ) 	= 0 ⇒ F

(r)
i ϕ ∈Mν .

Next, let ψ ∈ Mν be non-zero. We claim that E(r)
i ψ = 0. Since ν is a maximal

weight of H1
q,i(λ), we see that

Evi(E
(r)
i ψ) = E

(r)
i Evi(ψ) = 0.

This implies that E(r)
i ψ = 0.

Finally, set N = Uqψ. This is a Uq-submodule of M . Since M is simple, we have
that M = N . But this is impossible. To see this, it suffices to show that µ is not a
weight of N . Assume by contradiction that µ is a weight of N . Hence there exists
x ∈ Uq such that xψ ∈ Nµ. We get from the triangular decomposition (3.6) of Uq
that x = bu for some b ∈ Bq and u ∈ U+

q . Note that the weight of uψ has the form

ν +
∑
j∈I

mjαj .

Therefore, if uψ 	= 0, then u = E
(r)
i . But E(r)

i ϕ = 0.
In this case we conclude that H1

q (λ) contains a unique simple submodule with
highest weight λ+ aliαi.
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We shall now describe the vanishing behaviour of H1
q (λ).

Theorem 4.15. H1
q (λ) 	= 0 if and only if there exists αi ∈ S such that one of the

following conditions is satisfied
(1) −li ≤ λi ≤ −2 and si · λ is dominant,
(2) λi ≡ −1mod li and si · λ is dominant,
(3) −(a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N and λ+ aliαi is dominant.

Proof. It follows immediately from Theorem 4.14 that if H1
q (λ) 	= 0, then there

exists a unique simple root αi such that one of the above conditions is satisfied.
Conversely, if −li ≤ λi ≤ −2 or λi ≡ −1mod li, then we get from Corollary 4.12

that
H1
q (λ) � H0

q (si · λ) 	= 0
because si · λ is dominant.

Now, suppose that −(a + 1)li ≤ λi ≤ −ali − 2 for some a ∈ N and λ + aliαi
is dominant. By Theorem 4.6, we know that H1

q,i(λ) contains the unique simple
submodule Lq,i(λ+ aliαi). So

H0
q (Lq,i(λ+ aliαi)) � H0

q (n/i, Lq,i(λ+ aliαi)) (4.5)

⊂ H0
q (n/i,H

1
q,i(λ))

� H1
q (λ).

Then it is enough to prove that H0
q (Lq,i(λ + aliαi)) 	= 0. For this we need the

following exact sequence

0 → K → Lq,i(λ+ aliαi) → kλ+aliαi
→ 0.

Here the map Lq,i(λ + aliαi) → kλ+aliαi
is the projection map which is clearly a

Bq-homomorphism.
By assumption, we have that H0

q (λ+aliαi) is non-zero. Therefore we are done if
we can prove that λ+ aliαi is not a weight of H1

q (K). By construction, we see that
the weights of K have the form λ+aliαi−jαi where j ∈ {1, . . . , λi+2ali}. The long
exact sequences arising from taking full Bq-filtrations of K imply that if λ + aliαi
were a weight of H1

q (K), then it would also be a weight of H1
q (λ + aliαi − jαi) for

some j ∈ {1, . . . , λi + 2ali}. But this is impossible:
(1) If 〈λ+ aliαi − jαi, α

∨
i 〉 ≥ 0, then λ+ aliαi− jαi is dominant. By Kempf’s

vanishing theorem, we get that H1
q (λ+ aliαi − jαi) = 0.

(2) If 〈λ+ aliαi − jαi, α
∨
i 〉 < 0, then it follows immediately from Proposition

4.13 that the highest weight of H1
q (λ + aliαi − jαi) is not bigger than

si · (λ+ aliαi − jαi).

si · (λ+ aliαi − jαi) = si(λ+ aliαi − jαi) − αi

= λ+ aliαi − jαi −
〈
λ+ aliαi − jαi, α

∨
i

〉
αi − αi.

Hence we have that si · (λ+ aliαi − jαi) is strictly smaller than λ+ aliαi.
The theorem follows.
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Remark 4.16. In case 1 and 2 we have H1
q (λ) � H0

q (si · λ).

Example 4.17. Suppose l = li for all i ∈ I. As in the modular case , the figure
below illustrates the vanishing behaviour of H1

q for groups of type B2.
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Figure 1. The vanishing behaviour of H1
q (λ) for groups of B2.

4.2.4. Characteristic p>0. Let k be an arbitrary field of characteristic p > 0.

Theorem 4.18. Suppose that H1
q (λ) 	= 0 for some λ ∈ X and let i ∈ I such that

λi < −1. Then H1
q (λ) contains a unique simple submodule M . The highest weight

µ of M is

µ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

si · λ if λi ≥ −li,
si · λ if λi ≡ −1mod li and 〈−λi − 2〉li < p,
si · λ if λi ≡ −1mod li and 〈−λi − 2〉li = pm − 1 for some m ∈ N,
λ+ apmliαi if λi ≡ −1mod li and apm ≤ 〈−λi − 2〉li ≤ (a+ 1)pm − 2

for some a,m ∈ N with a < p,
λ+ bpmliαi if − (a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N and

bpm ≤ a < (b+ 1)pm where m ≥ 0 and b ∈ N with b < p.

Proof. The proof is very similar to the one given in Theorem 4.14.
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Theorem 4.19. H1
q (λ) 	= 0 if and only if there exists αi ∈ S such that one of the

following conditions is satisfied
(1) −li ≤ λi ≤ −2 and si · λ is dominant,
(2) λi ≡ −1mod li with 〈−λi − 2〉li < p and si · λ is dominant,
(3) λi ≡ −1mod li with 〈−λi − 2〉li = pm − 1 for some m ∈ N and si · λ is

dominant,
(4) λi ≡ −1mod li with apm ≤ 〈−λi − 2〉li ≤ (a+ 1)pm − 2 for some a,m ∈ N

with a < p and λ+ apmliαi is dominant,
(5) −(a+ 1)li ≤ λi ≤ −ali − 2 for some a ∈ N such that bpm ≤ a < (b+ 1)pm

where m ≥ 0, 0 < b < p and λ+ bpmliαi is dominant.

Proof. Again, we omit the details. We refer to Theorem 4.15.

Remark 4.20. In case 1, 2, and 3 we have H1
q (λ) � H0

q (si · λ).





CHAPTER 5

Vanishing behaviour

The exact vanishing behaviour of the cohomology groupH•
q (λ) is still not known.

In this chapter we shall summarize what we know in general.

5.1. The Frobenius twist
In this section we introduce the quantum Frobenius homomorphism. First, we

make a brief review of some basic constructions in [31].

5.1.1. Root datum. Fix an integer l ≥ 1 and let l′ be l or 2l if l is odd, and 2l if
l is even.

Definition 5.1. A Cartan datum is a pair (I, ·) consisting of a finite set with a
symmetric bilinear Z-valued form i, j �→ i · j on the free abelian group Z[I] with I
as basis. It is assumed that

(1) i · i ∈ {2, 4, . . .} for all i ∈ I,
(2) 2 i·ji·i ∈ {0,−1,−2, . . .} for all i 	= j in I.

If (I, ·) is a Cartan datum, we can define a new Cartan datum (I, ◦) with

i ◦ j = lilj(i · j) for i, j ∈ I.
Here li denotes the smallest integer ≥ 1 such that

li(i · i)/2 ∈ lZ.

Note that li divides l.

Definition 5.2. A root datum is a quadruple ((I, ·),X, Y, 〈, 〉) consisting of
(1) A Cartan datum (I, ·).
(2) Two finitely generated free abelian groups X,Y with a perfect bilinear

pairing
〈, 〉 : Y ×X → Z.

(3) An embedding I ⊂ X (i �→ i′) and an embedding I ⊂ Y (i �→ i) such that〈
i, j′
〉

= 2
i · j
i · i for all i, j ∈ I.

Given a root datum ((I, ·),X, Y, 〈, 〉), we define a new one ((I, ◦),X∗, Y ∗, 〈, 〉∗)
as follows: We set

X∗ = {ζ ∈ X |〈i, ζ〉 ∈ liZ for all i ∈ I } ⊂ X,

Y ∗ = HomZ(X∗,Z).

45
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The pairing Y ∗ ×X∗ → Z is given by the evaluation map. We include I in X∗
by i �→ i′∗ = lii

′, and we include I in Y ∗ by sending each i to the element i∗ ∈ Y ∗
whose value at each ζ ∈ X∗ is given by 〈i, ζ〉 /li.

5.1.2. The algebras Uq and U∗
q . Let (aij) be the Cartan matrix of our root system

R of rank n and set I = {1, . . . n}. Choose di ∈ N minimal such that

diaij = djaji for all i, j ∈ I.

Throughout, we shall restrict ourselves to the adjoint root datum. More pre-
cisely, take X = Z[I] with the obvious embedding I → X and let Y = HomZ(X,Z).
For any i, j ∈ I we let i · j = diaij , and the pairing 〈, 〉 : Y ×X → Z is given by the
evaluation map. We include I in Y by sending i to an element in Y whose value at
each j ∈ X is given by 2 i·ji·i . With these choices, there is a canonical monomorphism
ψ : X → X∗ sending i′ to i′∗.

Remark 5.3. Clearly, the corresponding Cartan matrices (〈i, j′〉) and (〈i∗, j′∗〉) are
equal when l = li for all i ∈ I.

Let A = Z[v, v−1] be the Laurent ring of polynomials over Z, and let A′ be the
quotient ring of A by the ideal generated by the l′-th cyclotomic polynomial. Note
v2 ∈ A′ has order l.

In [31] Lusztig defined a quantum group associated to each root datum, i.e. the
associative Q(v)-algebra with 1 and generated by all Ei, Fi and K±

i (i ∈ I) together
with a list of relations. The quantum group associated to the adjoint root datum
((I, ·),X, Y, 〈, 〉) is denoted by Uv, and UA will be its A-form.

Let k be an arbitrary field and q ∈ k×. As in Section 3.1, k becomes an A-
algebra by specializing v to q. By tensoring the A-form with k, we obtain a new
algebra Uq which is a Hopf algebra. In addition to being a field, we shall also assume
that k is an A′-algebra, i.e. l is the order of q2. This new algebra is in fact the one
we defined in Chapter 3, and we will therefore change our notation a bit, and adopt
the notation of the previous chapters.

The quantum group associated to ((I, ·),X∗, Y ∗, 〈, 〉∗) will be denoted by U∗
q .

We have similar notations attached to U∗
q . The corresponding Borel subalgebra will

be denoted by B∗
q , and C ∗

q will be the category of integrable U∗
q -modules.

5.1.3. The algebras U̇q and U̇∗
q . To introduce the quantum Frobenius homomor-

phism we have to work over a modification of the quantum group Uv.
Let λ, λ′ ∈ X and consider the projections

πλ,λ′ : Uv �→ Uv

/⎛
⎝∑
µ∈Y

(
Kµ − v〈µ,λ〉

)
Uv +

∑
µ∈Y

(
Kµ − v〈µ,λ

′〉
)
Uv

⎞
⎠ .

Then we set
U̇v =

⊕
λ,λ′∈X

πλ,λ′(Uv).
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This is an associative Q(v)-algebra without 1, and 1λ = πλ,λ(1) ∈ U̇v (λ ∈ X) satisfy

1λ1λ′ = δλ,λ′1λ and πλ,λ′(Uv) = 1λU̇v1λ′ .

We omit the details which can be found in [31, Chapter 23].
In U̇v there is an A-form U̇A that comes from the A-form of Uv, see [31, 23.2].

As usual, when we tensor the A-form with k, we obtain a new algebra U̇q over k.

5.1.4. A U̇q-module is said to be unital if for any m ∈ M we have 1λm = 0 for all
but finitely many λ ∈ X and ∑

λ∈X
1λm = m.

A unital U̇q-module is integrable if for all m ∈M we have that

E
(r)
i m = F

(r)
i m = 0 for all i ∈ I and r � 0.

We let Ċq be the category of integrable U̇q-modules.

Proposition 5.4 ([31, 23.1.4 and 31.1.6-7]). The categories Cq and Ċq are equiva-
lent.

The quantum group associated to ((I, ·),X∗, Y ∗, 〈, 〉∗) will be denoted by U̇∗
v . We

of course have similar notations attached to U̇v and U̇∗
v . We let Ċq be the category

of integrable U̇q-modules and Ċ ∗
q the category of integrable U̇∗

q -modules.

5.1.5. Let Ū be the specialisation at k of the Kostant Z-form of the enveloping
algebra of the Lie algebra for the semisimple algebraic k-group Ḡ corresponding
to the Cartan matrix (〈i∗, j′∗〉). Moreover, we take Ḡ to be defined and split over
k. The category of locally finite Ū -modules identifies with the category of rational
Ḡ-modules. We shall also need the category of locally finite B̄-modules C̄ (B̄) where
B̄ is the Borel subgroup of Ḡ.

Proposition 5.5. We have an isomorphism of categories i : Ċ ∗
q → C .

For a proof we refer to [10].

5.1.6. The quantum Frobenius homomorphism. We are now able to introduce
the quantum Frobenius homomorphism.

Theorem 5.6 ([31, 35.1.9]). There is a unique k-algebra homomorphism Fr : U̇q →
U̇∗
q given by

Fr
(
E

(r)
i 1ζ

)
=
{
E

(r/li)
i 1ζ if r ∈ liZ and ζ ∈ X∗,

0 otherwise,

Fr
(
F

(r)
i 1ζ

)
=
{
F

(r/li)
i 1ζ If r ∈ liZ and ζ ∈ X∗,

0 otherwise,
for all i ∈ I, ζ ∈ X and r ∈ N.
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When we compose this with the canonical monomorphism ψ : X → X∗, we get
an algebra homomorphism Frl : U̇q → U̇∗

q given by

Frl
(
E

(r)
i 1ζ

)
= Fr

(
E

(r)
i 1ψ(ζ)

)
and Frl

(
F

(r)
i 1ζ

)
= Fr

(
F

(r)
i 1ψ(ζ)

)
for all i ∈ I, r ≥ 0 and ζ ∈ X, cf. [31, 23.2.5].

5.1.7. Given an integrable B∗
q -module M , resp. U̇∗

q -module. We use the quantum
Frobenius homomorphism Frl to make M into an integrable Ḃq, resp. U̇q-module,
and hence into an integrable Bq-module, resp. Uq, that we denote by M (1).

Proposition 5.7. For any M ∈ C̄ (B̄) we have a natural isomorphism of Uq-
modules

H0
q

(
Uq/Bqu

+
q , (i

−1M)(1)
)
� (i−1H0 (M)

)(1)
.

Proof. Note that Frl(Ḃqu̇+
q ) ⊂ Ḃ∗

q . We can therefore regard (i−1M)(1) as an
integrable Bqu+

q -module.
We first prove that

HomḂ∗
q

(
U̇∗
q , i

−1M
)
� HomḂq u̇

+
q

(
U̇q,
(
i−1M

)(1)) (as vector spaces).

So let ϕ be in the left side, and we need to prove that ϕ ◦Fr is in the right side.
For any x ∈ U̇q and u ∈ Ḃqu̇

+
q we have

(ϕ ◦ Frl) (ux) = ϕ (Frl(u) Frl(x))

= Frl(u)ϕ (Frl(x))

= uϕ (Frl(x)) .

Hence we have a homomorphism of vector spaces

φ : HomḂ∗
q

(
U̇∗
q , i

−1M
)
→ HomḂqu̇

+
q

(
U̇q,
(
i−1M

)(1))
ϕ �→ ϕ ◦ Frl .

Conversely, let ϕ be in the right side and let I be the kernel of Frl . Then Frl
induces an isomorphism F

U̇q
π �� U̇q/I

F �� U̇∗
q .

For any x ∈ U̇∗
q we define

φ′(ϕ)(x) = ϕ(y)

where π(y) = F−1(x). Since I annihilates (i−1M)(1), it follows that φ′(ϕ) is well
defined.
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We now want to prove that φ′(ϕ) is in the left side. So let x ∈ U̇∗
q and let u ∈ Ḃ∗

q

φ′(ϕ)(ux) = ϕ (u1x1) (where π(u1) = F−1(u) and π(x1) = F−1(x))

= u1ϕ(x1)

= Frl (u1)ϕ(x1)

= uφ′(ϕ)(x).

Clearly, we get an isomorphism of vector spaces

φ :
(
i−1H0 (M)

)(1) → H0
q

(
Uq/Bqu

+
q , (i

−1M)(1)
)
.

It remains to show that φ is a homomorphism of Uq-modules. Let x, y ∈ Uq

(yφ(ϕ)) (x) = φ(ϕ)(xy)

= ϕ (Frl(xy))

= ϕ (Frl(x) Frl(y))

= (Frl(y)ϕ) (Frl(x))

= (yϕ) (Frl(x))

= φ(yϕ)(x).

This finishes the proof.

5.2. The vanishing behaviour
In this section we prove the quantum version of the main theorem in [1] and

then derive some of its consequences. We denote by Xl the set of restricted weights

Xl =
{
λ ∈ X | 0 ≤ 〈λ, α∨

i

〉
< li for all αi ∈ S

}
.

Recall the canonical monomorphism ψ : X → X∗. Each λ ∈ X can be decomposed
uniquely λ = λ1 + ψ(λ2) where λ1 ∈ Xl and λ2 ∈ X.

5.2.1. First, we define the category Cq(uq) to be the category of uq-modules M such
that

M =
⊕
λ∈Xl

Mλ

where
Mλ = {m ∈M | um = χλ(u)m for all u ∈ u0

q}.
Here χλ is the restriction to u0

q of the k-algebra homomorphism χλ given in Section
3.1. We also denote by F the functor which takes any uq-modules M to

F (M) =
⊕
λ∈Xl

Mλ.

For more details we refer to [12]. Similarly, we define the induction functor H0
q from

uq as we did in Chapter 3.
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5.2.2. Let ûq = Bqu
+
q and let

Ẑq = H0
q (ûq/Bq,−).

The functor Ẑq is exact, see Proposition B.10. For each λ ∈ X we have that Ẑq(kλ)
contains a unique simple submodule of highest weight λ. We denote this submodule
by L̂q(λ), see Proposition B.1. For any λ ∈ X we shall write Ẑq(λ) instead of Ẑq(kλ).

Proposition 5.8 ([10, Proposition 3.15]). For any M ∈ C̄ (B̄) we have a natural
isomorphism of Uq-modules

Hj
q

(
Uq/ûq, (i−1M)(1)

)
� (i−1Hj (M)

)(1) for all j ≥ 0.

Proof. The proposition holds for j = 0. By a degree shift argument, it is enough to
show that if I is an injective locally finite B̄-module, then Hj

q

(
Uq/ûq, (i−1I)(1)

)
= 0

for j > 0. Here we may quickly reduce to the case I = k[B̄], the coordinate ring of
B̄, cf. [22, I. 3.9].

As we did in Proposition 5.7, we can show that(
i−1k[B̄]

)(1) � H0
q (ûq/uq, k) .

Corollary B.16 then implies

Hj
q

(
Uq/ûq,

(
i−1k[B̄]

)(1)) � Hj
q

(
Uq/ûq,H

0
q (ûq/uq, k)

)
� Hj

q (Uq/uq, k)
= 0 for all j > 0.

This finishes the proof.

5.2.3. Set σl = (1/2)
∑

α∈R+(lα − 1)α. We call this the Steinberg weight. The
corresponding simple Uq-module Lq(σl) is called the Steinberg module and denoted
by Stl, for details we refer to Appendix B.

Theorem 5.9. For any M ∈ C̄ (B̄) we have a natural isomorphism of Uq-modules

Hj
q

(
(i−1M)(1) ⊗k σl

)
� (i−1Hj (M)

)(1) ⊗k Stl for all j ≥ 0.

Proof. As a ûq-module, we get from Corollary B.7 that Stl is isomorphic to Ẑq(σl).
Since the functor Ẑq is exact, then we have for all j ≥ 0(

i−1Hj (M)
)(1) ⊗k Stl � Hj

q

(
Uq/ûq, (i−1M)(1)

)
⊗k Stl

� Hj
q

(
Uq/ûq, (i−1M)(1) ⊗k Stl

)
� Hj

q

(
Uq/ûq, (i−1M)(1) ⊗k Ẑq(σl)

)
� Hj

q

(
Uq/ûq, Ẑq

(
(i−1M)(1) ⊗k σl

))
� Hj

q

(
(i−1M)(1) ⊗k σl

)
.
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The theorem follows.

5.2.4. Let M1,M2 ∈ C−
q . As an easy consequence of Frobenius reciprocity, the

evaluation maps H0
q (M1) →M1 and H0

q (M2) →M2 give a homomorphism

H0
q (M1) ⊗k H

0
q (M2) → H0

q (M1 ⊗kM2)

which is functorial in both M1 and M2. By a simple induction on s + t, we then
obtain a natural homomorphism (the cup-product)

∪s,t : Hs
q (M1) ⊗k H

t
q(M2) → Hs+t

q (M1 ⊗kM2).

The Frobenius homomorphism Frl clearly gives rise to a natural homomorphism

Fr∗l :
(
i−1Ht (M1)

)(1) → Ht
q

(
(i−1M1)(1)

)
for all t ≥ 0.

Set

D0(j) =
⋃

w∈W : l(w)=j

w ·X+,

Dp(j) =
{
λ ∈ X

∣∣ Hj(λ) 	= 0
}
,

Dp
l (j) =

{
λ ∈ X

∣∣ Hj
q (λ) 	= 0

}
,

and
Epl (j) = D0(j) ∪ (ψ (Dp(j)) ±Xl) .

Proposition 5.10. For any j we have

ψ (Dp(j)) +Xl ⊆ Dp
l (j).

Proof. Suppose that Hj(λ) is non-zero for some λ ∈ X and j ∈ N. We shall show
that so is Hj

q (ψ(λ)+µ) for all µ ∈ Xl. Since the Steinberg module Stl is simple, the
cup-product

H0
q (µ) ⊗k H

0
q (σl − µ) → H0

q (σl) = Stl
is surjective. We then have the following commutative diagram of Uq-modules

Hj
q (ψ(λ)) ⊗k H

0
q (µ) ⊗k H

0
q (σl − µ) ��

����

Hj
q (ψ(λ) + µ) ⊗k H

0
q (σl − µ)

��

Hj
q (ψ(λ)) ⊗k Stl �� Hj

q (ψ(λ) + σl) � (i−1Hj(λ))(1) ⊗k Stl

Using the above corollary, the bottom horizontal homomorphism is surjective. Then
so is the right vertical homomorphism. The proposition follows.

By Serre duality, we have

Corollary 5.11. For any j ≥ 0 we have

ψ (Dp(j)) −Xl ⊆ Dp
l (j).
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Proof. Suppose that λ ∈ Dp(j), then

−λ− 2ρ ∈ Dp(N − j) ⇒ ψ(−λ− 2ρ) +Xl ⊆ Dp
l (N − j)

⇒ ψ(λ+ 2ρ) −Xl − 2ρ ⊆ Dp
l (j)

⇒ ψ(λ) −Xl + 2 (ψ(ρ) − ρ) ⊆ Dp
l (j)

⇒ ψ(λ) −Xl + 2σl ⊆ Dp
l (j)

⇒ ψ(λ) −Xl ⊆ Dp
l (j)

This completes the proof.

Theorem 5.12. For any j ≥ 0 we have

Epl (j) ⊆ Dp
l (j).

Proof. Use Theorem A.6, Proposition 5.10 and Corollary 5.11.

5.2.5. Now, if k is a field of characteristic 0, we have D0(j) = D0(j). Hence

D0(j) ∪ (ψ (D0(j)) ±Xl) ⊆ D0
l (j).

If k is a field of characteristic p > 0, we have⋃
m≥0

pm ·D0(j) ±Xpm ⊆ Dp
l (j),

cf. [3, Corollary 3.4]. Here the “dot action” of pm on X is given by

pm · λ = pm(λ+ ρ) − ρ.

Hence

D0(j) ∪
⎛
⎝ψ
⎛
⎝⋃
m≥0

pm ·D0(j) ±Xpm

⎞
⎠±Xl

⎞
⎠∪

⎛
⎝ψ
⎛
⎝⋃
m≥0

pm ·D0(j) ∓Xpm

⎞
⎠±Xl

⎞
⎠ ⊆ Dp

l (j).

The exact vanishing behaviour of Hj
q is still not known, but there are a few cases

where we can completely describe the subset Dp
l (i): We have that

Dl(0) = X+ = Epl (0).

When we combine Theorem 4.15 and Theorem 4.19, we get that

Epl (1) = Dp
l (1).

Using Serre duality, we further have that

Dl(N) = −Dl(0) − 2ρ = Epl (N) and Dl(N − 1) = −Dl(1) − 2ρ = Epl (N − 1).

The equality in Theorem 5.12 does not hold in general. It already fails for type
B2 and j = 2. The argument given in the modular case [7] will also work in the
quantum case.
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5.3. Generic weights
We assume that q is a root of unity and l = li for all i ∈ I, hence the Steinberg

weight σl = (l − 1)ρ.

5.3.1. If the root system R is indecomposable, we let α0 be the highest short root.
We then define h to be the Coxeter number h = 〈ρ, α∨

0 〉 + 1. In general we let h be
the maximum of the Coxeter numbers of the indecomposable components of R.

Let Cl denote the bottom alcove in X+

Cl =
{
λ ∈ X | 0 <

〈
λ+ ρ, α∨〉 < l for all α ∈ R+

}
,

and its closure

C l =
{
λ ∈ X | 0 ≤ 〈λ+ ρ, α∨〉 ≤ l for all α ∈ R+

}
is a fundamental domain for the action of the affine Weyl group Wl on X. Note
that Cl is not empty if and only if l ≥ h for all α ∈ R+.

An alcove C in X is a subset of the form C = w · Cl for some w ∈ Wl. The
closure C of C is then C = w · C l.
5.3.2. We are mainly interested in the set of the weights which satisfy the Borel-
Weil-Bott theorem. We already know that the Borel-Weil-Bott theorem holds for
small weights, i.e. all weights in C l. This is a direct consequence of the strong
linkage principle, see e.g. [5].

In this section we shall prove that (1.6) has an analogue for Uq. We say that
λ ∈ X+ is generic if for each w ∈W we have

H i(w · λ) 	= 0 if and only if i = l(w).

Proposition 5.13. For any λ ∈ X we have

ch
(
Ẑq(λ)

)
= eλ−(l−1)ρ ch (Stl) .

Proof. By Proposition B.9 , we have an isomorphism of U0
q u

+
q -modules

Ẑq(λ) � Homk(u+
q , λ).

According to [31, Theorem 8.3], the elements (taking in a suitable order [31,
(4.3)]) {∏

α>0

Enα
α

∣∣∣∣∣nα ∈ {0, . . . , l − 1}
}

form a basis of u+
q . Hence

ch
(
Ẑq(λ)

)
= eλ

∏
α>0

(1 + e−α + e−2α + · · · + e−(l−1)α)

= eλ
∏
α>0

(1 − e−lα)
(1 − e−α)

.
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We know that Stl is isomorphic to Ẑq((l − 1)ρ) as a Bqu+
q -module. Therefore

ch
(
Ẑq(λ)

)
= eλ

∏
α>0

(1 − e−lα)
(1 − e−α)

= eλ−(l−1)ρe(l−1)ρ
∏
α>0

(1 − e−lα)
(1 − e−α)

= eλ−(l−1)ρ ch (Stl) .

The proposition follows.

In particular, we have that µ ∈ X is a weight of Ẑq(λ) if and only if µ−λ+(l−1)ρ
is a weight of Stl.

Let λ ∈ X and write λ1 + lλ2 where λ1 ∈ Xl and λ2 ∈ X. Throughout, we let
λ1 and λ2 refer to this decomposition.

Lemma 5.14. Let µ be a weight of Ẑq(λ) for some λ ∈ X. Then

∣∣〈λ2 − (µ2 + ρ), α∨〉∣∣ < 2(h − 1) for all α ∈ R.

Proof. Suppose that R is indecomposable, and let α0 be the highest short root.
For each α ∈ R we have that

l
∣∣〈λ2 − (µ2 + ρ), α∨〉∣∣ = ∣∣〈lµ2 − lλ2 + lρ, α∨〉∣∣

=
∣∣〈lµ2 − lλ2 + lρ+ (µ1 − λ1 − ρ) − (µ1 − λ1 − ρ), α∨〉∣∣

=
∣∣〈(µ1 + lµ2) − (λ1 + lλ2) + (l − 1)ρ+ (λ1 − µ1) + ρ, α∨〉∣∣

=
∣∣〈µ− λ+ (l − 1)ρ+ (λ1 − µ1) + ρ, α∨〉∣∣

≤ ∣∣〈µ− λ+ (l − 1)ρ, α∨〉∣∣+ ∣∣〈λ1 − µ1, α
∨〉∣∣+ ∣∣〈ρ, α∨〉∣∣ .

Set ν = µ− λ+ (l − 1)ρ. Then

l
∣∣〈λ2 − (µ2 + ρ), α∨〉∣∣ ≤ ∣∣〈ν, α∨〉∣∣+ ∣∣〈λ1 − µ1, α

∨〉∣∣+ ∣∣〈ρ, α∨〉∣∣ . (5.1)

We have ∣∣〈ρ, α∨〉∣∣ ≤ 〈ρ, α∨
0

〉
= h− 1, (5.2)

and ∣∣〈λ1 − µ1, α
∨〉∣∣ ≤ 〈(l − 1)ρ, α∨

0

〉
= (l − 1)

〈
ρ, α∨

0

〉
= (l − 1)(h − 1). (5.3)

Using the above proposition, we see that ν is a weight of the Steinberg module.
Pick w ∈ W such that w(ν) is dominant. Since the Weyl group W acts on the
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weights of Stl, then w(ν) is still a weight of Stl. Hence∣∣〈ν, α∨〉∣∣ ≤ max
β∈R

∣∣〈ν, β∨〉∣∣
= max

β∈R
∣∣〈w(ν), β∨

〉∣∣
=
〈
w(ν), α∨

0

〉
≤ 〈(l − 1)ρ, α∨

0

〉
= (l − 1)(h − 1). (5.4)

Using (5.1), (5.2), (5.3) and (5.4), we get

l
∣∣〈λ2 − (µ2 + ρ), α∨〉∣∣ ≤ ∣∣〈ν, α∨〉∣∣+ ∣∣〈λ1 − µ1, α

∨〉∣∣+ ∣∣〈ρ, α∨〉∣∣
≤ (l − 1)(h − 1) + (l − 1)(h − 1) + (h− 1)

= (2l − 1)(h − 1)

< 2l(h − 1).

This finishes the proof.

For any λ ∈ X and w ∈W we let λw ∈ X such that lλw + w · λ ∈ Xl.

Lemma 5.15. Let λ ∈ X and w ∈W . Then∣∣〈(λ1)w, α∨〉∣∣ ≤ 2(h− 1) for all α ∈ R.

Proof. Again, we assume that R is indecomposable. For all α ∈ R we have

l
∣∣〈(λ1)w, α∨〉∣∣ = ∣∣〈l(λ1)w + w(λ1 + ρ) − w(λ1 + ρ), α∨〉∣∣

≤ ∣∣〈l(λ1)w + w(λ1 + ρ), α∨〉∣∣+ ∣∣〈w(λ1 + ρ), α∨〉∣∣ . (5.5)

We have ∣∣〈w(λ1 + ρ), α∨〉∣∣ = ∣∣〈λ1 + ρ,w−1
(
α∨)〉∣∣

≤ 〈λ1 + ρ, α∨
0

〉
≤ 〈lρ, α∨

0

〉
= l(h− 1). (5.6)

∣∣〈l(λ1)w +w(λ1 + ρ), α∨〉∣∣ = ∣∣〈l(λw1 ) +w · λ1 + ρ, α∨〉∣∣
=
〈
l(λ1)w + w · λ1 + ρ, α∨

0

〉
≤ 〈lρ, α∨

0

〉
= l(h− 1). (5.7)

Hence

l
∣∣〈(λ1)w, α∨〉∣∣ ≤ ∣∣〈l(λ1)w + w(λ1 + ρ), α∨〉∣∣+ ∣∣〈w(λ1 + ρ), α∨〉∣∣

≤ 2l(h− 1).

We are done.
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Proposition 5.16. Suppose that char k = 0. Then λ ∈ X+ is generic if

4(h − 1) ≤ 〈λ2, α
∨〉 for all α ∈ R+.

Let us first make an observation. Using the tensor identity, we get that for all
i ≥ 0

H i
q

(
Uq/ûq, L̂q(µ)

)
� H i

q (Uq/ûq, Lq(µ1) ⊗k lµ2) (cf. Theorem B.6)

� Lq(µ1) ⊗k H
i
q(Uq/ûq, lµ2)

� Lq(µ1) ⊗k

(
i−1H i(µ2)

)(1)
.

Since Ẑq is exact, we see that

H i
q

(
Uq/ûq, Ẑq(w · λ)

)
� H i

q(w · λ),

and this implies that H i
q(w · λ) = 0 if all the composition factors L̂q(µ) of Ẑq(w · λ)

satisfy H i(µ2) = 0.

Proof of Proposition 5.16. Let w ∈ W and i ∈ N with i 	= l(w). Suppose
that L̂q(µ) is a composition factor of Ẑq(w · λ). We are done if we can prove that
µ2 + ρ ∈ w ·X+. By definition, we see that

w · λ = w · λ1 + lw(λ2) = (w · λ1 + l(λ1)w) + l(w(λ2) − (λ1)w),

and hence (w · λ)2 = w(λ2) − (λ1)w.
For all α ∈ R+ we have〈
w−1(µ2 + ρ), α∨〉 =

〈
µ2 + ρ,w

(
α∨)〉

=
〈
µ2 + ρ− (w · λ)2 + (w · λ)2, w

(
α∨)〉

=
〈
µ2 + ρ− (w · λ)2, w

(
α∨)〉+

〈
(w · λ)2, w

(
α∨)〉

=
〈
µ2 + ρ− (w · λ)2, w

(
α∨)〉+

〈
w(λ2) − (λ1)w, w

(
α∨)〉

=
〈
µ2 + ρ− (w · λ)2, w

(
α∨)〉+

〈
w(λ2), w

(
α∨)〉

+
〈−(λ1)w, w

(
α∨)〉 .

Since µ is a weight of Ẑq(w · λ), Lemma 5.14 implies that∣∣〈(w · λ)2 − (µ2 + ρ), w
(
α∨)〉∣∣ < 2(h− 1). (5.8)

We also have
4(h − 1) ≤ 〈λ2, α

∨〉 ,
and ∣∣〈(λ1)w, w

(
α∨)〉∣∣ ≤ 2(h− 1), (5.9)

see Lemma 5.15. Therefore we get that〈
w−1(µ2 + ρ), α∨〉 =

〈
µ2 + ρ− (w · λ)2, w

(
α∨)〉+

〈
λ2, α

∨〉+
〈−(λ1)w, w

(
α∨)〉

> −2(h− 1) + 4(h− 1) − 2(h− 1)
= 0.
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This completes the proof.

Proposition 5.17. Suppose that char k = p ≥ 0. Then λ ∈ X+ is generic if

4(h− 1) ≤ 〈λ2, α
∨〉 ≤ l − 4(h− 1) for all α ∈ R+.

It is assumed that l > 8(h− 1).

Proof. Let w ∈ W and i ∈ N with i 	= l(w). Suppose that L̂q(µ) is a composition
factor of Ẑq(w · λ). We are done if we can prove that∣∣〈w−1(µ2 + ρ), α∨〉∣∣ < l for all α ∈ R+

which means that µ2 ∈ w · Cl.
By assumption, we have∣∣〈λ2, α

∨〉∣∣ ≤ l − 4(h− 1) for all α ∈ R+.

Using this together with (5.8) and (5.9), we get for any α ∈ R+∣∣〈w−1(µ2 + ρ), α∨〉∣∣
=
∣∣〈µ2 + ρ,w

(
α∨)〉∣∣

=
∣∣〈−(µ2 + ρ), w

(
α∨)〉∣∣

=
∣∣〈(w · λ)2 − (w · λ)2 − (µ2 + ρ), w

(
α∨)〉∣∣

≤ ∣∣〈(w · λ)2 − (µ2 + ρ), w
(
α∨)〉∣∣+ ∣∣〈(w · λ)2, w

(
α∨)〉∣∣

≤ ∣∣〈(w · λ)2 − (µ2 + ρ), w
(
α∨)〉∣∣+ ∣∣〈w(λ2), w

(
α∨)〉∣∣+ ∣∣〈(λ1)w, w

(
α∨)〉∣∣

≤ ∣∣〈(w · λ)2 − (µ2 + ρ), w
(
α∨)〉∣∣+ ∣∣〈λ2, α

∨〉∣∣+ ∣∣〈(λ1)w, w
(
α∨)〉∣∣

< 2(h − 1) + l − 4(h − 1) + 2(h− 1)
= l.

The proposition follows.





CHAPTER 6

Bq-cohomology

In this chapter the field k will be arbitrary, and we consider q ∈ k×. We shall
demonstrate that the results in Chapter 2 have direct analogues for Bq. The proofs
are almost identical, and we therefore omit the details.

Moreover, when char(k) = 0, we shall compute H4(Bq, λ) for all λ ∈ X and
determine a lower bound i for the degree in which the cohomology H i(Bq, λ) can
be non-zero. All modules we consider in this chapter are finite dimensional unless
otherwise specified.

6.1. Analogues of B-cohomology
For any M ∈ C−

q we have

HomC −
q

(k,M) = {m ∈M | um = ε(b)m for all b ∈ Bq} = MBq .

As usual ε denotes the counit of the Hopf algebra Bq. Note that the functor

HomC−
q

(k,−) : C−
q → { Vector spaces over k }

is a left exact functor. The right derived functors are denoted

H i(Bq,M) = Exti
C−

q
(k,M) for all i ≥ 0.

This is the Hochschild cohomology of M . Note that we may replace Bq with any
parabolic subalgebra containing Bq.

In order to simplify our notation, we let

aαβ = 〈α, β∨〉 for all α, β ∈ S.

For each α ∈ S and r ∈ N we further define

Wα = {w ∈W | 〈w · 0, α∨〉 ≥ 0},
W (r) = {w ∈W | l(w) = r},
Wα(r) = W (r) ∩Wα = {w ∈W (r) | 〈w · 0, α∨〉 ≥ 0}.

6.1.1. When q is not a root of unity, then we can argue as in Section 2.1 using this
time the quantized Borel-Weil-Bott theorem and the complete reducibility of Uq
[11, Corollary 7.7]. In this way we then obtain the following complete description
of H•(Bq, λ) (in analogy with (2.3)):

Hr(Bq, λ) �
{
k if λ = w · 0 for some w ∈W (r),
0 otherwise. (6.1)
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6.1.2. We let from now on q ∈ k× denote a primitive l-th root of unity. We assume
that l is odd, larger than the Coxeter number h and prime to 3 if the root system
R contains a component of type G2.

For each α ∈ S we let Eα, Fα,K±1
α denote the standard generators. The small

quantum group uq is the subalgebra of Uq generated by all Eα, Fα,K±1
α modulo

the ideal generated by K l
α − 1. Moreover, bq will denote the small quantum Borel

subalgebra of uq corresponding to Bq.
We have a quantum Frobenius homomorphism Frl : Uq → Ū , see [13]. Here Ū

denotes the specialisation at k of the Kostant Z-form of the enveloping algebra of
the Lie algebra for the semisimple group Ḡ corresponding to R. We identify the
category of finite dimensional Ū -modules with the category of finite dimensional
rational Ḡ-modules. We shall also need the restriction of Frl to Bq mapping into
the enveloping algebra associated with the Borel subgroup B̄ in Ḡ.

6.1.3. We limit ourselves to finite dimensional modules for Uq and Bq of type 1.
So if M is a Uq (resp. Bq)-module whose restriction to uq (resp. bq) is trivial,
then we use the quantum Frobenius homomorphism Frl to make M into a Ḡ (resp.
B̄)-module that we denote by M (−1) in analogy with the notation in Section 2.2.
Similarly, if N is a Ḡ (resp. B̄)-module then N (1) denotes the Uq (resp. Bq)-module
obtained via Frl.

As in Section 2.2 we have for each Bq-module M the Lyndon-Hochschild-Serre
spectral sequence

Hr(B̄,Hs(bq,M)(−1)) =⇒ Hr+s(Bq,M). (6.2)

The cohomology Hr(bq, λ) is completely known, see [20]

Hr(bq, λ) = 0 for all r ≥ 0 unless λ ∈W · 0 + lZR. (6.3)

Hr(bq, w · 0 + lλ)(−1) � S(r−l(w))/2ū∗ ⊗ λ (6.4)

where ū is the Lie algebra of the unipotent radical of B̄.
The same arguments as before (see (2.4), Proposition 2.3, Theorem 2.11 and

Proposition 2.12) give

Hr(Bq, λ) = 0 for all r ≥ 0 unless λ ∈W · 0 + lZR, (6.5)

Hr(Bq, w · 0 + lλ) � Hr−l(w)(Bq, lλ) for all w ∈W and r ∈ N, (6.6)

Hr(Bq, w · 0 + lλ) = 0 for all r > l(w) − 2 ht(λ), (6.7)

H l(w)−2 ht(λ)(Bq, w · 0 + lλ) � k. (6.8)

Remark 6.1. Note that the upper bound in (6.7) is independent of l, see the
argument given in the proof of Theorem 2.11.

Remark 6.2. Suppose for a second that char(k) = 0. Using (6.1) together with the
fact that ht(w · 0) ≤ −l(w) for all w ∈ W , we get H i(B̄, λ) = 0 unless ht(λ) ≤ −i.
From this we can then derive that

H i(B̄, Sj ū∗ ⊗ λ) = 0 unless λ ≤ 0 and ht(λ) ≤ −i− j. (6.9)
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Combining this with (6.4), the Lyndon-Hochschild-Serre spectral sequence (6.2)
reproves (6.7).

6.1.4. Let M ∈ C−
q . Clearly, M is a Bq-submodule of Q0 = H0

q (Bq/U0
q ,M). The

same is true for Q0/M and H0(Bq/U0
q , Q0/M), etc. Then

0 →M → Q0 → Q1 → Q2 → · · · (6.10)

is an injective resolution of M in C−
q . We call this the “standard” resolution of M .

The weights of each term in the resolution have the form λ+ µ where λ is a weight
of M and µ ≥ 0. Hence when we apply H0(Bq,−) to this resolution, then all terms
vanish unless M has a weight which is ≤ 0. In particular, we get

H•(Bq, λ) = 0 unless λ ≤ 0. (6.11)

6.1.5. Degrees 0 and 1. Using the Lyndon-Hochschild-Serre spectral sequence
(6.2), the cohomology for Bq can be related to that for B̄. Combining this with
the results in Chapter 2, we are now able to completely determine some of the
Hochschild cohomology of 1-dimensional Bq-modules.

It is clear that

H0(Bq, k) � k and H0(Bq, λ) 	= 0 if and only if λ = 0.

Noting that the only E2-term in (6.2) that contributes to H1(Bq, lλ) is H1(B̄, λ),
we have

H1(Bq, lλ) � H1(B̄, λ).
Therefore the description of the first cohomology H1(Bq, λ) depends on whether k
is a field of characteristic 0 or of characteristic p > 0. If char(k) = 0, then we obtain
from (2.3)

H1(Bq, λ) �
{
k if λ = −α or − lα for α ∈ S,
0 otherwise. (6.12)

On the other hand, if char(k) = p > 0, then we have (using this time (2.8))

H1(Bq, λ) �
{
k if λ = −pnα or − lpnα for α ∈ S, n ≥ 0,
0 otherwise. (6.13)

Remark 6.3. Both (6.12) and (6.13) remain true when l ≤ h, and the argument
given in the modular case will also work in the quantum case, see [4] or Subsection
2.1.5. But this time we need to use Theorem 4.15 and Theorem 4.19 instead of [2].

6.1.6. Degree 2. The only terms in (6.2) that may contribute to H2(Bq, lλ) are
H2(B̄, λ) and H0(B̄, ū∗ ⊗ λ). Hence by (2.3) and Proposition 2.5 we get

Theorem 6.4 ([14, Theorem 7.2]). Let λ ∈ X. If char k = 0, then

H2(Bq, λ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k if λ = −lα for some α ∈ S,
k if λ = lw · 0 for some w ∈W (2),
k if λ = −β − lα for some α, β ∈ S,
k if λ = w · 0 for some w ∈W (2),
0 otherwise.
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When p > 0 we replace (2.3) in the above argument by Theorem 2.9. Then we
find

Theorem 6.5 ([14, Theorem 7.3]). Let λ ∈ X. If char k = p > 0, then

H2(Bq, λ) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k if λ = lpn(−α) for α ∈ S, n ≥ 0,
k if λ = lpn(w · 0) for w ∈W (2) and n ≥ 0,
k if λ = lpn(−α− pmβ) for α, β ∈ S, n ≥ 0,m > 0
k if λ = w · 0 for w ∈W (2),
k if λ = −β − lpnα for α, β ∈ S, n ≥ 0,
0 otherwise.

6.1.7. Degree 3. We now turn to H3(Bq, λ). The only E2-terms in (6.2) that
contribute to H3(Bq, lλ) are H3(B̄, λ) and H1(B̄, ū∗ ⊗ λ). As in the modular case
we get

Theorem 6.6 ([14, Theorem 7.5]). Suppose that char(k) = p > h. If λ ∈ X, then

H3(Bq, λ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = lpn(−2α) for α ∈ S and n > 0,
k2 if λ = lpn(−β − pmα) for α, β ∈ S and

n,m > 0,
k if λ = lpn(−β − α) for α, β ∈ S with

aβα < 0 and n > 0,
k2 if λ = lpn(−β − α) for α, β ∈ S with

aβα = 0 and n > 0,
k if λ = lpn(sαsβ · 0) for α, β ∈ S with

aβα 	= 0 and n > 0,
k if λ = lpn(w · 0) for w ∈W (3) and n ≥ 0,
k if λ = lpn(w · 0 − pmα) for α ∈ S, w ∈W (2) and

n ≥ 0,m > 0
k if λ = lpn(pmw · 0 − α) for α ∈ S, w ∈W (2) and

n ≥ 0,m > 0
k if λ = lpn(−α− pmβ − pvγ) for α, β, γ ∈ S

and n ≥ 0,m > v > 0,
k if λ = l(−β − pnα) for α, β ∈ S and n > 0,
k if λ = w · 0 for w ∈W (3),
k if λ = w · 0 − lpnα for α ∈ S, w ∈W (2) and n ≥ 0,
k if λ = −β − lpnα for α, β ∈ S and n ≥ 0,
k if λ = −β − lpnw · 0 for α ∈ S, w ∈W (2) and n ≥ 0,
k if λ = −α+ lpn(−β − pmγ) for α, β, γ ∈ S

and n ≥ 0,m > 0,
0 otherwise.
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Theorem 6.7 ([14, Theorem 7.4]). Let λ ∈ X. If char(k) = 0 then

H3(Bq, λ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = l(−2α) for α ∈ S,
k if λ = l(−β − α) for α, β ∈ S with aβα < 0,
k2 if λ = l(−β − α) for α, β ∈ S with aβα = 0,
k if λ = l(sαsβ · 0) for α, β ∈ S with aβα 	= 0,
k if λ = l(w · 0) for w ∈W (3),
k if λ = w · 0 for w ∈W (3),
k if λ = w · 0 − lα for α ∈ S and w ∈W (2),
k if λ = lw · 0 − α for α ∈ S and w ∈W (2),
k if λ = −β − lα for α, β ∈ S,
0 otherwise.

6.2. Lower bound
We assume from now on that char(k) = 0.

6.2.1. Let M be a B̄-module. In characteristic zero, the spectral sequence (2.1)
degenerates and then gives isomorphisms of B̄-modules

H i
(
B̄,M

) � H0
(
Ḡ,H i(Ḡ/B̄,M)

)
for all i ≥ 0. (6.14)

Combined with Serre duality and the complete reducibility of finite dimensional
Ḡ-modules, this gives us isomorphisms of vector spaces

H i
(
B̄,M

) � HN−i (B̄,M∗ ⊗−2ρ
)

for all i ≥ 0. (6.15)

Here M∗ is the dual module. Hence we get for each λ ∈ X

H i
(
B̄, Snū∗ ⊗ λ

) � HN−i (B̄, Snū⊗−λ− 2ρ
)

for all i ≥ 0. (6.16)

Let σ be the maximal long root in the corresponding semisimple Lie algebra.
From (6.16) and (6.9) we can then derive that

H i(B̄, Snū∗ ⊗ λ) = 0 if − ht(λ) − ht(2ρ) − n ht(σ) > i−N.

Suppose that the corresponding Lie algebra has rank larger than 1. Then

H i(B̄, Snū∗ ⊗ λ) = 0 if − ht(λ) − ht(2ρ) +N > i+ n ht(σ) ≥ i+ 2n.

Using this together with the spectral sequence (6.2), we get for each w ∈W,λ ≤ 0

H i(Bq, w · 0 + lλ) = 0 for i < l(w) − ht(λ) − ht(2ρ) +N. (6.17)

Suppose now that Bq is the Borel subalgebra in the quantum group of type SL2,
and α is the simple root. In this case we have for each m ≥ 1 and j > 0 (cf. [6])

Hj(Bq,−lmα) �
{
k if j = 2m, 2m− 1,
0 otherwise. (6.18)

and

Hj(Bq,−lmα− α) �
{
k if j = 2m, 2m+ 1,
0 otherwise. (6.19)

When we combine (6.17), (6.18) and (6.19), we have in general
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Proposition 6.8. Let λ ∈ X and w ∈W . Then

H i(Bq, w · 0 + lλ) = 0 for i < l(w) − ht(λ) − ht(2ρ) +N.

6.2.2. Let Bq be the Borel subalgebra in the quantum group of type SL3. We have
− ht(2ρ) +N = −1 and hence

H i(B,w · 0 + lλ) = 0 for i < l(w) − ht(λ) − 1.

Weight considerations (cf. [6]) give for each m > 2

Hr(Bq,−mlρ) �
{
k if r = 2m− 1, 2m, 4m − 4, 4m− 3, 4m− 1,
0 otherwise.

This shows that there are cases where H l(w)−ht(λ)−1(Bq, w · 0 + lλ) is non-zero.
As with the upper bound, we could hope that the lower bound described in

Proposition 6.8 is the best possible. Unfortunately, this already fails in the SL2

case, see e.g. (6.18).

6.3. Methods
We continue to assume that char(k) = 0. We want to compute the fourth

cohomology group H4(Bq, λ) explicitly. Since we don’t know how to compute the
Bq-cohomology of Snu∗ ⊗ λ in general, we need a different argument.

6.3.1. With Section 4.1 in mind, we fix a simple root α and let Pα (=Uq,α) be the
minimal parabolic subalgebra of Uq corresponding to α. To simplify our notation,
we shall also write Hα(−) and Lα(λ) in short of Hq,α(−) and Lq,α(−).

As with the modular case, when M is a Pα-module, we have

H i(Pα,M) � H i(Bq,M) for all i ≥ 0.

Using this together with the spectral sequence (3.12) we get for all i ≥ 0

H i(Bq, µ) � H i(Pα,H0
α(µ)) if 〈µ, α∨〉 ≥ 0, (6.20)

H i+1(Bq, µ) � H i(Pα,H1
α(µ)) if 〈µ, α∨〉 ≤ −2, (6.21)

H i(Bq, µ) = 0 if 〈µ, α∨〉 = −1. (6.22)

6.3.2. Suppose first that µ ∈ X with −l ≤ 〈µ, α∨〉 < −1 or 〈µ, α∨〉 ≡ −1mod l for
some α ∈ S. By Remark 4.7, H1

α(µ) is simple and isomorphic to H0
α(sα · µ). Hence

we obtain for such µ

H i+1(Bq, µ) � H i(Bq, sα · µ) for all i ≥ 0. (6.23)

In particular, we have H4(Bq, µ)) � H3(Bq, sα · µ) which in this case completely
describes H4(Bq, µ) for all µ, see Theorem 6.7.
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6.3.3. Now, let µ ∈ X with 〈µ, α∨〉 < 0 for some α ∈ S. Suppose that 〈sα · µ, α∨〉 =
al + d for some a ≥ 0 and 0 ≤ d < l − 1. Set λ = sα · µ and λ′ = λ− (d+ 1)α.

Recall that H1
α(µ) has a unique simple quotient with highest weight λ. Com-

bining this with Theorem 4.6, we have the following exact sequence

0 → Lα
(
λ′
)→ H1

α(µ) → Lα (λ) → 0. (6.24)

In order to effectively take advantage of the long exact sequence resulting from
(6.24), we need to compute some low degree Bq-cohomology of the simple Pα-module
Lα(λ). As was the case in Chapter 2, we don’t know how to do that in general.
However, the following exact sequence will allow us to compute H•(Bq, Lq(λ)) for
some λ ∈ X in degrees at most 3.

By dualizing (6.24), we obtain an exact sequence

0 → Lα(λ) → H0
α(λ) → Lα(λ′) → 0

from which we get the long exact sequence

· · · → H i
(
Bq, Lα

(
λ′
))→ H i+1 (Bq, Lα (λ)) → H i+1 (Bq, λ) → · · · . (6.25)

This gives H i+1(Bq, Lq(λ)) = 0 unless H i(Bq, Lq(λ′)) 	= 0 or H i+1(Bq, λ) 	= 0.
Unfortunately, we will not be able to compute H2(Bq, Lq(λ)) and H3(Bq, Lq(λ))

explicitly in all cases because there will be some few cases where both the first and
the third term in (6.25) are non-zero at the same time.

6.3.4. The following result will turn out to be useful in connection with the above.

Lemma 6.9. Let w ∈W . Then

w · 0 ± γ 	∈W · 0 for γ ∈ R+ unless ± w−1(γ) ∈ S.

If so, we have w · 0 ± γ = sγw · 0.
Proof. Recall that we denote by 〈, 〉 the inner product on E and α∨ = 2/〈α,α〉 the
coroot of α ∈ S. We have

w · 0 − γ ∈W · 0 ⇔ w(ρ) − γ ∈W (ρ)

⇒ 〈w(ρ) − γ,w(ρ) − γ〉 = 〈ρ, ρ〉
⇒ 〈ρ, ρ〉 − 2〈w(ρ), γ〉 + 〈γ, γ〉 = 〈ρ, ρ〉
⇒ −2〈w(ρ), γ〉 + 〈γ, γ〉 = 0

⇒ 〈ρ,w−1(γ)∨〉 = 1.

A similar argument works for w · 0 + γ. The proposition is proved.

Remark 6.10. Using the same argument, one can show that we have for all w ∈
W,α ∈ S and j ∈ N that

w · 0 ± jα ∈W · 0 ⇔ 〈w · 0, α∨〉 = ∓j − 1 ⇔ w · 0 ± jα = sαw · 0.
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6.4. Bq-cohomology of Lα(λ)
In this section we compute some low degree cohomology of Lα(λ).

6.4.1. Degrees 0 and 1.

Proposition 6.11. Let λ ∈ X and assume that 〈λ, α∨〉 ≥ 0 for some α ∈ S. Then

H0 (Bq, Lα(λ)) �
{
k if λ = 0,
0 otherwise.

Proof. We have

H0
α(Bq, Lα(λ)) ⊂ H0

α(Bq,H
0
α(λ)) � H0

q (Bq, λ).

Hence H0
α(Bq, Lα(λ)) is non-zero if and only if λ = 0. The proposition is proved.

Proposition 6.12. Let λ ∈ X and assume that 〈λ, α∨〉 ≥ 0 for some α ∈ S. Then

H1 (Bq, Lα(λ)) �
⎧⎨
⎩

k if λ = (l − 1)α,
k if λ = −β or λ = −lβ for some β ∈ S\{α},
0 otherwise.

Proof. Suppose that 〈λ, α∨〉 < l or 〈λ, α∨〉 ≡ −1mod l, then H0
α(λ) is simple and

isomorphic to Lα(λ). Hence

H1 (Bq, Lα(λ)) � H1(Bq, λ) �
⎧⎨
⎩

k if ∃β ∈ S\{α} : λ = −β,
k if ∃β ∈ S\{α} : λ = −lβ and aβα = 0,
0 otherwise.

Suppose now that 〈λ, α∨〉 = al + d for some a ≥ 1, 0 ≤ d < l − 1 and set
λ′ = λ− (d+ 1)α. Then we have a short exact sequence

0 → Lα(λ) → H0
α(λ) → Lα(λ′) → 0

which gives the following exact sequence

0 → H0
(
Bq, Lα(λ′)

)→ H1 (Bq, Lα(λ)) → H1 (Bq, λ) → · · · . (6.26)

Note that λ′ = 0 if and only if λ = (l − 1)α. This gives the desired result for
λ = (l − 1)α.

Suppose now that λ 	= (l − 1)α. Using (6.26) together with (6.12), we get that
H1 (Bq, Lα(λ)) = 0 unless λ = −lβ for some β ∈ S with aβα < 0. In this case the
same argument applied to λ′ = −lβ − α gives that

0 → H1
(
Bq, Lα(λ′)

)
↪→ H1

(
Bq, λ

′) = 0.

This finishes the proof.
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6.4.2. Degree 2.

Proposition 6.13. Let λ ∈ X and assume that 〈λ, α∨〉 ≥ 0 for some α ∈ S.
Suppose that λ 	= −lβ for all β ∈ S. Then we have

H2 (Bq, Lα(λ)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = lα,
k if λ = sαsβ · 0 + lα for some β ∈ S\{α},
k if λ = lw · 0 for some w ∈Wα(2),
k if λ = w · 0 for some w ∈Wα(2),
k if λ = −lβ + (l − 1)α for some β ∈ S\{α},
k if λ = −α− lβ for some β ∈ S with aβα < 0,
k if λ = −γ − lβ for some β, γ ∈ S\{α},
0 otherwise.

Note that if λ = −lβ for some β ∈ S with aβα < 0, then λ′ = −lβ − α.
Proposition 6.12 and Theorem 6.4 yield that both the first and the third term in
the sequence (6.25) equal k.

Proof. Suppose that 〈λ, α∨〉 < l or 〈λ, α∨〉 ≡ −1mod l. Since λ 	= −lβ for all
β ∈ S, Theorem 6.4 gives in this case that

H2 (Bq, Lα(λ)) � H2(Bq, λ)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k if λ = w · 0 for w ∈Wα(2),
k if λ = lw · 0 for w ∈W (2) with 〈w · 0, α∨〉 = 0,
k if λ = −α− lβ for β ∈ S with aβα = −1,
k if λ = −γ − lβ for β, γ ∈ S\{α} with aβα = 0,
0 otherwise.

Suppose now that 〈λ, α∨〉 = al + d for some a ≥ 1, 0 ≤ d < l − 1 and set
λ′ = λ− (d+ 1)α. Then we have

0 → Lα(λ) → H0
α(λ) → Lα

(
λ′
)→ 0,

which give rise to the following exact sequence

· · · → H1
(
Bq, Lα

(
λ′
))→ H2 (Bq, Lα (λ)) → H2 (Bq, λ) → · · · . (6.27)

Consider first the case whereH1 (Bq, Lα (λ′)) 	= 0. Then we get from Proposition
6.12 that λ′ ∈ {(l − 1)α,−β,−lβ} for some β ∈ S\{α}. We consider each of these
cases.

(1) If λ′ = (l − 1)α, then λ = lα. Using (6.27) together with (6.11), we get

H2 (Bq, Lα (lα)) � H1 (Bq, Lα ((l − 1)α)) � k

because H1(Bq, lα) = H2(Bq, lα) = 0.
(2) If λ′ = −β for some β ∈ S\{α}, then λ = sαsβ · 0 + lα. Arguing as before,

we get

H2 (Bq, Lα (sαsβ · 0 + lα)) � H1 (Bq, Lα (−β)) � k.
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(3) If λ′ = −lβ for some β ∈ S\{α}, then λ = −lβ + (l − 1)α. Hence

H2 (Bq, Lα (−lβ + (l − 1)α)) � H1 (Bq, Lα (−lβ)) � k.

Let us now look at the case where H1 (Bq, Lα (λ′)) = 0. Using Theorem 6.4
together with (6.27), we get that H2 (Bq, Lα (λ)) = 0 unless we are in one of the
first four cases listed in Theorem 6.4. Since λ 	= −lβ for all β ∈ S and λ 	= w · 0 for
all w ∈ Wα(2), then there are only two cases left to consider. To investigate this,
we need the following exact sequence

0 → Lα
(
λ′
)→ H0

α

(
λ′
)→ Lα

(
λ′′
)→ 0. (6.28)

Here we define λ′′ to be (λ′)′.

(1) If λ = lw · 0 for some w ∈ W (2) with 〈w · 0, α∨〉 > 0, then λ′ = lw · 0 − α
and λ′′ = l(w · 0 − α). When we combine the long exact sequence coming
from (6.28) with Proposition 6.12 and Theorem 6.4, we get

0 → H2 (Bq, Lα (lw · 0 − α)) → H2 (Bq, lw · 0 − α) = 0.

Using this together with Proposition 6.12 and Theorem 6.4, the sequence
(6.27) gives that

H2 (Bq, Lα (lw · 0)) � H2 (Bq, lw · 0) � k.

(2) If λ = −γ− lβ for some β, γ ∈ S\{α} with aβα < 0, then λ′ = sαsγ · 0− lβ
and λ′′ = −γ − lβ − lα. As before, we get H2 (Bq, Lα (sαsγ · 0 − lβ)) = 0,
and hence

H2 (Bq, Lα (−γ − lβ)) � H2 (Bq,−γ − lβ) � k.

Finally, if λ = −α−lβ for some β ∈ S with aβα < −1, then λ′ = −lβ−lα
and λ′′ = −lβ− lα−α. In this case the same argument applied to −lβ− lα
gives that H2 (Bq, Lα (−lβ − lα)) = 0, and hence

H2 (Bq, Lα (−α− lβ)) � H2 (Bq,−α− lβ) � k.

The proposition is proved

6.4.3. Degree 3. As was the case with the second cohomology group, we will not
be able to compute H3(Bq, Lα(λ)) for all λ ∈ X, either.

Proposition 6.14. Let λ ∈ X and assume that 〈λ, α∨〉 ≥ 0 for some α ∈ S.
Suppose that

(1) λ 	= −2lβ for some β ∈ S with aαβ = −1,
(2) λ 	= −lβ for all β ∈ S,
(3) λ 	= lw · 0 for all w ∈W (2),
(4) λ 	= −lβ − γ for all β, γ ∈ S,
(5) λ 	= −lβ + (l − 1)α for all β ∈ S\{α}.
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Then we have

H3 (Bq, Lα(λ)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = lα+ (l − 1)α,
k if λ = −β + lα for some β ∈ S\{α},
k if λ = −lβ + lα for β ∈ S\{α},
k if λ = sαsγ · 0 − lβ + lα for γ, β ∈ S\{α},
k if λ = sαw · 0 + lα for w ∈Wα(2),
k if λ = lw · 0 + (l − 1)α for w ∈Wα(2),
k if λ = l(−2β) for β ∈ S\{α} with aβα 	= −1,
k if λ = l(−γ − β) for γ, β ∈ S with aβγ < 0,
k if λ = l(−α− β) for β ∈ S with aβα ≤ −2,
k if λ = w · 0 for w ∈Wα(3),
k if λ = lw · 0 for w ∈Wα(3),
k if λ = lw · 0 − β for w ∈Wα(2) and β ∈ S\{α},
k if λ = lw · 0 − α for w ∈W (2) and 〈w · 0, α∨〉 ≥ 1,
k if λ = w · 0 − lβ for w ∈W (2) and β ∈ S\{α},
0 otherwise.

Proof. The proof here follows the same lines as the proof of Proposition 6.13. So
suppose first that 〈λ, α∨〉 < l or 〈λ, α∨〉 ≡ −1mod l. Then arguing as before using
this time Theorem 6.7, we get

H3 (Bq, Lα(λ)) � H3(Bq, λ)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = l(−2β) for β ∈ S with aβα = 0,
k if λ = l(−γ − β) for γ, β ∈ S with aβγ < 0 and

aγα = aβα = 0,
k if λ = l(−α− β) for β ∈ S with aβα = −2,
k if λ = lw · 0 for w ∈W (3) with 〈w · 0, α∨〉 = 0,
k if λ = w · 0 for w ∈Wα(3),
k if λ = lw · 0 − β for β ∈ S\{α} and w ∈W (2) with

〈w · 0, α∨〉 = 0,
k if λ = lw · 0 − α for w ∈W (2) with 〈w · 0, α∨〉 = 1,
k if λ = w · 0 − lβ for β ∈ S\{α} and w ∈W (2) such that

aβα = 0 if 〈w · 0, α∨〉 ≥ 0, and aβα = −1 if 〈w · 0, α∨〉 < 0,
0 otherwise.

Suppose now that 〈λ, α∨〉 = al + d for some a ≥ 1, 0 ≤ d < l − 1 and set
λ′ = λ− (d+ 1)α. Similarly, we define λ′′ to be (λ′)′. Then we have

0 → Lα(λ) → H0
α(λ) → Lα

(
λ′
)→ 0,

0 → Lα
(
λ′
)→ H0

α(λ
′) → Lα(λ′′) → 0,

which give rise to the following long exact sequences

· · · → H2
(
Bq, Lα

(
λ′
))→ H3 (Bq, Lα (λ)) → H3 (Bq, λ) → · · · , (6.29)

· · · → H2
(
Bq, Lα

(
λ′′
))→ H3

(
Bq, Lα

(
λ′
))→ H3

(
Bq, λ

′)→ · · · . (6.30)
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Consider first the case where H2 (Bq, Lα (λ′)) 	= 0. Note that if λ′ = −lβ or
λ′ = −α − lβ for some β ∈ S\{α} , then λ = −lβ + (l − 1)α or λ = −lβ. By
assumption, this means that there are 6 cases in Proposition 6.13 to consider.

(1) If λ′ = lα, then λ = lα+ (l − 1)α . Since H2(Bq, lλ) = H3(Bq, lλ) = 0, we
get from (6.29) that

H3 (Bq, Lα (lα+ (l − 1)α)) � H2 (Bq, Lα (lα)) � k.

(2) If λ′ = sαsβ · 0 + lα for β ∈ S\{α}, then λ = −β + lα. As before, we have
that

H3 (Bq, Lα (−β + lα)) � H2 (Bq, Lα (sαsβ · 0 + lα)) � k.

(3) If λ′ = lw · 0 for w ∈ Wα(2), then λ = lw · 0 + (l − 1)α. By Remark 6.10,
Theorem 6.4 and (6.12), it follows immediately that

H3(Bq, lw · 0 + (l − 1)α) � H2(Bq, l(w · 0 + α)) = 0,

H2(Bq, lw · 0 + (l − 1)α) � H1(Bq, l(w · 0 + α)) = 0.

Then

H3 (Bq, Lα (lw · 0 + (l − 1)α)) � H2 (Bq, Lα (lw · 0)) � k.

(4) If λ′ = w · 0 for w ∈Wα(2), then λ = sαw · 0 + lα. Hence

H3 (Bq, Lα (sαw · 0 + lα)) � H2 (Bq, Lα (w · 0)) � k.

(5) If λ′ = −lβ + (l − 1)α for β ∈ S\{α}, then λ = −lβ + lα. So

H3 (Bq, Lα (−lβ + lα)) � H2 (Bq, Lα (−lβ + (l − 1)α)) � k.

(6) Finally, if λ′ = −γ− lβ for β, γ ∈ S\{α}, then λ = sαsγ ·0− lβ+ lα. Hence

H3 (Bq, Lα (sαsγ · 0 − lβ + lα)) � H2 (Bq, Lα (−γ − lβ)) � k.

Consider next the case where H2 (Bq, Lα (λ′)) = 0. Then (6.29) implies that

H3 (Bq, Lα (λ)) = 0 unless H3 (Bq, λ) 	= 0.

By assumption, there are seven cases left in Theorem 6.7 to consider. We consider
each of these cases.

(1) If λ = −2lβ for β ∈ S with aαβ < −1, then λ′ = −2lβ − α and λ′′ =
−2lβ − lα. When we apply Proposition 6.13 and Theorem 6.7 to (6.30),
we get

0 → H3 (Bq, Lα (−2lβ − α)) → H3 (Bq,−2lβ − α) = 0.

Combined with Theorem 6.7, the sequence (6.29) gives

H3 (Bq, Lα (−2lβ)) � H3
q (Bq,−2lβ) � k.

(2) If λ = l(−γ − β) for γ, β ∈ S\{α} with aβγ < 0 such that aγα < 0 or
aβα < 0, then λ′ = l(−γ − β) − α and λ′′ = l(−α − β − γ). Arguing as
before, we get

H3 (Bq, Lα(l(−γ − β))) � H3(Bq, l(−γ − β)) � k.
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(3) If λ = l(−α − β) for β ∈ S with aβα = −3, then λ′ = l(−α − β) − α and
λ′′ = l(−2α−β). Again, we get that H3(Bq, Lα(l(−α−β)−α)) = 0 which
implies

H3 (Bq, Lα(l(−α− β))) � H3(Bq, l(−α− β)) � k.

(4) If λ = lw · 0 for w ∈ W (3) with 〈w · 0, α∨〉 > 0, then λ′ = lw · 0 − α and
λ′′ = l(w · 0 − α). By Remark 6.10 and Proposition 6.13, it follows that
H2(Bq, Lα(lw · 0 − lα)) = 0 because w · 0− α 	∈W · 0. Using this together
with Theorem 6.7 and (6.30), we get

0 → H3 (Bq, Lα(lw · 0 − α)) → H3 (Bq, (lw · 0 − α)) = 0,

and hence

H3 (Bq, Lα(lw · 0)) � H3(Bq, lw · 0) � k.

(5) If λ = lw · 0 − β for β ∈ S\{α} and w ∈ W (2) and 〈w · 0, α∨〉 > 0, then
λ′ = lw · 0 + sαsβ · 0 and λ′′ = l(w · 0−α)− β. Similarly, we obtain in this
case that H3 (Bq, Lα(lw · 0 + sαsβ · 0)) = 0 and then

H3 (Bq, Lα(lw · 0 − β)) � H3(Bq, lw · 0 − β) � k.

(6) If λ = lw · 0−α for w ∈W (2) and 〈w · 0, α∨〉 > 1, then λ′ = lw · 0− lα and
λ′′ = l(w · 0 − α) − α. Hence

H3 (Bq, Lα(lw · 0 − α)) � H3(Bq, lw · 0 − α) � k.

(7) If λ = w · 0− lβ for w ∈W (2), β ∈ S\{α} with aβα < 0. If 〈w · 0, α∨〉 ≥ 0,
then λ′ = sαw · 0− lβ and λ′′ = w · 0− lα− lβ, and if 〈w · 0, α∨〉 < 0, then
λ′ = sαw · 0 − lβ − lα and λ′′ = w · 0 − lα − lβ. When we combine (6.29)
and (6.30), we clearly get in both cases that

H3 (Bq, Lα(w · 0 − lβ)) � k.

This completes the proof.

6.5. Degree 4
Since we couldn’t compute H2(Bq, Lα(µ)) and H3(Bq, Lα(µ)) explicitly in all

cases, we can’t compute H4(Bq, λ) for all λ ∈ X by only using the exact sequence
(6.24). Therefore there are some cases which need to be handled differently. Our
first step will then be to compute H4 (Bq, λ) for some special weights. We shall
perform these computations using the spectral sequence (6.2).

6.5.1. Case 1. By (6.7) and (6.8), we have for each α ∈ S

H4 (Bq,−lα) � 0, (6.31)

H4 (Bq,−2lα) � k. (6.32)
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6.5.2. Case 2. Suppose that λ = lsα(−β) for some α, β ∈ S such that α 	= β. The
only terms in the spectral sequence (6.2) that may contribute to H4(Bq, lsα(−β))
are H4(B̄, sα(−β)), H2(B̄, ū∗ ⊗ sα(−β)) and H0(B̄, S2ū∗ ⊗ sα(−β)).

We claim first that H2(B̄, ū∗ ⊗ sα(−β)) = 0. We prove this by contradiction.
So suppose that there exist µ ∈ R+ and w ∈ W (2) such that µ + sα(−β) = w · 0.
Clearly, we have w = sαsβ or w = sβsα. Since sαsβ · 0 < sα(−β), we must have
w = sβsα and hence

µ = sβsα · 0 − sα(−β) = −(aβα + 1)α + aαββ /∈ R+.

By Lemma 6.9, we have H4
(
B̄, sα(−β)

)
= 0. Proposition 2.5 then implies

H4 (Bq, lsα(−β)) � H0
(
B̄, S2ū∗ ⊗ sα(−β)

) � { k if aβα = −1,
0 otherwise. (6.33)

6.5.3. Case 3. Our next step will be to treat the weight λ = lsαsβ · 0 for some
α, β ∈ S such that α 	= β. As before, we have

H4
(
B̄, sαsβ · 0

)
= H2

(
B̄, ū∗ ⊗ sαsβ · 0

)
= 0.

By Proposition 2.5, we then obtain

H4 (Bq, lsαsβ · 0) � H0
(
B̄, S2ū∗ ⊗ sαsβ · 0

) � { k if aβα = 0,
0 otherwise. (6.34)

6.5.4. Case 4. The next step is to set λ = 2lsαsβ · 0 for some α, β ∈ S with
aαβ = −1. We claim first that H2(B̄, ū∗ ⊗ 2sαsβ · 0) = 0. We prove this by
contradiction. So suppose that we can find µ ∈ R+ such that µ+2sαsβ ·0 = sβsα ·0.
Then

µ = −α− (1 − aαβ)β + 2β + 2(1 − aβα)α

= (1 − 2aβα)α+ (1 + aαβ)β

= (1 − 2aβα)α /∈ R+.

Next, we claim that H4(B̄, 2sαsβ · 0) = 0. We assume by contradiction that
2sαsβ · 0 = w · 0 for some w ∈ W (4). Clearly, w = sαsβsαsβ or w = sβsαsβsα. So
suppose first that 2sαsβ · 0 = sαsβsβsα · 0. Then

LHS = 2sαsβ · 0 = −2β − 2(1 − aβα)α.
RHS = sαsβsαsβ · 0

= sαsβ · (−β − (1 − aβα)α)

= sα · (−(1 − aβα)α− (1 − aβα)β)

= −aβαα− (1 − aβα)β + (1 − aβα)aβαα

= (−aβα + (1 − aβα)aβα)α− (1 − aβα)β.

Looking at the coefficient of α and β in both sides, we get{
Coeff of α : −aβα + (1 − aβα)aβα = −2(1 − aβα),
Coeff of β : −1 + aβα = −2.
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Then {
Coeff of α : −aβα + (1 − aβα)aβα = −2(1 − aβα),
Coeff of β : aβα = −1.

This is clearly a contradiction. Suppose now that 2sαsβ · 0 = sβsαsβsα · 0.
LHS = −2β − 2(1 − aβα)α.
RHS = sβsαsβsα · 0

= sβsα · (−α− 2β)

= sβ · (−2β + 2aβαα)

= (1 + 2aβα)β + 2aβαα.

Hence {
Coeff of α : 2aβα = −2(1 − aβα),
Coeff of β : (1 + 2aβα) = −2.

This is also impossible.
Using Proposition 2.5, we then conclude that

H4 (Bq, 2lsβsα · 0) = H0
(
B̄, S2ū∗ ⊗ 2sβsα · 0) = 0. (6.35)

6.5.5. Case 5. Let w = sαsβsγ for α, β, γ ∈ S and assume that 〈sβsγ · 0, α∨〉 ≥ 0.
Proposition 2.5 together with the observation that − ht(w · 0) ≥ l(w) = 3 give

H4(B̄, sαsβsγ · 0) = H0
(
B̄, S2ū∗ ⊗ sαsβsγ · 0

)
= 0.

Hence we get
H4(Bq, lsαsβsγ · 0) � H2

(
B̄, ū∗ ⊗ sαsβsγ · 0

)
. (6.36)

Recall that the line of weight α in ū∗ is a B̄-module and that the quotient V̄α is
a Pα-module. This gives the following short exact sequence

0 → α→ ū∗ → V̄α → 0. (6.37)

When we apply Proposition 2.8 and Lemma 6.9 to (6.37), we obtain

0 → H1
(
B̄, V̄α ⊗ sαsβsγ · 0

)→ H2
(
B̄, sαsβsγ · 0 + α

)
(6.38)

→ H2
(
B̄, ū∗ ⊗ sαsβsγ · 0

)→ H2
(
B̄, V̄α ⊗ sαsβsγ · 0

)→ 0.

In order to compute H2
(
B̄, ū∗ ⊗ sαsβsγ · 0

)
, we need to compute the remaining

terms in the above sequence.
From Remark 6.10 we have

H2(B̄, sαsβsγ · 0 + α) = 0 unless 〈sβsγ · 0, α∨〉 = 0.

And when 〈sβsγ · 0, α∨〉 = 0, we have sαsβsγ · 0 + α = sβsγ · 0, and in this case we
get H2(B̄, sαsβsγ · 0 + α) � k.

Suppose first that 〈sβsγ · 0, α∨〉 = 0. So

〈sαsβsγ · 0 + ρ, α∨〉 = −〈sβsγ · 0, α∨〉 − 1 = −1 < 0.

The same argument given in (2.17) gives

H1
(
B̄, V̄α ⊗ sαsβsγ · 0

) � H0
(
B̄, V̄α ⊗ sβsγ · 0

)
= 0, (6.39)

H2
(
B̄, V̄α ⊗ sαsβsγ · 0

) � H1
(
B̄, V̄α ⊗ sβsγ · 0

)
. (6.40)
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By Lemma 6.9, we have H2
(
B̄, sβsγ · 0 + α

)
= H0

(
B̄, V̄α ⊗ sβsγ · 0

)
= 0, and

hence (6.37) gives the following exact sequence

0 → H1
(
B̄, sβsγ · 0 + α

)→ H1
(
B̄, ū∗ ⊗ sβsγ · 0

)
(6.41)

→ H1
(
B̄, V̄α ⊗ sβsγ · 0

)→ 0.

Using this together with Proposition 2.8, we get

H1
(
B̄, V̄α ⊗ sβsγ · 0

) � { k2 if α 	= γ and aβγ = 0,
k otherwise.

Combining this with sequence (6.38), it follows

H4(Bq, lsαsβsγ · 0) � H2
(
B̄, ū∗ ⊗ sαsβsγ · 0

) � { k3 if α 	= γ and aβγ = 0,
k2 otherwise.

Suppose now that 〈sβsγ · 0, α∨〉 	= 0, and hence

H2
(
B̄, sαsβsγ · 0 + α

)
= 0.

In this case the exact sequence (6.38) implies that

H2
(
B̄, ū∗ ⊗ sαsβsγ · 0

) � H2
(
B̄, V̄α ⊗ sαsβsγ · 0

) � H1
(
B̄, V̄α ⊗ sβsγ · 0

)
.

Here the last isomorphism comes from the fact that 〈sαsβsγ ·0+ρ, α∨〉 < 0. Arguing
as before, we get

H4(Bq, lsαsβsγ · 0) � H2
(
B̄, ū∗ ⊗ sαsβsγ · 0

) � { k2 if α 	= γ and aβγ = 0,
k otherwise.

Summarizing, we obtain

H4 (Bq, lsαsβsγ · 0) �

⎧⎪⎪⎨
⎪⎪⎩

k3 if 〈sβsγ · 0, α∨〉 = 0, α 	= γ and aβγ = 0,
k2 if 〈sβsγ · 0, α∨〉 = 0 and α = γ or aβγ 	= 0,
k2 if 〈sβsγ · 0, α∨〉 	= 0, α 	= γ and aβγ = 0,
k if 〈sβsγ · 0, α∨〉 	= 0, and α = γ or aβγ 	= 0.

(6.42)

6.5.6. We are now able to compute the fourth cohomology H4(Bq, µ). According
to (6.6), we only need to consider µ’s of the form µ = lλ for some λ ∈ X.
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Proposition 6.15. Let λ ∈ X and assume that λ 	= sαsβsγ ·0+α for all α, β, γ ∈ S
with l(sαsβsγ) = 3 and 〈sβsγ · 0, α∨〉 ≥ 1. Then we have

H4(Bq, lλ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = −2α for α ∈ S,
k if λ = −α− β for α, β ∈ S with aαβ = 0,−1,
k if λ = sαsβ · 0 − α for α ∈ S, β ∈ S\{α},
k if λ = 2sαsβ · 0 for α ∈ S, β ∈ S\{α} with aαβ 	= −1,
k if λ = sα · (−β − γ) for α ∈ S, β, γ ∈ S\{α} with aγβ < 0,
k3 if λ = sαsβsγ · 0 for α, β, γ ∈ S,

such that 〈sβsγ · 0, α∨〉 = 0, α 	= γ and aβγ = 0,
k2 if λ = sαsβsγ · 0 for some α, β, γ ∈ S

such that 〈sβsγ · 0, α∨〉 = 0 and α = γ or aβγ 	= 0,
k2 if λ = sαsβsγ · 0 for α, β, γ ∈ S

such that 〈sβsγ · 0, α∨〉 > 0, α 	= γ and aβγ = 0,
k if λ = sαsβsγ · 0 for α, β, γ ∈ S

such that 〈sβsγ · 0, α∨〉 > 0, and α = γ or aβγ 	= 0,
k if λ = w · 0 for w ∈W (4),
0 otherwise.

We return later to the case where λ = sαsβsγ · 0 + α.

Proof. The proof follows the strategy described in Section 6.3. So choose α ∈ S
with 〈λ, α∨〉 < 0 and set

µ = sα · lλ = l(sαλ) − α ∈ lX − α.

Note that 〈µ, α∨〉 = −l〈λ, α∨〉 − 2.
If 〈λ, α∨〉 = −1, then 〈µ, α∨〉 = l − 2. In this case we obtain from Theorem

6.7 that H3(Bq, µ) = 0 unless µ = lw · 0 − α for w ∈ W (2) with 〈w · 0, α∨〉 = 1 or
µ = −lβ − α for β ∈ S with aβα = −1. By assumption, the first possibility does
not occur. So

H4(Bq, lλ) � H3(Bq, µ) �
{
k if µ = −lβ − α for β ∈ S with aβα = −1,
0 otherwise.

This gives

H4(Bq, lλ) �
{
k if λ = −β − α for β ∈ S with aβα = −1,
0 otherwise.

Suppose now that 〈λ, α∨〉 < −1 and set µ′ = µ− (l − 1)α ∈ lX. Then we have
a short exact sequence

0 → Lα
(
µ′
)→ H1

α(lλ) → Lα (µ) → 0,

which gives rise to the following exact sequence

· · · → H3
(
Bq, Lα

(
µ′
))→ H4 (Bq, lλ) → H3 (Bq, Lα (µ)) → · · · . (6.43)

Consider first the case where H3(Bq, Lα(µ′)) 	= 0. Since µ′ ∈ lX, there are by
Proposition 6.14 seven cases to consider.
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(1) If µ′ = −2lβ for β ∈ S\{α}, then µ = −2lβ + (l − 1)α and lλ = 2lsαsβ · 0.
When we combine Proposition 6.13 and Proposition 6.14, we get

H3(Bq, Lα(−2lβ + (l − 1)α)) = H2(Bq, Lα(−2lβ + (l − 1)α)) = 0.

In this case (6.43) implies

H4 (Bq, 2lsαsβ · 0) � H3 (Bq, Lα(−2lβ)) �
{

0 if aαβ = −1,
k otherwise.

The last isomorphism follows from Proposition 6.14 and (6.35).
(2) If µ′ = −lβ for β ∈ S\{α}, then µ = −lβ + (l − 1)α and lλ = lsαsβ · 0.

Hence we get the desired result from (6.34).
(3) If µ′ = lw · 0 for w ∈ Wα(2), then µ = lw · 0 + (l − 1)α and lλ = lsαw · 0.

Clearly, l(sαw) = 3, otherwise we have l(sαw) = 1 which clearly contradicts
the assumption that w ∈Wα(2). We now refer to (6.42).

(4) If µ′ = −lβ + lα for β ∈ S\{α}, then µ = −lβ + 2lα − α and lλ =
l(sαsβ · 0 − α). By Proposition 6.13 and Proposition 6.14, we get

H3(Bq, Lα(−lβ + 2lα− α)) � H2(Bq, Lα(−lβ + 2lα − α)) = 0.

Using this together with (6.43), it follows

H4 (Bq, l(sαsβ · 0 − α)) � H3 (Bq, Lα(−lβ + lα)) � k.

(5) If µ′ = l(−α − β) for β ∈ S with aβα ≤ −2, then µ = l(−β) − α and
lλ = lsα(−β). In this case we refer to (6.33).

(6) If µ′ = l(−γ−β) for γ, β ∈ S\{α} with aγβ < 0, then µ = l(−γ−β)+(l−1)α
and lλ = lsα(−γ − β) − lα. Arguing as before, we have

H3(Bq, Lα(l(−γ − β) + (l − 1)α)) = H2(Bq, Lα(l(−γ − β) + (l − 1)α))
= 0

which implies

H4 (Bq, lsα(−γ − β) − lα) � H3 (Bq, Lα(−lγ − lβ)) � k.

(7) Finally, if µ′ = lw · 0 for w ∈ Wα(3), then µ = lw · 0 + (l − 1)α and
lλ = lsαw · 0. If l(sαw) = 4, then (6.43) implies in this case that

H4(Bq, lsαw · 0) � H3(Bq, Lα(sαw · 0)) � k

because H3(Bq, Lα(lw · 0 + (l − 1)α)) = H2(Bq, Lα(lw · 0 + (l − 1)α) = 0.
For the case where l(sαw) = 2, see (6.34).

Suppose now thatH3(Bq, Lα(µ′)) = 0 andH3(Bq, Lα(µ)) 	= 0. Since µ ∈ lX−α,
there are 5 cases in Proposition 6.14 to consider.

(1) If µ = −α− βl for β ∈ S with aβα < −1, then lλ = −lsα(β). The desired
result follows from (6.33).

(2) If µ = −lβ + (l − 1)α for β ∈ S\{α}, then lλ = lsα(−β + α) = lsαsβ · 0.
This case was treated in (6.34).

(3) If µ = lα+ (l − 1)α, then lλ = −2lα. In this case we refer to (6.32).
(4) If µ = lw ·0+(l−1)α for w ∈Wα(2), then lλ = lsαw ·0. As before, we have

l(sαw) = 3, and now the desired result for λ = sαw follows from (6.42).
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(5) Finally, if µ = lw · 0 − α for some w ∈ W (2) with 〈w · 0, α∨〉 > 1, then
lλ = lsα(w · 0) = l(sαw · 0 + α). By assumption, l(sαw) = 1, and in this
case we get that λ = −β + α 	< 0 for some β ∈ S\{α}. Now (6.11) settles
this case.

The proposition is proved.

6.5.7. It remains to compute H4(Bq, lλ) when λ = sαsβsγ ·0+α for some α, β, γ ∈ S
with l(sαsβsγ) = 3 and 〈sβsγ · 0, α∨〉 ≥ 1. Note first

〈sαsβsγ · 0 + α,α∨〉 = 〈sαsβsγ · 0, α∨〉 + 2

= −〈sβsγ · 0, α∨〉.
If 〈sβsγ · 0, α∨〉 = 1, then we get via (6.23) that

H4(Bq, l(sαsβsγ · 0 + α)) � H3(Bq, l(sβsγ · 0 − α))

� H2(Bq, l(sβsγ · 0))
� k.

Suppose now that 〈sβsγ ·0, α∨〉 > 1 and consider the spectral sequence (6.2). The
only terms that may contribute are H4(B̄, sαsβsγ ·0+α), H2(B̄, ū∗⊗sαsβsγ ·0+α)
and H0(B̄, S2ū∗ ⊗ sαsβsγ · 0 + α). From Lemma 6.9, we get

H4
(
B̄, sαsβsγ · 0 + α

)
= 0. (6.44)

On the other hand, since λ = sαsβsγ · 0 +α = sβsγ · 0− 〈sβsγ · 0, α∨〉α, one can
easily show that in this case we have − ht(λ) > 2. By Proposition 2.5, this means
that

H0
(
B̄, S2ū∗ ⊗ sαsβsγ · 0 + α

)
= 0.

Therefore

H4(Bq, l(sαsβsγ · 0 + α)) � H2(B̄, ū∗ ⊗ sαsβsγ · 0 + α). (6.45)

We now want to compute H2(B̄, ū∗ ⊗ sαsβsγ · 0 +α). The sequence (6.37) gives
the following exact sequence

H2
(
B̄, sαsβsγ · 0 + 2α

)→ H2
(
B̄, ū∗ ⊗ sαsβsγ · 0 + α

)→ (6.46)

H2
(
B̄, V̄α ⊗ sαsβsγ · 0 + α

)→ H3
(
B̄, sαsβsγ · 0 + 2α

)
.

Via Remark 6.10, we get

H3
(
B̄, sαsβsγ · 0 + 2α

)
= 0,

and

sαsβsγ · 0 + 2α ∈W · 0 ⇔ 〈sβsγ · 0, α∨〉 = 1.

By assumption, we have 〈sβsγ · 0, α∨〉 > 1. Then (6.46) gives that

H4(Bq, l(sαsβsγ · 0 + α)) � H2
(
B̄, ū∗ ⊗ sαsβsγ · 0 + α

)
� H2

(
B̄, V̄α ⊗ sαsβsγ · 0 + α

)
� H1

(
B̄, V̄α ⊗ sβsγ · 0 − α

)
.
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When we combine the short exact sequence (6.37) and Proposition 2.8, we get
the following sequence

0 → H1
(
B̄, V̄α ⊗ sβsγ · 0 − α

)→ k → H2
(
B̄, ū∗ ⊗ sβsγ · 0 − α

)
. (6.47)

We now claim that H2
(
B̄, ū∗ ⊗ sβsγ · 0 − α

)
= 0. We have

H4(B̄, sβsγ · 0 − α) = H0(B̄, S2ū∗ ⊗ sβsγ · 0 − α) = 0,

see Proposition 2.5 and Lemma 6.9. By Proposition 6.15, it follows that

H4(Bq, l(sβsγ · 0 − α)) = 0

which is clearly implies that H2(B̄, ū∗ ⊗ sβsγ · 0− α) = 0. We conclude in this case

H4(Bq, l(sαsβsγ · 0 + α)) � H1
(
B̄, V̄α ⊗ sβsγ · 0 − α

) � k.

Combined with Proposition 6.15, this describes completely this cohomology
group H4(Bq, lλ) for all λ ∈ X.

Theorem 6.16. Let λ ∈ X. Then we have

H4(Bq, lλ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if λ = −2α for α ∈ S,
k if λ = −α− β for α, β ∈ S with aαβ = 0,−1,
k if λ = sαsβ · 0 − α for α ∈ S, β ∈ S\{α},
k if λ = 2sαsβ · 0 for α ∈ S, β ∈ S\{α} with aαβ 	= −1,
k if λ = sα · (−β − γ) for α ∈ S, β, γ ∈ S\{α} with aγβ < 0,
k3 if λ = sαsβsγ · 0 for α, β, γ ∈ S,

such that 〈sβsγ · 0, α∨〉 = 0, α 	= γ and aβγ = 0,
k2 if λ = sαsβsγ · 0 for some α, β, γ ∈ S

such that 〈sβsγ · 0, α∨〉 = 0 and α = γ or aβγ 	= 0,
k2 if λ = sαsβsγ · 0 for α, β, γ ∈ S

such that 〈sβsγ · 0, α∨〉 > 0, α 	= γ and aβγ = 0,
k if λ = sαsβsγ · 0 for α, β, γ ∈ S

such that 〈sβsγ · 0, α∨〉 > 0, and α = γ or aβγ 	= 0,
k if λ = w · 0 for w ∈W (4),
k if λ = sαsβsγ · 0 + α for α, β, γ ∈ S

such that l(sαsβsγ) = 3 and 〈sβsγ · 0, α∨〉 ≥ 0,
0 otherwise.



APPENDIX A

Further consequences of the strong linkage principle

This appendix is a continuation of Section 3.4. We shall improve the statement
in Theorem 3.6 for i 	= l(w).

A.1. Some exact sequences
A.1.1. Let λ ∈ X+ and set si = sαi for some αi ∈ S. Then we have the following
short exact sequence

0 → Ki(λ) → H0
q,i(λ) → kλ → 0. (A.1)

Here the homomorphism H0
q,i(λ) → kλ is the evaluation map.

According to Theorem 4.1, H0
q,i(λ) has dimension 〈λ, α∨

i 〉+1, and the weights of
H0
q,i(λ) are λ, λ− αi, . . . , si(λ) = λ− λiαi. This shows that if 〈λ, α∨

i 〉 > 0, then the
kernel Ki(λ) contains a Bq-invariant line (in the Hopf algebra sense) whose weight
is si(λ). Therefore we get the short exact sequence

0 → ksi(λ) → Ki(λ) → Qi(λ) → 0. (A.2)

Using the notation from Theorem 4.1, we let {e0, . . . , eλi
} be a basis of H0

q,i(λ).
Suppose further that λi > 1, and let {e′0, . . . , e′λi−2} be a basis of H0

q,i(λ − αi).
Moreover, let e1, . . . , eλi−1 be the images of the basis elements e1, . . . , eλi−1 in Qi(λ).
Then we can define a non-zero Bq-homomorphism φ : Qi(λ) → H0

q,i(λ− αi) via

ej �→ [λi − j]i e
′
j−1 for all j ∈ {1, . . . , λi − 1}.

Set Ii(λ) = imφ,Ci(λ) = kerφ and Ni(λ) = coker φ. By Theorem 4.1, we see
that the set of weights of both Ci(λ) and Ni(λ) is{

si(λ) + aliαi : 0 < ali < 〈λ+ ρ, α∨
i 〉
}
,

and all weights occur with multiplicity 1.
If we now write K̃i(λ) = Ki(λ + ρ) ⊗ k−ρ and similarly for the other modules,

we obtain four short exact sequences in C−
q

0 → K̃i(λ) → H0
q,i(λ+ ρ) ⊗k k−ρ → kλ → 0, (A.3)

0 → ksi·λ → K̃i(λ) → Q̃i(λ) → 0, (A.4)

0 → C̃i(λ) → Q̃i(λ) → Ĩi(λ) → 0, (A.5)

0 → Ĩi(λ) → H0
q,i(λ+ ρ− αi) ⊗k k−ρ → Ñi(λ) → 0, (A.6)

cf. [5]. The modules C̃i(λ) and Ñi(λ) both have weights{
si · λ+ aliαi : 0 < ali < 〈λ+ ρ, α∨

i 〉
}
.
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When we combine the tensor identity with the spectral sequence (3.12), we get
that for any integrable Uq,i-module V we have Hj

q (V ⊗k k−ρ) = 0 for all j. Applying
this to the long exact sequences arising from (A.3) and (A.6), we get that

H0
q

(
Ĩi(λ)

)
= 0,Hj

q

(
Ñi(λ)

)
� Hj+1

q

(
Ĩi(λ)

)
and Hj

q (λ) � Hj+1
q

(
K̃i(λ)

)
(A.7)

for all j ≥ 0. The long exact sequences coming from (A.4) and (A.5) then imply

Proposition A.1. Let λ ∈ X and suppose that 〈λ, α∨
i 〉 ≥ −1 for some αi ∈ S.

Then we have long exact sequences in Cq

· · · → Hj+1
q (si · λ) → Hj

q (λ) → Hj+1
q

(
Q̃i(λ)

)
−→ · · ·

and
· · · → Hj+1

q

(
C̃i(λ)

)
→ Hj+1

q

(
Q̃i(λ)

)
→ Hj

q

(
Ñi(λ)

)
→ · · · .

A.1.2. Suppose now that λ ∈ X+ − ρ and let w0 = s1s2 · · · sN be a reduced expres-
sion for the longest element w0 ∈ W where si = sαi for αi ∈ S. If we define λm
to be (sm · · · s1) · λ for m ∈ {1, . . . , N}, then we get from [5, Lemma 3.11] that if
λ ∈ X+, there is a unique, up to a scalar, non-zero homomorphism in Cq

HN
q (λN ) −→ H0

q (λ).

The image of this homomorphism is Lq(λ).

Proposition A.2. Let λ ∈ X+ − ρ and suppose that Lq(µ) is a composition factor
of H i

q(λm) for some i ∈ {0, . . . , N} and m ∈ {0, . . . , N}, then one of the following
conditions is satisfied

(1) Lq(µ) occurs as a composition factor of the image of the composite

HN+i−m
q (λN ) → HN+i−m−1

q (λN−1) → · · · → H i
q(λm),

(2) Lq(µ) is a composition factor of Hr
q (λj+1 + alj+1αj+1) for some r ≥ i +

j −m ≥ i and 0 < alj+1 < 〈λj + ρ, (αj+1)∨〉.
Proof. Repeated use of Proposition A.1 shows that we have either Lq(µ) is a
composition factor of the image of the composed homomorphism

HN+i−m
q (λN ) → H i

q(λm),

or Lq(µ) is a composition factor of H i+j−m+1
q (C̃j+1(λj)) or H i+j−m

q (Ñj+1(λj)) for
some j ∈ N with j ≥ m.

Since we know all the weights of C̃j+1(λj) and Ñj+1(λj), then by looking at the
long exact sequences arising from taking full filtrations of these two Bq-modules, we
see that the last possibility implies that Lq(µ) is a composition factor of Hr

q (λj+1 +
alj+1αj+1) for some r ≥ i+ j −m ≥ i and 0 < alj+1 < 〈λj + ρ, (αj+1)∨〉.

Similarly, one can show
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Proposition A.3. Let λ ∈ X+ − ρ and suppose that Lq(µ) is a composition factor
of H i

q(λm) for some m ∈ {0, . . . , N} and i ∈ {0, . . . ,m}, then one of the following
conditions is satisfied

(1) Lq(µ) occurs as a composition factor of the image of the composite

H i
q(λm) → H i−1

q (λm−1) → · · · → H0
q (λm−i),

(2) Lq(µ) is a composition factor of Hr
q (λj+1 + alj+1αj+1) for some r ≥ i +

j −m− 1 ≥ 0 and 0 < alj+1 < 〈λj + ρ, αj+1
∨〉.

A.2. Some results on weights
Let λ ∈ X+ − ρ. By Theorem 3.6, if w ∈ W and j ∈ N, then all weights of

Hj
q (w · λ) are in

Π(λ) = {µ ∈ X | w(µ) ≤ λ for all w ∈W}.
We shall now show that we further have

Proposition A.4. Let λ ∈ X+ − ρ and let w ∈W . Suppose that i 	= l(w), then all
the weights of H i

q(w · λ) are strictly less than λ.

To prove this result, we need the following lemma:

Lemma A.5. Suppose that λ ∈ X+ − ρ. Let w ∈ W and i ∈ {1, . . . , n} such that
siw > w. If a ∈ N satisfies 0 < ali < 〈w(λ+ ρ), α∨

i 〉, then µ = y · (siw · λ+ aliαi) is
strongly linked to and strictly less than λ for all y ∈Wl.

Proof. We use Lemma 3.8. Suppose that y(αi) < 0, then we have µ = ysiw · λ+
aliy(αi) is strongly linked to ysiw · λ and hence to λ. By assumption, we have that
if y(αi) > 0, then µ = sy(αi)yw · λ+ aliy(αi) is strongly linked to yw · λ and hence
strongly linked to λ. We have in each case that µ is strictly less than λ.

Proof of Proposition A.4. Let Lq(µ) be a composition factor of H i
q(w · λ). We

claim that µ is strictly less than λ when i 	= l(w). Let w0 = s1 · · · sN be a reduced
expression for w0 such that w = sm · · · s1. Hence λm = (sm · · · s1) · λ = w · λ.

Suppose that i > l(w) = m. We then have N + i − m > N , and hence
HN+i−m
q (λN ) = 0. Using this together with Proposition A.2, we see that Lq(µ)

is a composition factor of Hr
q (λj+1 + alj+1αj+1) for some r ≥ i + j − m ≥ i and

0 < alj+1 < 〈λj + ρ, (αj+1)∨〉. Therefore we get from the strong linkage princi-
ple that µ is strongly linked to y · (λj+1 + alj+1αj+1) for some y ∈ W such that
y · (λj+1 +alj+1αj+1) ∈ X+−ρ. Lemma A.5 then implies that µ is strictly less than
λ. This settles the case i > l(w).

A similar argument works for the case i < l(w). Use Proposition A.3 instead of
Proposition A.2.

Theorem A.6. Let λ ∈ X+ and w ∈ W . Then λ is the unique highest weight of
H
l(w)
q (w · λ), and it occurs with multiplicity 1.



82 A. FURTHER CONSEQUENCES OF THE STRONG LINKAGE PRINCIPLE

To prove this theorem, we need the following lemma:

Lemma A.7. Suppose that λ ∈ X+ − ρ. Let w ∈ W such that 〈w(λ + ρ), α∨
i 〉 ≥ 0

for some αi ∈ S. If Lq(µ) is a composition factor of some Hj
q (Q̃i(w · λ)), then µ is

strongly linked to and strictly less than λ.

Proof. It is enough to prove the result for Hj
q (Ñi(w · λ)) and Hj

q (C̃i(w · λ)). The
lemma then follows immediately from the strong linkage principle and Lemma A.5,
cf. the argument given in Proposition A.4.

Proof of Theorem A.6. Let w0 = s1 · · · sN be a reduced expression for w0 such
that w = sm · · · s1. Hence λm = (sm · · · s1) ·λ = w ·λ. We get from Proposition A.1
an exact sequence

· · · → Hj
q

(
Q̃j(λj+1)

)
→ Hj+1

q (λj+1) → Hj
q (λj) → Hj+1

q

(
Q̃i(λj+1)

)
→ · · · .

Lemma A.7 gives that Lq(λ) does not occur as a composition factor of the kernel
or the cokernel of these homomorphisms

Hj+1
q (λj+1) → Hj

q (λj).

This implies that Lq(λ) occurs in each Hj
q (λj) with the same multiplicity as in the

image M of the composed homomorphism

HN
q (λN ) → H0

q (λ).

Since Lq(λ) is a composition factor of H0
q (λ) with multiplicity 1, it is also a

composition factor of M with the same multiplicity. This completes the proof.

Corollary A.8. Let λ,w as in Theorem A.6. Then H
l(w)
q (w · λ) 	= 0.



APPENDIX B

The Steinberg module

Set σl = (1/2)
∑

α∈R+(lα − 1)α. We call this the Steinberg weight. The corre-
sponding simple Uq-module Lq(σl) is called the Steinberg module and denoted by
Stl. In this appendix we collect some properties of the Steinberg module. From [5,
Corollary 4.7] we get that

Stl = Lq(σl) � H0
q (σl).

Note that 〈σl, α∨
i 〉 = li − 1 for all i ∈ I.

Set ûq = Bqu
+
q and ũq = uqU

0
q . We will be mainly interested in the following

induction functors

Ẑq = H0
q (ûq/Bq,−),

Z̃q = H0
q (ũq/u

−
q U

0
q ,−).

For any λ ∈ X we shall write Ẑq(λ), respectively Z̃q(λ), instead of Ẑq(kλ),
respectively Z̃q(kλ). We denote by Xl the set of restricted weights

Xl =
{
λ ∈ X | 0 ≤ 〈λ, α∨

i

〉
< li for all αi ∈ S

}
.

Recall the canonical monomorphism ψ : X → X∗, see Subsection 5.1.1. Each λ ∈ X
can be decomposed uniquely λ = λ1 + ψ(λ2) where λ1 ∈ Xl and λ2 ∈ X.

Proposition B.1. For any λ ∈ X we have
(1) Ẑq(λ) has a unique u+

q -stable line whose weight is λ.
(2) Conversely, if V is an integrable ûq-module having a unique u+

q -stable line
whose weight is λ, then V is isomorphic to a submodule of Ẑq(λ).

In particular, we have that Ẑq(λ) contains a unique simple submodule of highest
weight λ. We denote this submodule by L̂q(λ). Furthermore, each simple module
ûq-module in Cq(ûq) is isomorphic to L̂q(λ) for some λ ∈ X.

Proof. Exactly as in [11, Proposition 5.2.2], we see that

Ẑq(λ)λ = Ẑq(λ)u
+
q � k.

This settles the first claim. Clearly, λ is a maximal weight of V , then the projection
ϕ : V → kλ is a non-zero Bq-homomorphism. We can assume that ϕ is non-zero on
the socle of V since the one-dimensional space of weight λ is in the socle of V . Using
Frobenius reciprocity, we obtain a non-zero ûq-homomorphism ϕ̂ : V → Ẑq(λ). The
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one-dimensional space of weight λ in the socle of V is not in the kernel of ϕ̂. The
second claim follows.

Similarly, one can show that Z̃q(λ) contains a unique simple submodule of highest
weight λ. We denote this simple module by L̃q(λ). We also have that each simple
module in Cq(ũq) is isomorphic to L̃q(λ) for some λ ∈ X.

Remark B.2. From Lemma 3.1 we see immediately that there is a unique involu-
tory antiautomorphism τ of Uq given by

τ(E(r)
i ) = F

(r)
i , τ(F (r)

i ) = E
(r)
i and τ(K±

i ) = K±
i

for all i ∈ I and for all r ∈ N. The restriction of τ to ũq is still an antiautomorphism
of ũq. Therefore, for any ũq-moduleN we get a new ũq-moduleN τ , the contravariant
dual of N , by setting N τ = Homk(N, k), and ũq acts on N τ as follows: Let u ∈ ũq

(uf)(n) = f(τ(u)n) for all f ∈ N τ and n ∈ N.

If N is an integrable ũq-module, then so is N τ with

N τ
λ = {f ∈ N τ | f(Nµ) = 0 for all µ 	= λ} .

For any λ, µ ∈ X we clearly have

L̃q(λ)τ � L̃q(λ) and Ext1ũq

(
L̃q(λ), L̃q(µ)

)
� Ext1ũq

(
L̃q(µ), L̃q(λ)

)
. (B.1)

Next, we shall show that if λ is restricted, then Lq(λ) remains simple as a ũq-
module. To prove this, we need the following proposition [13]:

Proposition B.3. Let λ ∈ Xl. Then H0
q (λ)u

+
q = H0

q (λ)λ � k.

This result remains true when l is even, and the proof given in [13] will also
work for the case of an arbitrary l. Proposition B.3 implies that

Lq(λ)u
+
q = Lq(λ)λ � k.

Hence we have

Proposition B.4. Let λ ∈ Xl. As a ũq-module, Lq(λ) contains a unique simple
submodule with highest weight λ.

Proposition B.5. Let λ ∈ Xl. Then Lq(λ) is simple as a ũq-module.

Proof. The above proposition shows that Lq(λ) has L̃q(λ) as the unique simple
ũq-submodule. On the other hand, we get from Remark B.2 that Lq(λ) has L̃q(λ)
as the unique simple quotient. Since dimk Lq(λ)λ = 1, the proposition follows.

Then we have the following result:
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Theorem B.6. Let λ ∈ X and write λ = λ1 +ψ(λ2) with λ1 ∈ Xl. Then Lq(λ1) is
simple as a ũq-module, and therefore simple as a ûq-module. We have that

L̃q(λ) � Lq(λ1) ⊗k ψ(λ2) and L̂q(λ) � Lq(λ1) ⊗k ψ(λ2).

Corollary B.7. The Steinberg module is simple as ũq-module, and therefore simple
as ûq-module.

Remark B.8. Looking closely at the action of U0
q on the one-dimensional module

ψ(λ2)∗, we get

L̃q(λ)∗ � (Lq(λ1) ⊗k ψ(λ2))
∗ � Lq(λ1)∗ ⊗k −ψ(λ2)

� Lq(−w0λ1) ⊗k −ψ(λ2)

� L̃q (−w0λ1 − ψ(λ2))

Similarly, one gets L̂q(λ)∗ � L̂q(−w0λ1 − ψ(λ2)).

Proposition B.9. For any integrable u−q U0
q -module M we have

Z̃q(M) � Homk(u+
q ,M)

as vector spaces. Similarly, for any integrable Bq-module M we have

Ẑq(M) � Homk(u+
q ,M)

as vector spaces.

We even have an isomorphism of U0
q u

+
q -modules. Exactly as in [12, (1.1) and

(1.2)], we can show that this result remains true when l is even. The proof only
relies on [29, Theorem 8.3] and [30, 2.3(h) and Lemma 2.5 (d) (e)] which are valid
for all l ∈ N.

By looking on the action of u+
q on Ẑq(kλ) and Z̃q(kλ), we get that λ− 2σl is the

unique minimal weight of Z̃q(λ) and Ẑq(λ). Moreover, since the subalgebra u+
q is

finite dimensional, we have

Proposition B.10. (1) The functors Ẑq and Z̃q are exact.
(2) For any λ ∈ X we have an isomorphism of ũq-modules Ẑq(λ) � Z̃q (λ).

Proposition B.11. We have isomorphism of ûq-modules, resp. of ũq-modules,
Ẑq(λ)∗ � Ẑq(2σl − λ), resp. Z̃q(λ)∗ � Z̃q(2σl − λ) for all λ ∈ X.

Proof. As a u+
q -module, Ẑq(λ) is the injective hull, and the projective cover of

the trivial module. This is a direct consequence of Proposition B.9. Hence, as a
U0
q u

+
q -module, Ẑq(λ) is the projective cover of the one-dimensional module λ− 2σl

since λ − 2σl is the unique minimal weight of Ẑq(λ). This means that Ẑq(λ) has a
simple head 2σl−λ, and then Ẑq(λ)∗ (defined via the antipode ι) has a simple socle
2σl−λ. Therefore we have a non-zero u−q U0

q -homomorphism Ẑq(λ)∗ → 2σl−λ. Using
Frobenius reciprocity, we obtain a non-zero ûq-homomorphism Ẑq(λ)∗ → Ẑq(2σl−λ).
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Since Ẑq(λ)∗ has a simple socle 2σl − λ as a U0
q u

+
q -module, this homomorphism has

to be injective, and then an isomorphism because of the dimension. The second
claim follows immediately from Proposition B.10.

Proposition B.12. Z̃q(σl) and Ẑq(σl) are simple.

Proof. By Proposition B.1, L̂q(σl) is the unique simple submodule of Ẑq(σl). Since
L̂q(σl) is self dual, then Proposition B.11 shows that Ẑq(σl) has L̂q(σl) as the unique
simple quotient. We have dimk Ẑq(σl)σl

= 1, hence Ẑq(σl) must be simple. Theorem
B.6 implies that Ẑq(σl) is still simple as a ũq-module.

Corollary B.13. The Steinberg module Stl is isomorphic to Ẑq(σl), respectively to
Z̃q(σl), as a ûq-module, respectively as a ũq-module.

Proof. Using Frobenius reciprocity, we obtain a ûq-homomorphism Stl → Ẑq(σl).
Since both modules are simple, we obtain the first isomorphism. Similarly, one get
that Stl is isomorphic to Z̃q(σl).

We will now show that Stl is injective in Cq(uq). Clearly, it suffices to show that
Stl is injective in Ck(ũq), cf. the argument in [12, 4.1].

Proposition B.14. The Steinberg module Stl is injective in Cq(ũq).

We need the following lemma:

Lemma B.15. Let λ, µ ∈ X. If Ext1ũq

(
L̃q(λ), Z̃q(µ)

)
	= 0, then λ > µ.

Proof. The argument used in [2, Proposition 4.2] will also work for the case of ũq.
One only has to replace Bq with u−q U0

q .

Proof of Proposition B.14. Since Stl � Z̃q(σl), we get from Lemma B.15 that

Ext1ũq

(
L̃q(λ),Stl

)
	= 0 ⇒ λ > σl.

Suppose now that λ > σl. We have the following short exact sequence in Cq(ũq)

0 → L̃q(λ) → Z̃q(λ) → Q→ 0.

Any homomorphism ϕ : Stl → Q has to be injective. Since dimkQ < dimStl, it
follows that Homũq(Stl, Q) = 0. Hence

Ext1ũq

(
L̃q(λ),Stl

)
� Ext1ũq

(
Stl, L̃q(λ)

)
↪→ Ext1ũq

(
Stl, Z̃q(λ)

)
= 0.

This finishes the proof.

Similarly, one can show that Stl is injective in Cq(ûq).

Corollary B.16. The induction functors H0
q (Uq/uq,−) and H0

q (ûq/uq,−) are ex-
act.
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Proof. Let M ∈ Cq(uq). Using the tensor identity, we get that

Stl⊗kH
j
q (Uq/uq,M) � Hj

q (Uq/uq,Stl⊗kM) = 0 for all j > 0,

because Stl⊗kM is injective in Cq(uq), see [25, Appendix T]. A similar argument
works for H0

q (ũq/uq,−).





APPENDIX C

Base change

In [11] Andersen, Polo and Kexin proved some important results on base change
for the derived functors of induction. In this appendix we shall demonstrate that
these results have analogues for the B-cohomology.

C.1. Let v be an indeterminate, and let m be the ideal in Z[v] generated by v−1 and
an odd prime p. We assume that p > 3 if the root system R contains a component
of type G2. Set now

φp =
vp − 1
v − 1

,

and then we define A′ to be

A′ = Z[v]m/(φp) = Zp[ζ](ζ−1)

where ζ is a p-th root of unity.
Let BΓ = BA′ ⊗ Γ and U0

Γ = U0
A′ ⊗ Γ for some A′-algebra Γ. If M is a BA′-

module, we shall write MΓ for the BΓ-module M ⊗ Γ. Our aim is to study the
relations between the BA′-cohomology and BΓ-cohomology. Note that H0(BΓ,−)
is now the fixed point functor for BΓ in the Hopf algebra sense.

C.2. Let M be an integrable BA′-module and assume that M is free as A′-module.
Clearly, M is a BA′-submodule of Q0 = H0

(
BA′/U0

A′ ,M
)
. Set I0 = Q0/M and

define Q1 = H0
(
BA′/U0

A′ , Q0/M
)
, etc. Since A′ is a local ring and M is free, we

obtain by construction a resolution of M consisting of free A′-modules

0 →M → Q0 → Q1 → Q2 → Q3 → · · · , (C.1)

where Qi = H0(BA′/U0
A′ , V i) for some A′-free module V i, cf. [11, Lemma 2.18].

C.3. Set M i = H0
(
BA′ , Qi

)
and let di : M i → M i+1 be the differential in the

complex M•. Set further R−1 = M0, Bi = Im(di) and Ri = Coker(di) for all i ≥ 0.
Then we obtain for each i ≥ 0 the following exact sequences

0 → Bi →M i+1 → Ri → 0. (C.2)

0 → H i (BA′ ,M) → Ri−1 → Bi → 0. (C.3)

Noting that A′ is a principal ideal domain, it follows that M i is a free A′-
submodule of Qi. Hence (C.2) gives

TorA
′

j (Bi,Γ) � TorA
′

j+1(R
i,Γ) = 0 for all i ≥ 0 and j ≥ 1.

89
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Therefore, the long exact sequences coming from (C.2) and (C.3) give

0 → TorA
′

1 (Ri,Γ) → Bi
Γ →M i+1

Γ → RiΓ → 0. (C.4)

0 → H i (BA′ ,M)Γ → Ri−1
Γ → Bi

Γ → 0. (C.5)

By Frobenius reciprocity, we get

H0
(
BA′ , Qi

)
Γ

= HomBA′
(A′, Qi

)⊗ Γ

= HomU0
A′

(A′, V i
)⊗ Γ

= (V i)0 ⊗ Γ.

On the other hand, we have for all i ≥ 0

M i
Γ = QiΓ � H0

(
BΓ/U

0
Γ, V

i ⊗ Γ
)
,

cf. [11, Lemma 3.1]. Therefore

H0
(
BΓ, Q

i
Γ

)
= HomBΓ

(
Γ, QiΓ

)
= HomU0

Γ

(
Γ, V i

Γ

)
= (V i

Γ)0

= H0
(
BA′ , Qi

)
Γ
.

This implies that H i (BΓ,MΓ) is the kernel of Ri−1
Γ →M i+1

Γ . When we combine the
sequences (C.4) and (C.5), we therefore get a commutative diagram:

0

��

TorA
′

1 (Ri,Γ)

��
0 �� H i(BA′ ,M)Γ ��

��

Ri−1
Γ

�� Bi
Γ

��

�� 0

0 �� H i(BΓ,MΓ) �� Ri−1
Γ

�� M i+1
Γ

By the snake lemma, TorA
′

1 (Ri,Γ) is the cokernel of H i (BA′ ,M)Γ → H i (BΓ,MΓ),
and then

Theorem C.1. Let Γ be an A′-algebra. If M is an integrable BA′-module and free
as an A′-module, then

0 → H i (BA′ ,M)Γ → H i (BΓ,MΓ) → TorA
′

1 (Ri,Γ) → 0.
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C.4. Take Γ = Q(ζ), the fraction field of A′, and let Γ′ be a field of char(k) = p > 0.
We make k into an A′-algebra by a choice of q ∈ k× where q is an l-th for some
l > 1 odd, and l is prime to 3 if the root system R contains a component of type
G2. Then we get from Theorem C.1 the following exact sequences

0 → H i (BA′ ,M)Γ → H i (BΓ,MΓ) → TorA
′

1 (Ri,Γ) → 0,

0 → H i (BA′ ,M)Γ′ → H i (BΓ′ ,MΓ′) → TorA
′

1 (Ri,Γ′) → 0.

Since A′ is a principal ideal domain, it follows immediately that if H i (BΓ,MΓ)
is non-zero, then so is H i (BΓ′ ,MΓ′). In particular, we get H4 (BΓ,MΓ) is non-zero,
then so is H4 (BΓ′ ,MΓ′). Recall now Theorem 6.16 which completely describes the
cohomology group H4 (BΓ,MΓ) .
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