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Abstract

The single-node flow problem, which is also known as the single-sink fixed-charge
transportation problem, consists in finding a minimum cost flow from a number
of nodes to a single sink. The flow cost comprise an amount proportional to the
quantity shipped as well as a fixed charge. In this note, some structural properties
of Fenchel cutting planes for this problem are described. Such cuts might then be
applied for solving, e.g., fixed-charge transportation problems and more general
fixed-charge network flow problems.
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1 Introduction

Let X ⊆ Rn, X 6= ∅, denote the set or a subset of all feasible solutions to an integer
program. For simplicity assume that the convex hull conv(X) of X is bounded.
Given a point y, it is well known from convex analysis that y /∈ conv(X) if and only
if there exists a hyperplane H = {x ∈ Rn : πx = π0} such that πy > π0, whilst
πx ≤ π0 holds for every x ∈ conv(X).

Consider now a cutting plane approach that seeks to separate a solution x̂ ∈
X̂ ⊃ conv(X) from the convex hull of X. Instead of considering polyhedral cuts,
one might also try to solve the separation problem directly by finding any (not too
week) valid inequality πx ≤ π0 that cuts off x̂. The inequality’s right hand side π0

can obviously be replaced by

f(π) := max{πx : x ∈ X} . (1)

The resulting inequality

πx ≤ f(π) (2)
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is known as Fenchel inequality and as a Fenchel cut if πx̂ > π0. Boyd (1994) first
proposed these type of cuts in the framework of integer programming. Ralphs et al.
(2003) use a principally equivalent type of cuts called Farkas cuts for the capacitated
vehicle routing problem. Also the so-called (partial) convexification cuts introduced
in Sherali et al. (2005) are very closely related to this concept.

The set P := {(π, π0) ∈ Rn : πx ≤ π0 ∀x ∈ conv(X)} of all valid inequalities
of conv(X) is called the polar of the polyhedron conv(X) (Nemhauser and Wolsey,
1988, Chap. I.4.5). Since π0 = f(π) must hold in any non-dominated valid inequality,
conv(X) is fully described by the set of Fenchel inequalities, that is

conv(X) =
{
x ∈ Rn : πx ≤ f(π) ∀ π ∈ Rn

}
.

From π0 ≥ maxx∈X πx it furthermore follows that any inequality πx ≤ π0 valid for X
is either dominated or equivalent to a Fenchel inequality. Fenchel inequalities should
thus give sharp cutting planes; the separation problem is however computationally
demanding.

In order to determine a Fenchel cutting plane for separating a given point x̂ from
conv(X), the separation problem

max
π
{v(π) : π ∈ Π} (3)

has to be solved, where

v(π) = πx̂− f(π) . (4)

The set Π just specifies some normalisation constraints on the coefficients πj of the
valid inequality, e.g, Π = {π : ‖π‖ = 1} or Π = {π : −1 ≤ πj ≤ 1 ∀ j}. We then have
x̂ /∈ conv(X) if and only if v(π) > 0 for some π ∈ Π (Boyd, 1994). In the sequel, it
is assumed that

Π =
{
π : πmin

j ≤ πj ≤ πmax
j ∀ j

}
. (5)

Generally −πmin
j = πmax

j = 1, but additional structural information might have been
used to further restrict the coefficients πj . The separation problem (3) is a non-
differentiable optimisation problem (v is a is continuous piecewise linear concave
function) and can be solved by any method suited for this purpose as, e.g., sub-
gradient optimisation, column generation and Dantzig-Wolfe decomposition, resp.,
bundle methods, interior point decomposition methods, etc. To ease the computa-
tions it can be very useful to further restrict the inequality’s coefficients.

2 Domain constraints on the inequality’s

coefficients

Additonal constraints on the inequality’s coefficients can be helpful to speed up
procedures for solving the separation problem.

Lemma 1. Assume that 0 ≤ lj ≤ xj ≤ uj holds for all feasible integer solutions
x ∈ X. If x̂j = uj then there exists an optimal solution π∗ to the separation problem
(3) with Π given by (5) such hat π∗

j = πmax
j .
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Proof. Let πj < πmax
j for given π ∈ Π. Set π′ = π + (πmax

j − πj)ej , where ej denotes
the j-th unit vector. Then

f(π′) = max
{
π′x : x ∈ X

}
= max

{
πx + (πmax

j − πj)xj : x ∈ X
}

,

and from πmax
j − πj > 0 and xj ≤ uj we get

f(π′) ≤ max{πx : x ∈ X}+ (πmax
j − πj) max{xj : x ∈ X}

= f(π) + (πmax
j − πj) max{xj : x ∈ X}

≤ f(π) + (πmax
j − πj)uj . (6)

Furthermore

v(π) = πx̂− f(π) = π′x̂− (πmax
j − πj)x̂j − f(π)

= π′x̂−
(
f(π) + (πmax

j − πj)uj

)
≤ π′x̂− f(π′) = v(π′) ,

where the last inequality above follows from (6).

Lemma 2. Assume that lj ≤ xj ≤ uj holds for all feasible integer solutions x ∈ X.
If x̂j = lj then there exists an optimal solution π∗ to the separation problem (3) with
Π given by (5) such hat π∗

j = πmin
j .

Proof. Let πj > πmin
j for given π ∈ Π. Set π′ = π + (πmin

j − πj)ej , where ej denotes
the j-th unit vector. Then

f(π′) = max
{
π′x : x ∈ X

}
= max

{
πx− (πj − πmin

j )xj : x ∈ X
}

.

From πj − πmin
j > 0 and xj ≥ lj we get

f(π′) ≤ max{πx : x ∈ X} − (πj − πmin
j ) min{xj : x ∈ X}

= f(π)− (πj − πmin
j ) min{xj : x ∈ X}

≤ f(π)− (πj − πmin
j )lj . (7)

Furthermore

v(π) = πx̂− f(π) = π′x̂ + (πj − πmin
j )x̂j − f(π)

= π′x̂−
(
f(π)− (πj − πmin

j )lj
)
≤ π′x̂− f(π′) = v(π′) ,

where the last inequality above follows from (7).

3 Fenchel cuts for the single-node flow problem

The set X of feasible solutions (x, y) to the single-node flow problem is the set of
all flow vectors x ∈ Rn and binary vectors y ∈ {0, 1}n meeting the constraints

n∑
j=1

xj = D (8)
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and

0 ≤ xj ≤ bjyj for j = 1, . . . , n . (9)

It is assumed that 0 < bj ≤ D and
∑

j bj ≥ D. A valid Fenchel inequality for this
set is then given by

n∑
j=1

(πjxj − λjyj) ≤ π0 , (10)

where

π0 = f(π, λ) := max
{
πx− λy : (x, y) ∈ X

}
. (11)

Because of (8), any constant term might be added to the coefficients πj of the
flow variables xj in order to obtain the same, equivalent inequality. Hence, πj ≥ 0
for j = 1, . . . , n (and also π0 > 0) can be assumed without loss of generality. The
following lemma can then be used to further restrict the range of the coefficients of
the binary variables yj.

Lemma 3. For given (x̂, ŷ) there always exists an optimal solution (π∗, λ∗) to the
separation problem

max
λ,π

{
v(π, λ) : 0 ≤ πj ≤ 1 , −1 ≤ λj ≤ 1 for j = 1, . . . , n

}
, (12)

where

v(π, λ) = πx̂− λŷ − f(π, λ) , (13)

such that λ∗j ≥ 0.

Proof. If λk < 0, then it is optimal to set yk = 1 in (11). Hence, in this case

f(π, λ) = −λk + max
{ n∑

j=1

πjxj −
∑
j 6=k

λjyj : (x, y) ∈ X , yk = 1
}

Also, if λk = 0 it remains optimal to set yk = 1 in (11). Thus, if λ0 = λ − ekλk

results from λ just by setting λk to zero, we get

f(π, λ) = −λk + f(π, λ0)

and

v(π, λ) = πx̂− λŷ − f(π, λ)

= πx̂− λŷ + λk − f(π, λ0)

= πx̂− λ0ŷ − λkŷk + λk − f(π, λ0)

= v(π, λ0) + λk(1− ŷk)

≤ v(π, λ0) ,

where the last inequality follows from λk < 0 and ŷk ≤ 1.
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In summary, in the Fenchel inequality (10) it can w.l.o.g. be assumed that

0 ≤ πj ≤ 1 and 0 ≤ λj ≤ 1

for j = 1, . . . , n. Furthermore, if the point (x̂, ŷ) should be separated by a Fenchel
inequality (10), we get from Lemma 1 and 2

x̂j = 0 ⇒ πj = 0 and x̂j = bj ⇒ πj = 1 ,

ŷj = 0 ⇒ λj = 1 and ŷj = 1 ⇒ λj = 0 .

4 Solving the separation problem

Let {(xt, yt) : t ∈ T} denote the set of all extreme points of conv(X), where X is the
set of all feasible solutions to the single-node flow problem. The separation problem
(12) can then be rewritten as the linear program

max
n∑

j=1

(
πj x̂j − λj ŷj

)
− π0 (14)

s.t.:
n∑

j=1

(
πjx

t
j − λjy

t
j

)
− π0 ≤ 0 ∀ t ∈ T , (15)

πj ≤ 1 for j = 1, . . . , n , (16)

λj ≤ 1 for j = 1, . . . , n , (17)

λ, π ≥ 0 , π0 ∈ R . (18)

In the sequel, a subgradient optimisation procedure for approximately solving the
separation problem (14)–(18) is described. Subgradient methods can take advantage
from a (sharp) upper bound on the maximal function value. Sect. 4.1 shows how such
upper bounds can be obtained. Sect. 4.2 then summarises a subgradient algorithm
for maximising v(π, λ) and Sect. 4.3 illustrates the method’s behaviour on small
numerical example.

4.1 Upper bounds on the separation problem’s objective

value

Let αt, t ∈ T , as well as ηj and νj for j = 1, . . . , n be dual multipliers of the
constraints (15), (16) and (17). The dual of the separation problem (14)–(18) then
reads as

min
n∑

j=1

(
ηj + νj

)
(19)

s.t.:
∑
t∈T

αtx
t
j + ηj ≥ x̂j for j = 1, . . . , n , (20)∑

t∈T

αty
t
j − νj ≤ ŷj for j = 1, . . . , n , (21)∑

t∈T

αt = 1 , (22)
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α, η, ν ≥ 0 , (23)

which is equivalent to the programming problem

min
n∑

j=1

(
ηj + νj

)
(24)

s.t.: x + η ≥ x̂ , (25)

y − ν ≤ ŷ , (26)

(x, y) ∈ conv(X) , (27)

η, ν ≥ 0 . (28)

Without inclusion of the normalisation and additional constraints imposed on the
inequality’s coefficient π and λ, constraints (20) and (21) as well as (25) and (26)
would be equality constraints. Moreover, we would have η = ν = 0 and the pro-
gramming problem (19)–(23) and (24)–(28), resp., would just ask if the given point
(x̂, ŷ) is contained in the convex hull of X or not. Since ηj = max{0, x̂j − xj} and
νj = max{0, yj − ŷj} must hold in any optimal solution to (24)–(28), this program
may for short also be stated as

min
{ n∑

j=1

(
max{0, x̂j − xj}+ max{0, yj − ŷj}

)
: (x, y) ∈ conv(X)

}
. (29)

This shows that

U(x, y) :=
n∑

j=1

(
max{0, x̂j − xj}+ max{0, yj − ŷj}

)
(30)

provides an upper bound on maxπ,λ v(π, λ) for any solution (x, y) ∈ conv(X).

4.2 Subgradient procedure

The linear program (19)–(23) can be solved exactly by optimisation means of column
generation. Alternatively, subgradient can be applied for approximately maximising
the piecewise linear and concave function v(π, λ) in (13). At the point (π, λ) = (π, λ),
the function f(π, λ) in (11) is given by

f(π, λ) = πx− λy

and a subgradient of the function v(π, λ) = πx̂ − λŷ − f(π, λ) at this point thus
reads as (

(x̂− x) , (y − ŷ)
)
.

The components x̂− x and y− ŷ of this subgradient are however of totally different
dimensions. Whilst ŷj is a dimensionless number between zero and one, x̂j denotes
a quantity. This is avoided by replacing variables yj with zj = bjyj and restating the
set X of feasible solutions to the single-node flow problem as

X =
{
(x, z) :

n∑
j=1

xj = D , 0 ≤ xj ≤ zj and zj ∈ {0, bj} ∀ j} . (31)
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The Fenchel inequality then reads as

n∑
j=1

(πjxj − λjzj) ≤ f(π, λ) , (32)

where

f(π, λ) = max
{
πjxj − λjzj : (x, z) ∈ X

}
(33)

and

0 ≤ πj ≤ 1 as well as 0 ≤ λj ≤ 1 ∀ j .

In the separation problem (14)–(18), we then just have to replace yj by zj , and a
subgradient of

v(π, λ) = πx̂− λẑ − f(π, λ)

at the point (π, λ) is now given by(
(x̂− x) , (z − ẑ)

)
,

if (x, z) is such that
f(π, λ) = πx− λz .

During subgradient optimisation, we might further use the restrictions

x̂j = 0 ⇒ πj = 0 ,

x̂j = bj ⇒ πj = 1 ,

ẑj = 0 ⇒ λj = 1 ,

ẑj = bj ⇒ λj = 0 .

(34)

Using the step size parameter σ, 0 < σ ≤ 2, and a suitable direction (hx, hz),
the step size θ in the subgradient step

(π′, λ′) = (π, λ) + θ(hx, hz) ,

is then usually computed according to

θ = σ
U − v(π, λ)∥∥∥(hx, hz)

∥∥∥2 ,

where U is an upper bound on maxπ,λ v(π, λ). According to (30) such upper bounds
are readily available from

U(x, z) =
n∑

j=1

(
max{0, x̂j − xj}+ max{0, zj − ẑj}

)
(35)

and any solution (x, z) ∈ conv(X). In case that the point (x̂, ẑ) to be separated
meets all constraints except the requirements, the solution x = x̂ and z = z(x̂),
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where

zj(x̂) :=

bj if x̂j > 0

0 if x̂j = 0

is feasible for the single-node flow problem and thus generates the upper bound

U(x̂, z(x̂)) =
∑

j:x̂j>0

(bj − zj(x̂)) .

Moreover, in the course of a subgradient algorithm for maximising the function
v(π, λ), the subproblem

f(πk, λk) = max
n∑

j=1

(πk
j xj − λk

jzj)

s.t.:
n∑

j=1

xj = D ,

0 ≤ xj ≤ zj for j = 1, . . . , n ,

zj ∈ {0, bj} for j = 1, . . . , n

(36)

has repeatedly to be solved with (πk, λk) being the current iterate. Let then (xℓ, zℓ) ∈
X for ℓ = 1, . . . , k denote the solutions obtained to the subproblem in iterations 1
to k. The average solution

(xk, zk) =
1

k

k∑
ℓ=1

(xℓ, zℓ)

is from conv(X) and a corresponding upper bound U(xk, zk) can be obtained from (35).
A subgradient procedure for solving the separation problem (14)–(18) that makes

use of these upper bounds may then be summarised as follows.

Step 1: Set k = 1, L = 0, U = U(x̂, z(x̂)), σ = 2, (xk, zk) = (0, 0). For j = 1, . . . , n
set

πk
j =

0 , if x̂j < bj

1 , if x̂j = bj

and λk
j =

1 , if ẑj = 0

0 , if ẑj > 0

Step 2: Solve the subproblem (36) and let (xk, zk) be the solution. Set

gk = (x̂− xk , zk − ẑ) and v(πk, λk) =
n∑

j=1

(
πk

j (x̂j − xk
j ) + λk

j (z
k
j − ẑj)

)
.

If v(πk, λk) > L, set L := v(πk, λk).

Step 3: Choose a suitable direction, e.g., hk = gk.

Step 4: Set (xk, zk) = (k−1)
k

(xk−1, zk−1) + 1
k
(xk, zk) and compute the upper bound

Uk = min
{
U(xk, zk) , U(xk, zk)

}
.
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If U > Uk, set U = Uk. If (U − L)/ max{1, L} < ǫ, where ǫ > 0 is a given small
tolerance value, then terminate the procedure; otherwise continue with Step 5.

Step 5: Perform the subgradient step by setting

θ = σ
U − v(πk, λk)∥∥∥hk

∥∥∥2 and
(
π′, λ′

)
=

(
πk, λk

)
+ θhk .

Then make the the following adjustments for j = 1, . . . , n in order to take the
additional restrictions (34) on the coefficients π and λ into account:

πk+1
j :=


0 , if x̂j = 0

1 , if x̂j = bj

min{max{0, π′
j}, 1} , if 0 < x̂j < bj

and

λk+1
j :=


0 , if ẑj = bj

1 , if ẑj = 0

min{max{0, λ′j}, 1} , if 0 < ẑj < bj .

Update the step size parameter σ and set k := k + 1. If a maximum number of
iterations is reached or σ falls below a given threshold value, stop. Otherwise return
to Step 2.

Within a standard implementation of the subgradient procedure, the step size
parameter σ is usually halved if the lower bound L did not improve after a given
number of, e.g, 5 or 10 subsequent iterations. In Step 3, it might be favourable
to select a different direction than the current subgradient gk. Baker and Sheasby
(1999), e.g., propose to use an exponentially smoothed average of the generated
subgradients. That is, the direction hk is computed from

hk = hk−1 + γ(gk − hk−1) ,

where 0 < γ < 1 and h0 = g1. Camerini et al. (1975) propose instead a subgradient
deflection method and compute the direction hk from

hk = gk − δkh
k−1 ,

where δk ≥ 0 is the deflection parameter given by

δk =

0, if (gk)T hk−1 ≥ 0 ,

τk(g
k)T hk−1/‖hk−1‖2, otherwise.

with 1 ≤ τk < 2.

4.3 Results of a small computational experiment

The proposed subgradient procedure were tested on a smaller instance of the fixed-
charge transportation problem. Each time the LP relaxation was solved, it was tried
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Figure 1. Convergence of the subgradient procedure (U : dashed, v(πk, λk): solid)

to generate a Fenchel cutting plane for each of the single-node flow structures that
can be obtained from variable upper bounds on the flows and each single demand
and supply constraint. At most one hundred subgradient steps were executed. The
step size parameter σ was initially set to two and halved if after five subsequent
iterations the lower bound L did not improve. In each step, the current subgradient
was used as search direction, since neither exponentially smoothed nor deflected
subgradients performed significantly better. Fig. 1 shows a few typical examples of
the subgradient procedure’s convergence behaviour. The figures plot the current best
upper bound U on maxπ,λ v(π, λ) and the current function value v(πk, λk) versus the
current iteration k. In the cases of figures 1(a)–1(c), a Fenchel inequality is violated,
while no such inequality exists in case of figure 1(d) and 1(e). Generally, convergence
is slower if no Fenchel inequality is violated and thus maxπ,λ v(π, λ) = 0 results
as, e.g, in Fig. 1(e) were even after executing the maximal number of iterations,
(x̂, ẑ) ∈ X could not be proved. Nevertheless did the upper bound U(xk, zk) that is
based on the average (xk, zk) of the subproblem solutions often allow to prematurely
stop the subgradient procedure, even in the more difficult case of (x̂, ẑ) ∈ X as, e.g,
in Fig. 1(d). Faster convergence was usually achieved in case of (x̂, ẑ) /∈ X, that is
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maxπ,λ v(π, λ) > 0. At times, just a few subgradient steps were in this case required
to solve the separation problem as, e.g, in figures 1(a) and 1(b). There are, of course,
also a number of cases where a substantial number of subgradient steps had to be
carried out in order to determine the final Fenchel inequality as, e.g, in Fig. 1(c). On
average, however, the upper bound U(xk, zk) contributed to a significant decrease in
the number of subgradient steps that need to be performed for solving the separation
problem. Despite its simplicity, it seems that the average of the subproblem solutions
is a quite reasonable estimate of the primal one, that is the solution to the primal
separation problem (29).

5 Summary and conclusions

This paper discussed Fenchel cutting planes derived from the single-node flow poly-
tope. We first showed some properties regarding the sign of the inequality’s coef-
ficients and also derived domain constraints that can be exploited by methods for
solving the separation problem. We then further discussed the separation problem
and a subgradient method for its resolution. Although convergence of the subgradi-
ent method can greatly be improved by means of upper bounds derived from average
solutions to the subproblem, the effort required for determining the cutting planes
should usually still be too large compared to the gain in the strength of the linear
relaxation. For performing exact separation of the binary knapsack problem, Avella
et al. (2007) and Kaparis and Letchford (2007) proposed to first fix variables that
take on an integer solution value in the current LP solution, then to solve the sepa-
ration problem over the reduced polytope and to apply thereafter a sequential lifting
of the obtained inequality. This way, the separation problem is usually reduced to
such an extend that an exact decomposition method can be applied for solving it.
Compared to a subgradient method, this has the advantage that the separation
problem is solved exactly, which should result in better cutting planes. A similar
approach might probably also be taken in case of an exact separation of valid in-
equalities for the single-node flow polytope. In this case, however, it is desirable to
lift not only binary variables but also the continuous flow variables. Since these two
types of variables are so closely related, they should be lifted simultaneously, which
considerably complicates the lifting problem. For the case of flow cover inequalities
and some other polyhedral inequalities, Gu et al. (1999, 2000) were able to make the
lifting sequence independent by deriving superadditive lifting functions. Probably
a similar approach can be taken here in order to obtain at least an approximate
sequence independent lifting that can be carried out efficiently and still gives an
inequality that is strong enough.
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