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Introduction

This thesis gathers the results I have obtained during my graduate studies.
Through the last four years I have been working with several problems of
different nature. Actually so different that I felt it necessary to give the thesis
the ‘double-title’ it has. The areas have, however, the methods of algebraic
geometry over finite fields in common. Hence this could also have been a
suitable title.

Since it is my hope that this thesis also will provide a good starting point
for new-comers to the subject, I have often provided examples of the various
definitions, constructions and calculations. For the same reason, I have tried to
provide ample references not only to closely related work, but also to papers
that may have a more general interest to readers of the present thesis.

Main results

Let me briefly state the main results of the thesis:

� It is proved (Chapter 2) that Deligne-Lusztig varieties are normal and
Cohen-Macaulay. A sufficient criterion for non-singularity is given.

� For any Deligne-Lusztig variety X arising from one of the classical
(possibly twisted) groups, a (finite) basis for the Picard group of X
is given. Further evidence concerning a conjectural behaviour of the
Chow groups of Deligne-Lusztig varieties is also given (see Chapter 3).

� The canonical bundle of Deligne-Lusztig varieties has been calculated.
Explicit expressions have been given, allowing one to prove ampleness
of the canonical bundle in certain cases. These results have appeared
in the article Canonical bundles of Deligne-Lusztig varieties, Manuscripta
Math. 98 (1999), 363–375.

� A general framework for determining the parameters of error-correc-
ting algebraic-geometric codes arising from higher-dimensional vari-
eties has been developed. These results have appeared in a separate
preprint Error-correcting codes from higher-dimensional varieties, submit-
ted to Finite Fields and Their Applications, 1998.

v
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Summary

Deligne-Lusztig varieties was defined in the mid-seventies by Deligne and
Lusztig [DL76] as a mere tool in an ingenious construction of certain repre-
sentations of finite groups. Until the beginning of the nineties, the study of
these varieties continued to be from the representation theoretic point of view
cf. [Lus76a, Lus76b, Lus78, Haa84, Haa86].

In the meantime Goppa [Gop88] had shown how to construct error cor-
recting codes from algebraic curves over finite fields, and codes arising from
Deligne-Lusztig curves turned out to provide excellent examples, cf. [HS90,
Han92, HP93]. So suddenly Deligne-Lusztig varieties gained, so to speak, a
life of their own.

Early on I became interested in constructing codes from higher-dimen-
sional varieties; and from Deligne-Lusztig varieties in particular cf. [HH95b].
Needless to say, things got more difficult than in the curve case. Just to get
started, one needed a good description of the divisors and their intersections.
The concerns of this thesis are therefore primarily the geometry of Deligne-
Lusztig varieties.

In Chapter 1 we start out by gathering various results from the theory of
reductive groups. If G is a reductive algebraic group it is well-known that
the homogeneous space G=B — the variety of Borel subgroups of G — has a
decomposition into disjoint locally closed subsets BẇB where w runs through
the elements of the Weyl group W of G. In the positive characteristic situation
we may furthermore associate to G a socalled Frobenius morphism F : G! G.
One way of defining Deligne-Lusztig varieties is now as follows: Let O(w) de-
note the pairs (g1B; g2B) of G=B� G=B satisfying that g�1

1 g2 is in BẇB. Then
the Deligne-Lusztig variety X(w) is the intersection of O(w) and the graph Γ of
F. Similar definitions for the closure X(w) of X(w) in G=B and for a Demazure-
type desingularisation X̄(w) are made. In the last sections of Chapter 1 we
recollect various properties of Deligne-Lusztig varieties (and their desingu-
larisations) and we extend some results of Lusztig [Lus76a] regarding their
irreducible components.

In Chapter 2 I prove that Deligne-Lusztig varieties are normal and Cohen-
Macaulay (Proposition 2.2). For Deligne-Lusztig varieties arising from Cox-
eter elements this actually implies non-singularity (Theorem 2.3). These prop-
erties are mainly derived from the corresponding properties for the varieties
O(w) [MR88] combined with transversality arguments.

One of the main results of this thesis appears in Chapter 3 (Theorem 3.14).
For any Deligne-Lusztig variety X̄(w) arising from one of the classical (possi-
bly twisted) groups, I give a (finite) basis for the Picard group of X̄(w). The
proof goes as follows: For Deligne-Lusztig varieties of classical type one may
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construct a birational morphism � : X̄(w)! Z to a complete intersection in
projective space. A careful study of the singularities of Z reveals that the the
divisor class group of Z equals the Picard group of Z. Since the latter equals Z
(by the Lefschetz theorem for Picard groups [Gro68]) we reach the conclusion
that the Picard group of X̄(w) is (freely) generated by the class of the hyper-
plane section on Z pulled back to X̄(w), and by the classes of the finitely many
exceptional fibres [Ful83].

In Chapter 3 it is furthermore conjectured that this behaviour in codimen-
sion 1 is more generally true in any codimension. That is, the Chow groups
of X(w) consist (in positive codimension) at the most of torsion. For Deligne-
Lusztig varieties of type An it is proved that this is indeed the case. The asser-
tion is also proved for the GF-invariant part of the Chow groups.

When confronted with a poorly studied variety defined over a finite field,
a natural question (at least from a positive-characteristic geometer) is: “Is it
Frobenius split?” In Chapter 4 I have included the paper Canonical bundles of
Deligne-Lusztig varieties [HH99a] where another of my main results appears.
Using the adjunction formula and results of Mehta and Ramanathan [MR88]
regarding the canonical bundles of the varieties Ō(w), I prove a general for-
mula for the canonical bundle of a Deligne-Lusztig variety. Employing tech-
niques as sketched in the original paper by Deligne and Lusztig [DL76], I re-
fined these formulas to rather explicit forms. With the aid of these formulas
I were also able to prove that a certain kind of Deligne-Lusztig surfaces pro-
vides a whole class of counter-examples to the socalled Miyaoka-Yau inequal-
ity otherwise true in characteristic zero [Miy77, Theorem 4].

As a corollary of the results in the paper I could also give the above ques-
tion a negative answer. That is, Deligne-Lusztig varieties are generally not
Frobenius split. In the chapter I also give an alternative proof of this fact and
extend some of the results of [HH99a].

Coming back to the starting point of this introduction, I will conclude by
mentioning another main contribution given in the paper Error-correcting codes
from higher-dimensional varieties [HH98]. An error-correcting code C with pa-
rameters [n; k; d]q is, roughly speaking, nothing but a k-dimensional subspace
of an n-dimensional vector space over the finite field with q elements. Fur-
thermore, all (non-zero) points of C are assumed to have at least d non-zero
coordinates. Algebraic geometric (AG) codes are then what is obtained when
the global sections of a fixed line bundle is ‘evaluated’ in n fixed Fq -rational
points.

In the above-mentioned paper I address the problems that arise when one
wants to not only construct, but also estimate the parameters of codes coming
from higher-dimensional varieties. Using intersection theory I prove general
results concerning the dimension and minimum distance of error-correcting
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codes arising from varieties of dimension two or higher. In Chapter 5 I have
reproduced the paper.

Occasionally I have needed various small constructions and lemmas that
I was unable to find in the literature. I have collected these (and their proofs)
in Appendix A.

As it often happens, answering one question leads to a wealth of new
ones. In Appendix B I have gathered some of the questions I have not been
able to answer; this may as well be ascribed lack of time as my mathematical
limitations.

For the interested reader there are in Appendix C included some compu-
tations done with the computer algebra package Maple.

At the end, in Appendix D, a résumé for the University Annual Report is
included.
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CHAPTER 1

Preliminaries

1.1. Notation and conventions

Throughout this thesis, we will adhere to the following notation and con-
ventions:

� Let q be a prime power. Let Fq be the finite field with q elements and
denote by k an algebraic closure of Fq .
� For a finite set I, #I will denote the cardinality of I whereas we shall

use the notation jHj for the cardinality of a finite group H.
� If H is an abelian group we shall denote H
ZQ by HQ. Examples are

Chow groups, Picard groups, groups of characters etc.
� Unless otherwise stated we assume diagrams of morphisms to be com-

mutative.
� Varieties are not necessarily irreducible.

1.2. Reductive groups

In this section we review (some of) the necessary material about reductive
groups. We refer to [Bor92, Car85, Hum75, Sri79] for further information.

1.2.1. Frobenius morphisms. Let G be a reductive (connected) linear al-
gebraic group over k.

DEFINITION 1.1. A morphism of algebraic groups F : G! G is a standard

Frobenius morphism if there exists an embedding G i�! GLn(k) and a positive
integer e such that the diagram

G
F //

i
��

G

i
��

GL n(k)
Fe // GL n(k)

commutes for Fe
�
(ai j)

�
= (ape

i j ), p = char(k). F is a Frobenius morphism if some
positive power Fi of F is a standard Frobenius morphism. Define Q to be the
unique positive real number such that Qi

= pe. Let

GF
= fg 2 G : F(g)= gg

1
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be the subgroup of fixed-points. (These definitions can be seen to be indepen-
dent of choice of embedding.)

Associated to F is the Lang map L : G ! G taking an element g 2 G to
g�1F(g). (Caution: contrary to F, L is not a group homomorphism, only a
morphism of varieties.) By the Lang-Steinberg Theorem [Bor92, Theorem 16.3]
this morphism of varieties is surjective with finite fibres. From this result it
follows that, by conjugacy of tori and Borel subgroups, there exists F-stable
maximal tori and Borel subgroups. Fix an F-stable Borel subgroup B containing
an F-stable maximal torus T.

REMARK 1.2. The finite groups GF arising as the fixed-points of a Frobe-
nius morphism acting on a reductive, connected linear algebraic group are
called finite groups of Lie type. It was the search for characteristic zero repre-
sentations of these groups which led Deligne and Lusztig [DL76] to the con-
struction of Deligne-Lusztig varieties. (GF acts on X(w) as a group of automor-
phisms inducing an action on the `-adic cohomology vector spaces. See also
[Haa84, Haa86].)

1.2.2. Root systems and Dynkin diagrams. Let (A i j) be the Cartan matrix
of G and let W be the Weyl group of G; W = NG(T)=T, for the maximal torus
T � G. W is a finite group generated by a subset S �W of simple reflections,

W = hs1; : : : ; sr : s2
i = 1; (sis j)nij = 1 for i 6= ji

where

ni j = 2, Ai jAji = 0 ni j = 3, Ai jAji = 1

ni j = 4, Ai jAji = 2 ni j = 6, Ai jAji = 3:

Similarly, the nodes of the Dynkin diagram corresponding to si and s j are joined
by 0; 1; 2 or 3 bonds when ni j equals 2; 3; 4 or 6 respectively.

Any w 2 W then has a well-defined length l(w), hence we have a partial
order � on W. Denote by w0 the longest element in W. For any w 2W we may
assume that w consists of the first l(w) reflections of a reduced expression of
w0.

Since T is F-stable we get a homomorphism F : W!W and an action � on
the Dynkin diagram D of G. It is then a well-known result that pairs (G; F), G
a simple (connected) algebraic group, F a Frobenius morphism, are classified
(up to isogeny type) by triples (D; �; Q) of (connected) Dynkin diagrams with
automorphisms plus the real number Q. We will henceforth refer to a pair
(G; F) as being of type ÆXn, Xn being the Dynkin diagram of G and Æ the order
of �. In Table C.1 (page 105) and Table C.2 (page 105) we have listed the groups
where � acts non-trivially with one or two orbits respectively.

For w1;w2 2 W we shall say that w1 and w2 are F-conjugate if there exists
w0 2W such that w2 = w0w1F(w0)�1. We note that w and F(w) are F-conjugate
for any w 2 W. It should also be noted that two F-conjugated Weyl group
elements does not necessarily have the same length.
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From now on, when we speak of a reductive group G, we shall assume it
has connected Dynkin diagram.

1.2.3. Character groups and their F-action. Let

X0 =Hom(T; G m ) and Y0 = Hom(G m ;T)

be the character and co-character groups with respect to T. We will now and
then write X(T) for X0. There is a non-degenerate pairing h�; �i : X0� Y0 ! Z
and actions of W and F on both X0 and Y0 such that

h�; F(
)i= hF(�); 
i � 2 X0; 
 2 Y0 (1.1)

h�; 
wi= hw�; 
i � 2 X0; 
 2 Y0; w 2W (1.2)

(see [Car85, p. 18+35]). Given the choice of configuration B � T we may write

B = T�
Y
�2A

U�

for some A � X(T). We define the positive roots Φ+ to be A. In some papers
the positive roots are chosen to be f�Ag (see for example [Jan87, p. 180] and
[And85]). Therefore we will have to change signs (add or remove “anti”) when
citing those works. Let M = #Φ+.

To each simple reflection si there corresponds a simple root �i 2 X and a
co-root �_i 2 Y such that h� j; �

_
i i = Ai j. If we identify the simple reflections

with their corresponding simple roots, we may relate the action of F to �:
F transforms each simple root � into a positive multiple of ��1(�) and then
F(U�i) = U�(�i).

Above we introduced the real number Q defined by the relation Qi
= pe

whenever Fi is the restriction of the Frobenius morphism x 7! xpe
on GLn(Fq ).

This allows us to write F = QF0 with F0 of finite order on X0 and Y0. The
actions of W; F and F0 extend by linearity to X0 
 R and Y0 
 R and may be
described in terms of matrices. If the matrix M represents F0 on X0 
 R then
by (1.1), F0 is represented by the transpose Mt on Y0 
R.

1.2.4. Bruhat decomposition and Schubert varieties. For any Borel sub-
group B0 the homogeneous space G=B0 is a non-singular projective variety
which may be identified with the G-conjugation orbits of B0,

G=B0 = fgB0g�1 : g 2 Gg
(the coset gB0 corresponds to the orbit of gB0g�1). By conjugacy of Borel sub-
groups, the quotient X is independent of choice of B0, and we shall therefore
think of X as the variety of Borel subgroups of G. We will usually depict X as
the quotient of G by the F-stable subgroup B, but when convenient we may
choose any other Borel subgroup.

G has a Bruhat decomposition into disjoint locally closed subvarieties,

G =
[

w2W

BẇB (1.3)
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where ẇ 2 G is a representative of w 2W. This decomposition passes to X,

X =
[

w2W

BẇB=B (1.4)

where the Bruhat cells BẇB=B may be viewed as the orbits of B’s action on G=B
by left translation. BẇB=B is a locally closed subvariety of X of dimension
l(w); in fact BẇB=B ' A l(w) . The closure of BẇB=B in X is given by

Xw = BẇB=B =
[

w0�w

Bẇ0B=B: (1.5)

The Xw are called Schubert varieties and are generators of the Chow ring of G=B
cf. [Che94, Dem74].

1.2.5. Schubert varieties in G=B� G=B. Let G act diagonally on X� X
and let

O(w)= G:(eB; ẇB)= f(g1B; g2B) 2 X� X : g�1
1 g2 2 BẇBg (1.6)

be the orbit of (eB; ẇB) under this action. From the decomposition (1.4) it
follows that we also have a decomposition of X� X,

X� X =
[

w2W

O(w): (1.7)

Projection to the first factor O(w)! X makes O(w) an affine bundle over X
with fiber BẇB=B, hence O(w) is a locally closed subvariety of X� X of di-
mension dim(X)+ l(w). The closure of O(w) in X� X is given by

O(w)=
[

w0�w

O(w0): (1.8)

Below (Chapter 2) we will see how Deligne-Lusztig varieties inherit (non)-
singularity from Xw and O(w). As O(w) and Xw often are singular we construct
desingularisations and determine when the Deligne-Lusztig varieties actually
are non-singular.

1.2.6. Homogeneous line bundles. Let f� ig (one for each generator si
of W) be a Z-basis of the roots Φ � X(T). We may choose the �i such that
h�i; �

_
j i= Æi j. For � 2 X(T) we shall say that � is dominant (resp. strictly domi-

nant) if h�; �_i � 0 (resp. > 0) for all positive roots � 2Φ+. Hence, if we write
� =

P
i mi�i, then � is strictly anti-dominant if and only if mi < 0 for all i. Let

� =
P

i �i. We state the following well-known result [And85],[Jan87, p. 231].

THEOREM 1.3. Let � 2 X(T) and let L(�) be the line bundle G�B k� on X
(where the subscript � denotes that B acts on k via �: b:x= �(b)�1x; x 2 k; b 2
B). Then

L(�) is ample if and only if � is strictly antidominant. (1.9)

In particular, L(��� �) is ample for any � � 0.
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Now F�L(�) = L(F(�)), where F(�) = � Æ F. Suppose �(si) = s j and the
corresponding roots �i and � j have the same length. Then F(� j) = Q�i (re-
call that Q is the real number with the property that Qi

= pe when Fi is the
standard Frobenius map raising to pe’th powers).

REMARK 1.4. We should also mention Kempf’s vanishing theorem [Jan87,
p. 227] which in its most general form [And85, Theorem 1] may be stated as:
if � is anti-dominant (this is equivalent to H0(X;L(�)) being non-zero), then
Hi(X;L(�))= 0 for any i > 0 (recall our convention: X = G=B where B comes
from the positive roots).

1.3. Defining Deligne-Lusztig varieties

We are now in position to define Deligne-Lusztig varieties.

DEFINITION 1.5. Let G be a reductive algebraic group with Frobenius
morphism F : G ! G and Weyl group W. Consider the graph Γ of the in-
duced map F : X! X. The Deligne-Lusztig variety X(w) is then the intersection
scheme O(w)\ Γ.

PROPOSITION 1.6. X(w) has the following properties.

a) X(w) is a locally closed non-singular (possibly reducible) subvariety of
X� X of pure dimension l(w).

b) GF acts as a group of Fq -rational automorphisms on X(w).
c) The closure of X(w) in X� X is given by

X(w)=
[

w0�w

X(w0): (1.10)

PROOF. For a) and b) see [DL76, 1.4]. c) is immediate from (1.8).

REMARK 1.7. Let G be a reductive group. From G we may pass to its ad-
joint form Gad by factoring out with the centre ZG. Since ZG = ZB for any
Borel subgroup B of G [Hum75, Corollary 22.2.B] we have a canonical iso-
morphism of varieties (G=ZG)=(B=ZB)' G=B. As G was of arbitrary isogeny
type it follows that G, Gad and Gsc define the same varieties of Borel subgroups
G=B (cf. [Che94, Proposition 7]). So X(w) only depends on the triple (D; �; Q)
and not on the isogeny type of G. Henceforth we will therefore not specify the
isogeny type of the group we are dealing with. See also [Ive78].

REMARK 1.8. We note some immediate properties of Deligne-Lusztig va-
rieties.

1. From (1.6) it follows that we may also describe X(w) as

X(w)= f(gB; F(g)B)2 X� X : g�1F(g) 2 BẇBg:
This is nothing but the image of L�1(BẇB) in G=B. Since the Lang map
L : G! G is an isogeny with zero-dimensional fibres (L : GF n G! G is
an isomorphism), it is both flat (of relative dimension zero) and proper
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[Har77, Exercise III.10.9]. Being flat, L is an open map [Har77, Exer-
cise III.9.1] so L�1(BẇB)= L�1(BẇB) and X(w)= L�1(BẇB)=B. (Clearly
L�1(BẇB)� L�1(BẇB) so let y 2 L�1(BẇB) and let U be an open neigh-
borhood of y. Then L(U) is an open neighborhood of L(y) 2 BẇB.
Hence there exists u 2 U such that L(u) 2 BẇB. But then U\ L�1(BẇB)
is non-empty.) Since the quotient morphism G! G=B also is flat (being
locally trivial) we arrive, also in this description, at the conclusion that
X(w) and BẇB=B must have the same dimension.

2. The projection to the first factor p : Γ! X defines an isomorphism and
we shall occasionally identify X(w) and X(w) with their images in X
under this map.

3. X(e) is the set of F-stable Borel subgroups of G.
4. Let Æ be the minimal integer such that the action of F on W is the iden-

tity. Then,

F(X(w))= fF(g)B : g�1F(g) 2 BẇBg
� fgB : g�1F(g) 2 F(BẇB)g
= fgB : g 2 BF(ẇ)Bg = X(F(w))

giving an automorphism FÆ : X(w)! X(w). Hence X(w) is defined over
FqÆ and we may find the FqÆ -rational points as the fixed-points X(w)FÆ

[Lus76a, (6.1)] (in Table C.3 (page 107) these numbers are given in the
curve and surface cases). Similarly, F maps the Schubert variety Xw to
XF(w).

Note furthermore that X(w) can be identified with a closed sub-
variety of the (larger) Deligne-Lusztig variety X(wF(w)) of (G; F2): If
g�1F(g) 2 BẇB then

LF2 (g)= g�1F2(g)= g�1F(g)F(g�1)F2(g)

is in BẇB � BF(ẇ)B. Hence LF2 (g) 2 BẇF(ẇ)B. (Similarly for higher
powers of F.)

5. One may define ‘generalized’ Deligne-Lusztig varieties as follows: let
PI � G be an F-stable parabolic subgroup. Let w 2 W I and define
X(w)I = L�1(BẇB)=PI (similarly for the closure). GF also acts on these
varieties.

1.4. Desingularisations

We shall need the Demazure desingularisation (see [DL76, 9.3], [Dem74]
and Section 3.3.2): let w = s1 � : : : � sn be a reduced expression for w. Let
O(s1; : : : ; sn) (resp. Ō(s1; : : : ; sn)) � X � � � � � X be the space of sequences
(B0; : : : ; Bn) of Borel subgroups such that (Bi�1; Bi) 2 O(si) (resp. O(si)[O(e)).
Then we obtain a desingularisation

' : Ō(s1; : : : ; sn)! O(w) (1.11)
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by sending (B0; : : : ; Bn) to (B0; Bn). By composing with projection to the first
factor, we get affine and projective bundles

� : O(s1; : : : ; sn)! X (1.12)

�̄ : Ō(s1; : : : ; sn)! X: (1.13)

Over the affine piece Bẇ0B=B we have isomorphisms

O(s1; : : : ; sn)' Bẇ0B=B� BẇB=B ' A l(w0 )+n:

The morphism �̄ has iterated fibre Xsi ' P1, hence is flat of relative dimension
n [Ful83, 1.7, B.2.5]. Note that for s i1 � : : : � sir � w we may identify Ō(si1 ; : : : ; sir)
with at least one subvariety of Ō(s1; : : : ; sn).

Since the fibre of O(w)! X over eB is Xw we obtain a desingularisation
Zw! Xw by taking the fibre over eB of the composition Ō(w)

'�! O(w)! X.
Now construct a desingularisation of X(w) as follows. Let X̄(s1; : : : ; sn) be

defined by the fibre product

X̄(s1; : : : ; sn) i0 //

j0

��

Ō(s1; : : : ; sn)

j

��

X
i=(id;F)

// X� X:

(1.14)

By [DL76, Lemma 9.11] this intersection is transverse, hence X̄(s1; : : : ; sn) is
smooth. By construction, X̄(s1; : : : ; sn) is the subvariety of Ō(w) consisting of
the sequences (B0; : : : ; Bn) of Borel subgroups of G such that Bn = F(B0) and
(Bi�1; Bi) 2 O(e)[O(si). We may identify X(w) with the open subvariety

f(B0; : : : ; Bn) : Bn = F(B0); (Bi�1; Bi) 2 O(si)g
of X̄(s1; : : : ; sn) by mapping (B0; : : : ; Bn) to (B0; F(B0)) 2 Γ.

For any w0 obtained by ‘deleting’ some of the si occurring in w, X̄(w0)
defines in a natural way a closed subvariety of X̄(w). In particular there are
divisors

Dj = X̄(si1 ; : : : ; ŝi j
; : : : ; sin) ; j = 0; : : : ; n:

We shall now and then refer to these as boundary divisors (their union @ X̄(w) is
the complement of X(w) in X̄(w)).

We have the diagram,

X̄(w) i0

reg. emb.
//

j0

��

'0

""FFFFFFFF Ō(w)
'

{{wwwwwwwww

j

��

X(w) //

��

O(w)

��

X
i=(id;F)

// X� X

(1.15)
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with '0 being an isomorphism over X(w)� @X(w) = X(w) and the inverse
image '0�1(@X(w))= @ X̄(w) is a divisor with normal crossings. From [Har77,
Proposition II.7.17] it follows that the morphisms ' : Ō(w)! O(w) and '0 :
X̄(w) ! X(w) may be considered as blow-ups of some coherent sheaves of
ideals.

For later use we state:

LEMMA 1.9. Let w 2W have reduced the expression w = si1 � : : : � sin with
all i j different. Then the resolution ' : Ō(w)! O(w) is bijective. Hence also
the resolution '0 : X̄(w)! X(w) is bijective.

PROOF. We prove the claim by induction on l(w). For l(w) = 0 the claim
is trivially true. So assume l(w) > 0. Since ' is an isomorphism over O(w) we
only need to show that ' is bijective on any O(w0) with w0 � w and l(w0) =
l(w)� 1. Now, any such w0 is obtained from the reduced expression of w by
omitting a unique sij

. That is, there exists a unique index j such that

w0
= si1 � : : : � ŝi j

� : : : � sin

and this is a reduced expression of w0 (by the special property of w). But then
w0 satisfies the induction hypothesis and the assertion follows.

The reason why we have to assume that all the si are different is illustrated
by the following example.

EXAMPLE 1.10. Let (G; F) be of type 2A3 and let w = s1s2s1. Then

O(w)= O(e)[O(s1)[O(s2)[O(s1s2)[O(s2s1)[O(s1s2s1):

The desingularisation Ō(s1; s2; s1) has a similar decomposition

Ō(s1; s2; s1)= O(e; e; e)[O(s1; e; e)[O(e; s2; e)[O(e; e; s1)

[O(s1; s2; e)[O(e; s2; s1)[O(s1; e; s1)[O(s1; s2; s1):

Under the projection ' taking (gaB; gbB; gcB; gdB) to (gaB; gdB), the strata of
Ō(s1; s2; s1) is mapped as follows:

O(s1; e; s1)

A 1 -fibration &&LLLLLLLLLL O(e; e; e)

'

��

O(s1; s2; e)

'

��

O(e; s2; s1)

'

��

O(e) O(s1s2) O(s2s1)

O(s1; e; e)

'
&&LLLLLLLLLL O(e; e; s1)

'

��

O(s1; s2; s1)

'

��

O(e; s2; e)

'

��

O(s1) O(s1s2s1) O(s2):

Clearly, ' is not bijective in this case.
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1.5. Irreducibility

Recall the induced action of F on S�W. Let SF denote the set of orbits for
this action and set r = #SF. We call r the rank of (G; F).

DEFINITION 1.11. If w = s1 � : : : � sr is a reduced expression for w with ex-
actly one si from each of the orbits in SF, we shall call w a Coxeter element
[Lus76a, (1.7)]. When G is semi-simple with connected Dynkin diagram, there
is a natural choice of Coxeter element: let w = si1 � : : : � sin where i1 = 1 and
any pair i j, i j+1 corresponds to two joined nodes. When choosing this Coxeter
element, we shall refer to X̄(w) as being the standard Deligne-Lusztig variety
(corresponding to (G; F)).

Deligne-Lusztig varieties are not in general irreducible contrary to the case
of Schubert varieties. From [Lus76a, (4.8) Proposition] we have:

PROPOSITION 1.12. X(w) is irreducible if w contains at least one si from
each orbit in SF. In particular, if w is a Coxeter element, X(w) is irreducible.

REMARK 1.13. Let us analyze what happens when w is not necessarily a
Coxeter element. Let w have reduced expression w = si1 � : : : � sin . Let P be the
parabolic subgroup determined by these simple reflections (P is generated by
B and all BFm(sij

)B, m= 1; : : : ; Æ, j= 1; : : : ; n). In other words, P is the smallest
F-stable parabolic subgroup of G containing the cosets B, Bṡi1 B; : : : ; Bṡin B.

LetP denote the (finite) set of all GF-conjugates of P. For each P0 2 Pwe let
w(P0) denote the image of w in the Weyl group of P0=UP0 (UP0 is the unipotent
radical of P0). By [Lus76a, (1.17)] we then have the following decomposition
of X(w),

X(w) ��!
a

P02P

X(w(P0)) (1.16)

where X(w(P0)) is a Deligne-Lusztig variety consisting of Borel subgroups of
G0
= P=UP. X(w(P0)) may be identified with the closed subset of X(w) consist-

ing of the Borel subgroups contained in P0. Hence,

X(w) ��!
a

P02P

L�1(BẇB)\ P0=B: (1.17)

PROPOSITION 1.14. The decomposition (1.16) is valid also for X(w) and
X̄(w). That is,

X(w) ��!
a

P02P

X(w(P0)) (1.18)

and similarly for X̄(w).

PROOF. By the above,

X(w) ��!
a

P02P

L�1(BẇB)\ P0=B =
[

P02P

L�1(BẇB)\ P0=B:
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Since each P0 is a closed subvariety of G,

L�1(BẇB)\ P0=B = L�1(BẇB)\ P0=B;

hence the union is disjoint (since the P0’s are). For the desingularisation X̄(w)
we have that X̄(w) =

S
P02P X̄(w(P0)). Since X̄(w) is non-singular the compo-

nents cannot intersect.

REMARK 1.15. We note that, for any w 2 W, GF acts transitively on the
components of X(w), X(w) and X̄(w).

The Dynkin diagram of P=UP will be that part of the Dynkin diagram of
G that is spanned by the nodes corresponding to the reflections si1 ; : : : ; sin plus
their iterated images under F. Obviously, if we have (at least) one reflection
from each of F’s orbits, P is equal to G and the decomposition (1.16) has only
one member.

If X̄(w) is a subvariety of a larger Deligne-Lusztig variety X̄(w0), the com-
position

X̄(w0)
pr1��! G=B! G=P

will contract the irreducible components of X̄(w) mapping them to the points
of (G=P)F (see also Lemma 3.9). It should be noted that the number jGF=PFj
of GF-conjugates to P is rather easily calculated (see [Lus76a, p. 106], [Car85,
p. 106, Proposition 3.3.5]).

We also see that in determining the Chow groups of Deligne-Lusztig vari-
eties X(w) we may assume that X(w) is irreducible as

A�

�
X(w)

�
=

M
P2PI

A�

�
X(w(P))

�
(1.19)

cf. [Ful83, 1.3.1]. This applies of course also to X(w) and X̄(w).

EXAMPLE 1.16 ( 2A4 case). Consider the reductive group SL5(k) with the
F-action given by the Dynkin diagram

s1
uu ))

s2

vv ))

s3 s4 :

Then X̄(s1s2) is an irreducible Deligne-Lusztig variety. Let us determine what
its Deligne-Lusztig subvarieties look like.

First consider X̄(s1). The single reflection s1 determines the F-stable par-
abolic subgroup P1 = hB; Bṡ1B; Bṡ4Bi: Let P1 be the corresponding set of GF-
conjugacy classes. By [Car85, Chapter 2] we have

jP1j= jGF=PF
1 j = (q5

+ 1)(q3
+ 1):

P1=UP1 is a reductive group of type SL2(k)� SL2(k) with F-action interchang-
ing the two factors. By [Lus76a, (1.18)] it follows that for each P 0 2P1, X̄(s1(P0))
is identified1 with an irreducible Deligne-Lusztig variety in SL2(k)=B' P1. So
X̄(s1) is a disjoint union of (q5

+ 1)(q3
+ 1) rational curves.

1(B1; B2) 2 SL2(k) � SL2(k) is in X̄(s1(P0)) if and only if (B1; F2(B1)) is in the SL2(k)-orbit of
(eB; ẇB)
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As for X̄(s2) we find that P2 = hB; Bṡ2B; Bṡ3Bi determines

jP2j = (q5
+ 1)(q2

+ 1)

conjugacy classes.
P2=UP2 is a reductive group with Dynkin diagram s1

vv ))

s2 : Hence the
components of X̄(s2) are isomorphic to the Deligne-Lusztig variety correspond-
ing to the 2A2 case. But this is a plane Hermitian curve (see [Han92]) with
equation Xq+1

0 + Xq+1
1 + Xq+1

2 = 0. We conclude that X̄(s2) is a disjoint union
of (q5

+ 1)(q2
+ 1) Hermitian curves.

DEFINITION 1.17. Introduce the following notation:

I =

(
i :

some connected component of the Dynkin
diagram corresponding to Di occurs as a subgraph

of the Dynkin diagram corresponding to D1

)
:

REMARK 1.18. The motivation for defining I is the following: Suppose the
subgraph of the Dynkin diagram defined by a boundary divisor D consists of
the components D1;D2;D3 (since we only ‘remove’ Æ nodes we can only cut
D into 3 pieces, at the most). Now, if e.g. D2 is a subgraph of the Dynkin
diagram defined by D1, this means geometrically that D is the direct product
of the Deligne-Lusztig subvariety D\D1 of D1, with the other Deligne-Lusztig
varieties corresponding to the diagrams D1 and D3. So, in particular, if D1 is
contracted to points, then also Di drops in dimension for all i 2 I.

Some examples of how the index set I looks like, are listed in Table 1.1.

type of X̄(w) I (n � 2)

An fn� 1g
2A2n�1 f1; 2; : : : ; n� 1g

2A2n f1; 2; : : : ; n� 1g
2Dn f1; 2; : : : ; n� 3g

TABLE 1.1. The set I for some standard Deligne-Lusztig varieties.

1.6. Various properties of Deligne-Lusztig varieties

1.6.1. Affinity of Deligne-Lusztig varieties. Let U � G be the unipotent
radical of B and let UF be the fixed points under F. From [Lus76a, (2.7) Corol-
lary] it follows that when w is a Coxeter element, UF acts freely on X(w) with
quotient isomorphic to a torus (A 1 �f0g)l(w). Since this is an affine open subset
of A n it follows that also X(w) is affine. Actually all Deligne-Lusztig varieties
X(w) are quasi-affine [Haa86].
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1.6.2. The Euler characteristic of Deligne-Lusztig varieties. Let �(X) de-
note the topological Euler characteristic of a variety X (the alternating sum of
the Betti numbers of X; equal to the degree of the top Chern class of TX when
X is complete). From [DL76, Theorem 7.1] we then have:

PROPOSITION 1.19. Let X(w) be a Deligne-Lusztig variety. Choose (by
the surjectivity of the Lang map) g 2 G such that g�1F(g)= ẇ. Then

�(X(w))= (�1)�(G)��(gTF) jGFj
St G(e)jgTFj : (1.20)

REMARK 1.20. Some explanation of (1.20) is in place. Let Pf (x;V) denote
the characteristic polynomial of a linear endomorphism f : V! V of a vector
space V. Then

�(G)= dim
�
Y0
 R

�F0 (1.21)

�(gT)= dim
�
Y0
 R

�F0w�1

(1.22)

jgTFj = PF�1
0 w(Q;Y0)= jdet Y0
R(w�1 Æ F� id)j (1.23)

cf. [Car85, p. 197+86]. St G(�) is the character of the Steinberg representation
and St G(e) equals qM (recall that M denotes the number of positive roots).

Note the difference between the topological Euler characteristic � of X and
the Euler characteristic of a vector bundle (or coherent sheaf) E on X, �(X; E) =P

i(�1)i dimk Hi(X; E). It follows from the Hirzebruch-Riemann-Roch theorem
[Ful83, Corollary 15.2.1] that if X is non-singular and complete,

�(X; E)=
Z

X
ch(E)\ td(TX):

In particular �(X;OX)=
R

X tddim(X)(TX). If X is a non-singular complete curve
of genus g (that is, 2� 2g=

R
X c1(TX)) then �(X;OX)= 1

2

R
X c1(TX)= g� 1. For

a surface we have

�(X;OX) = 1� q+ pg(X)=
1

12
�

K2
X + �

�
where q = dim H1(X;OX):

Since � is given by a Lefschetz trace formula it is additive with respect to
any given stratification of X; that is, if X is a finite union of disjoint locally
closed subvarieties Xi then �(X) =

P
i �(Xi) cf. [Lus78, (1.2.2)] (a formula of

the same kind holds for �(X;OX) cf. [Ful83, Example 15.2.10]). Using this ad-
ditivity property we may calculate the topological Euler characteristic of X̄(w)
by summing over all �(X(w0)), w0 � w. Since the calculations are mostly linear
algebra this is easily done with the aid of computer software like for example
Maple. In Section C.1 we have done the calculations for the surface cases; the
results are listed in Table C.3 (page 107).



CHAPTER 2

Singularities of Deligne-Lusztig varieties

As we have mentioned earlier, Deligne-Lusztig varieties may be singular.
In this chapter we will investigate the fact that X(w) is the transverse intersec-
tion of Γ and O(w) inside X� X and therefore is smooth whenever O(w) is.
(By transverse we mean that for every point P of a dense open subset of the
intersection, the cotangent space CotP(X� X) is the direct sum of CotP(X) and
CotP(O(w)).)

2.1. Normality and Cohen-Macaulayness

Being ‘nicely constructed’ subvarieties of the normal and Cohen-Macaulay
varieties O(w) (see [MR88, Corollaries 1+2]), it is natural to ask whether also
Deligne-Lusztig varieties also are normal and Cohen-Macaulay. Below we
will see that in both cases the answers are affirmative.

LEMMA 2.1. Let X be an irreducible variety regularly embedded in a va-
riety Y (of codimension d). Let V be a closed subvariety of Y. Suppose the
scheme-theoretic intersection is reduced and that X �V = [Z] in A�(Z) (i(Z;V �
X;Y)= 1, Z irreducible). Then Z is regularly embedded in V (of codimension
d).

PROOF. Let U � V be an open affine neighborhood of Z; U = Spec A, U\
Z = Spec A=P where P is a prime ideal of A (Z is irreducible and reduced).
We must show that P can be generated by a regular sequence in A of length d
[Ful83, B.7.1]. Since the multiplicity of Z in X � V is one, AP is a regular local
ring [Ful83, Proposition 7.2] of dimension d. So PAP is generated by a regular
sequence x1

y1
; : : : ; xd

yd
in AP. Since A is a domain we may clear the denominators

to get generators x1; : : : ; xd of P � A. Now for any i, xi cannot be a zero-
divisor on A=(x1 : : : ; xi�1) since this then should be the case in all localisations
(including localising in P). Hence x1; : : : ; xd is a regular sequence in A.

PROPOSITION 2.2. Let X(w) be an irreducible Deligne-Lusztig variety.
Then X(w) is normal and Cohen-Macaulay. Hence any Deligne-Lusztig va-
riety is normal and Cohen-Macaulay (cf. Proposition 1.14).

PROOF. First we will see that X(w) is regular in codimension 1, so let x
be a point such that fxg is singular. Let Y be the closure in O(w) of the orbit

13
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of x under G. Since O(w) is normal (hence regular in codimension 1) and Y
is singular, we must have codim(Y) > 1. Being the closure of a G-orbit, Y
intersects Γ transversely [DL76, p. 151]. So codim(Γ \ Y) > 1 in X(w). Since
fxg � Γ\ Y it follows that X(w) is regular in codimension 1.1

It follows from Lemma 2.1 that X(w) is regularly embedded in O(w).
Hence locally X(w) is given by Spec A=P where A is Cohen-Macaulay (since
O(w) is Cohen-Macaulay) and P is generated by a regular sequence in A. But
then also A=P is Cohen-Macaulay [Har77, Proposition II.8.21A (d)]. Then nor-
mality follows from Serre’s criterion [Har77, Theorem II.8.22A].

2.2. Non-singularity

In some cases Deligne-Lusztig varieties are actually non-singular. The fol-
lowing result was claimed without proof in a remark of [Sri87]. We have not
seen the proof anywhere else.

THEOREM 2.3. Let X(w) be a Deligne-Lusztig variety. If w at the most
contains one si from each of F orbits, then X(w) is a disjoint union of its non-
singular components. In particular, if w is a Coxeter element, then X(w) is
irreducible and isomorphic to X̄(w) (hence non-singular).

PROOF. From Proposition 1.14 it follows that we only have to show the
last claim. When w is a Coxeter elements it follows from Lemma 1.9 that the
desingularisation '0 : X̄(w)! X(w) is a surjective bijective morphism of pro-
jective varieties. By [Iit82, Theorem 2.24] ' 0 then has to be the normalisation
of X(w) (X̄(w) is non-singular). But X(w) is normal by Proposition 2.2 and '0

is forced to be an isomorphism (by the uniqueness of normalisation).

REMARK 2.4. For the classical groups, it has been determined exactly
when a Schubert variety Xw is non-singular [Lak95]. A sufficient criterion,
at least in the An-case, is that w at the most contains each si once.

There are also some other (few) cases where the Xw are non-singular
(thereby implying the non-singularity of X(w)). For example, suppose BẇB
is a parabolic subgroup P. Then Xw is a homogeneous space for P, hence non-
singular (see [Jan87, p. 384-385]).

1Equivalently, O(w) [ [n
i=1 O(s1 � : : : � ŝi � : : : � sn) is non-singular by normality of O(w) (the

singular locus is closed and G-stable, hence it has to be a union of orbits O(w0) of G). Hence so is
X(w)[[n

i=1 X(s1 � : : : � ŝi � : : : � sn) (by transversality) and X(w) is regular in codimension one.



CHAPTER 3

Intersection theory of Deligne-Lusztig varieties

3.1. Chow groups of X(w)

One of the original goals of this dissertation was to give a complete de-
scription of the Chow groups of Deligne-Lusztig varieties (for the general the-
ory of Chow groups, we refer to [Ful83]). Below we shall see how the free part
ought to behave.

3.1.1. Rephrasing the problem. Let X(w) be an irreducible Deligne-
Lusztig variety. We will relate the rational Chow groups of X(w) to those of a
quasi-projective variety X̃(ẇ) on which a finite group acts with quotient X(w).
X̃(ẇ) will be the base-space of a locally trivial fibre-bundle S̃(ẇ) with fibre a
unipotent group (isomorphic to some affine space). Hence we may alterna-
tively determine the Chow groups of S̃(ẇ).

Consider the unipotent subgroup Uw = U \ ẇUẇ�1 of G. As a variety,

Uw ' A M�l(w) :

Let S̃(ẇ) = L�1(ẇU). Then S(ẇ) is an étale covering of ẇU.1 Uw acts on S̃(ẇ)
by right translation: L(su) = (su)�1F(su) = u�1L(s)F(u), which is in ẇU for
s 2 S̃(ẇ); u 2 Uw. Consider the composition,

f : S̃(ẇ) L�! ẇU ẇ�1�! U:

Let Uw act on U from the right by the rule

s:u = ẇ�1uẇsF(u�1)

for s 2 U, u 2 Uw (see [DL76, 1.12]). Then, for g 2 S̃(ẇ), u 2 Uw,

f (g:u)= ẇ�1L(g:u)= ẇ�1u�1L(g)F(u)

= ẇ�1u�1ẇ(ẇ�1L(g))F(u)

= (ẇ�1L(g)):u�1
= f (g):u�1:

Hence, if g 2 S̃(ẇ) is fixed by u then f (g) is fixed by u�1.

1Note that is is only in positive characteristic one finds non-trivial étale coverings of affine
space. In characteristic zero affine space is simply connected (which by definition means that it
has no non-trivial étale coverings; a covering Y ! X with group H is trivial if Y = X�k H).

15
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PROPOSITION 3.1. The quotient S̃(ẇ)=Uw := X̃(ẇ) exists and the canonical
morphism Θ : S(ẇ)! X̃(ẇ) is locally trivial with fibre Uw.

PROOF. Consider the quotient q : G! G=Uw (Uw is closed in G, hence the
quotient exists). Since Uw is unipotent (hence solvable) q is locally trivial with
fibre Uw [Ser58, Proposition 14]. Restricting to the locally closed subvariety
S̃(ẇ) we get that Θ : S(ẇ)! X̃(ẇ) is locally trivial with fibre Uw. (A shorter
proof: use Corollary A.18.)

Since the fibres of Θ are of constant dimension M� l(w), Θ is flat [Har77,
Ex.III.10.9]. Let X̃(ẇ) denote the quotient of S̃(ẇ) by Uw.

THEOREM 3.2. Let X(w) be an irreducible Deligne-Lusztig variety. Then

Ak(X(w))Q = Ak
�

X̃(ẇ)
�TF

w

Q
,! Ak+M�l(w)

�
S̃(ẇU)

�
(3.1)

for k 6= l(w) and Al(w)
�

X(w)
�
= Z.

PROOF. The last assertion is obvious. For the first we will use that for

TF
w = ft 2 T : F(t)= ẇ�1tẇg

we have X̃(ẇ)=TF
w = X(w) (this follows from [DL76, 1.8+1.11]). Hence, by

[Ful83, 1.7.6], Ak
�

X(w)
�
Q
' Ak

�
X̃(ẇ)

�TF
w

Q
. Then the assertion follows from Co-

rollary A.18.

REMARK 3.3. We have now reformulated the problem of calculating the
Chow groups of X(w) into that of calculating those of S̃(ẇU). Unfortunately
we lost track of the torsion elements on our way.

3.1.2. A straight-forward case. In the simplest case we may attack the
problem directly.

THEOREM 3.4. Let X(w) be a standard Deligne-Lusztig variety correspon-
ding to the An case. Then

Ak(X(w))Q = 0 (3.2)

unless k = l(w) (in which case Ak(X(w))= Z). Furthermore, for any variety Y,
we have A�(X(w)� Y) ' A�(X(w))
A�(Y)= A�(Y).

PROOF. 2 In this case, X(w) is identified with an open affine subset of Pl(w)

with complement D equal to the union of all Fq -rational hyper-planes (see
[DL76, 2.2]). Hence we have the short exact sequence [Ful83, Proposition 1.8],

Ak(D)! Ak(Pl(w))! Ak(X(w))! 0:

Since D is projective, Z� Ak(D) for k < l(w), hence the rank of Ak(X(w)) is
necessarily 0. (See also [Ful83, Examples 1.9.3+4].)

2This proof could probably be replaced by one using higher Chow groups and the five-
lemma.
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For the last assertion we consider the commutative diagram:

A�(D� Y)
p

// A�(Pl(w)� Y)
q

// A�(X(w)� Y) // 0

A�(D)
A�(Y)

'1

OO

p̄
// A�(Pl(w))
A�(Y)

'2

OO

q̄
// A�(X(w))
A�(Y)

'3

OO

// 0:

By [Ful83, Example 8.3.7], '2 is an isomorphism. Since D is a union of hyper-
planes (each isomorphic to Pl(w)�1) we conclude that '1 also is an isomor-
phism. Since q, '2 and q̄ are surjective, commutativity of the diagram forces '3

to be surjective as well. Suppose '3(�)= 0. Choose 
 2A�(Pl(w))
A�(Y) such
that q̄(
) = �. Then q'2(
) = 0, hence '2(
) = p(Æ) for some Æ 2 A�(D� Y).
But then p̄'�1

1 (Æ)= '�1
2 p(Æ)= 
, hence � = q̄ p̄'�1

1 (Æ) and � = 0.

LEMMA 3.5. Suppose w and w 0 are two different Coxeter elements in W.
Let X̄(w) and X̄(w0) be the corresponding Deligne-Lusztig varieties. Then
Ai(X̄(w))Q ' Ai(X̄(w0))Q for all i.

PROOF. Let us first consider the case where w0
= F(w). Since the automor-

phism FÆ : X̄(w)! X̄(w) induces multiplication by a power of Q on Ai(X̄(w))
[Ful83, Example 1.7.4], each of the homomorphisms in the composite (we have
Æ = 2 since F(w)= w0 6= w)

Ai(X̄(w)) F��! Ai(X̄(w0)) F��! Ai(X̄(w))

must be isomorphisms modulo torsion.
By [Lus76a, (1.8) Lemma], the only other cases we need to consider are

those where w is on the form w = w1w2 and then w0
= w2F(w1). The proof

now follows the lines of the proof of [DL76, Theorem 1.6, case 1]. For any P =
(B0; B1; : : : ; Bl(w1); : : : ; F(B0)) 2 X̄(w) we have that (B0; B1; : : : ; Bl(w1)) 2 Ō(w1)
and (Bl(w1); : : : ; F(B0)) 2 Ō(w2). But then

�(P) := (Bl(w1); : : : ; F(B0); F(B1); : : : ; F(Bl(w1))) 2 X̄(w0)

giving a morphism � : X̄(w)! X̄(w0). In exactly the same way, we get a mor-
phism � : X̄(w0)! X̄(F(w)). It follows that F = � Æ �: Arguing as in the special
case, it follows that �� : Ai

�
X̄(w0)

�
Q
! Ai

�
X̄(F(w))

�
Q

must be surjective. The
assertion now follows by symmetry.

REMARK 3.6. Since Lusztig have shown that Deligne-Lusztig varieties
coming from F-conjugate Coxeter elements have the same number of rational
points [Lus76a, (1.10) Proposition], hence the same Zeta-function and Betti-
numbers, the lemma is only a natural parallel.

THEOREM 3.7. Let X̄(w) a Deligne-Lusztig variety of type An. Let j : D!
X̄(w) be the inclusion of the boundary divisors. Then Al(w)(X̄(w)) = Z and
Ak(X̄(w))Q = j� Ak(D)Q for k < l(w).
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PROOF. By Lemma 3.5 we may assume X̄(w) is of standard type. Then it
follows from Remark 3.8 and Theorem 3.4 that X̄(w) has a stratification satis-
fying Lemma A.2.

Based on the known examples and the above we do not hesitate to claim
the following:

CONJECTURE 1. Let X(w) be a Deligne-Lusztig variety. Then A i(X(w)) has
rank zero for i < l(w).

Granted this conjecture, it would follow from Lemma A.2 that for all i,
Ai(X̄(w))Q is generated by the classes of the components of Deligne-Lusztig
subvarieties X̄(w0), where w0 � w and l(w)= i. In codimension one, this would
agree with the results of Section 3.2 (below).

3.1.3. The GF-invariant Chow groups. Let X̄(w) be of standard type. As
we noted in Section 1.6.1 (page 11) there is a (finite) subgroup U F of GF act-
ing on X(w), with quotient X(w)=UF isomorphic to an open subset of a torus.
Since the Chow groups of affine space vanish in positive codimension [Ful83,
p. 23] the same is true for tori and therefore also for the quotient variety
X(w)=UF [Ful83, Proposition 1.8]. Since there is a finite surjective morphism
X(w)=UF! X(w)=GF (inducing a surjection in Chow groups with rational co-
efficients) it follows that the GF-invariant Chow groups of X(w) satisfies

Ai(X(w))GF

Q = 0 for i < l(w) (3.3)

(see [Ful83, Example 1.7.6]). So the conjecture stated above holds at the least
for the GF-invariant part.

3.2. Picard Groups of ‘classical’ Deligne-Lusztig varieties

Say that X̄(w) is of classical type if X̄(w) corresponds to one of the classical
groups: An;

2An, Bn, Cn, Dn or 2Dn.

REMARK 3.8. Suppose X̄(w) is of type An. Let w0 � w. Then each irre-
ducible component of X̄(w0) is a product of Deligne-Lusztig varieties also of
type An. For example: In X̄(s1s2s3), the divisors D1 and D3 are disjoint unions
of components of type A2 and D2 is a disjoint union of components of type
A1�A1.

Similarly, when X̄(w) is of type 2An, the divisor Di is a disjoint union
of Deligne-Lusztig varieties of type Ai�1� 2An�2. The same remarks apply
to any other Deligne-Lusztig variety of classical type. That is, if X̄(w) is of
classical type, then so are the irreducible components of the divisors Di.

In the preceding section we were able to give generators for the free part
of all Ai(X̄(w)) whenever X̄(w) is a Deligne-Lusztig variety of type An. In this
section we shall examine the 2An; Bn; Cn; Dn and 2Dn cases. We follow the
notation of [DL76, (2.1)] and [Lus76b].
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Let V be an N-dimensional vector space (N � 2) over k equipped with a
Frobenius morphism FV : V! V. Assume furthermore that V comes equipped
with a form of one of the following kinds:

(O): Let char(k) 6= 2 and let Q : V ! k be a non-singular quadratic form
defined over Fq That is, Q(FV(x)) = Q(x)q for any x 2 V. Define the
inner product

hx; yiO = Q(x+ y)� Q(x)� Q(y)

on V. For N even, we will distinguish between the cases where Q is
split and non-split (Q is split if FV leaves stable some subspace V 0 �
V satisfying that V0 � V0? and QjV 0 = 0 and that V 0 is maximal with
property).

To be able to do explicit calculations, we fix a standard basis for V
and let Q(x) be defined as follows (with respect to the chosen basis):

Q(x)=

(Pn
i=1 xixi+n+

P2n
i=n+1 xixi�n N = 2n

x2
N +

Pn
i=1 xixi+n+

P2n
i=n+1 xixi�n N = 2n+ 1:

With this choice, FV acts as follows:

FV(x)=

(
(xq

n+1; : : : ; xq
N; xq

1; : : : ; xq
n) N = 2n

(xq
1; : : : ; xq

N) N = 2n+ 1:

(Sp): Assume N is even, N = 2n. Let h ; iSp : V�V! k be a non-singular
symplectic form defined over Fq , that is, hFV(x); FV(y)iSp = hx; yiqSp for
any x; y 2 V.

In the chosen basis, FV takes (x1; : : : ; xN) to (xq
1; : : : ; xq

N) and we may
write the form as

hx; yiSp =

nX
i=1

xi y
q
i+n� xi+nyq

i :

(U): Here our base field is Fq2 . Let h ; iU : V � V ! k be a non-singular
sesquilinear form with respect to the automorphism � 7! �q of k. That
is, h�x; yiU = �hx; yiU and hx; �yiU = �qhx; yiU for x; y 2 V; � 2 k. Fur-
thermore assume that

hFV(x); yiU = hy; xiqU
for x; y 2 V.

In the chosen basis FV takes (x1; : : : ; xN) to (xq2

1 ; : : : ; xq2

N) and we may
write the form as

hx; yiU =
nX

i=1

xi y
q
i+n+ xi+nyq

i :

In the following we shall omit the subscripts indicating whether the form is
symplectic, orthogonal or unitary when we wish to speak of any of these types
of forms.
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We may now give the explicit description of the classical linear algebraic
groups with their Frobenius morphism F : G! G. For later use we define in
each case an integer a0.

(SL): We have G = SLN(k) = fg 2 GLN(k) : det(g) = 1g: The Frobenius
morphism F acts on G by raising each entry of the matrix g to the q’th
power, that is, F(g)= g Æ FV. The corresponding Dynkin diagram is

AN�1

(N� 1 nodes).
(U): We have G = SLN(k). Let F0 : G! G be defined by hF0(g)x; gyiU =
hx; yiU for any x; y 2 V. For any g 2 G we have F02(g) = g Æ FV. This
gives G an Fq -rational structure. The corresponding Dynkin diagram is

2AN�1
tt **ss ++

(N� 1 nodes). Set a0 = n� 1 for N = 2n and a0 = n for N = 2n+ 1.
(O), N = 2n+ 1: We have

G = SON(k)

= fg 2 GLN(k) : hg(x); g(y)iO= hx; yiO for any x; y 2 Vg:
Let F act on G by the rule: F(g)FV(x) = FV(gx). The corresponding
Dynkin diagram is

Bn //

(n nodes, n � 2). Set a0 = n.
(Sp), N = 2n: We have

G = Spn(k)

= fg 2 GLN(k) : hg(x); g(y)iSp= hx; yiSp for any x; y 2 Vg:
Let F act on G by the rule: F(g)FV(x) = FV(gx). The corresponding
Dynkin diagram is

Cn oo

(n nodes, n � 3). Set a0 = n.
(O), N = 2n, Q split: We have

G = SON(k)

= fg 2 SLN(k) : hg(x); g(y)iO= hx; yiO for any x; y 2 Vg:
Let F act on G by the rule: F(g)FV(x) = FV(gx). The corresponding
Dynkin diagram is

Dn ssssss

KKKKKK

(n nodes, n � 4). Set a0 = n� 1.
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(O), N = 2n, Q non-split: We have

G = SON(k)

= fg 2 GLN(k) : hg(x); g(y)iO= hx; yiO for any x; y 2 Vg:
Let F act on G by the rule: F(g)FV(x) = FV(gx). The corresponding
Dynkin diagram is

2Dn XX

��

ssssss

KKKKKK

(n nodes, n � 4). Set a0 = n.

LEMMA 3.9. Let P be the parabolic subgroup generated by B and all BsiB
except Bs1B. Then the quotient map

� : G=B! G=P

sends the divisor D1 to the points GF=PF. Hence, by Remark 1.18, all divisors
Di, i 2 I are mapped to subvarieties of codimension at least 2.

PROOF. Since X̄(w) may be described as

X̄(w)= f(g0B; : : : ; gnB) : g�1
n F(g0) 2 B;

g�1
i gi+1 2 Bsi+1B; i = 0; 1; : : : ; n� 1g; (3.4)

it follows that D1 consists of those (g0B; : : : ; gnB) 2 X̄(w) such that g�1
0 g1 2 B.

But then
g�1

0 F(g0) = (g�1
0 g1)(g�1

1 g2) : : : (g�1
n�1gn)(g�1

n F(g0))
is a product of elements from P. Hence D1 is mapped to the (finitely many)
points gP of G=P satisfying g�1F(g) 2 P.

REMARK 3.10. Let g 2 PF, � 2 A�(X̄(w)� D1). Then ��� = ��(g�), hence
g�= � in A�(X̄(w)) (when � is supported on X̄(w)�D1 we have ��(���)= �).

EXAMPLE 3.11 ( 2A3 case). In this case P = hB; Bs2B; Bs3Bi with F-stable
subgroup P = hB; Bs2Bi. Consider the projection � : (G=B)3! G=B! G=P '
P3. We have �(X̄(w)) = Z( f ), f = Xq+1

+ Yq+1
+ Zq+1. D1 is the union of (q2

+

1)(q3
+ 1) lines and D2 =

`
g2M g:V where V is the component of D2 containing

eB and M is a set of representatives of GF=Bs1s3B
F
. We have #M= (q3

+ 1)(q+
1). A set of representatives could for example be:

M = eB=B[ (Bs2B)F=B[ (Bs1s2s3B[ Bs3s2s1B)F=B

[ (Bs1s2s3s2B[ Bs3s2s1s2B)F=B

(there are 1+ q+ q3
+ q4 elements here). Under the projection G=B! G=P,

(Bs2B)F=B is mapped to eP. The second contribution is mapped to q different
points and the last to q2 other points. Hence, M is mapped to 1+ q+ q2 points.
(For q = 2 this equals 7; compare Example B.7.)
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To avoid confusion, let us recapitulate [Har70, p. 119] the following:

DEFINITION 3.12. A closed subscheme Y of PN of codimension r is called
an ideal-theoretic (or strict) complete intersection if Y is the scheme-theoretic inter-
section of r hyper-surfaces H1; : : : ; Hr in PN. In algebraic terms, if we let the
hyper-surfaces be defined by the homogeneous polynomials f1; : : : ; fr, then
Y = Proj(k[X0; : : : ; XN]=I) with I = ( f1; : : : ; fr).

A closed subset Y � PN is said to be a set-theoretic complete intersection if it
is the support of an ideal-theoretic complete intersection.

EXAMPLE 3.13. The ‘standard’ example of a set-theoretic complete inter-
section that is not a strict complete intersection is the image in P3 of the 3-uple
embedding of P1 (a point (t : u) 2 P1 is mapped to (t3 : t2u : tu2 : u3) 2 P3). The
curve C is given (set-theoretically) by

C = f(x; y; x;w)2 P4 : y3
+ x2w = 2xyzg\ f(x; y; x;w)2 P4 : z2

= ywg
but the ideal of functions vanishing on C cannot be generated by less than
three elements. The three linearly independent functions xw� yz; xz � y2

and yw� z2 obviously vanish on C, and

rad(y3
+ x2w� 2xyz; z2� yw)= (xw� yz; xz� y2; yw� z2):

THEOREM 3.14. Let X̄(w) be a standard Deligne-Lusztig variety of type
2An; Bn; Cn, Dn or 2Dn. Let P be as in Lemma 3.9 and let

� : (G=B)l(w)+1! G=P

be the projection. Then the image Z = �(X̄(w)) is a normal strict complete
intersection, possibly with singularities in Z(FqÆa0 ). For l(w)� 4,

Pic(X̄(w)) = Z[f[V] : V component of some Di; i 2 I g]�Z[��H] (3.5)

where H is the hyperplane section of Z. (Since X̄(w) is non-singular we do of
course have the same equality for Al(w)�1(X̄(w)).)

In all of the mentioned cases, the rank of the Picard group is unchanged if
we replace X̄(w) by a (not necessarily standard) Deligne-Lusztig variety aris-
ing from a Coxeter element F-conjugated to w.

PROOF. First we will handle the non- 2Dn case. From Lemma 3.9 it fol-
lows that � contracts the divisor D1 mapping it to the FqÆ -rational points of
G=P� P(V)' PN�1 (this inclusion is an equality in the non-orthogonal cases).
Consider the hypersurfaces in PN�1:

Hi = f(x1 : x2 : � � � : xN) 2 PN�1 : hx; Fi
V(x)i= 0g

where i = 0; 1; � � � ; a0� 1 (a0 is defined as above) and H0 = f(x1 : x2 : � � � : xN) 2
PN�1 : Q(x) = 0g in the orthogonal case. Note that in the Cn-case H0 = P(V)
since h ; iSp is alternating.

Lusztig shows [Lus76b] that Z equals the support of the scheme-theoretic
complete intersection Z0

= \a0�1
i=0 Hi with X(w) mapping isomorphically onto
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the open subset hx; Fa0
V (x)i 6= 0 of Z; see also Table 3.1. We claim that Z 0 and

2A2n+1
2A2n Bn Cn Dn

2Dn

dim(P(V))= N� 1 2n+ 1 2n 2n 2n� 1 2n� 1 2n� 1
dim(X̄(w)) = dim(Z) n+ 1 n n n n n� 1
a0 n n n n n� 1 n

#equations defining Z n n n n� 1 n� 1 n

equation for H0
P

j Xq+1
j

P
j Xq+1

j

P
j X2

j none
P

j X2
j

P
j X2

j

TABLE 3.1. Data relating to Deligne-Lusztig varieties of ‘clas-
sical’ type. The condition hx; xi= 0 is always true in the sym-
plectic case, whence the difference in the Cn-case between
a0 and the number of defining equations. We see that in all
cases Z has the ‘correct’ codimension in P(V). The equations
for the hypersurfaces have in some cases been transformed to
the (equivalent) diagonal form via a projective transformation
(possibly with coefficients in a larger field). This allows us to

use the common expression
P

j XqiÆ+1
+1

j = 0 for all Hi, i > 0.

Z are equal as schemes; that is, if we let fi 2 k[X1; : : : ; XN] denote the form
defining the hypersurface Hi, then the ideal ( f0; : : : ; fa0�1) is prime. Indeed, Z0

is a complete intersection and is therefore Cohen-Macaulay.3 So the problem
amounts to showing that Z0 is regular in codimension 1 (by Serre’s Criterion
for normality [Har77, Proposition II.8.23]). So suppose P = (x1 : x2 : � � � : xN) 2
Z0 is a singular point. Then, for each i = 0; 1; : : : ; a0 � 1, we have in the non-
orthogonal cases, an equation (see Table 3.1)

1
qiÆ+1+ 1

NX
j=1

@ fi

@Xj
(P)(Xj� xj) =

NX
j=1

xqiÆ+1

j (Xj� xj) = 0 (3.6)

3Additional note: By Hartshorne’s Connectedness Theorem (see for example [Eis95, Theo-
rem 18.12]) Z0 is then connected in codimension two. That is, removing a subset of codimension
at least two cannot make Z0 disconnected. This also follows from the more general Fulton-Hansen
Connectedness Theorem [FH79]. In [Han83] where this theorem was generalized from P

n to general
flag manifolds, it was also proved that an intersection of two normal sub-varieties V (dimension
v), W (dimension w) of Pn is (v + w � n � 1)-connected. So in any case, if we did not already
have the information that Z0 is irreducible (because Z is), we could deduce this from proving that
the singular locus is of codimension at least two (any two irreducible components would have to
meet along a singular subvariety of codimension one).

From [Har77, Theorem III.7.11] it follows that Z � P
N�1 has dualizing sheaf !Æ

Z =

OZ(
P

i deg(Hi)� (N+ 2)). See also [Har77, Exercise II.8.4].
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for the tangent-space to the hyper-plane Hi at P. Since each Hi is non-singular,
P is only singular when some two of these tangent planes coincide. So, for

some integers, r and s say, we have that xqrÆ+1

j = xqsÆ+1

j for all j. Assuming r < s,
we arrive at the equalities

xqrÆ+1

j =

�
xqrÆ+1

j

�q(s�r)Æ

; j = 1; : : : ; N:

Hence, xi 2 FqÆa0 for all i.
In the orthogonal cases similar arguments apply since any one of the Hi

(i > 0) intersects the quadric H0 ' G=P transversely. Hence the singularities
of Z0 (if any) consist of the finitely many k0-rational points of Z0 for some finite
extension k0 of Fq .4

It follows that Z0 is regular in codimension one (the singularities being of
codimension dim(Z)) and therefore Z and Z0 are equal as schemes. This also
shows that Z is normal [Har77, Proposition II.8.23].

From Corollary A.15 it now follows that, under the assumption dim(Z)=
l(w)� 4,

Pic(Z)= Al(w)�1(Z� Z(FqÆa0 ))= Al(w)�1(Z):

As l(w) � 3, Pic(Z) = Z by the Lefschetz theorem for Picard groups [Gro68,
Exposé XII, Corollaire 3.7] (see also page 85). Now the claim follows from
Lemma A.8 and Lemma A.9.

The 2Dn case is only little different. Again we have a birational morphism
� : X̄(w) [ X̄(F(w))! Z contracting the divisor D1 [ F(D1) to points. Since
X(w)[ X(F(w)) is isomorphic to an open subset of the complete intersection Z
having a projective complement of codimension 1, Pic(X(w)[ X(F(w))) has to
have rank 0. Since both X(w) and X(F(w)) are open in X(w)[ X(F(w)) each of
these varieties will also have Picard group of rank 0. Lemma A.2 then yields
the wanted result.

Finally, the last assertion follows from Lemma 3.5

EXAMPLE 3.15. Consider X(w), l(w)� 4. Suppose X(w) is standard of type
2An. From [Lus76a, Corollary (2.10)] and [Jan96, C.29-30] it follows that we
have a decomposition

Ak(X(w)=UF
I )=

M
i+ j=k

Ai(XI(w))
 A j(A 1 �f0g):

By choosing I to correspond to the ‘last l(w)� 1 orbits’ we get that XI(w) is a
standard Deligne-Lusztig variety of type 2An�1 (of dimension l(w)� 1). Using

4Alternatively, we could have used the Jacobian Criterion for singularities: the singular locus

of Z0 is the zeros of the ideal J generated by the a0� a0-minors of the Jacobian matrix
�

@ fi
@Xj

�
. These

polynomials are simultaneously zero at a point P= (x1 : x2 : � � � : xN) only if P is FqÆa0 -rational.
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this recursively we get Al(w)�1(X(w))Q = 0 also in the 2A3, 2A4, 2A5 and 2A6
cases: we have

0= Al(w)(X(w))� Al(w)(X(w)=UF
i )Q ' Al(w)�1(XI(w))Q:

Similarly, we can describe the Picard group of the B2 and B3 cases as a quotient
of the Picard group of some Deligne-Lusztig variety of dimension 4 or more.
It follows that, in either case, A1(X̄(w))Q is generated by the classes of the
components of the boundary divisors D1 and D2.

From these remarks it follows that to prove Conjecture 1 for a a given
standard Deligne-Lusztig variety of classical type, it is sufficient to prove it
for just one standard Deligne-Lusztig variety (of the same type, of course) of
higher dimension.

REMARK 3.16. From the proof of the theorem we get that, for standard
Deligne-Lusztig varieties of classical type, X(w) is the complement (in Z) of
the ample divisor Ha0 . Hence in this special case, we get a much simpler proof
of the affinity of X(w) cf. [Har70, Proposition II.2.1].

EXAMPLE 3.17 ( 2A4 case). Let us examine the 2A4-case:

s1
uu ))

s2

vv ))

s3 s4

with X̄(w) = X̄(s1s2). With the notation introduced above, Z is the complete
intersection in P4 given by the hyper-surfaces

H0 :
4X

i=0

Xq+1
i = 0 and H1 :

4X
i=0

Xq3
+1

i = 0:

Earlier (Example 1.16) we found that the divisor D1= X̄(s2)� X̄(w) is a disjoint
union of (q5

+ 1)(q+ 1) Hermitian curves and D2 is the disjoint union of (q5
+

1)(q3
+ 1) rational curves. From [DL76, Section 9] one may calculate that the

ample line bundle L(��1) on G=B satisfies

j0�L(��1)
(q5
+1) ' OX̄(w)((q

3
+ 1)D1+ (q+ 1)D2):

Since j0 is finite, it follows that D1 [ D2 is the support of an ample divisor.
Hence D1 [ D2 is connected [Har77, Corollary III.7.9].

Consider the composite morphism � : X̄(w)! Z! P4. As calculated in
Example 4.24, the Hermitian curves all have self-intersection �(q+ 1) and the
rational curves have self-intersection �q2. It follows that

D1 � [fibre]= �(q+ 1) and D2 � [fibre]= q3
+ 1:

So we may write [Ful83, 8.3.11]

��OP4(q5
+ 1)= (q3

+ 1)D1+ (q+ 1)D2
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(which is indeed consistent with the fact that L(��1) is the pull-back of OP4(1)
under the projection G=B! G=P' P4). We also find that

deg j0�L(��1)[fibre]=
1

q5+ 1
��(q+ 1)(q3

+ 1)+ (q+ 1)(q3
+ 1)

�
= 0

deg j0�L(��1)[rational curve] =
1

q5+ 1
�
(q3
+ 1)(q2

+ 1)� q2(q+ 1)
�
= 1:

How are the rational and Hermitian curves configured in X̄(w)? We know the
following facts:

� As the action of GF on X̄(w) permutes both the rational and the Her-
mitian curves, it follows that if a rational curve intersects one Hermit-
ian curve, it must also intersect q2 others (consider the automorphisms
g 2 GF fixing the Hermitian curve).

� Since the morphism � : X̄(w)! Z collapses the Hermitian curves to
points, there will pass

(# of components in D2)(# of rational points on a comp.)
(# of rational points on Z)

=

(q5
+ 1)(q3

+ 1)(q2
+ 1)

(q5+ 1)(q2+ 1)
= q3

+ 1

lines through any rational point of Z.

Combined with the knowledge that the curves has to connect all components
of D1 and D2, these properties force the curves to be configured as follows:
Schematically, imagine (q5

+ 1)(q3
+ 1) circles (the rational curves) distributed

disjointly around the surface of a torus. Number these from 1 to (q5
+ 1)(q3

+

1). Each of these curves have (q2
+ 1) rational points. Through each rational

point of the i’th rational curve goes a loop (Hermitian curve) around the torus
connecting the point to a rational point on every i+ j(q5

+ 1)’th rational curve
( j = 1; 2; : : : ; q3

+ 1).5

From Example 3.15 it follows that the Picard group of X̄(w) is generated
by the components of D1 and D2 (modulo torsion). See also Example 4.24.

REMARK 3.18. From [Har77, Proposition II.7.17] it follows that the bira-
tional morphism � : X̄(w)! Z may be identified with the blow-up BlI Z! Z
along some coherent sheaf of ideals I. In the surface case, I has to have zero-
locus equal to the image of D1: By the universal property of blow-up, � fac-
tors through BlI Z giving a bijective projective (hence finite) and surjective
morphism X̄(w)! BlI Z which has to be the normalisation of BlI Z. Since Z is
normal, so is BlI Z, hence the induced morphism is an isomorphism. In higher
dimensions it is not (a priori) obvious that the induced morphism should be
surjective and bijective.

5A more concise way of stating this (communicated to the author by F. Rodier), is to say that
the curves make a graph dual to the Bruhat-Tits building of the 2A4-group.
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3.3. Relating the Chow ring of X̄(w) to that of G=B

Deligne-Lusztig varieties have some resemblance to Schubert varieties Xw.
Therefore it is natural to ask if their Chow rings are related. We show that
this is indeed the case: the intersection product of two properly intersecting
Deligne-Lusztig subvarieties of A�(X̄(w))Q is determined by the intersection
of the two corresponding generators of the Chow ring of the Demazure desin-
gularisation Zw of Xw.

Introduce the notation CH�(Y) for the Chow ring of a non-singular variety
cf. [Ful83, 8.1]. If we only are interested in the additive structure of CH�(Y) we
shall just write A�(Y) as usual.

3.3.1. The Chow groups of G=B. Chow groups of flag varieties was
first described in Chevalley’s (unpublished) manuscript [Che94] and later in
[Dem74, Dem76]. The following facts are sufficient for our purposes:

1. The action of G induced on A�(X) is trivial.
2. f[Xw] : w 2 Wg is a basis of A�(X) with [Xw] 2 Al(w)(X). Setting Yw =

Xw0w we get that f[Yw] : w 2Wg is a basis of CH�(X); [Yw] 2 CHl(w)(X).
These bases are dual, in the sense that

[Xw] � [Yw0]= [Xw \w0Yw0] =

(
[fẇBg] w = w0

0 otherwise.
(3.7)

3. CH�(X) is generated in degree 1: any Schubert variety Xw of codimen-
sion� 1 is a component in an iterated intersection of Schubert varieties
of codimension 1.

4. The intersection pairing

CH 1(X)�CH k(X)! CH k�1(X)

is given in terms of the Cartan matrix (Ai j) of G: let �i 2 X0 be the
fundamental weight corresponding to the root �i. These are given in
terms of a base-change under the Cartan matrix (and are listed in e.g.
[Hum72, p. 69]). Then, for w 2W and si 2 S,

[Ysi] � [Yw]=
X

f�2Φ+:l(ws�)=l(w)+1g

h�i; �
_i[Yws�]: (3.8)

5. Let us also mention Demazure’s nice formula [Dem76],

0 =
X

fw02W:l(w0)+l(w0�1w)=l(w)g

(�1)l(w0)[Yw0] � [Yw�1w0] (3.9)

for all w 6= e.

PROPOSITION 3.19. The cycles f[X(w)] : w 2Wg do also form a basis for
A�(X)Q.

PROOF. Since the cardinality of the set in each degree is correct (being
the same as that of Schubert varieties), we only need to prove that the cycles
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are linearly independent in A�(X)Q. Like in the proof of the corresponding
statement for Schubert varieties, it will suffice to find a set of Q-dual elements
[Dem74]. To this end, let ẇ0 denote a representative of the longest element in
W and let w0 2W be arbitrary. Set Y(w0) = �(L�1(ẇ0Bẇ0B)). Set-theoretically
we have

X(w)\ Y(w0)= �(L�1(BẇB))\ �(L�1(ẇ0Bẇ0B))

= �(L�1(BẇB\ ẇ0Bẇ0B)):

Since BẇB = ��1(Xw) (similarly for w0) it follows from the properties of Schu-
bert varieties that

X(w)\Y(w0) =

(
�(L�1(ẇ0)) w0

= w0w
; otherwise.

(3.10)

Since the intersection is proper when non-empty, we see that we have the
wanted Q-dual basis (X is projective). As F(w0)= w0, it follows that L(w0g)=
L(g) for all g 2 G. Hence X(w)\ Y(w)= X(e).

COROLLARY 3.20. Let X̄(w) be a Deligne-Lusztig variety and let X̄(w1),
X̄(w2) be two different Deligne-Lusztig subvarieties of X̄(w). Then X̄(w1) and
X̄(w2) are linearly independent in A�(X̄(w)) (similarly in X(w)).

PROOF. If X̄(w1) and X̄(w2) are linearly dependent, then so are X(w1) and
X(w2) [Ful83, Theorem 1.4]. Pushing this equivalence forward to A�(X)Q al-
lows us to use Proposition 3.19.

COROLLARY 3.21. Let w0 denote the longest element in W. For k < l(w0)
we have Ak(X(w0))Q = 0. More generally, for all k; n such that k < n � l(w0),
we have that

Ak
�[l(w)�nX(w)

�
Q
= 0: (3.11)

PROOF. From Proposition 3.19 it follows that in the short exact sequence
[Ful83, Proposition 1.8] of finite-dimensional Q-vector spaces,

NM
i=1

Ak
�

X(w0si)
�
Q

'�! Ak(X)Q! Ak(X(w0))Q! 0

' has to be surjective. The first assertion then follows. For the last assertion
we may argue similarly, using the exact sequenceM

l(w)=k

Ak
�

X(w)
�
Q

'�! Ak(X)Q! Ak
�[l(w)>kX(w)

�
Q
! 0

plus the fact that the union [l(w)�nX(w) is open in [l(w)>kX(w).
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3.3.2. The Chow ring of Demazure desingularisations. In this section
we will extract some facts from [Dem74] concerning the the Chow ring of
the desingularisations Zw ! Xw (see also [Mag96]). Recall that we have re-
duced expressions w = s1 � : : : � sn and w0 = s1 � : : : � sM. Let �̃1 = �1; �̃2 =

s1(�2); : : : ; �̃M = s1s2 � � � sM�1(�M) and let wk =
Qk

m=1 si. Furthermore, for any
subset K � [1; M] let wK =

Q
i2K wk Then define root systems R0 = Φ+; R1 =

w1(Φ+); : : : ; RM = wM(Φ+). Let Bi be the Borel subgroup of G for which Ri
comprise the positive roots and let Pi be the parabolic subgroup given by
Ri [ Ri�1 (that is, generated by Bi and Bi�1). Let

Xn = P1�B1 P2�B2 � � � �Bn�1 Pn:

The quotient Xn=Bn can be identified with the quotient of P1 � � � � � Pn by
B1� � � � � Bn acting from by the right by the rule

(p1; p2; : : : ; pn)(b1; b2; : : : ; bn) = (p1b1; b�1
1 p2b2; : : : ; b�1

n�1pnbn):

We have B0-equivariant sections �i and projections fi

X0

��

X1

��

Xn

��

XM

��

X0=B0
�1

// X1=B1

f1
oo

�2
// : : :

f2
oo

�n
// Xn=Bn

�n+1
//

fn
oo : : :

�M
//

fn+1
oo XM=BM:

fM
oo

(3.12)

Then Zw := Xn=Bn is the Demazure desingularisation of Xw. For any i let Zi =

f�1
n : : : f�1

i+1(Im(�i)).6 Then, for any K � [1; n] we have a closed subvariety of
Zw,

ZK = \i2KZi = f(p1; p2; : : : ; pn) : pi represents wi for any i 2 Kg:
We then have

PROPOSITION 3.22 (DEMAZURE). Let the notation be as above. Further-
more, let ti denote the class of the divisor Zfig in A�(Zw). Then,

1. Z; = Zn, ZK \ ZL = ZK[L, codim(ZK)= jKj.
2. For K = [1; i] (i � n), ZK is the typical fibre (over Im(�i)) of the projec-

tion Zn = Xn=Bn ! Xi=Bi. For K = [i + 1; n], ZK is the image of the
immersion of Xi=Bi into Xn=Bn.

3. The symbols n
tK =

Y
i2K

ti : K � [1; n]
o

form a basis of the Z-module A�(Zw).

6It is not always the case that Zi is the desingularisation of Xw0 , w0
= s1 � : : : � ŝi � : : : � sn.

Actually this is only the case when i = n. Then Zi = Zn�1 = the desingularisation of Xs1 �:::�ŝi �:::�sn .
In general we have that Z[k+1;n] is the desingularisation of Xs1 �::: �sk .
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4. As Zw is smooth we have a multiplicative structure on A�(Zw). The
Chow ring CH�(Zw) of Zw is Z[t1; : : : ; tn] modulo the relations

t2
1 = 0

t2
2+ h�̃2; �̃

_
1 it1t2 = 0

...

t2
n+ h�̃n; �̃

_
1 it1tn+ � � �+ h�̃n; �̃

_
n�1itn�1tn = 0:

EXAMPLE 3.23 (A2 case). Consider the A2 case (G = SL3) with w = s1s2
and w0 = s1s2s1. Then t1 = [Z1] = [ f�1

1 (X0=B0)] = [ f�1
1 (pt)] and t2 = [Z2] =

[Im(�2)] = [Zs1]. Since s1(�2) = �2 � h�2; �
_
1 i�1 we get h�2; s1(�2)_i = �1+

2= 1. Hence
CH�(Zw) = Z[t1; t2]=(t2

1; t2
2+ t1t2):

This is not surprising since in this case Zw actually is the blow-up of the plane
in a point; t1 = L� E is the pull-back of a line in the plane minus the excep-
tional divisor (the proper transform of a line through the blown-up point) and
t2 is the exceptional divisor.7

3.3.3. Multiplication in A�(X̄(w)).

PROPOSITION 3.24. Let w be a Coxeter element and let X̄(w) be the corre-
sponding Deligne-Lusztig variety. The intersection product of two Deligne-
Lusztig subvarieties of X̄(w) is determined by the intersection product on
Ō(w).

PROOF. Consider the intersection product

[X̄(w1)] � [X̄(w2)] ; wi � w:

Interpreting (1.14) as an intersection product, it follows [Ful83, Section 8.1]
that there is a Gysin homomorphism


 0
� : Ak

�
Ō(w)

�! Ak
�

X̄(w)
�

(3.13)

such that for w0 � w we have 
 0�[Ō(w0)] = [X̄(w0)] in Ak
�

X̄(w)
�
. Since both

Ō(w) and X̄(w) are non-singular, 
 0� is a ring-homomorphism [Ful83, Propo-
sition 8.3], hence

[X̄(w1)] � [X̄(w2)]= 
 0
��[Ō(w1)] � [Ō(w2)]

�
(3.14)

and the assertion follows.

COROLLARY 3.25. Let w1;w2 � w be such that the intersection Zw1 \ Zw1

is proper. Suppose
[Zw1] � [Zw2]=

X
w02W

nw0[Zw0]

7Zw may also be realized as the ruled surface P(O
P1 �OP1(�1)) over Zs1 ' P

1 (Hartshorne’s
notation here). Then t1 is the class of a fiber and t2 is the class of a section.
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in A�

�
Zw
�
. Then

[Ō(w1)] � [Ō(w2)]=
X

w02W

nw0[Ō(w0)]

in A�

�
Ō(w)

�
, hence

[X̄(w1)] � [X̄(w2)]=
X

w02W

nw0[X̄(w0)] (3.15)

in A�

�
X̄(w)

�
.

PROOF. The first assertion follows from the local nature of the construc-
tion of the associated bundles Ō(w) (see Section A.2). The last equality is ob-
vious from Proposition 3.24.

EXAMPLE 3.26 (A2 case). In this case X̄(w) arises as the blow-up of the
projective plane P2 in the rational points P2(Fq ). D1 is equal to the exceptional
divisor E and D2 equals the pull-back of OP2(q2

+ q+ 1) minus (q+ 1)E (see
also Example 1 in Chapter 4). From the above it follows that

[D1] � [D2]= (coefficient to Zs1s2 in Zs1 � Zs2)[X̄(e)]= [X(e)]:

Using the explicit description we have at hand, we may check this:

deg([D1] � [D2])= deg(E � (��OP2(q2
+ q+ 1)� (q+ 1)E))

= �(q+ 1) deg(E2) = (q+ 1)#P2(Fq )

= (q+ 1)(q2
+ q+ 1):

Furthermore, deg(D2
1)= deg(E2)=�(q2

+ q+1) and deg(D2
2)=�q(q2

+ q+1):

REMARK 3.27. Since X is a homogeneous space, the tangent bundle TX is
generated by its global sections cf. [Ful83, 12.2.1]. It would also be convenient
if TX̄(w) were generated by its global sections, because in that case intersections
of non-negative cycles would give non-negative cycles in A�(X̄(w)) cf. [Ful83,
Theorem 12.2]. However, as the above example shows, this cannot (in general)
be the case.

REMARK 3.28. Using the explicit description of j0�L(�) (see Chapter 4) we
may give an alternative way of intersecting two boundary components Di and
Dj. Choose �i 2 X(T)Q (resp. � j) such that j0�L(�i) = OX̄(w)(Di) (similarly for
j). Let D= c1(L(� j))\ X =

PN
k=1�h� j; �

_
k iXw0sk be the divisor in X defined by

L(� j). Then

[Di] � [Dj] = c1( j0�L(�i))\ [Dj]= j0�(c1(L(�i))\ D) (3.16)

= j0�
 
�

NX
k=1

" X
�2Φ+:l(w0sks�)=N�2

h� j; �
_
k ih�i; �

_iXw0sks�

#!
(3.17)

(see [Dem74, p. 78]).
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CHAPTER 4

Canonical bundles of Deligne-Lusztig varieties

In this chapter we have reproduced the body of the article Canonical bun-
dles of Deligne-Lusztig varieties [HH99a]. Please observe that the references
made in the paper refer to the bibliography at the end of this thesis. In the
last section of this chapter, we make some supplementary remarks to the re-
sults of the paper.

Let us make a few introductory remarks. The paper was originally mo-
tivated by the question whether Deligne-Lusztig varieties are Frobenius split
or not. Soon, however, it was apparent that this was not in general to be ex-
pected. Instead one could actually prove ampleness of the canonical bundle
in some cases.

Later on it became evident from the work with the Picard groups (see
Chapter 3) that Deligne-Lusztig varieties are almost never Frobenius split. We
give the proof below.

4.1. Criteria for Frobenius splitting

General reference for this section is [MR85]. See also [MR88, IM94, LT97,
BTLM97, LM99, MT99].

DEFINITION 4.1. Let F̃ : X! X0 denote the absolute Frobenius morphism
on an algebraic variety X (see for example [Har77, p. 301]).

1. X is Frobenius split if the morphism OX0 ! F̃�OX is a split homomor-
phism of OX0-modules.

2. Given a splitting � : F̃�OX ! OX0 we call a closed subscheme Y � X
compatibly �-split if �(F̃�(IY))� IY0 .

The following proposition [MR85, Proposition 8] is a good tool for finding
splittings (if possible).

PROPOSITION 4.2. Let X be an n-dimensional non-singular projective va-
riety over k. Suppose the inverse canonical bundle K�1

X has a global section
s 2 H0(X; K�1

X ) such that the divisor of zeros (s)0 decomposes into a sum of
effective prime divisors

(s)0 = Z1 + � � �+ Zn + E

33
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where the Zi are non-singular and intersect transversally. If the point P =
Z1 \ � � � \ Zn is not contained in the support of E then s defines a splitting
� : F̃�OX ! OX0 which compatibly splits the Zi.

PROOF. (Sketch). Duality for the finite flat morphism F̃ : X ! X0 gives
(using [Har77, Exercises III.6.10+III.7.2])

Hom(F̃�OX;OX0)' H0(X; K
1�p
X ):

Since X is projective, any regular function is constant. So in order to get a
splitting we only need to find a global section s 2 H0(X; K�1

X ) and one point
where F composed with the induced splitting is non-zero.

The decomposition of (s)0 means that, in a neighborhood of P,

s = h � x1 � : : : � xn
 1
dx1 � : : : � dxn

for a regular system of parameters (x1; : : : ; xn) in P with h 62mP, that is, h(P) 6=
0. Then the power series expansion of sp�1 in \(K
p�1

X )P = K
p�1
X )P 
 dOX;P has

non-zero coefficient to the (x1 � : : : � xn)
p�1
 1
(dx1�:::�dxn)
p�1 part. One then ver-

ifies that this is exactly what is needed to make the composite non-zero in the
point P.

REMARK 4.3. Conversely, it follows from [MR85, Proposition 6] that if
H0(X; K
1�p

X ) = 0, X cannot be Frobenius split. This is for example the case
if KX (hence also K
p�1

X ) is ample (from [Har77, Exercise III.7.1] we have that
H0(X; L�1) = 0 whenever L is an ample line bundle on a non-singular projec-
tive variety X).

If X is a non-singular curve, a line bundle L ' OX(D) is ample if and only
if deg D > 0. In particular, KX = OX(2g� 2) is ample if and only if g > 1.

Consider the non-singular projective plane 2A2 curve X̄(w) given by the
equation Xq+1

+Yq+1
+ Zq+1

= 0. For q= 2 this is a non-singular elliptic curve
(of Hasse-invariant 0 [Har77, Proposition IV.4.21]), hence KX̄(w) = OX̄(w)(2g�
2) = OX̄(w) is neither ample or anti-ample. (A direct calculation of the homo-
morphism H1(X̄(w);OX̄(w))! H1(X̄(w);O
2

X̄(w)) shows that this map is the zero
map, hence X̄(w) is not Frobenius split either [MR85, Proposition 9].)

THEOREM 4.4. Let X̄(w) be a standard Deligne-Lusztig variety of type
2An, 2B2, Bn, Cn, 2F4 or 2G2. Then X̄(w) is not Frobenius split whenever
q > 2 or l(w)� 3.1

PROOF. In all of the mentioned cases, we have (cf. Chapter 3) a surjective
morphism of normal projective varieties � : X̄(w)! Z with the property that
��OX̄(w) = OZ [Jan87, p. 400]. Hence, if we had a splitting, we could push it

1The assumption is a bit more than sufficient. What precisely is needed is that the degrees
of the hypersurfaces cutting out Z sum up to more than 1 plus the dimension of the surrounding
projective space.
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forward with � to obtain a splitting of Z [MR85, Proposition 4]. But since Z is
a complete intersection in Pn cut out by hypersurfaces of total degree strictly
larger than n+ 1, it cannot be Frobenius split [Koc97, Corollary 2.7]

REMARK 4.5. Similarly, we do not in general expect the Frobenius on a
Deligne-Lusztig variety to lift to the Witt vectors of length 2 as this would
imply Bott vanishing for X̄(w) (cf. [BTLM97]): Let L be an ample line bundle
on X̄(w). Then Hi(X̄(w);Ω j

X̄(w)
 L)= 0 for i > 0 and any j.

Consider for example the 2A3 case where X̄(w) is the blow-up of a non-
singular Fermat hypersurface S � P3 of degree q+ 1. Let L = OX̄(w)(1) and
let � denote the blow-up morphism which is trivial (in the sense of Defi-
nition B.16). Since KX̄(w) = ��KS 
 OX̄(w)(�1), we get Hi(X̄(w);Ω2

X̄(w) 
 L) =

Hi(X̄(w); ��KS)= Hi(S; KS). By shifting the short exact sequence

0 // OP3(�(q+ 1)) // OP3 // OS
// 0

with KS = OS(q� 3) we get from the induced long exact cohomology sequence
that H2(S; KS) ' k 6= 0. Hence Bott vanishing does not apply to this particular
Deligne-Lusztig variety.
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Canonical bundles of Deligne-Lusztig varietiesy

SØREN HAVE HANSEN

ABSTRACT. In this paper we consider Deligne-Lusztig varieties.
We explicitly describe the canonical bundles of their smooth com-
pactifications in terms of homogeneous line bundles pulled back
from G=B. Using this description we show that the members
(one member in each dimension) of a special family of Deligne-
Lusztig varieties have ample canonical bundles. A consequence
is that, unlike the closely related Schubert varieties, Deligne-
Lusztig varieties are not in general Frobenius split.
Several examples are given. Among these we exhibit (Exam-
ple 4.21) an infinite family of counter-examples to the Miyaoka-
Yau inequality (one for each prime power).

4.2. Deligne-Lusztig varieties

Let (G; F) be a connected reductive algebraic group equipped with an Fq -
structure coming from a Frobenius morphism F : G! G. Let L : G! G be the
Lang map taking an element g 2 G to g�1F(g). By the Lang-Steinberg Theorem
[Bor92, Theorem 16.3] this morphism of varieties is surjective with finite fibres.
From this result it follows that, by conjugacy of tori and Borel subgroups, there
exists F-stable maximal tori and Borel subgroups. Hence there are (with abuse
of notation) natural endomorphisms F : W ! W and F : X ! X of the Weyl
group of G and the variety X of Borel subgroups of G. Let W be generated by
the simple reflections s1; : : : ; sN and let l(�) be the length function with respect
to these generators.

Fix an F-stable Borel subgroup B � G containing an F-stable maximal
torus T. Let � : G! G=B' X be the projection. Let U be the unipotent radical
of B (also F-stable as B and T are) and denote by Φ+ the set of positive roots
with respect to B. Let X(T) be the k-valued characters of T. (All this notation
is explained in e. g. [Car85, Chapter 1].) For any � 2 X(T), the homogeneous
line bundle L(�) on X will be ample (very ample, in fact) if � is strictly anti-
dominant (negative with respect to the basis f�1; : : : ; �Ng of X(T) determined
by Φ+) [Jan87, p. 231].

DEFINITION 4.6. Fix an element w in the Weyl group W and let w = si1 �
: : : � sin be a reduced expression. Call w a Coxeter element if there is exactly one
si from each of the orbits of F on fs1; : : : ; sNg.

yThis article appeared in Manuscripta Math. 98 (1999) pp. 363-375.
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1. Define the (open) Deligne-Lusztig variety X(w) to be the image of
L�1(BẇB) in G=B. That is,

X(w)= �(L�1(BẇB)):

We shall think of the points of X(w) as Borel subgroups of G.
2. Define the closed subvariety of Xn+1

X̄(si1 ; : : : ; sin) = f(g0B; : : : ; gnB) 2 Xn+1 :

g�1
k gk+1 2 B[ Bsik+1 B for 0� k < n; gn = F(g0)g:

For brevity, we will write X̄(w) for this variety. For any w0 � w, X̄(w0)
defines in a natural way a closed subvariety of X̄(w). In particular there
are divisors

Dj = X̄(si1 ; : : : ; ŝi j
; : : : ; sin ) ; j = 1; : : : ; n:

3. When G is semi-simple with connected Dynkin diagram, there is a nat-
ural choice of Coxeter element: let w= si1 � : : : � sin where i1 = 1 and any
pair i j, i j+1 correspond to two joined nodes. When choosing this Cox-
eter element, we shall refer to X̄(w) as being the Deligne-Lusztig variety
corresponding to (G; F).

Since L is flat, it is open, hence L�1(BẇB)= L�1
�

BẇB
�
. So X(w) is smooth

of dimension n and the closure of X(w) in X is given by the disjoint union

X(w)=
[

w0�w

X(w0); (4.1)

where as usual � is the Bruhat order in W. This closure is singular whenever
the Schubert variety Xw = BẇB=B is. But since the open subset

f(g0B; : : : ; gnB) 2 Xn+1 : g�1
k gk+1 2 Bsik+1 B; 0 � k < n; gn = F(g0)g

of the smooth projective variety X̄(w) [DL76, 9.10] maps isomorphically onto
X(w) under projection to the first factor, we have a good compactification of
X(w). In fact the complement of X(w) in X̄(w), which is easily seen to be the
union of the Dj’s, is a divisor with normal crossings [DL76, 9.11]. If w is a Cox-
eter element, then X(w) and X̄(w) are irreducible [Lus76a, Proposition (4.8)].

REMARK 4.7. Groups GF arising as the fixed-points of a Frobenius mor-
phism acting on a reductive, connected linear algebraic group are called finite
groups of Lie type. It was the search for a unified description of the characteris-
tic zero representations of these groups that led Deligne and Lusztig [DL76] to
the construction of Deligne-Lusztig varieties. (GF acts on X(w) as a group of
automorphisms inducing an action on the `-adic cohomology vector spaces.
See also [Haa86].)

REMARK 4.8. There is an equivalent way of defining X(w) and X̄(si1 � : : : �
sin ) which will be useful later on. Define the locally closed subvariety of X�X,

O(w)= f(g0B; g1B) 2 X� X : g�1
0 g1 2 BwBg
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(the orbit of (eB; ẇB) under the diagonal action of G). Denote its closure by
O(w). Let i = (id; F) be the graph map of F. Then we have the following pull-
back diagram

X(w)

��

// O(w)

��

X
i // X� X:

That is, X(w) is the transversal intersection of O(w) and the graph of F inside
X� X (see [DL76, 1.4+(1.11.1)]). We have a Demazure-type desingularisation
Ō(s1; : : : ; sn) of O(w). Intersecting with the graph of F we actually get the
corresponding smooth compactification

X̄(s1; : : : ; sn) //

j0

��

Ō(s1; : : : ; sn)

j

��

X
i // X� X

of X(w) [DL76, 9.10+9.11]. We shall write Ō(w) for Ō(s1; : : : ; sn).

LEMMA 4.9. Let w 2W have reduced expression w = si1 � : : : � sin with all
i j distinct. Then the resolution ' : Ō(w)! O(w) is bijective. Hence also the
resolution '0 : X̄(w)! X(w) is bijective.

PROOF. We prove the claim by induction on l(w). For l(w) = 0 the claim
is trivially true. So assume l(w) > 0. Since ' is an isomorphism over O(w) we
only need to show that ' is bijective on any O(w0) with w0 � w and l(w0) =
l(w)� 1. Now, any such w0 is obtained from the reduced expression of w by
omitting a unique sij

. That is, there exists a unique index j such that

w0
= si1 � : : : � ŝi j

� : : : � sin

and this is a reduced expression of w0 (by the special property of w). But then
w0 satisfies the induction hypothesis and the assertion follows.

REMARK 4.10. Suppose L is an ample line bundle on X. Since j0 is the
composition of the closed immersion j of X(w) in X and the resolution '0 :
X̄(w)! X(w), it follows that j0�L is ample when '0 is finite. This is for example
the case when w is a Coxeter element (Lemma 4.9).

4.3. The Canonical Bundle

Let @X be the sum of the codimension one Schubert varieties of X (sim-
ilarly with Ō(w) and X̄(w)). Since the positive roots correspond to B we have
KX = OX(�2@X)= L(2�) (� being half the sum of the positive roots). Since �
is strictly dominant, K�1

X = L(�2�) and L(��) are ample line bundles on X.



40 4. CANONICAL BUNDLES OF DELIGNE-LUSZTIG VARIETIES

Recall that the commutative diagram

X̄(s1; : : : ; sn) //

j0

��

Ō(s1; : : : ; sn)

j

��

X
i // X� X

( j maps (B0; : : : ; Bn) to (B0; Bn)) arises as the pull-back of the commutative
diagram of closed embeddings

X(w) //

��

O(w)

��

X
i=(id;F)

// X� X

via the desingularisation ' : Ō(w)! O(w). Furthermore, we have at the bot-
tom the triangle

X
i=(id;F)

//

F
  

AAAAAAAA X� X
pr1

oo

pr2
{{wwwwwwww

X:

As pr1 Æ j Æ i0 = j0 and pr2 Æ j Æ i0 = F Æ j0, it follows that

i0�
�

j�( pr�1L(�)
 pr�2L(�))
�
= j0�(L(�)
 F�L(�)): (4.2)

By definition, @ X̄(w) is the restriction of @Ō(w) to X̄(w), hence we have

i0�OŌ(w)(@Ō(w))= OX̄(w)(@ X̄(w)):

PROPOSITION 4.11. Let X̄(w) be a Deligne-Lusztig variety. Then the ca-
nonical bundle KX̄(w) is given by

KX̄(w) = OX̄(w)(�@ X̄(w))
 j0�L(�� F(�)): (4.3)

PROOF. By the adjunction formula [Ful83, B.7.2] we have

KX̄(w) = i0�KŌ(w)
^rNX̄(w)Ō(w)

= i0�KŌ(w)
^r j0�Ni(X)(X� X)

(the last equality since i and i0 are regular closed embeddings of the same
codimension). Now

KŌ(w) = OŌ(w)(�@Ō(w))
 j�( pr�1L(�)
 pr�2L(�))
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cf. [MR88, Proposition 2]3 and by [Ful83, B.7.3]

^rNi(X)(X� X)= ^rF�TX = F� ^r
TX

= F�K�1
X = F�L(�2�):

Combining these equalities with (4.2) the proposition follows.

4.4. Computation of the canonical bundle K X̄(w)

We will in this section refine the description of KX̄(w). For simplicity we
will assume that we are not in any of the cases 2B2, 2G2 and 2F4. (These cases
have been treated separately in [Han92] and [Rod96].) Then F is a standard
Frobenius morphism and F(� j)= q�i where q is a positive integral power of p.
In particular, F(�)= q�.

REMARK 4.12. Let A denote the matrix of the linear map sending the char-
acter � to F(w�1(�))� � with respect to the basis f�1; : : : ; �Ng of X(T). Let
� 2 X(T). Write � = A� for some � 2 X(T)
ZQ (this is always possible
cf. [Haa86, 2.3]). Let m be a positive integer such that m� 2 X(T). Set �̃ 1 = �1
and

�̃i = s1 � : : : � si�1(�i) ; i = 2; : : : ; n

and define the integers

vi = hm�; �̃_i i ; i = 1; : : : ; n: (4.4)

Then (see [DL76, 9.5+9.6]) the restriction of the homogeneous line bundleL(�)
to X(w) � X is trivial, that is, L(�)jX(w) ' OX(w). Furthermore, j0�L(m�) has a
section Ψ(ẇ) with divisor of zeros�

Ψ(ẇ)
�

0 =

nX
i=1

viDi:

Hence

j0�L(m�)' OX̄(w)

� nX
i=1

viDi

�
: (4.5)

Now consider the equations and inequalities in the unknown x 2 X(T)
Z
Q:

hx; �̃_i i= �1 ; i = 1; : : : ; n (4.6)

hAx; �_i i < q� 1 ; i = 1; : : : ; N: (4.7)

As hx; �̃_i i= hx; s1 � : : : � si�1(�i)_i= hsi�1 � : : : � s1(x); �_i i, the first equation says
that the i’th coordinate in si�1 � : : : � s1(x) is �1 for i = 1; : : : ; n.

We can then give a nice description of KX̄(w).

3Note that in [MR88] it is the negative roots that are chosen to correspond to B. Therefore we
use � instead of ��.
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PROPOSITION 4.13. Keep the above notation. Suppose � 2 X(T)
ZQ
solves (4.6). Let m be a positive integer such that A(m�) 2 X(T). Then

K
m
X̄(w) = j0�L(m((1� q)�+ A�)): (4.8)

If � also solves (4.7), L(m((1� q)�+ A�)) is a very ample line bundle.

PROOF. By Proposition 4.11, KX̄(w)=OX̄(w)(�@ X̄(w))
 j0�L((1� q)�):From
Remark 4.12 and the assumption (4.6) on � we have

j0�L(A(m�))= OX̄(w)

� nX
i=1

mhx; �̃_i iDi

�
= OX̄(w)(�@ X̄(w))
m:

Hence K
m
X̄(w) = j0�L(m((1� q)�+ A�)). The second assumption (4.7) on � as-

sures that L(m((1� q)�+ A�)) is ample.

In the AN and 2AN cases explicit calculations are amenable and we get an ever
nicer description.

THEOREM 4.14. a) Let G be simple of type AN (of any isogeny type)
and let X̄(w) be the corresponding Deligne-Lusztig variety. Then

KX̄(w) = j0�L((1� q)�+ q�N + �1) (4.9)

b) Let G be simple of type 2A2n�1 (of any isogeny type) and let X̄(w) be
the corresponding Deligne-Lusztig variety. Then

KX̄(w) = j0�L((1� q)�+ q�n� q�n�1+ �1): (4.10)

c) Let G be simple of type 2A2n (of any isogeny type) and let X̄(w) be the
corresponding Deligne-Lusztig variety. Then

K
2
X̄(w) = j0�L(�) (4.11)

where

� = (4� 2q)�1+ (2� 2q)�2+ : : :+ (2� 2q)�n�1+ (2� q)�n

+ (��n+1)+ (2� 2q)�n+2+ : : :+ (2� 2q)�N:

For q > 2 this is the pull-back of a very ample line bundle on X.

PROOF. Suppose � =
PN

i=1 ti�i 2 X(T)
ZQ satisfies (4.6). Then

�1= h�; �_1 i= t1

�1= h�; s1(�2)_i = t1+ t2 = �1+ t2

...

�1= h�; s1 � : : : � sn�1(�n)_i= t1+ : : :+ tn = �1+ 0+ : : :+ 0+ tn:

It follows that � must be on the form � = ��1 +
PN

i=n+1 ti�i. On the other
hand, any � on this form solves (4.6). (In the AN case n = N, hence � = ��1.)
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As (s1 � : : : � sn)�1(��1) = �n � �n+1 and as (s1 � : : : � sn)�1(�i) = �i for i > n, we
get

w�1(�)= �n + (tn+1� 1)�n+1+ tn+2�n+2+ : : :+ tN�N :

Hence in the AN case where F acts by multiplication with q, we have

KX̄(w) = j0�L((1� q)�+ F(w�1(�))� �)

= j0�L((1� q)�+ q�N + �1)

and the assertion in a) follows.
We have seen that for N 6= n we may write

A� =

2666666666666664

1+ qtN

qtN�1
...

qtN�(n�3)
q(tN�(n�2)� 1)

q
�tN�(n�2)

...
�tN

3777777777777775
and A� =

2666666666666664

1+ qtN

qtN�1
...

qtN�(n�2)
q(tN�(n�1)� 1)

q� tN�(n�1)
�tN�(n�2)

...
�tN

3777777777777775
for N= 2n� 1 and N= 2n, respectively. For odd N we see that the n’th coordi-
nate of A�+ (1� q)� always will be q+ (1� q)= 1, so we cannot realize KX̄(w)
as the pull back of an ample homogeneous line bundle L(�) on X. Choosing
ti = 0 for i > 0 we obtain b).

For N = 2n we are in better shape. Choosing tn+1 equal to 3=2 and ti = 0
otherwise, we get that � =��1 + 3=2�n+1 solves (4.6). Furthermore, with this
choice

2(A�+ (1� q)�)= (4� 2q)�1+ (2� 2q)�2+ : : :+ (2� 2q)�n�1

+ (2� q)�n + (��n+1)+ (2� 2q)�n+2+ : : :+ (2� 2q)�N

is strictly anti-dominant and c) follows.

COROLLARY 4.15. Assume q > 2. Let X̄(w) be a Deligne-Lusztig variety
corresponding to the 2AN case (N even). Then KX̄(w) is ample. Hence X̄(w) is
a variety of general type.

PROOF. Combining Theorem 4.14 and Remark 4.10 it follows that K
2
X̄(w) is

ample. But then so is KX̄(w).

COROLLARY 4.16. Let X̄(w) be a Deligne-Lusztig variety corresponding
to the 2AN case (N odd). Then KX̄(w) is not ample.

PROOF. Suppose KX̄(w) = j0�L((1� q)�+ q�n � q�n�1 + �1) is ample. Let
C be one of the components of X̄(sn). Then, since j0 is finite and surjective,
the degree of KX̄(w) along C is the same as the degree of L((1� q)�+ q�n +
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�1) along j0(C). This degree should be positive [Ful83, Lemma 12.1]. By the
projection formula [Ful83, Proposition 3.1.(c)] we may calculate this degree on
either j0(C) or X. Now, since j0(C)' P1 is F-stable and A1(X) is freely generated
by the Schubert varieties Xs1 : : : ; XsN [Dem74], we must have [ j0(C)] = [Xsn]
in A1(X). By [Dem74, Corollaire 1, p. 78] we then get (using the notation of
[Ful83])

deg KX̄(w)jC = degL((1� q)�+ q�n � q�n�1+ �1)j j0(C)

=

Z
X

c1(L((1� q)�+ q�n � q�n�1+ �1))\ [ j0(C)]

=

Z
X

c1(L((1� q)�+ q�n � q�n�1+ �1))\ [Xsn]

= h(1� q)�+ q�n � q�n�1+ �1;��_n i= �1

contradicting the positivity of KX̄(w).

REMARK 4.17. Since KX̄(w) is ample in the 2AN case (N even), it follows
that K�1

X̄(w) has no global sections [Har77, Exercise III.7.1]. Hence X̄(w) can-
not be Frobenius split in the sense of [MR85, Definition 2]. For N odd, other
methods give that K�1

X̄(w) cannot have global sections, and we arrive at the
same conclusion. So despite the similarity in definitions, Deligne-Lusztig vari-
eties and Schubert varieties are very different from each other (the latter being
Frobenius-split varieties).

4.5. Examples

In the following examples we will use the above results to describe the
canonical bundles and compare this to already known results.

EXAMPLE 4.18 ( A2 case). Let X̄(w) correspond to the Dynkin diagram

s1 s2 :

From Theorem 4.14 we get that K
det A
X̄(w) = j0�L(A�) with det A= q2

+ q+ 1 and

� = (det A)A�1
�

2� q
1

�
:

From Remark 4.12 it then follows that

K
det A
X̄(w) = OX̄(w)((q

2� 2q� 2)D1� 3D2):

We may compare this with the following. Let Pi= B[ BsiB, i= 1; 2. Restricting

the composition � : X�X�X
pr1�! X! G=P2 ' P2 to X̄(w) realizes X̄(w) as the

blow-up of P2 in the points GF=PF
2 ' P2(Fq ) (of which there are q2

+ q+ 1). The
exceptional divisor E is identified with X̄(s2) = D1 and the divisor D2 maps
to a union of q2

+ q+ 1 lines. Therefore q2
+ q+ 1 times the hyper-plane class
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h pulls back to D2+ (q+ 1)D1 (each copy of h has q+ 1 rational points on it).
Hence

K
q2
+q+1

X̄(w) = ��K
q2
+q+1

P2 +OX̄(w)((q
2
+ q+ 1)E)

= OX̄(w)(�3(q2
+ q+ 1)��h+ (q2

+ q+ 1)E)

= OX̄(w)(�3D2� 3(q+ 1)D1+ (q2
+ q+ 1)D1)

= OX̄(w)((q
2� 2q� 2)D1� 3D2)

as expected.

EXAMPLE 4.19 ( 2A2 case). Let X̄(w) correspond to the Dynkin diagram

s1

vv ))

s2 :

In this example we will approach the problem in a little different manner. Take
� = �(q+ 1)�1 + (2q� 1)�2. Then A� = det(A)� = (q2 � q+ 1)(�1 + �2) and
therefore

j0�L(det(A)�)= OX̄(w)(h�; s0(�1)_iX(e))

= OX̄(w)(�(q+ 1)X(e)):

Similarly we find that

j0�L(A(�1� 2�2))= j0�L(�(q+ 1)�1� (q� 2)�2)

= OX̄(w)(X(e)):

So we have two different line bundles restricting to line bundles of degree
�(q+ 1)jX(e)j and jX(e)j respectively. Solving for �1 and �2 (using jX(e)j =
q3
+ 1) we find that L(�1) and L(�2) restricts to line bundles of degrees�(q+

1) and �q(q+ 1) respectively. Hence L((1� q)�) restricts to a line bundle of
degree (1� q)(�(q+ 1)� q(q+ 1)). Therefore

deg KX̄(w) = (1� q)(�(q+ 1)� q(q+ 1))� jX(e)j
= q2� q� 2:

Since we know that X̄(w) in this case is a non-singular plane curve of degree
q+ 1 (see [Han92]) we can check:

deg KX̄(w) = 2g� 2 = ((q+ 1)� 1)((q+ 1)� 2)� 2

= q2 � q� 2

Alternatively, by Theorem 4.14, we have K2
X̄(w) = j0�L((4� q)�1 � �2) and we

find that K
det A
X̄(w) = OX̄(w)((q� 2)jX(e)j) (and (q� 2)jX(e)j = det A � deg KX̄(w)).

KX̄(w) is ample if and only if deg KX̄(w) > 0, that is, if and only if q > 2.

EXAMPLE 4.20 ( 2A3 case). Let X̄(w) correspond to the Dynkin diagram

s1
ss ++

s2 s3 :
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X̄(w) is the blow-up of the smooth Fermat surface S in P3 (of degree q+ 1) in
its (q3

+ 1)(q2
+ 1) Fq2 -rational points [Rod96]. Let E be the exceptional divi-

sor. We have KS = OS(q� 3) [Har77, Example II.8.20.3], hence [Har77, Exer-
cise II.8.5]

KX̄(w) = OX̄(w)(q� 3)
OX̄(w)(E):
Since

deg K2
X̄(w) = (q+ 1)(q� 3)2� (q3

+ 1)(q2
+ 1) < 0

[Har77, Exercise V.1.5] for any q, KX̄(w) cannot be ample.

Since (xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 )p�1 always is of degree strictly larger than
p, S cannot be Frobenius split [Koc97, Corollary 2.7]. So neither is X̄(w) (if it
were, we could use [MR85, Proposition 4] to produce a splitting of S).

Following the procedure from Theorem 4.14 we find

KX̄(w) = j0�L((2(1� q)+ qt)�1+ �2+ (1� q� t)�3)

for any integer t. Corollary 4.16 then predicts that the restriction of KX̄(w) to any
of the exceptional divisors has degree �1 (this was of course to be expected
cf. [Har77, Section V.3]).

EXAMPLE 4.21 ( 2A4 case). Let X̄(w) correspond to the Dynkin diagram

s1
uu ))

s2

vv ))

s3 s4 :

We find that

K
2
X̄(w) = j0�L((4� 2q)�1+ (2� q)�2� �3+ (2� 2q)�4)

is ample for any q > 2. Actually this gives an infinite collection of positive
characteristic counter-examples to the Miyaoka-Yau inequality [Miy77, Theo-
rem 4]:

c1(X̄(w))2 � 3c2(X̄(w))
where ci(X̄(w)) = ci(TX̄(w)). Hence the inequality reads: K2

X̄(w) � e(X̄(w)) where
e(X̄(w)) is topological Euler characteristic of X̄(w) (the alternating sum of the
Betti numbers). Proceeding as in Example 4.19 we find that

K
det(A)
X̄(w) = OX̄(w)(v1D1+ v2D2)

with det(A)= q4� q3
+ q2� q+ 1, v1= q4� 2q2

+ 2q� 2 and v2 = q3
+ q� 3. D1

is a disjoint union (q5
+ 1)(q2

+ 1) nonsingular Hermitian curves C1 of genus
g(C1) = 1

2 q(q� 1) and D2 is a disjoint union (q5
+ 1)(q3

+ 1) rational curves C2
of genus g(C2) = 0. By the adjunction formula [Har77, Proposition V.1.5] we
then find

C2
1 =

det(A)(2g(C1)� 2)� v2jC1(Fq2 )j
det(A)+ v1

= �(q+ 1)

C2
2 =

det(A)(2g(C2)� 2)� v1jC2(Fq2 )j
det(A)+ v2

= �q2
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where jC1(Fq2 )j= q3
+ 1 and jC2(Fq2 )j= q2

+ 1. Hence

K2
X̄(w) =

(v1D1+ v2D2)2

(det(A))2

=
1

(det A)2

�
2v1v2(q5

+ 1)(q3
+ 1)(q2

+ 1)

� v2
1(q5

+ 1)(q2
+ 1)(q+ 1)� v2

2(q5
+ 1)(q3

+ 1)q2�
= (q+ 1)(2q8� 3q6� 5q4

+ 5q3� q2� 4q+ 8):

From [DL76, Theorem 7.1] one easily calculates

e(X̄(w)) = q8
+ q6 � q4

+ 2q3� q2
+ 2q+ 4

(using that the Euler characteristic is additive with respect to the decomposi-
tion of X̄(w)). So for any q > 2 we obtain a surface S defined over Fq2 such
that c1(S)2 > (q+ 1)c2(S). From [SB91, Corollary 15] it follows that Ω1

X̄(w) is
(Bogomolov)-unstable.

EXAMPLE 4.22 ( 3D4 case). Let X̄(w) correspond to the Dynkin diagram

s3

��

s1

//

\\
s2

~~~~~~~~

@@@@@@@@

s4

Using the same approach as in the proof of Theorem 4.14 we find that we may
realize KX̄(w) as

KX̄(w) = j0�L(2�1+ �2� (q+ 1)�3� �4):

Again we see that KX̄(w) has negative degree along the lines corresponding to
the fixed node.

4.6. Complements

Above we saw that in order to know that we are restricting an ample bun-
dle to X̄(w), we must assume q > 2. Of course KX̄(w) can be ample for other
reasons, but we cannot in general expect Corollary 4.15 to be true also for
q = 2 cf. Example 4.19.

In [Rod96] it is mentioned that the Deligne-Lusztig surface corresponding
to the 2A4 case (cf. Example 4.21) is of general type for any choice of q. The
proof uses different methods than those of this paper (private communication
with F. Rodier).

As Example 4.22 suggests, one may of course apply this papers methods
to the non- �An cases. I expect that Corollary 4.16 can be proved (with the
same techniques, case by case) for any Deligne-Lusztig variety coming from a
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Dynkin diagram where (at least) one node is fixed under the action induced
by F.

Acknowledgements. The author thanks J. P. Hansen, J. C. Jantzen, N. Lau-
ritzen, F. Rodier and J. F. Thomsen for enlightening conversations.

(bibliography omitted; end of article)
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4.7. Further remarks regarding the ampleness of K X̄(w)

Let X̄(w) and X̄(w0) come from F-conjugate Weyl group elements. From
the proof of Lemma 3.5 and the description of the canonical bundles given
above, it follows that a power of KX̄(w0) is the pull-back of KX̄(w) under a finite
surjective morphism. Hence KX̄(w) is ample if and only if KX̄(w0) is [Har77,
Exercise III.5.7]. This extends the results of [HH99a].

In [HH99a] we omitted the most trivial example of calculating KX̄(w). For
instructional purposes we give it here:

EXAMPLE 4.23 ( A1 case). For G = A1 we have X̄(w) = X̄(s) = G=B = P1.
Let � = � 1

2�1 = ��1. Then h�; s0(�1)_i= h�1; �_1 i= �1. Hence

OX̄(w)(�@ X̄(w))= j0�L(F(s(�))� �)= j0�L((q+ 1)�1)

and

KX̄(w) = OX̄(w)(�@ X̄(w))
 j0�L((1� q)�)

= j0�L(2�1)= j0�OP1(�2)= OX̄(w)(�2):

This is consistent with the fact that deg KP1 = 2g� 2= �2. (Alternatively: for
� = q�1

q+1�1 we have F(s(� ))� � = (1� q)�, hence

j0�L((1� q)�)= OX̄(w)(h� ; s0(�1)_iX(e))= OX̄(w)(q� 1)

and again KX̄(w) = OX̄(w)(�2).)

EXAMPLE 4.24 ( 2A4 case). Let us now move to our favorite example, the
2A4-case (see also Example 3.17). Following [HH99a] we determine the matrix
A representing the automorphism �! (F(w1�(�))� �) of the character group
X(T). We get

A :=

2664
�1 0 0 q
q q� 1 q 0
�q �q �1 0
0 q 0 �1

3775 :
Now we let Maple help us a bit in calculating the canonical bundle KX̄(w), its
self-intersection and its intersection with (the components of) the divisors D1
and D2.

> D:=det(A);

D := �q+ 1+ q2 � q3
+ q4

> v:=evalm(inverse(A) &* vector([4-2*q,2-q,-1,2-2*q]));

v :=
�

2
2 q� 2 q2� 2+ q4

�q+ 1+ q2� q3+ q4 ; �2
�2 q2� q3

+ q+ 1+ q4

�q+ 1+ q2� q3 + q4 ;

��5 q+ q2
+ q3

+ q4� 1
�q+ 1+ q2� q3 + q4 ; �2

�4 q3
+ q4

+ 3 q2� q+ 1
�q+ 1+ q2 � q3 + q4

�
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Hence, det(A) times K
2
X̄(w) is the pull-back of the bundle L(A(det(A)v)).

Setting

> a:= simplify(det(A)*v[1]/2);

a := 2 q� 2 q2� 2+ q4

> b:=simplify(det(A)*v[2]/2+a);

b := q3
+ q� 3

it follows [HH99a] that det(A) times the canonical divisor is linearly equiva-
lent to the divisor aD1+ bD2.

D1 consists of (q5
+ 1)(q2

+ 1) disjoint Hermitian plane curves of degree
q+ 1:

> g(C1):=(q^2-q)/2;

g(C1 ) :=
1
2

q2 � 1
2

q

D2 consists of (q5
+ 1)(q3

+ 1) disjoint rational curves:

> g(C2):=0;

g(C2 ) := 0

We now use the adjunction formula [Har77, Proposition V.1.5] to compute
the self-intersections:

> C1_square:=(det(A)*(2*g(C1)-2)-b*(q ^3+1))/(det(A)+a);

C1_square := �q� 1

> C2_square:=(det(A)*(2*g(C2)-2)-a*(q ^2+1))/(det(A)+b);

C2_square := �q2

> D1_square:=simplify((q^5+1)*(q^2+1)*C1_square );

D1_square := �(q5
+ 1) (q2

+ 1) (q+ 1)

> D2_square:=simplify((q^5+1)*(q^3+1)*C2_square );

D2_square := �(q5
+ 1) (q3

+ 1) q2

and the intersections with KX̄(w):

> KC1:=2*g(C1)-2-C1_square;

KC1 := q2� 1

> KC2:=2*g(C2)-2-C2_square;

KC2 := q2� 2
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We know that D1 and D2 intersect transversely in (q5
+ 1)(q3

+ 1)(q2
+ 1)

points, hence

K2
X =

2ab(q5
+ 1)(q2

+ 1)+ a2D2
1+ b2D2

2

det(A)2

= (q+ 1)(2q8� 3q6� 5q4
+ 5q3� q2� 4q+ 8):

In Example 3.17 we found that

��OP4(q5
+ 1)= (q3

+ 1)D1+ (q+ 1)D2 (4.12)

with ��OP4(q5
+ 1) having degree zero along D1. Hence

(q+ 1)2D2
2 = (q5

+ 1)2(q3
+ 1)(q+ 1)

+ (q3
+ 1)2D2

1 + deg��O
P4(q5+1)(D1)

=�(q5
+ 1)(q3

+ 1)(q+ 1)((q2
+ 1)(q3

+ 1)� q5 � 1)

=�(q5
+ 1)(q3

+ 1)(q+ 1)2q2:

So also from this calculation we get D2
2 = �(q5

+ 1)(q3
+ 1)q2.

Using (4.12) we may rewrite the formula for KX̄(w) as

(q5
+ 1)KX̄(w) = (q+ 1)(q4� 2q2

+ 2q� 2)D1

+ ��OP4((q5
+ 1)(q3

+ q� 3))

� (q3
+ 1)(q3

+ q� 3)D1

= (q5
+ 1)

�
��OP4(q3

+ q� 3)� (q+ 1)D1
�
:

Since Z is a complete intersection of multi-degree (q+ 1; q3
+ 1) we have !Z =

OZ(q+ 1+ q3
+ 1� 4� 1) = OZ(q3

+ q� 3). So pulling back KZ to X̄(w) gives
KX̄(w) and a multiple of the exceptional divisor D1 — as expected cf. [Har77,
Exercise II.8.5].
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CHAPTER 5

Error-correcting codes from
higher-dimensional varieties

On the following pages we have reproduced the paper Error-correcting
codes from higher-dimensional varieties [HH98]. Please observe that the refer-
ences made in the paper refer to the bibliography at the end of this thesis.
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Error-Correcting Codes from higher-dimensional varieties�

SØREN HAVE HANSEN

ABSTRACT. We give ways to obtain information on the param-
eters of algebraic geometric error-correcting codes constructed
from any variety over a finite field. The methods are then ap-
plied to a Deligne-Lusztig surface of general type yielding very
long codes over Fq2 , with parameters n; k; d satisfying d + k �
n�O(n4=5), n � q10.
We also consider examples coming from Hermitian hyper-sur-
faces and ruled surfaces over Hermitian curves.

Introduction

Let Fq denote the finite field with q elements (q a prime power). Goppa
and Manin gave in the early eighties an algebraic geometric method to con-
struct error-correcting codes over Fq . Most work so far have concentrated on
the case where the codes arise from a non-singular projective curve. In this
paper we consider the higher dimensional cases. We prove several results. Let
us mention:

THEOREM 5.1. Let X be a non-singular projective surface defined over Fq .
Let L be a nef (numerically effective) line bundle on X and let H be an ample
divisor, both defined over Fq . Let C1; : : : ;Ca be curves on X with Fq -rational
points P = fP1; : : : ; Png. Assume that L � H < Ci � H for all i. Then the code
C(L;P) has length n and minimum distance

d � n�m ; m =
aX
i

degL(Ci):

For m < n, the code has dimension k = dimFq Γ(X; L).

Since many ‘good’ codes arise from so-called Deligne-Lusztig curves, it is
natural to apply a version of the above construction to Deligne-Lusztig sur-
faces. Taking one particular surface we obtain:

THEOREM 5.2. Let X be the Deligne-Lusztig surface of type 2A4 defined
over the field Fq2 . Then, for t = 1; 2; : : : ; q, we can construct a code on X over
Fq2 with parameters

n = (q5
+ 1)(q3

+ 1)(q2
+ 1)

k =
1

24
(t+ 1)(t+ 2)(t+ 3)(t+ 4)

d � n� tP(q)

�This article has been submitted to Finite Fields and Their Applications, 1998; revised 1999.



56 5. ERROR-CORRECTING CODES

where P(q) is the monic polynomial P(q)= (q3
+1)(q5

+1)+ (q+1)(q3
+1)(q2�

t+ 1) of degree 8 in q.

For practical purposes we need the defining equations of the Deligne-
Lusztig varieties. Since any ‘classical’ Deligne-Lusztig variety is a blow-up
of a complete intersection of Fermat hyper-surfaces (cf. [HH99c, Lus76b]) we
can give the equations for any (reasonable small) choice of q. In particular,
the surface used above is given by blowing up the Fq2 -rational points of the
intersection H1 \ H2 � P4, where each hyper-surface Hi is the zero locus of

fi =
P4

j=0 xq2i�1
+1

j . Using another construction (Proposition 5.19) we are also
able to determine the parameters of codes constructed from this (singular)
complete intersection.

The paper is organized as follows: In Section 5.1 we review the defini-
tions of Deligne-Lusztig varieties. In Section 5.2 we describe the algebraic-
geometric way of constructing codes and we give some examples coming from
Deligne-Lusztig curves. These examples should motivate considering higher-
dimensional Deligne-Lusztig varieties. In Section 5.3 we prove the theoretical
results which we use in Section 5.4 to give some examples.

5.1. Deligne-Lusztig varieties

In this section we shall define Deligne-Lusztig varieties. General refer-
ences are [DL76, Sections 2 and 9] and the introduction in [Han92].

Let (G; F) be a connected reductive algebraic group equipped with an Fq -
structure coming from a Frobenius morphism F : G! G. Let L : G! G be the
Lang map taking an element g 2 G to g�1F(g). By the Lang-Steinberg Theorem
[Bor92, Theorem 16.3] this morphism of varieties is a surjective isogeny with
finite fibres. From this result it follows that, by conjugacy of tori and Borel
subgroups, there exists F-stable maximal tori and Borel subgroups. Hence
there are (with abuse of notation) natural endomorphisms F : W ! W and
F : X ! X of the Weyl group of G and the variety X of Borel subgroups of
G. Let W be generated by the simple reflections s1; : : : ; sN and let l(�) be the
length function with respect to these generators. F induces a permutation of
the simple reflections, let Æ denote the order of this permutation.

Choose an F-stable Borel subgroup B � G containing an F-stable maximal
torus T. Let � : G! G=B ' X be the projection.

DEFINITION 5.3. Fix an element w in the Weyl group W and let w = si1 �
: : : � sin be a reduced expression. Call w a Coxeter element if there is exactly one
si from each of the orbits of F on fs1; : : : ; sNg.

1. Set S(ẇ) = L�1(BẇB). Then we define the Deligne-Lusztig variety X(w)
to be the image of S(ẇ) in G=B. That is,

X(w)= �(S(ẇ)):

We shall think of the points of X(w) as Borel subgroups of G.
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2. Define the closed subvariety of Xn+1

X̄(si1 ; : : : ; sin)= f(g0B; : : : ; gnB) 2 Xn+1 :

g�1
k gk+1 2 B[ Bsik+1 B for 0� k < n; gn = F(g0)g:

For brevity, we will write X̄(w) for this variety. For any w0 � w, X̄(w0)
defines in a natural way a closed subvariety of X̄(w). In particular there
are divisors

Dj = X̄(si1 ; : : : ; ŝi j
; : : : ; sin) ; j = 0; : : : ; n:

Since L is flat, it is open, hence L�1(BẇB) = L�1
�

BẇB
�
. So X(w) is non-

singular of dimension n and the closure of X(w) in X is given by the disjoint
union

X(w)=
[

w0�w

X(w0); (5.1)

where as usual � is the Bruhat order in W. This closure is singular whenever
the Schubert variety Xw = BẇB=B is. But since the open subset

f(g0B; : : : ; gnB) 2 Xn+1 : g�1
k gk+1 2 Bsik+1 B (0� k < n); gn = F(g0)g

of the non-singular projective variety X̄(w) maps isomorphically onto X(w)
under projection to the first factor, we have a good compactification of X(w)
[DL76, 9.10]. In fact the complement of X(w) in X̄(w), which is easily seen to
be the union of the Dj’s, is a divisor with normal crossings [DL76, 9.11]. If
w is a Coxeter element, then X(w) and X̄(w) are irreducible [Lus76a, Proposi-
tion (4.8)] and X̄(w) maps bijectively to X(w); see [HH99a].

REMARK 5.4. The Deligne-Lusztig variety X̄(w) is defined over the finite
field FqÆ and has many rational points making X̄(w) a good candidate for con-
structing long codes over relatively small fields.

The finite group GF of fixed-points under the Frobenius morphism acts on
both X(w) and X̄(w). Hence the codes (to be constructed below) will have the
structure of an FqÆ [GF]-module.

5.2. Constructing the codes

In the theory of linear Error-Correcting Codes one is interested in, subject
to some conditions, having an easy way of constructing k-dimensional sub-
spaces of some n-dimensional Fq -vectorspace.

DEFINITION 5.5. A (q-ary) [n; k; d]-code is a k-dimensional linear subspace
S of Fn

q such that the minimum distance

min
(x;y)2S�S

d(x; y)= min
(x;y)2S�S

#fi : xi 6= yig

equals d. We call n the length of the code and k the dimension.
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DEFINITION 5.6. Tsfasman and Vlăduţ introduced the following con-
struction [TV91, Chapter 3.1] (generalizing the Goppa-Manin construction
[Gop88]): Let X be a normal projective variety over Fq . Let L be a line bun-
dle defined over Fq and let P1; : : : ; Pn be distinct Fq -rational points on X. Set
P = fP1; : : : ; Png. In each point Pi, choose isomorphisms of the fibres LPi with
Fq . The linear code C(L;P) of length n associated to (X; L;P) is the image of the
germ map

� : Γ(X; L)�!
nM

i=1

LPi ' Fn
q : (5.2)

We shall of course from now on assume that all line-bundles considered actu-
ally have non-zero global section.

Suppose L arises as the line bundle associated to a divisor D and that the
Pi are not in the support of D. Then we get the same code (up to isomorphism)
as when evaluating the rational functions

L(D)= f f 2 k(X)� : div( f )+ D � 0g
in the points P.

REMARK 5.7. One is interested in codes where, for a fixed minimum dis-
tance, the information rate k=n is as large as possible. Therefore one introduces
the parameter Æ = d

n and considers the function

�(Æ) = lim sup
n!1

1
n maxfk : there exists an [n; k; Æn] code over Fqg: (5.3)

There are both upper and lower bounds on �(Æ). Before Tsfasman, Vlăduţ and
Zink (see [TV91]) in 1982 applied Goppas construction to families of modular
curves and improved the lower bound, it was widely believed that the Gilbert-
Varshamov lower bound from the fifties was the best possible.

EXAMPLE 5.8. For a curve C with L=OC(G), the points P defines a divisor
D and Goppa’s construction yields a code C(G; D) with parameters

k = dim C(G; D)= l(G)� l(G� D) (5.4)

hence

k = l(G)� deg(G)� g+ 1 if deg(G) < deg(D)= n (5.5)

with equality if deg(G) > 2g� 2 (by the Riemann-Roch theorem [Har77, The-
orem IV.1.3]). The minimum distance satisfies

d � n� deg(G): (5.6)

We have the following strategy for constructing good codes from algebraic
curves.

1. Find a smooth algebraic curve over Fq of genus g with a lot of rational
points, say P0; : : : ; Pn.

2. Set G = mP0 and D = P1+ : : :+ Pn.
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3. Compute the image of the evaluation map � : L(G) �! Fn
q . This

amounts to computing an Fq -rational basis of L(G).

The resulting linear [n; k; d]-code will satisfy that d + k � n + 1� g, or
equivalently

d
n
+

k
n
� 1+

1
n
� g

n
: (5.7)

By the Hasse-Weil-Serre-Oesterlé bound there are restrictions on how many
points a smooth curve of fixed genus can have [Ser85, Wei52, Wei49]. The
following Deligne-Lusztig curves are maximal with respect to these bounds
and have given some of the best possible codes from curves:

Hermitian Curves: Let C be the curve arising as the Deligne-Lusztig va-
riety corresponding to the 2A2 case (see [Han92]). C is a plane curve
defined over Fq2 with equation

C : Xq+1
+ Yq+1

+ Zq+1
= 0:

Hence C has genus g = 1
2 q(q� 1) and 1+ q2

+ 2gq rational points (over
Fq2 ). The resulting code (over Fq2 ) satisfies

d+ k � 1+ q3 � 1
2 (q2� q):

Suzuki Curves: Let q = 22m+1 be an odd power of 2; set q0 = 2m. Let C be
the curve arising as the Deligne-Lusztig variety corresponding to the
2B2 case (see [Han92, HS90]). C is defined over F q with equation

C : Xq0(Zq
+ ZXq�1)= Yq0(Yq

+ YZq�1);

genus g = q0(q� 1) and 1+ q2 rational points (over Fq ). The resulting
code (over Fq ) satisfies

d+ k � 1+ q2� q0(q� 1):

Ree Curves: Let q = 32m+1 be an odd power of 3; set q0 = 3m. Let C be
the curve arising as the Deligne-Lusztig variety corresponding to the
2G2 case (see [Han92, HP93]). C is defined over F q with genus g =
3
2 q0(q� 1)(q+ q0+ 1) and has q3

+ 1 rational points (over Fq ).

These examples motivate the study of codes arising from higher-dimen-
sional Deligne-Lusztig varieties.

5.3. General results

In this section we will investigate the germ map (5.2) further. The funda-
mental question is:

For a line bundle L on X, how many zeroes does a section
s 2 Γ(X; L) then have along a fixed set P of rational points?

Using the correspondence between line bundles and (Weil) divisors on a nor-
mal variety [Ful83, 2.1.1], we may reformulate the question as:
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For a fixed line bundle L, given an effective divisor D such that
L = OX(D), how many points from P is in the support of D?

In the curve case, where the points P2 P happen to be divisors, one may apply
the Riemann-Roch theorem to give a lower bound on d and a formula for k. In
higher dimensions, however, we find ourselves trying to compare objects of
different dimension. This may be remedied in two ways:

1. Make the objects have the same codimension. This can be done by
blowing up.

2. Make the objects have complementary dimensions. That is, make the
points into curves.

In the following we shall pursue these ideas and use intersection theory (as
defined in e.g. [Ful83]) on the variety X to answer the questions posed above.
We find lower bounds on the minimum distance, hence sufficient criteria for
the injectivity of the germ map.

For a global section s of a line bundle L we shall let Z(s) denote the corre-
sponding effective divisor. If C is a curve on X, we shall denote the intersection
number of L and C by L �C. It is calculated as the degree of the divisor cut out
on C by any section Z(s).

The following observation is straight-forward, but useful:

PROPOSITION 5.9. Let X be a normal projective variety defined over Fq

of dimension at least two. Let C1; : : : ;Ca be (irreducible) curves on X with
Fq -rational points P = fP1; : : : ; Png. Assume the number of Fq -rational points
on each Ci is less than N. Let L be a line bundle on X, defined over Fq , such
that L � Ci � 0 for all i. Let

` = sup
s2Γ(X;L)

#fi : Z(s) contains Cig:

Then the code C(L;P) has length n and minimum distance

d � n� `N�
aX

i=1

L � Ci:

If L � Ci = � � N for all i, then d � n� `N� (a� `)�:

PROOF. Let s 2 Γ(X; L) be a section and D its corresponding divisor of ze-
ros. The vector �(s)2 Fn

q has #(D\ [iCi)(Fq ) zero coordinates. Set-theoretically
we have

D\[a
i=1 Ci = ([Ci�DCi)[ (D\[Ci 6�D Ci):

Since the last intersection is proper it follows that �(s) has at the most `N+P
Ci 6�D L � Ci coordinates equal to zero. As L is non-negative along the curves

Ci, the sum
P

Ci 6�D L � Ci is bounded by the larger sum over all curves.
If each curve counts the same in the intersection product, we may cor-

rect for the possible zeros we have counted twice by subtracting `� from the
number of possible zeros. This yields the last formula.
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From the proof we immediately get:

COROLLARY 5.10. If n > `N+
Pa

i=1 L � Ci, then the germ map

� : Γ(X; L)! Fn
q

is injective.

COROLLARY 5.11. Assume furthermore that X is a non-singular surface
and that H is a nef divisor on X with H � Ci > 0 for all i. Then

` � L � H
minifCi � Hg : (5.8)

Consequently, if L � H < Ci � H for all i, we have ` = 0 and

d � n�m; ; m=
aX

i=1

L � Ci:

PROOF. Let D be a member of the linear system corresponding to L con-
taining ` of the curves Ci. As H is nef,

L � H = D � H �min
i
fCi � Hg � `:

The assertion follows.

This concludes the proof of Theorem 5.1.

EXAMPLE 5.12. Let X = P1� P1. We have Pic(X) ' Z�Z. Let L be a line
bundle on X of type (d1; d2) with di non-negative integers (then L is nef). The
divisor H = (0; 1) is nef. Let P consist of the Fq -rational points of X. These
points are distributed equally on q+ 1 disjoint lines Ci. We may assume that
each Ci is of type (1; 0), hence Ci � H = 1. We have

e = L � Ci = d2 ` =
H � L
H � Ci

= d1: (5.9)

Hence for d1+ d2 < q+ 1 we obtain codes with parameters

n = (q+ 1)2

k =
�

d1+ 1
d1

��
d2+ 1

d2

�
= (d1+ 1)(d2+ 1)

d � n� (d1+ d2)(q+ 1)+ d1d2:

We then have k + d � n � (d1 + d2)q + 1. As expected, the expressions are
symmetric in d1 and d2. The code constructed have the same parameters as
the product code. (See also [Han98] for a description of this example in the
framework of toric varieties.)

EXAMPLE 5.13. Let X= P2 and letP consist of the q3
+1 Fq2 -rational points

on the plane Hermitian curve C, given by the equation

C : Xq+1
0 + Xq+1

1 + Xq+1
2 = 0:
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Let L = OP2(t) and set H = OP2(1). Then, for 1� t < q+ 1 the inequality,

t = L � H < C � H = q+ 1

is satisfied, hence by Corollary 5.11 we get codes over Fq2 with parameters

n = q3
+ 1

k = 1
2 (t+ 1)(t+ 2)

d � n� L � C = n� t(q+ 1)

Taking q = 2; t= 2 yields a [9; 6; 3]4 code.
More generally, if C is a non-singular plane curve of degree m, then the

same construction can be carried out, yielding codes with parameters n =
#C(Fq ), k = 1

2 (t+ 1)(t+ 2) and d � n� tm (for t < m). Taking t = m� 1 yields
the well-known bound k+ d � n+ 1� g(C). So the construction above also
accounts for the curve codes.

5.3.1. Ample line bundles, Seshadri constants and codes. Let X be a
projective variety of dimension at least two. For V � X a closed subvariety
defined by a coherent sheaf of ideals I and for a line bundle L on X, one de-
fines the (local) Seshadri constant of L at V as

"(L;V)= supf" 2 Q : f �L� "E is nef g
(here f : BlIX! X is the blow-up with exceptional divisor E). When V is a set
of points P = fx1; : : : ; xmg we have the equality

"(L;P)= inf
C

�
L � CP

i multxi(C)

�
the infimum being taken over all irreducible curves C in X.

The (global) Seshadri constant of L is "(L)= infx2X "(L; x). We state the well-
known result [Har70, Theorem 7.1]:

THEOREM 5.14 (SESHADRI’S CRITERION FOR AMPLENESS).
Let L be a line bundle on a projective variety X. Then

L is ample if and only if "(L) > 0:

REMARK 5.15. If L is very ample then "(L)� 1.

LEMMA 5.16. Let X be a projective variety, L a line bundle on X.

1. If L is generated by global sections then L is nef.
2. For any proper morphism f : Y! X we have that f �L is nef (on Y) if L

is nef (on X).

PROOF. Let s0; s1; : : : ; sn 2 Γ(X; L) generate L. These sections define a
proper morphism i : X ! Pn such that L = i�OPn(1) [Har77, Theorem II.7.1].
Let C � X be an irreducible curve. Then, by the projection formula [Ful83,
Theorem 3.2 (c)],

L � C = i�OPn(1) � C = OPn(1) � i�C:
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Now either i(C) is a curve and then the right hand side is the degree of this
curve or i(C) is a point in which case the right hand side is zero. Hence L �C� 0
for any irreducible curve. The second assertion follows similarly from the
projection formula: f �L � C = L � f�C � 0.

PROPOSITION 5.17. Let X be a non-singular projective variety defined
over Fq . Let I be the ideal sheaf of the Fq -rational points P = fP1; : : : ; Png
of X. Let L be a line bundle on X.

1. Suppose L is ample with Seshadri constant "(X;P) � "; " 2 N. Then,
for n > "1�dim XLdim X, the germ map (5.2) gives a code of length n and
minimum distance d � n� "1�dim XLdim X.

2. Suppose L
� 
 I is generated by global sections (such � 2 N exists if for
example L is ample). Then, for n > �dim X�1Ldim X, the germ map (5.2)
gives a code of length n and minimum distance d � n� �dim X�1Ldim X.

In both cases, the code will have dimension k � h0(X; L) (with equality if the
bound on d is positive).

PROOF. By definition, f �L� "
Pn

i=1 Ei is nef on BlIX. Suppose there exists
a non-zero section s 2 Γ(X; L) mapping to zero in the germs LPi , i 2 I (and non-
zero otherwise). Then s 2 Γ(X; L
 II) defines a non-zero section of the bundle
f �L
O(

P
i2I�Ei) on BlIX. Hence f �L�Pi2I Ei is represented by an effective

divisor on BlIX. But then [Har70, Theorem 6.1],�
f �L� "

Pn
i=1Ei

�dim X�1 �
�

f �L�Pi2I Ei

�
� 0:

Or equivalently, #I � "1�dim XLdim X (we have always (�Ei)dim X
= �1). So

a section maps to zero in "1�dim XLdim X points at the most. Hence n � d �
"1�dim XLdim X.

For the second part, let � : BlIX! X be the blow-up of I. Then ��(L
� 

I)= ��L
� � E is nef by Lemma 5.16. Now argue as in the first part.

EXAMPLE 5.18. Let X = P2, L = OP2(m); (m � q) and let P denote the Fq -
rational points of X.

The study of ample line bundles on the blow up of the projective plane in
a given number of points is well studied (cf. [Cop95, Xu95] and the references
given there).

Let us determine a lower bound for "(L;P): For any irreducible curve, we
may (using methods similar to those in [Ser91]) bound the sumX

P2P

multP(C)�p(deg(C)� 1)(deg(C)� 2)(deg(C)q+ 1)
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if deg(C)� q+ 1. For deg(C)� q+ 1 the sum can be bounded byp
(deg(C)� 1)(deg(C)� 2)(q2+ q+ 1). So, in any case,X

P2P

multP(C)�
q

(deg(C)� 1)(deg(C)� 2)(q2+ q+ 1)

� deg(C)(q+ 1):

So, for all irreducible curves C � X,

L � CP
P2P multP(C)

=
m deg(C)P

P2P multP(C)
� m

q+ 1
:

Hence "(L;P � m
q+1 and the first method of the proposition then gives the

bound n � d � m
q+1 m2

= m(q + 1): The dimension of the code is of course

k = 1
2 (m+ 1)(m+ 2) and the length is n = q2

+ q+ 1.
The second method gives almost the same result: a calculation shows that

locally OP2(�m)
 I is generated by sections of degree �m� q. If �m > q, these
sections glue to give global sections (see for example the proof of Serre’s theo-
rem [Har77, Theorem II.5.17]). Hence, choosing � = d q+1

m e makes OP2(�m)
 I
generated by global section. We therefore obtain the bound n� d � �m2 �
m(q+ 1):

A variation of the above method is:

PROPOSITION 5.19. Let X be a normal projective variety defined over Fq ;
assume dim X� 2. Let P be the Fq -points of X and let � : Y! X be a birational
proper morphism with exceptional fibres (divisors) Ei over the points of P.
Assume Y is non-singular and let H be an ample line bundle on Y. Then, for
any line bundle L on X, we can construct codes with parameters

n = #P

d > n� Hdim X�1 � ��L
minifHdim X�1 � Eig

k � dim Γ(X; L) (with equality if the bound on d is positive).

PROOF. Only the claim about the minimum distance is non-trivial. So
let s 2 Γ(X; L) be a section of L mapping to zero in the germs LPi , i 2 I for
some index set I. As � is dominant, this gives us a non-zero global section of
the line bundle ��L
 OY

��Pi2I Ei
�
: [Iit82, Lemma 2.35]. So this bundle is

represented by an effective divisor, whence

0 < Hdim X�1 �
�
��L
OY

��X
i2I

Ei
��

= Hdim X�1 � ��L�
X
i2I

Hdim X�1 � Ei



5.4. APPLICATIONS 65

(by the Nakai-Moishezon criterion [Har77, Theorem A.5.1] applied to H). But
then

#I <
Hdim X�1 � ��L

minifHdim X�1 � Eig
(recall that H is ample). The formula for d follows.

REMARK 5.20. As we shall see below, this method works very well for
complete intersections of Hermitian hyper-surfaces, since in these cases we
may take Y to be a non-singular Deligne-Lusztig variety. Giving ample line
bundles on such varieties is easy (cf. [HH99a]).

5.4. Applications

5.4.1. Deligne-Lusztig surfaces. Now let X be a 2-dimensional Deligne-
Lusztig variety X̄(w). The numbers of rational points of these surfaces are rela-
tively large and are given in [Rod96] (typically we have #X(FqÆ )=#P2(FqÆ )� q4).
Some examples are listed in Table 5.1. We see that the number of FqÆ -rational

GF Æ number of FqÆ -points on X̄(w)
2A3 2 (q3

+ 1)(q2
+ 1)2

2A4 3 (q5
+ 1)(q3

+ 1)(q2
+ 1)

3D4 3 (1+ q3)2(1+ q4
+ q8)

TABLE 5.1. Numbers of rational points for some Deligne-
Lusztig surfaces

points on X̄(w) is given by a polynomial of high degree in q. Furthermore, any
divisor of the type G = m1D1+m2D2 will be GF-invariant.

First we shall see Proposition 5.9 and Corollary 5.11 in use:

PROPOSITION 5.21. Let X be the Deligne-Lusztig surface of type 2A4 de-
fined over the field Fq2 . Then for t = 1; 2; : : : ; q, we can construct a code on X
over Fq2 with parameters

n = (q5
+ 1)(q3

+ 1)(q2
+ 1)

k =
1

24
(t+ 1)(t+ 2)(t+ 3)(t+ 4)

d � n� tP(q)

where P(q) is the monic polynomial P(q)= (q3
+1)(q5

+1)+ (q+1)(q3
+1)(q2�

t+ 1) of degree 8 in q.

PROOF. Since the canonical divisor KX is ample cf. [HH99a, Rod96], we
could take H = KX. We shall however construct our codes from another line
bundle L which itself have the necessary properties for using Corollary 5.11;
that is, we shall see that we may take H equal to L.
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For a suitable parabolic subgroup P of G (see [Rod96, p. 565]), we have a
commutative diagram

X
j����! G=B

�

??y ??y�

Z i����! G=P' P4

(5.10)

where Z is a complete intersection of the two Fermat hyper-surfaces of degree
q+ 1 and q3

+ 1, i is an embedding, j is finite, � is locally trivial (in the Zariski
topology) and � is birational and surjective; see [Rod96, p. 565] or [Rod98,
Section 8]. Of course all morphisms are proper.

Let L = ��i�OP4(t). L is then nef by Lemma 5.16. Since Z is a complete
intersection, and is non-singular away from its Fq2 -rational points, Z is normal
[Har77, Proposition II.8.23]. Furthermore, as � is birationally onto Z, we get
[Iit82, Theorem 2.31],

Γ(X; L)' Γ(Z; i�OP4(t)):

For t� q it follows from the long exact cohomology sequences that we have an
isomorphism Γ(Z; i�OP4(t))' Γ(P4;OP4(t)). The last term has dimension

�4+t
t

�
.

Hence the expression for k follows once we have shown that the germ map is
injective. But this follows from the expression for d and Corollary 5.10.

We take P to be the Fq2 -rational points on X. From [Rod96] we have n =
jPj= (q5

+ 1)(q3
+ 1)(q2

+ 1). These points are distributed equally on the (q5
+

1)(q3
+ 1) disjoint rational curves Ci constituting the irreducible components

of the divisor D2 (see Definition 5.3).
By the commutativity of (5.10), L is equal to the restriction to X of the line

bundle ��OP4(t) on G=B. Using the same technique as described in [DL76, 9.1]
(and more detailed in [HH99a]), we may express L in terms of the boundary
divisors D1 and D2,

L
q5
+1
= OX(t(q3

+ 1)D1+ t(q+ 1)D2):

Furthermore, in [HH99a, Example 5] the intersection numbers of the (compo-
nents of) D1 and D2 was calculated. Hence,

L � Ci = t ; for all i

L � D2 =
t

q5+ 1
D2 �

�
(q3
+ 1)D1+ (q+ 1)D2

�
= t(q3

+ 1)(q5
+ 1)

L � L = t2(q3
+ 1)(q+ 1):

It follows that a divisor in the linear system corresponding to L contains less
than L�L

L�Ci
= t(q+ 1)(q3

+ 1) rational curves Ci (each containing q2
+ 1 points
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from P). Since L � Ci = t is less than the number of points on each curve, we
may use the last part2 of Proposition 5.9.

Taking t = 1 in the proposition, we obtain:

COROLLARY 5.22. Let X be the Deligne-Lusztig surface of type 2A4. Then
we can construct a code on X over Fq2 with parameters

n = (q5
+ 1)(q3

+ 1)(q2
+ 1)

k = 5

d � n� (q5
+ 1)(q3

+ 1)� (q3
+ 1)(q+ 1)q2:

REMARK 5.23. Since all sections of the chosen line bundle L “come from
Z”, it follows that the code on X is the repetition q3

+ 1 times of the code on Z
with parameters:

nZ = (q5
+ 1)(q2

+ 1)

kZ =
1

24
(t+ 1)(t+ 2)(t+ 3)(t+ 4)

dZ � nZ � t(q5
+ 1)� t(q+ 1)(q2� t+ 1):

This is a quite good code, actually (the bound on d being close to the Griesmer
bound for large q).

For t= 1, the code equals the one constructed by Rodier [Rod97] from the
same complete intersection. Over Fq2 he also obtains codes with parameters
n= (q5

+ 1)(q2
+ 1), k= 5 and d= q7� q3

= n� (q5
+ q3

+ q2
+ 1). The estimates

of Rodier are based on work by [Cha90]. See also Example 5.26 for using
Proposition 5.19 to determine bounds on these codes on Z.

The reason for choosing L to be a pull-back from Z is to be able to give an
explicit formula for the dimension k. Of course we can also construct codes
from other line bundles on X besides those coming from G=B (or quotients
thereof). Then we will need a more detailed study of the Picard group of X.
This problem is addressed in the authors forthcoming thesis [HH99b].

In the proposition above we may actually let t go up to q2 (this is clear
from the expression for d) but then we do no longer have that Γ(Z; i�OP4(t))'
Γ(P4;OP4(t)). However, we may still calculate k as the dimension of the t’th
graded piece of the homogeneous coordinate ring of Z.

EXAMPLE 5.24. Let X be the Deligne-Lusztig surface of type 2A4 with q=
4, t = 1. Then we get a code over F16 with parameters

n = 1 132 625 k = 5 d � 1 061 200:

We see that going to higher dimensions makes it possible to obtain very long
algebraic geometric codes over rather small fields.

2The author thanks the referee for pointing out that the last statement of Proposition 5.9
could be used here.



68 5. ERROR-CORRECTING CODES

5.4.2. Complete intersections of Hermitian hyper surfaces.

EXAMPLE 5.25. Let X� P3 be the Fermat surface defined by Xq+1
0 +Xq+1

1 +

Xq+1
2 + Xq+1

3 = 0. X is defined over Fq2 with its (q2
+ 1)(q3

+ 1) rational points
distributed equally on (q3

+ 1)(q+ 1) rational curves Ci cut out by the equation
Xq3

+1
0 + Xq3

+1
1 + Xq3

+1
2 + Xq3

+1
3 = 0; see [Rod98, Section 6] or [Lus76b].

We will give bounds for the codes constructed from the line bundle L =
OP3(t)jX on X. In the first approach we will use Corollary 5.11.

As OP3(q3
+ 1)jX ' OX(

P
i Ci) we find that m =

P
i L � Ci = t(q3

+ 1)(q+ 1).
So by symmetry, L � Ci = t.

The self-intersection L2 may by the projection formula be calculated in the
ambient space P4, hence L2

= t2(q+ 1). This yields ` � t(q+ 1).
Again, for t � q, Γ(X; L) = Γ(P3;OP3(t)). Hence for any t � q we obtain a

code with parameters

n = (q2
+ 1)(q3

+ 1)

k = 1
6 (t+ 1)(t+ 2)(t+ 3)

d � n� t(q3
+ 1)�Pi L � Ci = n� t(q3

+ 1)(q+ 2):

This bound is actually not that good. The reason is that the curves Ci are not
disjoint.

However, it happens that the blow-up Y of X in all its Fq2 -rational points
is nothing but the Deligne-Lusztig variety corresponding to the 2A3 case (see
[Rod96]). As in the proof of Proposition 5.21 one determines an ample divisor,

M = j�L(�2�1� (q� 1)�2� (q� 1)�3)' OY(2D1+ D2)

(see [HH99a] for a description of the notation L(�) and how to calculate the
isomorphism). Let � : Y! X denote the morphism given by the blow-up. We
find that ��L
q3

+1
= OY(t(q+ 1)D1 + tD2): So from Proposition 5.19 we now

get another bound on d,

d > n� M � ��L
M � [exc. fibre]

= n� tq2 (q+ 1)2

q� 1
:

This last bound on d is almost as sharp as the one obtained by Lachaud in
[Lac96].

EXAMPLE 5.26. Let us construct codes on the complete intersection Z from
Proposition 5.21 using the line bundle L = OP4(t)jZ. The morphism � : X! Z
from the Deligne-Lusztig variety corresponding to the 2A4 case to Z is an iso-
morphism except over the Fq2 -rational points of Z where the fibre is a Hermit-
ian curve C. As in [HH99a, Example 4] one calculates that

��L � KX = t(q3
+ 1)(q4

+ q3
+ q2� 2q� 3)
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and KX � C = q2 � 1. Hence, for any t � q, we obtain codes with parameters

n = (q5
+ 1)(q2

+ 1)

k = 1
24 (t+ 1)(t+ 2)(t+ 3)(t+ 4)

d > n� t
(q3
+ 1)(q3

+ q� 3)
q� 1

:

The bound on d is not quite as good as the one obtained earlier (Remark 5.23)
but it is still of the same order of magnitude, d � n� tO(n5=7).

5.4.3. Ruled surfaces. Let C be a non-singular curve of genus g defined
over Fq . Let F be a locally free sheaf on C of rank 2. Let e = �deg

V2
F. If F

is normalized and decomposable, then e � 0. If F is normalized and indecom-
posable, then �g � e � 2g� 2.

Let X = Proj(SymmF) be the corresponding ruled surface. The projection
� : X ! C is a P1-bundle with a section and a relatively ample line bundle
OX(1). Let C0 be the corresponding divisor (when F is normalized, C0 is the
image of a section of �). From [Har77, Chapter V.2] we gather the following
results about the divisors on X:

LEMMA 5.27. 1. Pic(X)' Z� �� Pic(C).
2. Num(X)' Z � [C0]�Z � [ f ] with product given by f 2

= 0, f �C0 = 1 and
C2

0 =�e (here f is the numerical equivalence class of any fibre of �).
3. Let D = b1C0+ b2 f be a divisor. Define the rational number � depend-

ing on p= char(Fq ), e and g by

�(p; e; g)=

8><>:
e e � 0
1
2 e e < 0; g < 2
1
2 e+ p

g�1 e < 0; g � 2

Then D is ample (resp. nef) when b1 > 0 and b2 > b1� (resp. b1 > 0 and
b2 � b1�).

4. When F is the direct sum of two ample line bundles on C, then the
divisor C0 is ample (see [Har70, Theorem III.1.1]).

EXAMPLE 5.28. Let C be any curve. Then, for any e � 0, the normalized
rank 2 bundle F= OC�OC(�e) gives a ruled surface with invariant e � 0. For
an example where e < 0, see [Har77, V.2.11.6].

PROPOSITION 5.29. Let C be a non-singular curve of genus g. Let � : X =
P(F)! C be a ruled surface with invariant e � �g. Let f be the fibre over the
point P0 2 C. Set a = #C(Fq ). Then we can construct codes with parameters

n = (q+ 1)a

k = h0(C;Symmb1(F)
OC(b2P0)) b1 � 0; b2 � 0

d � n� (a� `)b1� `(q+ 1)

where ` = b1(d�e � e)+ b2 (= b2 for e � 0):
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(assuming ` < a and that the bound on d is strictly positive). If F is ample, we
have ` = b2 � e:

PROOF. Let f1; : : : ; fa be the fibres over the Fq -rational points of C. These
disjoint lines contain all Fq -rational points of X. Let L = OX(b1C0+ b2 f ). From
[Har77, Lemmas V.2.1+4, Proposition II.7.11] it follows that

Γ(X; L)' Γ(C; ��L) = Γ(C;Symmb1(F)
OC(b2P)):

Now let H = C0+ d�e f : By Lemma 5.27, H is nef. We have H � f i = 1, L � fi = b1
for all i and

H � L = b1C2
0 + d�eb1C0 � f + b2 f � C0+ d�eb2 f 2

= b1(d�e � e)+ b2 (= b2 for e � 0):

With the notation of Proposition 5.9 and Corollary 5.11 we have ` � b1(d�e �
e)+ b2. If F is ample, we may take H equal to C0 and then H � L = b2 � e: The
proposition now follows from Proposition 5.9.

COROLLARY 5.30. Over Fq2 there exist algebraic geometric codes with pa-
rameters

n = (q2
+ 1)(q3

+ 1)

k = b2
1(q+ 1)+ b2 for q� 2 < b1 � q+ 1, 0� b2 � q2

d � n� (q3
+ 1� `)b1� `(q2

+ 1) where ` = 2b1+ b2

(assuming that the bound on d is strictly positive).

PROOF. Let C be the Hermitian curve of degree q+ 1 in P2. C is defined
over Fq2 of genus g= 1

2 q(q�1) and has the maximal number of points allowed,
namely q3

+ 1. Let X = P(OC(1)� O(1)) be the ruled surface over C with in-
variant e = �2. Then the line bundle OX(1) is ample on X. Let the codes be
constructed from the line bundle L = OX(b1)
OX(b2 f ). Since this bundle has
degree 2b1+ b2 with respect to OX(1), we must have ` = 2b1+ b2.

We have h0(L) = h0(Symmb1(OC(1)� O(1))
 OX(b2fptg)). The bundle on
the right hand side is a sum of b1 copies of the line bundle OC(b1)
OX(b2fptg)
and, for b1 > q� 2, these have so large degree that the formula follows from
the Riemann-Roch theorem [Har77, Theorem IV.1.3].

EXAMPLE 5.31. Taking q = 2 in the above corollary we obtain codes over
F4 . The (bounds on the) parameters are listed in Table 5.2.

REMARK 5.32. It should be noted that the codes constructed in Corol-
lary 5.30 are better than those obtainable from the product code construction:
On the Hermitian curve C we have codes over Fq2 with parameters

n1 = q3
+ 1

k1 � �� g+ 1 ; 0� � � q3
+ 1

d1 � n1� �:



5.4. APPLICATIONS 71

b1 1 1 1 2 2 2 3
b2 0 1 2 1 2 0 0
k 3 4 5 13 14 12 27
d 28 24 20 12 9 15 6

TABLE 5.2. Parameters of some examples of surface codes
over the Hermitian elliptic curve. In all cases, n = 45.

Similarly, on P1 we have (MDS) codes over Fq2 with parameters

n2 = q2
+ 1

k2 = � + 1 ; 0� � � q2
+ 1

d2 � n2� �:

The product code has the same length n= n1n2 as the codes constructed above.
The dimension of the product code is bounded below by (�� g+ 1)(� + 1).
This bound is only non-zero for � � g= 1

2 q(q� 1).
The codes constructed above all have dimension of order q3 (if we for

example take b1 = q, then the dimension is bounded below by q2(q+ 1)).
To obtain product codes with comparable dimension (bound), we will

have to select � and � rather large. The resulting bound on the minimum dis-
tance dprod � d1d2 = n� �n2 � �n1 + �� will under these conditions always
be worse than the bound given in Corollary 5.30.

Note that, when taking ruled surfaces with invariant e = 0, the codes con-
structed in Proposition 5.29 will indeed be the product codes.

REMARK 5.33. There is an obvious generalisation of Proposition 5.29: Let
X be a non-singular projective curve defined over a finite field Fq . Let F be a
vector-bundle on X of rank e with � : Y = P(F)! X the corresponding projec-
tive bundle over X. Then the Chow ring of Y is given by the isomorphism of
graded rings,

A�(Y)' A�(X)[�]=
�
�e
+ c1(��E)\ �e�1

+ : : :+ ce(��E)
�

[Ful83, Example 8.3.4] (� is the hyper-plane section on Y). Set-theoretically we
have

Y(Fq ) =
[

P2X(Fq)

��1(P):

Let L be a line bundle on Y from which we want to construct codes. Suppose
we have a section D 2 jLj containing ` fibres fi. Then, for any ample divisor
H on Y, we have

Hdim Y�1 � L �
X
fi�D

Hdim Y�1 � fi:

(We may assume that H is very ample. Then, on any effective divisor, H
cuts out an effective divisor. Hence the assertion follows from the Nakai-
Moishezon criterion [Har77, Therem A.5.1].) Hence, a section of L can at
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the most contain
�

He�1�L
He�1� f

�
fibres (the fibres are algebraically equivalent as X

is non-singular) each containing �e�1 points, where �m = #Pm(Fq ). Now, for
L = OY(t)
OY( f ) we have that when intersecting properly, each section of L
cuts out a degree t hyper-surface in each fibre. For t < q, the number of ratio-
nal points on this section is bounded by tqe�2

+ �e�3 (cf. [Ser91]). So the code
obtained from evaluating the sections of L in the Fq -rational germs will satisfy

n� d � �e�1

�
Hdim Y�1 � L
Hdim Y�1 � f

�
+ (tqe�2

+ �e�3) � #X(Fq ):

REMARK 5.34. Using the above construction and the asymptotically good
towers of Garcia and Stichtenoth [GS96a] we may easily make towers of long
surface codes. An interesting problem would be to determine the asymptotic
properties of these codes.
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APPENDIX A

General results related to Chow groups

In this chapter we state various results relating to intersection theory and
the calculation of Chow groups. Some of the results are probably well-known
but for lack of reference we also give the proofs here.

A.1. Some lemmas

LEMMA A.1. Let X and Y be a schemes, let U be an unipotent algebraic
group acting with finitely many orbits on X and Y. Suppose f : X ! Y is a
finite surjective U-equivariant morphism. Then

1. A�(X) is a free Abelian group with basis

f[V] : V is a U-stable closed subvariety of Xg:
2. A�(Y)Q is a free Abelian group with basis

f[ f (V)] : V is a U-stable closed subvariety of Xg:
In particular, if Ak(X)= 0 for k < dim(X) then also Ak(Y)Q= 0 for k < dim(Y)=
dim(X).

PROOF. 1) is an immediate consequence of Theorem 1 in [FMSS95] and
2) is a consequence of the well-known fact that proper surjective maps induce
surjective maps in Chow homology groups with rational coefficients.

LEMMA A.2. Let X be an algebraic scheme (not necessarily irreducible)
with a stratification

X0 � X1 � � � � � Xn = X ; Xi closed subschemes of pure dimension i

such that Ak(Xi� Xi�1)= 0 for k 6= i. Then for all k � n we have surjections

Ak(Xk)! Ak(X)! 0: (A.1)

PROOF. For k= n the assertion is trivial, and from [Ful83, Proposition 1.9]
we have the exact sequence

Ak(Xn�1)! Ak(Xn)! Ak(Xn� Xn�1)! 0 (A.2)

hence surjections Ak(Xn�1)! Ak(Xn)! 0 for all k < n. By induction we may
assume we have surjections Ak(Xk)! Ak(Xn�1)! 0 for all k < n� 1. Now
compose these surjections.

73
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REMARK A.3. Of course, the lemma also holds for Chow groups with ra-
tional coefficients.

THEOREM A.4 ([MS76, Theorem 7.1]). Let ' : Y! Y 0 be a proper surjec-
tive morphism of varieties. Then the sequence

A0(Y�Y0 Y)
pr1��pr2������! A0(Y)

'��! A0(Y0)! 0 (A.3)

is exact.

COROLLARY A.5. If' : Y! Y0 is the quotient map for the action of a finite
group G0, then

A0(Y0)= A0(Y)=G0 (A.4)

(where the right-hand side is to be read as the Abelian group A0(Y) modulo
the relation induced by the natural action of G0).

PROOF. Since in this case A0(Y�Y0 Y) is generated by

f(y1; y2) : yi 2 Y; 9g 2 G0 : g:y1 = y2g;
Theorem A.4 gives that the kernel of '� is generated by cycles of the form
y� g:y; y 2 Y; g 2 G0. Whence the corollary.

Theorem A.4 has a natural generalisation.

THEOREM A.6. Let ' : Y ! Y0 be a proper surjective morphism of irre-
ducible algebraic varieties. Then the sequence

Ak(Y�Y0 Y)Q
pr1��pr2������! Ak(Y)Q

'��! Ak(Y0)Q! 0 (A.5)

is exact for all k.

PROOF. The surjectivity of '� follows easily: If V � Y0 is a closed sub-
variety, there exists a closed subvariety W � Y mapping finitely onto V with
dim(W) = dim(V) ([MS76, Lemma 7.2]). But then the cycle deg(W=V)�1[W]
maps to [V]. Hence we have a surjection on cycles which passes to rational
equivalence since ' is proper.

By definition

Y�Y0 Y = f(y1; y2) 2 Y�k Y : '(y1)= '(y2)g
(for closed points) and since Y0 is separated Y�Y0 Y is a closed subvariety of
Y� Y. Indeed, we may realize Y�Y0 Y as the fiber product

Y�Y0 Y

'Æpri

��

// Y� Y

'�'

��

Y0 // Y0� Y0:

(A.6)

Then, since ' is proper, Y�Y0 Y = ('� ')�1(∆(Y0)) is closed if and only ∆(Y0)
is. But this is the case if Y0 is separated. Hence Zk(Y�Y0 Y)Q is generated by
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the components of the cycles f[Z] 2 Zk(Y� Y)Q : ' Æ pr1(Z) = ' Æ pr2(Z)g. So
obviously '�(pr1��pr2�)= 0 on cycles. Therefore coker(pr1��pr2�)� ker('�).

Let Ck = coker(pr1��pr2�) = Ak(Y)Q= im(pr1��pr2�) and let '̄� : Ck !
Ak(Y0)Q be the induced (surjective) map. We must show that this map also is
injective. We will do this by defining a an inverse map � : Zk(Y0)Q! Ck in the
following way: For z 2 Zk(Y0)Q choose (by the surjectivity of '�) z0 2 Zk(Y)Q
such that '�(z0)= z. Then let �(z) be the image of z0 in Ck. This is well-defined:
If '�(z01)= '�(z02) then z01� z02 2 Zk(Y�Y0 Y)Q hence z01� z02 = (pr1��pr2�)(z

0
1�

z02) 2 im(pr1��pr2�).
Claim: � : Zk(Y0)Q ! Ck factors through rational equivalence giving a homo-
morphism � : Ak(Y0)Q! Ck.

Clearly, then '̄�� = idAk(Y0)Qand since z 2 Zk(Y0)Q is a lifting of '�(z) we
also have �'� = idCk

.
Proof of claim. Let f be a rational function on a closed subvariety V � Y0. We
must show that �(div( f ))= 0 in Ck. Again, let i : W ,! Y be a closed subvariety
mapping finitely onto V. We want a lifting z 2 Zk(W0)Q such that z � 0. But
this is easy. Let g = deg(W=V)�1 f Æ '. Then g is a rational function on W
and pushes forward to div( f ) under the finite map 'jW : W ! V of degree
deg(W=V). Hence �(div( f )) is the class of i�(div(g)) modulo coker(pr1��pr2�).
But this is zero already in Ak(Y)Q (i being a closed immersion).

REMARK A.7. From the proof it follows that if we want to avoid introduc-
ing rational coefficients we must have deg(W=V) = 1 for any pair of closed
subvarieties W � Y, V � Y0 such that W maps onto V. If W and V are points,
then both function fields k(W) and k(V) are algebraic extensions of the base
field k which is assumed algebraically closed. Hence the fields are all equal
and the degree is 1. This is why we in Theorem A.4 can avoid rational coeffi-
cients.

LEMMA A.8. Let V1; : : : ;Vm be prime divisors on a non-singular projec-
tive variety X; dim X � 2. Assume that the Vi are contracted to distinct points
P1; : : : ; Pm under a morphism � : X ! Y where dim X = dim Y, Y is projec-
tive and ��1(Pi) = Vi. Then the Vi are independent in Pic(X). Hence, for any
L 2 Pic(Y), the classes ��L;V1; : : : ;Vm in Pic(X) are linearly independent too.

PROOF. A dependence relation 0 =
P

i ni[Vi], ni 2 Z, will imply [Vi]2
= 0

(as a cycle in A2(X)) for any i. We shall see that this cannot be the case.
Let V be any of the components, let P= �(V). Since Y is projective we may

choose a very ample (Cartier) divisor H on Z. Choose furthermore effective
divisors H0; H1 linearly equivalent to H such that P is in H0 but not in H1. On
an open neighborhood1 of P, the map � looks like Figure A.8. Since ��H1 does
not intersect V,

0= [��H1] � [V]= ��[H0] � [V]=
�
[H̃0]+mP(H0)[V]

� � [V]:

1If the self-intersection is non-zero on an open subset of X, it cannot be zero in X.
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H̃1

P

H1

H0

V

X

Y

H̃0

FIGURE 1. The blow-down of the divisor V

By the choice of H0, mP(H0) > 0, hence [V]2 is a (negative) non-zero multiple
of the proper (non-zero) intersection [V] � [H̃0].

For the last assertion. Assume d��[L]=
P

i ni[Vi]. Then, by pushing down
with � we get the relation d����[L] =

P
i ni��[Vi] = 0. Since ����[L] is a mul-

tiple of [L] we must have d = 0 and, by the above, all ni = 0.

LEMMA A.9. Let f : X! Y be a birational morphism of algebraic schemes
with exceptional locus E, codim(E)� 1. Let � 2 A�(X), � 6� E. Then, if f�� is
zero in A�(Y), so is �. That is, the kernel of �� : A�(X)! A�(Y) is supported
on E.
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PROOF. Obvious (restrict to the open subset where f is an isomorphism
and use [Ful83, Proposition 1.8]).

A.1.1. Samuel’s conjecture. Since our calculation of the Picard group of
Deligne-Lusztig varieties of classical type rely heavily on the now proven con-
jecture by Samuel, we will here give a sketch of the proof (given by Grothen-
dieck; see [Gro68, p. 132]).

DEFINITION A.10. A local Noetherian ring A is parafactorial if, for X =
Spec A and fxg equal to the (unique) closed point of X,

� depth A� 2
� Pic(X� fxg)= 0

(This is not the original definition, but an equivalent one cf. [Gro68, Proposi-
tion 3.5, p. 127].)

LEMMA A.11. If X is a normal variety, then Pic(X) = Adim X�1(X) if and
only if X is locally factorial.

PROOF. This is well-known; see [Har77, Corollary II.6.16].

LEMMA A.12 ([Gro68, Corollaires 3.9+10, p. 130]). Let A be a local Noe-
therian ring of dimension at least 2. Let X = Spec A and fxg be as above and
set U = X� fxg. Assume

a) For all y 2 U, the local ring Oy;U is factorial
b) A is parafactorial

Then A is factorial.

PROOF. Using Serre’s criterion for normality [Mat89, p. 183] it follows
that under these conditions, A is normal. Since fxg has codimension 2 or more,
Adim X�1(X)= Adim X�1(U). Now Adim X�1(U)= Pic(U) by a) and Lemma A.11.
But then, by b), Adim X�1(X)= 0, hence A is factorial [Har77, Proposition II.6.2].

Now, let us just state the following without proof:

THEOREM A.13 ([Gro68, Théorème 3.13, p. 132]). Let A be a Noetherian
parafactorial local ring that is a complete intersection (A is the quotient of
a regular local ring by a regular sequence). Assume dim A � 4. Then A is
factorial.

The following was conjectured by Samuel and proved by Grothendieck:

THEOREM A.14 (SAMUEL–GROTHENDIECK). Let A be a Noetherian local
ring that is a complete intersection. Assume A is factorial in codimension 3
(that is, AP is factorial when localising in all primes P satisfying dim AP � 3).
Then A is factorial.2

2Note that the inequality in the statement of this theorem mistakingly has been reversed in
[Fos73].
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PROOF. The proof uses induction on the dimension of A. For dim A �
3, the claim is in the hypotheses. Assume dim A � 4. By Theorem A.13 it
follows that A is parafactorial. By induction, AP is factorial for all primes P of
height at least 1 (a localisation of a complete intersection is again a complete
intersection). Then apply Lemma A.12.

COROLLARY A.15. Let X be a normal variety, such that the singular locus
of X has codimension at least 4. Assume furthermore that X is a strict complete
intersection. Then Pic(X)= Adim X�1(X).

PROOF. We must show that under the given assumptions it follows that
X is locally factorial. Then Lemma A.11 will apply.

Let S be a local ring of X. Then S is a complete intersection ring. Let P be
a prime in S such that SP is not factorial. We must then show that dim SP > 3.
But this must be the case: If not, X would have a non-regular local ring of
dimension less than 3. And since X is assumed to be non-singular in codi-
mension at least 4, all local rings in X are either regular or of dimension at
least 4.

EXAMPLE A.16. It is necessary to assume that the singularities only occur
in codimension at least 4: For any field k of characteristic different from 2
the projective quadric hyper-surface H : x0x1 = x2

2 + � � �+ x2
r in Pr has the

following properties [Har77, Exercise II.6.5]:

� For r � 2 H is normal.

� Ar�2(H)= Cl(H)=

8><>:
Z r = 2
Z�Z r = 3
Z r � 4:

By the Lefschetz theorem for Picard groups, Pic(H)= Z for r � 4.

The following proposition slightly extends (and clarifies) a remark of Gro-
thendieck [Gro58, p. 4-35].

PROPOSITION A.17. Let � : E ! X be a locally trivial A n -bundle with
affine transition functions3 (i.e. for a covering [iUi of X, ��1(ui) ' Ui � A n

and the transition functions 'i j : ��1(Ui \Uj)! ��1(Ui \Uj) induces either
linear maps or translations on A n ). Then

�� : Ap(X)�! Ap+n(E) (A.7)

is an isomorphism for all p.

PROOF. We will use the notion of higher Chow groups [Ros96] (thanks
to G. Ellingsrud for suggesting this approach). Choose U � X such that E is

3Maybe this condition can be omitted.
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trivial over U and let Ũ = ��1(U). Then we have long exact sequences

// Ap+1(U;�p)

�1

��

@ // Ap(X� Y)

�2

��

// Ap(X)

�3

��

// Ap(U)

�4

��

// 0

// Ap+1+n(Ũ;�p) @ // Ap+n(E� Ũ) // Ap+n(E) // Ap+n(Ũ) // 0

where Ak(�; l) are the higher Chow groups. By homotopy invariance of higher
Chow groups [Ros96, Proposition 8.6, Remark 5.1], �1 and �4 are isomor-
phisms. By Noetherian induction we may assume that also �2 is an isomor-
phism. Then the assertion follows from the 5-lemma.

COROLLARY A.18. Let G be a reductive algebraic group. Let U � G be a
closed unipotent subgroup acting on G by right translation. Then for every
U-stable locally closed subvariety Y � G, the quotient morphism � : Y! Y=U
induces an isomorphism �� : A�(Y=U) '�! A�(Y).

PROOF. Since the assertion is local, we may assume Y = G. The quo-
tient � : G ! G=U exists (U is closed in G) and is locally trivial with fibre
U cf. [Ser58, Proposition 14] (U is unipotent, hence solvable). We must show
that the transition functions are affine. Let [iUi be an open cover of G=U.
Then ��1(Ui \Uj)= (Ui \Uj) �U, hence the transition functions induces mor-
phisms of the type g 7! g0g (g0 2 U) on U (� being the quotient map). But this
is a translation of (A n ;+).

A.2. Intersection theory on associated bundles

In this section G will denote a connected linear algebraic group, varieties
are reduced schemes of finite type over an algebraically closed field k. All
actions are algebraic actions.

DEFINITION A.19. Let f : P! X be a morphism of varieties. We will say
that f is a right principal G-bundle if

1. G acts on P from the right stabilising the fibres of f .
2. f : P! X is locally trivial, that is, there exists an open cover fUigi2I of

X such that for any i 2 I

f�1(Ui)
' //

##FFFFFFFFF
Ui� G

||yyyyyyyyy

Ui

is commutative and G-equivariant.

EXAMPLE A.20. If H � G is a closed subgroup then G acts on the quotient
G=H stabilising the fibres and the quotient morphism is locally trivial if H is
connected and solvable [Ser58, Proposition 14].
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Suppose from now on that f : P! X is a principal G-bundle.

DEFINITION A.21. Suppose G acts on a variety F from the left. Then G
acts diagonally on P� F by

g:(y; z)= (yg; g�1z) ; y 2 P; z 2 F:

Assume the quotient G n P� F exists. Denote it by P�G F and call it the asso-
ciated bundle (to f : P! X) with fiber F.

REMARK A.22. P�G F has the following properties:

1. The diagram
P� F ����! P

f 0
??y ??y f

P�G F h����! X

is a pull-back diagram. The morphism h : P�G F! X is locally trivial
with fiber F and f 0 : P� F! P�G F is a principal G-bundle.

2. The construction is functorial: if F0! F is a G-equivariant morphism of
varieties, then there is a natural induced morphism P�G F0 ! P�G F
of locally trivial bundles with fibres F0 and F respectively. In particular,
if i : F0! F is the inclusion of a G-stable subvariety, we get an inclusion
of bundles over X.

EXAMPLE A.23. Let Zw be the desingularisation of the Schubert variety
Xw and let � : G! G=B be the locally trivial quotient morphism. The associ-
ated bundle

Ō(w)= G�B Zw

is a locally trivial bundle over G=B with fibre Zw. If w0 � w is obtained from
w by omitting l(w) � l(w0) reflections we may identify Zw0 with a B-stable
closed subvariety of Zw. Hence there is an inclusion of locally trivial bundles
Ō(w0) ,! Ō(w).

LEMMA A.24. Let � : E! X be a locally trivial bundle on the scheme X.
Let �A : A ! X and �B : B ! X be locally trivial subbundles with fibres V
and W respectively such that V and W are closed subvarieties of F. Then if
[A]= [B] in A�(E) we also have [V]= [W] in A�(F).

PROOF. Taking the fibre over a (closed) point of X yields a closed im-
mersion j : F! E. Since the refined Gysin map j! : A�(E)! A�(F) preserves
rational equivalence [Ful83, Section 6.2], the assertion follows.

PROPOSITION A.25. Let f : P! X be a principal G-bundle and P�G F!
X the associated bundle with fibre F. Assume that F and P �G F are non-
singular varieties, such that F and P �G F carry intersection products. Let
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Z�(F)G denote the free Abelian group on the G-stable closed subvarieties of F.
Then the homomorphism

' : Z�(F)G! Z�(P�G F)

[V] 7! [P�G V]

is a (codimension 0) homomorphism taking proper intersections to proper in-
tersection. In fact ' also takes transversal intersections to transversal intersec-
tions.

PROOF. Since dimensions and intersection multiplicities for each compo-
nent can be calculated locally on an open subset [Ful83, Theorem 6.2(c)], we
may (by local triviality) assume that � : E! X is the projection pr1 : X� F!
X. Then ' takes [V] 2 Z�(F) to [X� V]. As,

'([V]) �'([W])= [X� V] � [X�W]= [X]� ([V] � [W]);

[Ful83, 8.3.7], it follows that the intersection on the left hand side is proper
(transversal) whenever the intersection V \W is.
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APPENDIX B

Open problems

B.1. Chow groups and étale cohomology

For varieties defined over finite fields there are various conjectures (some
of which are partially verified) relating the Chow groups to the étale coho-
mology groups (see [Car85, Appendix] for a readable introduction to étale
cohomology). In this section we shall review some of these conjectures and
their (possible) consequences when it comes to Deligne-Lusztig varieties.

We will change our notation slightly, letting k denote an arbitrary field, k̄
an algebraically closed extension with G(k0=k) the corresponding Galois group
of automorphisms of k̄ fixing k.

Let V(k) denote the class of non-singular projective varieties defined over
k (the residue field of the generic point is k). For any X 2 V(k) let

R
X : A�(X)!

Z denote the degree morphism (relative to k). Let Zs(X) be the free Abelian
group on the subvarieties of X of codimension s which are defined over k.
Write X̄ for X�k k̄.

B.1.1. Tate’s conjectures. Let X 2 V(k) be of dimension d. On Zs(X) one
may define several (potentially) different equivalence relations giving various
quotients Zs(X)= � cf. [Ful83, Section 19.3].

Say that � 2 Zs(X) is homologous to zero (� 2 Hom(X)) if � is in the kernel
of the class map to étale cohomology

clX : Zs(X)! H2s(Xét;Q l (s)):

Let Bs(X) be the quotient of Zs(X) by this relation. (Since X is non-singular,
Hom� (X) is actually an ideal in As(X), hence we have a surjection of rings
As(X)! Bs(X).) Then Tate conjectured [Tat65]:

(a): Hom(X) is independent of the choice of prime l 6= char(k).
(a’): Hom(X) = Num(X), that is, � 2 Hom(X) if and only if

R
X � \ � = 0

for all � 2 A�(X).
(b): Bs(X) is a finitely generated Abelian group and the map

' : Bs(X̄)
ZQ l
clX
1���! H2s(X̄ét;Q l (s))

is injective (that is, the class map is an isomorphism on l-torsion).
(1): For finitely generated k (e.g. k finite) the image of Zs(X) under ' is

exactly
�

H2s(X̄ét;Q l (s))
�G(k̄=k).

83
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REMARK B.1. 1. In characteristic zero (a) and (b) are true.
2. In codimension one, that is, for divisors (a), (a’) and (b) are true (com-

pare [Ful83, 19.3.1]).
3. If there are strong vanishing theorems (see for example Section B.1.2

below) for the cohomology groups H2i(Xét;Q l ) we see that Hom� (X)
may be quite large. Hence we may loose a lot of information when
passing to the quotient Bs(X).

4. Recently (1994), Tate has commented on the status of the conjectures;
see [Tat94].

There are some immediate consequences just from the existence of the
class map. We note the following concerning the Neron-Severi groups (cycles
modulo algebraic equivalence).

PROPOSITION B.2. Let X 2 V(k).

1. The Neron-Severi group NSk(X) is torsion-free and finitely generated.
2. In the case where X is a surface we actually have 1

rank NS1(X)� b2 = dimQl H2(X̄ét;Q l ): (B.1)

PROOF. By definition, for any non-zero class � 2 NSk(X) there exists � 2
NSdim X�k(X) such that

R
X � \ � 6= 0; hence any multiple of � is non-zero. So

we need only show that NSk(X)
ZQ l is finitely generated. Since the class
map carries the intersection product of CH�(X) into the non-degenerate cup
product in H�(X̄ét;Q l ), the kernel of

clX : CHk(X)
ZQ l ! H2k(X̄ét;Q l )

is contained in the kernel of

Θ : CHk(X)
ZQ l ! NSk(X)
ZQ l :

But then

Im(clX)' CHk(X)
ZQ l=ker(clX)
sur j:��! CHk(X)
ZQ l=ker(Θ)

with the right hand side isomorphic to NSk(X)
ZQ l : As H2k(X̄ét;Q l ) is finite
dimensional the assertion follows (compare [Ful83, Example 19.1.4]). For 2),
see [Mil80, Corollary 3.28].

Now we specialise to the case where k is the finite field with q elements.
Associated to X we then have its Zeta-function Z(X; t) on the form

Z(X; t)=
P1(t) � : : : � P2d�1(t)

P0(t)P2(t) � : : : � P2d(t)
(B.2)

(recall that the polynomial Pi(t) is the characteristic polynomial for the endo-
morphism of Hi(X̄ét;Q l ) induced by the Frobenius morphism).

1See also [Shi86] for an algorithm for determining the rank of NS1(X) when X is a Delsarte-
surface (Fermat-surfaces are among the Delsarte-surfaces).
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REMARK B.3. Tate showed [Tat65, p. 101] (assuming the Weil-conjectures
which subsequently were proved by Deligne [Del74]) that when the Frobenius
action on H�(X̄ét;Q l ) is semi-simple the G(k̄=k)-invariant part of H�(X̄ét;Q l )
has rank equal to the order of the pole of Z(X; t) at t = q�i.

So assuming the conjectures (a) and (b) it would follow from Conjecture (1)
that

the rank of Bi(X) equals the order

of the pole of Z(X; t) at t = q�i.
(T)

In particular, if Pi(t) is some linear form raised to the b2i’th power, then the pole
order of Z(X; t) at t = q�i is b2i = dimQl H2i(Xét;Q l ) and proving (T) amounts
to proving that H2i(Xét;Q l ) is spanned by algebraic cycles.

Conversely, Tate has shown [Tat94] that the conjecture (T) implies the con-
jectures (a), (b) and (1).

Over finite fields Milne [Mil86, Section 8] has shown that Conjecture (1) is
independent of l and has related the conjectures to other conjectures.

EXAMPLE B.4. Let X = Vn;r;p be the hypersurface in Pr
k (char(k) = p) de-

fined by the equation

Xn
0 + Xn

1 + � � �+ Xn
r = 0 (B.3)

where p - n. For these Fermat varieties the action of F on H�(Xét;Q l (s)) is semi-
simple [Sou84, Remarque p. 334] hence the pole-order of Z(X; t) at t = q�i

equals the dimension of the G(k̄=k)-invariant part of H�(Xét;Q l (s)). The zeta-
functions of the Vn;r;p were determined by Weil in [Wei49].

For r odd, Tate proved (see [Tat65, p. 102], written out in more detail in
[HM78]) that in case p� � �1 (mod n) for some integer �, then Conjecture
(1) is true (for X) since H�(Xét;Q l ) in that case is spanned by algebraic cycles.
In [SK79, Theorem II] it was established that for r odd and n � 4 the étale
cohomology is spanned by algebraic cycles if and only if p� ��1 (mod n) for
some integer �. See also [GY95].

PROBLEM 1. Verify Tate’s conjecture (T) for Deligne-Lusztig varieties.

B.1.2. Lefschetz theorems. Let X be a d-dimensional non-singular com-
plete intersection in Pn+1. Then for i 6= d we have [Ill77, Exposé VII]

Hi(Xét;Q l )=

(
0 i odd
Q l � [Vi] i even

(B.4)

where [Vi] = clX(Ld�i=2 \ X) with Lk a k-dimensional linear subspace not con-
taining X. Hence showing that the étale cohomology of an even-dimensional
hypersurface is spanned by algebraic cycles amounts to showing that this is
the case for the middle cohomology Hd(Xét;Q l ).

See [GL98] for generalisations of such Lefschetz theorems to singular va-
rieties.
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The Lefschetz principle for Picard groups says: for any (possibly singular)
complete intersection X� Pn+1 of dimension d� 3 we have Pic(X)=Z [Gro68,
Exposé XII, Corollaire 3.7]. In particular, if X is a non-singular hypersurface
in Pn+1 (n � 3), An�1(X)= Pic(X)= Z � [Ln \ X] with the above notation.2

B.1.3. Enter the automorphism groups. The Fermat varieties considered
above (Example B.4) is acted upon by the finite unitary group G = 2A2(q2).

Tate’s insight: composing the action of G on Zs(X) with the class map
to étale cohomology gives a representation of the finite group on the finite-
dimensional Q l -vector space H2s(Xét;Q l ). In this particular case G has only
the trivial and one other irreducible representation on H2s(Xét;Q l ) of dimen-
sion, m say. Since the class map clX is non-trivial, the rank of Bs(X) is greater
than or equal to m (and therefore also rank A�(X)
ZQ l � m).

This philosophy applies particularly well to the case where X is the
smooth compactification of an irreducible Deligne-Lusztig variety X(w) with
the (large) finite group GF acting as automorphisms on X̄(w). The dimensions
of the irreducible GF-representations on H�

c (X(w)ét;Q l ) has been determined
by Lusztig [Lus76a], hence by the above procedure one should be able to get
(at least) lower bounds on the ranks of the Chow groups Ai(X̄(w)) (after relat-
ing the cohomology with compact support of X(w) to the cohomology of the
smooth compactification X̄(w) — this may be done using the long exact Hi(�)-
cohomology sequence coming from the inclusions X(w)

open���! X̄(w) closed ����
@ X̄(w); see [Sri79, p. 52]).

PROBLEM 2. Determine the character(s) of the representation(s) of GF on
Ai(X̄(w))Q.

REMARK B.5. It is known that the action on Hi
c(X(w)ét;Q l ) induced by

Frobenius FÆ is semi-simple [Lus76a, (6.1) Theorem]. From the above-mentio-
ned long exact sequence it follows by induction that this is also true for X̄(w).

B.1.4. Classes of ‘good’ varieties. Let A(k) be the minimal subset of V(k)
containing all geometrically irreducible curves and being closed under the op-
erations

� product,
� disjoint union,
� finite extensions of base-field and
� blowing up X 2 A(k) along Y 2 A(k), Y � X

cf. [Sou84, 3.3.1]. Note that A(k) contains the Fermat varieties [SK79] and all
abelian varieties [Sou84, 3.3.3]. The following theorem extracts Soulé’s results
[Sou84, Theorems 3+4] on the Chow groups of such varieties.

2Since n � 3, clX does not map A1(X) to the middle cohomology (2n� 2 = n implies n = 2),
hence we can still have high-rank middle cohomology generated by algebraic cycles.
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THEOREM B.6 (SOULE). Let X 2 A(k) be of dimension d. Then for i 2
f0; 1; d� 1; dg, CHi(X) = Zri � T where T is a finite torsion group. Further-
more, the class map is an isomorphism modulo torsion; that is,

clX : CHi(X)
ZQ l !
�

H2i(X̄ét;Q l (i))
�G(k̄=k) (B.5)

is an isomorphism. Furthermore, for some finite extension k0 of k we have

CHi(X�k k0)=CHi(X�k k0)torsion ' CHi(X̄)=CHi(X̄)torsion:

EXAMPLE B.7. Let X = X̄(s1s2) be the 2A3 Deligne-Lusztig variety with
q = 2. X is then the blow-up of the non-singular Fermat cubic surface

S : X3
0 + X3

1 + X3
2 + X3

3 = 0

in its (q3
+ 1)(q2

+ 1) = 45 Fq2 -rational points. Being a non-singular cubic sur-
face in P3, S is the projective plane blown up in 6 points in general position
[Har77, Section V.4], hence X is the blow-up of the projective plane in 51
points. So A1(X) =

L51
i=1Z � [Ei]� Z � [H] where H is the pull-back of a line

in P2 and the Ei are the exceptional divisors cf. [Ful83, Example 8.3.10]. In
[Rod96] the Betti numbers have determined; we find

b2 = dimQl

�
H2(Xét;Q l )

�G(k̄=k)
= q5

+ 2q3
+ q+ 2= 52

and this is also the pole-order of Z(X; t) at t = q�i. So all the cohomology is
algebraic as predicted by Theorem B.6. 3

So it seems that we in some degrees may reformulate Problem 1 as:

PROBLEM 3. Determine whether Deligne-Lusztig varieties are in A(k) or
not. One might start by determining if for example a complete intersection is
in A(k) when the intersecting hyper-surfaces are (cf. Chapter 3).

Define a subset B(k) of A(k) by:

� B(k) contains products of geometrically irreducible curves.
� If X;Y 2 B(k), dim X = dim Y, then X

`
Y 2 B(k).

� Suppose X;Y 2 V(k) are equi-dimensional of the same dimension and
f : X! Y is a surjective morphism. Then, if X is in B(k) so is Y.

� If X�k k0 2 B(k) then also X 2 B(k) and
� B(k) is minimal with these properties.

B(k) contains the Abelian varieties and is closed under products cf. [Sou84,
3.4]. We then have the following Lefschetz-type theorem [Sou84, Theorem 7]:

THEOREM B.8 (SOULE). If X 2 B(k) and � 2 CH1(X)
ZQ is the class of
an ample divisor on X, then for 2i � d = dim X, the multiplication map

CHi(X)
ZQ �\�d�2i���! CHd�i(X)
ZQ
is an isomorphism.

3Note: for q = 2, X̄(s1) has 27 components which (probably) are the proper transforms of the
27 lines on S.
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REMARK B.9. Let C be a non-singular projective curve defined over Fq .
Assume C h as a rational point P over FqÆ . Then the degree map A0(C)! Z
has image ÆZ and kernel Alb(C) = A0(C)0. Since the kernel is the (finitely
many) closed points of an Abelian variety, it is all torsion, hence A0(C)Q = Q
with generator 1

Æ [P]. For example, if C is an elliptic curve with a rational point
P, then all [P0] 2 Pic0(C) are torsion elements.

From the above remark (or from Theorem B.8) we have:

PROPOSITION B.10. Let X̄(w) be a one-dimensional Deligne-Lusztig vari-
ety. Then A1(X̄(w))= Z and A0(X̄(w))Q = Q:

B.1.5. Deligne-Lusztig surfaces. Let w 2 W be a standard Coxeter ele-
ment of length 2, w= s1s2. So we are considering pairs (D; �) where � has two
orbits on D. From [Car85, p. 37] we see that restricting ourselves to non-trivial
graph automorphisms �we have the possibilities listed in Table C.2 (page 105).
These surfaces have been examined in [Rod96] where their number of rational
points (over their natural field of definition) is being compared to their Betti
numbers cf. [LT95, Tsf94].

Using the results of Rodier [Rod96] and the explicit descriptions given in
Chapter 3 we will now examine the A2; C2;

2A3 and 2A4 standard Deligne-
Lusztig varieties.

EXAMPLE B.11 ( A2 case). Restricting the composite map

X� X� X
pr1�! X! G=PI1 ' P2

to X̄(w) realizes X̄(w) as the blow-up of P2 in its q2
+ q+ 1 Fq -rational points.

A�(X̄(w)) is given by [Ful83, Example 8.3.10] and by Theorem B.6 Tate’s con-
jecture (T) is verified in this case.

REMARK B.12. Let X̄(w) be an irreducible Deligne-Lusztig variety with
zeta function Z(t) over FqÆ ,

t
d
dt

ln(Z(t))=
1X

s=1

jX̄(w)FÆs jts:

Then it follows from the Weil conjectures [Del74] that we may write Z(t) as a
rational function

Z(t)=
P1(t) � : : : � P2d�1(t)

P0(t)P2(t) � : : : � P2d(t)

with deg Pi = bi (the i’th Betti number of X̄(w)). In [Lus76a, Theorem 6.1] the
series

P1
s=1 jX(w)FÆsjt2 is given for a Coxeter stratum X(w). Summing over
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these we get for example in the A2 case:

t
d
dt

ln(Z(t))=
q3(q2� 1)(q3� 1)

q2 + q+ 1
t3 1

(1� t)(1� qt)(1� q2t)

+ 2(q2
+ q+ 1)

q(q2� 1)
q+ 1

t2 1
(1� qt)(1� t)

+ (q+ 1)(q2
+ q+ 1)

t
1� t

(the first term is from the open stratum, the next is from the two codimension
1 strata and the last term comes from X(e)). Manipulating this expression one
finds that

Z(t)=
1

(1� t)(1� qt)q2+q+2(1� q2t)

hence b1 = b3 = 0, b0 = b4 = 1 and b2 = q2
+ q+ 2.

EXAMPLE B.13 ( C2 case). Let V= k4 be equipped with the form h�; �i given
by

hx; yi= (y1x3� x1 y3)+ (y2x4� x2 y4):

FV acts on V by raising the coordinates to the q’th power. Then X(w) is given
by

X(w)= fx 2 P3 : hx; FV(x)i= 0; hx; F2
V(x)i 6= 0g

and by blowing up the non-singular surface S= fx 2 P3 : hx; FV(x)i= 0g in its
Fq -rational points (the points for which FV(x)= x), we obtain X̄(w). Hence

A0(X̄(w)) = Z[X̄(w)]

A1(X̄(w)) = A1(S)�
q3
+q2

+q+1M
i=1

Z[Ei]

A2(X̄(w)) = A2(S):

From [Rod96, Proposition 1] we get that S has Betti numbers b1 = b3 = 0, b0 =

b4 = 1 and b2 = q3� q2
+ q+ 1. The pole-order of Z(t) at t= q�1 is 1

2 (q3
+ q+ 2).

From Proposition B.2 we have

rank NSk(S)� q3 � q2
+ q+ 1

and from [SK79] it follows that S 2 A(k) (see Section B.1.4) hence A1(S) =
Zr� (torsion); r = 1

2 (q3
+ q+ 2). (Hence Tate’s conjecture (T) is OK also in this

case.)

EXAMPLE B.14 ( 2A3 case). Restricting the projection

X� X� X
pr1�! X! G=P ' P3

to X̄(w) realizes X̄(w) as the blow-up of the Fermat surface S � P3,

S : xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 = 0:
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in its Fq2 -rational points (of which there are (q3
+ 1)(q2

+ 1)). From Theorem B.8
it follows that Ai(S) has rank b2i. Again we have b1 = b3 = 0, b0 = b4 = 1. By
counting the number of rational points over extensions of Fq one may deter-
mine b2 (as in Remark B.12) to be equal to q3� q2

+ q+ 1. Hence

A0(X̄(w))= Z[X̄(w)]

A1(X̄(w))= A1(S)�
(q3
+1)(q2

+1)M
i=1

Z[Ei] ; A1(S)= Zb2� (torsion)

A2(X̄(w))= A2(S)= Z� (torsion):

EXAMPLE B.15 ( 2A4 case). As seen in Example 3.17, restricting the com-
posite map

X� X� X
pr1�! X! G=P ' P3

to X̄(w) gives a birational map to the intersection of two Fermat hypersurfaces
of degree q+ 1 and q3

+ 1. As seen earlier (Example 1.16) the exceptional fibers
are Deligne-Lusztig varieties of type 2A2, that is, Hermitian curves. X̄(w) has
Betti numbers b1 = b3 = q(q� 1)(q2 � 1), b0 = b4 = 1 and b2 = q8

+ q6
+ q4

+

q2
+ 2 (see [Rod96, Proposition 2]). From Proposition B.2 we have

rank NS1(X̄(w)) � q8
+ q6

+ q4
+ q2

+ 2:

On the other hand, it follows from Lemma A.8 that rank A1(X̄(w)) � (q5
+

1)(q2
+ 1).

B.2. Cohomology of homogeneous line bundles

DEFINITION B.16. A morphism of varieties (or schemes) f : X! Y is triv-
ial with image f (Y) if OY! f�OX is surjective, f (Y)= Spec f�OX and Ri f�OX =

0 for i > 0.

A closed embedding i : X ! Y is trivial with image i(X) [Ram85, Re-
mark 4]. For a trivial morphism we have H j(X; f �M) = H j(Y; M) for all j � 0
and for any locally free OY-module M of finite rank [Har77, Exercise III.8.3].
(And for f affine we have for any quasi-coherent sheaf N on X that Hi(X; N)=
Hi(Y; f�N) [Har77, Exercise III.8.2].)

PROBLEM 4. For a Schubert variety Xw it is known that the cohomology
groups Hi(Xw;L(�)jXw) vanishes for i > 0 whenever � is strictly anti-dominant.
Under the same condition, the restriction map

Hi(X;L(�))�!Hi(Xw;L(�)jXw)

is surjective. Prove (or dis-prove) similar statements for the restriction of such
line bundles to Deligne-Lusztig varieties.



B.3. THE FINER STRUCTURE OF THE PICARD GROUP 91

The proof in the Schubert variety case uses that the Demazure desingu-
larisations Zw

'e�! Xw and Ō(w)
'�! O(w) are surjective and trivial [Dem74,

MR88] and an induction argument.

REMARK B.17. It is not true that the contraction map � : X̄(w)! Z is triv-
ial in general (in the sense of Definition B.16). A calculation in the 2A4 case
shows that H1(C;OC)= H0(P2;OP2(q+ 2)) 6= 0, hence the limit

R1 f�OX̄(w) = lim � n H1(D1;n;OD1;n )

has as its first term a number of copies of H1(C;OC) (C is one of the components
of D1 and D1;i is the subscheme of X̄(w) defined by the i’th power of the ideal
defining D1). Hence R1 f�OX̄(w) 6= 0.

B.3. The finer structure of the Picard group

Given the results of Chapter 3 it is natural to pose:

PROBLEM 5. Let D be an effective divisor (or line bundle) on a Deligne-
Lusztig variety X̄(w) of classical type. We know that there exists unique ratio-
nal numbers m; ni allowing us to write D = m��[H]+

P
i niVi (the Vi are the

components of D1). Determine which m and ni can occur and what further
restrictions need to be imposed to ensure that D is ample.

One might start out by calculating the coordinates for KX̄(w) (which we
know is ample in some cases) and see if any pattern shows up.

PROBLEM 6. In Chapter 3 we saw that the rank of the Picard group is the
same for Deligne-Lusztig varieties arising from F-conjugate Weyl group ele-
ments (Lemma 3.5). Determine how the generators change under this trans-
formation.

Similarly, given � 2 X(T) and integers vi such that the pull-back of the
homogeneous line bundle L(�) to X̄(w) equals OX̄(w)(

P
i viDi), how does the vi

change?4

4For each specific example one may follow the methods of [HH99a], but it would be nice
with a general formula.
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APPENDIX C

Maple calculations

In this chapter we have included some of the calculations carried out
with the computer algebra program Maple. The code should be rather self-
explanatory.

C.1. The surface case

Each of the cases in Table C.2 (page 105) have been examined for deter-
mining the numbers of rational points and the Euler characteristics.

> with(linalg):

Warning, new definition for norm

Warning, new definition for trace

First some constants:
> epsilon := exp(2*Pi*I/3);

" := �1
2
+

1
2

I
p

3

> G_2A3 := Q^6*(Q^2-1)*(Q^3+1)*(Q^4-1);

G_2A3 := Q6 (Q2� 1) (Q3
+ 1) (Q4� 1)

> G_2A4 := Q^10*(Q^2-1)*(Q^3+1)*(Q^4-1)*(Q^5+1);

G_2A4 := Q10 (Q2� 1) (Q3
+ 1) (Q4� 1) (Q5

+ 1)
> G_3D4 :=factor(expand(Q^12*(Q^2-1)*(Q^4-epsilon)*(Q^4-epsilon^2)*(Q^6-1)));

G_3D4 := Q12 (Q4� Q2
+ 1) (Q� 1)2 (Q+ 1)2 (Q2

+ Q+ 1)2 (Q2� Q+ 1)2

(Here we made some mumbo-jumbo to get rid of the square-roots)
> G_2F4 := Q^24*(Q^2-1)*(Q^6+1)*(Q^8-1)*(Q^12+1);

G_2F4 := Q24 (Q2� 1) (Q6
+ 1) (Q8� 1) (Q12

+ 1)
> phi_plus_2A3:=6:phi_plus_2A4:=10:phi_plus_3D4 :=12:phi_plus_2F4:=24:

Matrix representations of F and F0 acting on Y0 (tensored with R):

> F_2A3:=matrix([[0,0,Q],[0,Q,0],[Q,0,0]]):

> F0_2A3:=matrix([[0,0,1],[0,1,0],[1,0,0]]):

> F_2A4:=matrix([[0,0,0,Q],[0,0,Q,0],[0,Q,0,0], [Q,0,0,0]]):

> F0_2A4:=matrix([[0,0,0,1],[0,0,1,0],[0,1,0,0] ,[1,0,0,0]]):

> F_3D4:=matrix([[0,0,Q,0],[0,Q,0,0],[0,0,0,Q], [Q,0,0,0]]):

> F0_3D4:=matrix([[0,0,1,0],[0,1,0,0],[0,0,0,1] ,[1,0,0,0]]):
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> F_2F4:=matrix([[0,0,0,Q],[0,0,sqrt(2)*Q,0],[0 ,sqrt(1/2)*Q,0,0],[Q,0,0,0]]):

> F0_2F4:=matrix([[0,0,0,1],[0,0,sqrt(2),0],[0, sqrt(1/2),0,0],[1,0,0,0]]):

Matrix representations of s1, s2 etc. acting (from the right) on Y0 (tensored with R):
> s1_2A3:=matrix([[-1,0,0],[1,1,0],[0,0,1]]):

> s1_2A4:=matrix([[-1,0,0,0],[1,1,0,0],[0,0,1,0 ],[0,0,0,1]]):

> s1_3D4:=matrix([[-1,0,0,0],[1,1,0,0],[0,0,1,0 ],[0,0,0,1]]):

> s1_2F4:=matrix([[-1,0,0,0],[1,1,0,0],[0,0,1,0 ],[0,0,0,1]]):

> s2_2A3:=matrix([[1,1,0],[0,-1,0],[0,1,1]]):

> s2_2A4:=matrix([[1,1,0,0],[0,-1,0,0],[0,1,1,0 ],[0,0,0,1]]):

> s2_3D4:=matrix([[1,1,0,0],[0,-1,0,0],[0,1,1,0 ],[0,1,0,1]]):

> s2_2F4:=matrix([[1,1,0,0],[0,-1,0,0],[0,1,1,0 ],[0,0,0,1]]):

> s1s2_2A3:= evalm(s1_2A3 &* s2_2A3):

> s1s2_2A4:= evalm(s1_2A4 &* s2_2A4):

> s1s2_3D4:= evalm(s1_3D4 &* s2_3D4):

> s1s2_2F4:= evalm(s1_2F4 &* s2_2F4):

> F0_s1inv_2A3:=evalm(F0_2A3 &* inverse(s1_2A3)):

> F0_s1inv_2A4:=evalm(F0_2A4 &* inverse(s1_2A4)):

> F0_s1inv_3D4:=evalm(F0_3D4 &* inverse(s1_3D4)):

> F0_s1inv_2F4:=evalm(F0_2F4 &* inverse(s1_2F4)):

> F0_s2inv_2A3:=evalm(F0_2A3 &* inverse(s2_2A3)):

> F0_s2inv_2A4:=evalm(F0_2A4 &* inverse(s2_2A4)):

> F0_s2inv_3D4:=evalm(F0_3D4 &* inverse(s2_3D4)):

> F0_s2inv_2F4:=evalm(F0_2F4 &* inverse(s2_2F4)):

> F0_s1s2inv_2A3:=evalm(F0_2A3 &* inverse((s1_2A3 &* s2_2A3))):

> F0_s1s2inv_2A4:=evalm(F0_2A4 &* inverse((s1_2A4 &* s2_2A4))):

> F0_s1s2inv_3D4:=evalm(F0_3D4 &* inverse((s1_3D4 &* s2_3D4))):

> F0_s1s2inv_2F4:=evalm(F0_2F4 &* inverse((s1_2F4 &* s2_2F4))):

> F_s1s2inv_2A3:=evalm(F_2A3 &* inverse((s1_2A3 &* s2_2A3)));

F_s1s2inv_2A3 :=

26664
Q Q Q

�Q �Q 0

0 Q 0

37775
> F_s1s2inv_2A4:=evalm(F_2A4 &* inverse((s1_2A4 &* s2_2A4)));

F_s1s2inv_2A4 :=

26666664
0 0 0 Q

Q Q Q 0

�Q �Q 0 0

0 Q 0 0

37777775
We need the number of eigenvalues equal to 1:

> eigenvals(F0_2A3);

�1; 1; 1
> sigma2A3:=2;

sigma2A3 := 2
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> eigenvals(F0_2A4);

1; 1; �1; �1
> sigma2A4:=2;

sigma2A4 := 2
> eigenvals(F0_3D4);

�1
2
+

1
2

I
p

3; �1
2
� 1

2
I
p

3; 1; 1

> sigma3D4:=2;

sigma3D4 := 2
> eigenvals(F0_2F4);

1; 1; �1; �1
> sigma2F4:=2;

sigma2F4 := 2
> eigenvals(F0_s1inv_2A3);

1; I; �I
> sigma_s1T_2A3:=1;

sigma_s1T_2A3 := 1
> eigenvals(F0_s1inv_2A4);

1; �1; I; �I
> sigma_s1T_2A4:=1;

sigma_s1T_2A4 := 1
> eigenvals(F0_s1inv_3D4);

1; �1;
1
2
� 1

2
I
p

3;
1
2
+

1
2

I
p

3

> sigma_s1T_3D4:=1;

sigma_s1T_3D4 := 1
> eigenvals(F0_s1inv_2F4);

1; �1; I; �I
> sigma_s1T_2F4:=1;

sigma_s1T_2F4 := 1
> eigenvals(F0_s2inv_2A3);

1; �1; �1
> sigma_s2T_2A3:=1;

sigma_s2T_2A3 := 1
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> eigenvals(F0_s2inv_2A4);

1; �1;
1
2
� 1

2
I
p

3;
1
2
+

1
2

I
p

3

> sigma_s2T_2A4:=1;

sigma_s2T_2A4 := 1
> eigenvals(F0_s2inv_3D4);

1; �1; �1
2
+

1
2

I
p

3; �1
2
� 1

2
I
p

3

> sigma_s2T_3D4:=1;

sigma_s2T_3D4 := 1
> eigenvals(F0_s2inv_2F4);

1; �1;
1
2

p
2+

1
2

I
p

2;
1
2

p
2� 1

2
I
p

2

> sigma_s2T_2F4:=1;

sigma_s2T_2F4 := 1
> eigenvals(F0_s1s2inv_2A3);

�1;
1
2
� 1

2
I
p

3;
1
2
+

1
2

I
p

3

> sigma_s1s2T_2A3:=0;

sigma_s1s2T_2A3 := 0
> eigenvals(F0_s1s2inv_2A4);

1
4

p
5+

1
4
� 1

4
I
p

2
q

5+
p

5;
1
4

p
5+

1
4
� 1

4
I
p

2
q

5�p5;

1
4

p
5+

1
4
+

1
4

I
p

2
q

5�
p

5;�1
4

p
5+

1
4
+

1
4

I
p

2
q

5+
p

5

> sigma_s1s2T_2A4:=0;

sigma_s1s2T_2A4 := 0
> eigenvals(F0_s1s2inv_3D4);

1
2

q
2� 2 I

p
3; �1

2

q
2� 2 I

p
3;

1
2

q
2+ 2 I

p
3; �1

2

q
2+ 2 I

p
3

> sigma_s1s2T_3D4:=0;

sigma_s1s2T_3D4 := 0
> eigenvals(F0_s1s2inv_2F4);

RootOf(�_Z 3
p

2+ _Z 4
+ _Z 2�p2 _Z + 1)

> sigma_s1s2T_2F4:=0;

sigma_s1s2T_2F4 := 0
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The numbers of fixed points on the Coxeter tori:
> fixed_points_T_2A3:=sort(charpoly(inverse(F0_ 2A3),Q));

�xed_points_T_2A3 := Q3� Q2� Q+ 1
> fixed_points_T_2A4:=sort(charpoly(inverse(F0_ 2A4),Q));

�xed_points_T_2A4 := Q4� 2 Q2
+ 1

> fixed_points_T_3D4:=sort(charpoly(inverse(F0_ 3D4),Q));

�xed_points_T_3D4 := Q4� Q3� Q+ 1
> fixed_points_T_2F4:=sort(charpoly(inverse(F0_ 2F4),Q));

�xed_points_T_2F4 := Q4� 2 Q2
+ 1

> fixed_points_g1T_2A3:=sort(charpoly(inverse(F 0_2A3) &* s1_2A3,Q));

�xed_points_g1T_2A3 := Q3� Q2
+ Q� 1

> fixed_points_g1T_2A4:=sort(charpoly(inverse(F 0_2A4) &* s1_2A4,Q));

�xed_points_g1T_2A4 := Q4� 1
> fixed_points_g1T_3D4:=sort(charpoly(inverse(F 0_3D4) &* s1_3D4,Q));

�xed_points_g1T_3D4 := Q4� Q3
+ Q� 1

> fixed_points_g1T_2F4:=sort(charpoly(inverse(F 0_2F4) &* s1_2F4,Q));

�xed_points_g1T_2F4 := Q4� 1
> fixed_points_g2T_2A3:=sort(charpoly(inverse(F 0_2A3) &* s2_2A3,Q));

�xed_points_g2T_2A3 := Q3
+ Q2� Q� 1

> fixed_points_g2T_2A4:=sort(charpoly(inverse(F 0_2A4) &* s2_2A4,Q));

�xed_points_g2T_2A4 := Q4� Q3
+ Q� 1

> fixed_points_g2T_3D4:=sort(charpoly(inverse(F 0_3D4) &* s2_3D4,Q));

�xed_points_g2T_3D4 := Q4
+ Q3� Q� 1

> fixed_points_g2T_2F4:=sort(charpoly(inverse(F 0_2F4) &* s2_2F4,Q));

�xed_points_g2T_2F4 := Q4�
p

2 Q3
+

p
2 Q� 1

> fixed_points_g1g2T_2A3:=sort(charpoly(inverse (F0_2A3) &* s1s2_2A3,Q));

�xed_points_g1g2T_2A3 := Q3
+ 1

> fixed_points_g1g2T_2A4:=sort(charpoly(inverse (F0_2A4) &* s1s2_2A4,Q));

�xed_points_g1g2T_2A4 := Q4� Q3
+ Q2� Q+ 1

> fixed_points_g1g2T_3D4:=sort(charpoly(inverse (F0_3D4) &* s1s2_3D4,Q));

�xed_points_g1g2T_3D4 := Q4� Q2
+ 1

> fixed_points_g1g2T_2F4:=sort(charpoly(inverse (F0_2F4) &* s1s2_2F4,Q));

�xed_points_g1g2T_2F4 := Q4�
p

2 Q3
+ Q2�

p
2 Q+ 1
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No we proceed to find the Euler-characteristics of the strata:
> chi_2A3_X(e) := simplify((-1)^(sigma2A3-sigma2A3) *

> (G_2A3) / (Q^phi_plus_2A3 * fixed_points_T_2A3));

chi_2A3_X(e) := (Q3
+ Q2

+ Q+ 1) (Q3
+ 1)

> chi_2A4_X(e) := simplify((-1)^(sigma2A4-sigma2A4) *

> (G_2A4) / (Q^phi_plus_2A4 * fixed_points_T_2A4));

chi_2A4_X(e) := (Q5
+ 1) (Q3

+ Q2
+ Q+ 1) (Q2� Q+ 1)

> chi_3D4_X(e) := simplify((-1)^(sigma3D4-sigma3D4) *

> (G_3D4) / (Q^phi_plus_3D4 * fixed_points_T_3D4));

chi_3D4_X(e) := (Q2� Q+ 1)2 (Q2
+ Q+ 1) (Q+ 1)2 (Q4� Q2

+ 1)
> chi_2F4_X(e) := simplify((-1)^(sigma2F4-sigma2F4) *

> (G_2F4) / (Q^phi_plus_2F4 * fixed_points_T_2F4));

chi_2F4_X(e) := (Q12
+ 1) (Q6

+ Q4
+ Q2

+ 1) (Q6
+ 1)

> chi_2A3_X(s1) := simplify((-1)^(sigma2A3-sigma_s1T_2A3) *

> (G_2A3) / (Q^phi_plus_2A3 * fixed_points_g1T_2A3));

chi_2A3_X(s1 ) := �(Q2� 1) (Q3
+ 1) (Q+ 1)

> chi_2A4_X(s1) := simplify((-1)^(sigma2A4-sigma_s1T_2A4) *

> (G_2A4) / (Q^phi_plus_2A4 * fixed_points_g1T_2A4));

chi_2A4_X(s1 ) :=�(Q2� 1) (Q3
+ 1) (Q5

+ 1)
> chi_3D4_X(s1) := simplify((-1)^(sigma3D4-sigma_s1T_3D4) *

> (G_3D4) / (Q^phi_plus_3D4 * fixed_points_g1T_3D4));

chi_3D4_X(s1 ) :=�(Q2� Q+ 1) (Q2
+ Q+ 1)2 (Q+ 1) (Q� 1) (Q4� Q2

+ 1)
> chi_2F4_X(s1) := simplify((-1)^(sigma2F4-sigma_s1T_2F4) *

> (G_2F4) / (Q^phi_plus_2F4 * fixed_points_g1T_2F4));

chi_2F4_X(s1 ) := �(Q12
+ 1) (Q8� 1) (Q4� Q2

+ 1)
> chi_2A3_X(s2) := simplify((-1)^(sigma2A3-sigma_s2T_2A3) *

> (G_2A3) / (Q^phi_plus_2A3 * fixed_points_g2T_2A3));

chi_2A3_X(s2 ) :=�(Q4� 1) (Q2� Q+ 1)
> chi_2A4_X(s2) := simplify((-1)^(sigma2A4-sigma_s2T_2A4) *

> (G_2A4) / (Q^phi_plus_2A4 * fixed_points_g2T_2A4));

chi_2A4_X(s2 ) := �(Q5
+ 1) (Q4� 1) (Q+ 1)

> chi_3D4_X(s2) := simplify((-1)^(sigma3D4-sigma_s2T_3D4) *

> (G_3D4) / (Q^phi_plus_3D4 * fixed_points_g2T_3D4));

chi_3D4_X(s2 ) :=�(Q2� Q+ 1)2 (Q2
+ Q+ 1) (Q+ 1) (Q� 1) (Q4� Q2

+ 1)
> chi_2F4_X(s2) := simplify((-1)^(sigma2F4-sigma_s2T_2F4) *

> (G_2F4) / (Q^phi_plus_2F4 * fixed_points_g2T_2F4));

chi_2F4_X(s2 ) := � (Q12
+ 1) (Q8� 1) (Q6

+ 1)

Q2�p2 Q+ 1



C.1. THE SURFACE CASE 99

> chi_2A3_X(s1s2) := simplify((-1)^(sigma2A3-sigma_s1s2T_2A3) *

> (G_2A3) / (Q^phi_plus_2A3 * fixed_points_g1g2T_2A3));

chi_2A3_X(s1s2 ) := (Q2� 1) (Q4� 1)
> chi_2A4_X(s1s2) := simplify((-1)^(sigma2A4-sigma_s1s2T_2A4) *

> expand(G_2A4) / (Q^phi_plus_2A4 * fixed_points_g1g2T_2A4));

chi_2A4_X(s1s2 ) := Q10
+ Q9� Q8� 2 Q5� Q2

+ Q+ 1
> chi_3D4_X(s1s2) := simplify((-1)^(sigma3D4-sigma_s1s2T_3D4) *

> expand(G_3D4) / (Q^phi_plus_3D4 * fixed_points_g1g2T_3D4));

chi_3D4_X(s1s2 ) := Q12� 2 Q6
+ 1

> chi_2F4_X(s1s2) := simplify((-1)^(sigma2F4-sigma_s1s2T_2F4) *

> (G_2F4) / (Q^phi_plus_2F4 * fixed_points_g1g2T_2F4));

chi_2F4_X(s1s2 ) :=
(Q2� 1) (Q6

+ 1) (Q8� 1) (Q12
+ 1)

Q4�p2 Q3+ Q2�p2 Q+ 1
and now we sum over the strata:

> chi_2A3_X(es1):=simplify(chi_2A3_X(e)+chi_2A3 _X(s1));

>

chi_2A3_X(es1 ) := 2 Q3
+ 2 Q4

+ 2 Q+ 2

chi_2A3_X(es1 ) := 2 Q3
+ 2 Q4

+ 2 Q+ 2
> chi_2A3_X(es2):=simplify(chi_2A3_X(e)+chi_2A3 _X(s2));

chi_2A3_X(es2 ) := 2 Q3
+ 2 Q5

+ 2 Q2
+ 2

> chi_2A3:=simplify(chi_2A3_X(e)+chi_2A3_X(s1)+ chi_2A3_X(s2)+chi_2A3_X(s1s2));

chi_2A3 := 2 Q3
+ Q5

+ Q+ 4
> chi_2A4_X(es1):=simplify(chi_2A4_X(e)+chi_2A4 _X(s1));

chi_2A4_X(es1 ) := 2 Q8
+ 2 Q5

+ 2 Q3
+ 2

> chi_2A4_X(es2):=simplify(chi_2A4_X(e)+chi_2A4 _X(s2));

chi_2A4_X(es2 ) := Q8
+ Q7

+ 2 Q5
+ Q3

+ Q2
+ 2� Q9

+ Q6� Q4
+ Q

> chi_2A4:=simplify(chi_2A4_X(e)+chi_2A4_X(s1)+ chi_2A4_X(s2)+chi_2A4_X(s1s2));

chi_2A4 := 4+ 2 Q� Q2
+ 2 Q3� Q4

+ Q6
+ Q8

> chi_3D4_X(es1):=simplify(chi_3D4_X(e)+chi_3D4 _X(s1));

chi_3D4_X(es1 ) := 2+ 2 Q+ 2 Q4
+ 2 Q5

+ 2 Q8
+ 2 Q9

> chi_3D4_X(es2):=simplify(chi_3D4_X(e)+chi_3D4 _X(s2));

chi_3D4_X(es2 ) := 2+ 2 Q3
+ 2 Q4

+ 2 Q8
+ 2 Q11

+ 2 Q7

> chi_3D4:=simplify(chi_3D4_X(e)+chi_3D4_X(s1)+ chi_3D4_X(s2)+chi_3D4_X(s1s2));

chi_3D4 := 4+ Q+ Q3
+ 2 Q4

+ Q5� 2 Q6
+ 2 Q8

+ Q11
+ Q7

+ Q9

> chi_2F4_X(es1):=simplify(chi_2F4_X(e)+chi_2F4 _X(s1));

chi_2F4_X(es1 ) := 2 Q18
+ 2 Q22

+ 2 Q16
+ 2 Q12

+ 2 Q6
+ 2 Q10

+ 2 Q4
+ 2
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> chi_2F4_X(es2):=simplify(chi_2F4_X(e)+chi_2F4 _X(s2));

chi_2F4_X(es2 ) :=

� (Q12
+ 1) (Q6

+ 1) (Q7
p

2� 2 Q6
+ Q5

p
2� 2 Q4

+

p
2 Q3� 2 Q2

+

p
2 Q� 2)

Q2�p2 Q+ 1
> chi_2F4:=simplify(chi_2F4_X(e)+chi_2F4_X(s1)+ chi_2F4_X(s2)+chi_2F4_X(s1s2));

chi_2F4 := (Q12
+ 1)(4+ 9 Q2

+ 10 Q4
+ 14 Q6

+ 15 Q8
+ 10 Q12

+ 11 Q10� 12 Q7
p

2

� 8 Q5
p

2� 6
p

2 Q3� 6
p

2 Q+ Q16
+ 6 Q14� 6 Q13

p
2� 8 Q11

p
2� 8 Q9

p
2

� 2 Q15
p

2)
Æ

((Q2�
p

2 Q+ 1) (Q4�
p

2 Q3
+ Q2�

p
2 Q+ 1))

C.2. Presenting the canonical bundle

In the 2An and An cases, the following Maple code determines the cano-
nical bundle. These calculations proved very helpful in proving the results of
[HH99a].

> with(linalg):

A general procedure for describing the canonical bundle of a (possibly twisted) An type
Deligne-Lusztig variety is the pull-back of a (possibly ample) homogeneous line bundle L on
G=B.

First we define constants and procedures:
The Kronecker delta function:

> delta :=proc(x,i) local p; p:=0; if x=i then p:=1 fi; RETURN(p); end:

A function describing the entries of the matrices corresponding to the action of the simple
reflections on X(T):

> extra_delta:= proc(i,j,k) local p; p:=0; if i=j and j=k then p:=-1 fi ;

> if i=j and k<>j then p:=1 fi ; if i=k+1 and i-j=1 then p:=1 fi;

> if i=k-1 and j-i=1 then p:=1 fi;RETURN(p) end;

extra_delta := proc(i; j; k)
localp;

p := 0 ;
if i = j and j = k then p := �1 fi ;
if i = j and k 6= j then p := 1 fi ;
if i = k+ 1 and i� j = 1 then p := 1 fi ;
if i = k� 1 and j� i = 1 then p := 1 fi ;
RETURN(p)

end
The following procedure takes the data (x=order of F on the Dynkin diagram, N=number of

simple reflections generating W, q=a prime power or ’q’) and returns a description of the canonical
bundle of the corresponding Deligne-Lusztig variety as a pull-back of a homogeneous line bundle
on G=B. Usually there are many possible choices. Then the procedure returns the free variables.

> isOK :=proc(x,N,q)

> global InverseEqs;

> local n,IN,F,tmpF,i,j,k,a,b,c,d,e,deltaq,s,w,Eq,A,C,

> vect,SmallEqs,SetEq,LastVect,

> SmallConstraints,MoreConstraints,Constraints;

> deltaq :=proc(x,i) local p; p:=0; if x=i then p:=q fi; RETURN(p); end:

> n:=ceil(N/x);printf(`\nExamining the `);
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> print(x,N); printf(`case.`);IN:=matrix(N,N,delta):

> F:=matrix(N,N,deltaq): tmpF:=copy(F):

> if x=2 then for i from 1 to N do for j from 1 to N do F[i,j]:=tmpF[N+1-i,j]
od;od; fi; evalm(F);

> for i from 1 to n do b[i]:=vector(N,[]) : b[i][i]:=-1: od:

> c:=vector(N,[]): for i from 1 to N do c[i]:=1-q od:

> for i from 1 to n do e[i]:=vector(N,0) : e[i][i]:= 1: evalm(e[i]): od:

> for k from 1 to N do: s[k]:=matrix(N,N) : for i from 1 to N do

> for j from 1 to N do s[k][i,j]:=extra_delta(i,j,k) od: od: od:

> w[0]:=evalm(IN); for k from 1 to n do: w[k]:=matrix(N,N): w[k]:=evalm(w[k-1]
&* s[k]) od;

> for k from 1 to n+1 do Eq[k]:=evalm(inverse(w[k-1])) od;

> A:=evalm(F &* inverse(w[n]) - IN);

> if type(N,odd) and x<>1 then printf(`\nThe determinant of A is`);

> print(det(A)) ; printf(`\nThe coordinates (with respect to the boundary divisors)
for the inverse canonical divisor are:`);

> InverseEqs:=array(1..n);

> for i from 1 to n do C[i]:=matrix(N,N): C[i]:=evalm(inverse(w[i-1]) &* inverse(A)):

> InverseEqs[i]:=multiply(transpose(multiply(C[ i] , vector(N,1))),e[i]) :

> InverseEqs[i] := 1+simplify(InverseEqs[i] *(q-1)) : print(InverseEqs[i]) :

> od: fi;

> for k from 1 to n do vect[k]:=linsolve(Eq[k],b[k]) ;

> d[k]:=evalm(multiply(A,vect[k])) od;

> SmallEqs:=matrix(n,N): for k from 1 to n do for j from 1 to k-1 do

> for i from 1 to N do SmallEqs[k,i]:=vect[k][i]-vect[j][i] od;od;od;

> SetEq:=convert(SmallEqs,set);

> SmallConstraints:=solve(SetEq);assign(SmallCo nstraints);

> LastVect:=evalm(A &* linsolve(Eq[1],b[1]));

> printf(`\nThe canonical bundle is the`);

> printf(`\npull-back of the line bundle on G/B corresponding`);

> printf(` to the character with coordinates:`);print(evalm(LastVect + c));

> end;
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isOK := proc(x; N; q)

localn; IN ; F; tmpF ; i; j; k; a; b; c; d; e; deltaq; s; w; Eq ; A; C; vect; SmallEqs ; SetEq ;

LastVect ; SmallConstraints ;MoreConstraints ; Constraints ;

globalInverseEqs ;

deltaq := proc(x; i) localp; p := 0 ; if x = i then p := q fi ; RETURN(p) end ;

n := ceil(N=x) ;

printf(‘nnExamining the ‘) ; print(x; N) ; printf(‘case:‘) ;

IN :=matrix(N; N; Æ) ; F :=matrix(N; N; deltaq) ; tmpF := copy(F) ;

if x= 2 then for i to N do for j to N do Fi; j := tmpFN+1�i; j od od fi ;

evalm(F) ;

for i to n do bi := vector(N; []) ; bii :=�1 od ;

c := vector(N; []) ;

for i to N do ci := 1� q od ;

for i to n do ei := vector(N; 0) ; ei i := 1 ; evalm(ei) od ;

for k to N do

sk :=matrix(N; N) ; for i to N do for j to N do ski; j := extra_delta(i; j; k) odod

od;

w0 := evalm(IN ) ;

for k to n do wk :=matrix(N; N) ; wk := evalm(wk�1 ‘& � ‘ sk) od ;

for k to n+ 1 doEqk := evalm(inverse(wk�1)) od ;

A := evalm((F ‘& � ‘ inverse(wn))� IN ) ;

if type(N; odd) and x 6= 1 then

printf(‘nnThe determinant of A is ‘) ; print(det(A)) ;

printf(‘nnThe coordinates (with respect to the boundary divisors) for

the inverse canonical divisor are : ‘);

InverseEqs := array(1::n) ;

for i to n do

Ci :=matrix(N; N) ;

Ci := evalm(inverse(wi�1) ‘& � ‘ inverse(A)) ;

InverseEqs i :=multiply(transpose(multiply(Ci ; vector(N; 1))); ei) ;

InverseEqs i := 1+ simplify(InverseEqs i � (q� 1)) ;

print(InverseEqs i)

od

fi;

for k to n dovectk := linsolve(Eq k ; bk) ; dk := evalm(multiply(A; vectk)) od ;

SmallEqs :=matrix(n; N) ;

for k to n do for j to k� 1 do for i to N doSmallEqsk; i := vectk i � vect j i od od

od;

SetEq := convert(SmallEqs ; set) ;SmallConstraints := solve(SetEq) ;

assign(SmallConstraints ) ;

LastVect := evalm(A ‘& � ‘ linsolve(Eq1 ; b1)) ;

printf(‘nnThe canonical bundle is the pull � back of the line bundle on G=B ‘);

printf(‘corresponding to the character with coordinates : ‘) ;

print(evalm(LastVect + c))

end
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> for t from 1 to 2 do for k from 2 to 5 do isOK(t,k,q) od; od;

Examining the

1; 2

case. The canonical bundle is the pull-back of the line bundle on
G/B corresponding to the character with coordinates:

[2� q; 1]

Examining the

1; 3

case. The canonical bundle is the pull-back of the line bundle on
G/B corresponding to the character with coordinates:

[2� q; 1� q; 1]

Examining the

1; 4

case. The canonical bundle is the pull-back of the line bundle on
G/B corresponding to the character with coordinates:

[2� q; 1� q; 1� q; 1]

Examining the

1; 5

case. The canonical bundle is the pull-back of the line bundle on
G/B corresponding to the character with coordinates:

[2� q; 1� q; 1� q; 1� q; 1]

Examining the

2; 2

case. The canonical bundle is the pull-back of the line bundle on
G/B corresponding to the character with coordinates:�

2� 2 q+ q b12; �b12+ 1
�

Examining the
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2; 3

case. The determinant of A is

�1� q3

The coordinates (with respect to the boundary divisors) for the
inverse canonical divisor are:

1� (1+ 2 q) (q� 1)
q2 � q+ 1

1� (q� 1) (q2
+ q+ 2)

1+ q3

The canonical bundle is the pull-back of the line bundle on G/B
corresponding to the character with coordinates:�

2� 2 q+ q b13; 1; �b13 + 1� q
�

Examining the

2; 4

case. The canonical bundle is the pull-back of the line bundle on
G/B corresponding to the character with coordinates:�

2+ q b14 � q; �2 q+ q b13 + 1; �b13+ 1; �b14+ 1� q
�

Examining the

2; 5

case. The determinant of A is

�1� q5

The coordinates (with respect to the boundary divisors) for the
inverse canonical divisor are:

1� (q2
+ 1+ 3 q3) (q� 1)

q4 � q3 + q2� q+ 1

1� (q2
+ 3 q+ 2+ 2 q3) (q� 1)
q4 � q3 + q2� q+ 1

1� (q� 1) (q4
+ q3

+ 2 q2
+ 2 q+ 3)

1+ q5

The canonical bundle is the pull-back of the line bundle on G/B
corresponding to the character with coordinates:�

2+ q b15� q; �2 q+ q b14+ 1; 1; �b14+ 1� q; �b15+ 1� q
�
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C.3. Tables

In this section we have collected some results from both the literature and
from the Maple calculations in the previous sections.

GF (D; �) Restrictions on Q

2A2(Q2) s1

vv ))

s2 Q any integral power of p

2B2(Q2) s1

vv ))

s2 We must have Q2
= p2n+1 and p = 2

2G2(Q2) s1

vv ))

s2 We must have Q2
= p2n+1 and p = 3

TABLE C.1. Diagrams giving irreducible Deligne-Lusztig va-
rieties of dimension 1.

GF (D; �) Restrictions on Q

2A3(Q2) s1
ss ++

s2 s3 Q any integral power of p

2A4(Q2) s1
uu ))

s2

vv ))

s3 s4 Q any integral power of p

3D4(Q3) s3

��

s1

//

\\
s2

~~~~~~~~

@@@@@@@@

s4

Q any integral power of p

2F4(Q2) s1
uu ))

s2

vv ))

s3 s4 Q2
= p2n+1 and p= 2

TABLE C.2. Diagrams giving irreducible Deligne-Lusztig va-
rieties of dimension 2.
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On the following two pages you find various properties arising in connec-
tion with finite groups of Lie type giving irreducible Deligne-Lusztig varieties
of dimension 2. The restrictions on Q are the same as those in Table C.2.

The elements g1; g2; g 2 G are chosen such that they are pre-images of
s1; s2; s1s2 respectively under the Lang-map (cf. Remark 1.20). Note that
�(X(e))= jGFj=(qjΦ

+jjTFj).
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GF 2A3(Q2) 2A4(Q2)

jGFj Q6(Q2 � 1)(Q3

+ 1)(Q4 � 1) Q10(Q2 � 1)(Q3

+ 1)(Q4 � 1)(Q5

+ 1)

jΦ+j 6 10

h0 3 5

�(G) 2 2

�(g1 T) 1 1

�(g2 T) 1 1

�(gT) 0 0

jTFj Q3 � Q2 � Q+ 1 Q4 � 2Q2

+ 1

jg1 TFj Q3 � Q2

+ Q� 1 Q4 � 1

jg2 TFj Q3

+ Q2 � Q� 1 Q4 � Q3
+Q� 1

jg TFj Q3

+ 1 Q4 � Q3
+Q2 �Q+ 1

�(X(e)) (Q3

+Q2

+Q+ 1)(Q3

+ 1) (Q5

+ 1)(Q3
+ Q2

+ Q+ 1)(Q2 �Q+ 1)

�(X(s1)) �(Q2 � 1)(Q3

+ 1)(Q+ 1) �(Q2 � 1)(Q3

+ 1)(Q5

+ 1)

�(X(s2)) �(Q4 � 1)(Q2 � Q+ 1) �(Q5

+ 1)(Q4 � 1)(Q+ 1)

�(X(s1s2)) (Q2 � 1)(Q4 � 1) Q10

+Q9 �Q8 � 2Q5 �Q2

+Q+ 1

jX(s1s2)
FÆ j (Q3

+ 1)(Q2

+ 1)2 (Q2

+ 1)(Q3

+ 1)(Q5

+ 1)

TABLE C.3
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.M
A

PL
E

C
A

L
C

U
L

A
T

IO
N

S

GF 3D4(Q3) 2F4(Q2)

jGFj Q12(Q4 � Q2

+ 1)(Q� 1)2(Q+ 1)2(Q2

+ Q+ 1)2(Q2 � Q+ 1)2 Q24(Q2 � 1)(Q6
+ 1)(Q8 � 1)(Q12

+ 1)

jΦ+j 12 24

h0 4 12

�(G) 2 2

�(g1 T) 1 1

�(g2 T) 1 1

�(gT) 0 0

jTFj Q4 �Q3 �Q+ 1 Q4 � 2Q2

+ 1

jg1 TFj Q4 �Q3

+Q� 1 Q4 � 1

jg2 TFj Q4

+Q3 �Q� 1 Q4 �p2Q3

+

p

2Q� 1

jgTFj Q4 � Q2

+ 1 Q4 �p2Q3

+Q2 �p2Q+ 1

�(X(e)) (Q2 �Q+ 1)2(Q2

+ Q+ 1)(Q+ 1)2(Q4 �Q2

+ 1) (Q12

+ 1)(Q6

+Q4

+Q2

+ 1)(Q6

+ 1)

�(X(s1)) �(Q2 �Q+ 1)(Q2

+ Q+ 1)2(Q+ 1)(Q� 1)(Q4 � Q2

+ 1) �(Q12

+ 1)(Q8 � 1)(Q4 � Q2

+ 1)

�(X(s2)) �(Q2 �Q+ 1)2(Q2
+ Q+ 1)(Q+ 1)(Q� 1)(Q4 � Q2

+ 1) � (Q12

+ 1)(Q8 � 1)(Q6

+ 1)

Q2 �p2Q+ 1

�(X(s1s2)) Q12 � 2Q6

+ 1 � (Q2 � 1)(Q6

+ 1)(Q8 � 1)(Q12

+ 1)

�Q4+
p

2Q3 �Q2 +
p

2Q� 1

jX(s1s2)
FÆ j (1+Q3)2(1+ Q4

+ Q8) (1+Q2)(1+ Q4)(1+ Q6)(1+Q12)

TABLE C.3. (continued)



APPENDIX D

Résumé

Deligne-Lusztig varieties was defined in the mid-seventies by P. Deligne
and G. Lusztig as a mere tool in an ingenious construction of certain represen-
tations of finite groups. Until the beginning of the nineties, the study of these
varieties continued to be from the representation theoretic point of view. In
the meantime Goppa had shown how to construct error correcting codes from
algebraic curves over finite fields, and codes arising from Deligne-Lusztig
curves turned out to provide excellent examples. So suddenly Deligne-Lusztig
varieties gained, so to speak, a life of their own. Early on I became interested
in constructing codes from higher-dimensional varieties; and from Deligne-
Lusztig varieties in particular. Needless to say, things got more difficult than
in the curve case. Just to get started, one needed a good description of the divi-
sors and their intersections. The concerns of the thesis are therefore primarily
the geometry of Deligne-Lusztig varieties.

In Chapter 1 we start out by gathering various results from the theory of
reductive groups and we define Deligne-Lusztig varieties.

In Chapter 2 I prove that Deligne-Lusztig varieties are normal and Cohen-
Macaulay. For Deligne-Lusztig varieties arising from Coxeter elements this
actually implies non-singularity. These properties are mainly derived from the
corresponding properties for the Schubert varieties in G=B� G=B combined
with transversality arguments.

One of the main results of the thesis appears in Chapter 3. For any Deligne-
Lusztig variety X̄(w) arising from one of the classical (possibly twisted) groups
I give a (finite) basis for the Picard group of X̄(w). The proof goes as follows:
For Deligne-Lusztig varieties of classical type one may construct a birational
morphism to a complete intersection Z in projective space. A careful study
of the singularities of Z reveals that the the divisor class group of Z equals
the Picard group of Z. Since the latter is generated by the hyper plane section
H (by the Lefschetz theorem for Picard groups) we reach the conclusion that
the Picard group of X̄(w) is (freely) generated by the class of the hyperplane
section on Z pulled back to X̄(w), and by the classes of the finitely many excep-
tional fibres. In Chapter 3 it is furthermore conjectured that this behaviour in
codimension 1 is more generally true in any codimension. That is, the Chow
groups of X(w) consist (in positive codimension) at the most of torsion. For
Deligne-Lusztig varieties of type An it is proved that this is indeed the case.
The assertion is also proved for the GF-invariant part of the Chow groups.

109
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When confronted with a poorly studied variety defined over a finite field,
a natural question (at least from a positive-characteristic geometer) is: “Is it
Frobenius split?” In Chapter 4 my paper Canonical bundles of Deligne-Lusztig
varieties is included. Using the adjunction formula and results of Mehta and
Ramanathan regarding the canonical bundles of the varieties Ō(w) I proved
in that paper a general formula for the canonical bundle of a Deligne-Lusztig
variety. Employing techniques as sketched in the original paper by Deligne
and Lusztig, I refined these formulas to rather explicit forms. With the aid
of these formulas I were also able to prove that a certain kind of Deligne-
Lusztig surfaces provides a whole class of counter-examples to the socalled
Miyaoka-Yau inequality otherwise true in characteristic zero. As a corollary of
the results in the paper I could also give the above question a negative answer.
That is, Deligne-Lusztig varieties are generally not Frobenius split.

Coming back to the starting point of this introduction, I will conclude by
mentioning another main contribution given in the paper Error-correcting codes
from higher-dimensional varieties. An error-correcting code C with parameters
[n; k; d]q is, roughly speaking, nothing but a k-dimensional subspace of an n-
dimensional vector space over the finite field with q elements. Furthermore,
all (non-zero) points of C are assumed to have at least d non-zero coordinates.
Algebraic geometric (AG) codes are then what is obtained when the global
sections of a fixed line bundle is ‘evaluated’ in n fixed Fq -rational points. In
the above-mentioned paper I address the problems that arise when one wants
to not only construct, but also estimate the parameters of codes coming from
higher-dimensional varieties. Using intersection theory I prove general results
concerning the dimension and minimum distance of error-correcting codes
arising from varieties of dimension two or higher. In Chapter 5 of the thesis I
have reproduced the paper.
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