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Introduction

The field of study

Koblitz (1987) described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of curves, and possibly larger group
orders, Koblitz (1989) then proposed using Jacobians of hyperelliptic curves.
After Boneh and Franklin (2001) proposed an identity based cryptosystem by
using the Weil pairing on an elliptic curve, pairings have been of great interest
to cryptography (see Galbraith, 2005). The next natural step was to consider
pairings on Jacobians of hyperelliptic curves. Galbraith, Hess et al. (2007)
survey the recent research on pairings on Jacobians of hyperelliptic curves.
This thesis is on aspects of pairing based cryptography on Jacobians of genus
two curves.

Consider the Jacobian JC of a curve defined over a finite field Fq. Let `
be a prime number dividing the number of rational points on JC , and let k
be the multiplicative order of q modulo `. The pairing in question is usually
the Weil or the Tate pairing; both pairings can be computed with Miller’s
algorithm (Miller, 1986). The Tate pairing can be computed more efficiently
than the Weil pairing (see Galbraith, 2001). The Tate pairing is non-degenerate
on JC(Fqk)[`] (see Hess, 2004) and the Weil pairing is non-degenerate on JC [`]
(see Silverman, 1986, Proposition 8.1, p. 96). So if JC [`] is not contained
in JC(Fqk), then the Tate pairing is non-degenerate over a possible smaller
field extension than the Weil pairing.

For elliptic curves, in most cases relevant to pairing based cryptography,
the Weil pairing and the Tate pairing are non-degenerate over the same field.
Let E be an elliptic curve defined over a finite field. Balasubramanian and
Koblitz (1998) proved that if the group µ` of `th roots of unity is not contained
in the ground field, then a field extension of the ground field contains µ` if and
only if the `-torsion points on E are rational over the same field extension. By
Rubin and Silverberg (2007), this result also holds for Jacobians of genus two
curves in the following sense: if µ` is not contained in the ground field, then
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ii Introduction

the Weil pairing is non-degenerate on U ×V , where U is the rational `-torsion
subgroup and V is the p-eigenspace of the p-power Frobenius endomorphism
of JC .

To use curves in (cryptographic) applications, we need a way to find the
points on the curves. Miller (2004) uses the Weil pairing to find generators of
the rational subgroup of an elliptic curve defined over a finite field Fq. Frey
and Rück (1994) claim that the non-degeneracy of the Tate pairing can be used
to determine whether r random points of the rational m-torsion subgroup in
fact is an independent set of generators of the rational m-torsion subgroup.

New results

The new results established and presented in this thesis are the following.

(a) A generalization of the result by Balasubramanian and Koblitz (1998)
for elliptic curves to Jacobians of genus two curves (Theorem 2.1 and
Theorem 2.2). This is the main result of the thesis.

(b) From this generalization it follows that if ` does not divide q−1, then the
Weil pairing is non-degenerate on JC(Fqk)[`]×JC(Fqk)[`] (Corollary 2.5).

(c) Moreover, we obtain an explicit description of the `-torsion subgroup of
the Jacobian of a supersingular genus two curve (Theorem 2.17). In par-
ticular, we see that if ` > 3, then the `-torsion points on the Jacobian JC
of a supersingular genus two curve defined over Fq are rational over a
field extension of Fq of degree at most 24, and JC(Fq)[`] is of rank at
most two as a Z/`Z-module (Corollary 2.18).

These results are presented in the preprint (Ravnshøj, 2008b).

(d) The q-power Frobenius endomorphism of JC has either a diagonal re-
presentation on JC [`] or a representation of a particular form (Theo-
rem 2.11). The result is presented in the preprint (Ravnshøj, 2008c).

(e) If 2q2 divides the number of rational points on JC , then q is at most 16,
and the Weil polynomial is on a very restricted list of polynomials (Theo-
rem 2.19). The result is presented in the preprint (Ravnshøj, 2007c).

(f) A probabilistic algorithm to determine generators of JC(Fq)[m], where
m is the largest divisor of the number of Fq-rational points on the Jaco-
bian JC , such that ` divides q − 1 for every prime number ` dividing m
(Algorithm 3.11). The result is presented in the preprint (Ravnshøj,
2007a).

(g) A probabilistic algorithm to determine generators of JC [`], where ` does
not divide q− 1 (Algorithm 3.24). The algorithm is based on an explicit
description of the representation of the q-power Frobenius endomorphism



Structure of the thesis iii

and the Weil pairing on the `-torsion subgroup JC [`] (Theorem 2.11 and
Theorem 3.19). The result is published in the paper (Ravnshøj, 2008c).

All of these results are established basically by using elementary methods from
linear algebra and number theory.

The central idea is to consider the matrix representation of the q-power
Frobenius endomorphism of the Jacobian on the `-torsion subgroup. From this
representation and the fact that the Weil polynomial P (X) of the Jacobian is
of a very specific form, we can deduce a lot of information about the Jacobian.
The most important fact is that P (X) and the characteristic polynomial of
the representation of the Frobenius endomorphism on the `-torsion subgroup
are equivalent modulo `. But also the fact that the number of rational points
on the Jacobian is given by P (1) is important; this reveals information on the
coefficients of P (X).

Another important idea is to use the non-degeneracy of the Weil pairing on
the Fqk -rational `-torsion subgroup JC(Fqk)[`]. Not only does this imply that
JC(Fqk)[`] is non-cyclic, if µ` is not contained in Fq; also, it lets us determine
if two Fqk -rational points are linearly dependent. In fact, we show that the
Weil pairing can be used in this manner on the full `-torsion subgroup, and
not only on the Fqk -rational `-torsion subgroup. This gives us a procedure
to determine if four random `-torsion points on the Jacobian generates the
`-torsion subgroup.

Structure of the thesis

The thesis is organized as follows.

Chapter 1 We define the objects of study: Jacobians of genus two curves.
Basic definitions and facts about algebraic curves are recalled. Crypto-
graphic protocols on Jacobians of curves are introduced; in particular,
we introduce pairing based protocols. Finally, we recall the proof of the
fact that any genus two curve is hyperelliptic and can be represented by
a planar curve.

Chapter 2 In this chapter we establish and prove the new results (a)–(e)
above on properties of Jacobians of genus two curves. The generaliza-
tion of the result by Balasubramanian and Koblitz (1998) is the main
result of the chapter. After proving the generalization, we treat the ma-
trix representation of the Frobenius endomorphism and the supersingular
case. The case where 2q2 divides the number of rational points on JC is
treated in the final section of the chapter.
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Chapter 3 The algorithms (f) and (g) to determine generators of `-torsion
subgroups of the Jacobian of a genus two curve are established. The
chapter is organized as follows. In the first section we recall some facts
concerning finite abelian groups, and obtain an algorithm to choose an
element of prime number order in a finite abelian group. In the second
section we establish the algorithm (f), and in the last section we establish
the algorithm (g).

Four appendices are included, containing the preprints by the author. To
increase readability of the thesis, an index has been included after the biblio-
graphy.
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Chapter 1

Jacobians of genus two curves

Since Jacobians of (genus two) curves naturally carry a group structure, they
can be used in cryptographic applications. In particular, the existence of bi-
linear pairings on the Jacobians allows pairing based cryptography. The thesis
is on aspects of pairing based cryptography on Jacobians of genus two curves.

In this chapter we define the objects we wish to study, that is Jacobians of
genus two curves. Our intent is merely to present the properties that we need;
thus facts will be stated but not proved. We will, though, prove the central
results that any genus two curve is hyperelliptic and can be represented by a
planar curve.

The chapter is organized as follows: In section 1.1 we recall basic definitions
and facts about algebraic curves and fix the notation we will use throughout
the thesis. In section 1.2 we recall how to construct cryptographic protocols
on Jacobians of curves; in particular, we introduce pairing based protocols.
Finally, in section 1.3 we define a hyperelliptic curve, and prove that any
genus two curve is hyperelliptic and can be represented by a planar curve.

1.1 Algebraic curves

Throughout the thesis, a curve is an irreducible nonsingular projective variety
of dimension one.

In the following, let C be curve of genus g defined over a field F. Let F̄
denote the algebraic closure of F. If g > 1, then we cannot define a group
structure on the points on C. Instead, we consider the divisor class group
of C.

1



2 Chapter 1. Jacobians of genus two curves

1.1.1 The divisor class group
The divisor group Div(C) is the free, abelian group generated by the points
on C; i.e. Div(C) is the set of formal sums

D =
∑

P∈C(F̄)

nP (P )

of points on C, where nP = 0 for all but a finite number of points P ∈ C(F̄).
For a divisor D =

∑
P∈C(F̄) nP (P ), we define the degree of D by

deg(D) =
∑

P∈C(F̄)

nP ∈ Z,

and the valuation of D at P by νP (D) = nP . D is an effective divisor, if
νP (D) ≥ 0 for all points P ∈ C(F̄). Div(C) is ordered by D1 > D2 if D1−D2
is effective. The support of D is defined as

Supp(D) = {P ∈ C(F̄)| νP (D) 6= 0}.
Finally, let

Div0(C) = {D ∈ Div(C)|degD = 0}
be the subgroup of degree zero divisors.

Denote the ring of polynomial functions f : C → F̄ by F̄[C], and let F̄(C)
denote the quotient field of F̄[C]. For every point P ∈ C(F̄) we define the ring

OP = {g/h|g, h ∈ F̄[C], h(P ) 6= 0}.
OP is a local ring, i.e. has a unique, maximal ideal mP (see Shafarevich,
1974, pp. 71–72). Since C is smooth, OP is a principal ideal domain; this
follows e.g. by (Shafarevich, 1974, Corollary 1, p. 75) and Nakayama’s Lemma.
A generator of mP is called a local parameter of C at P .

Let f ∈ F̄(C) be a rational function. We define a valuation νP on F̄(C) by
νP (f) = n ⇐⇒ f ∈ mn

P \mn+1
P ,

if f(P ) = 0, and νP (f) = − νP (1/f) if f(P ) = ∞. For f(P ) /∈ {0,∞}, let
νP (f) = 0. If νP (f) = n > 0, then we say that f has a zero of order n at P ;
if n < 0, then we say that f has a pole of order n at P .

The set of points on C(F̄) with νP (f) 6= 0 is finite (see Shafarevich, 1974,
p. 129). Thus we may associate a divisor div(f) =

∑
P∈C(F̄) νP (f)(P ) to f .

If a divisor D ∈ Div(C) is the divisor associated to a rational function, i.e.
D = div(f) for some f ∈ F̄(C), then D is called a principal divisor. The set
of principal divisors on C is denoted Prin(C). A principal divisor is of degree
zero (see Shafarevich, 1974, Theorem 1, p. 141). Hence, Prin(C) is a subgroup
of the degree zero divisors Div0(C).
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1.1.2 Abelian varieties
A group variety is an algebraic variety G together with a group structure •,
such that the mappings

ι : G→ G, g 7→ g−1

κ : G×G→ G, (g, h) 7→ g • h

are regular. Obviously, a group variety G is smooth: if P ∈ G is a singu-
lar point, then all points on G are singular by translation of P . This is a
contradiction.

Definition 1.1 (Abelian variety). An abelian variety is a projective, irre-
ducible group variety.

Example 1.2. An elliptic curve is the basic example of an abelian variety.
Cf. section 1.2.1 on page 6.

An abelian variety is an abelian group (see Shafarevich, 1974, Theorem 3,
p. 153). Thus we will write the group law additively. We denote the zero
element by O.

An endomorphism of an abelian variety A is a morphism φ : A→ A, which
is also a group homomorphism; i.e. φ(x + y) = φ(x) + φ(y) for any points
x, y ∈ A. The set of endomorphisms on A constitutes a ring End(A) with
composition as multiplicative structure and addition defined by

(φ+ ψ)(x) = φ(x) + ψ(x).

The integers Z act on A in the obvious way, and the endomorphism of A
induced by an integer m ∈ Z is denoted [m].

Now, consider an abelian variety A defined over a field F and of dimension g.
Let F be of characteristic p > 0. The m-torsion subgroup A[m] of A is defined
as the kernel of [m],

A[m] = ker[m] = {P ∈ A|[m](P ) = O}.

A point P ∈ A[m] is called an m-torsion point. The m-torsion subgroup is
a finite group, and if p does not divide m, then A[m] is a Z/mZ-module of
rank 2g, i.e.

A[m] ' (Z/mZ)2g. (1.1)

(See Lang, 1959, Theorem 6, p. 109).
An endomorphism φ : A → A induces a linear map φ̄ : A[m] → A[m] by

restriction. Hence, φ is represented by a matrix M ∈ Mat2g(Z/mZ) on A[m].
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If φ can be represented on A[m] by a diagonal matrix with respect to an
appropriate basis of A[m], then we say that φ is diagonalizable or has a diagonal
representation on A[m].

Let f ∈ Z[X] be the characteristic polynomial of φ (see Lang, 1959, pp. 109–
110), and let f̄ ∈ (Z/mZ)[X] be the characteristic polynomial of φ̄. Then f is
a monic polynomial of degree 2g, and

f(X) ≡ f̄(X) (mod m).

(See Lang, 1959, Theorem 3, p. 186).

1.1.3 Jacobian varieties
Recall that C is a curve of genus g defined over a field F. The Jacobian JC
of C is defined as the quotient

JC = Div0(C)/Prin(C).

The Jacobian is an abelian variety of dimension g, and the points on the
Jacobian are divisor classes (see Lang, 1959, Theorem 8, p. 35).

Now, let F = Fq, the finite field of q elements. Since C is defined over Fq,
the mapping (x, y) 7→ (xq, yq) is a morphism on C. This morphism induces
the q-power Frobenius endomorphism ϕ on the Jacobian JC by

ϕ
(∑

nP (P )
)

=
∑

nP (ϕ(P )).

We say that a point D ∈ JC is Fqm -rational, if ϕm(D) = D. The subgroup of
Fqm-rational points on JC is denoted JC(Fqm). This is a finite group, and

JC(Fqm) ' Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/n2gZ, (1.2)

where ni | ni+1 for 1 ≤ i < 2g and ng divides qm − 1 (see Frey and Lange,
2006, Proposition 5.78, p. 111).

Let P (X) be the characteristic polynomial of the q-power Frobenius endo-
morphism of JC . P (X) is called the Weil polynomial of JC . It is of the form

P (X) = X2g + a1X
2g−1 + · · ·+ agX

g + · · ·+ a1q
g−1X + qg. (1.3)

(See Frey and Lange, 2006, Corollary 5.82, p. 112). By the definition of P (X),

|JC(Fq)| = P (1);
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i.e. the number of Fq-rational points on the Jacobian is P (1). (See Lang, 1959,
pp. 109–110).

In general, the qm-power Frobenius endomorphism of JC is denoted ϕm;
note that ϕm = ϕm. Denote the characteristic polynomial of ϕm by Pm(X).
A number ωm ∈ C with Pm(ωm) = 0 is called a qm-Weil number of JC . Note
that JC has four qm-Weil numbers. It follows by (Lang, 1959, Theorem 3,
p. 186) that if P1(X) =

∏
i(X −ωi), then Pm(X) =

∏
i(X −ωmi ) . Hence, if ω

is a q-Weil number of JC , then ωm is a qm-Weil number of JC .

1.1.4 The Weil and the Tate pairing
Let F be a finite, algebraic extension of Fq. Consider divisors x ∈ JC(F)[`]
and y =

∑
i aiPi ∈ JC(F) with disjoint supports, and let ȳ ∈ JC(F)/`JC(F)

denote the divisor class containing the divisor y. Furthermore, let fx ∈ F(C)
be a rational function on C with divisor div(fx) = `x. Set fx(y) =

∏
i f(Pi)ai .

Then εt(x, ȳ) = fx(y) is a well-defined pairing

εt : JC(F)[`]× JC(F)/`JC(F) −→ F×/(F×)`.

It is called the Tate pairing (see Galbraith, 2005). Raising the result to the
power |F

×|
` gives a well-defined element in the subgroup µ` ⊆ F̄ of the `th roots

of unity. This pairing

ε̂t : JC(F)[`]× JC(F)/`JC(F) −→ µ`

is called the reduced Tate pairing. The (reduced) Tate pairing is bilinear, and
if the field F contains the `th roots of unity, then it is non-degenerate (see Hess,
2004). A fast algorithm for computing the Weil pairing is given by Duursma
and Lee (2003).

Now let x, y ∈ JC [`] be divisors with disjoint support. The Weil pairing

εw : JC [`]× JC [`]→ µ`

is then defined by εw(x, y) = ε̂t(x,ȳ)
ε̂t(y,x̄) . The Weil pairing is bilinear, anti-

symmetric and non-degenerate on JC [`]× JC [`] (see Miller, 2004).
Both theWeil and the Tate pairing can be computed with Miller’s algorithm

(Miller, 1986). The Tate pairing can be computed more efficiently than the
Weil pairing (see Galbraith, 2001).

Since Fqm contains the `th roots of unity if and only if ` divides qm − 1,
the multiplicative order of q modulo ` plays an important role in pairing based
cryptography.



6 Chapter 1. Jacobians of genus two curves

Definition 1.3 (Embedding degree). Consider a prime number ` 6= p dividing
the number of Fq-rational points on the Jacobian JC . The embedding degree
of JC(Fq) with respect to ` is the least number k, such that qk ≡ 1 (mod `).

Throughout the thesis, we will denote the embedding degree by k. Closely
related to the embedding degree, we have the full embedding degree.

Definition 1.4 (Full embedding degree). Consider a prime number ` 6= p
dividing the number of Fq-rational points on the Jacobian JC . The full em-
bedding degree of JC(Fq) with respect to ` is the least number k0, such that
JC [`] ⊆ JC(Fqk0 ).

Throughout the thesis we will denote the full embedding degree by k0.
Remark 1.5. If JC [`] ⊆ JC(Fqk0 ), then ` | qk0 − 1; cf. (1.1) on page 3 and (1.2)
on page 4. Hence, the full embedding degree is a multiple of the embedding
degree.

A priori, the Weil pairing is only non-degenerate over Fqk0 . But in fact, as
we shall see in chapter 2, the Weil pairing is also non-degenerate over Fqk .

1.2 Cryptography on curves

Elliptic curve cryptography, ecc, is cryptography based on the group law
on the points on an elliptic curve. In this section, we recall how the group
structure on the Jacobian of an elliptic curve lets us define a group structure
on the curve, and give examples of cryptographic protocols on elliptic curves.
Finally, we review some aspects of the latest research on pairings on Jacobians
of genus two curves.

We use elliptic curve as an example; but everywhere the elliptic curve can
be replaced by the Jacobian of a curve.

1.2.1 Elliptic curves
An elliptic curve (E,P∞) over the field F is a curve E of genus one defined
over F with a selected point P∞ ∈ E(F). P∞ is called the point at infinity.
By the Riemann-Roch Theorem, E is isomorphic to a planar curve (see Sil-
verman, 1986, Proposition 3.1 p. 63). The points on E and the points on the
Jacobian JE of E are in bijective correspondance by the map σ : E → JE ,
P 7→ P − P∞ (see Silverman, 1986, Proposition 3.4, p. 66). Define addition of
points on E by

P1 ⊕ P2 = P3 ⇐⇒ (P1 − P∞) + (P2 − P∞) = (P3 − P∞);
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here the last equation is in the Jacobian. Then σ is a group isomorphism. In
particular, (E,⊕) is a group. The group law is illustrated on figure 1.1.

P

Q

R

Figure 1.1: The group law on an elliptic curve over R: P ⊕Q⊕R = O.

1.2.2 Classic cryptographic protocols
Consider an elliptic curve E defined over a field F. The security of crypto-
graphic protocols on elliptic curves is based on the discrete logarithm problem:

Given P, [n](P ) ∈ E(F), find n. (1.4)

In the following, we give instructive examples of classic cryptographic protocols
on elliptic curves: (1) the Diffie-Hellman key exhange protocol and (2) the
ElGamal protocol.

Example 1.6 (Diffie-Hellman key exchange). The Diffie-Hellman protocol
provides a key exchange between Alice and Bob. Choose an abelian group G
and an element P ∈ G.

1. Alice chooses a secret number a ∈ Z and computes Q1 = [a](P ). Simi-
larly, Bob chooses a secret b ∈ Z and computes Q2 = [b](P ).

2. Publicly, Alice and Bob exchange Q1 and Q2.
3. Alice and Bob computes [a](Q2) respectively [b](Q1).

Since [a](Q2) = [a][b](P ) = [b][a](P ) = [b](Q1), Alice and Bob share the com-
mon secret [ab](P ) after using the protocol.
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Example 1.7 (ElGamal encryption). ElGamal is a public key protocol. The
public parameters are an abelian group G, an element P ∈ G and the order
of P . Bob wishes to send a message m ∈ G secretly to Alice. Alice has the
secret key sA and the public key PA = [sA](P ). The protocol consists of an
encryption- and a decryption-part.

Encryption To send the message m ∈ G secretly to Alice, Bob chooses a
random number a ∈ Z, and computes R = [a](P ) and b = m + [a](PA).
Then Bob sends the pair (R, b) to Alice.

Decryption Alice has received a pair (R, b). She computes S = [sA](R),
and reveals the message m = b − S. Since S = [sA](R) = [sA][a](P ) =
[a][sA](P ) = [a](PA), Alice now knows the original message m ∈ G.

1.2.3 Pairing based cryptographic protocols
The Diffie-Hellman key exchange protocol and the ElGamal protocol are both
based on computations in an abelian group G; this group can e.g. be an elliptic
curve or the multiplicative subgroup of a finite field. Hence, ecc with these
protocols is essentially not a new cryptosystem; in ecc, the abelian group is
merely represented in a clever way. In recent years, another cryptographic
application of elliptic curves has been of increasing interest. This is the use
of pairings on an elliptic curve (see Boneh and Franklin, 2001; Koblitz and
Menezes, 2005). By using a pairing, not only the group structure on an elliptic
curve is used; also the representation of the group is used. Hence, a finer
structure is exploited, i.e. an essentially new cryptosystem is yielded.

Consider an elliptic curve E defined over a finite field Fq. Let

ε : E[n]× E[n]→ µn ⊆ Fqk

be a bilinear and non-degenerate map. As ε we can choose e.g. the Weil or
the Tate pairing; cf. section 1.1.4 on page 5.

Example 1.8 (Pairing based protocol). By exploiting the bilinearity, Boneh
and Franklin (2001) developed an efficient identity based encryption. The
public parameters are an elliptic curve E and an n-torsion point P ∈ E[n].
Alice has the secret key sA ∈ Z and the public key PA = [sA](P ). Alice
is identified by the public n-torsion point IA ∈ E[n]. Bob wishes to send a
message m ∈ Fqk secretly to Alice. This is done in the following way:

1. Bob chooses a random number r ∈ Z and computes the point [r](P ) and
the pairing ε(PA, IA)r = ε([r](PA), IA).

2. Then Bob sends [r](P ) and u = m+ ε([r](PA), IA) to Alice.
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Notice that

ε([r](P ), DA) = ε([r](P ), [sA](IA)) = ε([r][sA](P ), IA) = ε([r](PA), IA).

Since Alice knows DA = [sA](IA), she can compute m = u − ε([r](PA), IA),
i.e. decrypt the encrypted message.

Example 1.9 (Pairing based signature scheme). With the bilinear map ε we
can also construct a signature scheme. To do this, we exploit the fact that

ε(P, [a](Q)) = ε([b](P ), Q) ⇐⇒ a ≡ b (mod n).

Still, the public parameters are the curve E and the n-torsion point P ∈ E[n],
and Alice has the secret key sA ∈ Z. To sign a message Q ∈ E[n] with her
secret key sA ∈ Z, Alice sends the tuple (P, [sA](P ), Q, [sA](Q)). The point
[sA](Q) is the signature on Q. The message is verified by the identity

ε(P, [sA](Q)) = ε([sA](P ), Q).

Boneh, Lynn et al. (2004) describe the security of this kind of signature
schemes.

These examples of exploiting pairings on elliptic curves are only instructive.
A more thorough description is given in Paterson (2005).

1.2.4 Research on pairing based cryptography
Key distribution is perhaps the most basic problem in cryptography. For ex-
ample, to maintain the security in a symmetric key protocol, new keys must be
distributed frequently. The Diffie-Hellman key exchange protocol, Example 1.6
on page 7, partly solves this problem by providing an efficient key distribution
system. But the Diffie-Hellman protocol requires the communicating parties
Alice and Bob to exchange keys before they can communicate securely. Hence,
the Diffie-Hellman is useless in situations where a pre-exchange of keys is either
impossible or undesirable. Pairing based cryptography solves this problem: the
public key of Alice can be derived from her social security number, say.

Consider the Jacobian JC of a genus two curve defined over a finite field Fq.
Let

ε : JC(Fqm)[n]× JC(Fqm)[n]→ µn ⊆ Fqk

be a pairing on the Fqm-rational n-torsion subgroup. A natural and central
problem to consider is whether ε is non-degenerate, or how to ensure that ε is
non-degenerate. Since the Tate pairing is non-degenerate if n divides qm − 1
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(see Hess, 2004), research is focused on the embedding degree k of the Jacobian,
i.e. the multiplicative order of q modulo n.

In order to find curves with low embedding degree, supersingular curves
are a natural first choice; these curves have embedding degree k ≤ 12 (see
Galbraith, 2001; Rubin and Silverberg, 2002). But furthermore, Jacobians of
supersingular curves always have distorsion maps (Galbraith, Pujolàs et al.,
2006). A distortion map for a non-degenerate pairing ε and non-zero points
P1, P2 ∈ JC [n] is an endomorphism ψ on JC , such that ε(P1, ψ(P2)) 6= 1.
When implementing pairing based cryptography on JC(Fq)[n], we might be
facing the problem that ε(P1, P2) = 1 - this can happen, for example, if we use
the Tate pairing and k > 1. In these situations, we need distortion maps. In
other words, distortion maps ensure that pairing based cryptography can be
implemented.

On the other hand, supersingular curves restrict us to embedding degrees
k ≤ 12. The next natural step is to consider non-supersingular curves. Gal-
braith, Mckee et al. (2007) gave a first step towards solving this problem by
presenting some quadratic polynomial families of abelian varieties of dimen-
sion two with embedding degree k = 5 and k = 10. Hitt (2007) extended this
result by presenting some quadratic polynomial families of Jacobians of genus
two curves with larger embedding degrees. Unfortunately, neither Galbraith,
Mckee et al. (2007) nor Hitt (2007) were able to generate any curves using
the complex multiplication method (see Eisenträger and Lauter, 2007; Gaudry,
Houtmann et al., 2005; Weng, 2003). The first examples of non-supersingular
genus two curves with “small” embedding degree (e.g., k ≤ 60) were presented
by Freeman (2007). But the Jacobians of these curves only have prime divisors
` ∼ 4
√
q, and are therefore not attractive for cryptographic applications. Re-

search in non-supersingular curves with low embedding degree is still needed.
Galbraith, Hess et al. (2007) list a number of open problems in pairing

based cryptography. One open problem is to give efficient methods to choose
divisors in the particular subgroups. In this thesis, this problem is adresses by
(1) describing the rank of the Fqm -rational `-torsion subgroup of the Jacobian
of a genus two curve as a Z/`Z-module, and by (2) presenting a probabilistic
algorithm to determine generators of the `-torsion subgroup of the Jacobian of
a genus two curve.

1.3 Genus two curves

In this final section we define a hyperelliptic curve, and prove that any genus
two curve is hyperelliptic and can be represented by a planar curve.
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1.3.1 Hyperelliptic curves
A hyperelliptic curve is a smooth, projective curve C ⊆ Pn of genus at least
two with a separable morphism φ : C → P1 of degree two.

Consider a hyperelliptic curve C of genus g defined over a (algebraically
closed) field F of characteristic p 6= 2. Let φ : C → P1 be a separable morphism
of degree two. Cf. (Silverman, 1986, p. 28), we define the ramification index
of φ at a point P ∈ C by

eφ(P ) = νP (φ∗tφ(P )),

where φ∗ is the pull-back of φ, and tφ(P ) is a local parameter at φ(P ). So
eφ(P ) is the order of P as a zero of the map tφ(P ) ◦ φ. We note that since
tφ(P )(φ(P )) = 0, the ramification index eφ(P ) ≥ 1. By (Silverman, 1986,
Proposition 2, p. 28), ∑

P∈φ−1(Q)

eφ(P ) = 2. (1.5)

Hence, 1 ≤ eφ(P ) ≤ 2 for any point P ∈ C. In particular, p does not di-
vide eφ(P ). By Hurwitz’ Theorem (see Silverman, 1986, Theorem 5.9, p. 41)
it follows that ∑

P∈C(F̄)

(eφ(P )− 1) = 2g + 2.

Hence,

Theorem 1.10. A hyperelliptic curve C of genus g has exactly 2g + 2 points
P ∈ C with eφ(P ) = 2.

For any divisor D ∈ Div(C), let

L(D) = {f ∈ F(C)|div(f) +D > 0} ∪ {0}

be the space of functions with no poles outside the support of D. Denote the
dimension of this space by l(D) = dimF L(D). Let P ∈ C(F) be a F-rational
point on C. A gap value in P is a number n with `(nP ) = `((n − 1)P ). By
the Riemann-Roch Theorem,

1 = l(0) ≤ · · · ≤ l((2g − 1)P ) = g,

and l(nP ) = n+ 1− g for n ≥ 2g− 1. Since l(nP ) ≤ l((n− 1)P ) + 1, it follows
that a curve of genus g has exactly g gap values

1 = n1 < · · · < ng ≤ 2g − 1.

The point P is called a Weierstrass point, if there exists a gap value nj 6= j
in P .

Consider a genus two curve C defined over a field F of characteristic p 6= 2.
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Theorem 1.11. Any genus two curve C defined over a field F of characte-
ristic p 6= 2 is hyperelliptic.

Proof. Let K > 0 be a canonical divisor on C. By the Riemann-Roch Theorem
we know that deg(K) = l(K) = 2. Since l(0) = 1, it follows that any function
f ∈ L(K) \L(0) will have two zeros, counted with multiplicity. Then the map
φ : C → P1 given by P 7→ (1 : f(P )) is a morphism of degree two. Since p 6= 2,
it follows that φ is separable; cf. (Silverman, 1986, Corollary 2.12, p. 30).

1.3.2 Planar representation
Let φ : C → P1 be a separable morphism of degree two. Let P∞ ∈ C be a point
with eφ(P∞) = 2. Since

∑
P∈φ−1(1:0) eφ(P ) = 2 by (1.5) on the preceding page,

composition of φ with the map P1 → F given by (1 : ξ) 7→ ξ and (0 : 1) 7→ ∞
defines a non-constant function f ∈ L(2P∞). Since deg(3P∞) = 3 = 2 · 2− 1,
it follows by the Riemann-Roch Theorem that `(nP∞) = n − 1 if n ≥ 3. So
`(2P∞) = `(3P∞) = 2. Hence, the gap values in P∞ are n1 = 1 and n2 = 3,
and P∞ is a Weierstrass point on C. Let {1, x} be a basis of L(2P∞), and
{1, x, y} a basis of L(4P∞), where y has a pole of order at most four in P∞.
Then

{1, x, x2, x3, x4, x5, y, xy, x2y, y2} ⊆ L(10P∞).
Since `(10P∞) = 9, these functions are linearly dependent. So

y2 + g(x)y = h(x), (1.6)

for some polynomials g, h ∈ F[x] of degree deg g ≤ 2 and deg h ≤ 5. As in the
proof of (Silverman, 1986, Theorem 3.1, p. 63), it follows that the map

ψ : C → P2, P 7→ (1 : x(P ) : y(P ))

is a birational map, mapping C to a variety V ⊆ P2 given on inhomogeneous
form by (1.6), and that V is smooth. Hence, we may consider C as a smooth,
plane curve. Every divisor class in the Jacobian is represented by a divisor of
the form P1 + P2 − 2P∞ (see Duquesne and Lange, 2006, p. 305). The group
law on the Jacobian of a genus two curve is illustrated on figure 1.2 on the
next page. Duquesne and Lange (2006) gives explicit formulas for computing
the group law.
Remark 1.12. By completing the square in (1.6) on this page, we see that any
genus two curve C defined over a field of characteristic p 6= 2 can be given by
an equation of the form

y2 = f(x),
where f ∈ F[x] is a polynomial of degree deg f ≤ 5.
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P1

P2

Q1

Q2

R1

R2

Figure 1.2: Group law on a genus two curve over R: (P1 +P2)⊕(Q1 +Q2)⊕(R1 +R2) = O.





Chapter 2

Prime number torsion points

Consider the Jacobian JC of a genus two curve defined over a finite field Fq.
Let ` be an odd prime number dividing the number of Fq-rational points on
the Jacobian, and let k be the multiplicative order of q modulo `. The Tate
pairing is non-degenerate on JC(Fqk)[`], and the Weil pairing is non-degenerate
on JC [`]; cf. section 1.1.4 on page 5. So if JC [`] is not contained in JC(Fqk),
then the Tate pairing is non-degenerate over a possible smaller field extension
than the Weil pairing. For elliptic curves, in most cases relevant to pairing
based cryptography, the Weil pairing and the Tate pairing are non-degenerate
over the same field: let E be an elliptic curve defined over Fp, and consider a
prime number ` dividing the number of Fp-rational points on E. Balasubra-
manian and Koblitz (1998) proved that

if ` - p− 1, then E[`] ⊆ E(Fpk) if and only if ` | pk − 1. (2.1)

By Rubin and Silverberg (2007), this result also holds for Jacobians of genus
two curves in the following sense: if ` - p − 1, then the Weil pairing is non-
degenerate on U × V , where U = JC(Fp)[`], V = ker(ϕ − p) ∩ JC [`] and ϕ is
the p-power Frobenius endomorphism of JC .

The result (2.1) can also be stated as: if ` - p−1, then E(Fpk)[`] is bicyclic
if and only if ` | pk−1. In (Ravnshøj, 2007b), the author generalized this result
to certain CM reductions of Jacobians of genus two curves. In this chapter, we
prove that in most cases this result in fact holds for Jacobians of any genus two
curves, cf. Theorem 2.1 on page 17. With Theorem 2.2 on page 17 we describe
the special case not included in Theorem 2.1, thus completing the description
of the `-torsion subgroup of the Jacobian.

By Theorem 2.1 and 2.2 it follows that if k > 1, then the Weil pairing is
non-degenerate on JC(Fqk)[`]×JC(Fqk)[`]; cf. Corollary 2.5 on page 18. For the

15
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2-torsion part, we prove that if |JC(Fqm)| is even, then either JC [2] ⊆ JC(Fq4m)
or JC [2] ⊆ JC(Fq6m); cf. Theorem 2.8 on page 20.

The matrix representation of the q-power Frobenius endomorphism on JC [`]
can be described explicitly. Actually, by Theorem 2.1 and 2.2 it follows that
the matrix representation can be chosen either diagonal or of a particular form;
cf. Theorem 2.12 on page 23.

Consider a supersingular genus two curve C defined over Fq; cf. section 2.3.
Again, let ` be a prime number dividing the number of Fq-rational points on
the Jacobian and let k be the multiplicative order of q modulo `. We know
that k ≤ 12 (see Galbraith, 2001; Rubin and Silverberg, 2002). If `2 - |JC(Fq)|,
then in many cases JC [`] ⊆ JC(Fqk) (see Stichtenoth and Xing, 1995). Zhu
(2000) gives a complete description of the subgroup of Fq-rational points on the
Jacobian. Using Theorem 2.1, we obtain an explicit description of the `-torsion
subgroup of the Jacobian of a supersingular genus two curve; cf. Theorem 2.17
on page 24. In particular, it follows from Theorem 2.17 that if ` > 3, then
the `-torsion points on the Jacobian JC of a supersingular genus two curve
defined over Fq are rational over a field extension of Fq of degree at most 24,
and JC(Fq)[`] is of rank at most two as a Z/`Z-module.

Finally, we consider the case where q divides the number of Fq-rational
points |JC(Fq)| on the Jacobian. We prove that if 2q2 divides |JC(Fq)|, then q
is at most 16, and the Weil polynomial of JC is on a very restricted list of
polynomials; cf. Theorem 2.19 on page 28.

All results obtained and proved in this chapter are new. The result on
|JC(Fq)| divisible by q is presented in (Ravnshøj, 2007c); the result on the
matrix representation of the q-power Frobenius endomorphism is presented in
(Ravnshøj, 2008c); all other results are presented in (Ravnshøj, 2008b).

The chapter is organized as follows: Section 2.1 is on the generalization
of the result (2.1) on the previous page, and section 2.2 is on the diagonal
representation of the Frobenius endomorphism. In section 2.3 we treat the
supersingular case. The case where q divides |JC(Fq)| is treated in section 2.4.

2.1 Non-cyclic subgroups

Consider the Jacobian JC of a genus two curve C defined over a finite field Fq.
Let Pm(X) be the characteristic polynomial of the qm-power Frobenius endo-
morphism of JC . Pm(X) is of the form Pm(X) = X4+sX3+tX2+sqmX+q2m,
where s, t ∈ Z; cf. (1.3) on page 4. Let τ = 8qm + s2 − 4t. Then

Pm(X) = X4 + sX3 + (2qm + (s2 − τ)/4)X2 + sqmX + q2m.

We get the following description of the Fqm -rational `-torsion subgroup.
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Theorem 2.1. Consider the Jacobian JC of a genus two curve C defined over
a finite field Fq. Write the characteristic polynomial of the qm-power Frobenius
endomorphism ϕm of JC as Pm(X) = X4 + sX3 + (2qm + (s2 − τm)/4)X2 +
sqmX+q2m. Let ` be an odd prime number dividing the number of Fq-rational
points on JC , and with ` - q and ` - q − 1. If ` - τm, then

1. JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and
2. JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

Proof. Let P̄m ∈ (Z/`Z)[X] be the characteristic polynomial of the restriction
of ϕm to JC [`]. Since ` divides |JC(Fq)|, 1 is a root of P̄m. Assume that 1 is a
root of P̄m of multiplicity ν. Since the roots of P̄m occur in pairs (α, qm/α),
qm is then also a root of P̄m of multiplicity ν.

If JC(Fqm)[`] is of rank three as a Z/`Z-module, then ` divides qm − 1
by (1.1) on page 3. Choose a basis B of JC [`], such that ϕm is represented by
a matrix of the form

M =


1 0 0 m1
0 1 0 m2
0 0 1 m3
0 0 0 m4


with respect to B. Now, m4 = detM ≡ degϕm = q2m ≡ 1 (mod `). Hence,
P̄m(X) = (X − 1)4. By comparison of coefficients it follows that τm ≡ 0
(mod `), and we have a contradiction. So JC(Fqm)[`] is of rank at most two as
a Z/`Z-module.

Now assume that JC(Fqm)[`] is bicyclic. If qm 6≡ 1 (mod `), then 1 is a
root of P̄m of multiplicity two, i.e. P̄m(X) = (X − 1)2(X − qm)2. But then
it follows by comparison of coefficients that τm ≡ 0 (mod `), and we have a
contradiction. So qm ≡ 1 (mod `), i.e. ` divides qm − 1. On the other hand,
if ` divides qm − 1, then the Tate pairing is non-degenerate on JC(Fqm)[`], i.e.
JC(Fqm)[`] must be of rank at least two as a Z/`Z-module. So JC(Fqm)[`] is
bicyclic.

If ` is a large prime number, then most likely ` - τm, and Theorem 2.1
applies. In the special case where ` | τm, we get the following result.

Theorem 2.2. Let the notation be as in Theorem 2.1. Furthermore, let ωm
be a qm-Weil number of JC , and assume that ` is unramified in K = Q(ωm).
Now assume that ` | τm. Then the following holds.

1. If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
2. If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] is bicyclic and JC [`] ⊆ JC(Fqmk)

if and only if ` | qmk − 1.
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Remark 2.3. A prime number ` is unramified in K if and only if ` divides
the discriminant of the field extension K/Q (see Neukirch, 1999, Theorem 2.6,
p. 199). Hence, almost any prime number ` is unramified in K. In particular,
if ` is large, then ` is unramified in K.

The special case of Theorem 2.2 does occur; cf. the following example.

Example 2.4. Consider the polynomial P (X) = (X2 − 5X + 9)2 ∈ Q[X].
By Maisner and Nart (2002) and Howe, Nart et al. (2007) it follows that
P (X) is the Weil polynomial of the Jacobian of a genus two curve C defined
over F9. The number of F9-rational points on the Jacobian is P (1) = 25, so
` = 5 is an odd prime divisor of |JC(F9)| not dividing q = 9. Notice that
P (X) ≡ X4 + 2qX2 + q2 (mod 5). The complex roots of P (X) are given by
ω = 5+

√
−11

2 and ω̄, and 5 is unramified in Q(ω). Since 92 ≡ 1 (mod 5), it
follows by Theorem 2.2 that JC(F9)[5] ' Z/5Z⊕ Z/5Z and JC [5] ⊆ JC(F81).

By Theorem 2.1 and 2.2 we get the following corollary.

Corollary 2.5. Consider the Jacobian JC of a genus two curve C defined
over a finite field Fq. Let ` be an odd prime number dividing the number of Fq-
rational points on JC , and with ` - q. Let q be of multiplicative order k modulo `.
If ` - q− 1, then the Weil pairing is non-degenerate on JC(Fqk)[`]× JC(Fqk)[`].

Proof. Let

Pk(X) = X4 + sX3 + (2qm + (s2 − τk)/4)X2 + sqkX + q2k

be the characteristic polynomial of the qk-power endomorphism of the Jaco-
bian JC . If ` | τk, then JC [`] = JC(Fqk)[`] by Theorem 2.2, and the corollary
follows.

Assume ` - τk. Let U = JC(Fq)[`] and V = ker(ϕ − q) ∩ JC [`], where ϕ
is the q-power Frobenius endomorphism of JC . Then the Weil pairing εw is
non-degenerate on U × V by Rubin and Silverberg (2007). By Theorem 2.1,
we know that V = JC(Fqk)[`] \ JC(Fq)[`] and that

JC(Fqk)[`] ' U ⊕ V ' Z/`Z⊕ Z/`Z.

Now let x ∈ JC(Fqk)[`] be an arbitrary Fqk -rational point of order `. Write
x = xU + xV , where xU ∈ U and xV ∈ V . Choose points y ∈ V and
z ∈ U , such that εw(xU , y) 6= 1 and εw(xV , z) 6= 1. We may assume that
εw(xU , y)εw(xV , z) 6= 1; if not, replace z with 2z. Since the Weil pairing
is anti-symmetric, εw(xU , z) = εw(xV , y) = 1. But then εw(x, y + z) =
εw(xU , y)εw(xV , z) 6= 1.
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Proof of Theorem 2.2. We see that

Pm(X) ≡ (X2 + σX + qm)2 (mod `);

since Pm(1) ≡ 0 (mod `), it follows that

Pm(X) ≡ (X − 1)2(X − qm)2 (mod `).

Assume at first that Pm(X) is irreducible in Q[X]. Let OK denote the ring
of integers ofK = Q(ωm). By (Neukirch, 1999, Proposition 8.3, p. 47) it follows
that `OK = L2

1L
2
2, where L1 = (`, ωm − 1)OK and L2 = (`, ωm − qm)OK . In

particular, ` ramifies in K, and we have a contradiction. So Pm(X) is reducible
in Q[X].

Let f ∈ Z[X] be the minimal polynomial of ωm. If deg f = 3, then it
follows as above that ` ramifies in K. So deg f < 3. Assume that deg f = 1,
i.e. that ωm ∈ Z. Since ω2

m = qm, we know that ωm = ±qm/2. So f(X) =
X ∓ qm/2. Since f(X) divides P (X) in Z[X], either f(X) ≡ X − 1 (mod `)
or f(X) ≡ X − qm (mod `). It follows that qm ≡ 1 (mod `). Thus, ωm ≡ ±1
(mod `). If ωm ≡ −1 (mod `), then ϕm does not fix JC(Fqm)[`]. This is a
contradiction. Hence, ωm ≡ 1 (mod `). But then ϕm is the identity on JC [`].
Thus, if ωm ∈ Z, then JC [`] ⊆ JC(Fqm).

Assume ωm /∈ Z. Then deg f = 2. Since f(X) divides P (X) in Z[X], it
follows that

f(X) ≡ (X − 1)(X − qm) (mod `);
to see this, we merely notice that if f(X) is equivalent to the square of a
polynomial modulo `, then ` ramifies in K. Notice also that if qm ≡ 1 (mod `),
then ` ramifies in K. So qm 6≡ 1 (mod `).

Now, let U = ker(ϕm − 1)2 ∩ JC [`] and V = ker(ϕm − qm)2 ∩ JC [`]. Then
U and V are ϕm-invariant submodules of the Z/`Z-module JC [`] of rank two,
and JC [`] ' U ⊕ V . Now choose x1 ∈ U , such that ϕm(x1) = x1, and expand
{x1} to a basis {x1, x2} of U . Similarly, choose a basis {x3, x4} of V with
ϕm(x3) = qx3. With respect to the basis {x1, x2, x3, x4}, ϕm is represented by
a matrix of the form

M =


1 α 0 0
0 1 0 0
0 0 qm β
0 0 0 qm

 .
Let qm be of multiplicative order k modulo `. Notice that

Mk =


1 kα 0 0
0 1 0 0
0 0 1 kqm(k−1)β
0 0 0 1

 .
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So the restriction of ϕkm to JC [`] has the characteristic polynomial (X − 1)4.
Let Pmk(X) be the characteristic polynomial of the qmk-power Frobenius endo-
morphism ϕmk = ϕkm of the Jacobian JC . Then

Pmk(X) ≡ (X − 1)4 (mod `).

Since ωm is a qm-Weil number of JC , we know that ωkm is a qmk-Weil number
of JC . Assume ωkm /∈ Q. Then K = Q(ωkm). Let h ∈ Z[X] be the minimal
polynomial of ωkm. Then h(X) ≡ (X − 1)2 (mod `), and ` ramifies in K. So
ωkm ∈ Q, i.e. h is of degree one. It follows that h(X) ≡ X − 1 (mod `),
i.e. ωkm ≡ 1 (mod `). So, ϕkm is the identity map on JC [`]. Hence, Mk = I,
i.e. α ≡ β ≡ 0 (mod `). Thus, ϕm is represented by a diagonal matrix
diag(1, 1, qm, qm) with respect to (x1, x2, x3, x4). The theorem follows.

Assume the Weil polynomial P (X) splits in distinct linear factors modulo `.
Then

Pk(X) ≡ (X − 1)2(X − a)(X − 1/a) (mod `).

We see that τk = 4(a−1)4

a2 . Hence, if ` divides τk, then a ≡ 1 (mod `). But
then Pk(X) ≡ (X − 1)4 (mod `), i.e. JC [`] ⊆ JC(Fqk). Hence, the following
corollary holds.

Corollary 2.6. If the Weil polynomial splits in distinct linear factors modulo `,
then

JC(Fqk)[`] '
{

JC [`], if τk ≡ 0 (mod `),
Z/`Z× Z/`Z, if τk 6≡ 0 (mod `).

Remark 2.7. Assume the Weil polynomial P (X) splits in linear factors mo-
dulo `. Then P (X) splits in distinct linear factors modulo ` if and only if `
does not divide the resultant Res(P, P ′, X). Hence, if P (X) splits in linear
factors modulo `, then P (X) splits in distinct linear factors modulo ` with
probability 1− 1/`.

For the 2-torsion part, we get the following theorem.

Theorem 2.8. Consider the Jacobian JC of a genus two curve C defined over
a finite field Fq of odd characteristic. Let Pm(X) = X4 +sX3 + tX2 +sqmX+
q2m be the characteristic polynomial of the qm-power Frobenius endomorphism
of the Jacobian JC . Assume |JC(Fqm)| is even. Then

JC [2] ⊆
{

JC(Fq4m), if s is even;
JC(Fq6m), if s is odd.
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Proof. Since q is odd,

Pm(X) ≡ X4 + sX3 + tX2 + sX + 1 (mod 2).

Since Pm(1) is even, it follows that t is even. Assume at first that s is even.
Then

Pm(X) ≡ (X − 1)4 ≡ X4 − 1 (mod 2).

Hence, JC [2] ⊆ JC(Fq4m) in this case.
Now assume that s is odd. Then

Pm(X) ≡ (X2 − 1)(X2 +X + 1) (mod 2).

Since f(X) = X2 +X+ 1 has the complex roots ξ = − 1
2 (1± i

√
3), and ξ3 = 1,

it follows that JC [2] ⊆ JC(Fq6m) in this case.

2.2 The matrix representation of the Frobenius
endomorphism

Inspired by Theorem 2.1 and 2.2 on page 17 we introduce the following nota-
tion.

Definition 2.9. Consider the Jacobian JC of a genus two curve C defined
over a finite field Fq. We say that the Jacobian is a J(`, q, k, τk)-Jacobian or is
of type J(`, q, k, τk), and write JC ∈ J(`, q, k, τk), if the following holds.

1. The number ` is an odd prime number dividing the number of Fq-rational
points on JC , ` divides neither q nor q − 1, and JC(Fq) is of embedding
degree k with respect to `.

2. The characteristic polynomial of the qk-power Frobenius endomorphism
on JC is given by Pk(X) = X4+sX3+(2qk+(s2−τk)/4)X2+sqkX+q2k.

3. Let ωk be a qk-Weil number of JC . If ` divides τk, then ` is unramified
in Q(ωk).

Remark 2.10. In most cases relevant to pairing based cryptography, ` is un-
ramified in Q(ω); cf. Remark 2.3 on page 18. But then JC ∈ J(`, q, k, τk).

By Theorem 2.1 and 2.2, we get the following explicit description of the
matrix representation of the Frobenius endomorphism of the Jacobian of a
genus two curve.
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Theorem 2.11. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ϕ be the q-power
Frobenius endomorphism of JC . If ϕ is not diagonalizable on JC [`], then ϕ is
represented on JC [`] by a matrix of the form

M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

 (2.2)

with respect to an appropriate basis of JC [`]. In particular, c 6≡ q+ 1 (mod `).

Proof. Assume at first that ` does not divide τk. Then we know that JC(Fq)[`]
is cyclic and that JC(Fqk)[`] is bicyclic; cf. Theorem 2.1. Choose points x1, x2 ∈
JC [`], such that ϕ(x1) = x1 and ϕ(x2) = qx2. Then the set {x1, x2} is a basis
of JC(Fqk)[`]. Now, extend {x1, x2} to a basis B = {x1, x2, x3, x4} of JC [`].
If x3 and x4 are eigenvectors of ϕ, then ϕ is represented by a diagonal matrix
on JC [`] with respect to B. Assume x3 is not an eigenvector of ϕ. Then the
set B′ = {x1, x2, x3, ϕ(x3)} is a basis of JC [`], and ϕ is represented by a matrix
of the form (2.2) with respect to B′.

Now, assume ` divides τk. Since ` divides qk−1, it follows that the `-torsion
subgroup JC [`] ⊆ JC(Fqk); cf. Theorem 2.2. Since ` divides the number of Fq-
rational points on JC , 1 is a root of the Weil polynomial P (X) modulo `.
Assume that 1 is an root of P (X) modulo ` of multiplicity ν. Since the roots
of P (X) occur in pairs (α, q/α), it follows that

P (X) ≡ (X − 1)ν(X − q)νQ(X) (mod `),

where Q ∈ Z[X] is a polynomial of degree 4−2ν, Q(1) 6≡ 0 (mod `) and Q(q) 6≡
0 (mod `). Let U = ker(ϕ−1)ν , V = ker(ϕ−q)ν andW = ker(Q(ϕ)). Then U ,
V andW are ϕ-invariant submodules of the Z/`Z-module JC [`], rankZ/`Z(U) =
rankZ/`Z(V ) = ν, and JC [`] ' U ⊕ V ⊕ W . If ν = 1, then it follows as
above that ϕ is either diagonalizable on JC [`] or represented by a matrix of
the form (2.2) with respect to some basis of JC [`]. Hence, we may assume
that ν = 2. Now, choose x1 ∈ U such that ϕ(x1) = x1, and extend {x1} to a
basis {x1, x2} of U . Similarly, choose a basis {x3, x4} of V with ϕ(x3) = qx3.
With respect to the basis B = {x1, x2, x3, x4}, ϕ is represented by a matrix of
the form

M =


1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q

 .
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Notice that

Mk =


1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1

 .
Since JC [`] ⊆ JC(Fqk), we know that ϕk = ϕk is the identity on JC [`]. Hence,
Mk = I. So α ≡ β ≡ 0 (mod `), i.e. ϕ is represented by a diagonal matrix
with respect to B.

Finally, if c ≡ q + 1 (mod `), then M is diagonalizable. The theorem is
proved.

Whether the Frobenius endomorphism is diagonalizable depends on the
splitting behaviour of the Weil polynomial modulo `.

Theorem 2.12. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ω be a q-Weil
number of JC . Assume that ` is unramified in Q(ω). Then ϕ is diagonaliz-
able on JC [`] if and only if the Weil polynomial of JC splits in linear factors
modulo `.

Proof. “Only if” is obvious. We prove the “if” part. Write the Weil polynomial
of JC as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `).

If α 6≡ 1, q, q/α (mod `), then the theorem follows. If α ≡ 1, q (mod `), then

P (X) ≡ (X − 1)2(X − q)2

≡ X4 + sX3 + (2q + (s2 − τ)/4)X2 + sqX + q2 (mod `),

where s ≡ −(q+1) (mod `) and τ ≡ 0 (mod `). But then the theorem follows
by the last part of the proof of Theorem 2.11. Finally, assume that α ≡ q/α
(mod `), i.e. that α2 ≡ q (mod `). Then the q-power Frobenius endomorphism
is represented on JC [`] by a matrix of the form

M =


1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α


with respect to an appropriate basis of JC [`]. Notice that

M2k =


1 0 0 0
0 1 0 0
0 0 1 2kα2k−1β
0 0 0 1

 .
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Thus, P2k(X) ≡ (X− 1)4 (mod `). By Theorem 2.2 on page 17 it follows that
JC [`] ⊆ JC(Fq2k). But then M2k = I, i.e. β ≡ 0 (mod `). Hence, the q-power
Frobenius endomorphism of JC is diagonalizable on JC [`] also in this case. The
theorem is proved.

Remark 2.13. Assume the Weil polynomial splits modulo `. Then most likely,
the Frobenius endomorphism is diagonalizable; cf. Remark 2.3 on page 18. But
the Frobenius endomorphism is not always diagonalizable. Cf. Example 2.14.

Example 2.14. Consider the Jacobian JC of the curve over F3 given by y2 =
x5 + 2x+ 1. The Weil polynomial of JC is given by

P (X) = X4 + 3X3 − 2X2 + 9X + 9.

Since P (1) = 20, P (X) ≡ (X−1)(X−3)(X2 +2X+3) (mod 5) and the poly-
nomialX2+2X+3 is irreducible over F5, the 3-power Frobenius endomorphism
is not diagonalizable on JC [5].

2.3 Supersingular curves

Consider a genus two curve C defined over a finite field Fq of characteristic p.
The curve C is called supersingular, if JC has no p-torsion. From Maisner and
Nart (2002) we have the following theorem.

Theorem 2.15. Consider a polynomial f ∈ Z[X] of the form

f(X) = fs,t(X) = X4 + sX3 + tX2 + sqX + q2,

where q = pa. If f is the Weil polynomial of the Jacobian of a supersingular
genus two curve defined over the finite field Fq, then (s, t) belongs to table 2.1
on the next page.

Remark 2.16. By Howe, Nart et al. (2007), in each of the cases in table 2.1
we can find a q such that fs,t(X) is the Weil polynomial of the Jacobian of a
supersingular genus two curve defined over Fq.

Using Theorem 2.1 on page 17, Theorem 2.2 on page 17 and Theorem 2.15
we get the following explicit description of the `-torsion subgroup of the Jaco-
bian of a supersingular genus two curve.

Theorem 2.17. Consider a supersingular genus two curve C defined over Fq.
Let ` be a prime number dividing the number of Fq-rational points on the
Jacobian JC , and with ` - q. Depending on the cases in table 2.1 on the next
page we get the following properties of JC .
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Table 2.1: Conditions for f = X4 + sX3 + tX2 + sqX + q2 to be the Weil polynomial of
the Jacobian of a supersingular genus two curve defined over Fq , where q = pa.

Case (s, t) Condition
i (0, 0) a odd, p 6= 2, or a even, p 6≡ 1 (mod 8).
ii (0, q) a odd.
iii (0,−q) a odd, p 6= 3, or a even, p 6≡ 1 (mod 12).
iv (±√q, q) a even, p 6≡ 1 (mod 5).
v (±

√
5q, 3q) a odd, p = 5.

vi (±
√

2q, q), a odd, p = 2.
vii (0,−2q) a odd.
viii (0, 2q) a even, p ≡ 1 (mod 4).
ix (±2√q, 3q) a even, p ≡ 1 (mod 3).

Case i. −q2 ≡ q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). If ` 6= 2, then JC(Fq)[`]
is cyclic.

Case ii. q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq6) and JC(Fq) is cyclic. If ` 6= 3, then
q 6≡ 1 (mod `).

Case iii. −q3 ≡ q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` 6= 3, then JC(Fq)[`]
is cyclic.

Case iv. q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case v. q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case vi. −q6 ≡ q12 ≡ 1 (mod `), JC [`] ⊆ JC(Fq24) and JC(Fq) is cyclic.
Case vii. q ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`] is

bicyclic.
Case viii. −q ≡ q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`]

is bicyclic.
Case ix. If ` 6= 3, then q 6≡ q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq3) and JC(Fq)[`] is

bicyclic.

Corollary 2.18. If ` > 3, then the full embedding degree with respect to `
of the Jacobian JC of a supersingular genus two curve defined over Fq is at
most 24, and JC(Fq)[`] is of rank at most two as a Z/`Z-module.

Proof of Theorem 2.17. In the following we consider each case in table 2.1
separately. Throughout this proof, assume that

f(X) = X4 + sX3 + tX2 + sqX + q2

is the Weil polynomial of the Jacobian JC of some supersingular genus two
curve C defined over the finite field Fq of characteristic p, and let ` be a prime
number dividing f(1).
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The case s = 0

First, consider the cases i, ii, iii, vii and viii of table 2.1.

Case i. If (s, t) = (0, 0), then f(1) = 1 + q2 ≡ 0 (mod `), and it fol-
lows that q2 ≡ −1 (mod `). So f(X) ≡ X4 − 1 (mod `), q4 ≡ 1 (mod `)
and JC [`] ⊆ JC(Fq4). τ = 8q in Theorem 2.1, so if ` 6= 2, then JC(Fq)[`] is
cyclic.

Case ii. If (s, t) = (0, q), then the roots of f modulo ` are given by ±1 and
±q. Since f(1) = q2 + q + 1 ≡ 0 (mod `), we know that q ≡ 1

2 (−1 ±
√
−3)

(mod `). It follows that q3 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` = 2, then
p 6= 2, and f(1) is odd. So ` 6= 2. τ = 4q in Theorem 2.1, so JC(Fq) is cyclic.

Case iii. If (s, t) = (0,−q), then the roots of f modulo ` are given by ±1
and ±q. Since f(1) = q2 − q + 1 ≡ 0 (mod `), we know that q ≡ 1

2 (1±
√
−3)

(mod `). It follows that q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). As in case ii,
` 6= 2. Now τ = 12q, so if ` 6= 3, then JC(Fq)[`] is cyclic.

Case vii. If (s, t) = (0,−2q), then q ≡ 1 (mod `) and f(X) = (X2 − q)2.
Since q is an odd power of p, X2 − q is irreducible over Q. So by (Tate, 1966,
Theorem 2), JC ' E × E for some supersingular elliptic curve E. It follows
that JC [`] ⊆ JC(Fq2). τ = 16q, so if ` 6= 2, then JC(Fq)[`] is bicyclic.

Case viii. If (s, t) = (0, 2q), then q ≡ −1 (mod `) and f(X) = (X2 + q)2.
Since X2 + q is irreducible over Q, it follows that JC ' E × E for some
supersingular elliptic curve E. So q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). τ = 0
and ω = i

√
q is a q-Weil number of JC . Since q is an even power of p, K =

Q(ω) = Q(i) is of discriminant dK = −4. Hence, if ` 6= 2, then JC(Fq)[`] is
bicyclic by Theorem 2.2.

Case iv–vi

Now we consider the cases iv, v and vi of table 2.1.

Case iv. If (s, t) = (√q, q), then τ = 5q in Theorem 2.1. Since f(1) is odd,
we know that ` 6= 2. If ` divides τ , then ` = 5; ` - q, since C is supersingular.
But then f(1) = q2 +q

√
q+q+√q+1 ≡ 0 (mod 5), i.e. q ≡ 2 (mod 5). Since

a is even and 2 is not a quadratic residue modulo 5, this is impossible. So ` - τ .
If q ≡ 1 (mod `), then f(1) ≡ 5 (mod `), i.e. ` = 5. But then ` divides τ , a
contradiction. So JC(Fq) is cyclic by Theorem 2.1. From f(1) ≡ 0 (mod `)
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it follows that q5 ≡ 1 (mod `). Since the complex roots of f are of the form√
qξ, where ξ is a primitive 5th root of unity, it follows that JC [`] ⊆ JC(Fq10).

The case (s, t) = (−√q, q) follows similarly.

Case v. If (s, t) = (
√

5q, 3q) and p = 5, then τ is a power of 5 in Theorem 2.1.
Since f(1) is odd, we know that ` 6= 2. If ` divides τ , then ` = 5. Since C
is supersingular and defined over a field of characteristic p = 5, this is a
contradiction. So ` - τ . If q ≡ 1 (mod `), then f(1) ≡ 5 + 2

√
5 ≡ 0 (mod `),

and it follows that ` = 5. So JC(Fq) is cyclic by Theorem 2.1. From f(1) ≡ 0
(mod `) it follows that q5 ≡ 1 (mod `). Since the complex roots of f are
of the form √qξ, where ξ is a primitive 10th root of unity, it follows that
JC [`] ⊆ JC(Fq10). The case (s, t) = (−

√
5q, 3q) follows similarly.

Case vi. If (s, t) = (
√

2q, q) and p = 2, then τ = 3·2a for some a ∈ N. Hence,
if ` divides τ , then ` = 3. But 3 - f(1); thus, ` - τ . If q ≡ 1 (mod `), then
f(1) ≡ 3 + 2

√
2 ≡ 0 (mod `), and it follows that ` = 1. So JC(Fq) is cyclic by

Theorem 2.1. From f(1) ≡ 0 (mod `) it follows that q6 ≡ −1 (mod `). Since
the complex roots of f are of the form √qξ, where ξ is a primitive 24th root
of unity, it follows that JC [`] ⊆ JC(Fq24). The case (s, t) = (−

√
2q, q) follows

similarly.

Case ix

Finally, consider the case ix. Assume that (s, t) = (−2√q, 3q). We see that
f(X) = g(X)2, where g(X) = X2−√qX+ q. Since the complex roots of g are
given by 1

2 (1±
√
−3)√q, g is irreducible over Q. So by (Tate, 1966, Theorem 2),

JC ' E × E for some supersingular elliptic curve E. Hence, either JC(Fq)[`]
is bicyclic or equals the full `-torsion subgroup of JC .

Assume JC(Fq)[`] = JC [`]. Then q ≡ 1 (mod `), i.e. √q ≡ ±1 (mod `).
But then f(1) ≡ 9 ≡ 0 (mod `) or f(1) ≡ 1 ≡ 0 (mod `), i.e. ` = 3.

Since f(1) = (1−√q + q)2 ≡ 0 (mod `), we know that q ≡ 1
2 (−1±

√
−3)

(mod `). So q3 ≡ 1 (mod `). Since ` 6= 3, it follows that q 6≡ 1 (mod `).
Hence, JC [`] ⊆ JC(Fq3) by the non-degeneracy of the Tate pairing.

The case (s, t) = (2√q, 3q) follows similarly.

2.4 q-subgroups of JC(Fq)

Consider the Jacobian of a genus two curve defined over a finite field Fq. In
most cases, q2 does not divide the number of Fq-rational points on the Jacobian.
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Theorem 2.19. Let JC be the Jacobian of a genus two curve defined over Fq.
If 2q2 divides the number of Fq-rational points on JC , then the Weil polynomial
of JC is in the following list.

1. X4 + 4X3 + 16X2 + 28X + 49.
2. X4 + sX3 + tX2 + 3sX + 9, where (s, t) ∈ {(1, 4), (4, 10)}.
3. X4 + sX3 + tX2 + 2nsX + 22n, where either

a) n = 1 and (s, t) = (1, 0),
b) n = 2 and (s, t) ∈ {(−2, 9), (−1, 4), (0,−1), (2, 5)},
c) n = 3 and (s, t) ∈ {(−2, 17), (−1, 8), (0,−1)}, or
d) n = 4 and (s, t) ∈ {(−2, 33), (−1, 16), (0,−1)}.

In particular, q ∈ {2, 3, 4, 7, 8, 16}.

Proof. Assume q2 divides N = |JC(Fq)|. Let ωi be the q-Weil numbers of JC .
Since |ωi| =

√
q, we know that

N = P (1) =
4∏
i=1

(1− ωi) ≤ (1 +√q)4 = q2 + 4q√q + 6q + 4√q + 1.

Hence, N
q2 < 2 for q > 25. So if q > 25, then 2 does not divide N . This is a

contradiction. Thus, if q > 25, then q2 does not divide N .
Assume q ≤ 25. The Weil polynomial of JC is of the form

P (X) = X4 + sX3 + tX2 + sqX + q2,

where |s| ≤ 4√q and 2|s|√q − 2q ≤ t ≤ s2

4 + 2q; cf. e.g. (Maisner and Nart,
2002, Lemma 2.1). Hence, there is only a small, finite number of candidates
for P (X). Let C be the set of candidates for P . Now, find the set of possibili-
ties P for P (X) by checking if f(1) is even and divisible by q2 for each f ∈ C.
The Theorem then follows by checking if each f ∈ P is the Weil polynomial
of the Jacobian of some genus two curve by using (Howe, Nart et al., 2007,
Theorem 1.2). The details are left to the reader.

Remark 2.20. Theorem 2.19 concerns Jacobians with an even number of ra-
tional points. By using results of Tate (1966) and Honda (1968), Zieve (2007)
generalizes Theorem 2.19 to any Jacobian of a genus two curve.
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Finding generators

Consider the Jacobian JC of a genus two curve defined over Fq. Freeman and
Lauter (2008) describes a probabilistic algorithm to determine generators of
the subgroup JC [`] of points of order `, but the algorithm is incomplete in the
sense that the output only probably is a generating set - it is not tested whether
the output in fact is a generating set. Furthermore, if the output happens
to be a generating set, it still may not be a basis of JC [`]. Miller (2004)
uses the Weil pairing to find a basis of E(Fq), where E is an elliptic curve
defined over a finite field Fq. In this chapter we generalize this procedure to
Jacobians of genus two curves. Freeman and Lauter (2008) use their algorithm
to compute endomorphism rings of Jacobians of genus two curves, and this
in turn has applications for generating Jacobians of genus two curves using
the CRT version of the CM method (Eisenträger and Lauter, 2007). Hence,
the algorithms presented in this chapter also has applications for generating
Jacobians of genus two curves.

Consider the Jacobian JC of a genus two curve defined over Fq. Frey
and Rück (1994) show that if m divides q − 1, then the discrete logarithm
problem (see (1.4) on page 7) in the rational m-torsion subgroup JC(Fq)[m]
can be reduced to the corresponding problem in F×q (Frey and Rück, 1994,
Corollary 1). In the proof of this result it is claimed that the non-degeneracy
of the Tate pairing can be used to determine whether r random points of the
finite group JC(Fq)[m] in fact is an independent set of generators of JC(Fq)[m].
In this chapter we obtain an explicit, probabilistic algorithm to determine
generators of JC(Fq)[m], where m is the largest divisor of the number of Fq-
rational points on the Jacobian JC , such that ` divides q − 1 for every prime
number ` dividing m; cf. Algorithm 3.11 on page 35.

Algorithm 3.11 is based on solving the discrete logarithm problem in the
group JC(Fq)[m]. Contrary to the special case where the prime number divisors

29
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of m divide q− 1, this is infeasible in general. Hence, in general this algorithm
does not apply. But if the prime number divisors of m do not divide q − 1,
then the algorithm in (Miller, 2004) can be generalized to Jacobians of genus
two curves; cf. Algorithm 3.24 on page 44. To obtain this generalization, we
give an explicit description of the representation of the Weil pairing on the
`-torsion subgroup JC [`]; cf. Theorem 3.19 on page 40.

All results obtained and proved in this chapter are new. Algorithm 3.11 is
presented in (Ravnshøj, 2007a), and Algorithm 3.24 is presented in (Ravnshøj,
2008c).

The chapter is organized as follows: In section 3.1 we recall some facts
concerning finite abelian groups, and obtain an algorithm to choose an element
of prime number order in a finite abelian group. In section 3.2 we obtain the
explicit, probabilistic algorithm to determine generators of JC(Fq)[m], wherem
is the largest divisor of the number of Fq-rational points on the Jacobian JC ,
such that ` divides q − 1 for every prime number ` dividing m. In section 3.3
we generalize the algorithm in (Miller, 2004) to Jacobians of genus two curves.
We will write 〈Pi|i ∈ I〉 = 〈Pi〉i and

⊕
i∈I〈Pi〉 =

⊕
i〈Pi〉 if the index set I is

clear from the context.

3.1 Finite abelian groups

Miller (2004) shows the following theorem.

Theorem 3.1. Let G be a finite abelian group of torsion rank r. Then for
s ≥ r the probability that a random s-tuple of elements of G generates G is at
least

Cs
log log |G|

if s = r, and at least Cs if s > r, where Cs > 0 is a constant depending only
on s (and not on |G|).

To determine whether a generating set {g1, . . . , gs} ⊆ G is independent, i.e.
〈g1, . . . , gs〉 '

⊕
i〈gi〉, we need to know the subgroups of a cyclic `-group G.

These are determined uniquely by the order of G, since

{0} ⊆ 〈`n−1g〉 ⊆ 〈`n−2g〉 ⊆ · · · ⊆ 〈`g〉 ⊆ G

are the subgroups of the group G = 〈g〉 of prime power order `n. The following
corollary is an immediate consequence of this observation.
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Corollary 3.2. Let U1 and U2 be cyclic subgroups of a finite group G. Assume
U1 and U2 are `-groups. Let 〈ui〉 ⊆ Ui be the subgroups of order `. Then
U1 ∩ U2 = {e} if and only if 〈u1〉 ∩ 〈u2〉 = {e}. Here, e ∈ G is the neutral
element.

Consider a finite, abelian group G of order |G| = N . Let G` be the Sylow-`
subgroup of G. The following algorithm computes N` = |G`|.

Algorithm 3.3. In the following steps, on input a number N ∈ Z and a prime
divisor ` of N , the algorithm outputs `a, where N

`a ∈ Z is not divisible by `.

1. Let N` := 1 and M := N . While ` divides M , do the following
a) N` := ` ·N`.
b) M := M

` .
2. Output N`.

Notice that N
N`
g ∈ G` for any element g ∈ G. Hence, the following algo-

rithm outputs a non-trivial element g ∈ G`.

Algorithm 3.4. In the following steps, on input a finite, abelian group G
of order N and a prime divisor ` of N , the algorithm outputs a non-trivial
element g ∈ G`.

1. Compute N` = |G`| using e.g. Algorithm 3.3
2. Choose a random element g ∈ G. Compute g := N

N`
g.

3. If g = 0, then go to step 2.
4. Output g.

3.2 The special case ` | q − 1

Let JC be the Jacobian of a genus two curve defined over a finite field Fq.
By (1.2) on page 4,

JC(Fq) ' Z/n1Z⊕ Z/n2Z⊕ Z/n3Z⊕ Z/n4Z, (3.1)

where ni | ni+1 and n2 | q − 1.
Frey and Rück (1994) show that if ` divides q−1, then the discrete logarithm

problem in the rational `-torsion subgroup JC(Fq)[`] can be reduced to the
corresponding problem in F×q (Frey and Rück, 1994, Corollary 1). In the proof
of this result, it is claimed that the non-degeneracy of the Tate pairing can
be used to determine whether r random points of the finite group JC(Fq)[`]
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in fact is an independent set of generators of JC(Fq)[`]. In this section, we
describe an explicit, probabilistic algorithm to determine generators of

G = JC(Fq)[m],

where m is the largest divisor of the number of Fq-rational points on the
Jacobian JC , such that ` divides q − 1 for every prime number ` dividing m.
The algorithm is given by Algorithm 3.11.

As an abelian group, G is isomorphic to the direct sum of its Sylow sub-
groups. Hence, to determine generators of G, we only need to determine gene-
rators of the Sylow-` subgroups G` for every ` dividing both q − 1 and the
number of Fq-rational points on the Jacobian JC . In the following steps we
find points Pi ∈ G`, such that G` '

⊕
i〈Pi〉.

1. Choose random points Pi ∈ G` and Qj ∈ JC(Fq), i, j ∈ {1, . . . , 4}.
2. Use the non-degeneracy of the reduced Tate pairing ε̂t to diagonalize the

sets {Pi}i and {Qj}j with respect to ε̂t; i.e. modify the sets such that
ε̂t(Pi, Qj) = 1 if i 6= j and ε̂t(Pi, Qi) is an `th root of unity.

3. If
∏
i |Pi| < |G`| then go to step 1.

4. Output the points P1, P2, P3 and P4.

Remark 3.5. Combining Theorem 3.1 on page 30 and (3.1) on the preceding
page, we expect to find generators of G` by choosing four random points of G`
in approximately log log |G`|

C4
attempts.

The key ingredient of the algorithm is the diagonalization in step 2; this
process is explained in section 3.2.1.

3.2.1 Diagonalization
Consider a prime number ` dividing N = |JC(Fq)| and q − 1. Choose four
random points O 6= Pi ∈ JC(Fq)`, using e.g. Algorithm 3.4 on the preceding
page.

Let |Pi| = `νi , and re-enumerate the Pi’s such that νi ≤ νi+1. Since Pi 6= O,
we know that νi 6= 0 for all i. Let ζ ∈ F×q be an element of order `. Now, let
P ′i = [`νi−1](Pi) for all i. Then P ′i ∈ JC(Fq)[`] for all i. Finally, choose four
random points Qi ∈ JC(Fq).

Since ` divides q − 1, the reduced Tate pairing

ε̂t : JC(Fq)[`]× JC(Fq)/`JC(Fq)→ 〈ζ〉 ⊆ F×q

is non-degenerate; cf. section 1.1.4. Choose a point Q ∈ JC(Fq), such that
ε̂t(P ′i , Q) 6= 1. Write ε̂t(P ′i , Qj) = ζαij , where αij ∈ Z. Now, assume that the
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quotient JC(Fq)/`JC(Fq) is generated by the classes Q1, Q2, Q3 and Q4. Then
Q =

∑
i aiQi, i.e.

ε̂t(P ′i , Q) = ζαi1a1+αi2a2+αi3a3+αi4a4 .

If αij ≡ 0 (mod `) for 1 ≤ j ≤ 4, then ε̂t(P ′i , Q) = 1. Hence the following
lemma.

Lemma 3.6. Let the notation be as above. If the quotient JC(Fq)/`JC(Fq) is
generated by the classes Q1, Q2, Q3 and Q4, then for all i we may choose a j,
such that αij 6≡ 0 (mod `).

Re-enumerate the Qi’s such that α44 6≡ 0 (mod `). Now, choose num-
bers aj ∈ Z with aj ≡ α−1

44 α4j (mod `) for 1 ≤ j ≤ 3. Replacing Qj by
Qj − ajQ4 then yields α4j ≡ 0 (mod `) for 1 ≤ j ≤ 3. Thus, we may assume
that α41 ≡ α42 ≡ α43 ≡ 0 (mod `) and α44 6≡ 0 (mod `). Similarly, we may
assume that α14 ≡ α24 ≡ α34 ≡ 0 (mod `). Repeating this procedure recur-
sively, we may assume that αij ≡ 0 (mod `) if and only if i 6= j, and that
αii 6≡ 0 (mod `); here, 1 ≤ i, j ≤ 4.

The discussion above is formalized in the following algorithm.

Algorithm 3.7. The following algorithm takes as input the Jacobian JC of
a genus two curve C defined over a finite field Fq, the number N = |JC(Fq)|
of Fq-rational points on JC , and a prime number ` dividing N and q − 1.
The algorithm outputs points Pi ∈ JC(Fq)` of the Sylow-` subgroup JC(Fq)` of
JC(Fq), such that 〈Pi〉i =

⊕
i〈Pi〉 in the following steps.

1. Choose points O 6= Pi ∈ JC(Fq)`, i ∈ I := {1, 2, 3, 4}, using e.g. Algo-
rithm 3.4.

2. Choose points Qi ∈ JC(Fq), i ∈ I.
3. Let J := {1, 2, 3, 4}. For j0 from 0 to 3 do the following:

a) Let jmax := 4− j0.
b) Compute the orders `νj := |Pj |, j ∈ J . Re-enumerate the Pj’s such

that νj ≤ νj+1, j ∈ J . If νjmax = 0, then go to step 4.
c) Compute P ′j = [`νj−1](Pj) for j ∈ J . If ε̂t(P ′jmax

, Qj) = 1 for all
j ∈ J , then go to step 2.

d) Re-enumerate the Qj’s for j ∈ J , such that ε̂t(P ′jmax
, Qjmax) 6= 1.

Let ζ := ε̂t(P ′jmax
, Qjmax).

e) For 1 ≤ j < jmax, compute numbers αjmaxj , αjjmax ∈ Z such that
ε̂t(P ′jmax

, Qj) = ζαjmaxj and ε̂t(P ′j , Qjmax) = ζαjjmax .
f) Let Qj := Qj− [αjmaxj ](Qjmax), Pj := Pj− [αjjmax`

νjmax−νj ](Pjmax),
and J := J \ {jmax}.

4. Output {P1, P2, P3, P4, Q1, Q2, Q3, Q4}.
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Remark 3.8. Algorithm 3.7 consists of a small number of (1) calculations of
orders of points P ∈ JC(Fq)`, (2) multiplications of points P ∈ JC(Fq) with
numbers a ∈ Z, (3) additions of points P1, P2 ∈ JC(Fq), (4) evaluations of
pairings of points P1, P2 ∈ JC(Fq)[`] and (5) solving the discrete logarithm
problem in F×q , i.e. to determine α from ζ and ξ = ζα. Choosing a random
point on JC(Fq) takes O(log q) field operations in Fq, and computing a multiple
[m](P ) or the sum P + Q of points P,Q ∈ JC(Fq) also takes O(log q) field
operations in Fq (see Freeman and Lauter, 2008, proof of Proposition 4.6).
The order |P | of a point P ∈ JC(Fq)` can be calculated in O(logN`)A field
operations in Fq, where A is the number of field operations in Fq needed for
adding two points on JC(Fq). By Frey and Rück (1994), evaluating the Tate
pairing on two point of JC(Fq)[`] takes O(log `) field operations in Fq. The
reduced Tate pairing is computed by raising the value of the Tate pairing to
the power q−1

` . The exponentiation takes O(log q−1
` ) field operations in Fq.

Hence, evaluating the reduced Tate pairing on two point on JC(Fq)[`] takes
O(log `)O(log q−1

` ) field operations in Fq. Finally, by Pohlig and Hellman
(1978) the discrete logarithm problem in F×q can be solved in O(log q) field
operations in Fq. We see that the pairing computation is the most expensive
step. Hence, we expect Algorithm 3.7 to run in O(log ` log q−1

` ) field operations
in Fq.

By carefully examining Algorithm 3.7, we see that the following lemma
holds.

Lemma 3.9. Let the notation be as above. Let JC(Fq)` be the Sylow-` subgroup
of JC(Fq), and let {Pi, Qj}i,j be the output of Algorithm 3.7. If |Pi| = `νi ,
then νi ≤ νi+1. Let P ′i = [`νi−1](Pi), 1 ≤ i ≤ 4. Define numbers αij ∈ Z by
ε̂t(P ′i , Qj) = ζαij , where ε̂t : JC(Fq)[`] × JC(Fq)/`JC(Fq) → µ` = 〈ζ〉 is the
reduced Tate pairing. Then one of the following cases holds.

1. α11α22α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod `) for i 6= j.
2. P1 = O, α22α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod `) for i 6= j.
3. P1 = P2 = O, α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod `) for i 6= j.
4. P1 = P2 = P3 = O.

Theorem 3.10. Let the notation be as above. Algorithm 3.7 determines points
P1, P2, P3 and P4 on JC(Fq)`, such that 〈Pi〉i =

⊕
i〈Pi〉.

Proof. Let Pi, Qi ∈ JC(Fq) be the output of Algorithm 3.7. Let `νi = |Pi|. Let
P ′i = [`νi−1](Pi), 1 ≤ i ≤ 4. Define numbers αij ∈ Z by ε̂t(P ′i , Qj) = ζαij . We
only consider case 1 of Lemma 3.9, since the other cases follow similarly. We
start by determining 〈P3〉 ∩ 〈P4〉. Assume that P ′3 = [a](P ′4). Then

1 = ε̂t(P ′3, Q4) = ε̂t([a](P ′4), Q4) = ζaα44 ,
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i.e. a ≡ 0 (mod `). Hence, 〈P3〉 ∩ 〈P4〉 = {O}. Consider 〈P2〉 ∩ 〈P3, P4〉.
Assume P ′2 = [a](P ′3) + [b](P ′4). Then

1 = ε̂t(P ′2, Q3) = ε̂t([a](P ′3), Q3) = ζaα33 ,

i.e. a ≡ 0 (mod `). In the same way, 1 = ε̂t(P ′2, Q4) = ζbα44 , i.e. also b ≡ 0
(mod `). Hence, 〈P2〉 ∩ 〈P3, P4〉 = {O}. Similarly, 〈P1〉 ∩ 〈P2, P3, P4〉 = {O}.
Hence, 〈Pi〉i =

⊕
i〈Pi〉.

3.2.2 Generators of JC(Fq)[m]
From Theorem 3.10 we get the following probabilistic algorithm to determine
generators of the m-torsion subgroup JC(Fq)[m], where m is the largest divisor
of |JC(Fq)| such that ` divides q − 1 for every prime number ` dividing m.

Algorithm 3.11. As input we are given the Jacobian JC of a genus two curve
defined over a prime field Fq, the number N = |JC(Fq)| of Fq-rational points
on JC , and the prime factors `1, . . . , `n of gcd(N, q−1). The algorithm outputs
points Pi ∈ JC(Fq)[m] such that JC(Fq)[m] =

⊕
i〈Pi〉 in the following steps.

1. Set Pi := O, 1 ≤ i ≤ 4. For ` ∈ {`1, . . . , `n} do the following:
a) Use Algorithm 3.7 to determine points P̃i ∈ JC(Fq)`, 1 ≤ i ≤ 4,

such that 〈P̃i〉i =
⊕

i〈P̃i〉.
b) If

∏
i |P̃i| < |JC(Fq)`|, then go to step 1a.

c) Set Pi := Pi + P̃i, 1 ≤ i ≤ 4.
2. Output {P1, P2, P3, P4}.

Remark 3.12. By remark 3.8, we expect Algorithm 3.7 to run inO(log ` log q−1
` )

field operations in Fq. Hence, Algorithm 3.11 is an efficient, probabilistic algo-
rithm to determine generators of the m-torsion subgroup JC(Fq)[m], where m
is the largest divisor of |JC(Fq)| such that ` | q−1 for every prime number ` | m.
Remark 3.13. The strategy of Algorithm 3.7 can be applied to any finite,
abelian group with a bilinear and non-degenerate pairing into a cyclic group.
For the strategy to be efficient, the pairing must be efficiently computable, and
the discrete logarithm problem in the cyclic group must be easy.

3.3 The general case ` - q − 1

In section 3.2 we describe an algorithm based on the Tate pairing to determine
generators of the subgroup JC(Fq)[`] of points of order ` on the Jacobian,
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where ` is a number dividing q − 1. The key ingredient of the algorithm is a
“diagonalization” of a set of randomly chosen points {P1, . . . , P4, Q1, . . . , Q4}
on the Jacobian with respect to the reduced Tate pairing ε̂t; i.e. a modification
of the set such that ε̂t(Pi, Qj) 6= 1 if and only if i = j. This procedure is
based on solving the discrete logarithm problem in JC(Fq)[`]. Contrary to
the special case where m divides q − 1, it is in general infeasible to solve the
discrete logarithm problem in JC(Fq)[m]. Hence, in general the algorithm in
section 3.2 does not apply.

In this section, we generalize the algorithm in section 3.2 to subgroups of
points of prime order `, where ` does not divide q−1. In order to do so, we must
somehow alter the diagonalization step. We show and exploit the fact that the
matrix representation on JC [`] of the q-power Frobenius endomorphism on JC
can be described explicitly. This description enables us to describe the matrix
representation of the Weil pairing on JC [`] explicitly. Miller (2004) uses the
Weil pairing to determine generators of E(Fqa), where E is an elliptic curve
defined over a finite field Fq and a ∈ N. The basic idea of his algorithm is to
decide whether points on the curve are independent by means of calculating
pairing values. The explicit description of the matrix representation of the
Weil pairing lets us transfer this idea to Jacobians of genus two curves. Hereby,
computations of discrete logarithms are avoided, yielding the desired altering
of the diagonalization step.

If the Weil polynomial splits in distinct factors modulo `, then the problem
of determining a basis of the `-torsion subgroup is trivially solved: the `-
torsion subgroup decomposes in four eigenspaces of the q-power Frobenius
endomorphism, so to find a basis, simply choose an `-torsion point and project
it to the eigenspaces. A standard example is the Jacobian JC of the curve
over F3 given by y2 = x5 + 1. The Weil polynomial of JC is given by P (X) =
X4 + 9, the number of F3-rational points on JC is |JC(F3)| = P (1) = 10, and
P (X) factors modulo 5 as P (X) ≡ (X−1)(X−2)(X−3)(X−4) (mod 5). But
there are cases where the Weil polynomial does not split in distinct factors;
cf. the following example.

Example 3.14. Consider the Jacobian JC of the curve over F3 given by y2 =
x5 + 2x2 + x+ 1. The Weil polynomial of JC is given by P (X) = X4 +X3 −
X2 + 3X + 9, the number of F3-rational points on JC is |JC(F3)| = P (1) = 13,
and P (X) factors modulo 13 as P (X) ≡ (X − 1)(X − 3)(X − 4)2 (mod 13).

3.3.1 Determining fields of definition
Freeman and Lauter (2008) consider the problem of determining the field of
definition of the `-torsion points on the Jacobian of a genus two curve, i.e. the
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problem of determining the full embedding degree k0. They describe a proba-
bilistic algorithm to determine if JC [`] ⊆ JC(Fqκ) (see Freeman and Lauter,
2008, Algorithm 4.3). (Notice that Freeman and Lauter consider a Jacobian
defined over a prime field Fp, and (Freeman and Lauter, 2008, Algorithm 4.3)
determines if JC [`d] ⊆ JC(Fq), where q = pk and d ∈ N. This algorithm is eas-
ily generalized to determine if JC [`] ⊆ JC(Fqκ) for Jacobians defined over Fq,
q = pa).

In most applications, a probabilistic algorithm to determine k0 is sufficient.
But we may have to compute k0. To this end, consider a Jacobian JC ∈
J(`, q, k, τk); cf. Definition 2.9 on page 21. Let ω be a q-Weil number of JC .
In cases relevant to pairing based cryptography, ` is most likely unramified in
Q(ω); cf. Remark 2.10 on page 21. But then the full embedding degree of JC
with respect to ` can be computed directly by the following Algorithm 3.15
(obviously, in applications k0 must be small enough for representation of and
computations with points on JC(Fqk0 ) to be feasible. Hence, the algorithms
presented are only relevant for applications if k0 is “small”).

Algorithm 3.15. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ω be a q-Weil
number of JC . Assume that ` is unramified in Q(ω). Choose an upper bound
N ∈ N of the full embedding degree k0 of JC with respect to `. If k0 ≤ N ,
then the following algorithm outputs k0. If k0 > N , then the algorithm outputs
“k0 > N”.

1. Let j = 1.
2. If the Weil polynomial P (X) of JC does not split in linear factors mo-

dulo `, then ϕ is represented by a matrix M of the form (2.2) on JC [`].
In this case, let k0 = min{κ ∈ kN, κ ≤ N,Mκ ≡ I (mod `)}, if the
minimum exists. Else let j = 0.

3. If P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `), then do the fol-
lowing:
a) If α 6≡ 1, q, q/α (mod `), then let k0 = min{κ ∈ kN, κ ≤ N,ακ ≡ 1

(mod `)}, if the minimum exists. Else let j = 0.
b) If α ≡ 1, q (mod `), then let k0 = k.
c) If α ≡ q/α (mod `), then let k0 = 2k.

4. If j = 0 then output “k0 > N”. Else output k0.

Proof. First of all, recall that k0 ∈ kN; cf. Remark 1.5 on page 6. As usual,
let ϕ be the q-power Frobenius endomorphism of JC .

Assume at first that the Weil polynomial of JC does not split in linear
factors modulo `. Then ϕ is not diagonalizable on JC [`]. Thus, ϕ is represented
by a matrix M of the form (2.2) on JC [`]. Since ϕk0 is the identity on JC [`],
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it is represented by the identity matrix I on JC [`]. But ϕk0 is also represented
byMk0 on JC [`]. SoMk0 ≡ I (mod `). On the other hand, ifMκ ≡ I (mod `)
for some number κ ≤ k0, then ϕκ is the identity on JC [`], i.e. JC [`] ⊆ JC(Fqκ).
But then κ = k0 by the definition of k0. Hence, k0 is the least number, such
that Mk0 ≡ I (mod `).

Now, assume the Weil polynomial splits in linear factors modulo `. Then ϕ
represented by a diagonal matrix diag(1, q, α, q/α) with respect to an appro-
priate basis of JC [`]; cf. Theorem 2.12 on page 23. The case α 6≡ q/α (mod `)
is now obvious. If α ≡ q/α (mod `), then α2 ≡ q (mod `). So in this case,
k0 = 2k.

Theorem 3.16. Let the notation and assumptions be as in Algorithm 3.15. On
input JC , the Weil polynomial modulo ` and a number N ∈ N, Algorithm 3.15
outputs either “k0 > N” or the full embedding degree of JC with respect to `
in at most O(N) number of operations in F`.

Proof. If the Weil polynomial of JC does not split in linear factors modulo `,
then powers {Mk, (Mk)2, . . . , (Mk)bN/kc} of M modulo ` are computed; here,
M is the matrix representation of the q-power Frobenius endomorphism on the
`-torsion subgroup JC [`]. M is of the form

M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

 .
Hence, computing powers of M is equivalent to computing powers of M ′ =[ 0 −q

1 c

]
and powers of q. Computation of the product of two matrices A,B ∈

Mat2(F`) takes 12 operations in F`, so computing the powers of M modulo `
takes O(N) operations in F`.

Assume the Weil polynomial factors as (X − 1)(X − q)(X − α)(X − q/α)
modulo `. If α ≡ 1, q, q/α (mod `), then no computations are needed. If
α 6≡ 1, q, q/α (mod `), then powers {αk, (αk)2, . . . , (αk)bN/kc} of α modulo `
are computed; this takes O(N) operations in F`.

Remark 3.17. Recall that q = pa for some power a ∈ N. Assume ` and p
are of the same size. For small N (e.g. N < 200), a limit of O(N) number
of operations in F` is a better result than the expected number of operations
in Fp of (Freeman and Lauter, 2008, Algorithm 4.3) given by (Freeman and
Lauter, 2008, Proposition 4.6). Furthermore, the algorithm of Freeman and
Lauter (2008) only checks if a given number κ ∈ N is the full embedding
degree k0 of the Jacobian. Hence, to find k0 using (Freeman and Lauter, 2008,
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Algorithm 4.3), we must apply it to every number in the set {κ ∈ kN|κ ≤ N}.
Thus, we must multiply the number of expected operations in Fp with a factor
O(bN/kc). So if ` and p are of the same size, then Algorithm 3.15 is more
efficient than (Freeman and Lauter, 2008, Algorithm 4.3). On the other hand,
if ` � p, then field operations in Fp is faster than field operations in F`, and
(Freeman and Lauter, 2008, Algorithm 4.3) may be the more efficient one.
Hence, the choice of algorithm to compute the full embedding degree depends
strongly on the values of ` and p in the implementation.

3.3.2 Anti-symmetric pairings on the Jacobian
On JC [`], a non-degenerate, bilinear, anti-symmetric and Galois-invariant pair-
ing

ε : JC [`]× JC [`]→ µ` = 〈ζ〉 ⊆ F×
qk

exists, e.g. the Weil pairing; cf. Section 1.1.4 on page 5. Here, µ` is the group
of `th roots of unity. Since ε is bilinear, it is given by

ε(x, y) = ζx
TEy, (3.2)

for some matrix E ∈ Mat4(Z/`Z) with respect to a basis B = {x1, x2, x3, x4}
of JC [`].
Remark 3.18. To be more precise, the points x and y on the right hand of
equation (3.2) should be replaced by their column vectors [x]B and [y]B with
respect to B. To ease notation, this has been omitted.

Let ϕ denote the q-power Frobenius endomorphism on JC . Since ε is Galois-
invariant,

∀x, y ∈ JC [`] : ε(x, y)q = ε(ϕ(x), ϕ(y)).
This is equivalent to

∀x, y ∈ JC [`] : q(xTEy) = (Mx)TE(My),

where M is the matrix representation of ϕ on JC [`] with respect to B. Since
(Mx)TE(My) = xTMTEMy, it follows that

∀x, y ∈ JC [`] : xT qEy = xTMTEMy,

or equivalently, that qE = MTEM .
Now, let ε(xi, xj) = ζaij . By anti-symmetry,

E =


0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

 .
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At first, assume that ϕ is represented by a matrix of the form (2.2) with
respect to B. Since MTEM = qE, it follows that

a14 − qa13 ≡ a23 − a24 ≡ a14(c− (1 + q)) ≡ a24(c− (1 + q)) ≡ 0 (mod `).

Thus, a13 ≡ a14 ≡ a23 ≡ a24 ≡ 0 (mod `), cf. Theorem 2.11 on page 22. So

E =


0 a12 0 0
−a12 0 0 0

0 0 0 a34
0 0 −a34 0

 .
Since ε is non-degenerate, a2

12a
2
34 = det E 6≡ 0 (mod `).

Finally, assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α)
with respect to B. Then it follows from MTEM = qE, that

a13(α− q) ≡ a14(α− 1) ≡ a23(α− 1) ≡ a24(α− q) ≡ 0 (mod `).

If α ≡ 1, q (mod `), then JC(Fq)[`] is bi-cyclic. Hence the following theorem
holds.

Theorem 3.19. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ϕ be the q-
power Frobenius endomorphism on JC . Choose a basis B of JC [`], such that ϕ
is represented by either a diagonal matrix diag(1, q, α, q/α) or a matrix of
the form (2.2) with respect to B. If the Fq-rational subgroup JC(Fq)[`] of
`-torsion points on the Jacobian is cyclic, then all non-degenerate, bilinear,
anti-symmetric and Galois-invariant pairings on JC [`] are given by the matri-
ces

Ea,b =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , a, b ∈ (Z/`Z)×

with respect to B.

Remark 3.20. Let notation and assumptions be as in Theorem 3.19. Let ε be a
non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing on JC [`],
and let ε be given by Ea,b with respect to a basis {x1, x2, x3, x4} of JC [`]. Then ε
is given by E1,1 with respect to {a−1x1, x2, b

−1x3, x4}.
Remark 3.21. In cases relevant to pairing based cryptography, we consider
a prime divisor ` of size q2. Assume ` is of size q2. Then ` divides nei-
ther q nor q − 1. The number of Fq-rational points on the Jacobian is ap-
proximately q2. Thus, JC(Fq)[`] is cyclic in cases relevant to pairing based
cryptography.
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3.3.3 Generators of JC [`]
Consider a Jacobian JC ∈ J(`, q, k, τk). Assume the Fq-rational subgroup of
`-torsion points JC(Fq)[`] is cyclic. Let ϕ be the q-power Frobenius endo-
morphism of JC . Let ε be a non-degenerate, bilinear, anti-symmetric and
Galois-invariant pairing

ε : JC [`]× JC [`]→ µ` = 〈ζ〉 ⊆ F×
qk
.

In the following, frequently we will choose a random point P ∈ JC(Fqa)[`]
for some power a ∈ N. This is done as follows: (1) Choose a random point
P ∈ JC(Fqa). (2) Compute P := [m](P ), where |JC(Fqa)| = m`s and ` - m.
(3) Compute the order |P | = `t(P ) of P . (4) If t(P ) > 0, then let P :=
[`t(P )−1](P ). Since the power t(P ) will be different for each point P , this
procedure does not define a group homomorphism from JC(Fqa) to JC(Fqa)[`].
Thus, the image of points uniformly distributed in JC(Fqa) will not necessarily
be uniformly distributed in JC(Fqa)[`]. A method of choosing points uniformly
at random is given in (Freeman and Lauter, 2008, section 5.3), but it leads
to a significant extra cost. In practice we believe it is better to not use the
method in Freeman and Lauter (2008), even though this means one might need
to sample a few extra points.

We consider the cases where ` - τk and where ` | τk separately.

The case ` - τk

If ` does not divide τk, then JC(Fqk)[`] is bicyclic; cf. Theorem 2.1 on page 17.
Choose a random point O 6= x1 ∈ JC(Fq)[`], and extend {x1} to a basis {x1, y2}
of JC(Fqk)[`], where ϕ(y2) = qy2. Let x′2 ∈ JC(Fqk)[`] be a random point. If
x′2 ∈ JC(Fq)[`], then choose another random point x′2 ∈ JC(Fqk)[`]. After two
trials, x′2 /∈ JC(Fq)[`] with probability 1− 1/`2. Hence, we may ignore the case
where x′2 ∈ JC(Fq)[`]. Write x′2 = α1x1 + α2y2. Then

O 6= x2 = x′2 − ϕ(x′2) = α2(1− q)y2 ∈ 〈y2〉,

i.e. ϕ(x2) = qx2. Now, let JC [`] ' JC(Fqk)[`] ⊕W , where W is a ϕ-invariant
submodule of rank two. Choose a random point x′3 ∈ JC [`]. Since x′3−ϕ(x′3) ∈
〈y2〉 ⊕W , we may assume that x′3 ∈ 〈y2〉 ⊕W . But then

x3 = qx′3 − ϕ(x′3) ∈W

as above. If ϕ(x′3) = qx′3, then x′3 ∈ JC(Fqk)[`]. This will only happen with
probability 1/`2. Hence, we may ignore this case. Notice that

JC [`] = 〈x1, x2, x3, ϕ(x3)〉 if and only if ε(x3, ϕ(x3)) 6= 1;

cf. Theorem 3.19 on the facing page.
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Assume ε(x3, ϕ(x3)) = 1. Then x3 is an eigenvector of ϕ. Let ϕ(x3) = αx3.
Then the Weil polynomial of JC is given by

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `)

modulo `. Assume α ≡ q/α (mod `). Then α2 ≡ q (mod `), and it follows
that the characteristic polynomial of ϕk is given by

Pk(X) ≡ (X − 1)2(X + 1)2 ≡ X4 − 2qkX2 + q2k (mod `)

modulo `. But then ` | τk. This is a contradiction. So α 6≡ q/α (mod `).
Therefore, we can extend {x1, x2, x3} to a basis B = {x1, x2, x3, x4} of JC [`],
such that ϕ is represented by a diagonal matrix on JC [`] with respect to B.
We may assume that ε is given by E1,1 with respect to B; cf. Remark 3.20 on
page 40.

Now, choose a random point x ∈ JC [`]. Write x = α1x1 + α2x2 + α3x3 +
α4x4. Then ε(x3, x) = ζα4 . So ε(x3, x) 6= 1 if and only if ` does not divide α4.
On the other hand, {x1, x2, x3, x} is a basis of JC [`] if and only ` does not
divide α4. Thus, if ` does not divide τk, then the following Algorithm 3.22
outputs generators of JC [`] with probability at least 1− 1/`n.

Algorithm 3.22. On input a Jacobian JC ∈ J(`, q, k, τk), the numbers `, q,
k and τk, the full embedding degree k0 of JC with respect to ` and a number
n ∈ N, if ` does not divide τk, then the following algorithm outputs a basis
of JC [`] or “failure”.

1. Choose points O 6= x1 ∈ JC(Fq)[`], x2 ∈ JC(Fqk)[`] and x′3 ∈ JC(Fqk0 )[`];
compute x3 = q(x′3 − ϕ(x′3)) − ϕ(x′3 − ϕ(x′3)). If ε(x3, ϕ(x3)) 6= 1, then
output {x1, x2, x3, ϕ(x3)} and stop.

2. Let i = j = 0. While i < n do the following:
a) Choose a random point x4 ∈ JC(Fqk0 )[`].
b) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

3. If j = 0, then output “failure”. Else output {x1, x2, x3, x4}.

The case ` | τk
Assume ` divides τk. Then JC [`] ⊆ JC(Fqk); cf. Theorem 2.2 on page 17.
Choose a random point O 6= x1 ∈ JC(Fq)[`], and let y2 ∈ JC [`] be a point
with ϕ(y2) = qy2. Write JC [`] = 〈x1, y2〉 ⊕ W , where W is a ϕ-invariant
submodule of rank two; cf. the proof of Theorem 2.11 on page 22. Let {y3, y4}
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be a basis of W , such that ϕ is represented on JC [`] with respect to the
basis B = {x1, y2, y3, y4} by either a diagonal matrix

M1 = diag(1, q, α, q/α),

or a matrix of the form

M2 =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

 ,
where c 6≡ q + 1 (mod `); cf. Theorem 2.11 on page 22.

Now, choose a random point z ∈ JC [`]. Since z − ϕ(z) ∈ 〈y2, y3, y4〉, we
may assume that z ∈ 〈y2, y3, y4〉. Write z = α2y2 + α3y3 + α4y4. Assume at
first that ϕ is represented on JC [`] by M1 with respect to B. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3αy3 + α4(q/α)y4)
= α3(q − α)y3 + α4(q − q/α)y4;

so qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that q ≡ 1 (mod `).
This contradicts the choice of the Jacobian JC ∈ J(`, q, k, τk). Hence, we have
a procedure to choose a point O 6= w ∈W in this case. Now assume that ϕ is
represented on JC [`] by M2 with respect to B. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3y4 + α4(−qy3 + cy4))
= q(α3 + α4)y3 + (α4q − α3 − α4c)y4;

so again qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that c ≡ q + 1
(mod `). This is a contradiction. Hence, we have a procedure to choose a
point O 6= w ∈W also in this case.

Choose random points x3, x4 ∈ W . Write xi = αi3y3 + αi4y4 for i = 3, 4.
We may assume that ε is given by E1,1 with respect to B; cf. Remark 3.20 on
page 40. But then ε(x3, x4) = ζα33α44−α34α43 . Hence, ε(x3, x4) = 1 if and only
if α33α44 ≡ α34α43 (mod `). So ε(x3, x4) 6= 1 with probability 1− 1/`. Hence,
we have a procedure to find a basis of W .

Until now, we have found points x1 ∈ JC(Fq)[`] and x3, x4 ∈ W , such
that W = 〈x3, x4〉. Now, choose a random point x2 ∈ JC [`]. Write x2 =
α1x1 +α2y2 +α3y3 +α4y4. Then ε(x1, x2) = ζα2 , i.e. ε(x1, x2) = 1 if and only
if α2 ≡ 0 (mod `). Thus, with probability 1 − 1/`, the set {x1, x2, x3, x4} is a
basis of JC [`].

Summing up, if ` divides τk, then the following Algorithm 3.23 on the
following page outputs generators of JC [`] with probability at least (1− 1/`n)2.
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Algorithm 3.23. On input a Jacobian JC ∈ J(`, q, k, τk), the numbers `, q,
k and τk, the full embedding degree k0 of JC with respect to ` and a number
n ∈ N, if ` divides τk, then the following algorithm outputs a basis of JC [`] or
“failure”.

1. Choose a random point O 6= x1 ∈ JC(Fq)[`].
2. Let i = j = 0. While i < n do the following:

a) Choose a random point x2 ∈ JC(Fqk0 )[`].
b) If ε(x1, x2) = 1, then i := i+ 1. Else i := n and j := 1.

3. If j = 0, then output “failure” and stop.
4. Let i = j = 0. While i < n do the following:

a) Choose random points y3, y4 ∈ JC(Fqk0 )[`]; compute xν := q(yν −
ϕ(yν))− ϕ(yν − ϕ(yν)) for ν = 3, 4.

b) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.
5. If j = 0, then output “failure”. Else output {x1, x2, x3, x4}.

The complete algorithm

Combining Algorithm 3.22 and 3.23, we obtain the desired algorithm to find
generators of JC [`].

Algorithm 3.24. On input a Jacobian JC ∈ J(`, q, k, τk), the numbers `, q,
k and τk, the full embedding degree k0 of JC with respect to ` and a number
n ∈ N, the following algorithm outputs a basis of JC [`] or “failure”.

1. If ` - τk, run Algorithm 3.22 on input (JC , `, q, k, τk, k0, n).
2. If ` | τk, run Algorithm 3.23 on input (JC , `, q, k, τk, k0, n).

Theorem 3.25. Let JC be a J(`, q, k, τk)-Jacobian of full embedding degree k0
with respect to `. On input (JC , `, q, k, τk, k0, n), Algorithm 3.24 outputs gene-
rators of JC [`] with probability at least (1 − 1/`n)2. We expect Algorithm 3.24
to run in

O

(
log ` log q

k0 − 1
`

k0
3 log k0 log q

)
field operations in Fq (ignoring log log q factors).

Proof. We must compare the cost of the steps in Algorithm 3.24. From (Free-
man and Lauter, 2008, proof of Proposition 4.6), (Frey and Rück, 1994, proof
of Corollary 1) and Menezes, van Oorschot et al. (1997) we get the following
estimates: (1) Choosing a random point on JC(Fqa) for some power a ∈ N
takes O(a log q) field operations in Fqa , and computing a multiple [m](P ) of
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a point P ∈ JC(Fqa) takes O(a log q) field operations in Fqa . (2) Evaluating
the qa-power Frobenius endomorphism of the Jacobian on a point P ∈ JC [`]
takes O(a log q) field operations in Fqa . (3) Evaluating the Tate pairing on two
point of JC(Fqk0 )[`] takes O(log `) field operations in Fqk0 . The Weil pairing
can be computed by computing two Tate pairings, raising the results to the
power qk0−1

` and finally computing the quotient of these numbers (see Gal-
braith, 2005). The exponentiation takes O(log qk0−1

` ) field operations in Fqk0 ,
and a division takes O(k0

2) field operations in Fqk0 . Hence, evaluating the
Weil pairing on two point on JC(Fqk0 )[`] takes O(log `)O(log qk0−1

` )O(k0
2) field

operations in Fqk0 . (4) By using fast multiplication techniques, one field opera-
tion in Fqa can be computed in O(log qa log log qa) = O(a log a log q) (ignoring
log log q factors).

We see that the pairing computation is the most expensive step in Algo-
rithm 3.24. Thus, Algorithm 3.24 runs in O(log ` log qk0−1

` k0
3 log k0 log q) field

operations in Fq (ignoring log log q factors).

Freeman and Lauter (2008) gives an algorithm to determine generators for
the `-torsion subgroup (see Freeman and Lauter, 2008, Algorithm 4.3). This
algorithm runs in expected time O(k2 log k(log p)2`s−4√− log ε), where the
number s is given by |JC(Fqk0 )| = m`s and ` - m, and ε is the rate of failure.
Hence, if s > 4, then Algorithm 3.24 is by far more efficient than (Freeman
and Lauter, 2008, Algorithm 4.3).

3.3.4 A small example
To illustrate the steps of Algorithm 3.24 on the preceding page, we consider a
small example. We will focus on the most common case where ` - τk; i.e. we
will compute the steps of Algorithm 3.22 on page 42 explicitly.

Consider the Jacobian JC of the curve over F3 given by

y2 = x5 + 2x2 + x+ 1.

As usual, we let ϕ denote the 3-power Frobenius endomorphism on JC .
The Weil polynomial of JC is given by

P (X) = X4 +X3 −X2 + 3X + 9.

The number of F3-rational points on JC is |JC(F3)| = P (1) = 13, and the
embedding degree of JC(F3) with respect to ` = 13 is k = 3. We find that

P (X) ≡ (X − 1)(X − 3)(X − 4)2 (mod 13).
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Hence, JC(F33)[13] is bicyclic, and the full embedding degree of JC(F3) with
respect to ` = 13 is k0 = 6. In particular, JC [13] ⊆ JC(F36).

The complex roots of P (X) are given by ω1, ω2 = ω̄1, ω3 and ω4 = ω̄3,
where

ω1 = −1
4 + 1

4
√

29 + i

4

√
18 + 2

√
29

and

ω3 = −1
4 −

1
4
√

29 + i

4

√
18− 2

√
29.

Therefore, the characteristic polynomials P3(X) and P6(X) of the 33- and
the 36-power Frobenius endomorphisms are given by

P3(X) =
∏
i

(X − ω3
i ) = X4 + 13X3 + 89X2 + 351X + 729

and
P6(X) =

∏
i

(X − ω6
i ) = X4 + 9X3 + 253X2 + 6561X + 531441.

In particular, the number of F33- and F36-rational points on the Jacobian JC
are |JC(F33)| = P3(1) = 1183 and |JC(F36)| = P6(1) = 538265.

Now, let s = 13 and τk = 29. Then

P3(X) = X4 + sX3 + (2 · 33 + (s2 − τk)/4)X2 + 33 · sX + 36.

Thus, JC is a J(13, 3, 3, 29)-Jacobian. Since 13 does not divide τk = 29, we use
Algorithm 3.22 to find generators of JC [13].

We start by choosing points x1 ∈ JC(F3)[13] and x2 ∈ JC(F33)[13]:

x1 = (0, 1) + (−1, 1)− 2P∞,
x2 = (α+ 2, α2 + 2α+ 1) + (2α2 + 2, 2α2 + α+ 1)− 2P∞.

Here, α is a root of X3 + X2 + X + 2 modulo 3. Then we choose a point
x′3 ∈ JC(F36)[13]:

x′3 = (β4 + β3 + 2β2 + 2β + 2, β5 + β4 + β2 + 2β)
+ (2β5 + 2β2 + 2, β5 + 2β3 + β)− 2P∞.

Here, β is a root of X6 + X5 + 2X4 + X3 + X2 + 2X + 2 modulo 3. Finally,
we compute x3 = x′3 − ϕ3(x′3):

x3 = (2β5 + 2β4 + β2 + β, β5 + β4 + β3 + β + 2β2)
+ (2β5 + 2β4 + β2 + β + 2, 2β5 + 2β3 + 2)− 2P∞.
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Now we compute y = ϕ(x3):

y = (2β5 + 2β4 + β2 + β, 2β5 + 2β4 + 2β + β2 + 2β3)
(2β5 + 2β4 + β2 + β + 2, β5 + β3 + 1)− 2P∞.

Let ε : JC [13]× JC [13]→ µ13 be the Weil pairing. Since ε(x3, y) = 1, we know
that y ∈ 〈x3〉. Hence, we must choose another point x′4 ∈ JC(F36)[13]:

x′4 = (β2 + β + 1, 2β5 + 2β4 + 2β2 + 2β + 2)
(2β5 + β4 + 2β3, 2β5 + 2β4 + 2β3 + 2β2 + β)− 2P∞.

We compute x4 = x′4 − ϕ3(x′4):

x4 = (2β5 + 2β4 + β2 + β + 1, β5 + β3 + β2 + 1)
(2β5 + 2β4 + β2 + β, β5 + β4 + β3 + 2β2 + β)− 2P∞.

Since ε(x3, x4) 6= 1, B = {x1, x2, x3, x4} is a basis of JC [13].

3.3.5 Implementation issues
To check if ` ramifies in Q(ωk) in the case where ` divides τk, a priori we
need to find a qk-Weil number ωk of the Jacobian JC . On Jacobians generated
by the complex multiplication method (Eisenträger and Lauter, 2007; Gaudry,
Houtmann et al., 2005; Weng, 2003), we know the Weil numbers in advance.
Hence, Algorithm 3.24 on page 44 is particularly well suited for such Jacobians.

Fortunately, most likely ` does not divide τk, and then we do not have
to find a qk-Weil number (` divides a random number n ∈ Z with vanishing
probability 1/`). And if the Weil polynomial splits in distinct linear factors
modulo `, then we do not even have to compute τk. To see this, assume that
the Weil polynomial of JC splits as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `),

where α 6≡ 1, q, q/α (mod `). Let ϕ be the q-power Frobenius endomorphism
of JC , and let Pk(X) be the characteristic polynomial of ϕk. Then

Pk(X) ≡ (X − 1)2(X − αk)(X − 1/αk) (mod `).

If ` divides τk, then JC [`] ⊆ JC(Fqk); cf. Theorem 2.2 on page 17. But then
Pk(X) ≡ (X − 1)4 (mod `). Hence,

` divides τk if and only if αk ≡ 1 (mod `). (3.3)
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Assume αk ≡ 1 (mod `). Then Pk(X) ≡ (X − 1)4 (mod `). Hence,

` ramifies in Q(ωk) if and only if ωk /∈ Z. (3.4)

See (Neukirch, 1999, Proposition 8.3, p. 47). Here, ω is a q-Weil number of JC .
Consider the case where αk ≡ 1 (mod `) and ωk ∈ Z. Then ω = √qeinπ/k

for some n ∈ Z with 0 < n < k. Assume k divides mn for some m < k. Then
ω2m = qm ∈ Z. Since the q-power Frobenius endomorphism is the identity
on the Fq-rational points on the Jacobian, it follows that ω2m ≡ 1 (mod `).
Hence, qm ≡ 1 (mod `), i.e. k divides m. This is a contradiction. So n and k
has no common divisors. Let ξ = ω2/q = ein2π/k. Then ξ is a primitive kth

root of unity, and Q(ξ) ⊆ Q(ω). Since [Q(ω) : Q] ≤ 4 and [Q(ξ) : Q] = φ(k),
where φ is the Euler phi function, it follows that k ≤ 12. Hence,

if αk ≡ 1 (mod `), then ωk ∈ Z if and only if k ≤ 12. (3.5)

The criteria (3.3), (3.4) and (3.5) provides the following efficient algorithm to
check whether a given Jacobian is of type J(`, q, k, τk), and whether ` divides τk.

Algorithm 3.26. Let JC be the Jacobian of a genus two curve C. Assume
that the odd prime number ` divides the number of Fq-rational points on JC ,
and that ` divides neither q nor q − 1. Let k be the multiplicative order of q
modulo `.

1. Compute the Weil polynomial P (X) of JC . Let P (X) ≡
∏4
i=1(X − αi)

(mod `).
2. If αki 6≡ 1 (mod `) for an i ∈ {1, 2, 3, 4}, then output “JC ∈ J(`, q, k, τk)

and ` does not divide τk” and stop.
3. If k > 12 then output “JC /∈ J(`, q, k, τk)” and stop.
4. Output “JC ∈ J(`, q, k, τk) and ` divides τk” and stop.
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Appendix A

Generators of Jacobians of
hyperelliptic curves

This appendix contains the preprint (Ravnshøj, 2007a).
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GENERATORS OF JACOBIANS OF HYPERELLIPTIC CURVES

CHRISTIAN ROBENHAGEN RAVNSHØJ

Abstract. This paper provides a probabilistic algorithm to determine gene-
rators of the m-torsion subgroup of the Jacobian of a hyperelliptic curve of
genus two.

1. Introduction

Let C be a hyperelliptic curve of genus two defined over a prime field Fp, and JC

the Jacobian of C. Consider the rational subgroup JC(Fp). JC(Fp) is a finite
abelian group, and

JC(Fp) ' Z/n1Z⊕ Z/n2Z⊕ Z/n3Z⊕ Z/n4Z,
where ni | ni+1 and n2 | p − 1. Frey and Rück (1994) shows that if m | p − 1,
then the discrete logarithm problem in the rational m-torsion subgroup JC(Fp)[m]
of JC(Fp) can be reduced to the corresponding problem in F×p (Frey and Rück,
1994, corollary 1). In the proof of this result it is claimed that the non-degeneracy
of the Tate pairing can be used to determine whether r random elements of the
finite group JC(Fp)[m] in fact is an independent set of generators of JC(Fp)[m].
This paper provides an explicit, probabilistic algorithm to determine generators of
JC(Fp)[m].

In short, the algorithm outputs elements γi of the Sylow-` subgroup Γ` of the
rational subgroup Γ = JC(Fp), such that Γ` =

⊕
i〈γi〉 in the following steps:

(1) Choose random elements γi ∈ Γ` and hj ∈ JC(Fp), i, j ∈ {1, . . . , 4}.
(2) Use the non-degeneracy of the tame Tate pairing τ to diagonalize the sets

{γi}i and {hj}j with respect to τ ; i.e. modify the sets such that τ(γi, hj) =
1 if i 6= j and τ(γi, hi) is an `th root of unity.

(3) If
∏

i |γi| < |Γ`| then go to step 1.
(4) Output the elements γ1, γ2, γ3 and γ4.

The key ingredient of the algorithm is the diagonalization in step 2; this process
will be explained in section 5.

We will write 〈γi|i ∈ I〉 = 〈γi〉i and
⊕

i∈I〈γi〉 =
⊕

i〈γi〉 if the index set I is clear
from the context.

2. Hyperelliptic curves

A hyperelliptic curve is a smooth, projective curve C ⊆ Pn of genus at least
two with a separable, degree two morphism φ : C → P1. In the rest of this
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2 C.R. RAVNSHØJ

paper, let C be a hyperelliptic curve of genus two defined over a prime field Fp

of characteristic p > 2. By the Riemann-Roch theorem there exists an embedding
ψ : C → P2, mapping C to a curve given by an equation of the form

y2 = f(x),

where f ∈ Fp[x] is of degree six and have no multiple roots (see Cassels and Flynn,
1996, chapter 1).

The set of principal divisors P(C) on C constitutes a subgroup of the degree zero
divisors Div0(C). The Jacobian JC of C is defined as the quotient

JC = Div0(C)/P(C).

Consider the subgroup JC(Fp) < JC of Fp-rational elements. There exist num-
bers ni, such that

(1) JC(Fp) ' Z/n1Z⊕ Z/n2Z⊕ Z/n3Z⊕ Z/n4Z,

where ni | ni+1 and n2 | p− 1 (see Frey and Lange, 2006, proposition 5.78, p. 111).
We wish to determine generators of the m-torsion subgroup JC(Fp)[m] < JC(Fp),
where m | |JC(Fp)| is the largest number such that ` | p−1 for every prime number
` | m.

3. Finite abelian groups

Miller (2004) shows the following theorem.

Theorem 1. Let G be a finite abelian group of torsion rank r. Then for s ≥ r the
probability that a random s-tuple of elements of G generates G is at least

Cr

log log |G|
if s = r, and at least Cs if s > r, where Cs > 0 is a constant depending only on s
(and not on |G|).

Proof. (Miller, 2004, theorem 3, p. 251) �

Combining theorem 1 and equation (1), we expect to find generators of Γ[m] by
choosing 4 random elements γi ∈ Γ[m] in approximately log log |Γ[m]|

C4
attempts.

To determine whether the generators are independent, i.e. if 〈γi〉i =
⊕

i〈γi〉, we
need to know the subgroups of a cyclic `-group G. These are determined uniquely
by the order of G, since

{0} < 〈`n−1g〉 < 〈`n−2g〉 < · · · < 〈`g〉 < G

are the subgroups of the group G = 〈g〉 of order `n. The following corollary is an
immediate consequence of this observation.

Corollary 2. Let U1 and U2 be cyclic subgroups of a finite group G. Assume U1

and U2 are `-groups. Let 〈ui〉 < Ui be the subgroups of order `. Then

U1 ∩ U2 = {e} ⇐⇒ 〈u1〉 ∩ 〈u2〉 = {e}.
Here e ∈ G is the neutral element.
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4. The tame Tate pairing

Let Γ = JC(Fp) be the rational subgroup of the Jacobian. Consider a number
λ | gcd(|Γ|, p− 1). Let g ∈ Γ[λ] and h =

∑
i aiPi ∈ Γ be divisors with no points in

common, and let
h ∈ Γ/λΓ

denote the class containing the divisor h. Furthermore, let f ∈ Fp(C) be a rational
function on C with divisor div(f) = λg. Set f(h) =

∏
i f(Pi)ai . Then

eλ(g, h) = f(h)

is a well-defined pairing Γ[λ]×Γ/λΓ −→ F×p /(F×p )λ, the Tate pairing ; cf. Galbraith
(2005). Raising to the power p−1

λ gives a well-defined element in the subgroup
µλ < F×p of the λth roots of unity. This pairing

τλ : Γ[λ]× Γ/λΓ −→ µλ

is called the tame Tate pairing.
Since the class h is represented by the element h ∈ Γ, we will write τλ(g, h)

instead of τλ(g, h). Furthermore, we will omit the subscript λ and just write τ(g, h),
since the value of λ will be clear from the context.

Hess (2004) gives a short and elementary proof of the following theorem.

Theorem 3. The tame Tate pairing τ is bilinear and non-degenerate.

Corollary 4. For every element g ∈ Γ of order λ an element h ∈ Γ exists, such
that µλ = 〈τ(g, h)〉.
Proof. (Silverman, 1986, corollary 8.1.1., p. 98) gives a similar result for elliptic
curves and the Weil pairing. The proof of this result only uses that the pairing is
bilinear and non-degenerate. Hence it applies to corollary 4. �

Remark 5. In the following we only need the existence of the element h ∈ Γ, such
that µλ = 〈τ(g, h)〉; we do not need to find it.

5. Generators of Γ[m]

As in the previous section, let Γ = JC(Fp) be the rational subgroup of the
Jacobian. We are searching for elements γi ∈ Γ[m] such that Γ[m] =

⊕
i〈γi〉. As

an abelian group, Γ[m] is the direct sum of its Sylow subgroups. Hence, we only
need to find generators of the Sylow subgroups of Γ[m].

Set N = |Γ| and let ` | gcd(N, p − 1) be a prime number. Choose four random
elements γi ∈ Γ. Let Γ` < Γ be the Sylow-` subgroup of Γ, and set N` = |Γ`|. Then
N
N`
γi ∈ Γ`. Hence, we may assume that γi ∈ Γ`. If all the elements γi are equal to

zero, then we choose other elements γi ∈ Γ. Hence, we may assume that some of
the elements γi are non-zero.

Let |γi| = λi, and re-enumerate the γi’s such that λi ≤ λi+1. Since some of the
γi’s are non-zero, we may choose an index ν ≤ 4, such that λν 6= 1 and λi = 1 for
i < ν. Choose λ0 minimal such that λ = λν

λ0
| p− 1. Then Fp contains an element

ζ of order λ. Now set gi = λi

λ γi, ν ≤ i ≤ 4. Then gi ∈ Γ[λ], ν ≤ i ≤ 4. Finally,
choose four random elements hi ∈ Γ.

Let
τ : Γ[λ]× Γ/λΓ −→ 〈ζ〉
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be the tame Tate pairing. Define remainders αij modulo λ by

τ(gi, hj) = ζαij .

By corollary 4, for any of the elements gi we can choose an element h ∈ Γ, such
that |τ(gi, h)| = λ. Assume that Γ/λΓ = 〈h1, h2, h3, h4〉. Then h =

∑
i qihi, and so

τ(gi, h) = ζαi1q1+αi2q2+αi3q3+αi4q4 .

If αij ≡ 0 (mod `), 1 ≤ j ≤ 4, then |τ(gi, h)| < λ. Hence, if Γ/λΓ = 〈h1, h2, h3, h4〉,
then for all i ∈ {ν, . . . , 4} we can choose a j ∈ {1, . . . , 4}, such that αij 6≡ 0 (mod `).

Enumerate the hi such that α44 6≡ 0 (mod `). Now assume a number j < 4
exists, such that α4j 6≡ 0 (mod λ). Then ζα4j = ζβ1α44 , and replacing hj with
hj − β1h4 gives α4j ≡ 0 (mod λ). So we may assume that

α41 ≡ α42 ≡ α43 ≡ 0 (mod λ) and α44 6≡ 0 (mod `).

Assume similarly that a number j < 4 exists, such that αj4 6≡ 0 (mod λ). Now
set β2 ≡ α−1

44 αj4 (mod λ). Then τ(gj − β2g4, h4) = 1. So we may also assume that

α14 ≡ α24 ≡ α34 ≡ 0 (mod λ).

Repeating this process recursively, we may assume that

αij ≡ 0 (mod λ) and α44 6≡ 0 (mod `).

Again ν ≤ i ≤ 4 and 1 ≤ j ≤ 4.
The discussion above is formalized in the following algorithm.

Algorithm 1. As input we are given a hyperelliptic curve C of genus two defined
over a prime field Fp, the number N = |Γ| of Fp-rational elements of the Jacobian,
and a prime factor ` | gcd(N, p−1). The algorithm outputs elements γi ∈ Γ` of the
Sylow-` subgroup Γ` of Γ, such that 〈γi〉i =

⊕
i〈γi〉 in the following steps.

(1) Compute the order N` of the Sylow-` subgroup of Γ.
(2) Choose elements γi ∈ Γ, i ∈ I := {1, 2, 3, 4}. Set γi := N

N`
γi.

(3) Choose elements hj ∈ Γ, j ∈ J := {1, 2, 3, 4}.
(4) Set K := {1, 2, 3, 4}.
(5) For k′ from 0 to 3 do the following:

(a) Set k := 4− k′.
(b) If γi = 0, then set I := I \ {i}. If |I| = 0, then go to step 2.
(c) Compute the orders λκ := |γκ|, κ ∈ K. Re-enumerate the γκ’s such

that λκ ≤ λκ+1, κ ∈ K. Set I := {5− |I|, 6− |I|, . . . , 4}.
(d) Set ν := min(I), and choose λ0 minimal such that λ := λν

λ0
| p− 1. Set

gκ := λκ

λ γκ, κ ∈ I ∩K.
(i) If gk = 0, then go to step 6.
(ii) If τ(gk, hj)λ/` = 1 for all j ≤ k, then go to step 3.

(e) Choose a primitive λth root of unity ζ ∈ Fp. Compute αkj and ακk

from τ(gk, hj) = ζαkj and τ(gκ, hk) = ζακk , 1 ≤ j < k, κ ∈ I ∩ K.
Re-enumerate h1, . . . , hk such that αkk 6≡ 0 (mod `).

(f) For 1 ≤ j < k, set β ≡ α−1
kk αkj (mod λ) and hj := hj − βhk.

(g) For κ ∈ I ∩K \ {k}, set β ≡ α−1
kk ακk (mod λ) and γκ := γκ − β λk

λκ
γk.

(h) Set K := K \ {k}.
(6) Output γ1, γ2, γ3 and γ4.
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Remark 6. Algorithm 1 consists of a small number of
(1) calculations of orders of elements γ ∈ Γ`,
(2) multiplications of elements γ ∈ Γ with numbers a ∈ Z,
(3) additions of elements γ1, γ2 ∈ Γ,
(4) evaluations of pairings of elements γ1, γ2 ∈ Γ and
(5) solving the discrete logarithm problem in Fp, i.e. to determine α from ζ

and ξ = ζα.
By (Miller, 2004, proposition 9), the order |γ| of an element γ ∈ Γ` can be calculated
in timeO(log3N`)AΓ, where AΓ is the time for adding two elements of Γ. A multiple
aγ or a sum γ1 + γ2 is computed in time O(AΓ). By Frey and Rück (1994), the
pairing τ(γ1, γ2) of two elements γ1, γ2 ∈ Γ can be evaluated in time O(logN`).
Finally, by Pohlig and Hellmann (1978) the discrete logarithm problem in Fp can
be solved in time O(log p). We may assume that addition in Γ is easy, i.e. that
AΓ < O(log p). Hence algorithm 1 runs in expected time O(log p).

Careful examination of algorithm 1 gives the following lemma.

Lemma 7. Let Γ` be the Sylow-` subgroup of Γ, ` | p− 1. Algorithm 1 determines
elements γi ∈ Γ` and hi ∈ Γ, 1 ≤ i ≤ 4, such that one of the following cases holds.

(1) α11α22α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod λ), i 6= j, i, j ∈ {1, 2, 3, 4}.
(2) γ1 = 0, α22α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod λ), i 6= j, i, j ∈ {2, 3, 4}.
(3) γ1 = γ2 = 0, α33α44 6≡ 0 (mod `) and αij ≡ 0 (mod λ), i 6= j, i, j ∈ {3, 4}.
(4) γ1 = γ2 = γ3 = 0.

If |γi| = λi, then λi ≤ λi+1. Set ν = min{i|λi 6= 1}, and define λ0 as the least
number, such that λ = λν

λ0
| p− 1. Set gi = λi

λ γi, ν ≤ i ≤ 4. Then the numbers αij

above are determined by
τ(gi, hj) = ζαij ,

where τ is the tame Tate pairing Γ[λ]× Γ/λΓ → µλ = 〈ζ〉.
Theorem 8. Algorithm 1 determines elements γ1, γ2, γ3 and γ4 of the Sylow-`
subgroup of Γ, ` | p− 1, such that 〈γi〉i =

⊕
i〈γi〉.

Proof. Choose elements γi, hi ∈ Γ such that the conditions of lemma 7 are fulfilled.
Set λi = |γi|, and let ν = min{i|λi 6= 1}. Define λ0 as the least number, such that
λ = λν

λ0
| p− 1. Set gi = λi

λ γi. Then the αij ’s from lemma 7 are determined by

τ(gi, hj) = ζαij .

We only consider case 1 of lemma 7, since the other cases follow similarly. We start
by determining 〈γ3〉 ∩ 〈γ4〉. Assume that g3 = ag4. Then

1 = τ(g3, h4) = τ(ag4, h4) = ζaα44 ,

i.e. a ≡ 0 (mod λ). Hence 〈γ3〉 ∩ 〈γ4〉 = {0}. Then we determine 〈γ2〉 ∩ 〈γ3, γ4〉.
Assume g2 = ag3 + bg4. Then

1 = τ(g2, h3) = τ(ag3, h3) = ζaα33 ,

i.e. a ≡ 0 (mod λ). In the same way,

1 = τ(g2, h4) = ζbα44 ,

i.e. b ≡ 0 (mod λ). Hence 〈γ2〉 ∩ 〈γ3, γ4〉 = {0}. Similarly 〈γ1〉 ∩ 〈γ2, γ3, γ4〉 = {0}.
Hence 〈γi〉i =

⊕
i〈γi〉. �
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From theorem 8 we get the following probabilistic algorithm to determine gene-
rators of the m-torsion subgroup Γ[m] < Γ, where m | |Γ| is the largest divisor of
|Γ| such that ` | p− 1 for every prime number ` | m.

Algorithm 2. As input we are given a hyperelliptic curve C of genus two defined
over a prime field Fp, the number N = |Γ| of Fp-rational elements of the Jacobian,
and the prime factors p1, . . . , pn of gcd(N, p− 1). The algorithm outputs elements
γi ∈ Γ[m] such that Γ[m] =

⊕
i〈γi〉 in the following steps.

(1) Set γi := 0, 1 ≤ i ≤ 4. For ` ∈ {p1, . . . , pn} do the following:
(a) Use algorithm 1 to determine elements γ̃i ∈ Γ`, 1 ≤ i ≤ 4, such that

〈γ̃i〉i =
⊕

i〈γ̃i〉.
(b) If

∏
i |γ̃i| < |Γ`|, then go to step 1a.

(c) Set γi := γi + γ̃i, 1 ≤ i ≤ 4.
(2) Output γ1, γ2, γ3 and γ4.

Remark 9. By remark 6, algorithm 2 has expected running time O(log p). Hence
algorithm 2 is an efficient, probabilistic algorithm to determine generators of the
m-torsion subgroup Γ[m] < Γ, where m | |Γ| is the largest divisor of |Γ| such that
` | p− 1 for every prime number ` | m.

Remark 10. The strategy of algorithm 1 can be applied to any finite, abelian group
Γ with bilinear, non-degenerate pairings into cyclic groups. For the strategy to be
efficient, the pairings must be efficiently computable, and the discrete logarithm
problem in the cyclic groups must be easy.
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Appendix B

p-torsion of genus two curves
over prime fields of
characteristic p

This appendix contains the preprint (Ravnshøj, 2007c).
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p-TORSION OF GENUS TWO CURVES OVER PRIME FIELDSOF CHARACTERISTIC pCHRISTIAN ROBENHAGEN RAVNSHØJAbstra
t. Consider the Ja
obian of a hyperellipti
 genus two 
urve de�nedover a prime �eld of 
hara
teristi
 p and with 
omplex multipli
ation. In thispaper we show that the p-Sylow subgroup of the Ja
obian is either trivial orof order p. 1. Introdu
tionIn ellipti
 
urve 
ryptography it is essential to know the number of points onthe 
urve. Cryptographi
ally we are interested in ellipti
 
urves with large 
y
li
subgroups. Su
h ellipti
 
urves 
an be 
onstru
ted. The 
onstru
tion is based onthe theory of 
omplex multipli
ation, studied in detail by Atkin and Morain (1993).It is referred to as the CM method.Koblitz (1989) suggested the use of hyperellipti
 
urves to provide larger grouporders. Therefore 
onstru
tions of hyperellipti
 
urves are interesting. The CMmethod for ellipti
 
urves has been generalized to hyperellipti
 
urves of genus twoby Spallek (1994), and e�
ient algorithms have been proposed by Weng (2003) andGaudry et al (2005).Both algorithms take as input a primitive, quarti
 CM �eld K (see se
tion 3 forthe de�nition of a CM �eld), and give as output a hyperellipti
 genus two 
urve Cde�ned over a prime �eld Fp. A prime number p is 
hosen su
h that p = xx for anumber x ∈ OK , where OK is the ring of integers of K. We have K = Q(η) and
K ∩R = Q(

√
D), where η = i

√
a+ bξ and

ξ =

{
1+
√

D
2 , if D ≡ 1 mod 4,√
D, if D ≡ 2, 3 mod 4.In this paper, the following theorem is established.Theorem 1. Let C be a hyperellipti
 
urve of genus two de�ned over a prime�eld Fp. Assume that End(C) ≃ OK , where K is a primitive, quarti
 CM �eld asde�ned in de�nition 5, and that the p-power Frobenius under this isomorphism isgiven by a number in OK0 + ηOK0 , where η is given as above. Then the p-Sylowsubgroup of JC(Fp) is either trivial or of order p.2. Hyperellipti
 
urvesA hyperellipti
 
urve is a smooth, proje
tive 
urve C ⊆ Pn of genus at leasttwo with a separable, degree two morphism φ : C → P1. Let C be a hyperellipti
2000 Mathemati
s Subje
t Classi�
ation. Primary 14H40; Se
ondary 11G15, 14Q05, 94A60.Key words and phrases. Ja
obians, hyperellipti
 
urves, 
omplex multipli
ation, 
ryptography.Resear
h supported in part by a PhD grant from CRYPTOMAThIC.1
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urve of genus two de�ned over a prime �eld Fp of 
hara
teristi
 p > 2. By theRiemann-Ro
h theorem there exists an embedding ψ : C → P2, mapping C to a
urve given by an equation of the form
y2 = f(x),where f ∈ Fp[x] is of degree six and have no multiple roots (see Cassels and Flynn,1996, 
hapter 1).The set of prin
ipal divisors P(C) on C 
onstitutes a subgroup of the degree 0divisors Div0(C). The Ja
obian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).Sin
e C is de�ned over Fp, the mapping (x, y) 7→ (xp, yp) is a morphism on C. Thismorphism indu
es the p-power Frobenius endomorphism ϕ on the Ja
obian JC .The 
hara
teristi
 polynomial P (X) of ϕ is of degree four (Tate, 1966, Theorem 2,p. 140), and by the de�nition of P (X) (see Lang, 1959, pp. 109�110),
|JC(Fp)| = P (1),i.e. the number of Fp-rational points on the Ja
obian is determined by P (X).3. CM fieldsAn ellipti
 
urve E with Z 6= End(E) is said to have 
omplex multipli
ation. Let

K be an imaginary, quadrati
 number �eld with ring of integers OK . K is a CM�eld, and if End(E) ≃ OK , then E is said to have CM by OK . More generally aCM �eld is de�ned as follows.De�nition 2 (CM �eld). A number �eldK is a CM �eld, ifK is a totally imaginary,quadrati
 extension of a totally real number �eld K0.In this paper only CM �elds of degree [K : Q] = 4 are 
onsidered. Su
h a �eldis 
alled a quarti
 CM �eld.Remark 3. Consider a quarti
 CM �eld K. Let K0 = K ∩ R be the real sub�eldof K. Then K0 is a real, quadrati
 number �eld, K0 = Q(
√
D). By a basi
 resulton quadrati
 number �elds, the ring of integers of K0 is given by OK0 = Z + ξZ,where

ξ =

{
1+
√

D
2 , if D ≡ 1 mod 4,√
D, if D ≡ 2, 3 mod 4.Sin
e K is a totally imaginary, quadrati
 extension of K0, a number η ∈ K exists,su
h that K = K0(η), η2 ∈ K0. The number η is totally imaginary, and we mayassume that η = iη0, η0 ∈ R. Furthermore we may assume that η2 ∈ OK0 ; so

η = i
√
a+ bξ, where a, b ∈ Z.Let C be a hyperellipti
 
urve of genus two. Then C is said to have CM by OK ,if End(C) ≃ OK . The stru
ture of K determines whether C is irredu
ible. Morepre
isely, the following theorem holds.Theorem 4. Let C be a hyperellipti
 
urve of genus two with End(C) ≃ OK, where

K is a quarti
 CM �eld. Then C is redu
ible if, and only if, K/Q is Galois withGalois group Gal(K/Q) ≃ Z/2Z× Z/2Z.Proof. (Shimura, 1998, Proposition 26, p. 61). �



p-TORSION OF GENUS TWO CURVES OVER Fp 3Theorem 4 motivates the following de�nition.De�nition 5 (Primitive, quarti
 CM �eld). A quarti
 CM �eld K is 
alled primi-tive if either K/Q is not Galois, or K/Q is Galois with 
y
li
 Galois group.The CM method for 
onstru
ting 
urves of genus two with pres
ribed endomor-phism ring is des
ribed in detail by Weng (2003) and Gaudry et al (2005). In short,the CM method is based on the 
onstru
tion of the 
lass polynomials of a primitive,quarti
 CM �eld K with real sub�eld K0 of 
lass number h(K0) = 1. The primenumber p has to be 
hosen su
h that p = xx for a number x ∈ OK . By Weng(2003) we may assume that x ∈ OK0 + ηOK0 .4. The p-Sylow subgroup of JC(Fp)Let K be a primitive, quarti
 CM �eld with real sub�eld K0 = Q(
√
D) of 
lassnumber h(K0) = 1. Cf. Remark 3 we may write K = Q(η), where η = i
√
a+ bξand

ξ =

{
1+
√

D
2 , if D ≡ 1 mod 4,√
D, if D ≡ 2, 3 mod 4.Let p be a prime number su
h that p = xx for a number x ∈ OK0 + ηOK0 . Let Cbe a hyperellipti
 
urve of genus two de�ned over Fp with End(C) ≃ OK . Assumethat the p-power Frobenius under this isomorphism is given by the number(1) ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z.Sin
e the p-power Frobenius is of degree p, we know that ωω = p.Remark 6. If c2 = 0 in (1), then Gal(K/Q) ≃ Z/2Z×Z/2Z, and K is not primitive.So c2 6= 0.The 
hara
teristi
 polynomial P (X) of the Frobenius is given by
P (X) =

4∏

i=1

(X − ωi),where ωi are the 
onjugates of ω. Sin
e the 
onjugates of ω are given by ω1 = ω,
ω2 = ω1, ω3 and ω4 = ω3, where ω3 = c1 + c2ξ

′ + (c3 + c4ξ
′)η′, η′ = i

√
a+ bξ′ and

ξ′ =

{
−
√
D, if D ≡ 2, 3 mod 4

1−
√

D
2 , if D ≡ 2, 3 mod 4it follows that

P (X) = X4 − 4c1X3 + (2p+ 4(c21 − c22D))X2 − 4c1pX + p2,if D ≡ 2, 3 mod 4, and
P (X) = X4 − 2cX3 + (2p+ c2 − c22D)X2 − 2cpX + p2,if D ≡ 1 mod 4. Here, c = 2c1 + c2. We noti
e that 4 | P (1) = |JC(Fp)|. Thisobservation leads to the following lemma.Lemma 7. Let C be a hyperellipti
 
urve of genus two de�ned over a prime �eld Fpof 
hara
teristi
 p > 5. Assume that End(C) ≃ OK and that the p-power Frobeniusunder this isomorphism is given by a number in OK0 + ηOK0 , where η is given asin remark 3. Then the p-Sylow subgroup of JC(Fp) is either trivial or of order p.



4 C.R. RAVNSHØJProof. Assume p2 | N = |JC(Fp)|. Sin
e |ωi| = √
p, we know that

N = P (1) =
4∏

i=1

(1− ωi) ≤ (1 +
√
p)4 = p2 + 4p

√
p+ 6p+ 4

√
p+ 1.Hen
e, N

p2 < 4 for p > 5. But then 4 ∤ N , a 
ontradi
tion. So p2 ∤ N , i.e. the
p-Sylow subgroup of JC(Fp) is of order at most p. �Now 
onsider the 
ase p ≤ 5. Assume at �rst that D ≡ 2, 3 mod 4. Sin
e
ω1ω1 = ω2ω2 = p, we know that |c1 ± c2

√
D| ≤ √

p. Thus,
|c2
√
D| = 1

2

∣∣∣c1 + c2
√
D −

(
c1 − c2

√
D

)∣∣∣

≤ 1
2

(∣∣∣c1 + c2
√
D

∣∣∣ +
∣∣∣c1 − c2

√
D

∣∣∣
)

≤ √
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Non-cyclic subgroups of
Jacobians of genus two curves

This appendix contains the preprint (Ravnshøj, 2008b).
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NON-CYCLIC SUBGROUPS OF JACOBIANS OF

GENUS TWO CURVES

CHRISTIAN ROBENHAGEN RAVNSHØJ

Abstract. Let E be an elliptic curve de�ned over a �nite �eld. Balasubrama-
nian and Koblitz have proved that if the `th roots of unity µ` is not contained
in the ground �eld, then a �eld extension of the ground �eld contains µ` if
and only if the `-torsion points of E are rational over the same �eld extension.
We generalize this result to Jacobians of genus two curves. In particular, we
show that the Weil- and the Tate-pairing are non-degenerate over the same

�eld extension of the ground �eld.
From this generalization we get a complete description of the `-torsion

subgroups of Jacobians of supersingular genus two curves. In particular, we
show that for ` > 3, the `-torsion points are rational over a �eld extension of
degree at most 24.

1. Introduction

In [10], Koblitz described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of curves, and possibly larger group
orders, Koblitz [11] then proposed using Jacobians of hyperelliptic curves. After
Boneh and Franklin [2] proposed an identity based cryptosystem by using the Weil-
pairing on an elliptic curve, pairings have been of great interest to cryptography [6].
The next natural step was to consider pairings on Jacobians of hyperelliptic curves.
Galbraith et al [7] survey the recent research on pairings on Jacobians of hyperel-
liptic curves.

The pairing in question is usually the Weil- or the Tate-pairing; both pairings
can be computed with Miller's algorithm [14]. The Tate-pairing can be computed
more e�ciently than the Weil-pairing, cf. [5]. Let C be a smooth curve de�ned over
a �nite �eld Fq, and let JC be the Jacobian of C. Let ` be a prime number dividing
the number of Fq-rational points on the Jacobian, and let k be the multiplicative
order of q modulo `. By [8], the Tate-pairing is non-degenerate on JC(Fqk)[`]. By
[20, Proposition 8.1, p. 96], the Weil-pairing is non-degenerate on JC [`]. So if JC [`]
is not contained in JC(Fqk), then the Tate pairing is non-degenerate over a possible
smaller �eld extension than the Weil-pairing. For elliptic curves, in most cases
relevant to cryptography, the Weil-pairing and the Tate-pairing are non-degenerate
over the same �eld: let E be an elliptic curve de�ned over Fp, and consider a prime
number ` dividing the number of Fp-rational points on E. Balasubramanian and
Koblitz [1] proved that

(1) if ` - p− 1, then E[`] ⊆ E(Fpk) if and only if ` | pk − 1.

2000 Mathematics Subject Classi�cation. 11G20 (Primary) 11T71, 14G50, 14H45 (Secondary).
Key words and phrases. Jacobians, hyperelliptic genus two curves, pairings, embedding degree,

supersingular curves.
Research supported in part by a PhD grant from CRYPTOMAThIC.
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By Rubin and Silverberg [19], this result also holds for Jacobians of genus two
curves in the following sense: if ` - p − 1, then the Weil-pairing is non-degenerate
on U × V , where U = JC(Fp)[`], V = ker(ϕ − p) ∩ JC [`] and ϕ is the p-power
Frobenius endomorphism on JC .

The result (1) can also be stated as: if ` - p− 1, then E(Fpk)[`] is bicyclic if and

only if ` | pk−1. In [17], the author generalized this result to certain CM reductions
of Jacobians of genus two curves. In this paper, we show that in most cases, this
result in fact holds for Jacobians of any genus two curves. More precisely, the
following theorem is established.

Theorem 6. Consider a genus two curve C de�ned over a �nite �eld Fq. Write
the characteristic polynomial of the qm-power Frobenius endomorphism of the Jaco-
bian JC as

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

where 2σ, 4τ ∈ Z. Let ` be an odd prime number dividing the number of Fq-rational
points on JC , and with ` - q and ` - q − 1. If ` - 4τ , then

(1) JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and
(2) JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

If ` is a large prime number, then most likely ` - 4τ , and Theorem 6 applies. In
the special case ` | 4τ we get the following result.

Theorem 7. Let notation be as in Theorem 6. Furthermore, let ωm be a qm-Weil
number of JC (cf. de�nition 4), and assume that ` is unrami�ed in K = Q(ωm).
Now assume that ` | 4τ . Then the following holds.

(1) If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] ' (Z/`Z)2 and JC [`] ⊆ JC(Fqmk) if

and only if ` | qmk − 1.

By Theorem 6 and 7 we get the following corollary.

Corollary 10. Consider a genus two curve C de�ned over a �nite �eld Fq. Let ` be
an odd prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Let q be of multiplicative order k modulo `. If ` - q − 1, then the
Weil-pairing is non-degenerate on JC(Fqk)[`]× JC(Fqk)[`].

For the 2-torsion part, we prove the following theorem.

Theorem 11. Consider a genus two curve C de�ned over a �nite �eld Fq of odd
characteristic. Let

Pm(X) = X4 + sX3 + tX2 + sqmX + q2m

be the characteristic polynomial of the qm-power Frobenius endomorphism of the
Jacobian JC . Assume |JC(Fqm)| is even. Then

JC [2] ⊆
{

JC(Fq4m), if s is even;

JC(Fq6m), if s is odd.

Now consider a supersingular genus two curve C de�ned over Fq; cf. section 6.
Again, let ` be a prime number dividing the number of Fq-rational points on the
Jacobian and let k be the multiplicative order of q modulo `. We know that k ≤ 12,
cf. Galbraith [5] and Rubin and Silverberg [18]. If `2 - |JC(Fq)|, then in many
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cases JC [`] ⊆ JC(Fqk), cf. Stichtenoth [21]. Zhu [23] gives a complete description
of the subgroup of Fq-rational points on the Jacobian. Using Theorem 6 we get
the following explicit description of the `-torsion subgroup of the Jacobian of a
supersingular genus two curve.

Theorem 14. Consider a supersingular genus two curve C de�ned over Fq. Let `
be a prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Depending on the cases in table 1 we get the following properties
of JC .

Case i: −q2 ≡ q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). If ` 6= 2, then JC(Fq)[`]
is cyclic.

Case ii: q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq6) and JC(Fq) is cyclic. If ` 6= 3,
then q 6≡ 1 (mod `).

Case iii: −q3 ≡ q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` 6= 3, then JC(Fq)[`]
is cyclic.

Case iv: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case v: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case vi: −q6 ≡ q12 ≡ 1 (mod `), JC [`] ⊆ JC(Fq24) and JC(Fq) is cyclic.
Case vii: q ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`] is

bicyclic.
Case viii: −q ≡ q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`]

is bicyclic.
Case ix: If ` 6= 3, then q 6≡ q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq3) and JC(Fq)[`]

is bicyclic.

In particular, it follows from Theorem 14 that if ` > 3, then the `-torsion points
on the Jacobian JC of a supersingular genus two curve de�ned over Fq are rational
over a �eld extension of Fq of degree at most 24, and JC(Fq)[`] is of rank at most
two as a Z/`Z-module.

Assumption. In this paper, a curve is an irreducible nonsingular projective variety
of dimension one.

2. Genus two curves

A hyperelliptic curve is a projective curve C ⊆ Pn of genus at least two with a
separable, degree two morphism φ : C → P1. It is well known, that any genus two
curve is hyperelliptic. Throughout this paper, let C be a curve of genus two de�ned
over a �nite �eld Fq of characteristic p. By the Riemann-Roch Theorem there exists
a birational map ψ : C → P2, mapping C to a curve given by an equation of the
form

y2 + g(x)y = h(x),

where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; cf. [3, chapter 1].
The set of principal divisors P(C) on C constitutes a subgroup of the degree zero

divisors Div0(C). The Jacobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).
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Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] ⊆ JC of points of
order dividing `n is a Z/`nZ-module of rank four, i.e.

JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ;

cf. [12, Theorem 6, p. 109].
The multiplicative order k of q modulo ` plays an important role in cryptography,

since the (reduced) Tate-pairing is non-degenerate over Fqk ; cf. [8].

De�nition 1 (Embedding degree). Consider a prime number ` 6= p dividing the
number of Fq-rational points on the Jacobian JC . The embedding degree of JC(Fq)
with respect to ` is the least number k, such that qk ≡ 1 (mod `).

Closely related to the embedding degree, we have the full embedding degree.

De�nition 2 (Full embedding degree). Consider a prime number ` 6= p dividing
the number of Fq-rational points on the Jacobian JC . The full embedding degree
of JC(Fq) with respect to ` is the least number κ, such that JC [`] ⊆ JC(Fqκ ).

Remark 3. If JC [`] ⊆ JC(Fqκ ), then ` | qκ−1; cf. [4, Corollary 5.77, p. 111]. Hence,
the full embedding degree is a multiple of the embedding degree.

A priori, the Weil-pairing is only non-degenerate over Fqκ . But in fact, as we
shall see, the Weil-pairing is also non-degenerate over Fqk .

3. The Weil- and the Tate-pairing

Let F be an algebraic extension of Fq. Let x ∈ JC(F)[`] and y =
∑

i aiPi ∈ JC(F)
be divisors with disjoint supports, and let ȳ ∈ JC(F)/`JC(F) denote the divisor class
containing the divisor y. Furthermore, let fx ∈ F(C) be a rational function on C
with divisor div(fx) = `x. Set fx(y) =

∏
i f(Pi)ai . Then e`(x, ȳ) = fx(y) is a

well-de�ned pairing

e` : JC(F)[`]× JC(F)/`JC(F) −→ F×/(F×)`,

it is called the Tate-pairing ; cf. [6]. Raising the result to the power |F
×|
` gives a

well-de�ned element in the subgroup µ` ⊆ F̄ of the `th roots of unity. This pairing

ê` : JC(F)[`]× JC(F)/`JC(F) −→ µ`

is called the reduced Tate-pairing. If the �eld F is �nite and contains the `th roots
of unity, then the Tate-pairing is bilinear and non-degenerate; cf. [8].

Now let x, y ∈ JC [`] be divisors with disjoint support. The Weil-pairing

e` : JC [`]× JC [`]→ µ`

is then de�ned by e`(x, y) = ê`(x,ȳ)
ê`(y,x̄) . The Weil-pairing is bilinear, anti-symmetric

and non-degenerate on JC [`]× JC [`]; cf. [15].

4. Matrix representation of the endomorphism ring

An endomorphism ψ : JC → JC induces a linear map ψ̄ : JC [`] → JC [`] by
restriction. Hence, ψ is represented by a matrix M ∈ Mat4(Z/`Z) on JC [`]. Let
f ∈ Z[X] be the characteristic polynomial of ψ (see [12, pp. 109�110]), and let
f̄ ∈ (Z/`Z)[X] be the characteristic polynomial of ψ̄. Then f is a monic polynomial
of degree four, and by [12, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod `).
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Since C is de�ned over Fq, the mapping (x, y) 7→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jacobian JC .
Let P (X) be the characteristic polynomial of ϕ. P (X) is called the Weil polynomial
of JC , and

|JC(Fq)| = P (1)
by the de�nition of P (X) (see [12, pp. 109�110]); i.e. the number of Fq-rational
points on the Jacobian is P (1).

De�nition 4 (Weil number). Let notation be as above. Let Pm(X) be the charac-
teristic polynomial of the qm-power Frobenius endomorphism ϕm on JC . Consider
a number ωm ∈ C with Pm(ωm) = 0. If Pm(X) is reducible, assume furthermore
that ωm and ϕm are roots of the same irreducible factor of Pm(X). We identify ϕm

with ωm, and we call ωm a qm-Weil number of JC .

Remark 5. A qm-Weil number is not necessarily uniquely determined. In general,
Pm(X) is irreducible, in which case JC has four qm-Weil numbers.

Assume Pm(X) is reducible. Write Pm(X) = f(X)g(X), where f, g ∈ Z[X] are
of degree at least one. Since Pm(ϕm) = 0, either f(ϕm) = 0 or g(ϕm) = 0; if not,
then either f(ϕm) or g(ϕm) has in�nite kernel, i.e. is not an endomorphism of JC .
So a qm-Weil number is well-de�ned.

5. Non-cyclic torsion

Consider a genus two curve C de�ned over a �nite �eld Fq. Let Pm(X) be
the characteristic polynomial of the qm-power Frobenius endomorphism ϕm of the
Jacobian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m,
where s, t ∈ Z. Let σ = s

2 and τ = 2qm + σ2 − t. Then
Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

and 2σ, 4τ ∈ Z.
Theorem 6. Consider a genus two curve C de�ned over a �nite �eld Fq. Write
the characteristic polynomial of the qm-power Frobenius endomorphism of the Jaco-
bian JC as

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

where 2σ, 4τ ∈ Z. Let ` be an odd prime number dividing the number of Fq-rational
points on JC , and with ` - q and ` - q − 1. If ` - 4τ , then

(1) JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and
(2) JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

Proof. Let P̄m ∈ (Z/`Z)[X] be the characteristic polynomial of the restriction of
ϕm to JC [`]. Since ` divides |JC(Fq)|, 1 is a root of P̄m. Assume that 1 is a root of
P̄m of multiplicity ν. Since the roots of P̄m occur in pairs (α, qm/α), also qm is a
root of P̄m of multiplicity ν.

If JC(Fqm)[`] is of rank three as a Z/`Z-module, then ` divides qm − 1 by [4,
Proposition 5.78, p. 111]. Choose a basis B of JC [`]. With respect to B, ϕm is
represented by a matrix of the form

M =




1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4


 .
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Now, m4 = detM ≡ degϕm = q2m ≡ 1 (mod `). Hence, P̄m(X) = (X − 1)4. By
comparison of coe�cients it follows that 4τ ≡ 0 (mod `), and we have a contradic-
tion. So JC(Fqm)[`] is of rank at most two as a Z/`Z-module.

Now assume that JC(Fqm)[`] is bicyclic. If qm 6≡ 1 (mod `), then 1 is a root of
P̄m of multiplicity two, i.e. P̄m(X) = (X − 1)2(X − qm)2. But then it follows by
comparison of coe�cients that 4τ ≡ 0 (mod `), and we have a contradiction. So
qm ≡ 1 (mod `), i.e. ` divides qm− 1. On the other hand, if ` divides qm− 1, then
the Tate-pairing is non-degenerate on JC(Fqm)[`], i.e. JC(Fqm)[`] must be of rank
at least two as a Z/`Z-module. So JC(Fqm)[`] is bicyclic. �

If ` is a large prime number, then most likely ` - 4τ , and Theorem 6 applies. In
the special case ` | 4τ we get the following result.

Theorem 7. Let notation be as in Theorem 6. Furthermore, let ωm be a qm-
Weil number of JC , and assume that ` is unrami�ed in K = Q(ωm). Now assume
that ` | 4τ . Then the following holds.

(1) If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] ' (Z/`Z)2 and JC [`] ⊆ JC(Fqmk) if

and only if ` | qmk − 1.

Remark 8. A prime number ` is unrami�ed in K if and only if ` divides the dis-
criminant of the �eld extension K/Q; see e.g. [16, Theorem 2.6, p. 199]. Hence,
almost any prime number ` is unrami�ed in K. In particular, if ` is large, then ` is
unrami�ed in K.

The special case of Theorem 7 does occur; cf. the following example 9.

Example 9. Consider the polynomial P (X) = (X2+X+3)2 ∈ Q[X]. By [13] and [9]
it follows that P (X) is the Weil polynomial of the Jacobian of a genus two curve C
de�ned over F3. The number of F3-rational points on the Jacobian is P (1) = 25,
so ` = 5 is an odd prime divisor of |JC(F3)| not dividing q = p = 3. Notice that
P (X) ≡ X4 + 2σX3 + (2p+ σ2)X2 + 2σpX + p (mod `) with σ = 1. The complex

roots of P (X) are given by ω = −1+
√−11
2 and ω̄, and ` is unrami�ed in K = Q(ω).

Since 3 is a generator of (Z/5Z)×, it follows by Theorem 7 that JC(F3) ' (Z/`Z)2

and JC [`] ⊆ JC(F81).

By Theorem 6 and 7 we get the following corollary.

Corollary 10. Consider a genus two curve C de�ned over a �nite �eld Fq. Let ` be
an odd prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Let q be of multiplicative order k modulo `. If ` - q − 1, then the
Weil-pairing is non-degenerate on JC(Fqk)[`]× JC(Fqk)[`].

Proof. Let

Pk(X) = X4 + 2σX3 + (2qk + σ2 − τ)X2 + 2σqkX + q2k

be the characteristic polynomial of the qk-power endomorphism on the Jacobian JC .
If ` | 4τ , then JC [`] = JC(Fqk)[`] by Theorem 7, and the corollary follows.

Assume ` - 4τ . Let U = JC(Fq)[`] and V = ker(ϕ− q) ∩ JC [`], where ϕ is the q-
power Frobenius endomorphism on JC . Then the Weil-pairing eW is non-degenerate
on U × V by [19]. By Theorem 6, we know that V = JC(Fqk)[`] \ JC(Fq)[`] and
that

JC(Fqk)[`] ' U ⊕ V ' Z/`Z× Z/`Z.
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Now let x ∈ JC(Fqk)[`] be an arbitrary Fqk -rational point of order `. Write x = xU +
xV , where xU ∈ U and xV ∈ V . Choose y ∈ V and z ∈ U , such that eW (xU , y) 6= 1
and eW (xV , z) 6= 1. We may assume that eW (xU , y)eW (xV , z) 6= 1; if not, replace
z with 2z. Since the Weil-pairing is anti-symmetric, eW (xU , z) = eW (xV , y) = 1.
Hence,

eW (x, y + z) = eW (xU , y)eW (xV , z) 6= 1.

�

Proof of Theorem 7. We see that

Pm(X) ≡ (X2 + σX + qm)2 (mod `);

since Pm(1) ≡ 0 (mod `), it follows that

Pm(X) ≡ (X − 1)2(X − qm)2 (mod `).

Assume at �rst that Pm(X) is irreducible in Q[X]. Let OK denote the ring of
integers of K. By [16, Proposition 8.3, p. 47], it follows that `OK = L2

1L
2
2, where

L1 = (`, ωm − 1)OK and L2 = (`, ωm − q)OK . In particular, ` rami�es in K, and
we have a contradiction. So Pm(X) is reducible in Q[X].

Let f ∈ Z[X] be the minimal polynomial of ωm. If deg f = 3, then it follows as
above that ` rami�es in K. So deg f < 3. Assume that deg f = 1, i.e. that ωm ∈ Z.
Since ω2

m = qm, we know that ωm = ±qm/2. So f(X) = X ∓ qm/2. Since f(X)
divides P (X) in Z[X], either f(X) ≡ X − 1 (mod `) or f(X) ≡ X − qm (mod `).
It follows that qm ≡ 1 (mod `). Thus, ωm ≡ ±1 (mod `). If ωm ≡ −1 (mod `),
then ϕm does not �x JC(Fqm)[`]. This is a contradiction. Hence, ωm ≡ 1 (mod `).
But then ϕm is the identity on JC [`]. Thus, if ωm ∈ Z, then JC [`] ⊆ JC(Fqm).

Assume ωm /∈ Z. Then deg f = 2. Since f(X) divides P (X) in Z[X], it follows
that

f(X) ≡ (X − 1)(X − qm) (mod `);

to see this, we merely notice that if f(X) is equivalent to the square of a polynomial
modulo `, then ` rami�es in K. Notice also that if qm ≡ 1 (mod `), then ` rami�es
in K. So qm 6≡ 1 (mod `).

Now let U = ker(ϕm − 1)2 ∩ JC [`] and V = ker(ϕm − qm)2 ∩ JC [`]. Then U and
V are ϕm-invariant submodules of the Z/`Z-module JC [`] of rank two, and JC [`] '
U ⊕ V . Now choose x1 ∈ U , such that ϕm(x1) = x1, and expand this to a basis
(x1, x2) of U . Similarly, choose a basis (x3, x4) of V with ϕm(x3) = qx3. With
respect to the basis (x1, x2, x3, x4), ϕm is represented by a matrix of the form

M =




1 α 0 0
0 1 0 0
0 0 qm β
0 0 0 qm


 .

Let qm be of multiplicative order k modulo `. Notice that

Mk =




1 kα 0 0
0 1 0 0
0 0 1 kqm(k−1)β
0 0 0 1


 .
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Hence, the restriction of ϕk
m to JC [`] has the characteristic polynomial (X − 1)4.

Let Pmk(X) be the characteristic polynomial of the qmk-power Frobenius endo-
morphism ϕmk = ϕk

m of the Jacobian JC . Then

Pmk(X) ≡ (X − 1)4 (mod `).

Since ωm is a qm-Weil number of JC , we know that ωk
m is a qmk-Weil number of JC .

Assume ωk
m /∈ Q. Then K = Q(ωk

m). Let h ∈ Z[X] be the minimal polynomial
of ωk

m. Then it follows that h(X) ≡ (X − 1)2 (mod `), and ` rami�es in K. So
ωk

m ∈ Q, i.e. h is of degree one. But then h(X) ≡ X − 1 (mod `), i.e. ωk
m ≡ 1

(mod `). So ϕk
m is the identity map on JC [`]. Hence, Mk = I, i.e. α ≡ β ≡ 0

(mod `). Thus, ϕm is represented by a diagonal matrix diag(1, 1, qm, qm) with
respect to (x1, x2, x3, x4). The theorem follows. �

For the 2-torsion part, we get the following theorem.

Theorem 11. Consider a genus two curve C de�ned over a �nite �eld Fq of odd
characteristic. Let Pm(X) = X4 + sX3 + tX2 + sqmX + q2m be the characteristic
polynomial of the qm-power Frobenius endomorphism of the Jacobian JC . Assume
|JC(Fqm)| is even. Then

JC [2] ⊆
{

JC(Fq4m), if s is even;

JC(Fq6m), if s is odd.

Proof. Since q is odd,

Pm(X) ≡ X4 + sX3 + tX2 + sX + 1 (mod 2).

Assume at �rst that s is even. Since Pm(1) is even, it follows that t is even; but
then

Pm(X) ≡ (X − 1)4 ≡ X4 − 1 (mod 2).

Hence, JC [2] ⊆ JC(Fq4m) in this case.
Now assume that s is odd. Again t must be even; but then

Pm(X) ≡ (X2 − 1)(X2 +X + 1) (mod 2).

Since f(X) = X2 +X + 1 has the complex roots ξ = − 1
2 (1± i

√
3), and ξ3 = 1, it

follows that JC [2] ⊆ JC(Fq6m) in this case. �

6. Supersingular curves

Consider a genus two curve C de�ned over a �nite �eld Fq of characteristic
p. C is called supersingular, if JC has no p-torsion. From [13] we have the following
theorem.

Theorem 12. Consider a polynomial f ∈ Z[X] of the form

f(X) = fs,t(X) = X4 + sX3 + tX2 + sqX + q2,

where q = pa. If f is the Weil polynomial of the Jacobian of a supersingular genus
two curve de�ned over the �nite �eld Fq, then (s, t) belongs to table 1.

Remark 13. By [9], in each of the cases in table 1 we can �nd a q such that fs,t(X)
is the Weil polynomial of the Jacobian of a supersingular genus two curve de�ned
over Fq.
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Table 1. Conditions for f = X4 + sX3 + tX2 + sqX + q2 to be
the Weil polynomial of the Jacobian of a supersingular genus two
curve de�ned over Fq, where q = pa.

Case (s, t) Condition

i (0, 0) a odd, p 6= 2, or a even, p 6≡ 1 (mod 8).
ii (0, q) a odd.
iii (0,−q) a odd, p 6= 3, or a even, p 6≡ 1 (mod 12).
iv (±√q, q) a even, p 6≡ 1 (mod 5).
v (±√5q, 3q) a odd, p = 5.
vi (±√2q, q), a odd, p = 2.
vii (0,−2q) a odd.
viii (0, 2q) a even, p ≡ 1 (mod 4).
ix (±2

√
q, 3q) a even, p ≡ 1 (mod 3).

Using Theorem 6, 7 and 12 we get the following explicit description of the `-
torsion subgroup of the Jacobian of a supersingular genus two curve.

Theorem 14. Consider a supersingular genus two curve C de�ned over Fq. Let `
be a prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Depending on the cases in table 1 we get the following properties
of JC .

Case i: −q2 ≡ q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). If ` 6= 2, then JC(Fq)[`]
is cyclic.

Case ii: q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq6) and JC(Fq) is cyclic. If ` 6= 3,
then q 6≡ 1 (mod `).

Case iii: −q3 ≡ q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` 6= 3, then JC(Fq)[`]
is cyclic.

Case iv: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case v: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case vi: −q6 ≡ q12 ≡ 1 (mod `), JC [`] ⊆ JC(Fq24) and JC(Fq) is cyclic.
Case vii: q ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`] is

bicyclic.
Case viii: −q ≡ q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`]

is bicyclic.
Case ix: If ` 6= 3, then q 6≡ q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq3) and JC(Fq)[`]

is bicyclic.

Corollary 15. If ` > 3, then the full embedding degree with respect to ` of the
Jacobian JC of a supersingular genus two curve de�ned over Fq is at most 24,
and JC(Fq)[`] is of rank at most two as a Z/`Z-module.

Proof of Theorem 14. In the following we consider each case in table 1 separately.
Throughout this proof, assume that

f(X) = X4 + sX3 + tX2 + sqX + q2

is the Weil polynomial of the Jacobian JC of some supersingular genus two curve C
de�ned over the �nite �eld Fq of characteristic p, and let ` be a prime number
dividing f(1).
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The case s = 0. First consider the cases i, ii, iii, vii and viii of table 1.

Case i. If (s, t) = (0, 0), then f(1) = 1 + q2 ≡ 0 (mod `), i.e. q2 ≡ −1 (mod `).
So f(X) ≡ X4 − 1 (mod `), q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). τ = 2q in
Theorem 6, so if ` 6= 2, then JC(Fq)[`] is cyclic.

Case ii. If (s, t) = (0, q), then the roots of f modulo ` are given by ±1 and ±q.
Since f(1) = q2 + q + 1 ≡ 0 (mod `), we know that q ≡ 1

2 (−1±
√
−3) (mod `). It

follows that q3 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` = 2, then p 6= 2, and f(1) is
odd. So ` 6= 2. τ = q in Theorem 6, so JC(Fq) is cyclic.

Case iii. If (s, t) = (0,−q), then the roots of f modulo ` are given by ±1 and ±q.
Since f(1) = q2 − q + 1 ≡ 0 (mod `), we know that q ≡ 1

2 (1 ±
√
−3) (mod `). It

follows that q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). As in case ii, ` 6= 2. Now τ = 3q,
so if ` 6= 3, then JC(Fq)[`] is cyclic.

Case vii. If (s, t) = (0,−2q), then q ≡ 1 (mod `) and f(X) = (X2−q)2. Since q is
an odd power of p, X2−q is irreducible over Q. So by [22, Theorem 2], JC ' E×E
for some supersingular elliptic curve E. It follows that JC [`] ⊆ JC(Fq2). τ = 4q, so
if ` 6= 2, then JC(Fq)[`] is bicyclic.

Case viii. If (s, t) = (0, 2q), then q ≡ −1 (mod `) and f(X) = (X2 + q)2. Since
X2 + q is irreducible over Q, it follows that JC ' E × E for some supersingular
elliptic curve E. So q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). τ = 0 and ω = i

√
q

is a q-Weil number of JC . Since q is an even power of p, K = Q(ω) = Q(i) is of
discriminant dK = −4. Hence, if ` 6= 2, then JC(Fq)[`] is bicyclic by Theorem 7.

Case iv�vi. Now we consider the cases iv, v and vi of table 1.

Case iv. If (s, t) = (
√
q, q), then 4τ = 5q in Theorem 6. Since f(1) is odd, we know

that ` 6= 2. If ` divides 4τ , then ` = 5; ` - q, since C is supersingular. But then
f(1) = q2 + q

√
q + q +

√
q + 1 ≡ 0 (mod 5), i.e. q ≡ 2 (mod 5). Since a is even

and 2 is not a quadratic residue modulo 5, this is impossible. So ` - 4τ . If q ≡ 1
(mod `), then f(1) ≡ 5 (mod `), i.e. ` = 5. But then ` divides 4τ , a contradiction.
So JC(Fq) is cyclic by Theorem 6. From f(1) ≡ 0 (mod `) it follows that q5 ≡ 1
(mod `). Since the complex roots of f are of the form

√
qξ, where ξ is a primitive

5th root of unity, it follows that JC [`] ⊆ JC(Fq10). The case (s, t) = (−√q, q) follows
similarly.

Case v. If (s, t) = (
√

5q, 3q) and p = 5, then 4τ is a power of 5 in Theorem 6. Since
f(1) is odd, we know that ` 6= 2. If ` divides 4τ , then ` = 5. Since C is supersingular
and de�ned over a �eld of characteristic p = 5, this is a contradiction. So ` - 4τ .
If q ≡ 1 (mod `), then f(1) ≡ 5 + 2

√
5 ≡ 0 (mod `), and it follows that ` = 5.

So JC(Fq) is cyclic by Theorem 6. From f(1) ≡ 0 (mod `) it follows that q5 ≡ 1
(mod `). Since the complex roots of f are of the form

√
qξ, where ξ is a primitive

10th root of unity, it follows that JC [`] ⊆ JC(Fq10). The case (s, t) = (−√5q, 3q)
follows similarly.



NON-CYCLIC SUBGROUPS OF JACOBIANS OF GENUS TWO CURVES 11

Case vi. If (s, t) = (
√

2q, q) and p = 2, then 4τ = 3 · 2a for some number a ∈ N.
Hence, if ` divides 4τ , then ` = 3. But 3 - f(1); thus, ` - 4τ . If q ≡ 1 (mod `),
then f(1) ≡ 3 + 2

√
2 ≡ 0 (mod `), and it follows that ` = 1. So JC(Fq) is cyclic

by Theorem 6. From f(1) ≡ 0 (mod `) it follows that q6 ≡ −1 (mod `). Since the
complex roots of f are of the form

√
qξ, where ξ is a primitive 24th root of unity,

it follows that JC [`] ⊆ JC(Fq24). The case (s, t) = (−√2q, q) follows similarly.

Case ix. Finally, consider the case ix. Assume that (s, t) = (−2
√
q, 3q). We see

that f(X) = g(X)2, where g(X) = X2−√qX+q. Since the complex roots of g are

given by 1
2 (1±

√
−3)
√
q, g is irreducible over Q. So by [22, Theorem 2], JC ' E×E

for some supersingular elliptic curve E. Hence, either JC(Fq)[`] is bicyclic or equals
the full `-torsion subgroup of JC .

Assume JC(Fq)[`] = JC [`]. Then q ≡ 1 (mod `), i.e.
√
q ≡ ±1 (mod `). But

then f(1) ≡ 9 ≡ 0 (mod `) or f(1) ≡ 1 ≡ 0 (mod `), i.e. ` = 3.
Since f(1) = (1 − √q + q)2 ≡ 0 (mod `), we know that q ≡ 1

2 (−1 ±
√
−3)

(mod `). So q3 ≡ 1 (mod `). Since ` 6= 3, it follows that q 6≡ 1 (mod `). Hence,
JC [`] ⊆ JC(Fq3) by the non-degeneracy of the Tate-pairing.

The case (s, t) = (2
√
q, 3q) follows similarly. �
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Abstract. We give an explicit description of the matrix representation
of the Frobenius endomorphism on the Jacobian of a genus two curve
on the subgroup of `-torsion points. By using this description, we can
describe the matrix representation of the Weil-pairing on the subgroup
of `-torsion points explicitly. Finally, the explicit description of the Weil-
pairing provides us with an e�cient, probabilistic algorithm to �nd gen-
erators of the subgroup of `-torsion points on the Jacobian of a genus
two curve.

1 Introduction

In [13], Koblitz described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of curves, and possibly larger group
orders, Koblitz [14] then proposed using Jacobians of hyperelliptic curves. Af-
ter Boneh and Franklin [1] proposed an identity based cryptosystem by using
the Weil-pairing on an elliptic curve, pairings have been of great interest to
cryptography [8]. The next natural step was to consider pairings on Jacobians
of hyperelliptic curves.

Galbraith et al [9] survey the recent research on pairings on Jacobians of hy-
perelliptic curves. Their conclusion is that, for most applications, elliptic curves
provide more e�cient solutions than hyperelliptic curves. One way of making
pairing based cryptography on Jacobians of hyperelliptic curves interesting is to
exploit the full torsion subgroup of the Jacobian of a hyperelliptic curve. In par-
ticular, cryptographic applications of pairings on groups which require three or
more generators will be interesting. If such applications are found, the next nat-
ural problem will be to give e�cient methods to choose points in the particular
subgroups. The present paper addresses this problem.

Let JC be the Jacobian of a genus two curve de�ned over Fq. In [5, Algo-
rithm 4.3], Freeman and Lauter describe a probabilistic algorithm to determine
generators of the subgroup JC [`] of points of order `, but the algorithm is in-
complete in the sense that the output only probably is a generating set - it is not
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tested whether the output in fact is a generating set. Furthermore, if the output
happens to be a generating set, it still may not be a basis of JC [`].

In [21], the author describes an algorithm based on the Tate-pairing to de-
termine a basis of the subgroup JC(Fq)[m] of points of order m on the Jacobian,
where m is a number dividing q − 1. The key ingredient of the algorithm is a
�diagonalization� of a set of randomly chosen points {P1, . . . , P4, Q1, . . . , Q4} on
the Jacobian with respect to the (reduced) Tate-pairing ε; i.e. a modi�cation of
the set such that ε(Pi, Qj) 6= 1 if and only if i = j. This procedure is based
on solving the discrete logarithm problem in JC(Fq)[m]. Contrary to the special
case where m divides q − 1, it is in general infeasible to solve the discrete log-
arithm problem in JC(Fq)[m]. Hence, in general the algorithm in [21] does not
apply.

Results

In the present paper, we generalize the algorithm in [21] to subgroups of points
of prime order `, where ` does not divide q−1. In order to do so, we must some-
how alter the diagonalization step. We show and exploit the fact that the matrix
representation on JC [`] of the q-power Frobenius endomorphism on JC can be
described explicitly. This description enables us to describe the matrix represen-
tation of the Weil pairing on JC [`] explicitly. Miller [18] uses the Weil pairing
to determine generators of E(Fqa), where E is an elliptic curve de�ned over a
�nite �eld Fq and a ∈ N. The basic idea of his algorithm is to decide whether
points on the curve are independent by means of calculating pairing values. The
explicit description of the matrix representation of the Weil pairing lets us trans-
fer this idea to Jacobians of genus two curves. Hereby, computations of discrete
logarithms are avoided, yielding the desired altering of the diagonalization step.

Setup Consider the Jacobian JC of a genus two curve C de�ned over a �nite
�eld Fq. Let ` be an odd prime number dividing the number of Fq-rational points
on JC , and with ` dividing neither q nor q − 1. Assume that the Fq-rational
subgroup JC(Fq)[`] of points on the Jacobian of order ` is cyclic. Let k be
the multiplicative order of q modulo `, and let k0 be the least number, such
that JC [`] ⊆ JC(Fqk0 ). (Obviously, in applications k0 must be small enough
for representation of and computations with points on JC(Fqk0 ) to be feasible.
Hence, the algorithms presented are only e�cient if k0 is �small�). Write the
characteristic polynomial of the qk-power Frobenius endomorphism on JC as
Pk(X) = X4 + sX3 + (2qk + (s2− τk)/4)X2 + sqkX + q2k. Let ωk ∈ C be a root
of Pk(X). Finally, if ` divides τk, we assume that ` is unrami�ed in Q(ωk).

Remark 1. Notice that most likely, in cases relevant to pairing based crypto-
graphy the considered Jacobian of a genus two curve ful�lls these assumptions.
Cf. Remark 13 and 21.
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The algorithm Let JC , `, q, k, k0 and τk be given as in the above setup. Note
that the numbers k and k0 are computed from JC , ` and q - they are not chosen.
Since ` divides the number of Fq-rational points on JC , it is implicitly assumed
that JC contains points of order ` de�ned over Fq, i.e. that JC(Fq)[`] is non-
trivial. Notice also that we assume to know the Weil polynomial (see Section 3)
of JC already - it is not computed in the algorithm. In particular, we know τk.

Now, �rst of all we notice that in the above setup the q-power Frobenius
endomorphism ϕ on JC can be represented on JC [`] by either a diagonal ma-
trix or a matrix of a particular form with respect to an appropriate basis B

of JC [`]; cf. Theorem 14. (In fact, to show this we do not need the Fq-rational
subgroup JC(Fq)[`] of points on the Jacobian of order ` to be cyclic). From
this observation it follows that all non-degenerate, bilinear, anti-symmetric and
Galois-invariant pairings on JC [`] are given by the matrices

Ea,b =




0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0


 , a, b ∈ (Z/`Z)×

with respect to B; cf. Theorem 19. By using this description of the pairings, the
desired algorithm is given as follows.

Algorithm 16. Let the notation and assumptions be as in the above setup. On
input the Jacobian JC , the numbers `, q, k, k0, τk and a number n ∈ N, the
following algorithm outputs a basis of JC [`] or �failure�.

1. If ` does not divide τk, then do the following:

(a) Choose points O 6= x1 ∈ JC(Fq)[`], x2 ∈ JC(Fqk)[`] and x′3 ∈ JC(Fqk0 )[`]
(cf. Section 8 for details on how to choose points); compute x3 = q(x′3−
ϕ(x′3))−ϕ(x′3−ϕ(x′3)). If ε(x3, ϕ(x3)) 6= 1, then output {x1, x2, x3, ϕ(x3)}
and stop.

(b) Let i = j = 0. While i < n do the following:
i. Choose a random point x4 ∈ JC(Fqk0 )[`].
ii. If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

(c) If j = 0, then output �failure�. Else output {x1, x2, x3, x4}.
2. If ` divides τk, then do the following:

(a) Choose a random point O 6= x1 ∈ JC(Fq)[`].
(b) Let i = j = 0. While i < n do the following:

i. Choose a random point x2 ∈ JC(Fqk0 )[`].
ii. If ε(x1, x2) = 1, then i := i+ 1. Else i := n and j := 1.

(c) If j = 0, then output �failure� and stop.
(d) Let i = j = 0. While i < n do the following:

i. Choose random points y3, y4 ∈ JC(Fqk0 )[`]; compute xν := q(yν −
ϕ(yν))− ϕ(yν − ϕ(yν)) for ν = 3, 4.

ii. If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.
(e) If j = 0, then output �failure�. Else output {x1, x2, x3, x4}.
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Algorithm 24 �nds generators of JC [`] with probability at least (1 − 1/`n)2

and in expected running time O
(
log ` log qk0−1

` k0
3 log k0 log q

)
�eld operations

in Fq (ignoring log log q factors); this is contained in Theorem 25. The algorithm
[5, Algorithm 4.3] runs in expected time O(k2 log k(log p)2`s−4

√− log ε), where
the number s is given by |JC(Fqk0 )| = m`s and ` - m, and ε is the rate of
failure. Hence, if s > 4, then Algorithm 24 is by far more e�cient than [5,
Algorithm 4.3]. [5, Algorithm 4.3] is used in [5] to compute endomorphism rings
of Jacobians of genus two curves, and this in turn has applications for generating
Jacobians of genus two curves using the CRT version of the CM method [4].
Hence, Algorithm 24 also has applications for generating Jacobians of genus two
curves.

If the Weil polynomial splits in distinct factors modulo `, then the problem
of determining a basis of the `-torsion subgroup is trivially solved: the `-torsion
subgroup decomposes in four eigenspaces of the q-power Frobenius endomor-
phism, so to �nd a basis, simply choose an `-torsion point and project it to the
eigenspaces. A standard example is the Jacobian JC of the curve over F3 given by
y2 = x5 +1. The Weil polynomial of JC is given by P (X) = X4 +9, the number
of F3-rational points on JC is |JC(F3)| = P (1) = 10, and P (X) factors modulo 5
as P (X) ≡ (X − 1)(X − 2)(X − 3)(X − 4) (mod 5). But there are cases where
the Weil polynomial does not split in distinct factors; cf. the following example.

Example 1. Consider the Jacobian JC of the curve over F3 given by

y2 = x5 + 2x2 + x+ 1 .

The Weil polynomial of JC is given by P (X) = X4 + X3 − X2 + 3X + 9, the
number of F3-rational points on JC is |JC(F3)| = P (1) = 13, and P (X) factors
modulo 13 as P (X) ≡ (X − 1)(X − 3)(X − 4)2 (mod 13).

Remark 2. To implement Algorithm 24, we need to �nd the Weil polynomial
of the Jacobian. On Jacobians generated by the complex multiplication method
[23, 10, 4], we know the Weil polynomial in advance. Hence, Algorithm 24 is
particularly well suited for such Jacobians.

Assumption

In this paper, a curve is an irreducible nonsingular projective variety of dimen-
sion one.

2 Genus two curves

A hyperelliptic curve is a projective curve C ⊆ Pn of genus at least two with a
separable, degree two morphism φ : C → P1. It is well known, that any genus
two curve is hyperelliptic. Throughout this paper, let C be a curve of genus two
de�ned over a �nite �eld Fq of characteristic p. By the Riemann-Roch Theorem
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there exists a birational map ψ : C → P2, mapping C to a curve given by an
equation of the form

y2 + g(x)y = h(x) ,

where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; cf. [2, chapter 1].
The set of principal divisors P(C) on C constitutes a subgroup of the degree

zero divisors Div0(C). The Jacobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C) .

The Jacobian is an abelian group. We write the group law additively, and denote
the zero element of the Jacobian by O.

Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] ⊆ JC of points
of order dividing `n is a Z/`nZ-module of rank four, i.e.

JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ ;

cf. [15, Theorem 6, p. 109].
The multiplicative order k of q modulo ` plays an important role in crypto-

graphy, since the (reduced) Tate-pairing is non-degenerate over Fqk ; cf. [11].

De�nition 3 (Embedding degree). Consider a prime number ` 6= p divid-
ing the number of Fq-rational points on the Jacobian JC . The embedding degree
of JC(Fq) with respect to ` is the least number k, such that qk ≡ 1 (mod `).

Closely related to the embedding degree, we have the full embedding degree.

De�nition 4 (Full embedding degree). Consider a prime number ` 6= p
dividing the number of Fq-rational points on the Jacobian JC . The full embedding
degree of JC(Fq) with respect to ` is the least number k0, such that JC [`] ⊆
JC(Fqk0 ).

Remark 5. If JC [`] ⊆ JC(Fqk0 ), then ` | qk0 − 1; cf. [15, Theorem 6, p. 109]
and [6, Proposition 5.78, p. 111]. Hence, the full embedding degree is a multiple
of the embedding degree.

3 The Frobenius endomorphism

Since C is de�ned over Fq, the mapping (x, y) 7→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jaco-
bian JC . Let P (X) be the characteristic polynomial of ϕ; cf. [15, pp. 109�110].
P (X) is called the Weil polynomial of JC , and

|JC(Fq)| = P (1)

by the de�nition of P (X) (see [15, pp. 109�110]); i.e. the number of Fq-rational
points on the Jacobian is P (1).
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De�nition 6 (Weil number). Let notation be as above. Let Pk(X) be the
characteristic polynomial of the qm-power Frobenius endomorphism ϕm on JC .
A complex number ωm ∈ C with Pm(ωm) = 0 is called a qm-Weil number of JC .

Remark 7. Note that JC has four qm-Weil numbers. If P1(X) =
∏

i(X − ωi),
then Pm(X) =

∏
i(X − ωm

i ). Hence, if ω is a q-Weil number of JC , then ω
m is

a qm-Weil number of JC .

4 Non-cyclic subgroups

Consider a genus two curve C de�ned over a �nite �eld Fq. Let Pm(X) be the
characteristic polynomial of the qm-power Frobenius endomorphism ϕm on the
Jacobian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m,
where s, t ∈ Z. Let τ = 8qm + s2 − 4t. Then Pm(X) = X4 + sX3 + (2qm + (s2 −
τ)/4)X2 + sqmX + q2m. In [22], the author proves the following Theorem 8 and
Theorem 9.

Theorem 8. Consider the Jacobian JC of a genus two curve C de�ned over
a �nite �eld Fq. Write the characteristic polynomial of the qm-power Frobenius
endomorphism on JC as Pm(X) = X4+sX3+(2qm+(s2−τ)/4)X2+sqmX+q2m.
Let ` be an odd prime number dividing the number of Fq-rational points on JC ,
and with ` - q and ` - q − 1. If ` - τ , then

1. JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and
2. JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

Theorem 9. Let notation be as in Theorem 8. Furthermore, let ωm be a qm-Weil
number of JC , and assume that ` is unrami�ed in Q(ωm). Now assume that ` | τ .
Then the following holds.

1. If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
2. If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] ' (Z/`Z)2 and JC [`] ⊆ JC(Fqmk) if

and only if ` | qmk − 1.

Example 10 (The case ` - τk). Let P (X) = X4 + X3 − X2 + 3X + 9 ∈ Q[X].
By [16] and [12] it follows that P (X) is the Weil polynomial of the Jacobian
of a genus two curve C de�ned over F3. The number of F3-rational points on
the Jacobian is P (1) = 13, and the embedding degree of JC(F3) with respect
to ` = 13 is k = 3. The characteristic polynomial of the 33-power Frobenius
endomorphisms is given by P3(X) = X4 + 13X3 + 89X2 + 351X + 729. Hence,
JC(F27)[13] is bicyclic by Theorem 8.

Example 11 (The case ` | τk). Let P (X) = (X2 − 5X + 9)2 ∈ Q[X]. By [16]
and [12] it follows that P (X) is the Weil polynomial of the Jacobian of a genus
two curve C de�ned over F9. The number of F9-rational points on the Jacobian
is P (1) = 25, so ` = 5 is an odd prime divisor of |JC(F9)| not dividing q = 9.
Notice that P (X) ≡ X4 + 2qX2 + q2 (mod 5). The complex roots of P (X) are
given by ω = 5+

√−11
2 and ω̄, and 5 is unrami�ed in Q(ω). Since 92 ≡ 1 (mod 5),

it follows by Theorem 9 that JC(F9)[5] ' Z/5Z⊕ Z/5Z and JC [5] ⊆ JC(F81).
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Inspired by Theorem 8 and Theorem 9 we introduce the following notation.

De�nition 12. Consider the Jacobian JC of a genus two curve C de�ned over
a �nite �eld Fq. We say that the Jacobian is a J(`, q, k, τk)-Jacobian or is of
type J(`, q, k, τk), and write JC ∈ J(`, q, k, τk), if the following holds.

1. The number ` is an odd prime number dividing the number of Fq-rational
points on JC , ` divides neither q nor q − 1, and JC(Fq) is of embedding
degree k with respect to `.

2. The characteristic polynomial of the qk-power Frobenius endomorphism on JC

is given by Pk(X) = X4 + sX3 + (2qk + (s2 − τk)/4)X2 + sqkX + q2k.
3. Let ωk be a qk-Weil number of JC . If ` divides τk, then ` is unrami�ed

in Q(ωk).

Remark 13. Since ` is rami�ed in Q(ωk) if and only if ` divides the discriminant
of Q(ωk) (see [20, Theorem 2.6, p. 199]), ` is unrami�ed in Q(ωk) with probability
approximately 1 − 1/`. Hence, most likely, in cases relevant to pairing based
cryptography the considered Jacobian is a J(`, q, k, τk)-Jacobian.

5 Matrix representation of the Frobenius endomorphism

An endomorphism ψ : JC → JC induces a linear map ψ̄ : JC [`] → JC [`] by
restriction. Hence, ψ is represented by a matrix M ∈ Mat4(Z/`Z) on JC [`].
If ψ can be represented on JC [`] by a diagonal matrix with respect to an ap-
propriate basis of JC [`], then we say that ψ is diagonalizable or has a diagonal
representation on JC [`].

Let f ∈ Z[X] be the characteristic polynomial of ψ (see [15, pp. 109�110]),
and let f̄ ∈ (Z/`Z)[X] be the characteristic polynomial of ψ̄. Then f is a monic
polynomial of degree four, and by [15, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod `) .

By Theorem 8 and Theorem 9 we get the following explicit description of
the matrix representation of the Frobenius endomorphism on the Jacobian of a
genus two curve.

Theorem 14. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ϕ be the q-power
Frobenius endomorphism of JC . If ϕ is not diagonalizable on JC [`], then ϕ is
represented on JC [`] by a matrix of the form

M =




1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


 (1)

with respect to an appropriate basis of JC [`]. In particular, c 6≡ q + 1 (mod `).
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Proof. Assume at �rst that ` does not divide τk. Then we know that JC(Fq)[`]
is cyclic and that JC(Fqk)[`] is bicyclic; cf. Theorem 8. Choose points x1, x2 ∈
JC [`], such that ϕ(x1) = x1 and ϕ(x2) = qx2. Then the set {x1, x2} is a basis
of JC(Fqk)[`]. Now, extend {x1, x2} to a basis B = {x1, x2, x3, x4} of JC [`].
If x3 and x4 are eigenvectors of ϕ, then ϕ is represented by a diagonal matrix
on JC [`] with respect to B. Assume x3 is not an eigenvector of ϕ. Then B′ =
{x1, x2, x3, ϕ(x3)} is a basis of JC [`], and ϕ is represented by a matrix of the
form (1) with respect to B′.

Now, assume ` divides τk. Since ` divides qk − 1, it follows that JC [`] ⊆
JC(Fqk); cf. Theorem 9. Since ` divides the number of Fq-rational points on JC ,
1 is a root of the Weil polynomial P (X) modulo `. Assume that 1 is an root
of P (X) modulo ` of multiplicity ν. Since the roots of P (X) occur in pairs of
the form (α, q/α), it follows that

P (X) ≡ (X − 1)ν(X − q)νQ(X) (mod `) ,

where Q ∈ Z[X] is a polynomial of degree 4−2ν, Q(1) 6≡ 0 (mod `) and Q(q) 6≡ 0
(mod `). Let U = ker(ϕ − 1)ν , V = ker(ϕ − q)ν and W = ker(Q(ϕ)). Then U ,
V and W are ϕ-invariant submodules of the Z/`Z-module JC [`], rankZ/`Z(U) =
rankZ/`Z(V ) = ν, and JC [`] ' U ⊕ V ⊕W . If ν = 1, then it follows as above
that ϕ is either diagonalizable on JC [`] or represented by a matrix of the form (1)
with respect to some basis of JC [`]. Hence, we may assume that ν = 2. Now,
choose x1 ∈ U such that ϕ(x1) = x1, and extend {x1} to a basis {x1, x2} of U .
Similarly, choose a basis {x3, x4} of V with ϕ(x3) = qx3. With respect to the
basis B = {x1, x2, x3, x4}, ϕ is represented by a matrix of the form

M =




1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q


 .

Notice that

Mk =




1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1


 .

Since JC [`] ⊆ JC(Fqk), we know that ϕk = ϕk is the identity on JC [`]. Hence,
Mk = I. So α ≡ β ≡ 0 (mod `), i.e. ϕ is represented by a diagonal matrix with
respect to B.

Finally, if c ≡ q + 1 (mod `), then M is diagonalizable. The theorem is
proved. ut

6 Determining �elds of de�nition

In [5], Freeman and Lauter consider the problem of determining the �eld of
de�nition of the `-torsion points on the Jacobian of a genus two curve, i.e. the
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problem of determining the full embedding degree k0. They describe a probabi-
listic algorithm to determine if JC [`] ⊆ JC(Fqκ); see [5, Algorithm 4.3]. (Notice
that Freeman and Lauter consider a Jacobian de�ned over a prime �eld Fp, and
[5, Algorithm 4.3] determines if JC [`d] ⊆ JC(Fq), where q = pk and d ∈ N. This
algorithm is easily generalized to determine if JC [`] ⊆ JC(Fqκ) for Jacobians
de�ned over Fq, q = pa).

In most applications, a probabilistic algorithm to determine k0 is su�cient.
But we may have to compute k0. To this end, consider a J(`, q, k, τk)-Jacobian JC .
Let ω be a q-Weil number of JC . In cases relevant to pairing based cryptography,
` is most likely unrami�ed in Q(ω); cf. Remark 13. But then the full embedding
degree of JC with respect to ` can be computed directly by the following Algo-
rithm 15.

Algorithm 15. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ω be a q-Weil num-
ber of JC . Assume that ` is unrami�ed in Q(ω). Choose an upper bound N ∈ N
of the full embedding degree k0 of JC with respect to `. If k0 ≤ N , then the
following algorithm outputs k0. If k0 > N , then the algorithm outputs �k0 > N �.

1. Let j = 1.
2. If the Weil polynomial P (X) of JC does not split in linear factors modulo `,

then ϕ is represented by a matrix M of the form (1) on JC [`]. In this case,
let k0 = min{κ ∈ kN, κ ≤ N,Mκ ≡ I (mod `)}, if the minimum exists. Else
let j = 0.

3. If P (X) ≡ (X− 1)(X− q)(X−α)(X− q/α) (mod `), then do the following:
(a) If α 6≡ 1, q, q/α (mod `), then let k0 = min{κ ∈ kN, κ ≤ N,ακ ≡ 1

(mod `)}, if the minimum exists. Else let j = 0.
(b) If α ≡ 1, q (mod `), then let k0 = k.
(c) If α ≡ q/α (mod `), then let k0 = 2k.

4. If j = 0 then output �k0 > N �. Else output k0.

Proof. First of all, recall that k0 ∈ kN; cf. Remark 5. As usual, let ϕ be the
q-power Frobenius endomorphism of JC .

Assume at �rst that the Weil polynomial of JC does not split in linear factors
modulo `. Then ϕ is not diagonalizable on JC [`]. Thus, ϕ is represented by a
matrix M of the form (1) on JC [`]. Since ϕk0 is the identity on JC [`], it is
represented by the identity matrix I on JC [`]. But ϕk0 is also represented byMk0

on JC [`]. So Mk0 ≡ I (mod `). On the other hand, if Mκ ≡ I (mod `) for some
number κ ≤ k0, then ϕ

κ is the identity on JC [`], i.e. JC [`] ⊆ JC(Fqκ). But then
κ = k0 by the de�nition of k0. Hence, k0 is the least number, such that Mk0 ≡ I
(mod `).

Now, assume the Weil polynomial factors modulo ` as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `) .

The case α 6≡ 1, q, q/α (mod `) is obvious. If α ≡ 1, q (mod `), then

P (X) ≡ (X−1)2(X−q)2 ≡ X4+2σX3+(2q+σ2−τ)X2+2σqX+q2 (mod `) ,
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where σ ≡ −(q + 1) (mod `) and τ ≡ 0 (mod `). By Theorem 9 it follows
that JC [`] ⊆ JC(Fqk); i.e. k0 = k in this case. Finally, assume that α ≡ q/α
(mod `), i.e. that α2 ≡ q (mod `). Then the q-power Frobenius endomorphism
is represented on JC [`] by a matrix of the form

M =




1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α




with respect to an appropriate basis of JC [`]. Notice that

M2k =




1 0 0 0
0 1 0 0
0 0 1 2kα2k−1β
0 0 0 1


 .

Thus, P2k(X) ≡ (X − 1)4 (mod `). By Theorem 9 it follows that JC [`] ⊆
JC(Fq2k), i.e. k0 = 2k. ut

Theorem 16. Let the notation and assumptions be as in Algorithm 15. On
input JC , the Weil polynomial modulo ` and a number N ∈ N, Algorithm 15
outputs either �k0 > N � or the full embedding degree of JC with respect to ` in
at most O(N) number of operations in F`.

Proof. If the Weil polynomial of JC does not split in linear factors modulo `,
then powers {Mk, (Mk)2, . . . , (Mk)bN/kc} ofM modulo ` are computed; here,M
is the matrix representation of the q-power Frobenius endomorphism on JC [`].
M is of the form

M =




1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


 .

Hence, computing powers of M is equivalent to computing powers of M ′ =[
0 −q
1 c

]
and powers of q. Computation of the product of two matrices A,B ∈

Mat2(F`) takes 12 operations in F`, so computing the powers of M modulo `
takes O(N) operations in F`.

Assume the Weil polynomial factors as (X−1)(X−q)(X−α)(X−q/α) mod-
ulo `. If α ≡ 1, q, q/α (mod `), then no computations are needed. If α 6≡ 1, q, q/α
(mod `), then powers {αk, (αk)2, . . . , (αk)bN/kc} of α modulo ` are computed;
this takes O(N) operations in F`. ut

Remark 17. Recall that q = pa for some power a ∈ N. Assume ` and p are of the
same size. For small N (e.g. N < 200), a limit of O(N) number of operations
in F` is a better result than the expected number of operations in Fp of [5,
Algorithm 4.3] given by [5, Proposition 4.6]. Furthermore, the algorithm of [5]
only checks if a given number κ ∈ N is the full embedding degree k0 of the
Jacobian. Hence, to �nd k0 using [5, Algorithm 4.3], we must apply it to every
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number in the set {κ ∈ kN|κ ≤ N}. Thus, we must multiply the number of
expected operations in Fp with a factor O(bN/kc). So if ` and p are of the same
size, then Algorithm 15 is more e�cient than [5, Algorithm 4.3]. On the other
hand, if ` � p, then �eld operations in Fp is faster than �eld operations in
F`, and [5, Algorithm 4.3] may be the more e�cient one. Hence, the choice of
algorithm to compute the full embedding degree depends strongly on the values
of ` and p in the implementation.

7 Anti-symmetric pairings on the Jacobian

On JC [`], a non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing

ε : JC [`]× JC [`] → µ` = 〈ζ〉 ⊆ F×
qk

exists, e.g. the Weil pairing; cf. e.g. [19, chapter 12]. Here, µ` is the group of `th

roots of unity. A fast algorithm for computing the Weil pairing is given in [3].
Since ε is bilinear, it is given by

ε(x, y) = ζxT Ey , (2)

for some matrix E ∈ Mat4(Z/`Z) with respect to a basis B = {x1, x2, x3, x4}
of JC [`].

Remark 18. To be more precise, the points x and y on the right hand of equa-
tion (2) should be replaced by their column vectors [x]B and [y]B with respect
to B. To ease notation, this has been omitted.

Let ϕ denote the q-power Frobenius endomorphism on JC . Since ε is Galois-
invariant,

∀x, y ∈ JC [`] : ε(x, y)q = ε(ϕ(x), ϕ(y)) .

This is equivalent to

∀x, y ∈ JC [`] : q(xT Ey) = (Mx)T E(My) ,

where M is the matrix representation of ϕ on JC [`] with respect to B. Since
(Mx)T E(My) = xTMT EMy, it follows that

∀x, y ∈ JC [`] : xT qEy = xTMT EMy ,

or equivalently, that qE = MT EM .
Now, let ε(xi, xj) = ζaij . By anti-symmetry,

E =




0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0


 .
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At �rst, assume that ϕ is represented by a matrix of the form (1) with respect
to B. Since MT EM = qE, it follows that

a14 − qa13 ≡ a23 − a24 ≡ a14(c− (1 + q)) ≡ a24(c− (1 + q)) ≡ 0 (mod `) .

Thus, a13 ≡ a14 ≡ a23 ≡ a24 ≡ 0 (mod `), cf. Theorem 14. So

E =




0 a12 0 0
−a12 0 0 0

0 0 0 a34

0 0 −a34 0


 .

Since ε is non-degenerate, a2
12a

2
34 = det E 6≡ 0 (mod `).

Finally, assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α)
with respect to B. Then it follows from MT EM = qE, that

a13(α− q) ≡ a14(α− 1) ≡ a23(α− 1) ≡ a24(α− q) ≡ 0 (mod `) .

If α ≡ 1, q (mod `), then JC(Fq)[`] is bi-cyclic. Hence the following theorem
holds.

Theorem 19. Consider a Jacobian JC ∈ J(`, q, k, τk). Let ϕ be the q-power
Frobenius endomorphism on JC . Choose a basis B of JC [`], such that ϕ is repre-
sented by either a diagonal matrix diag(1, q, α, q/α) or a matrix of the form (1)
with respect to B. If the Fq-rational subgroup JC(Fq)[`] of `-torsion points on the
Jacobian is cyclic, then all non-degenerate, bilinear, anti-symmetric and Galois-
invariant pairings on JC [`] are given by the matrices

Ea,b =




0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0


 , a, b ∈ (Z/`Z)×

with respect to B.

Remark 20. Let notation and assumptions be as in Theorem 19. Let ε be a non-
degenerate, bilinear, anti-symmetric and Galois-invariant pairing on JC [`], and
let ε be given by Ea,b with respect to a basis {x1, x2, x3, x4} of JC [`]. Then ε is
given by E1,1 with respect to {a−1x1, x2, b

−1x3, x4}.

Remark 21. In cases relevant to pairing based cryptography, we consider a prime
divisor ` of size q2. Assume ` is of size q2. Then ` divides neither q nor q − 1.
The number of Fq-rational points on the Jacobian is approximately q2. Thus,
JC(Fq)[`] is cyclic in cases relevant to pairing based cryptography.

8 Generators of JC[`]

Consider a Jacobian JC ∈ J(`, q, k, τk). Assume the Fq-rational subgroup of
`-torsion points JC(Fq)[`] is cyclic. Let ϕ be the q-power Frobenius endomor-
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phism of JC . Let ε be a non-degenerate, bilinear, anti-symmetric and Galois-
invariant pairing

ε : JC [`]× JC [`] → µ` = 〈ζ〉 ⊆ F×
qk .

In the following, frequently we will choose a random point P ∈ JC(Fqa)[`]
for some power a ∈ N. This is done as follows: (1) Choose a random point P ∈
JC(Fqa). (2) Compute P := [m](P ), where |JC(Fqa)| = m`s and ` - m. (3) Com-
pute the order |P | = `t(P ) of P . (4) If t(P ) > 0, then let P := [`t(P )−1](P ). Since
the power t(P ) will be di�erent for each point P , this procedure does not de�ne
a group homomorphism from JC(Fqa) to JC(Fqa)[`]. Thus, the image of points
uniformly distributed in JC(Fqa) will not necessarily be uniformly distributed
in JC(Fqa)[`]. A method of choosing points uniformly at random is given in [5,
Section 5.3], but it leads to a signi�cant extra cost. In practice we believe it is
better to not use the method in [5], even though this means one might need to
sample a few extra points.

We consider the cases where ` - τk and where ` | τk separately.

8.1 The case ` - τk

If ` does not divide τk, then JC(Fqk)[`] is bicyclic; cf. Theorem 8. Choose
a random point O 6= x1 ∈ JC(Fq)[`], and extend {x1} to a basis {x1, y2}
of JC(Fqk)[`], where ϕ(y2) = qy2. Let x

′
2 ∈ JC(Fqk)[`] be a random point. If

x′2 ∈ JC(Fq)[`], then choose another random point x′2 ∈ JC(Fqk)[`]. After two
trials, x′2 /∈ JC(Fq)[`] with probability 1 − 1/`2. Hence, we may ignore the case
where x′2 ∈ JC(Fq)[`]. Write x′2 = α1x1 + α2y2. Then

O 6= x2 = x′2 − ϕ(x′2) = α2(1− q)y2 ∈ 〈y2〉 ,

i.e. ϕ(x2) = qx2. Now, let JC [`] ' JC(Fqk)[`] ⊕W , where W is a ϕ-invariant
submodule of rank two. Choose a random point x′3 ∈ JC [`]. Since x′3 − ϕ(x′3) ∈
〈y2〉 ⊕W , we may assume that x′3 ∈ 〈y2〉 ⊕W . But then

x3 = qx′3 − ϕ(x′3) ∈W

as above. If ϕ(x′3) = qx′3, then x′3 ∈ JC(Fqk)[`]. This will only happen with
probability 1/`2. Hence, we may ignore this case. Notice that

JC [`] = 〈x1, x2, x3, ϕ(x3)〉 if and only if ε(x3, ϕ(x3)) 6= 1;

cf. Theorem 19.

Assume ε(x3, ϕ(x3)) = 1. Then x3 is an eigenvector of ϕ. Let ϕ(x3) = αx3.
Then the Weil polynomial of JC is given by

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `)
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modulo `. Assume α ≡ q/α (mod `). Then α2 ≡ q (mod `), and it follows that
the characteristic polynomial of ϕk is given by

Pk(X) ≡ (X − 1)2(X + 1)2 ≡ X4 − 2qkX2 + q2k (mod `)

modulo `. But then ` | τk. This is a contradiction. So α 6≡ q/α (mod `). There-
fore, we can extend {x1, x2, x3} to a basis B = {x1, x2, x3, x4} of JC [`], such
that ϕ is represented by a diagonal matrix on JC [`] with respect to B. We may
assume that ε is given by E1,1 with respect to B; cf. Remark 20.

Now, choose a random point x ∈ JC [`]. Write x = α1x1+α2x2+α3x3+α4x4.
Then ε(x3, x) = ζα4 . So ε(x3, x) 6= 1 if and only if ` does not divide α4. On the
other hand, {x1, x2, x3, x} is a basis of JC [`] if and only ` does not divide α4.
Thus, if ` does not divide τk, then the following Algorithm 22 outputs generators
of JC [`] with probability at least 1− 1/`n.

Algorithm 22. On input a Jacobian JC ∈ J(`, q, k, τk), the numbers `, q, k
and τk, the full embedding degree k0 of JC with respect to ` and a number n ∈ N,
if ` does not divide τk, then the following algorithm outputs a basis of JC [`] or
�failure�.

1. Choose points O 6= x1 ∈ JC(Fq)[`], x2 ∈ JC(Fqk)[`] and x′3 ∈ JC(Fqk0 )[`];
compute x3 = q(x′3 − ϕ(x′3)) − ϕ(x′3 − ϕ(x′3)). If ε(x3, ϕ(x3)) 6= 1, then
output {x1, x2, x3, ϕ(x3)} and stop.

2. Let i = j = 0. While i < n do the following:
(a) Choose a random point x4 ∈ JC(Fqk0 )[`].
(b) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

3. If j = 0, then output �failure�. Else output {x1, x2, x3, x4}.

8.2 The case ` | τk

Assume ` divides τk. Then JC [`] ⊆ JC(Fqk); cf. Theorem 9. Choose a random
point O 6= x1 ∈ JC(Fq)[`], and let y2 ∈ JC [`] be a point with ϕ(y2) = qy2.
Write JC [`] = 〈x1, y2〉 ⊕W , where W is a ϕ-invariant submodule of rank two;
cf. the proof of Theorem 14. Let {y3, y4} be a basis of W , such that ϕ is repre-
sented on JC [`] with respect to the basis B = {x1, y2, y3, y4} by either a diagonal
matrix

M1 = diag(1, q, α, q/α) ,

or a matrix of the form

M2 =




1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


 ,

where c 6≡ q + 1 (mod `); cf. Theorem 14.
Now, choose a random point z ∈ JC [`]. Since z − ϕ(z) ∈ 〈y2, y3, y4〉, we may

assume that z ∈ 〈y2, y3, y4〉. Write z = α2y2 +α3y3 +α4y4. Assume at �rst that
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ϕ is represented on JC [`] by M1 with respect to B. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3αy3 + α4(q/α)y4)
= α3(q − α)y3 + α4(q − q/α)y4;

so qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that q ≡ 1 (mod `).
This contradicts the choice of the Jacobian JC ∈ J(`, q, k, τk). Hence, we have
a procedure to choose a point O 6= w ∈ W in this case. Now assume that ϕ is
represented on JC [`] by M2 with respect to B. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3y4 + α4(−qy3 + cy4))
= q(α3 + α4)y3 + (α4q − α3 − α4c)y4;

so again qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that c ≡ q +
1 (mod `). This is a contradiction. Hence, we have a procedure to choose a
point O 6= w ∈W also in this case.

Choose random points x3, x4 ∈W . Write xi = αi3y3 +αi4y4 for i = 3, 4. We
may assume that ε is given by E1,1 with respect to B; cf. Remark 20. But then
ε(x3, x4) = ζα33α44−α34α43 . Hence, ε(x3, x4) = 1 if and only if α33α44 ≡ α34α43

(mod `). So ε(x3, x4) 6= 1 with probability 1 − 1/`. Hence, we have a procedure
to �nd a basis of W .

Until now, we have found points x1 ∈ JC(Fq)[`] and x3, x4 ∈ W , such that
W = 〈x3, x4〉. Now, choose a random point x2 ∈ JC [`]. Write x2 = α1x1 +
α2y2 +α3y3 +α4y4. Then ε(x1, x2) = ζα2 , i.e. ε(x1, x2) = 1 if and only if α2 ≡ 0
(mod `). Thus, with probability 1−1/`, the set {x1, x2, x3, x4} is a basis of JC [`].

Summing up, if ` divides τk, then the following Algorithm 23 outputs gener-
ators of JC [`] with probability at least (1− 1/`n)2.

Algorithm 23. On input a Jacobian JC ∈ J(`, q, k, τk), the numbers `, q, k
and τk, the full embedding degree k0 of JC with respect to ` and a number n ∈ N,
if ` divides τk, then the following algorithm outputs a basis of JC [`] or �failure�.

1. Choose a random point O 6= x1 ∈ JC(Fq)[`].
2. Let i = j = 0. While i < n do the following:

(a) Choose a random point x2 ∈ JC(Fqk0 )[`].
(b) If ε(x1, x2) = 1, then i := i+ 1. Else i := n and j := 1.

3. If j = 0, then output �failure� and stop.
4. Let i = j = 0. While i < n do the following:

(a) Choose random points y3, y4 ∈ JC(Fqk0 )[`]; compute xν := q(yν−ϕ(yν))−
ϕ(yν − ϕ(yν)) for ν = 3, 4.

(b) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.
5. If j = 0, then output �failure�. Else output {x1, x2, x3, x4}.

8.3 The complete algorithm

Combining Algorithm 22 and 23, we obtain the desired algorithm to �nd gener-
ators of JC [`].
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Algorithm 24. On input a Jacobian JC ∈ J(`, q, k, τk), the numbers `, q, k
and τk, the full embedding degree k0 of JC with respect to ` and a number n ∈ N,
the following algorithm outputs a basis of JC [`] or �failure�.

1. If ` - τk, run Algorithm 22 on input (JC , `, q, k, τk, k0, n).
2. If ` | τk, run Algorithm 23 on input (JC , `, q, k, τk, k0, n).

Theorem 25. Let JC be a J(`, q, k, τk)-Jacobian of full embedding degree k0

with respect to `. On input (JC , `, q, k, τk, k0, n), Algorithm 24 outputs generators
of JC [`] with probability at least (1− 1/`n)2. We expect Algorithm 24 to run in

O

(
log ` log

qk0 − 1
`

k0
3 log k0 log q

)

�eld operations in Fq (ignoring log log q factors).

Proof. We must compare the cost of the steps in Algorithm 24. From [5, proof of
Proposition 4.6], [7, proof of Corollary 1] and [17] we get the following estimates:
(1) Choosing a random point on JC(Fqa) for some power a ∈ N takes O(a log q)
�eld operations in Fqa , and computing a multiple [m](P ) of a point P ∈ JC(Fqa)
takes O(a log q) �eld operations in Fqa . (2) Evaluating the qa-power Frobenius
endomorphism of the Jacobian on a point P ∈ JC [`] takes O(a log q) �eld ope-
rations in Fqa . (3) Evaluating the Tate pairing on two point of JC(Fqk0 )[`] takes
O(log `) �eld operations in Fqk0 . The Weil pairing can be computed by com-

puting two Tate pairings, raising the results to the power qk0−1
` and �nally

computing the quotient of these numbers; see [8]. The exponentiation takes

O(log qk0−1
` ) �eld operations in Fqk0 , and a division takes O(k0

2) �eld opera-
tions in Fqk0 . Hence, evaluating the Weil pairing on two point of JC(Fqk0 )[`]

takes O(log `)O(log qk0−1
` )O(k0

2) �eld operations in Fqk0 . (4) By using fast mul-
tiplication techniques, one �eld operation in Fqa takes O(log qa log log qa) =
O(a log a log q) �eld operations in Fq (ignoring log log q factors).

We see that the pairing computation is the most expensive step in Algo-

rithm 24. Thus, Algorithm 24 runs in O(log ` log qk0−1
` k0

3 log k0 log q) �eld ope-
rations in Fq (ignoring log log q factors). ut

9 Implementation issues

To check if ` rami�es in Q(ωk) in the case where ` divides τk, a priori we need
to �nd a qk-Weil number ωk of the Jacobian JC . On Jacobians generated by the
complex multiplication method [23, 10, 4], we know the Weil numbers in advance.
Hence, Algorithm 24 is particularly well suited for such Jacobians.

Fortunately, most likely ` does not divide τk, and then we do not have to �nd
a qk-Weil number (` divides a random number n ∈ Z with vanishing probability
1/`). And if the Weil polynomial splits in distinct linear factors modulo `, then
we do not even have to compute τk. To see this, assume that the Weil polynomial
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of JC splits as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `) ,

where α 6≡ 1, q, q/α (mod `). Let ϕ be the q-power Frobenius endomorphism
of JC , and let Pk(X) be the characteristic polynomial of ϕk. Then

Pk(X) ≡ (X − 1)2(X − αk)(X − 1/αk) (mod `) .

If ` divides τk, then JC [`] ⊆ JC(Fqk); cf. Theorem 9. But then Pk(X) ≡ (X−1)4

(mod `). Hence,

` divides τk if and only if αk ≡ 1 (mod `). (3)

Assume αk ≡ 1 (mod `). Then Pk(X) ≡ (X − 1)4 (mod `). Hence,

` rami�es in Q(ωk) if and only if ωk /∈ Z. (4)

See [20, Proposition 8.3, p. 47]. Here, ω is a q-Weil number of JC .
Consider the case where αk ≡ 1 (mod `) and ωk ∈ Z. Then ω =

√
qeinπ/k

for some n ∈ Z with 0 < n < k. Assume k divides mn for some m < k. Then
ω2m = qm ∈ Z. Since the q-power Frobenius endomorphism is the identity on
the Fq-rational points on the Jacobian, it follows that ω2m ≡ 1 (mod `). Hence,
qm ≡ 1 (mod `), i.e. k divides m. This is a contradiction. So n and k has no
common divisors. Let ξ = ω2/q = ein2π/k. Then ξ is a primitive kth root of unity,
and Q(ξ) ⊆ Q(ω). Since [Q(ω) : Q] ≤ 4 and [Q(ξ) : Q] = φ(k), where φ is the
Euler phi function, it follows that k ≤ 12. Hence,

if αk ≡ 1 (mod `), then ωk ∈ Z if and only if k ≤ 12. (5)

The criteria (3), (4) and (5) provides the following e�cient algorithm to check
whether a given Jacobian is of type J(`, q, k, τk), and whether ` divides τk.

Algorithm 26. Let JC be the Jacobian of a genus two curve C. Assume that
the odd prime number ` divides the number of Fq-rational points on JC , and
that ` divides neither q nor q−1. Let k be the multiplicative order of q modulo `.

1. Compute the Weil polynomial P (X) of JC . Let P (X) ≡ ∏4
i=1(X − αi)

(mod `).
2. If αk

i 6≡ 1 (mod `) for an i ∈ {1, 2, 3, 4}, then output �JC ∈ J(`, q, k, τk)
and ` does not divide τk� and stop.

3. If k > 12 then output �JC /∈ J(`, q, k, τk)� and stop.
4. Output �JC ∈ J(`, q, k, τk) and ` divides τk� and stop.
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