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Structural properties of reflected Lévy processes

Lars Nørvang Andersen & Michel Mandjes∗

Abstract

This paper considers a number of structural properties of reflected Lévy pro-
cesses, where both one-sided reflection (at 0) and two-sided reflection (at both
0 and K > 0) are examined. With Vt being the position of the reflected pro-
cess at time t, we focus on the analysis of ζ(t) := EVt and ξ(t) := VarVt.
We prove that for the one- and two-sided reflection we have ζ(t) is increasing
and concave, whereas for the one-sided reflection we also show that ξ(t) is
increasing. In most proofs we first establish the claim for the discrete-time
counterpart (that is, a reflected random walk), and then we use a limiting
argument. A key step in our proofs for the two-sided reflection is a new repre-
sentation of the position of the reflected process in terms of the driving Lévy
process.
Keywords Complete monotonicity, Lévy processes, One/Two-sided reflec-
tion, Mean function, Variance function, Stationary increments, concordance.
Mathematics Subject Classification (2000) Primary 60K25 Secondary
60F05 90B22

1 Introduction

In this paper we consider structural properties of reflected Lévy processes, where
both one-sided reflection (at 0) and two-sided reflection (at both 0 and K > 0) are
examined. We assume throughout that the reflected process is started at 0, and we
have that in the case of one-sided reflection, the position of the reflected process Vt is
given by St +Lt, where {St}t≥0 is the driving Lévy process, and {Lt}t≥0 is the local
time at 0, which can be written as − inf0≤s≤t Ss. In case of two-sided reflection, we
have a similar construction in the sense that Vt can be decomposed as St +Lt− L̄t,
with L̄t the local time at K, given as part of the solution to a Skorokhod problem,
but finding explicit solutions for Vt, in terms of Ss with 0 ≤ s ≤ t, is rather involved;
recently, such expressions have appeared in (10) and (11).

More precisely, we focus in this work on the analysis of two objects, viz. ζ(t) :=
EVt and ξ(t) := VarVt. Our goal is to prove a number of structural properties
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regarding the shape of these two functions. For the one-sided reflection, the function
ζ(·) was already examined in detail before. In Kella (7) it was shown that ζ(·) is
concave as long as the underlying Lévy process does not have any positive jumps,
relying on martingale techniques. This result was generalized by Kella and Sverchkov
(9) to general Lévy processes (in fact even just stationary increments are needed),
with an elementary proof that uses stochastic monotonicity. To our best knowledge,
however, there are no results for the two-sided counterpart, nor any results for the
variance function ξ(·).

The contributions of this paper are the following. In the first part of the paper
we consider the case of one-sided reflection.

• In Section 3 we consider the special case of a spectrally-positive Lévy process,
that is, a Lévy process without negative jumps. We present an elementary
proof of the fact that the expected value of the position at time t is con-
cave in t. Although this result was already covered by (7), we included it
because we believe the proof technique is interesting, and may be of use in
other situations as well. More particularly, the proof relies on the concept of
complete monotonicity to show that the desired property holds in the special
case of a compound Poisson Lévy process, and then uses a limiting argument
(approximating any spectrally-positive Lévy process by a suitable sequence of
compound Poisson processes).

• Section 4 focuses on one-sided reflection, but now we treat the case of gen-
eral Lévy input, roughly as follows. First we prove the desired result for the
discrete-time version of the Lévy process (which is a random walk), by means
of an extremely short and insightful argument. Then a limiting procedure
ensures that the concavity is preserved in continuous time, thus reestablishing
the result by (9). Importantly, the same method (that is, first proving the
desired property for the random walk, and then a limiting argument) can be
followed to prove the new result that the variance curve, i.e., ξ(t), is increasing
in t; the proof relies on the concept of ‘concordance’.

The second part of the paper concentrates on similar issues, but now in the setting
of a two-sided reflected Lévy process.

• As mentioned above, new explicit formulae for Vt (in terms of Ss for 0 ≤ s ≤ t)
have appeared recently. We derive in Section 5 a new explicit representation,
which is similar to the one found in (10), but somewhat shorter. This alter-
native representation carries over to continuous time, as argued in Section 6.

• Relying on the new representation for Vt for the case of two-sided reflection,
as presented in Section 6, in Section 7 we prove the new result that ζ(t) is an
increasing concave function of t. We do this by first proving the desired result
for the discrete-time counterpart, that is, a random walk reflected at 0 and K,
and then we use a limiting argument. We finish this second part with the
observation that the results carry over to the situation in which we just assume
stationary increments (rather than stationary independent increments).

The paper now continues with a section in which the model and some preliminaries
are given.
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2 Model, notation, and preliminaries

In this paper we study reflected versions of the Lévy process {St}t≥0. We distinguish
between one-sided and two-sided reflection.

• One-sided reflection (at 0). The reflection of {St}t≥0 at 0, which we denote
by {Vt}t≥0, can be formally introduced as follows, see for instance (2, Ch. IX).
Define the increasing process {Lt}t≥0 by Lt = − inf0≤s≤t Ss; this process is
commonly referred to as the local time at 0. Then the reflected process (or:
workload process, queueing process) {Vt}t≥0 is given through

Vt := St + max{Lt, V0};

observe that Vt ≥ 0 for all t ≥ 0. Throughout this paper the focus lies on the
special case that V0 = 0, and hence Vt = St + Lt. It is straightforward that
ζ(t) increases in t, using Proposition 3 p. 158 in (4).

• Two-sided reflection (at 0 and K > 0). Again starting off at 0, we now
have that the position of the reflected process at time t, i.e., Vt, is given by
Vt = St +Lt − L̄t, with the increasing process {L̄t}t≥0 denoting the local time
at K, given as part of the solution to a Skorokhod problem. In (10) an explicit
expression for Lt and L̄t (in terms of Ss with 0 ≤ s ≤ t) is given. In particular,

Vt = St − sup
s∈[0,t]

[(
(Ss −K) ∨ inf

u∈[0,t]
Su
) ∧ inf

u∈[s,t]
Su
]
.

We recall that we denote ζ(t) := EVt and ξ(t) := VarVt.

In Section 3 we consider the case in which the underlying Lévy process does not
have negative jumps (i.e., is spectrally-positive), and in which there is just reflection
at 0. Assuming stability (i.e., ES1 < 0), the Laplace exponent ϕ(α) := log Ee−αS1

is given by a function ϕ(·) : [0,∞) 7→ [0,∞) that is increasing and convex on
[0,∞), with slope ϕ′(0) = −ES1 in the origin. Therefore the inverse ψ(·) of ϕ(·)
is well-defined on [0,∞). In the sequel we rule out the trivial case that {St}t≥0 is
a (downward) subordinator, i.e., a monotone (decreasing) process. We throughout
assume that ϕ′′(0) is finite (unless stated otherwise).

Important examples of spectrally-positive Lévy processes are: (1) Brownian mo-
tion with drift, where ϕ(α) = −αµ+ 1

2
α2σ2. (2) Compound Poisson with drift. Jobs

arrive according to a Poisson process of rate λ; the jobs B1, B2, . . . are i.i.d. samples
from a distribution with Laplace transform β(α) := Ee−αB; the storage system is
continuously depleted at a rate −M < 0 (where M is often referred to as the drift).
It can be verified that ϕ(α) = Mα− λ+ λβ(α).

Using (2, Thm. IX.3.10) or (8), it is straightforward to prove that, as long as the
Lévy process is spectrally positive, µV := EV∞ = ϕ′′(0)/(2ϕ′(0)), and

ρ(ϑ) :=

∫ ∞
0

e−ϑtEVtdt =

∫ ∞
0

e−ϑtζ(t)dt = −ϕ
′(0)

ϑ2
+

1

ϑψ(ϑ)
. (2.1)
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3 One-sided reflection: spectrally-positive input

This section focuses on establishing a number of structural properties of ζ(·) for the
case of spectrally-positive Lévy input. As mentioned above, it is evident that ζ(·)
is positive and increasing; in this section we prove that it is concave as well. We do
this by extensively using the concept of completely monotonous functions (3; 13).
The desired result is first proven for the case of compound Poisson input; then we
show how to construct a sequence of compound Poisson processes approximating
any spectrally-positive Lévy process arbitrarily closely, which allows us to prove the
claim. The class C of completely monotone functions is defined as follows.

Definition 3.1. A function f(α) on [0,∞) is completely monotone if for all n ∈ N

(−1)n
dn

dαn
f(α) ≥ 0.

We write f(α) ∈ C .

The following deep and powerful result is due to Bernstein (3). It says that
there is equivalence between f(α) being completely monotone, and the possibility
of writing f(α) as a Laplace transform. For more background and basic properties
of completely monotone functions, see (6, pp. 439-442).

Theorem 3.2. [Bernstein] A function f(α) on [0,∞) is the Laplace transform of
a non-negative random variable if and only if (i) f(α) ∈ C , and (ii) f(0) = 1.

Let us consider the transforms of ζ ′(t) and ζ ′′(t). Using integration by parts, it
is readily checked that∫ ∞

0

e−ϑtζ ′(t)dt = −ϕ
′(0)

ϑ
+

1

ψ(ϑ)
.

In the M/G/1 setting we have that ψ(ϑ) = λ+ϑ−λπ(ϑ), where π(ϑ) is the Laplace
transform of the busy period, and the deterministic service rate has value 1; it is
assumed that −λβ′(0) < 1. Applying integration by parts once again yields that∫ ∞

0

e−ϑtζ ′′(t)dt = −ζ ′(0)− ϕ′(0) +
ϑ

ψ(ϑ)
= −

(
1− ϑ

ψ(ϑ)

)
,

using that

ζ ′(0) = lim
ϑ→∞

∫ ∞
0

ϑe−ϑtζ ′(t)dt = 1− ϕ′(0);

notice that the transform of ζ ′′(t) is only well defined when ϑ/ψ(ϑ) has a finite limit
as ϑ → ∞, which is indeed the case for compound Poisson input. The transform
can further be simplified to

− λ(1− π(ϑ))

λ(1− π(ϑ)) + ϑ
. (3.2)

Observe that Lemma 4.1 (item 1) of (13) entails that the negative of (3.2) is in C ,
thus proving that indeed in the M/G/1 context ζ ′′(t) is negative, i.e., ζ(t) is concave.
We have proved the following.
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Lemma 3.3. ζ(t) is concave for compound Poisson input processes with negative
drift (with one-sided reflection).

We now consider the context of a general spectrally-positive Lévy process, and
use Lemma 3.3 to prove that also in this setting ζ(t) is concave. We first recall
that the Laplace exponent ϕ(α) of a spectrally positive Lévy process can be writ-
ten as (4, Section VII.1), with M ∈ R, σ2 > 0, and measure Πϕ(·) such that∫

(0,∞)
min{1, x2}Πϕ(dx) <∞,

ϕ(α) = αM +
1

2
α2σ2 +

∫
(0,∞)

(e−αx − 1 + αx1(0,1))Πϕ(dx).

The idea is now to approximate the spectrally-positive Lévy process arbitrarily
closely by a sequence of compound Poisson processes. To this end, let (εn)n∈N
be a sequence of numbers in (0, 1], such that εn ↓ 0. Then we can rewrite ϕ(α) =
ϕn(α) + ϕ̄n(α), with

ϕn(α) =

(
M +

∫ 1

εn

xΠϕ(dx) +
σ2

εn

)
α +

σ2

ε2
n

(
e−αεn − 1

)
+

∫ ∞
εn

(
e−αx − 1

)
Πϕ(dx);

ϕ̄n(α) = σ2

(
1

2
α2 − e−αεn + αεn − 1

ε2
n

)
+

∫ εn

0

(
e−αx − 1 + αx

)
Πϕ(dx).

Let ψn(·) denote the inverse of ϕn(·).
Lemma 3.4. (i) For all α ≥ 0, ϕn(α)→ ϕ(α) as n→∞.

(ii) For all α ≥ 0, ϕ′n(α)→ ϕ′(α) as n→∞.
(iii) For all n ∈ N, ϕ′n(0) = ϕ′(0).

Proof. Straightforward calculations.

It is important to notice that, for any n ∈ N, ϕn(·) can be interpreted as the
Laplace exponent of a compound Poisson process (with negative drift), say {Sn,t}t≥0.
This is seen as follows. The drift term is(

M +

∫ 1

εn

xΠϕ(dx) +
σ2

εn

)
,

which is positive for n sufficiently large. Then, the term (σ2/ε2
n) · (e−αεn − 1) can

be interpreted as the contribution of a Poisson stream (arrival rate σ2/ε2
n) of jobs of

deterministic size εn. Also,∫ ∞
εn

(
e−αx − 1

)
Πϕ(dx) = Πϕ([εn,∞))

∫ ∞
εn

(
e−αx − 1

) Πϕ(dx)

Πϕ([εn,∞))
,

which is the contribution of a Poisson stream (arrival rate Πϕ([εn,∞))) of jobs, whose
sizes are i.i.d. samples from a ‘truncated distribution’ with density Πϕ(dx)/Πϕ([εn,∞)),
for x ≥ εn.
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Just as we introduced the reflected version {Vt}t≥0 of {St}t≥0, we can construct
the reflected version {Vn,t}t≥0 of {Sn,t}t≥0. Analogously to ζ(t), we denote ζn(t) :=
EVn,t. Note that, due to Lemma 3.4.(iii), the queueing processes {Vn,t}t≥0 are stable
(recall that we assumed ϕ′(0) > 0). From (2.1), we have that for any n ∈ N,

ρn(ϑ) :=

∫ ∞
0

e−ϑt ζn(t)dt = −ϕ
′(0)

ϑ2
+

1

ϑψn(ϑ)
. (3.3)

Corollary 3.5. For all n ∈ N, ζn(t) is positive (that is, larger than or equal to 0),
increasing (non-strictly), and concave (non-strictly).

Lemma 3.6. For all ϑ ≥ 0, ψn(ϑ)→ ψ(ϑ) as n→∞.
Proof. First observe that ϕn(α)→ ϕ(α) (Lemma 3.4) entails that, as n→∞,

|ψn(ϕ(α))− ψn(ϕn(α))| ≤ ∣∣ sup
ϑ≥0

ψ′n(ϑ)
∣∣ · |ϕ(α)− ϕn(α)| → 0,

where we used that ψn(·) is concave with slope 1/ϕ′(0) in 0. Hence it also holds
that ψn(ϕ(α)) converges, as n → ∞, to α = ψ(ϕ(α)). But as ϕ(α) is a bijection of
[0,∞) onto [0,∞), this proves the claim.

Proposition 3.7. ζ(t) is concave for spectrally-positive Lévy processes (with one-
sided reflection).

Proof. Our proof consists of the following steps.

(1) Using (3.3) and Lemma 3.6, we see that, for all ϑ ≥ 0,

lim
n→∞

ρn(ϑ) = ρ(ϑ) =

∫ ∞
0

e−ϑtζ(t)dt.

(2) Realize that, as ζn(·) is positive (that is, larger than or equal to 0), increas-
ing (non-strictly), and concave (non-strictly) due to Lemma 3.3, limn→∞ ζn(·)
(given it exists) inherits these properties.

(3) Because of dominated convergence (use that ζn(t) increases in t, and that
µV,n := ζn(∞)→ ζ(∞) = µV as n→∞; these observations immediately yield
an integrable majorizing function),

lim
n→∞

ρn(ϑ) = lim
n→∞

∫ ∞
0

e−ϑtζn(t)dt =

∫ ∞
0

e−ϑt lim
n→∞

ζn(t)dt.

(4) The uniqueness of the Laplace transform, together with Steps (1) and (3), now
implies that we have limn→∞ ζn(t) = ζ(t). Then Step (2) yields the stated.

This finishes the proof.

4 One-sided reflection: general Lévy input

In this section we prove that for the one-sided reflection we have ζ(t) is increasing
and concave, and that ξ(t) is increasing.
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4.1 Discrete-time case

Let X1, X2, . . . be an i.i.d. sequence of random variables, and define S0 := 0, Sn :=
X1 +X2 + · · ·+Xn, its associated random walk. Define the convex function Ψ(x) :=
max(0, x) = x+ and let {Vn}∞n=0 denote the reflected version of {Sn}∞n=0, that is,
Vn is given by the Lindley recursion Vn+1 := Ψ(Vn + Xn+1), initialized by V0 := 0.
By (2, Cor. III.6.4), Vn =D Mn, where Mn denotes the ‘running maximum’, i.e.,
max0≤k≤n Sk.

We say a sequence (an)∞n=0 is concave if an+2 +an ≤ 2an+1 ∀n, that is, if an+1−an
is decreasing. We now give an extremely short proof of the fact that ζ(n) := EVn is
a concave sequence.

Proposition 4.1. ζ(n) is concave for random walks (with one-sided reflection).

Proof. According to (2, Prop. VIII.4.5), we have that ζ(n) − ζ(n − 1) = ES+
n /n.

Furthermore, using (Xi, Sn) =D (X1, Sn) we have

Sn = E[Sn | Sn] =
n∑
i=1

E[Xi | Sn] =
n∑
i=1

E[X1 | Sn] = nE[X1 | Sn] a.s.

which implies E[X1 | Sn] = Sn/n a.s, which in turn implies E[Sn/n | Sn+1] =
Sn+1/(n + 1) a.s. and applying the conditional Jensen’s inequality to the convex
function Ψ(·), we conclude

S+
n+1

n+ 1
= Ψ

(
E
[
Sn
n
| Sn+1

])
≤ E

[
Ψ

(
Sn
n

)
| Sn+1

]
= E

[
S+
n

n
| Sn+1

]
a.s.,

and taking means on both sides yields the desired result.

Our next goal is to prove that for the random walk introduced above ξ(n) =
Var(Sn) increases in n. We do so by using the concept of concordance, cf. the
results of (12). Here, a pair of random variables (X, Y ) or its distribution function
F is said to be positively quadrant dependent if

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) ∀x, y.

According to Lemma 3 of (12) it holds that positively quadrant dependence implies
that the covariance between X and Y is non-negative: Cov(X, Y ) ≥ 0. Furthermore,
we define a two real-valued functions r, s to be concordant for the i-th coordinate if,
considered as functions of the i-th coordinate (with all other coordinates held fixed)
they are either both non-decreasing or both non-increasing. The main result in (12),
which we will use below, is the following.

Theorem 4.2. [Lehmann] Let (X1, Y1), . . . , (Xn, Yn) be independent with distribu-
tion functions F1, . . . , Fn, and let Fi be concordant for the i-th coordinate. Set

X := r(X1, . . . , Xn), Y := s(Y1, . . . , Yn).

Then (X, Y ) is positively quadrant dependent.
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In particular, since (X,X) is positively quadrant dependent, we have

Cov(r(X1, X2, . . . , Xn), s(X1, X2, . . . , Xn)) ≥ 0

if the Xi’s are independent and r and s are concordant for all coordinates. Using
this insight, we can prove the following result.

Theorem 4.3. ξ(n) is increasing for random walks (with one-sided reflection).

Proof. Using the identity

Var(X+Y ) = Cov(X,X)+2Cov(X, Y )+Cov(Y, Y ) = Cov(X,X)+Cov(2X+Y, Y )

with X ≡Mn−1 and Y ≡ (Sn −Mn−1) · I(Mn−1 < Sn) (where I(A) is the indicator
function of the event A), we obtain that Var(Mn) equals Var(Mn−1) + jn, where

jn := Cov(2Mn−1 + (Sn−Mn−1) · I(Mn−1 < Sn), (Sn−Mn−1) · I(Mn−1 < Sn)),

and therefore the proof is complete if we can show that jn ≥ 0. For x := (x1, . . . , xn) ∈
Rn, we set sn ≡ sn(x) := x1 + · · · + xn and mn ≡ mn(x) = max(0, s1, . . . , sn), and
we define functions

rn(x) = 2mn−1 +(sn−mn−1) ·I(sn > mn−1), tn(x) = (sn−mn−1) ·I(sn > mn−1),

so that we have that jn = Cov(rn(X), tn(X)). Hence, we wish to prove that rn and tn
are concordant in all coordinates. We shall show that both functions are increasing
in all their coordinates. To this end first rewrite t(x) as max(t̂(x), 0), where

t̂(x) = min(x1 + · · ·+ xn−1, x2 + · · ·+ xn−1, . . . , 0) + xn,

which is evidently increasing in all its coordinates. Finally, regarding rn, we notice
that since rn(x) = 2mn−1 + tn(x) and the fact that the term 2mn−1 = 2 max(x1 +
· · ·+ xn−1, . . . , 0) is increasing, we see that so is rn, and we are done.

4.2 Continuous-time case

We now consider a Lévy process {St}t≥0, as well as its reflection at 0, denoted by
{Vt}t≥0. We wish to extend Prop. 4.1 and Th. 4.3 to Lévy processes, that is, we
wish to prove that ζ(·) is, and ξ(·) is increasing. We prove the former by showing
that for given 0 ≤ x < y < z we have

ζ(y)− ζ(x)

y − x ≥ ζ(z)− ζ(x)

z − x ,

which is an alternative characterization of concavity. We throughout assume that
ES1 < 0 and ES2

1 < ∞, which is a natural assumption, since it implies that
limt→∞ ζ(t) <∞, as proven in (1, Cor. 4.2).

Let 0 ≤ x < y < z be given, and let T ∈ R be any number larger than z. In the
sequel we use bold fonts to denote the corresponding process between 0 and T ; for
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instance, S := {St}0≤t≤T . Define the one-sided reflection mapping S : D[0, T ] →
D[0, T ] by

S [x](t) := x(t)− inf
s≤t

x(s) for x ∈ D[0, T ].

This means that the value of the reflected process at time t, that is, Vt, is alterna-
tively written as S [S](t).

We define the sequence Sn := {Snt }t≥0 by Snt = Sbntc/n, n ∈ N, 0 ≤ t ≤ T ,
which, as shown below, approximates the Lévy process S sufficiently well for our
purposes. We also introduce the reflected version V n

t = S [Sn](t) of the elements of
the sequence Sn. Let ζn(·) and ξn(·) be defined in a self-evident manner as piecewise
constant functions.

We prove our claims on ζ(·) and ξ(·) by first showing that S [Sn] converges
weakly to S [S] in the Skorokhod topology, by which we mean the J1-topology on
D[0, T ]; see (15) for background on the J1-topology. This result will be used to
prove uniform convergence of the ζn(·) and ξn(·) functions, which is needed in order
to extend our discrete-time results to continuous time.

Lemma 4.4. V n
t →D Vt, as n→∞.

Proof. First we prove Sn →D S, n → ∞ in D[0, T ] equipped with the Skorokhod
topology, under the assumption that ES1 = 0 (which we later generalize to any value
of ES1 6= 0). To this end, we need to prove convergence of the corresponding finite-
dimensional distributions, as well as tightness. We notice that there is pointwise
convergence, i.e., Snt = Sbntc/n → St as n → ∞, as a direct consequence of the fact
that S is right-continuous. Furthermore, for s < t,

(Snt − Sts, Sns ) = (Sbntc/n − Sbnsc/n, Sbnsc/n)→D (St − Ss, Ss),
applying (i) Snt → St, (ii) independence of the components of this random vector,
and (iii) (5, Thm. 3.2). The case with more than two time points is dealt with analo-
gously, and we have thus proved convergence of the finite-dimensional distributions.
Regarding tightness, we have, for t1 ≤ t ≤ t2 and σ2 := Var(S1),

E(Snt − Snt1)2(Snt2 − Snt )2 =
σ4

n2
(bntc − bnt1c)(bnt2c − bntc) ≤ σ4(t2 − t1)2 ,

where the last inequality is due to (5, Eqns. (16.4)-(16.5)). Tightness now follows
as a direct application of (5, Thm. 15.6).

The case where ES1 =: µ 6= 0 follows by defining processes Ŝ
n

through

Ŝnt := Sbntc/n − µbntc
n

,

and using the above to conclude that Ŝ
n→D Ŝ. Furthermore, µbntc/n → µt uni-

formly, and therefore also in the Skorokhod topology. Since {µt} is continuous, the
functions {St + µt} and {µt} have no common discontinuity points and therefore

Sn =

{
Sbntc/n − µbntc

n

}
+

{
µbntc
n

}
→D {St − µt}+ {µt} = S.
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This completes to proof of the weak convergence Sn→D S.
Next, we use the Skorokhod Representation Theorem, i.e., (15, Thm. 3.2.2), to

construct a sequence of processes

S̃
n

=
{
S̃ns
}
s≥0

, n ∈ N,

with S̃
n

=D S
n such that

lim
n→∞

S̃
n

= S̃ a.s. in the Skorokhod topology on D[0, T ],

where S̃=D S. Since S is continuous in the Skorokhod topology (15, Thm. 13.5.1),
we have

lim
n→∞

{
S [S̃

n
]
}

=
{
S [S̃]

}
a.s.

Furthermore, since P(∆S [S̃
n
](t) 6= 0) ≤ P(∆S̃t 6= 0) = 0 for all t ≥ 0 we conclude,

relying on (5, p. 121), that S [S̃
n
](t)→ S [S̃](t) as n→∞, a.s., 0 ≤ t ≤ T. Since al-

most sure convergence implies weak convergence, it holds that S [S̃
n
](t)→D S [S̃](t)

which together with S̃ =D S implies S [Sn](t)→D S [S](t), 0 ≤ t ≤ T, or, in other
words, V n

t →D Vt for all 0 ≤ t ≤ T .

Lemma 4.5. As n→∞,

sup
0≤y<∞

|ζn(y)− ζ(y)| → 0.

As n→∞, for a, b ≥ 0,

sup
a≤y≤b

|ξn(y)− ξ(y)| → 0

Proof. ζn(t)→ ζ(t) follows from Lemma 4.4 and dominated convergence, using that
V n
t ≤ supt≤T St − inft≤T St; here realize that E[supt≤T St] <∞ (because of the fact

that E[supt≤T St] ≤ limt→∞ EVt < ∞), and also E[− inft≤T St] < ∞ (due to (2,
Lemma IX.3.3)).

The stated uniform convergence is now a consequence of Corollary A.2, after
extending the function ζn(t) and ζ(t) to the negative half-line by equating them to
0 for t < 0, and by noticing that EV n

t ≤ EVt ≤ limt→∞ EVt <∞.
Similarly, the result for ξ(t) is a consequence of Corollary A.2, after noting that

both E(supt≤T St)
2 and E[(inft≤T St)2] are finite, as follows from (2, Lemma IX.3.3).

To prove that the function ζ(·) is concave, we have to circumvent the difficulty
that the functions ζn(·), being piecewise constant, themselves are not concave. This
is done by defining a linear interpolation, which is concave, see (4.4) below.

Note that, with a slight abuse of notation, from now on we allow the one-sided
reflection mapping to be applied to sequences, so that

S [a](n) = an − min
0≤i≤n

ai a = (ai)
∞
i=0 ∈ R∞.
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Theorem 4.6. ζ(t) is concave, and ξ(t) is increasing for Lévy processes (with one-
sided reflection).

Proof. We start by proving the claimed concavity of ζ(·). Let n ∈ N be fixed and
consider a sequence of i.i.d. random variables {Y n

i }i=1 such that Y n
1 =D S1/n. Then

Sn =D

{bntc∑
i=1

Y n
i

}
t≥0

,

defining empty sums as 0. Now consider the random walk T nm :=
∑m

i=1 Y
n
i , and

its reflected version (S [T n](k))∞k=1, and set sn(k) := E[S [T n](k)]. We know from
Prop. 4.1 that the sequence (sn(m))∞m=1 is concave, and hence so is the following
function (which linearly interpolates):

ζ̄n(t) := n(sn(bntc+1)−sn(bntc))t+(bntc+1)sn(bntc)−sn(bntc+1)btnc. (4.4)

Note that ζ̄n(bntc/n) = sn(bntc) = E[V n
t ] and ζ̄n((bntc + 1)/n) = sn(bntc + 1) =

E[V n
t+ 1

n

], the latter being seen by realizing that

sn(bntc+ 1) = ES [T n](bntc+ 1) = ES [T n](bn(t+ 1/n)c)
= ES [Sn] (t+ 1/n) = E[V n

t+ 1
n
].

By concavity of ζ̄n(·), we have, for x < y < z and any n ∈ N,

ζ̄n(y)− ζn(x)

y − x ≥ ζ̄n(z)− ζ̄n(x)

z − x .

Since n was arbitrary, we may let n approach infinity to obtain

ζ(y)− ζ(x)

y − x ≥ ζ(z)− ζ(x)

z − x ,

using ζn(t) = ζ̄n(bntc)/n) ≤ ζ̄n(t) ≤ ζ̄n(dnte)/n) = ζn(t + 1/n) and the uniform
convergence established in Lemma 4.5.

Next, we define ξn(t) := VarV n
t , and vn(k) = Var(S [T n]). From Prop. 4.1 we

have, for t1 ≤ t2, ξ
n(t1) = vn(bnt1c) ≤ vn(bnt2c) = ξn(t2), and letting n tend to

infinity and invoking the convergence of ξn, as given by Lemma 4.5, we conclude
that ξ(t1) ≤ ξ(t2).

5 Two-sided reflection: solution of Lindley

recursion in discrete time

Let, as before, X = (Xn)∞n=1 ∈ R∞ be an i.i.d. sequence, and S0 := 0, Sn =
X1 + · · ·+Xn, for n ≥ 1. Where the previous sections studied the one-sided Lindley
recursion, we now consider a variant in which there is reflection at K > 0 as well:

Vn+1 = 0 ∨ (Vn +Xn+1) ∧K;
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we say that the random walk has two reflecting barriers, viz. 0 and K. We write
the Vn obtained through this procedure as D [S](n) (analogously to S [S](n)).

In the discrete-time, one-sided case, as mentioned before, the Lindley recursion
was solved through

S [s](n) = sn − min
0≤i≤n

si,

for s = (si)
∞
i=0 ∈ R∞. Our first goal is to find the counterpart of this solution for

the case of two-sided reflection. This is done in the following result. We denote, for
a finite index set A,

min
j∈A

(aj, bk) := min
j∈A

aj ∧ bk.

Proposition 5.1. The solution of the two-sided reflection is given by

D [s](n) = max
k∈{0,...,n}

(
min

j∈{k,...,n}
(sn − sk, K + sn − sj)

)
(5.5)

Proof. We prove the claim by induction. For n = 1 we indeed have

max
k∈{0,1}

( min
j∈{k,1}

(s1 − sk ∧K + s1 − sj))
= max(min(s1, K + s1, K),min(0, K)) = 0 ∨ x1 ∧K = D [s](1).

Now, assume (5.5) holds for some n. We first focus on the case xn+1 ≤ 0. Then we
have that

D [s](n+ 1) = vn+1 = 0 ∨ (vn + xn+1) ∧K = 0 ∨ (vn + xn+1)

= 0 ∨ ( max
k∈{0,...,n}

(
min

j∈{k,...,n}
(sn − sk, K + sn − sj)

)
+ xn+1

)
= 0 ∨ ( max

k∈{0,...,n}

(
min

j∈{k,...,n}
(sn+1 − sk, K + sn+1 − sj)

))
. (5.6)

Since xn+1 ≤ 0, we have

min
j∈{k,...,n+1}

sn+1 − sj = min
j∈{k,...,n}

sn+1 − sj,

so that (5.6) equals

0 ∨ ( max
k∈{0,...,n}

(
min

j∈{k,...,n+1}
(sn+1 − sk, K + sn+1 − sj)

))
= max

k∈{0,...,n+1}

(
min

j∈{k,...,n+1}
(sn+1 − sk, K + sn+1 − sj)

)
, (5.7)

as desired. Similarly, when xn+1 > 0 we have:

vn+1 = 0 ∨ (vn + xn+1) ∧K = (vn + xn+1) ∧K
=
(

max
k∈{0,...,n}

(
min

j∈{k,...,n}
(sn − sk, K + sn − sj)

)
+ xn+1

) ∧K
= max

k∈{0,...,n}

(
min

j∈{k,...,n}
(sn+1 − sk, K + sn+1 − sj) ∧K

)
,

which equals (5.7) as well, as desired. This finishes the proof.
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Remark 5.2. To see why the doubly-reflected has the particular form (5.5), we
may, for n ≥ k, define wkn to be the value obtained by applying the recursion
wkn+1 = (wkn + xn+1) ∧K to the increments xk+1, xk+2, . . . , with wkk = 0. Let vn be
the sequence of outcomes of the two-sided reflection.

Then wkn = minj∈{k,...,n}(sn − sk, K + sn − sj), and obviously wkn ≤ vn. But vn
has to be one of the wkn for some k ∈ {0, . . . , n}, namely the largest i such that
vi = 0. Therefore vn = maxk∈{0,...,n}wkn, so that we obtain (5.5). This explains why
this specific expression comes out. ♦

Next, we present an alternative expression for D [s], which we will need when we
treat the continuous-time case.

Proposition 5.3. The solution of the two-sided reflection is given by

D [s](n) = min
k∈{0,...,n}

[(
(sn − sk +K) ∧ max

i∈{0,...,n}
(sn − si)

) ∨ max
i∈{k,...,n}

(sn − si)
]
(5.8)

Proof. The proof is again by induction. The case n = 1 is a matter of straightforward
verification. Next, assume the stated holds for some n. Then we have

D [s](n+ 1) = 0 ∨ (vn + xn+1) ∧K
= 0 ∨

(
min

k∈{0,...,n}

[(
(sn − sk +K) ∧ max

i∈{0,...,n}
(sn − si)

)
∨ max
i∈{k,...,n}

(sn − si)
]

+ xn+1

)
∧K

= 0 ∨ min
k∈{0,...,n}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n}
(sn+1 − si)

)
∨ max
i∈{k,...,n}

(sn+1 − si)
]
∧K

= min
k∈{0,...,n}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n}
((sn+1 − si) ∨ 0)

)
∨ max
i∈{k,...,n}

((sn+1 − si) ∨ 0)
]
∧K

= min
k∈{0,...,n}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n+1}
(sn+1 − si)

)
∨ max
i∈{k,...,n+1}

(sn+1 − si)
]
∧K. (5.9)

We notice that(
(sn+1 − sk +K) ∧ max

i∈{0,...,n+1}
(sn+1 − si)

) ∨ max
i∈{k,...,n+1}

(sn+1 − si)

=

{
maxi∈{0,...,n+1}(sn+1 − si) if k = 0;
maxi∈{0,...,n+1}(sn+1 − si) ∧K if k = n+ 1,

so that (5.9) equals

min
k∈{0,...,n+1}

[(
(sn+1 − sk +K) ∧ max

i∈{0,...,n+1}
(sn+1 − si)

) ∨ max
i∈{k,...,n+1}

(sn+1 − si)
]

This proves the claim.
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The expressions (5.5) and (5.8) provide two solutions to the two-sided Lindley
recursion. Since the latter is a discrete-time analogue of the two-sided reflection
mapping found in (10), Proposition 5.1 suggests an alternative expression for the
two-sided reflection mapping. Our next goal is to formulate and prove this. We do
this in the next section.

6 Two-sided reflection: solution of Lindley

recursion in continuous time

The starting point of two-sided reflection in 0 and K > 0 in the continuous time
case, is the Skorokhod problem. Given ψ ∈ D[0,∞) there exists a functional D [ψ]
taking only values in [0, K] and non-decreasing functions η` and ηu such that

D [ψ] = ψ+η`−ηu,
∫ ∞

0

I(D [ψ](s) > 0)dη`(s) = 0,

∫ ∞
0

I(D [ψ](s) < K)dηu(s) = 0.

The triple (D [ψ], η`, ηu) is said to solve the Skorokhod problem for ψ on [0, K], and
we think of D [ψ] as ψ reflected at 0 and K. The existence and uniqueness of such
a triple was established in (14), and explicit solutions were given in (11) and (10),
the simplest of which is

D [ψ](t) = ψ(t)− sup
s∈[0,t]

[(
(ψ(s)−K)) ∨ inf

u∈[0,t]
ψ(u)

) ∧ inf
u∈[s,t]

ψ(u)
]
, (6.10)

where we assume ψ(0) = 0; notice that this is the continuous-time counterpart
of (5.8). In view of Props. 5.1 and 5.3 it seems reasonable to conjecture that D = M ,
where

M [ψ](t) := sup
s∈[0,t]

[
(ψ(t)− ψ(s)) ∧ inf

u∈[s,t]
(K + ψ(t)− ψ(u))

]
. (6.11)

We prove this by first showing that M is Lipschitz-continuous in the J1 topology.

Lemma 6.1. The mapping M is Lipschitz-continuous in the uniform and J1 metrics
as a mapping from D[0, T ] for T ∈ [0,∞], with constant 2.

Proof. We follow the proof of Corollary 1.5 in (11) closely. Fix T < ∞. We start
by proving Lipschitz-continuity in the uniform metric. Define

Rt[ψ](s) :=
[
(−ψ(s)) ∧ inf

u∈[s,t]
(K − ψ(u))

]
; S[ψ](t) := sup

s∈[0,t]

Rt[ψ](s). (6.12)

For ψ1, ψ2 ∈ D[0, T ] we have

S[ψ1](t)− S[ψ2](t) ≤ sup
s∈[0,t]

(Rt[ψ1](s)−Rt[ψ2](s))

≤ sup
s∈[0,t]

[|−ψ1(s)− (−ψ2(s))| ∨
∣∣ inf
u∈[s,t]

(K − ψ1(u))− inf
u∈[s,t]

(K − ψ2(u))
∣∣]

≤ ‖ ψ1 −ψ2 ‖T .
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The same inequality applies to S[ψ2](t) − S[ψ2](t), so that taking the supremum
leads to

‖ S[ψ1]− S[ψ2] ‖T≤‖ ψ1 −ψ2 ‖T ,

and this proves Lipschitz-continuity, with constant 2:

‖M [ψ1]−M [ψ2] ‖T ≤‖ ψ1−ψ2 ‖ + ‖ S[ψ1]− S[ψt] ‖T ≤ 2 ‖ ψ1−ψ2 ‖T .

We now turn to the J1-metric, and we let M denote the class of strictly increasing
continuous functions from [0, T ] onto itself with continuous inverse. An elementary
verification yields that for ψ ∈ D[0, T ] and λ ∈M we have M [ψ ◦λ] = M [ψ] ◦λ.
With e being the identity, this leads to

dJ1(M [ψ1],M [ψ2]) = inf
λ∈M
{‖M [ψ1] ◦ λ−M [ψ2] ‖T ∨ ‖ λ− e ‖T}

= inf
λ∈M
{‖M [ψ1 ◦ λ]−M [ψ2] ‖T ∨ ‖ λ− e ‖T}

≤ inf
λ∈M
{2 ‖ ψ1 ◦ λ−ψ2 ‖T ∨ ‖ λ− e ‖T} ≤ 2dJ1(ψ1,ψ2),

where we used the Lipschitz-continuity in the uniform metric. This proves Lipschitz-
continuity in the J1 metric, again with constant 2; it is valid for every T < ∞ and
hence also for T =∞.

We are now ready to prove that D = M .

Theorem 6.2. For ψ ∈ D[0,∞) we have D [ψ](t) = M [ψ](t).

Proof. Let ψ ∈ D[0,∞) be given, and define γn and ψn by γn(t) := bntc/n, ψn(t) :=
ψ(γn(t)). Since γn → e in the uniform topology, we have γn →dJ1

e and hence
(ψ,γn)→ (ψ, e) in the strong version of the J1 topology (see p. 83 in (15)). Since e
is strictly increasing we may apply Theorem 13.2.2 in (15) to obtain ψn →dJ1

ψ. Fix
t < T , and consider ψ as element of D[0, T ]. Since the image ψn([0, T ]) is finite, we
may apply Props. 5.1 and 5.3, in conjunction with (6.10), to obtain D [ψn] = M [ψn].
Next, we let n → ∞ and use the J1-continuity of the D mapping proved in (11),
and the J1-continuity of M proved to obtain Lemma 6.1. We thus establish the
stated.

Remark 6.3. Letting K →∞ yields sups∈[0,t] [(ψ(t)− ψ(s))] , which is indeed the
standard one-sided reflection, S . ♦

7 Two-sided reflection: structural properties

In this section, we use the results proved in Sections 5 − 6 to prove that the mean
value of the position of a reflected Lévy process, on which a double reflection is
imposed, is an increasing and concave function. We thus establish the ‘two-sided
counterpart’ of the result presented in (9).
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Lemma 7.1. Let x ∈ R∞ be a sequence of real numbers, with cumulative sums
s ∈ R∞. Define, for a given m ∈ N, sm = (sn,m)n≥0, where sn,m := sm+n − sm. For
n ∈ N we have

D [s](m+ n)−D [sm](n) ≥ 0, (7.13)

and for n1, n2 ∈ N ,with n1 ≤ n2,

D [s](m+ n2)−D [sm](n2) ≤ D [s](m+ n1)−D [sm](n1). (7.14)

Proof. By (5.5) we have

D [sm](n) = max
k∈{0,...,n}

(
min

j∈{k,...,n}
(sn,m − sk,m, K + sn,m − sj,m)

)
= sn+m + max

k∈{0,...,n}

(
min

j∈{k,...,n}
(−sk+m, K − sj+m)

)
= sn+m + max

k∈{0,...,n}

(
min

j∈{k+m,...,n+m}
(−sk+m, K − sj)

)
= sn+m + max

m≤k≤n+m

(
min

j∈{k,...,n+m}
(−sk, K − sj)

)
,

so that D [s](m+ n)−D [sm](n) equals

max
k∈{0,...,n+m}

( min
j∈{k,...,n+m}

(−sk, K − sj))− max
k∈{m,...,n+m}

( min
j∈{k,...,n+m}

(−sk, K − sj))
≥ 0,

which proves (7.13). Turning to (7.14), we first notice that it is enough to prove the
statement for n2 = n1 + 1, and using the notation vn := D [s](n), vmn := D [sm](n)
we find

vm+n1+1 − vmn1+1 − (vn1+m − vmn1
)

= 0 ∨ vm+n1 + xm+n1+1 ∧K − 0 ∨ vmn1
+ xm+n+1 ∧K − (vn1+m − vmn1

),

which equals

−(vn1+m − vmn1
) if vm+n1 + xm+n1+1 < 0

vm+n1 + xm+n1+1 − (0 ∨ vmn1
+ xm+n1+1)

− (vn1+m − vmn1
) = (vmn1

+ xm+n1+1) ∧ 0

}
if vm+n1 + xm+n1+1 ∈ [0, K]

K − ((vmn1
+ xm+n1+1) ∧K)− (vn1+m − vmn1

)

= K + (−(vmn1
− xm+n1+1) ∨ (−K))

− (vn1+m − vmn1
)

= K + (−xm+n1+1 ∨ −K + vmn1
)− vn1+m

= (K − xm+n1+1 ∨ vmn1
)− vn1+m

= (K − xm+n1+1 − vn1+m) ∨ (vmn1
− vn1+m)


if vm+n1 + xm+n1+1 > K.

Now (7.14) follows, since −(vn1+m − vmn1
) ≤ 0.

The results of Lemma 7.1 are easily extended to a class of piecewise constant
functions.
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Lemma 7.2. Let ψ ∈ D[0,∞) be of the form

ψ(t) =
∞∑
i=0

siI([ai, a(i+ 1)))(t)

for s := (si)
∞
i=0 ∈ R∞, with s0 ≡ 0, a > 0. Define ψr ∈ D[0,∞) by ψr(t) :=

ψ(r + t)− ψ(r). Then

D [ψ](r + t)−D [ψr](t) ≥ 0, (7.15)

and, for t1 ≤ t2,

D [ψ](r + t2)−D [ψr](t2) ≤ D [ψ](r + t1)−D [ψr](t1). (7.16)

Proof. Assume a = 1, and write r = m + q for q ∈ [0, 1) and m = brc. Recall from
Lemma 7.1 the definition of sm, viz. sn,m := sm+n − sm. Then ψ(t) = sbtc and

ψr(t) = ψ(br + tc)− ψ(brc) = ψ(bq + tc+m)− ψ(m)

= sm+bq+tc − sm = sbt+qc,m ,

so that D [ψ](t) = D [s](btc) and D [ψr](t) = D [sm](bt + qc) where m = brc (which
can be verified by making an elementary picture). Using that br+ tc = brc+bt+qc,
we find that

D [ψ](r + t)−D [ψr](t) = D [s](brc+ bt+ qc)−D [sm](bt+ qc) ≥ 0

and

D [ψ](r + t2)−D [ψr](t2) = D [s](brc+ bt2 + qc)−D [sm](bt2 + qc)
≤ D [s](brc+ bt1 + qc)−D [sm](bt1 + qc) = D [ψ](r + t1)−D [ψr](t1).

Now choose an a 6= 1 arbitrarily. Define ψ̃(t) := ψ(at). Then ψ̃r(t) = ψar(at), and
D [ψ̃](t) = D [ψ](at), and D [ψ̃r](t) = D [ψar](at). Since (7.15) and (7.16) hold for
ψ̃ for any r, t ≥ 0 we find for the given r ≥ 0 that

D [ψ](r + t)−D [ψr](t) = D [ψ̃](r/a+ t/a)−D [ψ̃r/a](t/a) ≥ 0

and similarly

D [ψ](r + t2)−D [ψr](t2) = D [ψ̃](r/a+ t2/a)−D [ψ̃r/a](t2/a)

≤ D [ψ̃](r/a+ t1/a)−D [ψ̃r/a](t1/a) = D [ψ](r + t1)−D [ψr](t1).

This proves the claim.

We can now prove the continuous-time version of Lemma 7.1.

Lemma 7.3. Let ψ ∈ D[0,∞) and define ψr ∈ D[0,∞) by ψr(t) := ψ(r+ t)−ψ(r).
Then

D [ψ](r + t)−D [ψr](t) ≥ 0, (7.17)

and, for t1 ≤ t2,

D [ψ](r + t2)−D [ψr](t2) ≤ D [ψ](r + t1)−D [ψr](t1). (7.18)
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Proof. Define γn(t) := bntc/n, and ψn(t) = ψ(γn(t)). Then Lemma 7.2 applies to
ψn, and hence

D [ψn](r + t)−D [ψn
r ](t) ≥ 0, (7.19)

D [ψn](r + t2)−D [ψn
r ](t2) ≤ D [ψn](r + t1)−D [ψn

r ](t1). (7.20)

Using the same argument as in the proof of Theorem 6.2, we have ψn →dJ1
ψ.

We also have ψn
r →dJ1

ψr, since ψnr (t) = ψn(t + r) − ψn(r) and we regard −ψn(r)
as a constant function, which converges uniformly, and hence in the J1-topology as
well, to −ψ(r). In general, addition is not continuous in the J1 topology, but since
−ψ(r) is a constant function, t 7→ ψ(r+t) and −ψ(r) have no common discontinuity
points (where both are considered as function of t), and we have ψn

r →dJ1
ψr. We

wish to let n tend to infinity in (7.19) and (7.20), and we therefore assume that
r + t1 and r + t1 are both continuity points for ψ, which implies that they are
continuity points for D [ψ], and also that t1 and t2 are continuity points for D [ψr].
Under this assumption, we let n → ∞, and thus obtain (7.17) and (7.18) when
r, t1, t2 are continuity points. However, since D maps càdlàg functions to càdlàg
functions, we have that (7.17) and (7.18) hold for all r, t1, t2 whenever ψ ∈ D[0,∞),
as claimed.

We can now prove the main results.

Theorem 7.4. ζ(n) is increasing and concave for random walks (with two-sided
reflection).

Proof. Set S1
n := Sn+1 − S1, S

1 := {S1
n}∞n=0, and V 1

n = D [S1](n). By stationarity
of the increments we have {Sn} =D {S1

n} and {Vn} =D {V 1
n }. Using (7.13) with

m = 1 we have Vn+1 − V 1
n ≥ 0, and we see that ζ(n) is increasing by taking means.

Furthermore, by (7.14) we have n 7→ Vn+1 − V 1
n is decreasing, and taking means

implies that ζ(n) is concave.

Theorem 7.5. ζ(t) is increasing and concave for Lévy processes (with two-sided
reflection).

Proof. Define Sr by Srt = St+r−Sr. By the stationary increments we have Sr =D S
and D [Sr] =D D [S]. Set V r

t = D [Sr](t) and Vt = D [S](t). According to (7.17) and
(7.18) we have that Vr+t−V r

t ≥ 0 and also that t 7→ Vr+t−V r
t is decreasing. Taking

means yields the desired result.

The following statement follows immediately from the facts that Vn+1 − V 1
n ≥ 0

and Vs+t − V s
t ≥ 0.

Corollary 7.6. For any q ≥ 0, we have n 7→ EV q
n and t 7→ V q

t are increasing, both
for random walks and Lévy processes (with two-sided reflection).

Remark 7.7. The reader can verify that in the argumentation of this section, we
did not use that increments are independent — in fact all results, in particular
Thms. 7.4 and 7.5, hold under the assumption of just stationary increments. We
conclude that we have, in passing, extended the result by Kella and Sverchkov (9),
who considered processes with stationary increments reflected at 0, to the case of
two-sided reflection. ♦
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A Appendix

In this appendix we prove a number of results on uniform convergence.
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Lemma A.1. Let Fn(·), n = 1, 2, . . ., be a sequence of uniformly bounded increas-
ing functions, such that Fn(x) → F0(x) ∀x ∈ R, where F0 is continuous, and
limx→−∞ F0(x) =: F0(−∞) ≤ Fn(x) and Fn(x) ≤ F (∞) := limx→∞ F0(x) for all
n and x. Then

sup
−∞<y<∞

|Fn(y)− F0(y)| → 0

Proof. Without loss of generality, we may assume that 0 ≤ Fn(x) ≤ 1 for all x and
n. F0 is increasing, so the limits a := F (−∞) and b := F (∞) exist, and are finite,
and we may assume a = 0 and b = 1. Set F−1

0 (y) := inf{x ∈ R | F (x) = y} for
0 < y < 1 and F−1

0 (0) = −∞ and F−1
0 (1) =∞. Let k ∈ N, and set xkj := F−1

0 (j/k)
j = 0, 1, . . . k. Then for 0 ≤ j < k and xkj < x < xkj+1

Fn(xkj )− F0(x
k
j )− 1

k
= Fn(xkj )− F0(x

k
j+1) ≤ Fn(x)− F0(x)

≤ Fn(xkj+1)− F0(x
k
j ) = Fn(xkj+1)− F0(x

k
j+1) + 1

k
,

since Fn and F are increasing, and F is continuous. Continuing our calculation, we
obtain

|Fn(x)− F (x)| = max(Fn(x)− F0(x), F0(x)− Fn(x))

≤ max
j∈{0,...,k−1}

(
Fn(xkj+1)− F0(x

k
j+1) + 1

k
, F0(x

k
j )− Fn(xkj ) + 1

k

)
= 1

k
+ max

j∈{0,...,k−1}

(
Fn(xkj+1)− F0(x

k
j+1), F0(x

k
j )− Fn(xkj )

)
≤ 1

k
+ max

j∈{0,...,k}
|Fn(xkj )− F0(x

k
j )|,

and therefore

sup
−∞<x<∞

|Fn(x)− F (x)| ≤ 1
k

+ max
j∈{0,...,k}

|Fn(xkj )− F0(x
k
j )|.

Using that 0 ≤ limn Fn(−∞) ≤ F (y) for all y ∈ R we see that limn Fn(−∞) = 0,
and similarly, that limn Fn(∞) = 1, we obtain

lim
n→∞

sup
−∞≤j≤∞

|Fn(x)− F (x)| ≤ 1
k

Since k was arbitrary, the proof is complete.

Corollary A.2. Let Fn(·), n = 1, 2, . . ., be a sequence of increasing functions, such
that for some K > 0, a, b ∈ R : supx∈[a,b] |Fn(x)| ≤ K for all n, and Fn(x) → F0(x)
∀x ∈ [a, b], where F0 is continuous. Then

sup
a≤y≤b

|Fn(y)− F0(y)| → 0

Proof. Define F̃n for n = 0, 1, . . . by F̃n(t) := Fn(t) for t ∈ [a, b], F̃n(t) = Fn(a) for
t < a, and F̃n(t) = Fn(b) for t > b. By applying Lemma A.1, we obtain

sup
a≤y≤b

|Fn(y)− F0(y)| = sup
a≤y≤b

|F̃n(y)− F̃0(y)| ≤ sup
−∞≤y≤∞

|F̃n(y)− F̃0(y)| → 0
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