research reports

No. 502
February 2009
2009/02/04
J. Hoffmann-Jørgensen

Increasing Partitions of Unity

department of theoretical statistics

Increasing Partitions of Unity

J. Hoffmann-Jørgensen
Department of Mathematical Sciences
University of Aarhus, Denmark

Abstract

Let (T, \mathcal{B}, μ) be a measure space and let $f: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ be a function. Then we say that f is an increasing μ-partition of unity if $f(x, t)$ is increasing in x, measurable in t and $\int_{T} f(x, t) \mu(d t)=x$ for all $x \in \overline{\mathbf{R}}$. Increasing partitions of unity have a variety of applications which will be explored in the paper. For instance, applications include the Fubini-Tonelli theorem for upper and lower integrals and Fubini-integrals, measurability or upper (lower) semicontinuity of integral transforms, and construction of functions with a prescribed integral transform and satisfying a given set of (in)equalities.

1. Introduction Recall that (X, \leq) is a proset if X is a non-empty set equipped with a relation \leq satisfying $x \leq x \forall x \in X$ and $x \leq y, y \leq z \Rightarrow x \leq z$. Let (M, \preceq) be a proset and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing function where $\overline{\mathbf{R}}:=[-\infty, \infty]$ denotes the extended real line with its usual ordering. Then we let $m_{\Sigma}:=\inf _{\xi \in M} \Sigma(\xi)$ and $m^{\Sigma}:=\sup _{\xi \in M} \Sigma(\xi)$ denote the two extreme values of Σ. If S is a non-empty set and $\phi: S \rightarrow M$ is a given function, we let $\Sigma \phi(s):=\Sigma(\phi(s))$ denote the Σ-transform of ϕ for all $s \in S$. We say that $f: \overline{\mathbf{R}} \rightarrow M$ is an increasing Σ-partition of unity if f is increasing and $\Sigma f(x)=x$ for all $m_{\Sigma} \leq x \leq m^{\Sigma}$ or equivalently, if f is increasing and $\Sigma f(x)=m^{\Sigma} \wedge\left(x \vee m_{\Sigma}\right)$ for all $x \in \overline{\mathbf{R}}$. In Section 2, we shall apply the Hausdorff maximality principle to construct increasing partitions of unity satisfying a prescribed set of (in)equalities. Increasing partitions of unity have a variety of applications and in Section 3 and 4, we shall explore some of these applications.

Let (T, \mathcal{B}, μ) be a measure space. Then we let $\overline{\mathbf{R}}^{T}$ denote the set of all functions $f: T \rightarrow \overline{\mathbf{R}}$, we let $\bar{M}(T, \mathcal{B})$ denote the set of all $f \in \overline{\mathbf{R}}^{T}$ which are \mathcal{B}-measurable, and we let $L^{1}(T, \mathcal{B}, \mu)$ denote the set of all functions $f \in \bar{M}(T, \mathcal{B})$ which are μ-integrable. If $f, h: \in \overline{\mathbf{R}}^{T}$, we write $f \leq h$ if $f(t) \leq h(t)$ for all $t \in T$ and we write $f \leq_{\mu} h$ if $f(t) \leq h(t)$ for μ-a.a. $t \in T$. If $f \in \overline{\mathbf{R}}^{T}$, we let $\int^{*} f d \mu$ and $\int_{*} f d \mu$ denote the upper and lower μ-integral of f. If $f: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ is a given function, we say that f is an increasing μ-partition of unity if $f(x, \cdot)$ is \mathcal{B}-measurable for all $x \in \overline{\mathbf{R}}$ and $f(\cdot, t)$ is increasing on $\overline{\mathbf{R}}$ for all $t \in T$ and we have $f(x, \cdot) \in L^{1}(T, \mathcal{B}, \mu)$ and $\int_{T} f(x, t) \mu(d t)=x$ for all $x \in \mathbf{R}$. Note
$\left(\bar{M}(T, \mathcal{B}), \leq_{\mu}\right)$ is a proset and we say that $\Sigma: \bar{M}(T, \mathcal{B}) \rightarrow \overline{\mathbf{R}}$ is a μ-integral if Σ is increasing with respect to the preordering \leq_{μ} and satisfies

$$
\begin{align*}
& \Sigma(f)=\int_{T} f d \mu \forall f \in L^{1}(T, \mathcal{B}, \mu) \text { and if } f \in \bar{M}(T, \mathcal{B}) \text { and }|\Sigma(f)|<\infty \tag{1.1}\\
& \text { then we have } f \in L^{1}(T, \mathcal{B}, \mu)
\end{align*}
$$

Let (S, \mathcal{A}, ν) be a measure space. If ν and μ are sum-finite (see [3; p.171]), then the product measure $\nu \otimes \mu$ exists and we have (the Fubini-Tonelli theorem):

$$
\int_{*} \phi d(\nu \otimes \mu) \leq \int_{*} \nu(d s) \int_{*} \phi(s, t) \mu(d t) \leq \int^{*} \nu(d s) \int^{*} \phi(s, t) \mu(d t) \leq \int^{*} \phi d(\nu \otimes \mu)
$$

for all $\phi \in \overline{\mathbf{R}}^{S \times T}$. In Section 3, we shall how increasing partitions unity can be used to establish equality when $\phi(s, t)$ is measurable in t and increasing in s with respect some linear ordering on S. Moreover, we shall establish a Fubini-Tonelli inequality for the so-called Fubini integral:

Let S be a given set, let 2^{S} denote the set of all subsets of S and let $\rho: 2^{S} \rightarrow[0, \infty]$ be an increasing set function satisfying $\rho(\emptyset)=0$. If $f: S \rightarrow[0, \infty]$ is a non-negative function, we let $\int^{F} f d \rho:=\int_{0}^{\infty} \rho(s \mid f(s)>x) d x$ denote the Fubini integral of f; see [5]. Let $\mathcal{A} \subseteq 2^{S}$ be an algebra on S and let $\nu: \mathcal{A} \rightarrow[0, \infty]$ be a finitely additive content. Then we set $\mathcal{A}^{\circ}:=\{A \in \mathcal{A} \mid \nu(A)<\infty\}$ and if $C \subseteq S$, we define $\nu^{*}(C):=\inf _{A \in \mathcal{A}}, A \supseteq C \nu(A)$ and $\nu_{*}(C):=\sup _{A \in \mathcal{A}}, A \subseteq C D(A)$ and $\nu_{0}(C):=\sup _{A \in \mathcal{A}^{\circ}, A \subseteq C} \nu(A)$. We let $L^{1}(\nu)$ denote the set of all ν-integrable functions in the sense of [1; Def.III.2.17 p.112] and we let $\int^{*} f d \nu$ and $\int_{*} f d \nu$ denote the upper and lower ν-integrals for all $f \in \overline{\mathbf{R}}^{S}$; see [4]. If $h: S \rightarrow[0, \infty]$ is a non-negative function, we have (see [5]):

$$
\begin{equation*}
\int^{*} h d \nu=\int^{\digamma} h d \nu^{*} \text { and } \int_{*} h d \nu=\int^{\digamma} h d \nu_{\circ} \tag{1.2}
\end{equation*}
$$

If $x, y \in \overline{\mathbf{R}}$ are extended real numbers, we let $x \dot{+} y$ denote the usual extension of the addition with the convention $\infty \dot{+}(-\infty):=\infty$ and we let $x+y$ denote the usual extension of the addition with the convention $\infty+(-\infty):=-\infty$. We define $x \dot{-} y:=x \dot{+}(-y)$ and $x-y:=x+(-y)$. If $f: S \rightarrow \overline{\mathbf{R}}$ is an arbitrary function, we let $f_{+}(s):=f(s) \vee 0$ and $f_{-}(s):=f(s) \wedge 0$ denote the positive and negative parts of f for all $s \in S$. Then we have (see [5]):

$$
\begin{equation*}
\int^{*} f d \nu=\int^{*} f_{+} d \nu \dot{+} \int^{*} f_{-} d \nu \quad, \quad \int_{*} f d \nu=\int_{*} f_{+} d \nu+\int_{*} f_{-} d \nu \tag{1.3}
\end{equation*}
$$

If $\mathcal{L} \subseteq 2^{S}$, we let $\bar{W}(S, \mathcal{L})$ denote the set of all upper \mathcal{L}-functions; that is, the set of all $f: S \rightarrow \overline{\mathbf{R}}$ such that for all $-\infty<x<y<\infty$, there exists $L_{x y} \in \mathcal{L} \cup\{\emptyset, S\}$ satisfying $\{f>y\} \subseteq L_{x y} \subseteq\{f>x\}$. If \mathcal{L} is a σ-algebra on S, we have $\bar{W}(S, \mathcal{L})=\bar{M}(S, \mathcal{L})$. If S is topological space and \mathcal{L} is the set of all open (closed) subsets of S, then $\bar{W}(S, \mathcal{L})$ is the set of all lower (upper) semicontinuous functions $f: S \rightarrow \overline{\mathbf{R}}$. Let (T, \mathcal{B}, μ) be a measure space and let $\phi: S \times T \rightarrow \overline{\mathbf{R}}$ be a given function such that $\phi(s, t)$ is an upper \mathcal{L}-function in s and \mathcal{B}-measurable in t. In Section3, we shall see that increasing μ-partitions can used to establish criteria for the integral transform $s \curvearrowright \int_{T} \phi(s, t) \mu(d t)$ to be an upper \mathcal{L}-function.

Let (S, \leq) and (M, \preceq) be prosets and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing function. In Section 4, we shall see that increasing partitions unity can used to solve the following problem:
(IP) Let $\omega \in M$ be a given element and let $H: S \rightarrow \overline{\mathbf{R}}$ and $\phi: S \rightarrow M$ be increasing functions. Find necessary and/or sufficient conditions for the existence of a an increasing function $\psi: S \rightarrow M$ satisfying $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s)=H(s) \quad \forall s \in S$

Let me at this point recall the concepts concerning prosets, needed for our objective:
Let (X, \leq) be a proset and let $x, y \in X$ be given. Then we write $x<y$ if $x \leq y$ and $y \not \leq x$, we write $x \approx y$ if $x \leq y$ and $y \leq x$, and we introduce the following intervals:

$$
[*, x]=\{u \in X \mid u \leq x\}, \quad[x, *]=\{u \in X \mid u \geq x\}, \quad[x, y]=[x, *] \cap[*, y]
$$

Let $A, B \subseteq X$ be a given sets. Then we write $A \leq B$ if $x \leq y$ for all $x \in A$ and all $y \in B$, and we introduce the following intervals:

$$
[*, A]=\{u \in X \mid u \leq A\}, \quad[A, *]=\{u \in X \mid u \geq A\}, \quad[A, B]=[A, *] \cap[*, B]
$$

We say that A is a lower interval, resp. an upper interval, if $[*, u] \subseteq A$, resp. $[u, *] \subseteq A$, for all $u \in A$. We let $\vee A$ denote the set of all suprema of A; that is the set of all $x \in A$ satisfying $A \leq x$ and $x \leq y$ for all $y \in X$ satisfying $A \leq y$, and we define the set $\wedge A$ of all infima of A similarly. We say that A is cofinal in (B, \leq) if $A \subseteq B \subseteq \cup_{u \in A}[*, u]$ and we say that (A, \leq) is countably cofinal if (A, \leq) admits a countable, cofinal subset. We say that (X, \leq) is a lattice if $x \vee y \neq \emptyset$ and $x \wedge y \neq \emptyset$ for all $x, y \in X$, and we say that (X, \leq) is a σ-lattice if $\vee A \neq \emptyset$ and $\wedge A \neq \emptyset$ for every non-empty countable set $A \subseteq X$. We say that A is linear if for all $x, y \in A$ we have either $x \leq y$ or $y \leq x$, and we say that A is a maximal linearly ordered set if A is linear and $A=B$ for every linear set $B \supseteq A$. By Hausdorff's maximality principle (see [6; p.248]), we have that every linear set $A \subseteq X$ is contained in some maximal linearly ordered set, and observe that we have
(1.4) If $A \subseteq X$ is a maximal linearly ordered set, then we have $\vee B \subseteq A$ and $\wedge B \subseteq A$ for all $B \subseteq A$

Let $x, x_{1}, x_{2}, \ldots \in X$ be given elements. Then we write $x_{n} \uparrow x$, if $x_{1} \leq x_{2} \leq \cdots$ and $x \in \vee\left\{x_{n} \mid n \geq 1\right\}$, and we write $x_{n} \downarrow x$, if $x_{1} \geq x_{2} \geq \cdots$ and $x \in \wedge\left\{x_{n} \mid n \geq 1\right\}$.
2. Smoothness and the Darboux property Let (M, \preceq) be a proset and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing function. Then we let $m_{\Sigma}:=\inf _{\xi \in M} \Sigma(\xi)$ and
$m^{\Sigma}:=\sup _{\xi \in M} \Sigma(\xi)$ denote the two extreme values of Σ and we define

$$
\begin{aligned}
& L^{1}(\Sigma)=\{\xi \in M \mid-\infty<\Sigma(\xi)<\infty\} \\
& L_{*}(\Sigma)=\{\xi \in M \mid \Sigma(\xi)=-\infty\}, \quad L^{*}(\Sigma)=\{\xi \in M \mid \Sigma(\xi)=\infty\} \\
& \Sigma_{\vee} B=\inf _{\xi \in[B, *]} \Sigma(\xi), \quad \Sigma_{\wedge} B=\sup _{\xi \in[*, B]} \Sigma(\xi) \forall B \subseteq M \\
& \sup \Sigma B=\sup _{\xi \in B} \Sigma(\xi), \quad \inf \Sigma B=\inf _{\xi \in B} \Sigma(\xi) \forall B \subseteq M
\end{aligned}
$$

with the usual conventions $\inf \emptyset:=\infty$ and $\sup \emptyset:=-\infty$. Then we have

$$
\begin{align*}
& \sup \Sigma B \leq \Sigma_{\vee} B \text { and } \Sigma_{\vee} B=\Sigma(\xi) \quad \forall \xi \in \vee B \tag{2.1}\\
& \Sigma_{\wedge} B \leq \inf \Sigma B \text { and } \Sigma_{\wedge} B=\Sigma(\xi) \quad \forall \xi \in \wedge B
\end{align*}
$$

We say that Σ is smooth if for every non-empty linear set $B \subseteq M$, we have

$$
\begin{align*}
& -\infty<\sup \Sigma B<\infty \Rightarrow \exists \xi \in \vee B \text { so that } \Sigma(\xi)=\sup \Sigma B \tag{2.3}\\
& -\infty<\inf \Sigma B<\infty \Rightarrow \exists \xi \in \wedge B \text { so that } \Sigma(\xi)=\inf \Sigma B \tag{2.4}
\end{align*}
$$

We say that Σ has the Darboux property if for every pair $\xi, \eta \in M$, we have

$$
\begin{align*}
& \xi \preceq \eta, \quad \Sigma(\xi)<\Sigma(\eta)<\infty \Rightarrow \exists \kappa \in[\xi, \eta] \text { so that } \Sigma(\xi)<\Sigma(\kappa)<\Sigma(\eta) \tag{2.5}\\
& \xi \preceq \eta, \quad-\infty<\Sigma(\xi)<\Sigma(\eta) \Rightarrow \exists \kappa \in[\xi, \eta] \text { so that } \Sigma(\xi)<\Sigma(\kappa)<\Sigma(\eta) \tag{2.6}
\end{align*}
$$

We say that Σ has the strong Darboux property if Σ has the Darboux property and satisfies the following condition:
(2.7) If $\left(\xi_{n}\right) \subseteq L_{*}(\Sigma)$ and $\xi_{n} \uparrow \xi$ for some $\xi \in L^{1}(\Sigma)$, then for every increasing sequence $\left(c_{n}\right) \subseteq \mathbf{R}$ satisfying $c_{n} \uparrow \Sigma(\xi)$ and $c_{n}<\Sigma(\xi)$ for all $n \geq 1$, there exists an increasing sequence $\left(\eta_{n}\right) \subseteq M$ such that $\xi_{n} \preceq \eta_{n} \preceq \xi$ and $-\infty<\Sigma\left(\eta_{n}\right) \leq c_{n}$ for all $n \geq 1$

We say that Σ is order injective, if $\xi \approx \eta$ for all $\xi, \eta \in L^{1}(\Sigma)$ satisfying $\xi \preceq \eta$ and $\Sigma(\xi)=\Sigma(\eta)$. If S is a non-empty set and $h: S \rightarrow \overline{\mathbf{R}}$ is a function, we let $D_{h}:=\{s \in S| | h(s) \mid<\infty\}$ denote the finite domain of h and we let $D_{h}^{\circ}:=\{s \in S \mid h(s)=-\infty\}$ and $D_{h}^{*}:=\{s \in S \mid h(s)=\infty\}$ denote the infinite domains of h.

Lemma 2.1: Let (M, \preceq) be a σ-lattice, let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing function and let $B \subseteq M$ be a given set. Then we have
(1) $\forall \xi \in[B, *] \exists \psi \in[B, \xi]$ so that $\Sigma(\psi)=\Sigma_{\vee} B$
(2) $\forall \xi \in[*, B] \exists \psi \in[\xi, B]$ so that $\Sigma(\psi)=\Sigma_{\wedge} B$

Proof: Let $\xi \in[B, *]$ be given. Since $[B, *]$ is non-empty, there exist $\psi_{1}, \psi_{2}, \ldots \in$ $[B, *]$ such that $\Sigma\left(\psi_{n}\right) \rightarrow \Sigma_{\vee} B$ and since (M, \preceq) is a σ-lattice, there exists an element $\psi \in \xi \wedge \wedge_{n \geq 1} \psi_{n}$. Since $B \preceq \xi$ and $B \preceq \psi_{n}$ for all $n \geq 1$, we have $\psi \in[B, \xi]$ and so we have $\Sigma_{\mathrm{V}} B \leq \Sigma(\psi)$. Since $\psi \preceq \psi_{n}$, we have $\Sigma_{\mathrm{V}} B \leq \Sigma(\psi) \leq \Sigma\left(\psi_{n}\right)$ for all $n \geq 1$ and since $\Sigma\left(\psi_{n}\right) \rightarrow \Sigma_{\mathrm{V}} B$, we see that $\Sigma(\psi)=\Sigma_{\mathrm{V}} B$ which proves (1) and (2) follows in the same manner.

Lemma 2.2: Let (M, \preceq) be a σ-lattice and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth function. Let $B \subseteq M$ be a non-empty linear set and let us define $B^{1}:=B \cap L^{1}(\Sigma)$, $B_{*}:=B \cap L_{*}(\Sigma)$ and $B^{*}:=B \cap L^{*}(\Sigma)$. Then $B_{*} \preceq B^{1} \preceq B^{*}$ and we have

$$
\begin{align*}
& \Sigma_{\vee} B=\sup \Sigma B \quad \Leftrightarrow \text { either } \sup \Sigma B>-\infty \text { or } \Sigma_{\vee} B=-\infty \tag{1}\\
& \Sigma_{\wedge} B=\inf \Sigma B \quad \Leftrightarrow \quad \text { either } \inf \Sigma B<\infty \text { or } \Sigma_{\wedge} B=\infty
\end{align*}
$$

and if $B^{1} \neq \emptyset$, then we have

$$
\begin{align*}
& \vee B^{1}=\vee\left(B^{1} \cup B_{*}\right) \neq \emptyset \text { and } \Sigma(\xi)=\sup \Sigma B^{1}=\sup \Sigma\left(B^{1} \cup B_{*}\right) \forall \xi \in \vee B^{1} \tag{3}\\
& \wedge B^{1}=\wedge\left(B^{1} \cup B^{*}\right) \neq \emptyset \text { and } \Sigma(\xi)=\inf \Sigma B^{1}=\inf \Sigma\left(B^{1} \cup B^{*}\right) \forall \xi \in \wedge B^{1}
\end{align*}
$$

Proof: (1+2): Since Σ is increasing and B is a linear set satisfying $\Sigma(\xi)=$ $-\infty<\Sigma(\kappa)<\infty=\Sigma(\eta)$ for all $\xi \in B_{*}$, all $\kappa \in B^{1}$ and all $\eta \in B^{*}$, we have $B_{*} \preceq B^{1} \preceq B^{*}$. By (2.1), we have $\sup \Sigma B \leq \Sigma_{\vee} B$. Hence, if $\sup \Sigma B=\infty$ or $\Sigma_{\mathrm{V}} B=-\infty$, we have $\sup \Sigma B=\Sigma_{\mathrm{V}} B$. Suppose that $-\infty<\sup \Sigma B<\infty$. By smoothness of Σ and linearity of B, there exists $\xi \in \vee B$ satisfying $\Sigma(\xi)=\sup \Sigma B$ and so by (2.1) we have $\sup \Sigma B=\Sigma_{\mathrm{V}} B$. Hence, we see that the implication " \Leftarrow " in (1) holds and the converse implication is evident. Thus, (1) is proved and (2) follows in the same manner.
(3+4): Suppose that $B^{1} \neq \emptyset$. Since $B_{*} \preceq B^{1}$, we have $\vee B^{1}=\vee\left(B^{1} \cup B_{*}\right)$ and $\sup \Sigma B^{1}=\sup \Sigma\left(B^{1} \cup B_{*}\right)>-\infty$. Suppose that $\sup \Sigma B^{1}<\infty$. By smoothness of Σ, there exists $\eta \in \vee B^{1}$ such that $\Sigma(\eta)=\sup \Sigma B^{1}$. Hence, we see that (3) follows from (2.1). So suppose that $\sup \Sigma B^{1}=\infty$. Then there exists a sequence $\left(\eta_{n}\right) \subseteq B^{1}$ such that $\Sigma\left(\eta_{n}\right) \rightarrow \infty$ and since M is a σ-lattice, there exists an element $\eta \in \vee_{n=1}^{\infty} \eta_{n}$. Let $\xi \in B^{1}$ be given. Since $\Sigma(\xi)<\infty$, there exists an integer $k \geq 1$ such that $\Sigma(\xi)<\Sigma\left(\eta_{k}\right)$. Since Σ is increasing and B is a linear set containing ξ and η_{k}, we have $\xi \preceq \eta_{k} \preceq \eta$ and since $\left(\eta_{n}\right) \subseteq B^{1}$, we have $\eta \in \vee B^{1}$. Hence, we see that (3) follows from (2.1) and (4) follows in the same manner.

Theorem 2.3: Let (M, \preceq) be a lattice and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth function with the Darboux property. Let $B \subseteq M$ be a linear set such that $B^{1}:=B \cap L^{1}(\Sigma) \neq \emptyset$ and let us define $B_{*}:=B \cap L_{*}(\Sigma)$ and $B^{*}:=B \cap L^{*}(\Sigma)$. Then there exists a maximal linearly ordered set $L \subseteq M$ satisfying

$$
\begin{equation*}
B \subseteq L, \quad \Sigma_{\vee} B_{*}=\inf \Sigma L^{1}=\Sigma_{\vee} L_{*}, \quad \Sigma_{\wedge} B^{*}=\sup \Sigma L^{1}=\Sigma_{\wedge} L^{*} \tag{1}
\end{equation*}
$$

where $L^{1}:=L \cap L^{1}(\Sigma), L_{*}:=L \cap L_{*}(\Sigma)$ and $L^{*}:=L \cap L^{*}(\Sigma)$.
Proof: Let us define $M_{0}:=\left[B_{*}, B^{1}\right] \cap L^{1}(\Sigma)$ and $r:=\Sigma_{\vee} B_{*}$. Then I claim that there exist a linear set $Q \subseteq M_{0}$ satisfying $\inf \Sigma\left(Q \cup B^{1}\right)=r$.

Since $B_{*} \preceq B^{1} \neq \emptyset$, we have $r \leq \inf \Sigma\left(B^{1}\right)$ and $r<\infty$. Hence, if $\inf \Sigma\left(B^{1}\right) \leq r$, we see that $Q:=\emptyset$ satisfies the claim. So suppose that $r<\inf \Sigma\left(B^{1}\right)$. Then we have $-\infty<\inf \Sigma\left(B^{1}\right)<\infty$ and so by smoothness of Σ, there exists $\pi \in \wedge B^{1}$ satisfying $\Sigma(\pi)=\inf \Sigma\left(B^{1}\right)$. In particular, we have $\pi \in L^{1}(\Sigma)$ and since $B_{*} \preceq B^{1}$ and $\pi \in \wedge B^{1}$, we have $B_{*} \preceq \pi \preceq B^{1}$. Hence, we see that $\pi \in M_{0}$ and that $\left(M_{0}, \preceq\right)$ is a non-empty proset. So by Hausdorff maximality principle there exists a maximal linearly ordered set $Q \subseteq M_{0}$ in the proset $\left(M_{0}, \preceq\right)$. Let us define $\alpha:=\inf \Sigma\left(Q \cup B^{1}\right)$. Since Q and B^{1} are linear and $Q \preceq B^{1}$, we see that $Q \cup B^{1}$ is linear and since $B^{1} \neq \emptyset$ and $B_{*} \preceq Q \cup B^{1}$, we have $r \leq \alpha<\infty$. Suppose that $r<\alpha$. Then we have $-\infty<\alpha<\infty$ and so by linearity of $Q \cup B^{1}$ and smoothness of Σ, there exists $\eta \in \wedge\left(Q \cup B^{1}\right)$ such that $\Sigma(\eta)=\alpha$. In particular, we have $\eta \in L^{1}(\Sigma)$ and $B_{*} \preceq \eta \preceq Q \cup B^{1}$ and since $r<\alpha=\Sigma(\eta)$, there exists $\xi_{0} \in\left[B_{*}, *\right]$ satisfying $\Sigma\left(\xi_{0}\right)<\alpha$. Since M is a lattice, there exists $\xi \in \xi_{0} \wedge \eta$ and since $B_{*} \preceq \xi_{0}$ and $B_{*} \preceq \eta$, we have $\xi \in\left[B^{*}, \eta\right]$ and $r \leq \Sigma(\xi) \leq \Sigma\left(\xi_{0}\right)<\Sigma(\eta)<\infty$. Since Σ has the Darboux property there exists $\kappa \in[\xi, \eta]$ satisfying $\Sigma(\xi)<\Sigma(\kappa)<\Sigma(\eta)$. Since $B_{*} \preceq \xi \preceq \kappa \preceq \eta \preceq Q \cup B^{1}$, we see that $\kappa \in M_{0}$ and that $Q_{0}:=Q \cup\{\kappa\}$ is a linear subset of M_{0}. Since $\Sigma(\kappa)<\Sigma(\eta)=\inf \Sigma\left(Q \cup B^{1}\right)$, we have $\kappa \notin Q$ and $Q \varsubsetneqq Q_{0}$. However, this contradicts the maximality of Q in M_{0} and so we must have $\alpha \leq r$ and since $\alpha \geq r$, we see that Q satisfies the claim.

Hence, we see that there exists a linear set $Q \subseteq\left[B_{*}, B^{1}\right] \cap L^{1}(\Sigma)$ satisfying $\inf \Sigma\left(Q \cup B^{1}\right)=\Sigma_{\mathrm{V}} B_{*}$. In the same manner, we see that there exists a linear set $R \subseteq\left[B^{1}, B^{*}\right] \cap L^{1}(\Sigma)$ satisfying $\sup \Sigma\left(R \cup B^{1}\right)=\Sigma_{\wedge} B^{*}$. Since B, Q and R are linear and

$$
B_{*} \preceq Q \preceq B^{1} \preceq R \preceq B^{*} \text { and } B=B_{*} \cup B^{1} \cup B^{*}
$$

we see that $C:=B \cup Q \cup R$ is a linear set containing B. So by Hausdorff's maximality principle there exists a maximal linearly ordered set L containing C. Let us define $L^{1}:=L \cap L^{1}(\Sigma), L_{*}:=L \cap L_{*}(\Sigma)$ and $L^{*}:=L \cap L^{*}(\Sigma)$. Since L is linear, we have $L_{*} \preceq L^{1} \preceq L^{*}$ and since $B \subseteq L$ and $Q \cup B^{1} \subseteq L^{1}$, we have

$$
\Sigma_{\mathrm{V}} B_{*} \leq \Sigma_{\mathrm{V}} L_{*} \leq \inf \Sigma L^{1} \leq \inf \Sigma\left(Q \cup B^{1}\right)=\Sigma_{\vee} B_{*}
$$

Hence, we see that $\Sigma_{V} B_{*}=\Sigma_{V} L_{*}=\inf \Sigma L^{1}$ and in the same manner, we see that $\Sigma_{\wedge} B^{*}=\Sigma_{\wedge} L^{*}=\sup \Sigma L^{1}$ which proves the theorem.

Theorem 2.4: Let (M, \preceq) be a σ-lattice and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth function with the Darboux property. Let $D \subseteq \overline{\mathbf{R}}$ be a non-empty set and let $h: D \rightarrow M$ be a increasing function satisfying $\Sigma h(x)=m^{\Sigma} \wedge\left(x \vee m_{\Sigma}\right)$ for all $x \in D$ and $h(D) \cap L^{1}(\Sigma) \neq \emptyset$. Then there exists an increasing Σ-partition of unity $f: \overline{\mathbf{R}} \rightarrow M$ satisfying $f(x)=h(x)$ for all $x \in D$.

Proof: Let us define $\lambda(x):=m^{\Sigma} \wedge\left(x \vee m_{\Sigma}\right)$ for all $x \in \overline{\mathbf{R}}$. Since h is increasing, we see that $h(D)$ is a linear, countably cofinal set and since M is a σ-lattice, we have that $\vee h(D)$ is non-empty. So by Lem.2.1 with $B:=\emptyset$ there exists $\beta \in M$ such that $h(D) \preceq \beta$ and $\Sigma(\beta)=m^{\Sigma}$ and we may (and shall) take $\beta=h(\infty)$ if $\infty \in D$. Let $x \in \overline{\mathbf{R}}$ be given and let us define $D^{x}:=D \cap[x, \infty]$ and $\Delta^{x}:=h\left(D^{x}\right) \cup\{\beta\}$. Then Δ^{x} is countably cofinal and since h is increasing, we have $h(x) \in \wedge \Delta^{x}$ for all $x \in D$. Since M is a σ-lattice, there exists a function $h_{0}: \overline{\mathbf{R}} \rightarrow M$ such that $h_{0}(x) \in \wedge \Delta^{x}$ for all $x \in \overline{\mathbf{R}}$ and $h_{0}(x)=h(x)$ for all $x \in D$. Since $x \curvearrowright \Delta^{x}$ is decreasing, we see that h_{0} is increasing on $\overline{\mathbf{R}}$. Since $\Sigma h(y)<\infty$ for all $y \in D \cap[-\infty, \infty)$, we see that $\inf \Sigma \Delta^{x}=\infty$ implies $\Delta^{x}=\{\beta\}$ and so by (2.2) and Lem.2.2.(2), we have $\Sigma h_{0}(x)=\inf \Sigma \Delta^{x}$ for all $x \in \overline{\mathbf{R}}$. Since $\Sigma(\beta)=m^{\Sigma}=\lambda(x)$ for all $x \geq m^{\Sigma}$ and $\Sigma h(y)=\lambda(y)$ for all $y \in D$, we see that $\Sigma h_{0}(x)=\lambda(x)$ for all $x \in D \cup\left[m^{\Sigma}, \infty\right]$.

In the same manner, we see that there exists an increasing function $h_{1}: \overline{\mathbf{R}} \rightarrow M$ satisfying $h_{1}(x)=h_{0}(x)$ for all $x \in D \cup\left[m^{\Sigma}, \infty\right]$ and $\Sigma h_{1}(x)=\lambda(x)$ for all $x \in D_{1}:=\left[-\infty, m_{\Sigma}\right] \cup D \cup\left[m^{\Sigma}, \infty\right]$. Hence, if $D_{1}=\overline{\mathbf{R}}$, then h_{1} is an increasing Σ-partition of unity satisfying $h_{1}(x)=h_{0}(x)=h(x)$ for all $x \in D$.

So suppose that $D_{1} \neq \overline{\mathbf{R}}$. Then $m_{\Sigma}<m^{\Sigma}$ and $B:=h_{1}\left(D_{1}\right)$ is a linear set containing $h(D)$. Since $\Sigma h_{1}(x)=\lambda(x) \neq \pm \infty$ for all $x \in D_{1} \cap \mathbf{R}$, we see that the sets $B_{*}:=B \cap L_{*}(\Sigma)$ and $B^{*}:=B \cap L^{*}(\Sigma)$ contain at most one element and so we have $\Sigma_{\vee} B_{*}=m_{\Sigma}$ and $\Sigma_{\wedge} B^{*}=m^{\Sigma}$. Since $\emptyset \neq h(D) \cap L^{1}(\Sigma)$, we have $B^{1}:=B \cap L^{1}(\Sigma) \neq \emptyset$ and so by Thm. 2.3 there exists a maximal linear set L satisfying

$$
L \supseteq B, \quad \inf \Sigma L^{1}=\Sigma_{\vee} L_{*}=m_{\Sigma} \leq m^{\Sigma}=\Sigma_{\wedge} L^{*}=\sup \Sigma L^{1}
$$

where $L^{1}:=L \cap L^{1}(\Sigma), L_{*}:=L \cap L_{*}(\Sigma)$ and $L^{*}:=L \cap L^{*}(\Sigma)$.
Let $m_{\Sigma}<x<m^{\Sigma}$ be a given and let us define $A^{x}:=\{\xi \in L \mid \Sigma(\xi)>x\}$ and $A_{x}:=\{\xi \in L \mid \Sigma(\xi) \leq x\}$. Since $x<m^{\Sigma}=\sup \Sigma L^{1}$, we have $A^{x} \cap L^{1}(\Sigma)=A^{x} \cap L^{1} \neq \emptyset$ and $A^{x} \cap L_{*}(\Sigma)=\emptyset$. So by Lem.2.2 there exists $f(x) \in \wedge A^{x}=\wedge\left(A^{x} \cap L^{1}\right)$ such that $x \leq \inf \Sigma A^{x}=\Sigma f(x)<\infty$. Since $m_{\Sigma}=\inf \Sigma L^{1}<x$, we have $A_{x} \cap L^{1}(\Sigma)=A_{x} \cap L^{1} \neq \emptyset$ and $A_{x} \cap L^{*}(\Sigma)=\emptyset$. So by Lem.2.2 there exists $g(x) \in \vee A_{x}=\vee\left(A_{x} \cap L^{1}\right)$ such that $-\infty<\Sigma g(x)=$ $\sup \Sigma A_{x} \leq x$. Since $L=A^{x} \cup A_{x}$ is linear and $\Sigma(\xi) \leq x<\Sigma(\eta)$ for all $\xi \in A_{x}$ and all $\eta \in A^{x}$, we have $A_{x} \preceq A^{x}$ and so we have $g(x) \preceq f(x)$ and $-\infty<\Sigma g(x) \leq x \leq \Sigma f(x)<\infty$. Suppose that $\Sigma g(x)<\Sigma f(x)$. Since $g(x) \in L^{1}(\Sigma)$ and Σ has the Darboux property, there exists $\kappa \in[g(x), f(x)]$ such that $\sup \Sigma A_{x}=\Sigma g(x)<\Sigma(\kappa)<\Sigma f(x)=\inf \Sigma A^{x}$. Since $L=A_{x} \cup A^{x}$, we see that $\kappa \notin L$ and since L is linear and $A_{x} \preceq g(x) \preceq \kappa \preceq f(x) \preceq A^{x}$, we see that $L \cup\{\kappa\}$ is linear. However, this contradicts the maximality of L and so we must have $\Sigma g(x) \geq \Sigma f(x)$. Since $\Sigma g(x) \leq x \leq \Sigma f(x)$, we have $\Sigma g(x)=x=\Sigma f(x)$ for all $x \in\left(m_{\Sigma}, m^{\Sigma}\right)$ and by (1.4) and maximality of L, we have $f(x) \in L$ and $g(x) \in L$ for all $x \in\left(m_{\Sigma}, m^{\Sigma}\right)$.

Since $\mathbf{R} \backslash D_{1} \subseteq\left(m_{\Sigma}, m^{\Sigma}\right)$, we may define $F(x):=f(x)$ if $x \in \overline{\mathbf{R}} \backslash D_{1}$ and $F(x):=h_{1}(x)$ if $x \in D_{1}$. Since $\Sigma h_{1}(x)=\lambda(x)$ for all $x \in D_{1}$ and
$\Sigma f(x)=x=\lambda(x)$ for all $x \in\left(m_{\Sigma}, m^{\Sigma}\right)$, we have $\Sigma F(x)=\lambda(x)$ for all $x \in \overline{\mathbf{R}}$ and since $h_{1}(D) \subseteq L$ and $f\left(\left(m_{\Sigma}, m^{\Sigma}\right)\right) \subseteq L$, we see that $F(x) \in L$ for all $x \in L$. Let $x<y$ be given. Suppose that $\lambda(x)<\lambda(y)$. Then we have $\Sigma F(y)<\Sigma F(x)$ and since Σ is increasing and L is a linear set containing $F(x)$ and $F(y)$, we have $F(y) \preceq F(y)$. Suppose that $\lambda(x)=\lambda(y)$. Since $x<y$, we have either $x<y \leq m_{\Sigma}$ or $m^{\Sigma} \leq x<y$ and since h_{1} is increasing, we have $F(x)=h_{1}(x) \preceq h_{1}(y)=F(y)$ in either case. Hence, we see that F is an increasing Σ-partition of unity satisfying $F(x)=h_{1}(x)=h(x)$ for all $x \in \overline{\mathbf{R}}$.

Theorem 2.5: Let (M, \preceq) be a σ-lattice and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth functional with the Darboux property. Let $\omega \in M$ and $\kappa \in L^{1}(\Sigma)$ be given elements and let $A \subseteq[*, \omega]$ be a linear set such that $A_{*} \cup\{\kappa, \omega\}$ is linear where $A_{*}:=A \cap L_{*}(\Sigma)$. Let $F \subseteq A_{*}$ be a given set and let us define $q:=\Sigma_{V} F$ and $r:=\Sigma_{\vee} A_{*}$. Then we have

$$
\begin{align*}
& q \leq r \leq \Sigma(\kappa)<\infty \text { and } q \leq r \leq \Sigma(\xi) \leq \Sigma(\omega) \quad \forall \xi \in A \backslash A_{*} \tag{1}\\
& q=r \text { if } F \text { is cofinal in } A_{*}, \text { and } q=-\infty \text { if } F \text { is not cofinal in } A_{*}
\end{align*}
$$

and there exists an increasing Σ-partition of unity $f: \overline{\mathbf{R}} \rightarrow M$ satisfying

$$
\begin{align*}
& f(\Sigma(\omega))=\omega \text { and } \xi \preceq f(\Sigma(\xi)) \quad \forall \xi \in A \backslash A_{*} \tag{3}\\
& \xi \preceq f(q) \forall \xi \in F \text { and } \xi \preceq f(r) \quad \forall \xi \in A_{*}
\end{align*}
$$

Proof: (1): Since $F \subseteq A_{*}$, we have $q \leq r$ and since $A_{*} \cup\{\kappa, \omega\}$ is linear and $\Sigma(\xi)=-\infty<\Sigma(\kappa)$ for all $\xi \in A_{*}$, we have $A_{*} \preceq \kappa$. Hence, we have $q \leq r \leq \Sigma(\kappa)<\infty$ and by Lem.2.2, we have $A_{*} \preceq A \backslash A_{*}$. Hence, we have $r \leq \Sigma(\xi)$ for all $\xi \in A \backslash A_{*}$ and since $A \preceq \omega$, we have $q \leq r \leq \Sigma(\omega)$ which completes the proof of (1).
(2): If F is cofinal in A_{*}, we have $[F, *]=\left[A_{*}, *\right]$ and so we have $r=q$. Suppose that F is not cofinal in A_{*}. Then there exists $\eta \in A_{*}$ such that $\eta \npreceq \xi$ for all $\xi \in F$ and since A_{*} is linear and contains F, we have $\xi \preceq \eta$ for all $\xi \in F$. Hence, we have $q \leq \Sigma(\eta)$ and since $\eta \in A_{*}$, we have $q=\Sigma(\eta)=-\infty$.

Suppose that $\Sigma(\omega)=-\infty$. By Thm.2.4 there exists an increasing Σ-partition of unity $f: \overline{\mathbf{R}} \rightarrow M$ such that $f(\Sigma(\omega))=\omega$ and $f(\Sigma(\kappa))=\kappa$ and since $A=A_{*}$ and $q=r=-\infty$, we see that f satisfies (3+4). So suppose that $\Sigma(\omega)>-\infty$. Set $A^{1}:=(A \cup\{\omega\}) \cap L^{1}(\Sigma)$ and let us define $C:=A^{1} \cup\{\omega\}$ if $A^{1} \neq \emptyset$ and $C:=\{\kappa, \omega\}$ if $A^{1}=\emptyset$. Since $\{\kappa, \omega\}$ is linear and $\Sigma(\kappa)<\infty$, we see that $\kappa \preceq \omega$ if $\Sigma(\omega)=\infty$. Hence, we see that C is a linear set satisfying $C \cap L^{1}(\Sigma) \neq \emptyset$ and $A_{*} \preceq C \preceq \omega$. So by Lem.2.1 and Lem.2.2 there exists $v \in M$ satisfying $A_{*} \preceq v \preceq C$ and $\Sigma(v)=r$. Since $F \subseteq A_{*}$, we have $F \preceq v$ and so by Lem.2.1 there exists $\rho \in M$ such that $F \preceq \rho \preceq v$ and $\Sigma(\rho)=q$ and if $q=r$, we may (and shall) take $\rho=v$. Since C is linear and $\rho \preceq v \preceq C$, we see that $B:=C \cup\{\rho, v\}$ is a linear
set containing $C \cup\{\rho, v, \omega\}$ and so we have $B \cap L^{1}(\Sigma) \neq \emptyset$. Set $D:=\Sigma(B)$, $b:=\Sigma(\omega)$ and $B_{x}:=\{\xi \in B \mid \Sigma(\xi)=x\}$ for all $x \in \overline{\mathbf{R}}$. Then we have $\emptyset \neq B_{x} \subseteq L^{1}(\Sigma)$ and $\sup \Sigma B_{x}$ for all $x \in D \cap \mathbf{R}$ and since $\Sigma(\omega)>-\infty$ and $\rho \preceq B \preceq \omega$, we have $\omega \in \vee B_{b}$ and $B_{-\infty} \subseteq\{\rho\}$.

So by Lem. 2.2 there exists a function $h: D \rightarrow M$ such that $h(x) \in \vee B_{x}$ and $\Sigma h(x)=x$ for all $x \in D$ and $h(b)=\omega$. Since B is linear and Σ is increasing, we have $B_{x} \preceq B_{y}$ for all $x<y$ and so we see that h is increasing on D. Since $B^{1} \neq \emptyset$, we have $h(D) \cap L^{1}(\Sigma) \neq \emptyset$ and so by Them.2.4 there exists an increasing Σ-partition of unity $f: \overline{\mathbf{R}} \rightarrow M$ such that $f(x)=h(x)$ for all $x \in D$. In particular, we have $f(b)=h(b)=\omega$. Let $\xi \in A \backslash A_{*}$ be given and set $x=\Sigma(\xi)$. If $x=b$, we have $\xi \preceq \omega=f(x)$. Suppose that $x<b$. Since $\xi \notin A_{*}$, we have $\xi \in A^{1} \subseteq B$ and so we have $x \in D$ and $\xi \in B_{x}$. Since $f(x)=h(x) \in \vee B_{x}$, we have $\xi \preceq f(x)$. Thus, we see that f satisfies (3). Since $q, r \in D$ and $\rho \in B_{q}$ and $v \in B_{r}$, we have $\rho \preceq h(q)=f(q)$ and $v \preceq h(r)=f(r)$ and since $A_{*} \preceq v$ and $F \preceq \rho$, we see that f satisfies (4).

Lemma 2.6: Let (M, \preceq) be a proset and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing, order injective function. Then Σ is smooth if and only if
(1) If $\left(\xi_{n}\right) \subseteq L^{1}(\Sigma)$ is an increasing sequence satisfying $\sup _{n \geq 1} \Sigma\left(\xi_{n}\right)<\infty$, then there exists $\xi \in M$ such that $\xi_{n} \uparrow \xi$ and $\Sigma(\xi)=\sup _{n \geq 1} \Sigma\left(\xi_{n}\right)$
(2) If $\left(\xi_{n}\right) \subseteq L^{1}(\Sigma)$ is a decreasing sequence satisfying $\inf _{n \geq 1} \Sigma\left(\xi_{n}\right)>-\infty$, then there exists $\xi \in M$ such that $\xi_{n} \downarrow \xi$ and $\Sigma(\xi)=\inf _{n \geq 1} \Sigma\left(\xi_{n}\right)$

Proof: The "only if" part is evident. So suppose that Σ satisfies (1+2) and let $B \subseteq M$ be a non-empty linear set satisfying $|\sup \Sigma B|<\infty$. Then there exists am increasing sequence $\left(\xi_{n}\right) \subseteq B$ such that $\Sigma\left(\xi_{n}\right) \uparrow \sup \Sigma B$ and $-\infty<\Sigma\left(\xi_{n}\right) \leq$ $\sup \Sigma B<\infty$ for all $n \geq 1$. In particular, we see that $\xi_{n} \in L^{1}(\Sigma)$ and that $\sup _{n \geq 1} \Sigma\left(\xi_{n}\right)=\sup \Sigma B<\infty$. So by (1) there exists $\xi \in M$ such that $\xi_{n} \uparrow \xi$ and $\Sigma(\xi)=\sup \Sigma B$. Since $|\sup \Sigma B|<\infty$, we have $\xi \in L^{1}(\Sigma)$. Let $\eta \in B$ be given and let me show that $\eta \preceq \xi$. If $\eta \preceq \xi_{n}$ for some $n \geq 1$, this is evident. So suppose that $\eta \npreceq \xi_{n}$ for all $n \geq 1$. Since B is linear and contains η and ξ_{n}, we have $\xi_{n} \preceq \eta$ for all $n \geq 1$ and since $\xi \in \vee_{n \geq 1} \xi_{n}$, we have $\xi \preceq \eta$. Hence, we have $\Sigma(\xi) \leq \Sigma(\eta) \leq \sup \Sigma B=\Sigma(\xi)$ and so we have $\Sigma(\xi)=\Sigma(\eta)=\sup \Sigma B \neq \pm \infty$. Hence, by order injectivity of Σ, we have $\eta \preceq \xi$ for all $\eta \in B$ and since $\left(\xi_{n}\right) \subseteq B$ and $\xi \in \vee_{n \geq 1} \xi_{n}$, we have $\xi \in \vee B$ and $\Sigma(\xi)=\sup \Sigma B$. Thus, we see that Σ satisfies (2.3) and in the same manner, we see that Σ satisfies (2.4).

Theorem 2.7: Let (T, \mathcal{B}, μ) be a measure space and let $\Sigma: \bar{M}(T, \mathcal{B}) \rightarrow \overline{\mathbf{R}}$ be a μ-integral. Then $\left(\bar{M}(T, \mathcal{B}), \leq_{\mu}\right)$ is a σ-lattice and Σ is an increasing, smooth, order injective function satisfying

$$
\begin{equation*}
L^{1}(\Sigma)=L^{1}(T, \mathcal{B}, \mu), \quad \Sigma(f)=\int_{T} f d \mu \quad \forall f \in \bar{L}(T, \mathcal{B}, \mu) \tag{1}
\end{equation*}
$$

(2) $\quad \int_{*} f d \mu \leq \Sigma(f) \leq \int^{*} f d \mu \quad \forall f \in \bar{M}(T, \mathcal{B})$
(3) $\Sigma\left(f_{+}\right)+\Sigma\left(f_{-}\right) \leq \Sigma(f) \leq \Sigma\left(f_{+}\right)+\Sigma\left(f_{-}\right) \quad \forall f \in \bar{M}(T, \mathcal{B})$
(4) If $c \in \overline{\mathbf{R}}$ and $f: T \rightarrow \overline{\mathbf{R}}$ and $h \in \bar{M}(T, \mathcal{B}, \mu)$ are given functions satisfying $\int^{*} f d \mu \leq c \leq \int_{*} h d \mu$ and $f(t) \leq h(t)$ for all $t \in T$, then we have
(a) $\exists g \in \bar{L}(T, \mathcal{B}, \mu)$ so that $\int_{T} g d \mu=c$ and $f(t) \leq g(t) \leq h(t) \forall t \in T$
(5) Σ has the Darboux property if and only if μ is finitely founded and if so then Σ has the increasing Darboux property

Remark: Recall that μ is finitely founded if μ has no infinite atoms or equivalently, if $\mu_{\circ}(B)=\mu(B)$ for all $B \in \mathcal{B}$. Suppose that μ is finitely founded and let $f \in \bar{M}(T, \mathcal{B})$ be a given function. By (1.2) and (1.3), we see that f_{+}and f_{-} belong to $\bar{L}(T, \mathcal{B}, \mu)$ and that $f \in \bar{L}(T, \mathcal{B}, \mu)$ if and only if either $\int^{*} f d \mu<\infty$ or $\int_{*} f d \mu>-\infty$. In particular, we see that the functionals $f \curvearrowright \int^{*} f d \mu$ and $f \curvearrowright \int_{*} f d \mu$ are μ-integrals whenever μ is finitely founded.

Proof: (1) and (2) are easy consequences of (1.1). In particular, we see that Σ is order injective. So by Lem. 2.6 and the monotone convergence theorem we see that Σ is an increasing, smooth and order injective functional. Let $f \in \bar{M}(T, \mathcal{B}, \mu)$ be given. If $\Sigma\left(f_{-}\right)=-\infty$ or $\Sigma(f)=\infty$, then the first inequality in (3) holds trivially. So suppose that $\Sigma\left(f_{-}\right)>-\infty$ and $\Sigma(f)<\infty$. Since $f_{-} \leq f$ and Σ is increasing, we have $-\infty<\Sigma\left(f_{-}\right) \leq \Sigma(f)<\infty$ and so by (1) we see that $f \in L^{1}(\Sigma)=L^{1}(T, \mathcal{B}, \mu)$ and that the first inequality in (3) holds. The last inequality in (3) follows in the same manner.
(4): If $c=\infty$, we have $\int_{*} h d \mu=\infty=\int^{*} h d \mu=\infty$ and since $f(t) \leq h(t)$ for all $t \in T$, we see that $g:=h$ satisfies (4.a). So suppose that $c<\infty$. Then $\int^{*} f d \mu<\infty$ and so there exist functions $\phi_{n} \in L^{1}(T, \mathcal{B}, \mu)$ and $\phi \in \bar{M}(T, \mathcal{B}, \mu)$ such that $\int_{T} \phi_{n} d \mu \downarrow \int^{*} f d \mu$ and $\phi_{n}(t) \downarrow \phi(t) \geq f(t)$ for all $t \in T$. Then we have $\int^{*} \phi d \mu=\int^{*} f d \mu$ and since $h \in \bar{M}(T, \mathcal{B}, \mu)$ and $f \leq h$, we see that $\psi(t):=\phi(t) \wedge h(t)$ is \mathcal{B}-measurable and $f(t) \leq \psi(t)$ for all $t \in T$. Hence, we have $\int^{*} f d \mu=\int^{*} \psi d \mu \leq c \leq \int_{*} h d \mu$ and I claim that $\psi \in \bar{L}(T, \mathcal{B}, \mu)$. If $\int^{*} \psi d \mu=-\infty$, this is evident. If $\int^{*} \psi d \mu>-\infty$, we have $\inf _{n \geq 1} \int_{T} \phi_{n} d \mu>-\infty$ and $\int_{*} h d \mu>-\infty$. Hence, we have $h_{-} \in L^{1}(T, \mathcal{B}, \mu)$ and by the monotone convergence theorem, we have $\phi \in L^{1}(T, \mathcal{B}, \mu)$. Since $|\psi(t)| \leq|\phi(t)|+\left|h_{-}(t)\right|$, we see that $\psi=\phi \wedge h \in L^{1}(T, \mathcal{B})$. Thus, we have $\psi \in \bar{L}(T, \mathcal{B}, \mu), \int_{T} \psi d \mu=\int^{*} f d \nu$ and $f(t) \leq \psi(t) \leq h(t)$ for all $t \in T$. In the same manner, we see that there exists $\xi \in \bar{L}(T, \mathcal{B}, \mu)$ such that $\int_{T} \xi d \mu=\int_{*} h d \mu$ and $\psi(t) \leq \xi(t) \leq h(t)$ for all $t \in T$. If $c=\int^{*} f d \mu$, then $g:=\psi$ satisfies (4.a), and if $c=\int_{*} h d \mu$, then $g:=\xi$ satisfies. So suppose that $\int^{*} f d \mu<c<\int^{*} h d \mu$. Then we have $\int_{T} \psi d \mu<c<\int_{T} \xi d \mu$ and as above, we see that there exist $\psi_{0}, \xi_{0} \in L^{1}(T, \mathcal{B}, \mu)$ satisfying $\int_{T} \psi_{0} d \mu<c<\int_{T} \xi_{0} d \mu$ and $\psi(t) \leq \psi_{0}(t) \leq \xi_{0}(t) \leq \xi(t)$ for all $t \in T$. Then it follows easily that $g(t):=\lambda \psi_{0}(t)+(1-\lambda) \xi_{0}(t)$ satisfies (4.a) if $0<\lambda<1$ is chosen such that $c=\lambda \int_{T} \psi_{0} d \mu+(1-\lambda) \int_{T} \xi_{0} d \mu$.
(5): Suppose that μ is not finitely founded and let $A \in \mathcal{B}$ be an infinite μ-atom. Then we have $\mu_{\circ}(A)=0$ and $\mu(A)=\infty$. So by (1.1) we have $\Sigma(0)=0<\infty=\Sigma\left(1_{A}\right)$ and by (1.2), we see that $\int_{*} f d \mu \leq 0$ for all $f \in \bar{M}(T, \mathcal{B})$ satisfying $f \leq_{\mu} 1_{A}$. Hence, by (1) we see that Σ does not have the Darboux property. Suppose that μ is finitely founded. Let $f, h \in \bar{M}(T, \mathcal{B}, \mu)$ be given functions such that $f \leq_{\mu} h$ and $\Sigma(f)<\Sigma(h)<\infty$. By (1.1), we have $h \in L^{1}(T, \mathcal{B}, \mu)$. Hence, we have $\int^{*} f d \mu<\infty$ and since μ is finitely founded, we have $f \in \bar{L}(T, \mathcal{B}, \mu)$. Hence, by (1) we have $\int^{*} f d \mu=\Sigma(f)<\Sigma(h)=\int_{*} h d \mu$ and so by (4) there exists $g \in L^{1}(T, \mathcal{B}, \mu)$ such that $f \leq_{\mu} g \leq_{\mu} h$ and $\Sigma(f)<\int_{T} g d \mu<\Sigma(h)$. Hence, by (1) we see that Σ satisfies (2.5) and in the same manner we see that Σ satisfies (2.6).

Let $\xi \in L^{1}(\Sigma)$ and $\left(\xi_{n}\right) \subseteq \bar{M}(T, \mathcal{B})$ be a given functions satisfying $\xi_{n} \uparrow \xi$ μ-a.e. and $\Sigma\left(\xi_{n}\right)=-\infty$ for all $n \geq 1$ and let $\left(c_{n}\right) \subseteq \mathbf{R}$ be an increasing sequence satisfying $c_{n} \uparrow c:=\Sigma(\xi)$ and $c_{n}<\Sigma(\xi)$ for all $n \geq 1$. By (1.1), we have $\xi \in L^{1}(T, \mathcal{B}, \mu)$ and so redefining the functions on a μ-null set, we may assume that $|\xi(t)|<\infty$ and $\xi_{n}(t) \uparrow \xi(t)$ for all $t \in T$. Since μ is finitely founded and $\xi_{n} \leq \xi$, we have $\xi_{n} \in \bar{L}(T, \mathcal{B}, \mu)$ for all $n \geq 1$. So by (1) we have $\int_{T} \xi d \mu=\Sigma(\xi)$ and $\int_{T} \xi_{n} d \mu=\Sigma\left(\xi_{n}\right)=-\infty$ for all $n \geq 1$. Let us define $a_{n}:=c_{n+1}-c_{n}$ and $f_{n}(t):=\xi(t)-\xi_{n}(t)$ for all $n \geq 1$. Since $\xi(t)$ is finite and $\xi_{n}(t) \uparrow \xi(t)$, we have $f_{n}(t) \downarrow 0$ for all $t \in T$ and since $\xi \in L^{1}(T, \mathcal{B}, \mu)$ and $\int_{T} \xi_{n} d \mu=-\infty$, we have $f_{n} \in \bar{L}(T, \mathcal{B}, \mu)$ and $\int_{T} f_{n} d \mu=\infty$. Let me show that there exists functions $g_{1}, g_{2}, \ldots \in L^{1}(T, \mathcal{B}, \mu)$ satisfying

$$
\begin{equation*}
\int_{T} g_{n} d \mu=a_{n}, 0 \leq g_{n}(t)<\infty \text { and } \sum_{i=k}^{n} g_{i}(t) \leq f_{k}(t) \quad \forall t \in T \forall 1 \leq k \leq n \tag{i}
\end{equation*}
$$

I shall construct the g_{n} 's recursively. By (4) with $(f, h, c)=\left(0, f_{1}, a_{1}\right)$, there exists $g_{1} \in L^{1}(T, \mathcal{B}, \mu)$ such that $\int_{T} g_{1} d \mu=a_{1}$ and $0 \leq g_{1}(t) \leq f_{1}(t)$ and $g_{1}(t)<\infty$ for all $t \in T$. Then (i) holds for $n=1$. Suppose that $g_{1}, \ldots, g_{n} \in L^{1}(T, \mathcal{B}, \mu)$ has been constructed such that $\left(g_{k}\right)_{1 \leq k \leq n}$ satisfies (i) and let us define $G_{n+1}(t):=0$ and $G_{k}(t):=\sum_{k \leq i \leq n} g_{i}(t)$ for $k=1, \ldots, n$. By (i), we have $0 \leq G_{k}(t) \leq f_{k}(t)$ for all $t \in T$ and all $1 \leq k \leq n+1$. Hence, we have $h_{n+1}(t):=\min _{1 \leq k \leq n+1}\left(f_{k}(t)-G_{k}(t)\right) \geq 0$ for all $t \in T$. Since $f_{k}(t) \geq f_{n+1}(t)$ and $G_{k}(t) \leq G_{1}(t)$ for all $1 \leq k \leq n+1$, we have $h_{n+1}(t) \geq f_{n+1}(t)-G_{1}(t)$ for all $t \in T$ and since $G_{1} \in L^{1}(T, \overline{\mathcal{B}}, \mu)$ and $\int_{T} f_{n+1} d \mu=\infty$, we have $h_{n+1} \in \bar{L}(T, \mathcal{B}, \mu)$ and $\int_{T} h_{n+1} d \mu=\infty$. Hence, by (4) with $(f, h, c)=\left(0, h_{n+1}, a_{n+1}\right)$, there exists $g_{n+1} \in L^{1}(T, \mathcal{B}, \mu)$ such that $\int_{T} g_{n+1} d \mu=a_{n+1}$ and $0 \leq g_{n+1}(t) \leq h_{n+1}(t)$ and $g_{n+1}(t)<\infty$ for all $t \in T$. Since $h_{n+1}(t) \leq f_{k}(t)-G_{k}(t)$ for all $1 \leq k \leq n+1$, we see that $\left(g_{k}\right)_{1 \leq k \leq n+1}$ satisfies (i) which completes the recursive construction.

Let us define $g^{n}(t):=\sum_{i \geq n} g_{i}(t)$ for all $n \geq 1$ and all $t \in T$. Since $g_{i} \geq 0$ and $\sum_{i \geq n} a_{i}=c-c_{n}<\infty$, we see that $g^{n} \in L^{1}(T, \mathcal{B}, \mu)$ and $\int_{T} g^{n} d \mu=c-c_{n}$ and by (i), we have $0 \leq g^{n}(t) \leq f_{n}(t)=\xi(t)-\xi_{n}(t)$ for all $t \in T$ and all $n \geq 1$. Since $\xi \in L^{1}(T, \mathcal{B}, \mu)$ with $\int_{T} \xi d \mu=c$, we have $\eta_{n}:=\xi-g^{n} \in L^{1}(T, \mathcal{B}, \mu)$ and $\int_{T} \eta_{n} d \mu=c_{n}$ for all $n \geq 1$ and since $\left(g^{n}\right)$ is decreasing with $0 \leq g^{n}(t) \leq \xi(t)-\xi_{n}(t)$, we see that $\left(\eta_{n}\right)$ is increasing with
$\xi_{n}(t) \leq \eta_{n}(t) \leq \xi(t)$ for all $t \in T$. Hence, by (1) we see that $\left(\eta_{n}\right)$ satisfies the hypotheses in (2.7) and so we see that Σ has the strong Darboux property.
3. Integral functionals Throughout this section, we let (T, \mathcal{B}, μ) denote a fixed finitely founded measure space with $\mu(T)>0$ and we let $\Sigma: \bar{M}(T, \mathcal{B}) \rightarrow \overline{\mathbf{R}}$ denote a fixed μ-integral; see (1.1).

Since $\mu(T)>0$, we have $\left(m_{\Sigma}, m^{\Sigma}\right)=(-\infty, \infty)$ and by Thm.2.7, we see that $\left(\bar{M}(T, \mathcal{B}), \leq_{\mu}\right)$ is a σ-lattice and that $\Sigma: \bar{M}(T, \mathcal{B}) \rightarrow \overline{\mathbf{R}}$ is an increasing, smooth, order injective functional with the strong Darboux property.

Let S be a non-empty set. Then we let $\bar{M}_{S}(T, \mathcal{B})$ denote the set of all functions $\phi: S \times T \rightarrow \overline{\mathbf{R}}$ satisfying $\phi(s, \cdot) \in \bar{M}(T, \mathcal{B})$ for all $s \in S$. If (S, \leq) is a proset and $\phi: S \times T \rightarrow \overline{\mathbf{R}}$ is a given function, we say that ϕ is pointwise increasing on S if $\phi(\cdot, t)$ is increasing on S for all $t \in T$, and we say that ϕ is μ-a.e. increasing on S, if $\phi(s, \cdot) \leq_{\mu} \phi(u, \cdot)$ for all $s \leq u$. By Thm.2.7, we see that $f: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ is an increasing Σ-partition if and only if f is μ a.e. increasing on $\overline{\mathbf{R}}$ and we have $f(x, \cdot) \in \bar{L}(T, \mathcal{B}, \mu)$ and $\int_{T} f(x, t) \mu(d t)=x$ for all $x \in \overline{\mathbf{R}}$. In particular, we see that every increasing μ-partition of unity is an increasing Σ-partition. If $F: \overline{\mathbf{R}} \rightarrow \overline{\mathbf{R}}$ is an increasing function and $x \in \overline{\mathbf{R}}$, we set $F(x+):=\inf _{y>x} F(y)$ and $F(x-):=\sup _{y<x} F(y)$ with the conventions $F(\infty+):=F(\infty)$ and $F(-\infty-):=F(-\infty)$. If $f: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ is an increasing μ-partition of unity, we say that f is right continuous, resp. left continuous, if $f(x, t)=f(x+, t)$, resp. $f(x, t)=f(x-, t)$, for all $(x, t) \in \overline{\mathbf{R}} \times T$

If (E, \leq) is a proset, we say that μ is (E, \leq)-smooth if $\mu^{*}\left(\cup_{u \in E} N_{u}\right)=0$ for every increasing family $\left(N_{u}\right)_{u \in S}$ satisfying $N_{u} \in \mathcal{B}$ and $\mu\left(N_{u}\right)=0$ for all $u \in E$. If (E, \leq) is countably cofinal, then every measure is (E, \leq)-smooth. If $q: T \rightarrow[0, \infty)$ is a function such that $q^{-1}(0) \in \mathcal{B}$ and $\mu(B)=\sum_{t \in B} q(t)$ for all $B \in \mathcal{B}$, then μ is finitely founded and (E, \leq)-smooth for every proset (E, \leq).

Lemma 3.1: Let $f: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ be an increasing μ-partition of unity. Then the functions $(x, t) \curvearrowright f(x+, t)$ and $(x, t) \curvearrowright f(x-, t)$ are increasing μ-partitions unity satisfying

$$
\begin{align*}
& f(x-, t) \leq f(x, t) \leq f(x+, t) \quad \forall(x, t) \in \overline{\mathbf{R}} \times T \tag{1}\\
& f(x-, \cdot)={ }_{\mu} f(x, \cdot)={ }_{\mu} f(x+, \cdot) \quad \forall x \in \mathbf{R} \tag{2}
\end{align*}
$$

(3) There exists a μ-null set $N \in \mathcal{B}$ and a set $B \in \mathcal{B}$ of σ-finite μ-measure such that

$$
|f(x, t)|<\infty \quad \forall(x, t) \in \mathbf{R} \times(T \backslash N) \text { and } f(x, t)=0 \quad \forall(x, t) \in \mathbf{R} \times(T \backslash B)
$$

Proof: (1) is evident and by the monotone convergence theorem, we see that $f(x+, t)$ and $f(x-, t)$ are increasing μ-partitions unity. Hence, we see that (2) follows from (1). Let Q denote the se of all rationals and let us define $N:=\cup_{q \in Q}\{t \in T \mid$ $|f(q, t)|=\infty\}$ and $B:=\cup_{q \in Q}\{t \in T \mid f(q, t) \neq 0\}$. Then $N, B \in \mathcal{B}$ and since Q
is countable and $f(q, \cdot) \in L^{1}(T, \mathcal{B}, \mu)$ for all $q \in Q$, we see that N is a μ-null set and that B is of σ-finite μ-measure. Since f is pointwise increasing, we see that the set N and B satisfies the claims in (3).

Theorem 3.2: Let $S \subseteq \overline{\mathbf{R}}$ be a non-empty set and let $f, g: S \times T \rightarrow \overline{\mathbf{R}}$ be given functions such that g is pointwise increasing on S and f is μ-a.e. increasing on S and satisfies

$$
\begin{equation*}
f \in \bar{M}_{S}(T, \mathcal{B}) \text { and } g(s, t) \leq f(s, t) \quad \forall(s, t) \in S \times T \tag{1}
\end{equation*}
$$

Let $Q \subseteq S$ be a countable set and let $D \subseteq S$ be a set such that $f(\cdot, t)$ is increasing on D for all $t \in T$. Then there exists a function $h \in \bar{M}_{S}(T, \mathcal{B})$ such that h is pointwise increasing on S and satisfies

$$
\begin{align*}
& f(s, \cdot) \leq_{\mu} h(s, \cdot) \forall s \in S \text { and } h(s, \cdot) \leq_{\mu} f(u, \cdot) \forall s, u \in S \text { with } s<u \tag{2}\\
& g(s, t) \leq h(s, t) \forall(s, t) \in S \times T \text { and } h(s, t)=f(s, t) \forall(s, t) \in D \times T \tag{3}\\
& \Sigma h(s)=\Sigma f(s) \forall s \in S \text { and } h(s, \cdot)={ }_{\mu} f(s, \cdot) \forall s \in D_{\Sigma f} \cup Q \tag{4}
\end{align*}
$$

Proof: Since f is μ-a.e. increasing, we have that $\Sigma f: S \rightarrow \overline{\mathbf{R}}$ is increasing and since $S \subseteq \overline{\mathbf{R}}$, we have that Δ is at most countably where Δ denotes the set of all discontinuity points of Σf. Let ρ denote the right Sorgenfrey topology on $\overline{\mathbf{R}}$. By [2; Exc.2.1.I p.103], there exists a countable set $C \subseteq S$ such that $Q \cup \Delta \subseteq C$ and C and $C \cap D$ are ρ-dense in S and D, respectively. Since C is countable and f is μ-a.e. increasing, there exists a μ-null set $N \in \mathcal{B}$ such that $f(\cdot, t)$ is increasing on C for all $t \in T \backslash N$.

Let $s \in S$ be given an let us define $D^{s}:=D \cap[s, \infty], C^{s}:=C \cap[s, \infty]$ and

$$
h(s, t):=\inf _{u \in D^{s}} f(u, t) \text { if } t \in N \text { and } h(s, t):=\inf _{u \in D^{s} \cup C^{s}} f(u, t) \text { if } t \in T \backslash N
$$

Then h is pointwise increasing on S and I claim that $h \in \bar{M}_{S}(T, \mathcal{B})$ and satisfies (2)-(4).
(2): Let $s \in S$ be given. Then there exists a countable set $L_{s} \subseteq D_{s}$ such that L_{s} is cofinal in $\left(D^{s}, \geq\right)$. Since f is pointwise increasing on D, we have $\inf _{u \in D^{s}} f(u, t)=\inf _{u \in L_{s}} f(u, t)$ for all $t \in T$. Since $f(u, \cdot)$ is \mathcal{B}-measurable and C and L_{s} are countable, we see that $h \in \bar{M}_{S}(T, \mathcal{B})$ and since f is μ-a.e. increasing, we have $f(s, \cdot) \leq_{\mu} f(u, \cdot)$ for all $u \in S \cap[s, \infty]$. Hence, we have $f(s, \cdot) \leq_{\mu} h(s, \cdot)$ for all $s \in S$. Let $s, u \in S$ be given such that $s<u$. Since C is ρ-dense in S, there exists $v \in C$ such that $s \leq v<u$. Hence, we have $h(s, t) \leq f(v, t)$ for all $t \in T \backslash N$ and since $f(v, \cdot) \leq_{\mu} f(u, \cdot)$, we have $h(s, \cdot) \leq_{\mu} f(u, \cdot)$. Thus, we see that h satisfies (2).
(3): Since g is pointwise increasing on S and $g \leq f$, we have $g(s, t) \leq$ $g(u, t) \leq f(u, t)$ for all $(s, t) \in S \times T$ and all $u \in S \cap[s, \infty]$. Hence, we see that
$g(s, t) \leq h(s, t)$ for all $(s, t) \in S \times T$. Let $s \in D$ be given. Since $s \in D^{s}$, we have $h(s, t) \leq f(s, t)$ and since f is pointwise increasing on D, we have $h(s, t)=f(s, t)$ for all $t \in N$ and $f(s, t) \leq f(u, t)$ for all $(u, t) \in D^{s} \times T$. Let $t \in T \backslash N$ and $u \in C^{s} \backslash\{s\}$ be given. Since $s<u$ and $C \cap D$ is ρ-dense in D, there exists $v \in C \cap D$ such that $s \leq v<u$ and since $s, v \in D$ and f is pointwise increasing on D, we have $f(s, t) \leq f(v, t)$. Since $t \in T \backslash N$, we have that $f(\cdot, t)$ is increasing on C and since $v, u \in C$, we have $f(v, t) \leq f(u, t)$. Hence, we see that $f(s, t) \leq f(u, t)$ for all $u \in D^{s} \cup C^{s}$ and since $h(s, t) \leq f(s, t)$, we have $f(s, t)=h(s, t)$ for all $(s, t) \in D \times(T \backslash N)$ which completes the proof of (3).
(4): By (2), we have $\Sigma f(s) \leq \Sigma h(s)$ for all $s \in S$. Let $s \in C$ be given. Then we have $h(s, t) \leq f(s, t)$ for all $t \in T \backslash N$ and so by (2) we have $h(s, \cdot)={ }_{\mu} f(s, \cdot)$ and $\Sigma f(s)=\Sigma h(s)$. Let $s \in S \backslash C$ be given. Since C is ρ-dense in S, there exists a decreasing sequence $\left(u_{n}\right) \subseteq C$ such that $u_{n} \downarrow s$. Since $u_{n} \in C^{s}$, we have $h(s, t) \leq f\left(u_{n}, t\right)$ for all $t \in T \backslash N$ and so we have $\Sigma f(s) \leq \Sigma h(s) \leq \Sigma f\left(u_{n}\right)$ for all $n \geq 1$. Since $\Delta \subseteq C$ and $s \in S \backslash C$, we see that Σf is continuous at s and since $u_{n} \rightarrow s$, we see that $\Sigma f(s)=\Sigma h(s)$. Hence, we see that the first equality in (4) holds and so by (2) and order injectivity of Σ, we have $h(s, \cdot)={ }_{\mu} f(s, \cdot)$ for all $s \in D_{\Sigma f}$ and since $Q \subseteq C$, we see that h satisfies (4).

Theorem 3.3: Let $S \subseteq \overline{\mathbf{R}}$ be a non-empty set and let $f, g: S \times T \rightarrow \overline{\mathbf{R}}$ and $\alpha, \beta \in \bar{L}(T, \mathcal{B}, \mu)$ be given functions such that g is pointwise increasing on S and

$$
\begin{align*}
& g(s, t) \leq f(s, t) \leq \beta(t) \quad \forall(s, t) \in S \times T \tag{1}\\
& f(s, \cdot) \in \bar{L}(T, \mathcal{B}, \mu) \text { and } s=\int_{T} f(s, t) \mu(d t)=\int^{*} g(s, t) \mu(d t) \forall s \in S
\end{align*}
$$

Then f is μ-a.e. increasing on $S \backslash\{-\infty\}$ and if f is μ-a.e. increasing on S and pointwise increasing on D for some set $D \subseteq S$, then there exists an increasing μ-partition of unity $h: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying

$$
\begin{align*}
& g(s, t) \leq h(s, t) \leq \beta(t) \forall(s, t) \in S \times T, h(s, t)=f(s, t) \forall(s, t) \in D \times T \tag{3}\\
& h(s, \cdot)={ }_{\mu} f(s, \cdot) \forall s \in S \text { and } h(s, t)=f(s, t) \forall(s, t) \in D \times T
\end{align*}
$$

Proof: Let $x, y \in S$ be given such that $-\infty<x<y$ and let define $\xi(t):=$ $f(x, t) \wedge f(y, t)$ for all $t \in T$. Since g is pointwise increasing on S and $g \leq f$, we have $g(x, t) \leq \xi(t) \leq f(x, t)$ for all $t \in T$ and so by (2) we see that ξ is \mathcal{B}-measurable with $\int^{*} \xi d \mu=\int_{*} \xi d \mu=x=\int_{T} f(x, t) \mu(d t)$. Since x is finite, we see that ξ and $f(x, \cdot)$ are μ-integrable and so we have $\xi={ }_{\mu} f(x, \cdot)$ or equivalently, $f(x, \cdot) \leq_{\mu} f(y, \cdot)$. Hence we see that f is μ-a.e. increasing on $S \backslash\{-\infty\}$.

Suppose that f is μ-a.e. increasing on S and pointwise increasing on D. By (1) and Thm.3.2, there exists $f_{0} \in \bar{M}_{S}(T, \mathcal{B})$ such that f_{0} is pointwise increasing on S and satisfies $f_{0}(s, t)=f(s, t)$ for all $(s, t) \in D \times T, g(s, t) \leq f_{0}(s, t) \leq \beta(t)$ for all $(s, t) \in S \times T$ and $f_{0}(s, \cdot)={ }_{\mu} f(s, \cdot)$ for all $s \in S$. So by (2) and Thm.2.7, we have $f_{0}(s, \cdot) \in \bar{L}(T, \mathcal{B}, \mu)$ and $\Sigma f_{0}(s)=\int_{T} f_{0}(s, t) \mu(d t)=s$ for all $s \in S$.

Suppose that $S \cap \mathbf{R} \neq \emptyset$. By Thm.2.4, there exists an increasing Σ-partition of unity $f_{1}: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying $f_{1}(s, t)=f_{0}(s, t)$ for all $(s, t) \in S \times T$. Then f_{1} is pointwise increasing on S and so by Thm. 3.2 with $g \equiv-\infty$, there exists an increasing μ-partition of unity $h: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying $h(s, t)=f_{1}(s, t)$ for all $(s, t) \in S \times T$. Since $f_{1}(s, t)=f_{0}(s, t)$ for all $(s, t) \in S \times T$, we see that h satisfies (3) and (4).

Suppose that $S=\{-\infty, \infty\}$. By (2) and Thm.2.7.(4) there exists $\xi \in L^{1}(T, \mathcal{B}, \mu)$ such that $\int_{T} \xi d \mu=0$ and $f_{0}(-\infty, t) \leq \xi(t) \leq f_{0}(\infty, t)$ for all $t \in T$. Setting $\tilde{S}:=\{-\infty, 0, \infty\}, \tilde{f}(\pm \infty, t):=f_{1}(\pm \infty, t), \tilde{g}(\pm \infty, t):=g(\pm \infty, t)$ and $\tilde{f}(0, t)=\tilde{g}(t):=\xi(t)$, we see that $(\tilde{f}, \tilde{g}, \tilde{S})$ satisfies (1), (2) and $\tilde{S} \cap \mathbf{R} \neq \emptyset$. Hence, by the argument above we see that there exists an increasing μ-partition of unity $h: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying (3) and (4). The remaining two cases $S=\{\infty\}$ and $S=\{-\infty\}$ follow in the same manner.

Theorem 3.4: Let (S, \leq) be a linear proset and let $\phi \in \bar{M}_{S}(T, \mathcal{B})$ be a pointwise increasing function with Σ-transform $\Phi(s):=\Sigma \phi(s)$ for all $s \in S$. Let $\alpha, \beta \in$ $\bar{L}(T, \mathcal{B}, \mu)$ be given functions satisfying $\alpha(t) \leq \phi(s, t) \leq \beta(t)$ for all $(s, t) \in S \times T$ and let us define

$$
\begin{aligned}
& a=\int_{T} \alpha d \mu, b=\int_{T} \beta d \mu, \quad E_{s}=\{u \in S \mid \Phi(u)=\Phi(s)\} \quad \forall s \in S \\
& \phi^{*}(s, t)=\sup _{u \in E_{s}} \phi(s, t), \quad \phi_{*}(s, t)=\inf _{u \in E_{s}} \phi(s, t) \forall(s, t) \in S \times T \\
& \Phi^{*}(s)=\int^{*} \phi^{*}(s, t) \mu(d t), \quad \Phi_{*}(s)=\int_{*} \phi_{*}(s, t) \mu(d t) \forall s \in S \\
& F_{s}=\{u \in S \mid \Phi(u)<\Phi(s)\}, F^{s}=\{u \in S \mid \Phi(u)>\Phi(s)\} \forall s \in S
\end{aligned}
$$

Then ϕ^{*} and ϕ_{*} are pointwise increasing on S and there exists increasing μ-partitions of unity $h_{0}, h_{1}: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying (see the remark below)

$$
\begin{align*}
& a \vee \sup _{u \in F_{u}} \Phi^{*}(s) \leq \Phi_{*}(s) \leq \Phi(s) \leq \Phi^{*}(s) \leq b \wedge \inf _{u \in F^{s}} \Phi_{*}(u) \tag{1}\\
& \alpha(t) \leq \phi_{*}(s, t) \leq \phi(s, t) \leq \phi^{*}(s, t) \leq \beta(t) \wedge \phi_{*}(u, t) \forall s \in S \forall u \in F^{s} \\
& \text { If } s \in S \backslash D_{\Phi}^{\circ} \text { and } \mu \text { is }\left(E_{s}, \leq\right) \text {-smooth, then } \Phi(s)=\Phi^{*}(s) \\
& \text { If } s \in S \backslash D_{\Phi}^{*} \text { and } \mu \text { is }\left(E_{s}, \geq\right) \text {-smooth, then } \Phi(s)=\Phi_{*}(s) \\
& \alpha(t) \leq h_{0}\left(\Phi_{*}(s), t\right) \leq \phi(s, t) \leq h_{1}\left(\Phi^{*}(s), t\right) \leq \beta(t) \forall(s, t) \in S \times T \\
& \alpha(t)=h_{0}(a, t) \leq h_{1}(a, t) \text { and } h_{0}(b, t) \leq h_{1}(b, t)=\beta(t) \forall t \in T
\end{align*}
$$

Proof: Let $x \in \overline{\mathbf{R}}$ be given and let us define $\gamma^{*}(x, t):=\sup _{s \in C_{x}} \phi(s, t)$ and $\gamma_{*}(x, t):=\inf _{s \in C^{x}} \phi(s, t)$ for all $t \in T$ where $C_{x}:=\{s \in S \mid \Phi(s) \leq x\}$ and $C^{x}:=\{s \in S \mid \Phi(s) \geq x\}$. Then γ^{*} and γ_{*} are pointwise increasing on \mathbf{R}. Let $s \in S$ be given and set $x:=\Phi(s)$. Since $E_{x} \subseteq C_{x} \cap C^{x}$, we have $\gamma_{*}(x, t) \leq \phi_{*}(s, t) \leq \phi^{*}(s, t) \leq \gamma^{*}(x, t)$ for all $t \in T$. Let $s, u \in S$ be given elements
satisfying $\Phi(s)<\Phi(u)$ and let $v \in E_{s}$ and $w \in E_{u}$ be given. Since S is linear and Φ is increasing with $\Phi(v)=\Phi(s)<\Phi(u)=\Phi(w)$, we have $v \leq w$ and since ϕ is pointwise increasing, we have $\phi(v, t) \leq \phi(w, t)$ for all $t \in T$. In particular, we see that (2) holds and that we have $\gamma_{*}(\Phi(s), t)=\phi_{*}(s, t) \leq \phi^{*}(s, t)=\gamma^{*}(\Phi(s), t)$ for all $t \in T$ and so we have $\Phi_{*}(s)=\Gamma_{*}(\Phi(s))$ and $\Phi^{*}(s)=\Gamma^{*}(\Phi(s))$ for all $s \in S$ where $\quad \Gamma^{*}(x):=\int^{*} \gamma^{*}(x, t) \mu(d t)$ and $\Gamma_{*}(x):=\int^{*} \gamma^{*}(x, t) \mu(d t)$ for all $x \in \overline{\mathbf{R}}$.

In particular, we see that ϕ_{*} and ϕ^{*} are pointwise increasing functions satisfying (2) and since $\alpha(t) \leq \phi_{*}(s, t) \leq \phi(s, t) \leq \phi^{*}(s, t) \leq \beta(t)$, we see that (1) follows from (2).
(3+4): Let $s \in S \backslash D_{\Phi}^{\circ}$ be a given element such that μ is (E_{s}, \leq)-smooth. Then we have $-\infty<\Phi(s) \leq \infty$ and by (1), we have $\Phi(s)=\Phi^{*}(s)$ if $\Phi(s)=\infty$. So suppose that $\Phi(s) \neq \pm \infty$ and let us define $N_{u}:=\{t \in T \mid \phi(s, t)<\phi(u, t)\}$ for all $u \in S$. Then $N_{u} \in \mathcal{B}$ and since ϕ is pointwise increasing, we see that $u \curvearrowright N_{u}$ is increasing. Let $u \in E_{s} \cap[s, *]$ be given. Since $s \leq u$, we have $\phi(s, t) \leq \phi(u, t)$ for all $t \in T$ and since Σ is order injective and $\Sigma \phi(u)=\Phi(u)=\Phi(s)=\Sigma \phi(s) \neq \pm \infty$, we see $\mu\left(N_{u}\right)=0$. Hence, by $\left(E_{s}, \leq\right)$-smoothness of μ, we have $\mu^{*}\left(N^{*}\right)=0$ where $N^{*}=\cup_{u \in E_{s} \cap[s, *]} N_{u}$ and since $N^{*}=\left\{t \in T \mid \phi(s, t)<\phi^{*}(s, t)\right\}$, we see that $\phi(s, \cdot)={ }_{\mu} \phi^{*}(s, \cdot)$ and $\Phi(s)=\Phi^{*}(s)$. Hence, we have proved (3), and (4) follows in the same manner.

Suppose that $a=b$. By (1), we have $\Phi_{*}(s)=\Phi(s)=\Phi^{*}(s)=a=b$ for all $s \in S$ and by Thm.3.3, there exists an increasing μ-partitions of unity $h_{0}, h_{1}: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ such that $h_{0}(a, t)=\alpha(t)$ and $h_{1}(b, t)=\beta(t)$ for all $t \in T$. Hence, we see that $\left(h_{0}, h_{1}\right)$ satisfies (5+6). So suppose that $a<b$ and let us define $\Lambda_{x}:=\left\{y \in \overline{\mathbf{R}} \mid \Gamma^{*}(y) \leq x\right\}$ and $g^{*}(x, t):=\sup _{y \in \Lambda_{x}} \gamma^{*}(y, t)$ for all $(x, t) \in \overline{\mathbf{R}} \times T$. Then $g^{*}: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ is pointwise increasing on $\overline{\mathbf{R}}$ and I claim that we have

$$
\begin{equation*}
\int^{*} g^{*}(x, t) \mu(d t)=G^{*}(x) \quad \forall x \in \overline{\mathbf{R}} \text { where } G^{*}(x)=\sup _{y \in \Lambda_{x}} \Gamma^{*}(y) \tag{i}
\end{equation*}
$$

Proof of (i): Let $x \in \overline{\mathbf{R}}$ be given. If $\Lambda_{x}=\emptyset$, we have $G^{*}(x)=-\infty$ and $g^{*}(x, t) \equiv-\infty$ and so we see that (i) holds. Suppose that $\emptyset \neq \Lambda_{x} \subseteq \Lambda_{-\infty}$ and let $y \in \Lambda_{x}$ and $s \in C_{y}$ be given. Since $\Lambda_{x} \subseteq \Lambda_{-\infty}$, we have $\Gamma^{*}(y)=-\infty$ and so we have $G^{*}(x)=-\infty$. Since $\Phi(s) \leq y$ and Γ^{*} is increasing with $\Phi(s) \leq \Phi^{*}(s)=\Gamma^{*}(\Phi(s))$, we have $\Phi(s)=\Phi^{*}(s)=\Gamma^{*}(\Phi(s))=\Gamma^{*}(y)=-\infty$. Hence, we have $C_{y}=C_{-\infty}=E_{s}$ and so we have $\gamma^{*}(y, t)=\phi^{*}(s, t)$ for all $t \in T$ and all $y \in \Lambda_{x}$. Hence, we have $g^{*}(x, t)=\phi^{*}(s, t)$ for all $t \in T$ and so we have $\int^{*} g(x, t) \mu(d t)=\Phi^{*}(s)=-\infty=G^{*}(x)$. Suppose that $\Lambda_{x} \nsubseteq \Lambda_{-\infty}$. Then there exists an increasing sequence $\left(y_{n}\right) \subseteq \Lambda_{x} \backslash \Lambda_{-\infty}$ such that $\left(y_{n}\right)$ is cofinal in Λ_{x}. Since Γ^{*} and $\gamma^{*}(\cdot, t)$ are increasing, we have $\Gamma^{*}\left(y_{n}\right) \uparrow G^{*}(x)$ and $\gamma^{*}\left(y_{n} . t\right) \uparrow g^{*}(x, t)$ for all $t \in T$ and since $y_{n} \in \Lambda_{x} \backslash \Lambda_{-\infty}$, we have $-\infty<\Gamma^{*}\left(y_{n}\right)=\int^{*} \gamma^{*}\left(y_{n}, t\right) \mu(d t) \leq x$ for all n. Since the upper integral satisfies the increasing monotone convergence theorem, we have $\Gamma^{*}\left(y_{n}\right) \uparrow \int^{*} g^{*}(x, t) \mu(d t)$ and since $\Gamma^{*}\left(y_{n}\right) \uparrow G^{*}(x)$, we have proved (i),

By (1), we have $S^{\diamond}:=\{a, b\} \cup \Phi^{*}(S) \subseteq[a, b]$. Let $(x, t) \in S^{\diamond}$ be given and let us define $g(x, t):=g^{*}(x, t)$ if $x \in \Phi^{*}(S), g(x, t):=\alpha(t)$ if $x=a \notin \Phi^{*}(S)$
and $g(x, t)=\beta(t)$ if $x=b \notin \Phi^{*}(S)$. Let $s \in S$ be given and set $y=\Phi(s)$ and $x=\Phi^{*}(s)$. Then we have $\phi(s, t) \leq \phi^{*}(s, t)=\gamma^{*}(y, t)$ and $x=\Gamma^{*}(y)$ and so we have $G^{*}(x)=x$ and $\gamma^{*}(y, t) \leq g^{*}(x, t)$ for all $t \in T$. Hence, we see that $\alpha(t) \leq \phi(s, t) \leq \phi^{*}(s, t) \leq g^{*}\left(\Phi^{*}(s), t\right)$ for all $(s, t) \in S \times T$ and since g^{*} is pointwise increasing on $\overline{\mathbf{R}}$ with $g^{*}(x, t) \leq \beta(t)$ for all $(x, t) \in \overline{\mathbf{R}} \times T$, we see that $g: S^{\diamond} \times T \rightarrow \overline{\mathbf{R}}$ is a pointwise function satisfying

$$
\int^{*} g(x, t) \mu(d t)=x, \quad \alpha(t) \leq g(x, t) \leq \beta(t), \quad \phi(s, t) \leq g\left(\Phi^{*}(s), t\right)
$$

for all $x \in S^{\diamond}$, all $s \in S$ and all $t \in T$. Hence, by Thm.2.7.(4) there exists $\xi_{x} \in \bar{L}(T, \mathcal{B}, \mu)$ such that $\int_{T} \xi_{x} d \mu=x$ and $g(x, t) \leq \xi_{x}(t) \leq \beta(t)$ for all $(s, t) \in S^{\diamond} \times T$. By Thm.3.3, we see that $\xi_{x}(t)$ is μ-a.e. increasing on $S_{0}:=S^{\diamond} \backslash\{a\}$. Let $\left(z_{n}\right) \subseteq S_{0}$ be a decreasing sequence such that $\left(z_{n}\right)$ is cofinal in $\left(S_{0}, \geq\right)$ and let us define $\eta(t):=\inf _{n \geq 1} \xi_{z_{n}}(t)$ for all $t \in T$. Then we have $\xi_{z_{n}} \downarrow \eta \mu$-a.e. and $\eta \leq_{\mu} \xi_{x}$ for all $x \in S_{0}$. Since $\xi_{b} \in \bar{L}(T, \mathcal{B}, \mu)$ and $\xi_{z_{n}} \in L^{1}(T, \mathcal{B}, \mu)$ if $z_{n}<b$, we have $\eta \in \bar{L}(T, \mathcal{B}, \mu)$ and since g is pointwise increasing, we have $g(a, t) \leq g\left(z_{n}, t\right) \leq \xi_{z_{n}}(t) \leq \beta(t)$ and so we see that $\alpha(t) \leq g(a, t) \leq \eta(t) \leq \beta(t)$ for all $t \in T$.

Hence, by Thm.2.7.(4), there exists $f(a, \cdot) \in \bar{L}(T, \mathcal{B}, \mu)$ such that $g(a, t) \leq$ $f(a, t) \leq \eta(t)$ for all $t \in T$ and $\int_{T} f(a, t) \mu(d t)=\int^{*} g(a, t) \mu(d t)=a$. Let us define $f(b, t):=\beta(t)$ and $f(x, t):=\xi_{x}(t)$ for all $x \in S^{\diamond} \backslash\{a, b\}$ and all $t \in T$. Then we have $g(x, t) \leq f(x, t) \leq \beta(t)$ for all $(x, t) \in S^{\diamond} \times T$ and we have $f(x, \cdot) \in \bar{L}(T, \mathcal{B}, \mu)$ and $\int_{T} f(x, t) \mu(d t)=x=\int^{*} g(x, t) \mu(d t)$ for all $x \in S^{\diamond}$. Since $\eta \leq_{\mu} \xi_{x} \leq \beta$ for all $x \in S_{0}$, we see that f is μ-a.e. increasing on S^{\diamond} and so by Thm.3.3 with $D:=\{b\}$ there exists an increasing μ-partition of unity $h_{1}: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying $g(x, t) \leq h_{1}(x, t) \leq \beta(t)$ for all $(x, t) \in S^{\diamond} \times T$ and $h_{1}(b, t)=\beta(t)$ for all $t \in T$. Since $a(t) \leq g(a, t)$ and $\phi(s, t) \leq g\left(\Phi^{*}(s), t\right)$, we have $\alpha(t) \leq h_{1}(a, t) \leq h_{1}(b, t)=\beta(t)$ and $\phi(s, t) \leq h_{1}\left(\Phi^{*}(s), t\right)$ for all $(s, t) \in S \times T$.

Note that $\tilde{\phi}(s, t):=-\phi(s, t)$ is pointwise increasing on the linear proset (S, \geq) satisfying $\tilde{\alpha}(t) \leq \tilde{\phi}(s, t) \leq \tilde{\beta}(t)$ where $\tilde{\alpha}(t):=-\beta(t)$ and $\tilde{\beta}(t):=-\alpha(t)$. Observe that $\tilde{\Sigma}(\xi):=-\Sigma(-\xi)$ is a μ-integral such that $\tilde{\Phi}(s):=\tilde{\Sigma} \tilde{\phi}(s)=-\Phi(s)$ for all $s \in S$. Applying the construction above on the pair $(\tilde{\phi}, \tilde{\Sigma})$, we see that there exists an increasing μ-partition of unity $\tilde{h}_{1}: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying $\tilde{\alpha}(t) \leq \tilde{h}_{1}(\tilde{a}, t) \leq$ $\tilde{h}_{1}(\tilde{b}, t)=\tilde{\beta}(t)$ and $\tilde{\phi}(s, t) \leq \tilde{h}_{1}\left(\tilde{\Phi}^{*}(s), t\right)$ for all $(s, t) \in S \times T$ where $\tilde{a}:=\int_{T} \tilde{\alpha} d \mu$ and $\tilde{b}:=\int_{T} \tilde{\beta} d \mu$. Let us define $h_{0}(x, t):=-\tilde{h}_{1}(-x, t)$ for all $(x, t) \in \overline{\mathbf{R}} \times T$. Then h_{0} is an μ-partition of unity satisfying $h_{0}(a, t)=\alpha(t) \leq h_{0}(b, t) \leq \beta(t)$ and since $\tilde{\Phi}^{*}(s)=-\Phi_{*}(s)$, we have $h_{0}\left(\Phi_{*}(s), t\right) \leq \phi(s, t)$ for all $(s, t) \in S \times T$. Thus, we see that the pair $\left(h_{0}, h_{1}\right)$ satisfies $(5+6)$.

Theorem 3.5: Let (S, \leq) be a linear proset and let $\rho: 2^{S} \rightarrow[0, \infty]$ be an increasing set function satisfying $\rho(\emptyset)=0$. Let $\phi \in \bar{M}_{S}(T, \mathcal{B})$ be a pointwise increasing function with Σ-transform $\Phi(s):=\Sigma \phi(s)$ for all $s \in S$ and let $\Phi^{*}(s)$ and $\Phi_{*}(s)$ be defined as in Thm.3.4. Then we have

$$
\begin{equation*}
\int^{\digamma} \Phi_{*} d \rho \leq \int_{*} \mu(d t) \int^{\digamma} \phi(s, t) \rho(d s) \leq \int^{*} \mu(d t) \int^{\digamma} \phi(s, t) \rho(d s) \leq \int^{\digamma} \Phi^{*} d \rho \tag{1}
\end{equation*}
$$

Suppose that μ is sum-finite, let \mathcal{A} be a σ-algebra on S and let ν be a sum-finite measure on (S, \mathcal{A}). If $\nu \otimes \mu$ denotes the product measure on the product space $(S \times T, \mathcal{A} \otimes \mathcal{B})$, then we have

$$
\begin{equation*}
\int_{*} \Phi_{*} d \nu \leq \int_{*} \phi d(\nu \otimes \mu) \leq \int_{*} \Phi d \nu \leq \int^{*} \Phi d \nu \leq \int^{*} \phi d(\nu \otimes \mu) \leq \int^{*} \Phi^{*} d \nu \tag{2}
\end{equation*}
$$

Remarks: (a): If $F \subseteq S$, we say that F is ρ-exhaustive if $\rho(A)=\rho(A \cap F)$ for all $A \subseteq S$. If $f, g: S \rightarrow[0, \infty]$ are non-negative functions such that the set $\{f=g\}$ is ρ-exhaustive, then it follows easily that we have $\int{ }^{\digamma} f d \rho=\int^{\digamma} g d \rho$. Hence, if $\left\{\Phi_{*}=\Phi^{*}\right\}$ is ρ-exhaustive, we have equality throughout in (1), and recall that (1), (3) and (4) in Thm.3.4 provide tools for verifying $\Phi_{*}(s)=\Phi(s)$ or $\Phi(s)=\Phi^{*}(s)$. Similarly, if $\Phi=\Phi^{*} \quad \nu$-a.e., then the last two inequalities in (2) become equalities.
(b): Let $q: T \rightarrow[0, \infty)$ and $\phi: S \times T \rightarrow[0, \infty]$ be given functions such that ϕ is pointwise increasing on S. Then $\mu(B)=\sum_{t \in B} q(t)$ is a finitely founded measure on $\left(T, 2^{T}\right)$ and we have $\Sigma \phi(s)=\sum_{t \in T} q(t) \phi(s, t)$ for all $s \in S$. Hence, by Thm.3.4 and non-negativity of Φ we have $\Phi(s)=\Phi^{*}(s)$ for all $s \in S$ and $\Phi(s)=\Phi_{*}(s)$ for all $s \in\{\Phi<\infty\}$ and so by (1) we obtain the following remarkable inequality

$$
\sum_{t \in T} q(t) \int^{\digamma} \phi(s, t) \rho(d s) \leq \int^{\digamma} \sum_{t \in T} q(t) \phi(s, t) \rho(d s)
$$

with equality if $\{\Phi<\infty\}$ is ρ-exhaustive.
(c): Let me give an example showing the we may have strict inequality in (2): Suppose that the continuum hypothesis holds. Then there exists a well-ordering \preceq on the unit interval $I:=[0,1]$ such that $I_{s}:=\{t \in I \mid t \preceq s\}$ is at most countable for all $s \in I$. Then (I, \preceq) is a linear poset and we let λ denote the Lebesgue measure on the Borel σ-algebra on I. Let us define $\phi(s, t):=1_{I_{s}}(t)$ for all $(s, t) \in I \times I$. Then $\phi(\cdot, t)$ is Borel measurable and increasing with respect to \preceq and $\phi(s, \cdot)$ is Borel measurable and decreasing with respect to \preceq. Thus, we are in the setting of the theorem with $\nu=\mu:=\lambda$ and observe that we have $\Phi(s)=\int_{0}^{1} \phi(s, t) d t=0$ and $\Phi^{*}(s)=1$ for all $s \in I$. Hence, we have

$$
\int_{0}^{1} d s \int_{0}^{1} \phi(s, t) d t=0<1=\int_{0}^{1} d t \int_{0}^{1} \phi(s, t) d s=\int^{*} \phi d(\lambda \otimes \lambda)
$$

Proof: By Lem.3.1 and Thm.3.4 with $\alpha(t):=0$ and $\beta(t):=\infty$, there exist increasing μ-partitions of unity $f, g: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ such that f is right continuous, g is left continuous, $g\left(\Phi_{*}(s), t\right) \leq \phi(s, t) \leq f\left(\Phi^{*}(s), t\right)$ for all $(s, t) \in S \times T$ and $g(0, t) \leq 0 \leq f(0, t)$ for all $t \in T$. In particular, we have $\int_{T} g(0, t) \mu(d t)=0=$ $\int_{T} f(0, t) \mu(d t)$ and so by Lem.3.1 we see that there exists a μ-null set $N \in \mathcal{B}$ such that $g(0+, t)=g(0, t)=0=f(0, t)=f(0-, t)$ for all $t \in T \backslash N$ and $|f(x, t)|<\infty$ and $|g(x, t)|<\infty$ for all $(x, t) \in \mathbf{R} \times(T \backslash N)$.

Let $t \in T \backslash N$ be given. Then $f(\cdot, t)$ is a finite, increasing, right continuous function and we let λ_{t} denote the Lebesgue-Stieltjes measure induced by $f(\cdot, t)$. If $a<b$, we have $\lambda_{t}((a, b])=f(b, t)-f(a, t)$ for all $t \in T$ and since f is an increasing μ-partition of unity and N is a μ-null set, we have $\int_{T \backslash N} \lambda_{t}((a, b]) \mu(d t)=$
$b-a=\lambda((a, b])$ where λ denotes the Lebesgue measure. Hence, by the standard proof we have

$$
\begin{equation*}
\int_{T \backslash N} \mu(d t) \int_{\mathbf{R}} g(x) \lambda^{t}(d x)=\int_{\mathbf{R}} g(x) \mu(d x)=\int_{T \backslash N} \mu(d t) \int_{\mathbf{R}} g(x) \lambda_{t}(d x) \tag{i}
\end{equation*}
$$

for every non-negative Borel function $g: \mathbf{R} \rightarrow[0, \infty]$.
Let us define $F(t):=\int^{F} \phi(s, t) \rho(d s)$ for all $t \in T$ and let me first show that $\int^{*} F d \mu \leq \int^{\digamma} \Phi^{*} d \rho$. If $\int^{\digamma} \Phi^{*} d \rho=\infty$, this is evident. So suppose that $\int^{F} \Phi^{*} d \rho<\infty$. Let us define $R(x, t):=\rho(s \in S \mid \phi(s, t)>x)$ and $R_{0}(x, t):=$ $\rho\left(s \in S \mid f\left(\Phi^{*}(s), t\right)>x\right)$ for all $(x, t) \in \mathbf{R} \times T$. Since $\phi(s, t) \leq f\left(\Phi^{*}(s), t\right)$, we have $R(x, t) \leq R_{0}(x, t)$. Let $t \in T \backslash N$ be given. Then we have $f(0, t)=0$ and since $\int^{F} \Phi^{*} d \nu<\infty$, we have $\rho\left(s \in S \mid \Phi^{*}(s)=\infty\right)=0$. Hence, we see that $R_{0}(x)=0$ for all $x \geq f(\infty-, t)$ and since $R_{0}(\cdot, t)$ is decreasing we have (see [3; (3.29.7) p.205])

$$
\begin{aligned}
F(t) & =\int_{0}^{\infty} R(x, t) d x \leq \int_{0}^{\infty} R_{0}(x, t) d x=\int_{f(0, t)}^{f(\infty-, t)} R_{0}(x, t) d x \\
& \leq \int_{0}^{\infty} R_{0}(f(x-, t), t) \lambda_{t}(d x)
\end{aligned}
$$

Let $(s, t) \in S \times T$ and $x \in \mathbf{R}$ be given such that $f(x-, t)<f\left(\Phi^{*}(s), t\right)$. Since $f(y, t) \leq f(x-, t)$ for all $y<x$, we must have $\Phi^{*}(s) \geq x$. Hence, we have $R_{0}(f(x-, t), t) \leq R_{1}(x):=\rho\left(s \in S \mid \Phi^{*}(s) \geq x\right)$ and so we see that $F(t) \leq \int_{0}^{\infty} R_{1}(x) \lambda_{t}(d x)$ for all $t \in T \backslash N$. So by (i) we have

$$
\int^{*} F d \mu \leq \int_{T \backslash N} \mu(d t) \int_{0}^{\infty} R_{1}(x) \lambda_{t}(d x)=\int_{0}^{\infty} R_{1}(x) d x=\int^{F} \Phi^{*} d \nu
$$

which completes the proof of the last inequality in (1). The first inequality in (2) follows in the same manner using the increasing μ-partition of unity g and the mid-inequality is evident.

The last inequality in (2) holds trivially if $\int^{*} \Phi^{*} d \nu=\infty$. So suppose that $\int^{*} \Phi^{*} d \nu<\infty$ and let $a>\int^{*} \Phi^{*} d \nu$ be given. Then there exists $\xi \in L^{1}(S, \mathcal{A}, \nu)$ such that $\int_{S} \xi d \nu<a$ and $\Phi^{*}(s) \leq \xi(s)$ for all $s \in S$. Since $f(\cdot, t)$ is right continuous for all $t \in T$ and $f(x, \cdot)$ is \mathcal{B}-measurable for all $x \in \overline{\mathbf{R}}$, we see that f is measurable with respect to the product σ-algebra $\mathcal{B}(\overline{\mathbf{R}}) \otimes \mathcal{B}$ and since ξ is \mathcal{A}-measurable and $\Phi^{*} \leq \xi$, we see that $f(\xi(s), t)$ is $(\mathcal{A} \otimes \mathcal{B})$-measurable and satisfies $0 \leq \phi(s, t) \leq f\left(\Phi^{*}(s), t\right) \leq f(\xi(s), t)$. So by the Fubini-Tonelli theorem we have

$$
\int^{*} \phi d(\nu \otimes \mu) \leq \int_{S \times T} f(\xi(s), t)(\nu \otimes \mu)(d s, d t)=\int_{S} \nu(d s) \int_{T} f(\xi(s), t) \mu(d t)
$$

Since f is an increasing μ-partition of unity, we have $\int_{T} f(\xi(s), t) \mu(d t)=\xi(s)$ for all $s \in S$ and so we see that $\int^{*} \phi d(\nu \otimes \mu) \leq \int_{S} \xi d \nu<a$. Letting $a \downarrow \int^{*} \Phi^{*} d \nu$, we obtain the last inequality in (2). The first inequality in (2) follow in the same manner and the remaining inequalities in (2) are well-known and easy.

Theorem 3.6: Let (S, \leq) be a linear proset and let $\phi \in \bar{M}_{S}(T)$ be a given function with Σ-transform $\Phi(s):=\Sigma \phi(s)$. Suppose that ϕ is pointwise increasing on S and $\Phi_{*}(s)=\Phi^{*}(s)$ for all $s \in S$ where $\Phi^{*}(s)$ and $\Phi_{*}(s)$ are defined as in Thm.3.4. If $\mathcal{L} \subseteq 2^{S}$ is any given set such that $\phi(\cdot, t) \in \bar{W}(S, \mathcal{L})$ for μ-a.a. $t \in T$, then we have $\Phi \in \bar{W}(S, \mathcal{L})$.

Proof: By Thm.3.4 with $\alpha(t) \equiv-\infty$ and $\beta(t) \equiv \infty$, there exist increasing μ partitions of unity $f, g: \overline{\mathbf{R}} \times T \rightarrow \overline{\mathbf{R}}$ satisfying $g(\Phi(s), t) \leq \phi(s, t) \leq f(\Phi(s), t)$ for all $(s, t) \in S \times T$. Let $-\infty<x<y<\infty$ be given. Since $\int_{T} f(x, t) \mu(d t)=x<$ $y=\int_{T} g(y, t) \mu(d t)$, we have $\mu(t \mid f(x, t)<g(y, t))>0$ and since $\phi(\cdot, t) \in \bar{W}(S, \mathcal{L})$ for μ-a.a. $\quad t \in T$, there exists $t_{0} \in T$ and $u, v \in \mathbf{R}$ such that $\phi\left(\cdot, t_{0}\right) \in \bar{W}(S, \mathcal{L})$ and $f\left(x, t_{0}\right)<u<v<g\left(y, t_{0}\right)$. Hence, there exists $L \in \mathcal{L} \cup\{\emptyset, S\}$ such that $\left\{s \mid \phi\left(s, t_{0}\right)>v\right\} \subseteq L \subseteq\left\{s \mid \phi\left(s, t_{0}\right)>u\right\}$. Let $s \in\{\Phi>y\}$ be given. Then we have $\phi\left(s, t_{0}\right) \geq g\left(\Phi(s), t_{0}\right) \geq g\left(y, t_{0}\right)>v$ and so we have $s \in L$. Let $s \in L$ be given. Then we have $f\left(\Phi(s), t_{0}\right) \geq \phi\left(s, t_{0}\right)>u>f\left(x, t_{0}\right)$ and since $f\left(\cdot, t_{0}\right)$ is increasing, we have $\Phi(s)>x$. Hence, we see that $\{\Phi>y\} \subseteq L \subseteq\{\Phi>x\}$ and so we have $\Phi \in \bar{W}(S, \mathcal{L})$.
4. Solutions to problem (IP) Let (M, \preceq) and (S, \leq) be prosets, let $\omega \in M$ be a given element and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ and $H: S \rightarrow \overline{\mathbf{R}}$ be increasing functions. Then we let $I_{\Sigma}(H, \omega)$ denote the set of all increasing function $\phi: S \rightarrow M$ satisfying $\phi(s) \preceq \omega$ and $\Sigma \phi(s) \leq H(s) \leq \Sigma(\omega)$ for all $s \in S$. If $\phi \in I_{\Sigma}(H, \omega)$, we let $I P_{\Sigma}(\phi, H, \omega)$ denote the set of all increasing functions $\psi: S \rightarrow M$ satisfying $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s)=H(s)$ for all $s \in S$. Note that $I P_{\Sigma}(\phi, H, \omega) \subseteq I_{\Sigma}(H, \omega)$ and that $I P_{\Sigma}(\phi, H, \omega)$ is exactly the set of all solution to problem (IP) of the introduction. We let $G I_{\Sigma}(H, \omega)$ denote the set of all $\phi \in I_{\Sigma}(H, \omega)$ for which there exists $\kappa \in L^{1}(\Sigma)$ such that $\phi\left(D_{\Sigma \phi}^{\circ}\right) \cup\{\kappa, \omega\}$ is a linear subset of (M, \preceq) and if $\theta: S \rightarrow \overline{\mathbf{R}}$ is a function and $J \subseteq S$ is a given set, we define $\lim \inf _{s \uparrow J} \theta(s):=\sup _{u \in J} \inf _{s \in J \cap[u, *]} \theta(s)$ with the convention $\lim \inf _{s \uparrow \emptyset} \theta(s):=\infty$.

Theorem 4.1: Let (M, \preceq) be a σ-lattice and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth functional with the Darboux property. Let $\omega \in M$ be a given element, let (S, \leq) be a linear proset and let $H: S \rightarrow \overline{\mathbf{R}}$ be an increasing function. Let $\phi \in I_{\Sigma}(H, \omega)$ be a given function and let us define $r:=\Sigma_{\vee} \phi\left(D_{\Sigma \phi}^{\circ}\right), L:=\{s \mid H(s)<r\}$ and $q:=\Sigma_{\vee} \phi(L)$. Then we have
(1) $L \cup D_{H}^{\circ} \subseteq D_{\Sigma \phi}^{\circ}$ and $q \leq r \leq \Sigma(\omega) \wedge \inf _{s \notin D_{\Sigma \phi}^{\circ}} \Sigma \phi(s) \leq \inf _{s \notin D_{\Sigma \phi}^{\circ}} H(s)$
(2) If $L \neq D_{\Sigma \phi}^{\circ}$, then we have $q=-\infty$
(3) If $\phi \notin G I_{\Sigma}(H, \omega)$, then we have $|\Sigma(\omega)|=|q|=|r|=|\Sigma \phi(s)|=\infty$ for all $s \in S$ and $\{H<\infty\} \subseteq D_{\Sigma \phi}^{\circ}$
and if $\phi \in G I_{\Sigma}(H, \omega)$, then $r<\infty$ and there exists an increasing Σ-partition of unity $f: \overline{\mathbf{R}} \rightarrow M$ satisfying

$$
\begin{align*}
& f(\Sigma(\omega))=\omega \text { and } \phi(s) \preceq f(\Sigma \phi(s)) \forall s \in S \backslash D_{\Sigma \phi}^{\circ} \tag{4}\\
& \phi(s) \preceq f(r) \forall s \in D_{\Sigma \phi}^{\circ} \text { and } \phi(s) \preceq f(q) \quad \forall s \in L \\
& \phi(s) \preceq f(H(s)) \quad \forall s \in\{H \geq q\} \tag{6}
\end{align*}
$$

Proof: (1): Since ϕ is increasing, we have that $\Sigma \phi$ is increasing and since $\Sigma \phi \leq H$, we have $D_{H}^{\circ} \subseteq D_{\Sigma \phi}^{\circ}$. Since S is linear we have that $A:=\phi(S)$ is a linear subset of M satisfying $A \cap L_{*}(\Sigma)=\phi\left(D_{\Sigma \phi}^{\circ}\right), A \cap L^{1}(\Sigma)=\phi\left(D_{\Sigma \phi}\right)$ and $A \cap L^{*}(\Sigma)=\phi\left(D_{\Sigma \phi}^{*}\right)$. So by Lem.2.2 we have $\phi(u) \preceq \phi(s)$ for all $u \in D_{\Sigma \phi}^{\circ}$ and all $s \in S \backslash D_{\Sigma \phi}^{\circ}$. Hence, we have $r \leq \Sigma \phi(s)$ for all $s \in S \backslash D_{\Sigma \phi}^{\circ}$ and since $\Sigma \phi(s) \leq H(s) \leq \Sigma(\omega)$, we see that (1) holds.
(2): Suppose that $L \neq D_{\Sigma \phi}^{\circ}$. Since $L \subseteq D_{\Sigma \phi}^{\circ}$, there exists $u \in D_{\Sigma \phi}^{\circ} \backslash L$. Then we have $\Sigma \phi(u)=-\infty$ and $H(u) \geq r$. Since S is linear and H is increasing, we have $s \leq u$ for all $s \in L$ and since ϕ is increasing, we have $\phi(s) \preceq \phi(u)$ for all $s \in L$. Since $u \in D_{\Sigma \phi}^{\circ}$, we have $q \leq \Sigma \phi(u)=-\infty$.
(3): Suppose that $\phi \notin G I_{\Sigma}(H, \omega)$. Since $\phi(S) \preceq \omega$, we have $\omega \notin L^{1}(\Sigma)$; that is $|\Sigma(\omega)|=\infty$. Since $\phi\left(D_{\Sigma \phi}\right) \subseteq L^{1}(\Sigma)$ and $\phi\left(D_{\Sigma \phi}^{\circ}\right) \preceq \phi\left(D_{\Sigma \phi}\right) \preceq \omega$, we have $D_{\Sigma \phi}=\emptyset$; that is, $|\Sigma \phi(s)|=\infty$ for all $s \in S$. By Lem.2.1 there exists $v \in M$ such that $\phi\left(D_{\Sigma \phi}^{\circ}\right) \preceq v \preceq \omega$ and $\Sigma(v)=r$. Hence, we have $|r|=\infty$ and so by (2) we have $|q|=\infty$. Since $\Sigma \phi(s) \leq H(s)$ and $|\Sigma \phi(s)|=\infty$, we have $\{H<\infty\} \subseteq D_{\Sigma \phi}^{\circ}$.
(4)-(6): Suppose that $\phi \in G I_{\Sigma}(H, \omega)$. Then there exists $\kappa \in L^{1}(\Sigma)$ such that $\phi\left(D_{\Sigma \phi}^{\circ}\right) \cup\{\kappa, \omega\}$ is linear. Set $A:=\phi(S)$. Then we have $A \cap L_{*}(\Sigma)=\phi\left(D_{\Sigma \phi}^{\circ}\right)$ and so by Thm. 2.5 with $F:=\phi(L)$ we see that $r<\infty$ and that there exists an increasing Σ-partition $f: \overline{\mathbf{R}} \rightarrow M$ satisfying (4+5). Let $s \in S$ be a given element satisfying $H(s) \geq q$. By (4), we have $\phi(s) \preceq f(\Sigma \phi(s)) \preceq f(H(s))$ if $s \in S \backslash D^{\circ} \Sigma \phi$. By (5), we have $\phi(s) \preceq f(r) \preceq f(H(s))$ if $s \in D_{\Sigma \phi}^{\circ}$ and $r \leq H(s)$. So suppose that $s \in D_{\Sigma \phi}^{\circ}$ and $q \leq H(s)<r$. Then we have $s \in L$ and so by (5) we have $\phi(s) \preceq f(q) \preceq f(H(s))$ which completes the proof of (6).

Theorem 4.2: Let (M, \preceq) be a σ-lattice and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth functional with the Darboux property. Let $\omega \in M$ be a given element, let (S, \leq) be a linear proset and let $H: S \rightarrow \overline{\mathbf{R}}$ be an increasing function. Let $\phi, \sigma \in I_{\Sigma}(H, \omega)$ be given functions satisfying $\phi(s) \preceq \sigma(s)$ for all $s \in S$ and let us define $r:=\Sigma_{\mathrm{V}} \phi\left(D_{\Sigma \phi}^{\circ}\right)$ and

$$
S_{H}:=\{s \in S \mid-\infty<H(s)<\Sigma(\omega)\}, L:=\{s \in S \mid H(s)<r\}
$$

and $q:=\Sigma_{\mathrm{V}} \phi(L)$. Let $F: S \rightarrow \overline{\mathbf{R}}$ and $\theta: S \rightarrow M$ be given function such that θ is increasing and $\Sigma \theta(s)+F(s) \leq H(s)$ for all $s \in S$. Then we have

$$
\begin{equation*}
\phi \in G I_{\Sigma}(H, \omega) \text { and }\{s \mid H(s)<q\} \subseteq D_{H}^{\circ} \Rightarrow I P_{\Sigma}(\phi, H, \omega) \neq \emptyset \tag{1}
\end{equation*}
$$

(2) $I P_{\Sigma}(\sigma, H, \omega) \subseteq I P_{\Sigma}(\phi, H, \omega)$ and if $D_{\Sigma \sigma}^{\circ} \neq D_{\Sigma \phi}^{\circ}$ and either ϕ or σ belong to $G I_{\Sigma}(H, \omega)$, then we have $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$

$$
\begin{equation*}
\liminf _{s \uparrow A}(H(s) \dot{-} F(s)) \geq \Sigma_{\vee} \theta(A)>-\infty \quad \forall A \nsubseteq D_{\Sigma \theta}^{\circ} \tag{3}
\end{equation*}
$$

(4) If $\phi \in G I_{\Sigma}(H, \omega)$ and (M, \preceq) has the strong Darboux property, then the following two statements are equivalent:
(a) $\quad I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$
(b) Either $D_{H}^{\circ}=D_{\Sigma \phi}^{\circ}$ or $r \leq \sup _{s \in D_{\Sigma \phi}^{\circ}} H(s)$

$$
\begin{equation*}
S_{H} \cap D_{\Sigma \phi}^{\circ}=\emptyset \Rightarrow I P_{\Sigma}(\phi, H, \omega) \neq \emptyset \tag{5}
\end{equation*}
$$

Proof: (1): Suppose that $\phi \in G I_{\Sigma}(H, \omega)$ and $\{H<q\} \subseteq D_{H}^{\circ}$. By Thm.4.1 there exists an increasing Σ-partition of unity $f: \overline{\mathbf{R}} \rightarrow M$ satisfying (4)-(6) in Thm.4.1. Let us define $\psi(s):=\phi(s)$ if $H(s)<q$ and $\psi(s):=f(H(s))$ if $H(s) \geq q$. By Thm.4.1, we have $\phi(s) \preceq \psi(s) \preceq \omega$ for all $s \in S$ and since S is linear and ϕ, H and f are increasing, we see that ψ is increasing. Since f is an increasing Σ-partition of unity, we have $\Sigma \psi(s)=H(s)$ for all $s \in\{H \geq q\}$. Since $\{H<q\} \subseteq D_{H}^{\circ}$ and $\phi \in I_{\Sigma}(H, \omega)$, we have $\Sigma \psi(s)=\Sigma \phi(s) \leq H(s)=-\infty$ for all $s \in\{H<q\}$. Hence, we have $\Sigma \psi(s)=H(s)$ for all $s \in S$ and $\psi \in I P_{\Sigma}(\phi, H, \omega)$.
(2): Since $\phi(s) \preceq \sigma(s)$ for all $s \in S$, we have $I P_{\Sigma}(\sigma, H, \omega) \subseteq P_{\Sigma}(\phi, H, \omega)$. So suppose that $D_{\Sigma \sigma}^{\circ} \neq D_{\Sigma \phi}^{\circ}$ and that either ϕ or σ belong to $G I_{\Sigma}(H, \omega)$. Let us define $\tau(s):=\phi(s)$ if $s \in D_{\Sigma \sigma}^{\circ}$ and $\tau(s):=\sigma(s)$ if $s \in S \backslash D_{\Sigma \sigma}^{\circ}$. Since $\phi(s) \preceq \sigma(s)$, we have $D_{\Sigma \sigma}^{\circ} \subseteq D_{\Sigma \phi}^{\circ}$ and since ϕ and σ are increasing with $\phi(s) \preceq \sigma(s) \preceq \omega$ and $\Sigma \sigma(s) \leq H(s)$ for all $s \in S$, we see that $\tau: S \rightarrow M$ is an increasing function satisfying $\phi(s) \preceq \tau(s) \preceq \omega$ and $\Sigma \tau(s) \leq H(s)$ for all $s \in S$. In particular, we have $\tau \in I_{\Sigma}(H, \omega)$ and since $D_{\Sigma \sigma}^{\circ} \subseteq D_{\Sigma \phi}^{\circ}$, we have $D_{\Sigma \tau}^{\circ}=D_{\Sigma \sigma}^{\circ}$. Since ϕ and τ coincide on $D_{\Sigma \sigma}^{\circ}$ and $\phi(s) \preceq \sigma(s)$, we have $\tau\left(D_{\Sigma \tau}^{\circ}\right)=\phi\left(D_{\Sigma \sigma}^{\circ}\right) \preceq \sigma\left(D_{\Sigma \sigma}^{\circ}\right)$. Since either ϕ or σ belong to $G I_{\Sigma}(H, \omega)$, we see that $\tau \in G I_{\Sigma}(H, \omega)$. Since $D_{\Sigma \sigma}^{\circ} \varsubsetneqq D_{\Sigma \phi}^{\circ}$, there exists $u \in D_{\Sigma \phi}^{\circ} \backslash D_{\Sigma \sigma}^{\circ}$ and since S is linear and $\Sigma \phi$ is increasing, we have $\tau\left(D_{\Sigma \tau}^{\circ}\right)=\phi\left(D_{\Sigma \sigma}^{\circ}\right) \preceq \phi(u)$. Hence, we have $\Sigma_{\vee} \tau\left(D_{\Sigma \tau}^{\circ}\right) \leq \Sigma \phi(u)=-\infty$ and so by (1) we have $I P_{\Sigma}(\tau, H, \omega) \neq \emptyset$. Since $\phi(s) \preceq \tau(s)$ for all $s \in S$, we see that $\emptyset \neq I P_{\Sigma}(\tau, H, \omega) \subseteq I P_{\Sigma}(\phi, H, \omega)$ which completes the proof of (2).
(3): Let $A \subseteq S$ be a given set satisfying $A \nsubseteq D_{\Sigma \theta}^{\circ}$ and let a denote the liminf in (3). Since $\Sigma \theta(s)+F(s) \leq H(s)$, we have $\Sigma \theta(s) \leq H(s) \dot{-} F(s)$ for all $s \in S$ and since $\Sigma \theta$ is increasing, we have $\sup \Sigma \theta(A) \leq a$. Since $A \nsubseteq D_{\Sigma \theta}^{\circ}$., we have $\sup \Sigma \theta(A)>-\infty$ and so we see that (3) follows from Lem.2.2.
(4): Suppose that (4.a) holds and that $D_{H}^{\circ} \neq D_{\Sigma \phi}^{\circ}$. Then there exists an increasing function $\psi: S \rightarrow M$ satisfying $\phi(s) \preceq \psi(s)$ and $\Sigma \psi(s)=H(s)$ for all $s \in S$ and by Thm.4.1, we have $D_{H}^{\circ} \varsubsetneqq D_{\Sigma \phi}^{\circ}$. Hence, we have $D_{\Sigma \phi}^{\circ} \nsubseteq D_{H}^{\circ}=D_{\Sigma \psi}^{\circ}$ and so by (3) with $(\theta(s), F(s))=(\psi(s), 0)$ and $A:=D_{\Sigma \phi}^{\circ}$, we see that $r \leq \sup _{s \in D_{\Sigma \phi}^{\circ}} H(s)$. Thus, we see that (4.a) implies (4.b)

Suppose that (4.b) holds and let me show that $\operatorname{IP} P_{\Sigma}(\phi, H, \omega) \neq \emptyset$. By (1), we see that this holds if $\{H<q\} \subseteq D_{H}^{\circ}$. So suppose that there exists $u \in S$ such that $-\infty<H(u)<q$. By Thm.4.1 we have $-\infty<q=r<\infty$ and $D_{H}^{\circ} \subseteq\{H<r\}=D_{\Sigma \phi}^{\circ}$ and since $-\infty<H(u)<q=r$, we have $D_{H}^{\circ} \neq D_{\Sigma \phi}^{\circ}$. Hence, by (4.b) we have $\sup _{s \in D_{\Sigma \phi}^{\circ}} H(s)=r$ and since $H(s)<r$ for all $s \in D_{\Sigma \phi}^{\circ}$, there exists $s_{1}, s_{2}, \ldots \in D_{\Sigma \phi}^{\circ} \quad$ such that $-\infty<H\left(s_{1}\right)<H\left(s_{2}\right)<\cdots<r$ and $H\left(s_{n}\right) \uparrow r$. Since S is linear and H is increasing, we have $s_{1} \leq s_{2} \leq \cdots$. Let $s \in D_{\Sigma \phi}^{\circ}$ be given. Since $H(s)<r$ and $H\left(s_{n}\right) \uparrow r$, there exists an integer $n \geq 1$ such that $H(s)<H\left(s_{n}\right)$ and since S is linear and H is increasing, we have $s \leq s_{n}$. Hence, we see that $\left(s_{n}\right)$ is cofinal in $D_{\Sigma \phi}^{\circ}$ and since ϕ is increasing, we have that $\left(\phi\left(s_{n}\right)\right)$ is cofinal in $\phi\left(D_{\Sigma \phi}^{\circ}\right)$. Since M is a σ-lattice there exists an element $\kappa \in \vee \phi\left(D_{\Sigma \phi}^{\circ}\right)=\vee_{n=1}^{\infty} \phi\left(s_{n}\right)$. By (2.1), we have $\Sigma(\kappa)=r$ and since r is finite we have $\kappa \in L^{1}(\Sigma)$ and

$$
\phi\left(s_{n}\right) \uparrow \kappa, H\left(s_{n}\right) \uparrow r=\Sigma(\kappa), H\left(s_{n}\right)<r \text { and } \Sigma \phi\left(s_{n}\right)=-\infty \forall n \geq 1
$$

Since Σ has the strong Darboux property there exists an increasing sequence $\left(\eta_{n}\right) \subseteq M$ such that $\phi\left(s_{n+1}\right) \preceq \eta_{n} \preceq \kappa$ and $-\infty<\Sigma\left(\eta_{n}\right) \leq H\left(s_{n}\right)$ for all $n \geq 1$. By Lem.2.2, we have $\phi\left(D_{\Sigma \phi}^{\circ}\right) \preceq \phi\left(S \backslash D_{\Sigma \phi}^{\circ}\right)$ and since $\kappa \in \vee \phi\left(D_{\Sigma \phi}^{\circ}\right)$, we have $\kappa \preceq \omega$ and $\kappa \preceq \phi(s)$ for all $s \in S \backslash D_{\Sigma \phi}^{\circ}$.

Let us define $\lambda(s):=\inf \left\{n \geq 0 \mid s \leq s_{n+1}\right\}$ for all $s \in S$ with the usual convention $\inf \emptyset:=\infty$. Then $\lambda: S \rightarrow\{0,1, \ldots, \infty\}$ is an increasing function such that $\{\lambda=0\}=\left[*, s_{1}\right]$ and since $\left(s_{n}\right)$ is cofinal in $D_{\Sigma \phi}^{\circ}$, we have $\{\lambda<\infty\}=D_{\Sigma \phi}^{\circ}$. In particular, we have $\phi(s) \preceq \phi\left(s_{1}\right) \preceq \eta_{1}$ for all $s \in\{\lambda=0\}$ and $\eta_{n} \preceq \kappa \preceq \phi(s)$ for all $s \in\{\lambda=\infty\}$ and since $\left(\eta_{n}\right)$ is increasing, we see that

$$
\psi(s):=\eta_{\lambda(s)} \text { if } 1 \leq \lambda(s)<\infty \text { and } \psi(s):=\phi(s) \text { if } \lambda(s)=0 \text { or } \lambda(s)=\infty
$$

defines an increasing function from S into M satisfying $\psi(s) \preceq \omega$ for all $s \in S$. Let $s \in S$ be given such that $1 \leq \lambda(s)<\infty$ and set $k:=\lambda(s)$. Then we have $s \leq s_{k+1}$ and $s \not \leq s_{k}$. Since ϕ is increasing, we have $\phi(s) \preceq \phi\left(s_{k+1}\right) \preceq \eta_{k}=\psi(s)$ and since S is linear and H is increasing, we have $s_{k} \leq s$ and $\Sigma \psi(s)=\Sigma\left(\eta_{k}\right) \leq H\left(s_{k}\right) \leq H(s)$. Hence, we have $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s) \leq H(s)$ for all $s \in S$. Since $H\left(s_{1}\right)<H\left(s_{2}\right)$, we have $\lambda\left(s_{2}\right)=1$ and $\psi\left(s_{2}\right)=\eta_{1}$ and since $\Sigma\left(\eta_{1}\right)>-\infty$ and $s_{2} \in D_{\Sigma \phi}^{\circ}$, we have $D_{\Sigma \psi}^{\circ} \neq D_{\Sigma \phi}^{\circ}$. Hence, by (2) we have $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$ which completes the proof of (4).
(5): Suppose that $S_{H} \cap D_{\Sigma \phi}^{\circ}=\emptyset$ and let us define $\psi(s):=\phi(s)$ if $H(s)<\Sigma(\omega)$ and $\psi(s):=\omega$ if $H(s) \geq \Sigma(\omega)$. Since S is linear and H and ϕ are increasing with $\phi(s) \preceq \omega$ and, we see that $\psi: S \rightarrow M$ is increasing and satisfies $\phi(s) \preceq \psi(s) \preceq \omega$ and $\Sigma \psi(s) \leq H(s) \leq \Sigma(\omega)$ for all $s \in S$. Suppose that $S_{H}=\emptyset$. Then we have $H(s)=-\infty=\Sigma \psi(s)$ if $H(s)<\Sigma(\omega)$ and $\Sigma \psi(s)=\Sigma(\omega)=H(s)$ if $H(s) \geq \Sigma(\omega)$ and so we see that $\psi \in I P_{\Sigma}(\phi, H, \omega)$. So suppose that $S_{H} \neq \emptyset$ and let $u \in S_{H}$ be given. Then we have $-\infty<H(u)<\Sigma(\omega)$ and so we have $D_{H}^{\circ} \subseteq D_{\Sigma \psi}^{\circ}=D_{\Sigma \phi}^{\circ} \cap\{H<\Sigma(\omega)\}$. Since $S_{H} \cap D_{\Sigma \phi}^{\circ}=\emptyset$, we see
that $D_{H}^{\circ}=D_{\Sigma \psi}^{\circ}$ and $\sup _{s \in D_{\Sigma, \psi}^{\circ}} H(s)=-\infty$ and since $u \in S_{H}$ and we have $-\infty<\Sigma \psi(u) \leq H(u)<\Sigma(\omega)$. Hence, by Thm.4.1 we have $\psi \in G I_{\Sigma}(H, \omega)$ and so by (2) and (4), we have $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$.

Theorem 4.3: Let (M, \preceq) be a σ-lattice, let $\omega \in M$ be a given element and let $\Sigma: M \rightarrow \overline{\mathbf{R}}$ be an increasing smooth functional with the strong Darboux property. Let (S, \leq) be linear proset and let $H: S \rightarrow \overline{\mathbf{R}}$ be an increasing function. Let $\phi \in I_{\Sigma}(H, \omega)$ be a given function and let us define $J:=\left\{s \in D_{\Sigma \phi}^{\circ} \mid H(s)<\infty\right\}$. Let $\xi \curvearrowright \xi^{\diamond}$ and $\xi \curvearrowright \xi_{\diamond}$ be increasing function from M into M satisfying
(1) $\Sigma\left(\xi^{\diamond}\right)+\Sigma\left(\xi_{\diamond}\right) \leq \Sigma(\xi) \leq \Sigma\left(\xi^{\diamond}\right)+\Sigma\left(\xi_{\diamond}\right) \quad \forall \xi \in M$
(2) $\omega_{\diamond} \in L^{1}(\Sigma), \xi_{\diamond} \preceq \xi \forall \xi \in M$ and $\Sigma\left(\xi_{\diamond}\right)>-\infty \forall \xi \in L^{1}(\Sigma)$
(3) If $\xi, \eta, \tau \in M$ are given elements satisfying $\xi_{\circ} \preceq \eta \preceq \omega_{\diamond}$ and $\tau \in \xi \vee \eta$, then we have $\tau_{\diamond} \preceq \eta$ and $\tau^{\diamond} \preceq \xi^{\diamond}$

$$
\begin{equation*}
\liminf _{s \uparrow_{J}}\left(H(s) \dot{-} \Sigma \phi^{\diamond}(s)\right) \geq \Sigma_{\vee} \phi_{\diamond}(J), \liminf _{s \uparrow_{J}}\left(H(s) \dot{-} \Sigma \phi^{\diamond}(s)\right)>-\infty \tag{4}
\end{equation*}
$$

Then we have $\operatorname{IP}(\phi, H, \omega) \neq \emptyset$
Proof: Let us define $S_{H}:=\{s \mid-\infty<H(s)<\Sigma(\omega)\}$. By Thm.4.2.(5), we have $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$ if $S_{H} \cap D_{\Sigma \phi}^{\circ}=\emptyset$. Suppose that $\inf \Sigma \phi\left(D_{\Sigma \phi}\right)=-\infty$. Then $D_{\Sigma \phi} \neq \emptyset$ and by Lem.2.2, we have $\phi\left(D_{\Sigma \phi}^{\circ}\right) \preceq \phi\left(D_{\Sigma \phi}\right)$. Hence, we have $\Sigma_{\mathrm{V}} \phi\left(D_{\Sigma \phi}^{\circ}\right)=-\infty$ and by Thm.4.1 we have $\phi \in G I_{\Sigma}(H, \omega)$. So by Thm.4.2.(4) we have $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$. So suppose that $S_{H} \cap D_{\Sigma \phi}^{\circ} \neq \emptyset$ and $a:=\inf \Sigma \phi\left(D_{\Sigma \phi}\right)>-\infty$. Then we have $J \neq \emptyset$.

If $D_{\Sigma \phi} \neq \emptyset$, we have $-\infty<a<\infty$ and by Lem.2.2, there exists $v \in \vee \phi\left(D_{\Sigma \phi}\right)$ such that $\Sigma(v)=a$ and $v \in L^{1}(\Sigma)$. If $D_{\Sigma \phi}=\emptyset$, we set $v:=\omega$. By (2), we see that $v_{\diamond} \in L^{1}(\Sigma)$ and since $\phi(S) \preceq \omega$ and $\phi\left(D_{\Sigma \phi}^{\circ}\right) \preceq \phi\left(D_{\Sigma \phi}\right)$, we have $\phi\left(D_{\Sigma \phi}^{\circ}\right) \preceq v \preceq \phi\left(D_{\Sigma \phi}\right)$ and $v \preceq \omega$. Let us define

$$
\begin{aligned}
& \kappa(s):=\phi_{\diamond}(s) \text { if } s \in J, \kappa(s):=v_{\diamond} \text { if } s \in S \backslash J \\
& \theta(s):=H(s)-\Sigma \phi^{\diamond}(s), G(s):=\Sigma\left(v_{\diamond}\right) \wedge \inf _{u \in J \cap[s, *]} \theta(u) \forall s \in S
\end{aligned}
$$

Since ϕ and $\xi \curvearrowright \xi_{\diamond}$ are increasing, we see that ϕ_{\diamond} is increasing and since $\phi(J) \preceq v$, we have $\phi_{\diamond}(J) \preceq v_{\diamond}$. Since S is linear and J is a lower interval, we see that $\kappa: S \rightarrow M$ is an increasing function satisfying $\kappa(s) \preceq v_{\diamond}$ for all $s \in S$. Let $s \in S \backslash J$ be given. Since J is lower interval, we have $J \cap[s, *]=\emptyset$ and so we have $G(s)=\Sigma\left(v_{\diamond}\right)=\Sigma \kappa(s)$. Let $s \in J$ be given. By (1), we see that $\Sigma \phi_{\diamond}(u) \leq \Sigma\left(v_{\diamond}\right) \wedge \theta(u)$ for all $u \in J$ and since $\Sigma \phi_{\diamond}$ is increasing, we have $\Sigma \kappa(s)=\Sigma \phi_{\diamond}(s) \leq G(s)$. Hence, we see that $\kappa \in I_{\Sigma}\left(G, v_{\diamond}\right)$ and since $v_{\diamond} \in L^{1}(\Sigma)$, we have $\kappa \in G I_{\Sigma}\left(G, v_{\diamond}\right)$. By (2), we have $\kappa(s)=\phi_{\diamond}(s) \preceq \phi(s)$ for all $s \in J$ and
since $J \subseteq D_{\Sigma \phi}^{\circ}$ and $v^{\diamond} \in L^{1}(\Sigma)$, we have $D_{\Sigma \kappa}^{\circ}=J$. Since $\kappa(J) \preceq v_{\diamond}$, we have $\Sigma_{\mathrm{V}} \kappa(J)=\Sigma_{\mathrm{V}} \phi_{\diamond}(J) \leq \Sigma\left(v_{\diamond}\right)$. Hence, by (4) we have

$$
\sup _{s \in J} G(s)=\Sigma\left(v_{\diamond}\right) \wedge \liminf _{s \uparrow J}\left(H(s) \dot{-} \Sigma \phi^{\diamond}(s)\right) \geq \Sigma\left(v_{\diamond}\right) \wedge \Sigma_{\mathfrak{V}} \phi_{\diamond}(J)=\Sigma_{\mathfrak{V}} \kappa(J)
$$

and so by Thm.4.2.(4) there exists an increasing function $\zeta: S \rightarrow M$ such that $\kappa(s) \preceq \zeta(s) \preceq v_{\diamond}$ and $\Sigma \zeta(s)=G(s)$ for all $s \in S$. Suppose that $\Sigma \phi^{\diamond}(s)=\infty$ for some $s \in J$. Since $\Sigma \phi^{\circ}$ is increasing, we have $\Sigma \phi^{\circ}(u)=\infty$ for all $u \geq s$ and since $H(u)<\infty$ for all $u \in J$, we have $\theta(u)=-\infty$ for all $u \in J \cap[s, *]$ which contradicts the last inequality in (4). Hence, we have $\Sigma \phi^{\circ}(s)<\infty$ for all $s \in J$ and since $\Sigma\left(v_{\diamond}\right)$ is finite, there exists $v \in J$ such that $G(v)>-\infty$.

Since ϕ and ζ are increasing and M is a lattice, there exists an increasing function $\tau: S \rightarrow M$ satisfying $\tau(s) \in \phi(s) \vee \zeta(s)$ for all $s \in S$ and since $\phi(s) \preceq \omega$ and $\zeta(s) \preceq v_{\diamond} \preceq v \preceq \omega$, we have $\phi(s) \preceq \tau(s) \preceq \omega$ for all $s \in S$. Let $s \in S$ be given and let me show that $\Sigma \tau(s) \leq H(s)$. If $H(s)=\infty$, this is evident. Suppose $H(s)<\infty$ and $s \notin J$. Then we have $s \notin D_{\Sigma \phi}^{\circ}$ and $-\infty<\Sigma \phi(s) \leq H(s)<\infty$. Hence, we have $\zeta(s) \preceq v \preceq \phi(s)$ and so we see that $\tau(s) \approx \phi(s)$ and $\Sigma \tau(s)=\Sigma \phi(s) \leq H(s)$. Suppose that $s \in J$. Then we have $\phi_{\diamond}(s)=\kappa(s) \preceq \zeta(s) \preceq \omega_{\diamond}$ and so by (3) with $(\xi, \eta)=(\phi(s), \zeta(s))$ we have $\tau_{\diamond}(s) \preceq \zeta(s)$ and $\tau^{\diamond}(s) \preceq \phi^{\diamond}(s)$. Since $\Sigma \phi^{\diamond}(s)<\infty$ and $G(s) \leq \Sigma\left(v_{\diamond}\right)<\infty$, we have

$$
G(s) \dot{+} \Sigma \phi^{\diamond}(s)=G(s)+\Sigma \phi^{\diamond}(s) \leq G(s)+\left(H(s) \dot{-} \Sigma \phi^{\diamond}(s)\right) \leq H(s)
$$

and so by (1) we have

$$
\Sigma \tau(s) \leq \Sigma \tau_{\diamond}(s) \dot{+} \Sigma \tau^{\diamond}(s) \leq \Sigma \zeta(s)+\Sigma \phi^{\diamond}(s) \leq G(s) \dot{+} \Sigma \phi^{\diamond}(s) \leq H(s)
$$

Hence, we have $\Sigma \tau(s) \leq H(s)$ and $\phi(s) \preceq \tau(s) \preceq \omega$ for all $s \in S$. Recall that $v \in J$ and $G(v)>-\infty$. Since $\zeta(v) \preceq \tau(v)$, we have $-\infty<G(v)=\Sigma \zeta(v) \leq$ $\Sigma \tau(v) \leq H(v)<\infty$. Hence, we see that $v \in D_{\Sigma \tau} \cap D_{\Sigma \phi}^{\circ}$ and so by Thm.4.1.(3), we have $\tau \in G I_{\Sigma}(H, \omega)$. Hence, by Thm.4.2.(2) we have $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$.

Theorem 4.4: Let (T, \mathcal{B}, μ) be finitely founded measure space with $\mu(T)>0$ and let $\Sigma: \bar{M}(T, \mathcal{B}) \rightarrow \overline{\mathbf{R}}$ be a μ-integral. Let (S, \leq) be a linear proset and let $\omega \in \bar{L}(T, \mathcal{B}, \mu)$ be a given function satisfying $\int_{T} \omega d \mu>-\infty$. Let $H: S \rightarrow \overline{\mathbf{R}}$ be an increasing function, let $\phi \in \mathrm{I}_{\Sigma}(H, \omega)$ be a given function and let us define $J:=\left\{s \in D_{\Sigma \phi}^{\circ} \mid H(s)<\infty\right\}$ and $S_{H}:=\{s \in S \mid-\infty<H(s)<\Sigma(\omega)\}$. Then the following three statements are equivalent:
(1) $\operatorname{IP}_{\Sigma}(\phi, H, \omega) \neq \emptyset$
(2) For every set $A \subseteq S$ satisfying $A \nsubseteq D_{H}^{\circ}$, we have
(a) $\quad \Sigma_{\mathrm{V}} \phi(A) \leq \sup _{s \in A} H(s)$
(b) $\underset{s \uparrow A}{\limsup }\left(H(s) \dot{-} \Sigma \phi_{+}(s)\right) \geq \Sigma_{\mathrm{V}} \phi_{-}(A), \underset{s \uparrow A}{\lim \sup }\left(H(s) \dot{-} \Sigma \phi_{+}(s)\right)>-\infty$
(3) Either $D_{\Sigma \phi}^{\circ} \cap S_{H}=\emptyset$ or

$$
\text { (a) } \quad \liminf _{s \inf _{J}}\left(H(s) \dot{-} \Sigma \phi_{+}(s)\right) \geq \Sigma_{\mathrm{V}} \phi_{-}(J), \quad \liminf _{s \uparrow_{J}}\left(H(s) \dot{-} \Sigma \phi_{+}(s)\right)>-\infty
$$

Suppose that $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$ and that ϕ is pointwise increasing on S and satisfies $\phi(s, t) \leq \omega(t)$ for all $(s, t) \in S \times T$. Then there exists a function $\psi \in \bar{M}_{S}(T, \mathcal{B})$ such that ψ is pointwise increasing on S and

$$
\begin{align*}
& \phi(s, t) \leq \psi(s, t) \leq \omega(t) \quad \forall(s, t) \in S \times T \text { and } \Sigma \psi(s)=H(s) \forall s \in S \tag{4}\\
& \psi(s, t)=\phi(s, t) \forall(s, t) \in D_{H}^{\circ} \times T \text { and } \psi(s, t)=\omega(t) \forall(s, t) \in W \times T \tag{5}
\end{align*}
$$

where $W:=\{s \in S \mid H(s) \geq \Sigma(\omega)\}$.

Proof: (1) \Rightarrow (2): Suppose that (1) holds and let $A \subseteq S$ be a given set satisfying $A \nsubseteq D_{H}^{\circ}$. Then there exists an μ-a.e. increasing function $\psi: \in \bar{M}_{S}(T, \mathcal{B})$ such that $\phi(s, \cdot) \leq_{\mu} \psi(s, \cdot) \leq_{\mu} \omega$ and $\Sigma \psi(s)=H(s)$ for all $s \in S$ and observe that we may take $\psi(s)=\omega$ for all $s \in\{H=\infty\}$. In particular, we have $D_{H}^{\circ}=D_{\Sigma \psi}^{\circ}$ and since $\Sigma \phi_{+}(s) \leq \Sigma \psi_{+}(s)$ and $\Sigma_{\mathrm{V}} \phi(A) \leq \Sigma_{\mathrm{V}} \psi(S)$, we see that (2.a) follows from Thm.4.2.(3) with $(\theta(s), F(s))=(\psi(s), 0)$. Since $\int_{T} \omega d \mu>-\infty$, we have $\Sigma\left(\omega_{-}\right)>-\infty$ and since $\psi(s, \cdot) \in L^{1}(T, \mathcal{B}, \mu)$ for all $s \in D_{H}$, we have $D_{H}^{\circ}=D_{\Sigma \psi}^{\circ}=D_{\Sigma \psi_{-}}^{\circ}$. By Thm.2.7.(3), we have $\Sigma \psi_{-}(s)+\Sigma \psi_{+}(s) \leq \Sigma \psi(s)=H(s)$ and so by Thm.4.2.(3) with $(\theta(s), F(s))=\left(\psi_{-}(s), \Sigma \psi_{+}(s)\right)$, we have

$$
\liminf _{s \uparrow A}\left(H(s) \dot{-} \Sigma \psi_{+}(s)\right) \geq \Sigma_{\vee} \psi_{-}(A)>-\infty
$$

and since $\Sigma \phi_{+}(s) \leq \Sigma \psi_{+}(s)$ and $\Sigma_{\mathrm{V}} \phi(A) \leq \Sigma_{\mathrm{V}} \psi(S)$, we see that (2.b) holds.
(2) \Rightarrow (3): Suppose that (2) holds and that we have $S_{H} \cap D_{\Sigma \phi}^{\circ} \neq \emptyset$. Then we have $J \nsubseteq D_{H}^{\circ}$ and so we see that (3.a) follows from (2.b).
(3) \Rightarrow (1): Suppose that (3) holds. If $S_{H} \cap D_{\Sigma \phi}^{\circ}=\emptyset$, then (1) follows from Thm.4.2.(5). So suppose that (3.a) holds. Since $\omega \in \bar{L}(T, \mathcal{B}, \mu)$ and $\int_{T} \omega d \mu>-\infty$, we have $\omega_{-} \in L^{1}(T, \mathcal{B}, \mu)$. But then it follows easily that the maps $\xi^{\circ}(t):=\xi_{+}(t)$ and $\xi_{\diamond}(t):=\xi_{-}(t)$ satisfies the conditions (1)-(3) in Thm.4.3 and since (3.a) implies condition (4) in Thm.4.3, we see that $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$.

Thus, we see that (1)-(3) are equivalent. So suppose that $I P_{\Sigma}(\phi, H, \omega) \neq \emptyset$ and that ϕ is pointwise increasing and satisfies $\phi(s, t) \leq \omega(t)$ for all $(s, t) \in S \times T$. Suppose that $S_{H}=\emptyset$ and let us define $\psi(s, t):=\phi(s, t)$ if $(s, t) \in W^{c} \times T$ and $\psi(s, t):=\omega(t)$ if $(s, t) \in W \times T$. Then $\psi \in \bar{M}_{S}(T, \mathcal{B})$. Let $t \in T$ be given. Since S is linear and $\phi(\cdot, t)$ and H are increasing with $\phi(s, t) \leq \omega(t)$ and $H(s) \leq \Sigma(\omega)$ for all $s \in S$, we see that ψ is pointwise increasing on S and that we have $\phi(s, t) \leq \psi(s, t) \leq \omega(s)$ and $\Sigma \psi(s) \leq H(s) \leq \Sigma(\omega)$ for all $(s, t) \in S \times T$. Since $S_{H}=\emptyset$, we have $H(s)=-\infty=\Sigma \phi(s)=\Sigma \psi(s)$ for all $s \in W^{c}$ and $\Sigma \psi(s)=\Sigma(\omega)=H(s)$ for all $s \in W$ and since $\Sigma(\omega)>-\infty$, we see that ψ satisfies $(4+5)$.

So suppose that $S_{H} \neq \emptyset$ and let $\xi \in I P_{\Sigma}(\phi, H, \omega)$ be given. Then we have $\phi(s, \cdot) \leq_{\mu} \xi(s, \cdot) \leq_{\mu} \omega$ and $\Sigma \xi(s)=H(s)$ for all $s \in S$ and since $\emptyset \neq S_{H} \subseteq D_{H}=D_{\Sigma \xi}$, we have $\xi \in G I_{\Sigma}(H, \omega)$ by Thm.4.1.(3). Hence, by Thm.4.1 and Thm.3.2 there exists a pointwise increasing μ-partition of unity $f: \mathbf{R} \times T \rightarrow \overline{\mathbf{R}}$ satisfying

$$
\phi(s, \cdot) \leq_{\mu} \xi(s, \cdot) \leq_{\mu} f(H(s), \cdot) \forall s \in\{H \geq r\} \text { and } f(\Sigma(\omega), t)=\omega(t) \forall t \in T
$$

where $r:=\Sigma_{\vee} \xi\left(D_{H}^{\circ}\right)$. Let us define $\psi(s, t):=\phi(s, t)$ if $(s, t) \in D_{H}^{\circ} \times T$ and $\psi(s, t):=\phi(s, t) \vee f(H(s), t)$ if $(s, t) \in\left(S \backslash D_{H}^{\circ}\right) \times T$. Then we have $\psi \in \bar{M}_{S}(T, \mathcal{B})$ and since D_{H}° is a lower interval and ϕ and f are pointwise increasing, we see that ψ is a pointwise increasing. Since $\phi(s, t) \leq \omega(t)=f(\Sigma(\omega), t)$ and $H(s) \leq \Sigma(\omega)$, we see that ψ satisfies (5) and that we have $\phi(s, t) \leq \psi(s, t) \leq \omega(t)$ for all $(s, t) \in S \times T$. In particular, we have $\Sigma \psi(s)=\Sigma \phi(s)=-\infty=H(s)$ if $s \in D_{H}^{\circ}$. Let $s \in S \backslash D_{H}^{\circ}$. Then we have $\psi(s, t)=\phi(s, t) \vee f(H(s), t)$ and by Thm.4.1.(1), we have $H(s) \geq r$. Hence, we have $\phi(s, \cdot) \leq_{\mu} f(H(s), \cdot)$ and so we see that $\psi(s, \cdot)=f(H(s), \cdot)$ and $\Sigma \psi(s)=\Sigma f(H(s))=H(s)$. Thus, we see that ψ satisfies (4+5).

Example Let S and T be subsets of \mathbf{R} with $\sup S=\sup T=\infty$. Let \mathcal{B} denote the Borel σ-algebra on T and let μ be a finitely founded, Borel measure on T satisfying $\mu\left(T^{s}\right)=\infty$ for all $s \in S$ where $T^{s}:=T \cap(s, \infty)$. Let $g: T \rightarrow[0, \infty)$ be a non-negative Borel function satisfying $G(s):=\int_{T_{s}} g d \mu<\infty$ for all $s \in S$ where $T_{s}:=T \cap(-\infty, s]$. Let \leq denote the usual ordering on S and let $\phi(s, t)$ denote the function given by

$$
\phi(s, t):=g(t) \forall s \in S \forall t \in T_{s}, \quad \phi(s, t):=-1 \quad \forall s \in S \forall t \in T^{s}
$$

Let Σ be any given μ-integral, let $\omega \in \bar{M}(T, \mathcal{B})$ be a given function satisfying $g(t) \leq \omega(t)$ for all $t \in T$ and let $H: S \rightarrow \overline{\mathbf{R}}$ an increasing function satisfying $H(s) \leq \int_{T} \omega d \mu$ for all $s \in S$. By Thm.2.7, we have $\Sigma \phi_{+}(s)=G(s)$ and $\Sigma \phi_{-}(s)=\Sigma \phi(s)=-\infty$ for all $s \in S$. Hence, we see that $\phi \in \mathrm{I}_{\Sigma}(H, \omega)$, $D_{\Sigma \phi}^{\circ}=S$ and $J=\{H<\infty\}$ where J and S_{H} are defined as in Thm.4.4. If $J \neq S$, there exists $u \in S$ such that $H(s)=\infty$ for all $s \in S \cap[u, \infty]$ and since $\Sigma \phi_{+}(s)=G(s)<\infty$, we have $\liminf _{s \uparrow J}\left(H(s)-\Sigma \phi_{+}(s)\right)=\infty$. Since $\phi_{-}(s, t)=-1_{T^{s}}(t)$ and $T^{s} \downarrow \emptyset$, we have $\Sigma_{\mathrm{V}} \phi_{-}(S)=0$. Hence, by Thm.4.4 we see that $\operatorname{IP}_{\Sigma}(\phi, H, \omega) \neq \emptyset$ if and only if H satisfies the following condition:
(A) Either $S_{H}=\emptyset$ or $\liminf _{s \dagger S}(H(s)-G(s)) \geq 0$
and if so then there exists a function $\psi \in \bar{M}_{S}(T, \mathcal{B})$ such that ψ is pointwise increasing on S and satisfies (4+5) in Thm.4.4..

Let us take $T=[1, \infty), \mu=$ the Lebesgue measure on T and $g(t):=\frac{1}{t}$ for all $t \in T$. Then we have $G(s)=\log _{+} s$ and (A) takes the following form
(B) Either $S_{H}=\emptyset$ or $\liminf _{s \uparrow S}(H(s)-\log s) \geq 0$

Let us take $T=\mathbf{N}, \mu=$ the counting measure on \mathbf{N} and $g(t):=\frac{1}{t}$ for all $t \in T$. Then we have $G(s)=\sum_{t=1}^{[s]} \frac{1}{t}$ where $[s]$ denotes the smallest integer $\geq s$. Hence if $\gamma=0.5772156649 \ldots$ denotes the Euler constant, then (A) takes the following form
(C) Either $S_{H}=\emptyset$ or $\liminf _{s \uparrow S}(H(s)-\log s) \geq \gamma$

References:

[1] N. Dunford and J.T. Schwartz (1958): Linear operators. Part 1: General Theory, Interscience Publishers Inc., New York and London.
[2] Engelkind, R. (1977): General topology; Polish Scientific Publishers, Warszawa
[3] J. Hoffmann-Jørgensen, (1994): Probability with a view toward statistics; vol.I, Chapman \& Hall, New York and London.
[4] J. Hoffmann-Jørgensen, (2002): Integral representations; Functional Analysis VII, Proc. of Postgraduate School and Conference, Dubrovnik 2001; editors: D. Bakić, P. Pandžić and G. Peskir. University of Aarhus, Department of Mathematical Sciences, Var. Publ. Ser. No. 46, p.229-445.
[5] J. Hoffmann-Jørgensen, (2006): Constructions of contents and measures satisfying a prescribed set of inequalities; Prob. and Math. Stat., 26, p.283-313.
[6] P. Suppes (1960): Axiomatic set theory; D. Van Nostand Co. Inc.; New York and London

