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Abstract: Let (T;B; �) be a measure space and letf : �R� T ! �R

be a function. Then we say thatf is an increasing�-partition of unity if

f(x; t) is increasing in x , measurable in t and
R
T
f(x; t)�(dt) = x

for all x 2 �R . Increasing partitions of unity have a variety of applications

which will be explored in the paper. For instance, applications include the

Fubini-Tonelli theorem for upper and lower integrals and Fubini-integrals,

measurability or upper (lower) semicontinuity of integral transforms, and

construction of functions with a prescribed integral transform and satisfying

a given set of (in)equalities.

1. Introduction Recall that (X;�) is a proset if X is a non-empty set
equipped with a relation� satisfying x � x 8 x 2 X and x � y ; y � z ) x � z .
Let (M;�) be a proset and let� : M ! �R be an increasing function where
�R := [�1;1] denotesthe extended real linewith its usual ordering. Then we let
m� := inf�2M �(�) and m� := sup�2M �(�) denote the two extreme values of� .
If S is a non-empty set and� : S !M is a given function, we let��(s) := �(�(s))
denote the�-transform of � for all s 2 S . We say thatf : �R!M is anincreasing
�-partition of unity if f is increasing and�f(x) = x for all m� � x � m� or
equivalently, if f is increasing and�f(x) = m� ^ (x _m�) for all x 2 �R . In
Section 2, we shall apply the Hausdorff maximality principle to construct increasing
partitions of unity satisfying a prescribed set of (in)equalities. Increasing partitions of
unity have a variety of applications and in Section 3 and 4, we shall explore some of
these applications.

Let (T;B; �) be a measure space. Then we let�RT denote the set of all functions
f : T ! �R , we let �M(T;B) denote the set of allf 2 �RT which are B-measurable,
and we let L1(T;B; �) denote the set of all functionsf 2 �M(T;B) which are
�-integrable. If f; h :2 �RT , we write f � h if f(t) � h(t) for all t 2 T and
we write f �� h if f(t) � h(t) for �-a.a. t 2 T . If f 2 �RT , we let

R
�
f d�

and
R
�
f d� denotethe upper and lower�-integral of f . If f : �R � T ! �R is

a given function, we say thatf is an increasing�-partition of unity if f(x; � ) is
B-measurable for allx 2 �R and f( � ; t) is increasing on �R for all t 2 T and
we have f(x; � ) 2 L1(T;B; �) and

R
T f(x; t)�(dt) = x for all x 2 R . Note
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( �M(T;B);��) is a proset and we say that� : �M(T;B) ! �R is a �-integral if �
is increasing with respect to the preordering�� and satisfies

(1.1) �(f) =
R
T
f d� 8 f 2 L1(T;B; �) and if f 2 �M(T;B) and j�(f)j < 1 ,

then we have f 2 L1(T;B; �)

Let (S;A; �) be a measure space. If� and � are sum-finite (see [3; p.171]), then
the product measure� 
 � exists and we have (the Fubini-Tonelli theorem):

R
�
�d(� 
 �) �

R
�
�(ds)

R
�
�(s; t)�(dt) �

R �
�(ds)

R �
�(s; t)�(dt) �

R �
�d(� 
 �)

for all � 2 �RS�T . In Section 3, we shall how increasing partitions unity can be used
to establish equality when�(s; t) is measurable int and increasing ins with respect
some linear ordering onS . Moreover, we shall establish a Fubini-Tonelli inequality
for the so-called Fubini integral:

Let S be a given set, let 2S denote the set of all subsets ofS and let
� : 2S ! [0;1] be an increasing set function satisfying�(;) = 0 . If f : S ! [0;1]

is a non-negative function, we let
R

f d� :=
R1
0

�(s j f(s) > x) dx denotethe Fubini
integral of f ; see [5]. Let A � 2S be an algebra onS and let � : A ! [0;1]
be a finitely additive content. Then we setA� := fA 2 A j �(A) < 1g and if
C � S , we define ��(C) := infA2A ; A�C �(A) and ��(C) := supA2A ; A�C �(A)
and ��(C) := supA2A� ; A�C �(A) . We let L1(�) denote the set of all�-integrable
functions in the sense of [1; Def.III.2.17 p.112] and we let

R �
f d� and

R
�
f d� denote

the upper and lower�-integrals for all f 2 �RS ; see [4]. If h : S ! [0;1] is a
non-negative function, we have (see [5]):

(1.2)
R �

h d� =
R

h d�� and
R
�
h d� =

R
h d��

If x; y 2 �R are extended real numbers, we letx _+ y denote the usual extension
of the addition with the convention1 _+ (�1) := 1 and we let x+: y denote the
usual extension of the addition with the convention1+: (�1) := �1 . We define
x _� y := x _+ (�y) and x �: y := x+: (�y) . If f : S ! �R is an arbitrary function,
we let f

+
(s) := f(s) _ 0 and f

�
(s) := f(s) ^ 0 denotethe positive and negative

parts of f for all s 2 S . Then we have (see [5]):

(1.3)
R �

f d� =
R �

f+ d� _+
R �

f
�
d� ;

R
�
f d� =

R
�
f+ d� +:

R
�
f
�
d�

If L � 2S , we let �W (S;L) denote the set of allupperL-functions; that is, the set of
all f : S ! �R such that for all �1 < x < y < 1 , there existsLxy 2 L [ f;; Sg
satisfying ff > yg � Lxy � ff > xg . If L is a �-algebra on S , we have
�W (S;L) = �M(S;L) . If S is topological space andL is the set of all open (closed)

subsets ofS , then �W (S;L) is the set of all lower (upper) semicontinuous functions
f : S ! �R . Let (T;B; �) be a measure space and let� : S � T ! �R be a given
function such that�(s; t) is an upperL-function in s and B-measurable int . In
Section3, we shall see that increasing�-partitions can used to establish criteria for the
integral transform s

R
T
�(s; t)�(dt) to be an upperL-function.
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Let (S;�) and (M;�) be prosets and let� : M ! �R be an increasing
function. In Section 4, we shall see that increasing partitions unity can used to solve
the following problem:

(IP) Let ! 2 M be a given element and letH : S ! �R and � : S ! M be
increasing functions. Find necessary and/or sufficient conditions for the existence
of a an increasing function : S ! M satisfying �(s) �  (s) � ! and
� (s) = H(s) 8 s 2 S

Let me at this point recall the concepts concerning prosets, needed for our objective:

Let (X;�) be a proset and letx; y 2 X be given. Then we writex < y if
x � y and y 6� x , we write x � y if x � y and y � x , and we introduce
the following intervals:

[�; x] = fu 2 X j u � xg ; [x; �] = f u 2 X j u � xg ; [x; y] = [x; �] \ [�; y]

Let A;B � X be a given sets. Then we writeA � B if x � y for all x 2 A

and all y 2 B , and we introduce the followingintervals:

[�; A] = f u 2 X j u � Ag ; [A; �] = f u 2 X j u � Ag ; [A;B] = [A; �] \ [�; B]

We say that A is a lower interval, resp. anupper interval, if [�; u] � A , resp.
[u; �] � A , for all u 2 A . We let _A denote the set of allsupremaof A ; that is
the set of all x 2 A satisfying A � x and x � y for all y 2 X satisfying A � y ,
and we define the set̂ A of all infima of A similarly. We say thatA is cofinal
in (B;�) if A � B � [u2A [�; u] and we say that(A;�) is countably cofinalif
(A;�) admits a countable, cofinal subset. We say that(X;�) is a lattice if x_y 6= ;
and x ^ y 6= ; for all x; y 2 X , and we say that(X;�) is a �-lattice if _A 6= ;
and ^A 6= ; for every non-empty countable setA � X . We say thatA is linear if
for all x; y 2 A we have eitherx � y or y � x , and we say thatA is a maximal
linearly ordered setif A is linear and A = B for every linear setB � A . By
Hausdorff’s maximality principle (see [6; p.248]), we have that every linear setA � X

is contained in some maximal linearly ordered set, and observe that we have

(1.4) If A � X is a maximal linearly ordered set, then we have_B � A and
^B � A for all B � A

Let x; x1; x2; . . . 2 X be given elements. Then we writexn " x , if x1 � x2 � � � � and
x 2 _fxn j n � 1g , and we writexn # x , if x1 � x2 � � � � and x 2 ^fxn j n � 1g .

2. Smoothness and the Darboux property Let (M;�) be a proset and
let � : M ! �R be an increasing function. Then we letm� := inf�2M �(�) and
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m� := sup�2M �(�) denote the two extreme values of� and we define

L1(�) = f � 2M j �1 < �(�) <1g

L�(�) = f � 2M j �(�) = �1g ; L�(�) = f � 2M j �(�) =1g

�_B = inf�2[B;�] �(�) ; �^B = sup�2[�;B] �(�) 8 B �M

sup�B = sup�2B �(�) ; inf �B = inf�2B �(�) 8 B �M

with the usual conventionsinf ; := 1 and sup ; := �1 . Then we have

(2.1) sup�B � �_B and �_B = �(�) 8 � 2 _B

(2.2) �^B � inf �B and �^B = �(�) 8 � 2 ^B

We say that � is smoothif for every non-empty linear setB � M , we have

(2.3) �1 < sup�B < 1 ) 9 � 2 _B so that �(�) = sup�B

(2.4) �1 < inf �B < 1 ) 9 � 2 ^B so that �(�) = inf �B

We say that � hasthe Darboux propertyif for every pair �; � 2 M , we have

(2.5) � � � ; �(�) < �(�) <1 ) 9� 2 [�; �] so that �(�) < �(�) < �(�)

(2.6) � � � ; �1 < �(�) < �(�) ) 9 � 2 [�; �] so that �(�) < �(�) < �(�)

We say that � hasthe strong Darboux propertyif � has the Darboux property and
satisfies the following condition:

(2.7) If (�n) � L�(�) and �n " � for some � 2 L1(�) , then for every increasing
sequence(cn) � R satisfying cn " �(�) and cn < �(�) for all n � 1 ,
there exists an increasing sequence(�n) � M such that �n � �n � � and
�1 < �(�n) � cn for all n � 1

We say that � is order injective, if � � � for all �; � 2 L1(�) satisfying � � �

and �(�) = �(�) . If S is a non-empty set andh : S ! �R is a function,
we let Dh := fs 2 S j jh(s)j < 1g denotethe finite domainof h and we let
D�

h := fs 2 S j h(s) = �1g and D�

h := fs 2 S j h(s) = 1g denotethe infinite
domainsof h .

Lemma 2.1: Let (M;�) be a�-lattice, let � : M ! �R be an increasing function
and let B � M be a given set. Then we have

(1) 8 � 2 [B; �] 9 2 [B; �] so that �( ) = �_B

(2) 8 � 2 [�; B] 9 2 [�; B] so that �( ) = �^B
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Proof: Let � 2 [B; �] be given. Since[B; �] is non-empty, there exist 1;  2; . . . 2
[B; �] such that�( n)! �_B and since(M;�) is a�-lattice, there exists an element
 2 � ^ ^n�1  n . Since B � � and B �  n for all n � 1 , we have  2 [B; �]
and so we have�_B � �( ) . Since  �  n , we have �_B � �( ) � �( n) for
all n � 1 and since �( n) ! �_B , we see that�( ) = �_B which proves (1)
and (2) follows in the same manner.

Lemma 2.2: Let (M;�) be a�-lattice and let� : M ! �R be an increasing smooth
function. Let B � M be a non-empty linear set and let us defineB1 := B \ L1(�) ,
B� := B \ L�(�) and B� := B \ L�(�) . Then B� � B1 � B� and we have

(1) �_B = sup�B , either sup�B > �1 or �_B = �1

(2) �^B = inf �B , either inf �B < 1 or �^B = 1

and if B1 6= ; , then we have

(3) _B1 = _(B1 [ B�) 6= ; and �(�) = sup�B1 = sup�(B1 [ B�) 8 � 2 _B
1

(4) ^B1 = ^(B1 [B�) 6= ; and �(�) = inf �B1 = inf �(B1 [ B�) 8 � 2 ^B1

Proof: (1+2): Since � is increasing andB is a linear set satisfying�(�) =
�1 < �(�) < 1 = �(�) for all � 2 B� , all � 2 B1 and all � 2 B� , we have
B� � B1 � B� . By (2.1), we have sup�B � �_B . Hence, if sup�B = 1 or
�_B = �1 , we have sup�B = �_B . Suppose that�1 < sup�B < 1 . By
smoothness of� and linearity ofB , there exists� 2 _B satisfying �(�) = sup�B
and so by (2.1) we havesup�B = �_B . Hence, we see that the implication “(” in
(1) holds and the converse implication is evident. Thus, (1) is proved and (2) follows
in the same manner.

(3+4): Suppose thatB1 6= ; . Since B� � B1 , we have_B1 = _(B1[B�) and
sup�B1 = sup�(B1 [ B�) > �1 . Suppose thatsup�B1 < 1 . By smoothness
of � , there exists � 2 _B1 such that �(�) = sup�B1 . Hence, we see that (3)
follows from (2.1). So suppose thatsup�B1 = 1 . Then there exists a sequence
(�n) � B1 such that�(�n)!1 and sinceM is a�-lattice, there exists an element
� 2 _1

n=1
�n . Let � 2 B1 be given. Since�(�) <1 , there exists an integerk � 1

such that �(�) < �(�k) . Since � is increasing andB is a linear set containing�
and �k , we have � � �k � � and since(�n) � B1 , we have � 2 _B1 . Hence, we
see that (3) follows from (2.1) and (4) follows in the same manner.

Theorem 2.3: Let (M;�) be a lattice and let � : M ! �R be an increasing
smooth function with the Darboux property. LetB � M be a linear set such that
B1 := B \ L1(�) 6= ; and let us defineB� := B \ L�(�) and B� := B \ L�(�) .
Then there exists a maximal linearly ordered setL � M satisfying

(1) B � L ; �_B� = inf �L1 = �_L� ; �^B
� = sup�L1 = �^L

�
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where L1 := L \ L1(�) , L� := L \ L�(�) and L� := L \ L�(�) .

Proof: Let us defineM0 := [B�; B
1] \ L1(�) and r := �_B� . Then I claim that

there exist a linear setQ � M0 satisfying inf �(Q [ B1) = r .

Since B� � B1 6= ; , we have r � inf �(B1) and r < 1 . Hence, if
inf �(B1) � r , we see thatQ := ; satisfies the claim. So suppose thatr < inf �(B1) .
Then we have�1 < inf �(B1) < 1 and so by smoothness of� , there exists
� 2 ^B1 satisfying �(�) = inf �(B1) . In particular, we have� 2 L1(�) and since
B� � B1 and � 2 ^B1 , we have B� � � � B1 . Hence, we see that� 2 M0

and that (M0;�) is a non-empty proset. So by Hausdorff maximality principle there
exists a maximal linearly ordered setQ � M0 in the proset (M0;�) . Let us define
� := inf �(Q[B1) . Since Q and B1 are linear andQ � B1 , we see thatQ[B1

is linear and sinceB1 6= ; and B� � Q [ B1 , we have r � � <1 . Suppose that
r < � . Then we have�1 < � <1 and so by linearity ofQ[B1 and smoothness
of � , there exists � 2 ^(Q [ B1) such that �(�) = � . In particular, we have
� 2 L1(�) and B� � � � Q[B1 and sincer < � = �(�) , there exists�0 2 [B�; �]
satisfying �(�0) < � . SinceM is a lattice, there exists� 2 �0^� and sinceB� � �0
and B� � � , we have � 2 [B�; �] and r � �(�) � �(�0) < �(�) < 1 . Since
� has the Darboux property there exists� 2 [�; �] satisfying �(�) < �(�) < �(�) .
Since B� � � � � � � � Q [B1 , we see that� 2M0 and that Q0 := Q [ f�g is
a linear subset ofM0 . Since �(�) < �(�) = inf �(Q [ B1) , we have � =2 Q and
Q Q0 . However, this contradicts the maximality ofQ in M0 and so we must
have � � r and since � � r , we see thatQ satisfies the claim.

Hence, we see that there exists a linear setQ � [B�; B
1] \ L1(�) satisfying

inf �(Q [ B1) = �_B� . In the same manner, we see that there exists a linear set
R � [B1; B�] \ L1(�) satisfying sup�(R [ B1) = �^B

� . Since B , Q and
R are linear and

B� � Q � B1 � R � B� and B = B� [B
1 [ B�

we see that C := B [ Q [ R is a linear set containingB . So by Hausdorff’s
maximality principle there exists a maximal linearly ordered setL containing C . Let
us define L1 := L \ L1(�) , L� := L \ L�(�) and L� := L \ L�(�) . Since L is
linear, we haveL� � L1 � L� and sinceB � L and Q [ B1 � L1 , we have

�_B� � �_L� � inf �L1 � inf �(Q [B1) = �_B�

Hence, we see that�_B� = �_L� = inf �L1 and in the same manner, we see that
�^B

� = �^L
� = sup�L1 which proves the theorem.

Theorem 2.4: Let (M;�) be a�-lattice and let � : M ! �R be an increasing
smooth function with the Darboux property. LetD � �R be a non-empty set and let
h : D ! M be a increasing function satisfying�h(x) = m� ^ (x _ m�) for all
x 2 D and h(D) \ L1(�) 6= ; . Then there exists an increasing�-partition of unity
f : �R ! M satisfying f(x) = h(x) for all x 2 D .
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Proof: Let us define�(x) := m�^ (x_m�) for all x 2 �R . Since h is increasing,
we see thath(D) is a linear, countably cofinal set and sinceM is a�-lattice, we have
that _h(D) is non-empty. So by Lem.2.1 withB := ; there exists� 2M such that
h(D) � � and �(�) = m� and we may (and shall) take� = h(1) if 1 2 D .
Let x 2 �R be given and let us defineDx := D \ [x;1] and �x := h(Dx) [ f�g .
Then �x is countably cofinal and sinceh is increasing, we haveh(x) 2 ^�x for
all x 2 D . Since M is a �-lattice, there exists a functionh0 : �R ! M such
that h0(x) 2 ^�x for all x 2 �R and h0(x) = h(x) for all x 2 D . Since
x �x is decreasing, we see thath0 is increasing on �R . Since �h(y) < 1
for all y 2 D \ [�1;1) , we see that inf ��x = 1 implies �x = f�g and
so by (2.2) and Lem.2.2.(2), we have�h0(x) = inf ��x for all x 2 �R . Since
�(�) = m� = �(x) for all x � m� and �h(y) = �(y) for all y 2 D, we see that
�h0(x) = �(x) for all x 2 D [ [m�;1] .

In the same manner, we see that there exists an increasing functionh1 : �R ! M
satisfying h1(x) = h0(x) for all x 2 D [ [m�;1] and �h1(x) = �(x) for all
x 2 D1 := [�1; m�] [D [ [m�;1] . Hence, if D1 = �R , then h1 is an increasing
�-partition of unity satisfying h1(x) = h0(x) = h(x) for all x 2 D .

So suppose thatD1 6= �R . Then m� < m� and B := h1(D1) is a linear set
containing h(D) . Since �h1(x) = �(x) 6= �1 for all x 2 D1 \R , we see that
the sets B� := B \ L�(�) and B� := B \ L�(�) contain at most one element and
so we have �_B� = m� and �^B

� = m� . Since ; 6= h(D) \ L1(�) , we have
B1 := B\L1(�) 6= ; and so by Thm.2.3 there exists a maximal linear setL satisfying

L � B ; inf �L1 = �_L� = m� � m� = �^L
� = sup �L1

where L1 := L \ L1(�) , L� := L \ L�(�) and L� := L \ L�(�) .

Let m� < x < m� be a given and let us defineAx := f� 2 L j �(�) > xg
and Ax := f� 2 L j �(�) � xg . Since x < m� = sup �L1 , we have
Ax \ L1(�) = Ax \ L1 6= ; and Ax \ L�(�) = ; . So by Lem.2.2 there exists
f(x) 2 ^Ax = ^(Ax \ L1) such that x � inf �Ax = �f(x) < 1 . Since
m� = inf �L1 < x , we have Ax \ L

1(�) = Ax \ L
1 6= ; and Ax \ L

�(�) = ; .
So by Lem.2.2 there existsg(x) 2 _Ax = _(Ax \ L

1) such that �1 < �g(x) =
sup �Ax � x . Since L = Ax [ Ax is linear and �(�) � x < �(�) for all
� 2 Ax and all � 2 Ax , we have Ax � Ax and so we have g(x) � f(x)
and �1 < �g(x) � x � �f(x) < 1 . Suppose that�g(x) < �f(x) . Since
g(x) 2 L1(�) and � has the Darboux property, there exists� 2 [g(x); f(x)] such
that sup �Ax = �g(x) < �(�) < �f(x) = inf �Ax . Since L = Ax [ A

x , we see
that � =2 L and since L is linear and Ax � g(x) � � � f(x) � Ax , we see that
L [ f�g is linear. However, this contradicts the maximality ofL and so we must
have �g(x) � �f(x) . Since �g(x) � x � �f(x) , we have �g(x) = x = �f(x)
for all x 2 (m�; m

�) and by (1.4) and maximality ofL , we have f(x) 2 L and
g(x) 2 L for all x 2 (m�; m

�) .

Since R n D1 � (m�; m
�) , we may define F (x) := f(x) if x 2 �R n D1

and F (x) := h1(x) if x 2 D1 . Since �h1(x) = �(x) for all x 2 D1 and
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�f(x) = x = �(x) for all x 2 (m�; m
�) , we have �F (x) = �(x) for all x 2 �R

and sinceh1(D) � L and f((m�; m
�)) � L , we see thatF (x) 2 L for all x 2 L .

Let x < y be given. Suppose that�(x) < �(y) . Then we have�F (y) < �F (x)
and since� is increasing andL is a linear set containingF (x) and F (y) , we have
F (y) � F (y) . Suppose that�(x) = �(y) . Since x < y, we have eitherx < y � m�

or m� � x < y and sinceh1 is increasing, we haveF (x) = h1(x) � h1(y) = F (y)
in either case. Hence, we see thatF is an increasing�-partition of unity satisfying
F (x) = h1(x) = h(x) for all x 2 �R .

Theorem 2.5: Let (M;�) be a�-lattice and let � : M ! �R be an increasing
smooth functional with the Darboux property. Let! 2 M and � 2 L1(�) be given
elements and letA � [�; !] be a linear set such thatA� [ f�; !g is linear where
A� := A \ L�(�) . Let F � A� be a given set and let us defineq := �_F and
r := �_A� . Then we have

(1) q � r � �(�) < 1 and q � r � �(�) � �(!) 8 � 2 A n A�

(2) q = r if F is cofinal in A� , and q = �1 if F is not cofinal in A�

and there exists an increasing�-partition of unity f : �R ! M satisfying

(3) f(�(!)) = ! and � � f(�(�)) 8 � 2 A n A�

(4) � � f(q) 8 � 2 F and � � f(r) 8 � 2 A�

Proof: (1): Since F � A� , we have q � r and since A� [ f�; !g is linear
and �(�) = �1 < �(�) for all � 2 A� , we have A� � � . Hence, we have
q � r � �(�) < 1 and by Lem.2.2, we haveA� � A n A� . Hence, we have
r � �(�) for all � 2 A n A� and since A � ! , we have q � r � �(!) which
completes the proof of (1).

(2): If F is cofinal in A� , we have [F; �] = [A�; �] and so we haver = q .
Suppose thatF is not cofinal in A� . Then there exists� 2 A� such that � 6� � for
all � 2 F and sinceA� is linear and containsF , we have � � � for all � 2 F .
Hence, we haveq � �(�) and since � 2 A� , we have q = �(�) = �1 .

Suppose that�(!) = �1 . By Thm.2.4 there exists an increasing�-partition of
unity f : �R ! M such that f(�(!)) = ! and f(�(�)) = � and since A = A�

and q = r = �1 , we see thatf satisfies (3+4). So suppose that�(!) > �1 .
Set A1 := (A [ f!g) \ L1(�) and let us defineC := A1 [ f!g if A1 6= ; and
C := f�; !g if A1 = ; . Since f�; !g is linear and �(�) <1 , we see that� � !

if �(!) = 1 . Hence, we see thatC is a linear set satisfyingC \ L1(�) 6= ; and
A� � C � ! . So by Lem.2.1 and Lem.2.2 there exists� 2M satisfying A� � � � C

and �(�) = r . Since F � A� , we have F � � and so by Lem.2.1 there exists
� 2M such that F � � � � and �(�) = q and if q = r , we may (and shall) take
� = � . Since C is linear and � � � � C , we see thatB := C [ f�; �g is a linear
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set containing C [ f�; �; !g and so we haveB \ L1(�) 6= ; . Set D := �(B) ,
b := �(!) and Bx := f� 2 B j �(�) = xg for all x 2 �R . Then we have
; 6= Bx � L1(�) and sup�Bx for all x 2 D \ R and since �(!) > �1 and
� � B � ! , we have ! 2 _Bb and B�1 � f�g .

So by Lem.2.2 there exists a functionh : D ! M such that h(x) 2 _Bx and
�h(x) = x for all x 2 D and h(b) = ! . Since B is linear and � is increasing,
we have Bx � By for all x < y and so we see thath is increasing onD . Since
B1 6= ; , we have h(D) \ L1(�) 6= ; and so by Them.2.4 there exists an increasing
�-partition of unity f : �R!M such thatf(x) = h(x) for all x 2 D . In particular,
we havef(b) = h(b) = ! . Let � 2 AnA� be given and setx = �(�) . If x = b , we
have � � ! = f(x) . Suppose thatx < b . Since � =2 A� , we have � 2 A1 � B and
so we havex 2 D and � 2 Bx . Since f(x) = h(x) 2 _Bx , we have � � f(x) .
Thus, we see thatf satisfies (3). Sinceq; r 2 D and � 2 Bq and � 2 Br , we
have � � h(q) = f(q) and � � h(r) = f(r) and since A� � � and F � � , we
see that f satisfies (4).

Lemma 2.6: Let (M;�) be a proset and let� : M ! �R be an increasing, order
injective function. Then� is smooth if and only if

(1) If (�n) � L1(�) is an increasing sequence satisfyingsupn�1�(�n) <1 , then
there exists� 2 M such that �n " � and �(�) = supn�1�(�n)

(2) If (�n) � L1(�) is a decreasing sequence satisfyinginfn�1�(�n) > �1 , then
there exists� 2 M such that �n # � and �(�) = infn�1�(�n)

Proof: The “only if” part is evident. So suppose that� satisfies (1+2) and let
B � M be a non-empty linear set satisfyingj sup�Bj < 1 . Then there exists am
increasing sequence(�n) � B such that �(�n) " sup�B and �1 < �(�n) �
sup�B < 1 for all n � 1 . In particular, we see that�n 2 L1(�) and that
supn�1�(�n) = sup�B < 1 . So by (1) there exists� 2 M such that �n " � and
�(�) = sup�B . Since j sup�Bj <1 , we have � 2 L1(�) . Let � 2 B be given
and let me show that� � � . If � � �n for some n � 1 , this is evident. So suppose
that � 6� �n for all n � 1 . Since B is linear and contains� and �n , we have
�n � � for all n � 1 and since � 2 _n�1 �n , we have � � � . Hence, we have
�(�) � �(�) � sup�B = �(�) and so we have�(�) = �(�) = sup�B 6= �1 .
Hence, by order injectivity of� , we have � � � for all � 2 B and since(�n) � B

and � 2 _n�1 �n , we have � 2 _B and �(�) = sup�B . Thus, we see that�
satisfies (2.3) and in the same manner, we see that� satisfies (2.4).

Theorem 2.7: Let (T;B; �) be a measure space and let� : �M(T;B) ! �R be a
�-integral. Then ( �M(T;B);��) is a �-lattice and � is an increasing, smooth, order
injective function satisfying

(1) L1(�) = L1(T;B; �) ; �(f) =
R
T
f d� 8 f 2 �L(T;B; �)
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(2)
R
�
f d� � �(f) �

R
�

f d� 8 f 2 �M(T;B)

(3) �(f+)+: �(f�) � �(f) � �(f+) _+�(f
�

) 8 f 2 �M(T;B)

(4) If c 2 �R and f : T ! �R and h 2 �M(T;B; �) are given functions satisfyingR
�

f d� � c �
R
�
h d� and f(t) � h(t) for all t 2 T , then we have

(a) 9 g 2 �L(T;B; �) so that
R
T
g d� = c and f(t) � g(t) � h(t) 8 t 2 T

(5) � has the Darboux property if and only if� is finitely founded and if so then�
has the increasing Darboux property

Remark: Recall that� is finitely foundedif � has no infinite atoms or equivalently,
if ��(B) = �(B) for all B 2 B . Suppose that� is finitely founded and let
f 2 �M(T;B) be a given function. By (1.2) and (1.3), we see thatf

+
and f

�

belong to �L(T;B; �) and that f 2 �L(T;B; �) if and only if either
R
�

f d� < 1

or
R
�
f d� > �1 . In particular, we see that the functionalsf

R �
f d� and

f
R
�
f d� are�-integrals whenever� is finitely founded.

Proof: (1) and (2) are easy consequences of (1.1). In particular, we see that� is
order injective. So by Lem.2.6 and the monotone convergence theorem we see that�
is an increasing, smooth and order injective functional. Letf 2 �M(T;B; �) be given.
If �(f

�

) = �1 or �(f) = 1 , then the first inequality in (3) holds trivially. So
suppose that�(f

�

) > �1 and �(f) <1 . Since f
�

� f and � is increasing, we
have �1 < �(f

�

) � �(f) <1 and so by (1) we see thatf 2 L1(�) = L1(T;B; �)
and that the first inequality in (3) holds. The last inequality in (3) follows in the same
manner.

(4): If c = 1 , we have
R
�
h d� = 1 =

R �
h d� = 1 and since f(t) � h(t)

for all t 2 T , we see thatg := h satisfies (4.a). So suppose thatc < 1 . ThenR �
f d� < 1 and so there exist functions�n 2 L1(T;B; �) and � 2 �M(T;B; �)

such that
R
T
�n d� #

R �
f d� and �n(t) # �(t) � f(t) for all t 2 T . Then

we have
R �

� d� =
R �
f d� and since h 2 �M(T;B; �) and f � h , we see that

 (t) := �(t) ^ h(t) is B-measurable andf(t) �  (t) for all t 2 T . Hence,
we have

R �
f d� =

R �
 d� � c �

R
�
h d� and I claim that  2 �L(T;B; �) . IfR �

 d� = �1 , this is evident. If
R �
 d� > �1 , we have infn�1

R
T
�n d� > �1

and
R
�
h d� > �1 . Hence, we haveh

�

2 L1(T;B; �) and by the monotone
convergence theorem, we have� 2 L1(T;B; �) . Since j (t)j � j�(t)j+ jh

�

(t)j , we
see that = � ^ h 2 L1(T;B) . Thus, we have 2 �L(T;B; �) ,

R
T
 d� =

R �
f d�

and f(t) �  (t) � h(t) for all t 2 T . In the same manner, we see that there
exists � 2 �L(T;B; �) such that

R
T
� d� =

R
�
h d� and  (t) � �(t) � h(t) for

all t 2 T . If c =
R �
f d� , then g :=  satisfies (4.a), and ifc =

R
�
h d� ,

then g := � satisfies. So suppose that
R �

f d� < c <
R �

h d� . Then we haveR
T
 d� < c <

R
T
� d� and as above, we see that there exist 0; �0 2 L1(T;B; �)

satisfying
R
T
 0 d� < c <

R
T
�0 d� and  (t) �  0(t) � �0(t) � �(t) for all t 2 T .

Then it follows easily thatg(t) := � 0(t) + (1� �) �0(t) satisfies (4.a) if0 < � < 1
is chosen such thatc = �

R
T
 0 d� + (1 � �)

R
T
�0 d� .
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(5): Suppose that � is not finitely founded and letA 2 B be an infinite
�-atom. Then we have��(A) = 0 and �(A) = 1 . So by (1.1) we have
�(0) = 0 <1 = �(1A) and by (1.2), we see that

R
�
f d� � 0 for all f 2 �M(T;B)

satisfying f �� 1A . Hence, by (1) we see that� does not have the Darboux property.
Suppose that� is finitely founded. Let f; h 2 �M(T;B; �) be given functions such
that f �� h and �(f) < �(h) < 1 . By (1.1), we haveh 2 L1(T;B; �) . Hence,
we have

R �
f d� < 1 and since � is finitely founded, we havef 2 �L(T;B; �) .

Hence, by (1) we have
R �

f d� = �(f) < �(h) =
R
�
h d� and so by (4) there exists

g 2 L1(T;B; �) such that f �� g �� h and �(f) <
R
T
g d� < �(h) . Hence, by (1)

we see that� satisfies (2.5) and in the same manner we see that� satisfies (2.6).

Let � 2 L1(�) and (�n) � �M(T;B) be a given functions satisfying�n " �

�-a.e. and�(�n) = �1 for all n � 1 and let (cn) � R be an increasing sequence
satisfying cn " c := �(�) and cn < �(�) for all n � 1 . By (1.1), we have
� 2 L1(T;B; �) and so redefining the functions on a�-null set, we may assume that
j�(t)j < 1 and �n(t) " �(t) for all t 2 T . Since � is finitely founded and
�n � � , we have �n 2 �L(T;B; �) for all n � 1 . So by (1) we have

R
T
� d� = �(�)

and
R
T �n d� = �(�n) = �1 for all n � 1 . Let us define an := cn+1 � cn and

fn(t) := �(t) � �n(t) for all n � 1 . Since �(t) is finite and �n(t) " �(t) , we
have fn(t) # 0 for all t 2 T and since � 2 L1(T;B; �) and

R
T �n d� = �1 , we

have fn 2 �L(T;B; �) and
R
T
fn d� = 1 . Let me show that there exists functions

g1; g2; . . . 2 L1(T;B; �) satisfying

(i)
R
T gnd� = an ; 0 � gn(t) <1 and

nP

i=k

gi(t) � fk(t) 8 t 2 T 8 1 � k � n

I shall construct the gn ’s recursively. By (4) with (f; h; c) = (0; f1; a1) , there
exists g1 2 L1(T;B; �) such that

R
T g1 d� = a1 and 0 � g1(t) � f1(t)

and g1(t) < 1 for all t 2 T . Then (i) holds for n = 1 . Suppose that
g1; . . . ; gn 2 L1(T;B; �) has been constructed such that(gk)1�k�n satisfies (i) and
let us define Gn+1(t) := 0 and Gk(t) :=

P
k�i�n gi(t) for k = 1; . . . ; n . By (i),

we have 0 � Gk(t) � fk(t) for all t 2 T and all 1 � k � n + 1 . Hence, we have
hn+1(t) := min1�k�n+1 (fk(t) � Gk(t)) � 0 for all t 2 T . Since fk(t) � fn+1(t)
and Gk(t) � G1(t) for all 1 � k � n+1 , we havehn+1(t) � fn+1(t)�G1(t) for all
t 2 T and sinceG1 2 L1(T;B; �) and

R
T
fn+1 d� =1 , we havehn+1 2 �L(T;B; �)

and
R
T hn+1 d� = 1 . Hence, by (4) with (f; h; c) = (0; hn+1; an+1) , there exists

gn+1 2 L1(T;B; �) such that
R
T
gn+1 d� = an+1 and 0 � gn+1(t) � hn+1(t) and

gn+1(t) <1 for all t 2 T . Since hn+1(t) � fk(t)�Gk(t) for all 1 � k � n+ 1 ,
we see that(gk)1�k�n+1 satisfies (i) which completes the recursive construction.

Let us define gn(t) :=
P

i�n gi(t) for all n � 1 and all t 2 T . Since
gi � 0 and

P
i�n ai = c � cn < 1 , we see that gn 2 L1(T;B; �) andR

T g
n d� = c � cn and by (i), we have 0 � gn(t) � fn(t) = �(t) � �n(t) for

all t 2 T and all n � 1 . Since � 2 L1(T;B; �) with
R
T
� d� = c , we have

�n := � � gn 2 L1(T;B; �) and
R
T
�n d� = cn for all n � 1 and since (gn)

is decreasing with0 � gn(t) � �(t) � �n(t) , we see that (�n) is increasing with
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�n(t) � �n(t) � �(t) for all t 2 T . Hence, by (1) we see that(�n) satisfies the
hypotheses in (2.7) and so we see that� has the strong Darboux property.

3. Integral functionals Throughout this section, we let(T;B; �) denote a
fixed finitely founded measure space with�(T ) > 0 and we let � : �M(T;B) ! �R
denote a fixed�-integral; see (1.1).

Since �(T ) > 0 , we have (m�; m
�) = (�1;1) and by Thm.2.7, we see that

( �M(T;B);��) is a �-lattice and that � : �M(T;B) ! �R is an increasing, smooth,
order injective functional with the strong Darboux property.

Let S be a non-empty set. Then we let�MS(T;B) denote the set of all functions
� : S � T ! �R satisfying �(s; � ) 2 �M(T;B) for all s 2 S . If (S;�) is
a proset and � : S � T ! �R is a given function, we say that� is pointwise
increasingon S if �( � ; t) is increasing on S for all t 2 T , and we say that
� is �-a.e. increasingon S , if �(s; � ) �� �(u; � ) for all s � u . By Thm.2.7,
we see that f : �R � T ! �R is an increasing�-partition if and only if f is �-
a.e. increasing on�R and we havef(x; � ) 2 �L(T;B; �) and

R
T
f(x; t)�(dt) = x

for all x 2 �R . In particular, we see that every increasing�-partition of unity is
an increasing�-partition. If F : �R ! �R is an increasing function andx 2 �R ,
we set F (x+) := infy>x F (y) and F (x�) := supy<x F (y) with the conventions
F (1+) := F (1) and F (�1�) := F (�1) . If f : �R� T ! �R is an increasing
�-partition of unity, we say that f is right continuous, resp. left continuous, if
f(x; t) = f(x+; t) , resp. f(x; t) = f(x�; t) , for all (x; t) 2 �R � T

If (E;�) is a proset, we say that� is (E;�)-smoothif ��([u2E Nu) = 0
for every increasing family (Nu)u2S satisfying Nu 2 B and �(Nu) = 0 for all
u 2 E . If (E;�) is countably cofinal, then every measure is(E;�)-smooth. If
q : T ! [0;1) is a function such thatq�1(0) 2 B and �(B) =

P
t2B q(t) for all

B 2 B , then � is finitely founded and(E;�)-smooth for every proset(E;�) .

Lemma 3.1: Let f : �R � T ! �R be an increasing�-partition of unity. Then the
functions (x; t) f(x+; t) and (x; t) f(x�; t) are increasing�-partitions unity
satisfying

(1) f(x�; t) � f(x; t) � f(x+; t) 8 (x; t) 2 �R � T

(2) f(x�; � ) =� f(x; � ) =� f(x+; � ) 8 x 2 R

(3) There exists a�-null set N 2 B and a setB 2 B of �-finite�-measure such that
jf(x; t)j <1 8 (x; t) 2 R� (T nN) and f(x; t) = 0 8 (x; t) 2 R� (T nB)

Proof: (1) is evident and by the monotone convergence theorem, we see thatf(x+; t)
and f(x�; t) are increasing�-partitions unity. Hence, we see that (2) follows from
(1). Let Q denote the se of all rationals and let us defineN := [q2Q ft 2 T j
jf(q; t)j = 1g and B := [q2Q ft 2 T j f(q; t) 6= 0g . Then N;B 2 B and sinceQ
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is countable andf(q; � ) 2 L1(T;B; �) for all q 2 Q , we see thatN is a�-null set
and that B is of �-finite �-measure. Sincef is pointwise increasing, we see that the
set N and B satisfies the claims in (3).

Theorem 3.2: Let S � �R be a non-empty set and letf; g : S � T ! �R be given
functions such thatg is pointwise increasing onS and f is �-a.e. increasing on
S and satisfies

(1) f 2 �MS(T;B) and g(s; t) � f(s; t) 8 (s; t) 2 S � T

Let Q � S be a countable set and letD � S be a set such thatf( � ; t) is increasing
on D for all t 2 T . Then there exists a functionh 2 �MS(T;B) such that h is
pointwise increasing onS and satisfies

(2) f(s; � ) �� h(s; � ) 8 s 2 S and h(s; � ) �� f(u; � ) 8 s; u 2 S with s < u

(3) g(s; t) � h(s; t) 8 (s; t) 2 S � T and h(s; t) = f(s; t) 8 (s; t) 2 D � T

(4) �h(s) = �f(s) 8 s 2 S and h(s; � ) =� f(s; � ) 8 s 2 D�f [ Q

Proof: Since f is �-a.e. increasing, we have that�f : S ! �R is increasing and
since S � �R , we have that � is at most countably where� denotes the set of
all discontinuity points of �f . Let � denote the right Sorgenfrey topology on�R .
By [2; Exc.2.1.I p.103], there exists a countable setC � S such that Q [ � � C

and C and C \D are�-dense in S and D , respectively. SinceC is countable
and f is �-a.e. increasing, there exists a�-null set N 2 B such that f( � ; t) is
increasing on C for all t 2 T n N .

Let s 2 S be given an let us defineDs := D \ [s;1] , Cs := C \ [s;1] and

h(s; t) := inf
u2Ds

f(u; t) if t 2 N and h(s; t) := inf
u2Ds[Cs

f(u; t) if t 2 T nN

Then h is pointwise increasing onS and I claim that h 2 �MS(T;B) and satisfies
(2)–(4).

(2): Let s 2 S be given. Then there exists a countable setLs � Ds such
that Ls is cofinal in (Ds;�) . Since f is pointwise increasing onD , we have
infu2Ds f(u; t) = infu2Ls

f(u; t) for all t 2 T . Since f(u; � ) is B-measurable
and C and Ls are countable, we see thath 2 �MS(T;B) and since f is �-a.e.
increasing, we havef(s; � ) �� f(u; � ) for all u 2 S \ [s;1] . Hence, we have
f(s; � ) �� h(s; � ) for all s 2 S . Let s; u 2 S be given such thats < u .
Since C is �-dense in S , there exists v 2 C such that s � v < u . Hence, we
have h(s; t) � f(v; t) for all t 2 T n N and since f(v; � ) �� f(u; � ) , we have
h(s; � ) �� f(u; � ) . Thus, we see thath satisfies (2).

(3): Since g is pointwise increasing onS and g � f , we have g(s; t) �
g(u; t) � f(u; t) for all (s; t) 2 S � T and all u 2 S \ [s;1] . Hence, we see that
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g(s; t) � h(s; t) for all (s; t) 2 S � T . Let s 2 D be given. Since s 2 Ds ,
we have h(s; t) � f(s; t) and since f is pointwise increasing onD , we have
h(s; t) = f(s; t) for all t 2 N and f(s; t) � f(u; t) for all (u; t) 2 Ds � T . Let
t 2 T nN and u 2 Cs n fsg be given. Sinces < u and C \D is �-dense inD ,
there existsv 2 C \D such that s � v < u and sinces; v 2 D and f is pointwise
increasing onD , we have f(s; t) � f(v; t) . Since t 2 T nN , we have thatf( � ; t)
is increasing onC and since v; u 2 C , we have f(v; t) � f(u; t) . Hence, we see
that f(s; t) � f(u; t) for all u 2 Ds [ Cs and since h(s; t) � f(s; t) , we have
f(s; t) = h(s; t) for all (s; t) 2 D � (T nN) which completes the proof of (3).

(4): By (2), we have�f(s) � �h(s) for all s 2 S . Let s 2 C be given. Then
we have h(s; t) � f(s; t) for all t 2 T nN and so by (2) we haveh(s; � ) =� f(s; � )
and �f(s) = �h(s) . Let s 2 S n C be given. SinceC is �-dense in S , there
exists a decreasing sequence(un) � C such that un # s . Since un 2 Cs , we have
h(s; t) � f(un; t) for all t 2 T nN and so we have�f(s) � �h(s) � �f(un) for
all n � 1 . Since � � C and s 2 S n C , we see that�f is continuous ats and
since un ! s , we see that�f(s) = �h(s) . Hence, we see that the first equality in
(4) holds and so by (2) and order injectivity of� , we have h(s; � ) =� f(s; � ) for
all s 2 D�f and sinceQ � C , we see thath satisfies (4).

Theorem 3.3: Let S � �R be a non-empty set and letf; g : S � T ! �R and
�; � 2 �L(T;B; �) be given functions such thatg is pointwise increasing onS and

(1) g(s; t) � f(s; t) � �(t) 8 (s; t) 2 S � T

(2) f(s; � ) 2 �L(T;B; �) and s =
R
T
f(s; t)�(dt) =

R
�

g(s; t)�(dt) 8 s 2 S

Then f is �-a.e. increasing onS n f�1g and if f is �-a.e. increasing onS
and pointwise increasing onD for some setD � S , then there exists an increasing
�-partition of unity h : �R � T ! �R satisfying

(3) g(s; t) � h(s; t) � �(t) 8 (s; t) 2 S � T ; h(s; t) = f(s; t) 8 (s; t) 2 D � T

(4) h(s; � ) =� f(s; � ) 8 s 2 S and h(s; t) = f(s; t) 8 (s; t) 2 D � T

Proof: Let x; y 2 S be given such that�1 < x < y and let define �(t) :=
f(x; t) ^ f(y; t) for all t 2 T . Since g is pointwise increasing onS and g � f ,
we have g(x; t) � �(t) � f(x; t) for all t 2 T and so by (2) we see that� is
B-measurable with

R
�

� d� =
R
�
� d� = x =

R
T f(x; t)�(dt) . Since x is finite, we

see that� and f(x; � ) are�-integrable and so we have� =� f(x; � ) or equivalently,
f(x; � ) �� f(y; � ) . Hence we see thatf is �-a.e. increasing onS n f�1g .

Suppose thatf is �-a.e. increasing onS and pointwise increasing onD . By
(1) and Thm.3.2, there existsf0 2 �MS(T;B) such that f0 is pointwise increasing on
S and satisfiesf0(s; t) = f(s; t) for all (s; t) 2 D � T , g(s; t) � f0(s; t) � �(t)
for all (s; t) 2 S�T and f0(s; � ) =� f(s; � ) for all s 2 S . So by (2) and Thm.2.7,
we have f0(s; � ) 2 �L(T;B; �) and �f0(s) =

R
T f0(s; t)�(dt) = s for all s 2 S .
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Suppose thatS \ R 6= ; . By Thm.2.4, there exists an increasing�-partition of
unity f1 : �R� T ! �R satisfying f1(s; t) = f0(s; t) for all (s; t) 2 S � T . Then
f1 is pointwise increasing onS and so by Thm.3.2 withg � �1 , there exists
an increasing�-partition of unity h : �R � T ! �R satisfying h(s; t) = f1(s; t) for
all (s; t) 2 S � T . Since f1(s; t) = f0(s; t) for all (s; t) 2 S � T , we see that
h satisfies (3) and (4).

Suppose thatS = f�1;1g . By (2) and Thm.2.7.(4) there exists� 2 L1(T;B; �)
such that

R
T
� d� = 0 and f0(�1; t) � �(t) � f0(1; t) for all t 2 T .

Setting ~S := f�1; 0;1g , ~f(�1; t) := f1(�1; t) , ~g(�1; t) := g(�1; t) and
~f(0; t) = ~g(t) := �(t) , we see that ( ~f; ~g; ~S) satisfies (1), (2) and ~S \ R 6= ; .
Hence, by the argument above we see that there exists an increasing�-partition of unity
h : �R � T ! �R satisfying (3) and (4). The remaining two casesS = f1g and
S = f�1g follow in the same manner.

Theorem 3.4: Let (S;�) be a linear proset and let� 2 �MS(T;B) be a pointwise
increasing function with�-transform �(s) := ��(s) for all s 2 S . Let �; � 2
�L(T;B; �) be given functions satisfying�(t) � �(s; t) � �(t) for all (s; t) 2 S � T

and let us define

a =
R
T
� d� ; b =

R
T
� d� ; Es = f u 2 S j �(u) = �(s)g 8 s 2 S

��(s; t) = supu2Es

�(s; t) ; ��(s; t) = infu2Es
�(s; t) 8 (s; t) 2 S � T

��(s) =
R
�
��(s; t)�(dt) ; ��(s) =

R
�
��(s; t)�(dt) 8 s 2 S

Fs = f u 2 S j �(u) < �(s)g ; F s = f u 2 S j �(u) > �(s)g 8 s 2 S

Then �� and �� are pointwise increasing onS and there exists increasing�-partitions
of unity h0; h1 : �R � T ! �R satisfying (see the remark below)

(1) a _ supu2Fu ��(s) � ��(s) � �(s) � ��(s) � b ^ infu2F s ��(u)

(2) �(t) � ��(s; t) � �(s; t) � ��(s; t) � �(t) ^ ��(u; t) 8 s 2 S 8 u 2 F s

(3) If s 2 S nD�

�
and � is (Es;�)-smooth, then�(s) = ��(s)

(4) If s 2 S nD�

�
and � is (Es;�)-smooth, then�(s) = ��(s)

(5) �(t) � h0(��(s); t) � �(s; t) � h1(�
�(s); t) � �(t) 8 (s; t) 2 S � T

(6) �(t) = h0(a; t) � h1(a; t) and h0(b; t) � h1(b; t) = �(t) 8 t 2 T

Proof: Let x 2 �R be given and let us define�(x; t) := sups2Cx �(s; t) and
�(x; t) := infs2Cx �(s; t) for all t 2 T where Cx := fs 2 S j �(s) � xg
and Cx := fs 2 S j �(s) � xg . Then � and � are pointwise increasing
on R . Let s 2 S be given and setx := �(s) . Since Ex � Cx \ Cx , we have
�(x; t) � ��(s; t) � ��(s; t) � �(x; t) for all t 2 T . Let s; u 2 S be given elements
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satisfying �(s) < �(u) and let v 2 Es and w 2 Eu be given. SinceS is linear
and � is increasing with�(v) = �(s) < �(u) = �(w) , we have v � w and since
� is pointwise increasing, we have�(v; t) � �(w; t) for all t 2 T . In particular, we
see that (2) holds and that we have�(�(s); t) = ��(s; t) � ��(s; t) = �(�(s); t) for
all t 2 T and so we have��(s) = ��(�(s)) and ��(s) = ��(�(s)) for all s 2 S

where ��(x) :=
R
�

�(x; t)�(dt) and ��(x) :=
R
�

�(x; t)�(dt) for all x 2 �R .

In particular, we see that�� and �� are pointwise increasing functions satisfying
(2) and since �(t) � ��(s; t) � �(s; t) � ��(s; t) � �(t) , we see that (1) follows
from (2).

(3+4): Let s 2 S nD�

� be a given element such that� is (Es;�)-smooth. Then
we have �1 < �(s) � 1 and by (1), we have�(s) = ��(s) if �(s) = 1 . So
suppose that�(s) 6= �1 and let us defineNu := ft 2 T j �(s; t) < �(u; t)g for all
u 2 S . Then Nu 2 B and since� is pointwise increasing, we see thatu Nu is
increasing. Letu 2 Es\ [s; �] be given. Sinces � u , we have�(s; t) � �(u; t) for
all t 2 T and since� is order injective and��(u) = �(u) = �(s) = ��(s) 6= �1 ,
we see �(Nu) = 0 . Hence, by(Es;�)-smoothness of� , we have ��(N�) = 0
where N� = [u2Es\[s;�]Nu and since N� = ft 2 T j �(s; t) < ��(s; t)g , we see
that �(s; � ) =� ��(s; � ) and �(s) = ��(s) . Hence, we have proved (3), and (4)
follows in the same manner.

Suppose that a = b . By (1), we have ��(s) = �(s) = ��(s) = a = b

for all s 2 S and by Thm.3.3, there exists an increasing�-partitions of unity
h0; h1 : �R� T ! �R such that h0(a; t) = �(t) and h1(b; t) = �(t) for all t 2 T .
Hence, we see that(h0; h1) satisfies (5+6). So suppose thata < b and let us define
�x := fy 2 �R j ��(y) � xg and g�(x; t) := supy2�x �(y; t) for all (x; t) 2 �R�T .
Then g� : �R� T ! �R is pointwise increasing on�R and I claim that we have

(i)
R
�
g�(x; t)�(dt) = G�(x) 8 x 2 �R where G�(x) = supy2�x ��(y)

Proof of (i): Let x 2 �R be given. If �x = ; , we have G�(x) = �1 and
g�(x; t) � �1 and so we see that (i) holds. Suppose that; 6= �x � ��1 and
let y 2 �x and s 2 Cy be given. Since �x � ��1 , we have ��(y) = �1
and so we haveG�(x) = �1 . Since �(s) � y and �� is increasing with
�(s) � ��(s) = ��(�(s)) , we have �(s) = ��(s) = ��(�(s)) = ��(y) = �1 .
Hence, we haveCy = C�1 = Es and so we have�(y; t) = ��(s; t) for all t 2 T
and all y 2 �x . Hence, we haveg�(x; t) = ��(s; t) for all t 2 T and so we haveR
�

g(x; t)�(dt) = ��(s) = �1 = G�(x) . Suppose that�x 6� ��1 . Then there exists
an increasing sequence(yn) � �x n��1 such that (yn) is cofinal in �x . Since ��

and �( � ; t) are increasing, we have��(yn) " G�(x) and �(yn:t) " g
�(x; t) for all

t 2 T and sinceyn 2 �xn��1 , we have�1 < ��(yn) =
R
�

�(yn; t)�(dt) � x for
all n . Since the upper integral satisfies the increasing monotone convergence theorem,
we have ��(yn) "

R
�

g�(x; t)�(dt) and since��(yn) " G
�(x) , we have proved (i),

By (1), we have S� := fa; bg [ ��(S) � [a; b] . Let (x; t) 2 S� be given and
let us define g(x; t) := g�(x; t) if x 2 ��(S) , g(x; t) := �(t) if x = a =2 ��(S)
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and g(x; t) = �(t) if x = b =2 ��(S) . Let s 2 S be given and sety = �(s)
and x = ��(s) . Then we have�(s; t) � ��(s; t) = �(y; t) and x = ��(y) and
so we haveG�(x) = x and �(y; t) � g�(x; t) for all t 2 T . Hence, we see that
�(t) � �(s; t) � ��(s; t) � g�(��(s); t) for all (s; t) 2 S � T and since g� is
pointwise increasing on�R with g�(x; t) � �(t) for all (x; t) 2 �R� T , we see that
g : S� � T ! �R is a pointwise function satisfying

R �
g(x; t)�(dt) = x ; �(t) � g(x; t) � �(t) ; �(s; t) � g(��(s); t)

for all x 2 S� , all s 2 S and all t 2 T . Hence, by Thm.2.7.(4) there exists
�x 2 �L(T;B; �) such that

R
T
�x d� = x and g(x; t) � �x(t) � �(t) for all

(s; t) 2 S��T . By Thm.3.3, we see that�x(t) is �-a.e. increasing onS0 := S�nfag .
Let (zn) � S0 be a decreasing sequence such that(zn) is cofinal in (S0;�) and
let us define �(t) := infn�1 �zn(t) for all t 2 T . Then we have �zn # � �-a.e.
and � �� �x for all x 2 S0 . Since �b 2 �L(T;B; �) and �zn 2 L1(T;B; �) if
zn < b , we have � 2 �L(T;B; �) and since g is pointwise increasing, we have
g(a; t) � g(zn; t) � �zn(t) � �(t) and so we see that�(t) � g(a; t) � �(t) � �(t)

for all t 2 T .

Hence, by Thm.2.7.(4), there existsf(a; � ) 2 �L(T;B; �) such that g(a; t) �
f(a; t) � �(t) for all t 2 T and

R
T
f(a; t)�(dt) =

R
�

g(a; t)�(dt) = a . Let
us define f(b; t) := �(t) and f(x; t) := �x(t) for all x 2 S� n fa; bg and all
t 2 T . Then we haveg(x; t) � f(x; t) � �(t) for all (x; t) 2 S� � T and we have
f(x; � ) 2 �L(T;B; �) and

R
T
f(x; t)�(dt) = x =

R
�

g(x; t)�(dt) for all x 2 S� .
Since � �� �x � � for all x 2 S0 , we see that f is �-a.e. increasing onS�

and so by Thm.3.3 withD := fbg there exists an increasing�-partition of unity
h1 : �R � T ! �R satisfying g(x; t) � h1(x; t) � �(t) for all (x; t) 2 S� � T and
h1(b; t) = �(t) for all t 2 T . Since a(t) � g(a; t) and �(s; t) � g(��(s); t) , we have
�(t) � h1(a; t) � h1(b; t) = �(t) and �(s; t) � h1(�

�(s); t) for all (s; t) 2 S � T .

Note that ~�(s; t) := ��(s; t) is pointwise increasing on the linear proset(S;�)
satisfying ~�(t) � ~�(s; t) � ~�(t) where ~�(t) := ��(t) and ~�(t) := ��(t) . Observe
that ~�(�) := ��(��) is a �-integral such that ~�(s) := ~�~�(s) = ��(s) for all
s 2 S . Applying the construction above on the pair(~�; ~�) , we see that there exists
an increasing�-partition of unity ~h1 : �R � T ! �R satisfying ~�(t) � ~h1(~a; t) �
~h1(~b; t) = ~�(t) and ~�(s; t) � ~h1(~�

�(s); t) for all (s; t) 2 S�T where ~a :=
R
T ~� d�

and ~b :=
R
T
~� d� . Let us define h0(x; t) := �~h1(�x; t) for all (x; t) 2 �R � T .

Then h0 is an�-partition of unity satisfying h0(a; t) = �(t) � h0(b; t) � �(t) and
since ~��(s) = ���(s) , we have h0(��(s); t) � �(s; t) for all (s; t) 2 S�T . Thus,
we see that the pair(h0; h1) satisfies (5+6).

Theorem 3.5: Let (S;�) be a linear proset and let� : 2S ! [0;1] be an increasing
set function satisfying�(;) = 0 . Let � 2 �MS(T;B) be a pointwise increasing function
with �-transform �(s) := ��(s) for all s 2 S and let ��(s) and ��(s) be defined
as in Thm.3.4. Then we have

(1)
R

�� d� �
R
�
�(dt)

R
�(s; t) �(ds) �

R
�

�(dt)
R

�(s; t) �(ds) �
R

�� d�
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Suppose that� is sum-finite, letA be a�-algebra on S and let � be a sum-finite
measure on (S;A) . If � 
 � denotes the product measure on the product space
(S � T;A 
 B) , then we have

(2)
R
�
�� d� �

R
�
� d(� 
 �) �

R
�
� d� �

R
�

� d� �
R
�

� d(� 
 �) �
R
�

�� d�

Remarks: (a): If F � S , we say thatF is �-exhaustiveif �(A) = �(A \ F ) for
all A � S . If f; g : S ! [0;1] are non-negative functions such that the setff = gg
is �-exhaustive, then it follows easily that we have

R
f d� =

R
g d� . Hence, if

f�� = ��g is �-exhaustive, we have equality throughout in (1), and recall that (1),
(3) and (4) in Thm.3.4 provide tools for verifying��(s) = �(s) or �(s) = ��(s) .
Similarly, if � = �� �-a.e., then the last two inequalities in (2) become equalities.

(b): Let q : T ! [0;1) and � : S � T ! [0;1] be given functions such that�
is pointwise increasing onS . Then �(B) =

P
t2B

q(t) is a finitely founded measure
on (T; 2T ) and we have��(s) =

P
t2T

q(t)�(s; t) for all s 2 S . Hence, by Thm.3.4
and non-negativity of� we have �(s) = ��(s) for all s 2 S and �(s) = ��(s)
for all s 2 f� <1g and so by (1) we obtain the following remarkable inequality

P
t2T

q(t)
R

�(s; t) �(ds) �
R P

t2T
q(t)�(s; t) �(ds)

with equality if f� < 1g is �-exhaustive.

(c): Let me give an example showing the we may have strict inequality in (2):
Suppose that the continuum hypothesis holds. Then there exists a well-ordering� on
the unit interval I := [0; 1] such that Is := ft 2 I j t � sg is at most countable for
all s 2 I . Then (I;�) is a linear poset and we let� denote the Lebesgue measure
on the Borel�-algebra on I . Let us define�(s; t) := 1Is(t) for all (s; t) 2 I � I .
Then �( � ; t) is Borel measurable and increasing with respect to� and �(s; � ) is
Borel measurable and decreasing with respect to� . Thus, we are in the setting of the
theorem with � = � := � and observe that we have�(s) =

R
1

0
�(s; t) dt = 0 and

��(s) = 1 for all s 2 I . Hence, we have
Z

1

0

ds

Z
1

0

�(s; t) dt = 0 < 1 =

Z
1

0

dt

Z
1

0

�(s; t) ds =

Z
�

� d(�
 �)

Proof: By Lem.3.1 and Thm.3.4 with�(t) := 0 and �(t) := 1 , there exist
increasing�-partitions of unity f; g : �R � T ! �R such that f is right continuous,
g is left continuous, g(��(s); t) � �(s; t) � f(��(s); t) for all (s; t) 2 S � T and
g(0; t) � 0 � f(0; t) for all t 2 T . In particular, we have

R
T
g(0; t)�(dt) = 0 =R

T
f(0; t)�(dt) and so by Lem.3.1 we see that there exists a�-null set N 2 B such

that g(0+; t) = g(0; t) = 0 = f(0; t) = f(0�; t) for all t 2 T nN and jf(x; t)j <1
and jg(x; t)j < 1 for all (x; t) 2 R � (T n N) .

Let t 2 T n N be given. Then f( � ; t) is a finite, increasing, right continuous
function and we let �t denote the Lebesgue-Stieltjes measure induced byf( � ; t) .
If a < b , we have �t((a; b]) = f(b; t) � f(a; t) for all t 2 T and since f is an
increasing�-partition of unity andN is a�-null set, we have

R
TnN �t((a; b])�(dt) =
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b � a = �((a; b]) where � denotes the Lebesgue measure. Hence, by the standard
proof we have

(i)
Z
TnN

�(dt)

Z
R

g(x)�t(dx) =

Z
R

g(x)�(dx) =

Z
TnN

�(dt)

Z
R

g(x)�t(dx)

for every non-negative Borel functiong : R ! [0;1] .

Let us define F (t) :=
R

�(s; t) �(ds) for all t 2 T and let me first show
that

R �
F d� �

R
�� d� . If

R
�� d� = 1 , this is evident. So suppose thatR

�� d� < 1 . Let us define R(x; t) := �(s 2 S j �(s; t) > x) and R0(x; t) :=
�(s 2 S j f(��(s); t) > x) for all (x; t) 2 R � T . Since �(s; t) � f(��(s); t) ,
we have R(x; t) � R0(x; t) . Let t 2 T n N be given. Then we havef(0; t) = 0
and since

R
�� d� < 1 , we have �(s 2 S j ��(s) = 1) = 0 . Hence, we see

that R0(x) = 0 for all x � f(1�; t) and since R0( � ; t) is decreasing we have
(see [3; (3.29.7) p.205])

F (t) =

Z 1

0

R(x; t) dx �

Z 1

0

R0(x; t) dx =

Z f(1�;t)

f(0;t)
R0(x; t) dx

�

Z 1

0
R0(f(x�; t); t)�t(dx)

Let (s; t) 2 S � T and x 2 R be given such that f(x�; t) < f(��(s); t) .
Since f(y; t) � f(x�; t) for all y < x , we must have ��(s) � x . Hence,
we have R0(f(x�; t); t) � R1(x) := �(s 2 S j ��(s) � x) and so we see that
F (t) �

R1
0

R1(x)�t(dx) for all t 2 T n N . So by (i) we haveZ
�

F d� �

Z
TnN

�(dt)

Z 1

0

R1(x)�t(dx) =

Z 1

0

R1(x) dx =

Z
�� d�

which completes the proof of the last inequality in (1). The first inequality in (2) follows
in the same manner using the increasing�-partition of unity g and the mid-inequality
is evident.

The last inequality in (2) holds trivially if
R �

��d� = 1 . So suppose thatR �
��d� < 1 and let a >

R �
�� d� be given. Then there exists� 2 L1(S;A; �)

such that
R
S
� d� < a and ��(s) � �(s) for all s 2 S . Since f( � ; t) is right

continuous for all t 2 T and f(x; � ) is B-measurable for allx 2 �R , we see that
f is measurable with respect to the product�-algebra B( �R) 
 B and since � is
A-measurable and�� � � , we see thatf(�(s); t) is (A
B)-measurable and satisfies
0 � �(s; t) � f(��(s); t) � f(�(s); t) . So by the Fubini-Tonelli theorem we haveZ �

� d(� 
 �) �

Z
S�T

f(�(s); t) (� 
 �)(ds; dt) =

Z
S

�(ds)

Z
T

f(�(s); t)�(dt)

Since f is an increasing�-partition of unity, we have
R
T
f(�(s); t)�(dt) = �(s) for

all s 2 S and so we see that
R �

� d(�
�) �
R
S
� d� < a . Letting a #

R �
�� d� , we

obtain the last inequality in (2). The first inequality in (2) follow in the same manner
and the remaining inequalities in (2) are well-known and easy.
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Theorem 3.6: Let (S;�) be a linear proset and let� 2 �MS(T ) be a given function
with �-transform �(s) := ��(s) . Suppose that� is pointwise increasing onS and
��(s) = ��(s) for all s 2 S where ��(s) and ��(s) are defined as in Thm.3.4.
If L � 2S is any given set such that�( � ; t) 2 �W (S;L) for �-a.a. t 2 T , then we
have � 2 �W (S;L) .

Proof: By Thm.3.4 with �(t) � �1 and �(t) � 1 , there exist increasing�-
partitions of unity f; g : �R� T ! �R satisfying g(�(s); t) � �(s; t) � f(�(s); t) for
all (s; t) 2 S � T . Let �1 < x < y <1 be given. Since

R
T
f(x; t)�(dt) = x <

y =
R
T
g(y; t)�(dt) , we have�(t j f(x; t) < g(y; t)) > 0 and since�( � ; t) 2 �W (S;L)

for �-a.a. t 2 T , there exists t0 2 T and u; v 2 R such that �( � ; t0) 2 �W (S;L)
and f(x; t0) < u < v < g(y; t0) . Hence, there existsL 2 L [ f;; Sg such that
fs j �(s; t0) > vg � L � fs j �(s; t0) > ug . Let s 2 f� > yg be given. Then we
have �(s; t0) � g(�(s); t0) � g(y; t0) > v and so we haves 2 L . Let s 2 L be
given. Then we havef(�(s); t0) � �(s; t0) > u > f(x; t0) and since f( � ; t0) is
increasing, we have�(s) > x . Hence, we see thatf� > yg � L � f� > xg and so
we have � 2 �W (S;L) .

4. Solutions to problem (IP) Let (M;�) and (S;�) be prosets, let
! 2 M be a given element and let� : M ! �R and H : S ! �R be
increasing functions. Then we letI�(H;!) denote the set of all increasing function
� : S ! M satisfying �(s) � ! and ��(s) � H(s) � �(!) for all s 2 S .
If � 2 I�(H;!) , we let IP�(�;H; !) denote the set of all increasing functions
 : S ! M satisfying �(s) �  (s) � ! and � (s) = H(s) for all s 2 S .
Note that IP�(�;H; !) � I�(H;!) and that IP�(�;H; !) is exactly the set of all
solution to problem (IP) of the introduction. We letGI�(H;!) denote the set of all
� 2 I�(H;!) for which there exists� 2 L1(�) such that�(D�

��)[f�; !g is a linear
subset of(M;�) and if � : S ! �R is a function andJ � S is a given set, we define
lim infs"J �(s) := supu2J infs2J\[u;�] �(s) with the conventionlim infs"; �(s) :=1 .

Theorem 4.1: Let (M;�) be a�-lattice and let� : M ! �R be an increasing smooth
functional with the Darboux property. Let! 2 M be a given element, let(S;�) be
a linear proset and letH : S ! �R be an increasing function. Let� 2 I�(H;!)
be a given function and let us definer := �_�(D

�
��) , L := fs j H(s) < rg and

q := �_�(L) . Then we have

(1) L [D�
H � D�

�� and q � r � �(!) ^ infs62D�

��
��(s) � infs62D�

��
H(s)

(2) If L 6= D�
�� , then we haveq = �1

(3) If � =2 GI�(H;!) , then we havej�(!)j = jqj = jrj = j��(s)j = 1 for all
s 2 S and fH < 1g � D�

��
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and if � 2 GI�(H;!) , then r < 1 and there exists an increasing�-partition of
unity f : �R ! M satisfying

(4) f(�(!)) = ! and �(s) � f(��(s)) 8 s 2 S n D�

��

(5) �(s) � f(r) 8 s 2 D�

�� and �(s) � f(q) 8 s 2 L

(6) �(s) � f(H(s)) 8 s 2 fH � qg

Proof: (1): Since� is increasing, we have that�� is increasing and since�� � H ,
we haveD�

H � D�

�� . Since S is linear we have thatA := �(S) is a linear subset of
M satisfying A\L�(�) = �(D�

��) , A\L1(�) = �(D��) and A\L�(�) = �(D�

��) .
So by Lem.2.2 we have�(u) � �(s) for all u 2 D�

�� and all s 2 S nD�

�� . Hence,
we have r � ��(s) for all s 2 S n D�

�� and since ��(s) � H(s) � �(!) , we
see that (1) holds.

(2): Suppose thatL 6= D�

�� . Since L � D�

�� , there existsu 2 D�

�� n L . Then
we have ��(u) = �1 and H(u) � r . Since S is linear and H is increasing,
we have s � u for all s 2 L and since� is increasing, we have�(s) � �(u) for
all s 2 L . Since u 2 D�

�� , we have q � ��(u) = �1 .

(3): Suppose that� =2 GI�(H;!) . Since �(S) � ! , we have ! =2 L1(�) ;
that is j�(!)j = 1 . Since �(D��) � L1(�) and �(D�

��) � �(D��) � ! , we
have D�� = ; ; that is, j��(s)j = 1 for all s 2 S . By Lem.2.1 there exists
� 2 M such that �(D�

��) � � � ! and �(�) = r . Hence, we havejrj = 1
and so by (2) we havejqj = 1 . Since ��(s) � H(s) and j��(s)j = 1 , we
have fH < 1g � D�

�� .

(4)–(6): Suppose that� 2 GI�(H;!) . Then there exists� 2 L1(�) such that
�(D�

��)[f�; !g is linear. SetA := �(S) . Then we haveA\L�(�) = �(D�

��) and
so by Thm.2.5 withF := �(L) we see thatr <1 and that there exists an increasing
�-partition f : �R ! M satisfying (4+5). Let s 2 S be a given element satisfying
H(s) � q . By (4), we have �(s) � f(��(s)) � f(H(s)) if s 2 S n D��� . By
(5), we have �(s) � f(r) � f(H(s)) if s 2 D�

�� and r � H(s) . So suppose
that s 2 D�

�� and q � H(s) < r . Then we haves 2 L and so by (5) we have
�(s) � f(q) � f(H(s)) which completes the proof of (6).

Theorem 4.2: Let (M;�) be a�-lattice and let� :M ! �R be an increasing smooth
functional with the Darboux property. Let! 2 M be a given element, let(S;�) be a
linear proset and letH : S ! �R be an increasing function. Let�; � 2 I�(H;!) be
given functions satisfying�(s) � �(s) for all s 2 S and let us definer := �_�(D

�

��)
and

SH := f s 2 S j �1 < H(s) < �(!)g ; L := f s 2 S j H(s) < rg

and q := �_�(L) . Let F : S ! �R and � : S ! M be given function such that�
is increasing and��(s)+: F (s) � H(s) for all s 2 S . Then we have

(1) � 2 GI�(H;!) and f s j H(s) < qg � D�

H
) IP�(�;H; !) 6= ;
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(2) IP�(�;H; !) � IP�(�;H; !) and if D�

�� 6= D�

�� and either � or � belong
to GI�(H;!) , then we haveIP�(�;H; !) 6= ;

(3) lim infs"A (H(s) _�F (s)) � �_�(A) > �1 8A D�
��

(4) If � 2 GI�(H;!) and (M;�) has the strong Darboux property, then the
following two statements are equivalent:

(a) IP�(�;H; !) 6= ;

(b) Either D�
H = D�

�� or r � sups2D�

��
H(s)

(5) SH \ D
�

�� = ; ) IP�(�;H; !) 6= ;

Proof: (1): Suppose that� 2 GI�(H;!) and fH < qg � D�

H . By Thm.4.1 there
exists an increasing�-partition of unity f : �R ! M satisfying (4)–(6) in Thm.4.1.
Let us define  (s) := �(s) if H(s) < q and  (s) := f(H(s)) if H(s) � q .
By Thm.4.1, we have �(s) �  (s) � ! for all s 2 S and since S is linear
and � , H and f are increasing, we see that is increasing. Sincef is an
increasing�-partition of unity, we have� (s) = H(s) for all s 2 fH � qg . Since
fH < qg � D�

H and � 2 I�(H;!) , we have � (s) = ��(s) � H(s) = �1 for all
s 2 fH < qg . Hence, we have� (s) = H(s) for all s 2 S and  2 IP�(�;H; !) .

(2): Since �(s) � �(s) for all s 2 S , we have IP�(�;H; !) � P�(�;H; !) . So
suppose thatD�

�� 6= D�

�� and that either� or � belong toGI�(H;!) . Let us define
�(s) := �(s) if s 2 D�

�� and �(s) := �(s) if s 2 S nD�

�� . Since �(s) � �(s) ,
we have D�

�� � D�

�� and since � and � are increasing with�(s) � �(s) � !

and ��(s) � H(s) for all s 2 S , we see that� : S !M is an increasing function
satisfying �(s) � �(s) � ! and ��(s) � H(s) for all s 2 S . In particular, we
have � 2 I�(H;!) and sinceD�

�� � D�

�� , we have D�

�� = D�

�� . Since � and
� coincide on D�

�� and �(s) � �(s) , we have �(D�

�� ) = �(D�

��) � �(D�

��) .
Since either � or � belong to GI�(H;!) , we see that � 2 GI�(H;!) . Since
D�

�� D�

�� , there existsu 2 D�

��nD
�

�� and sinceS is linear and�� is increasing,
we have �(D�

�� ) = �(D�

��) � �(u) . Hence, we have�_�(D
�

�� ) � ��(u) = �1
and so by (1) we haveIP�(�;H; !) 6= ; . Since �(s) � �(s) for all s 2 S , we see
that ; 6= IP�(�;H; !) � IP�(�;H; !) which completes the proof of (2).

(3): Let A � S be a given set satisfyingA 6� D�

�� and let a denote thelim inf
in (3). Since ��(s)+: F (s) � H(s) , we have ��(s) � H(s) _�F (s) for all s 2 S

and since �� is increasing, we havesup��(A) � a . Since A 6� D�

�� ., we have
sup��(A) > �1 and so we see that (3) follows from Lem.2.2.

(4): Suppose that (4.a) holds and thatD�

H
6= D�

�� . Then there exists an increasing
function  : S !M satisfying �(s) �  (s) and � (s) = H(s) for all s 2 S and
by Thm.4.1, we haveD�

H D�

�� . Hence, we haveD�

�� 6� D�

H = D�

� and so by
(3) with (�(s); F (s)) = ( (s); 0) and A := D�

�� , we see thatr � sups2D�

��
H(s) .

Thus, we see that (4.a) implies (4.b)
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Suppose that (4.b) holds and let me show thatIP�(�;H; !) 6= ; . By (1), we
see that this holds if fH < qg � D�

H
. So suppose that there existsu 2 S

such that �1 < H(u) < q . By Thm.4.1 we have �1 < q = r < 1 and
D�

H
� fH < rg = D�

�� and since �1 < H(u) < q = r , we have D�

H 6= D�

�� .
Hence, by (4.b) we havesups2D�

��
H(s) = r and sinceH(s) < r for all s 2 D�

�� ,
there exists s1; s2; . . . 2 D�

�� such that �1 < H(s1) < H(s2) < � � � < r and
H(sn) " r . Since S is linear and H is increasing, we haves1 � s2 � � � � .
Let s 2 D�

�� be given. SinceH(s) < r and H(sn) " r , there exists an integer
n � 1 such that H(s) < H(sn) and since S is linear and H is increasing, we
have s � sn . Hence, we see that(sn) is cofinal in D�

�� and since� is increasing,
we have that (�(sn)) is cofinal in �(D�

��) . Since M is a �-lattice there exists an
element � 2 _�(D�

��) = _1n=1�(sn) . By (2.1), we have �(�) = r and since r

is finite we have � 2 L1(�) and

�(sn) " � ; H(sn) " r = �(�) ; H(sn) < r and ��(sn) = �1 8n � 1

Since � has the strong Darboux property there exists an increasing sequence(�n) �M

such that�(sn+1) � �n � � and �1 < �(�n) � H(sn) for all n � 1 . By Lem.2.2,
we have �(D�

��) � �(S n D�

��) and since � 2 _�(D�

��) , we have � � ! and
� � �(s) for all s 2 S n D�

�� .

Let us define �(s) := inffn � 0 j s � sn+1g for all s 2 S with the usual
convention inf ; := 1 . Then � : S ! f0; 1; . . . ;1g is an increasing function such
that f� = 0g = [�; s1] and since(sn) is cofinal in D�

�� , we havef� <1g = D�

�� .
In particular, we have�(s) � �(s1) � �1 for all s 2 f� = 0g and �n � � � �(s)
for all s 2 f� = 1g and since (�n) is increasing, we see that

 (s) := ��(s) if 1 � �(s) <1 and  (s) := �(s) if �(s) = 0 or �(s) =1

defines an increasing function fromS into M satisfying  (s) � ! for all s 2 S . Let
s 2 S be given such that1 � �(s) <1 and setk := �(s) . Then we haves � sk+1
and s 6� sk . Since� is increasing, we have�(s) � �(sk+1) � �k =  (s) and sinceS
is linear andH is increasing, we havesk � s and � (s) = �(�k) � H(sk) � H(s) .
Hence, we have�(s) �  (s) � ! and � (s) � H(s) for all s 2 S . Since
H(s1) < H(s2) , we have �(s2) = 1 and  (s2) = �1 and since �(�1) > �1
and s2 2 D�

��, we have D�

� 6= D�

�� . Hence, by (2) we haveIP�(�;H; !) 6= ;
which completes the proof of (4).

(5): Suppose thatSH \D�

�� = ; and let us define (s) := �(s) if H(s) < �(!)
and  (s) := ! if H(s) � �(!) . Since S is linear andH and � are increasing with
�(s) � ! and, we see that : S ! M is increasing and satisfies�(s) �  (s) � !

and � (s) � H(s) � �(!) for all s 2 S . Suppose thatSH = ; . Then we
have H(s) = �1 = � (s) if H(s) < �(!) and � (s) = �(!) = H(s) if
H(s) � �(!) and so we see that 2 IP�(�;H; !) . So suppose thatSH 6= ;
and let u 2 SH be given. Then we have�1 < H(u) < �(!) and so we
have D�

H � D�

� = D�

�� \ fH < �(!)g . Since SH \ D�

�� = ; , we see
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that D�

H
= D�

� and sups2D�

� 
H(s) = �1 and since u 2 SH and we have

�1 < � (u) � H(u) < �(!) . Hence, by Thm.4.1 we have 2 GI�(H;!) and so
by (2) and (4), we haveIP�(�;H; !) 6= ; .

Theorem 4.3: Let (M;�) be a�-lattice, let ! 2 M be a given element and let
� : M ! �R be an increasing smooth functional with the strong Darboux property.
Let (S;�) be linear proset and letH : S ! �R be an increasing function. Let
� 2 I�(H;!) be a given function and let us defineJ := fs 2 D�

�� j H(s) <1g . Let
� �� and � �� be increasing function fromM into M satisfying

(1) �(��)+: �(��) � �(�) � �(��) _+�(��) 8 � 2 M

(2) !� 2 L1(�) ; �� � � 8 � 2 M and �(��) > �1 8 � 2 L1(�)

(3) If �; �; � 2 M are given elements satisfying�� � � � !� and � 2 � _ � , then
we have �� � � and �� � ��

(4) lim inf
s"J

(H(s) _����(s)) � �_��(J) ; lim inf
s"J

(H(s) _����(s)) > �1

Then we haveIP�(�;H; !) 6= ;

Proof: Let us define SH := fs j �1 < H(s) < �(!)g . By Thm.4.2.(5), we
have IP�(�;H; !) 6= ; if SH \ D�

�� = ; . Suppose thatinf ��(D��) = �1 .
Then D�� 6= ; and by Lem.2.2, we have�(D�

��) � �(D��) . Hence, we
have �_�(D

�
��) = �1 and by Thm.4.1 we have� 2 GI�(H;!) . So by

Thm.4.2.(4) we have IP�(�;H; !) 6= ; . So suppose thatSH \ D�

�� 6= ; and
a := inf ��(D��) > �1 . Then we haveJ 6= ; .

If D�� 6= ; , we have�1 < a <1 and by Lem.2.2, there exists� 2 _�(D��)
such that �(�) = a and � 2 L1(�) . If D�� = ; , we set � := ! . By (2),
we see that �� 2 L1(�) and since �(S) � ! and �(D�

��) � �(D��) , we have
�(D�

��) � � � �(D��) and � � ! . Let us define

�(s) := ��(s) if s 2 J ; �(s) := �� if s 2 S n J

�(s) := H(s) _����(s) ; G(s) := �(��) ^ infu2J\[s;�] �(u) 8 s 2 S

Since � and � �� are increasing, we see that�� is increasing and since
�(J) � � , we have ��(J) � �� . Since S is linear and J is a lower interval,
we see that � : S ! M is an increasing function satisfying�(s) � �� for all
s 2 S . Let s 2 S n J be given. SinceJ is lower interval, we haveJ \ [s; �] = ;
and so we haveG(s) = �(��) = ��(s) . Let s 2 J be given. By (1), we see
that ���(u) � �(��) ^ �(u) for all u 2 J and since ��� is increasing, we have
��(s) = ���(s) � G(s) . Hence, we see that� 2 I�(G; ��) and since�� 2 L1(�) ,
we have � 2 GI�(G; ��) . By (2), we have�(s) = ��(s) � �(s) for all s 2 J and
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since J � D�

�� and �� 2 L1(�) , we have D�
�� = J . Since �(J) � �� , we have

�_�(J) = �_��(J) � �(��) . Hence, by (4) we have

sups2J G(s) = �(��) ^ lim inf
s"J

(H(s) _����(s)) � �(��) ^ �_��(J) = �_�(J)

and so by Thm.4.2.(4) there exists an increasing function� : S ! M such that
�(s) � �(s) � �� and ��(s) = G(s) for all s 2 S . Suppose that���(s) =1 for
some s 2 J . Since ��� is increasing, we have���(u) = 1 for all u � s and
since H(u) <1 for all u 2 J , we have �(u) = �1 for all u 2 J \ [s; �] which
contradicts the last inequality in (4). Hence, we have���(s) <1 for all s 2 J and
since �(��) is finite, there existsv 2 J such that G(v) > �1 .

Since � and � are increasing andM is a lattice, there exists an increasing function
� : S ! M satisfying �(s) 2 �(s) _ �(s) for all s 2 S and since �(s) � ! and
�(s) � �� � � � ! , we have�(s) � �(s) � ! for all s 2 S . Let s 2 S be given and
let me show that��(s) � H(s) . If H(s) =1 , this is evident. SupposeH(s) <1
and s =2 J . Then we haves =2 D�

�� and �1 < ��(s) � H(s) < 1 . Hence, we
have �(s) � � � �(s) and so we see that�(s) � �(s) and ��(s) = ��(s) � H(s) .
Suppose thats 2 J . Then we have��(s) = �(s) � �(s) � !� and so by (3) with
(�; �) = (�(s); �(s)) we have ��(s) � �(s) and ��(s) � ��(s) . Since ���(s) <1
and G(s) � �(��) < 1 , we have

G(s) _+���(s) = G(s)+: ���(s) � G(s)+: (H(s) _����(s)) � H(s)

and so by (1) we have

��(s) � ���(s) _+���(s) � ��(s) _+���(s) � G(s) _+���(s) � H(s)

Hence, we have��(s) � H(s) and �(s) � �(s) � ! for all s 2 S . Recall that
v 2 J and G(v) > �1 . Since �(v) � �(v) , we have �1 < G(v) = ��(v) �
��(v) � H(v) <1 . Hence, we see thatv 2 D�� \D

�
�� and so by Thm.4.1.(3), we

have � 2 GI�(H;!) . Hence, by Thm.4.2.(2) we haveIP�(�;H; !) 6= ; .

Theorem 4.4: Let (T;B; �) be finitely founded measure space with�(T ) > 0 and
let � : �M(T;B) ! �R be a �-integral. Let (S;�) be a linear proset and let
! 2 �L(T;B; �) be a given function satisfying

R
T
! d� > �1 . Let H : S ! �R

be an increasing function, let� 2 I�(H;!) be a given function and let us define
J := fs 2 D�

�� j H(s) < 1g and SH := fs 2 S j �1 < H(s) < �(!)g . Then
the following three statements are equivalent:

(1) IP�(�;H; !) 6= ;

(2) For every setA � S satisfying A 6� D�

H , we have

(a) �_�(A) � sups2A H(s)

(b) lim sup
s"A

(H(s) _���+(s)) � �_��(A) ; lim sup
s"A

(H(s) _���+(s)) > �1
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(3) Either D�

�� \ SH = ; or

(a) lim inf
s"J

(H(s) _���+(s)) � �_��(J) ; lim inf
s"J

(H(s) _���+(s)) > �1

Suppose thatIP�(�;H; !) 6= ; and that � is pointwise increasing onS and satisfies
�(s; t) � !(t) for all (s; t) 2 S � T . Then there exists a function 2 �MS(T;B)
such that  is pointwise increasing onS and

(4) �(s; t) �  (s; t) � !(t) 8 (s; t) 2 S � T and � (s) = H(s) 8 s 2 S

(5)  (s; t) = �(s; t) 8 (s; t) 2 D�
H � T and  (s; t) = !(t) 8 (s; t) 2 W � T

where W := fs 2 S j H(s) � �(!)g .

Proof: (1) ) (2): Suppose that (1) holds and letA � S be a given set satisfying
A 6� D�

H
. Then there exists an�-a.e. increasing function :2 �MS(T;B) such

that �(s; � ) ��  (s; � ) �� ! and � (s) = H(s) for all s 2 S and observe
that we may take  (s) = ! for all s 2 fH = 1g . In particular, we have
D�

H = D�

� and since ��+(s) � � +(s) and �_�(A) � �_ (S) , we see that
(2.a) follows from Thm.4.2.(3) with(�(s); F (s)) = ( (s); 0) . Since

R
T ! d� > �1 ,

we have �(!�) > �1 and since  (s; � ) 2 L1(T;B; �) for all s 2 DH , we have
D�
H = D�

� = D�
� 

�

. By Thm.2.7.(3), we have� �(s)+: � +(s) � � (s) = H(s)
and so by Thm.4.2.(3) with(�(s); F (s)) = ( �(s);� +(s)) , we have

lim inf
s"A

(H(s) _�� +(s)) � �_ �(A) > �1

and since��+(s) � � +(s) and �_�(A) � �_ (S) , we see that (2.b) holds.

(2) ) (3): Suppose that (2) holds and that we haveSH \ D�

�� 6= ; . Then we
have J 6� D�

H and so we see that (3.a) follows from (2.b).

(3) ) (1): Suppose that (3) holds. IfSH \ D�

�� = ; , then (1) follows from
Thm.4.2.(5). So suppose that (3.a) holds. Since! 2 �L(T;B; �) and

R
T
! d� > �1 ,

we have !
�

2 L1(T;B; �) . But then it follows easily that the maps��(t) := �
+
(t)

and ��(t) := �
�

(t) satisfies the conditions (1)–(3) in Thm.4.3 and since (3.a) implies
condition (4) in Thm.4.3, we see thatIP�(�;H; !) 6= ;.

Thus, we see that (1)–(3) are equivalent. So suppose thatIP�(�;H; !) 6= ; and
that � is pointwise increasing and satisfies�(s; t) � !(t) for all (s; t) 2 S � T .
Suppose that SH = ; and let us define (s; t) := �(s; t) if (s; t) 2 W c � T

and  (s; t) := !(t) if (s; t) 2 W � T . Then  2 �MS(T;B) . Let t 2 T be
given. Since S is linear and �( � ; t) and H are increasing with�(s; t) � !(t)
and H(s) � �(!) for all s 2 S , we see that is pointwise increasing onS
and that we have�(s; t) �  (s; t) � !(s) and � (s) � H(s) � �(!) for all
(s; t) 2 S � T . Since SH = ; , we have H(s) = �1 = ��(s) = � (s) for all
s 2 W c and � (s) = �(!) = H(s) for all s 2 W and since �(!) > �1 ,
we see that  satisfies (4+5).
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So suppose thatSH 6= ; and let � 2 IP�(�;H; !) be given. Then we
have �(s; � ) �� �(s; � ) �� ! and ��(s) = H(s) for all s 2 S and since
; 6= SH � DH = D�� , we have � 2 GI�(H;!) by Thm.4.1.(3). Hence, by Thm.4.1
and Thm.3.2 there exists a pointwise increasing�-partition of unity f : R� T ! �R
satisfying

�(s; � ) ���(s; � ) ��f(H(s); � ) 8 s 2 fH � rg and f(�(!); t) = !(t) 8 t 2 T

where r := �_�(D
�

H) . Let us define  (s; t) := �(s; t) if (s; t) 2 D�

H � T and
 (s; t) := �(s; t)_f(H(s); t) if (s; t) 2 (S nD�

H)�T . Then we have 2 �MS(T;B)
and sinceD�

H is a lower interval and� and f are pointwise increasing, we see that
 is a pointwise increasing. Since�(s; t) � !(t) = f(�(!); t) and H(s) � �(!) ,
we see that  satisfies (5) and that we have�(s; t) �  (s; t) � !(t) for all
(s; t) 2 S � T . In particular, we have� (s) = ��(s) = �1 = H(s) if s 2 D�

H .
Let s 2 S nD�

H . Then we have (s; t) = �(s; t) _ f(H(s); t) and by Thm.4.1.(1),
we have H(s) � r . Hence, we have�(s; � ) �� f(H(s); � ) and so we see that
 (s; � ) = f(H(s); � ) and � (s) = �f(H(s)) = H(s) . Thus, we see that satisfies
(4+5).

Example Let S and T be subsets ofR with sup S = sup T = 1 . Let B
denote the Borel�-algebra onT and let � be a finitely founded, Borel measure onT
satisfying �(T s) =1 for all s 2 S where T s := T \ (s;1) . Let g : T ! [0;1)
be a non-negative Borel function satisfyingG(s) :=

R
Ts
g d� < 1 for all s 2 S

where Ts := T \ (�1; s] . Let � denote the usual ordering onS and let �(s; t)
denote the function given by

�(s; t) := g(t) 8 s 2 S 8 t 2 Ts ; �(s; t) := �1 8 s 2 S 8 t 2 T s

Let � be any given�-integral, let ! 2 �M(T;B) be a given function satisfying
g(t) � !(t) for all t 2 T and let H : S ! �R an increasing function satisfying
H(s) �

R
T
! d� for all s 2 S . By Thm.2.7, we have ��

+
(s) = G(s) and

��
�

(s) = ��(s) = �1 for all s 2 S . Hence, we see that� 2 I�(H;!) ,
D�

�� = S and J = fH < 1g where J and SH are defined as in Thm.4.4. If
J 6= S , there exists u 2 S such that H(s) = 1 for all s 2 S \ [u;1] and
since ��

+
(s) = G(s) < 1 , we have lim infs"J (H(s) � ��

+
(s)) = 1 . Since

�
�

(s; t) = �1T s(t) and T s # ; , we have �_�
�

(S) = 0 . Hence, by Thm.4.4 we see
that IP�(�;H; !) 6= ; if and only if H satisfies the following condition:

(A) Either SH = ; or lim infs"S (H(s) � G(s)) � 0

and if so then there exists a function 2 �MS(T;B) such that  is pointwise
increasing on S and satisfies (4+5) in Thm.4.4..

Let us take T = [1;1) , � = the Lebesgue measure onT and g(t) := 1

t
for

all t 2 T . Then we haveG(s) = log
+
s and (A) takes the following form

(B) Either SH = ; or lim infs"S (H(s) � log s) � 0
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Let us takeT = N , � = the counting measure onN and g(t) := 1

t
for all t 2 T .

Then we haveG(s) =
P[s]

t=1
1
t

where [s] denotes the smallest integer� s. Hence if
 = 0:5772156649 . . . denotes the Euler constant, then (A) takes the following form

(C) Either SH = ; or lim infs"S (H(s) � log s) � 
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