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Abstract

The invariator principle is a measure decomposition that was rediscovered in
local stereology in 2005 and has since been used widely in the stereological
literature. We give an exposition of invariator related results where existing
formulae are generalized and new ones proposed. In particular, we look at
rotational Crofton-type formulae that are obtained by combining the invariator
principle and classical Crofton formulae. This results in geometrical quantities
represented as averages over weighted Crofton-type integrals in linear sections.
We refer to these weighted integrals as measurement functions and derive
several, more explicit representations of these functions. In particular, we use
Morse theory to write the measurement functions in terms of critical values of
the sectioned object. This is very useful for surface area estimation.

Keywords: Local stereology; invariator principle; rotational Crofton-type for-
mulae; Morse theory; Hadwiger’s index; surface area estimation

1 Introduction

The invariator (Cruz-Orive, 2005) is a powerful principle for generating a hyperplane
in an isotropic random subspace that is motion invariant in n-dimensions. It is a
special case of a classical result (Petkantschin, 1936) that was rediscovered in local
stereology and used for applications in (Cruz-Orive, 2005). Since then it has received
much interest in the stereological literature. It was generalized in (Gual-Arnau and
Cruz-Orive, 2009) to Riemannian manifolds with constant sectional curvature. In
(Gual-Arnau and Cruz-Orive, 2009) and, independently, in (Auneau and Jensen,
2010), the invariator principle was combined with the classical Crofton formula to
obtain new rotational Crofton-type formulae which yield new stereological estima-
tors of geometrical quantities. The purpose of this survey is to give an overview of
invariator related results in Euclidean space and to include natural generalizations
that apparently have not been treated in the literature yet.

Crofton’s formula is an important result of integral geometry as it relates prop-
erties on flat sections of a spatial structure to geometrical quantities of the original
structure. Rotational versions of Crofton’s formula only use sections with linear



subspaces, that is, subspaces through a fixed reference point, which usually is as-
sumed to be the origin. They express certain geometrical quantities as averages of
measurements in the linear sections. The average is taken with respect to a rota-
tion invariant measure, therefore the word rotational. Techniques that are based on
sections through a fixed reference point are often called local; see the monograph
(Jensen, 1998) on local stereology. In integral geometry the term "local’ is used when
so-called local versions of the intrinsic volumes are considered, that is when also nor-
mals and position of boundary points of an object of interest are taken into account.
In the following we use the latter notion of the word.

The major new contribution of the present paper is to combine the invariator and
concepts from Morse theory for obtaining a new rotational Crofton formula. What
is different and appealing with this new formula is that the measurement functional
on the section of the object is written entirely in terms of so-called critical points.
This proves to be very useful for applications where the surface area is sought for.

The paper is written self-contained. It is organized as follows. In Section 2 we
introduce the notation and recall some important concepts. The first result, Proposi-
tion 2 in Section 3, is a rotational Crofton formula for the support measures obtained
by combining the invariator principle and a local Crofton formula. It has as a special
case the rotational Crofton formula for intrinsic volumes derived in (Gual-Arnau and
Cruz-Orive, 2009) and (Auneau and Jensen, 2010). The combination of the invaria-
tor principle and the classical Crofton formula does not yield an explicit form of the
functional to be measured on the section. This functional will be called the measure-
ment function from now on, and we will present more explicit representations of this
measurement function in Section 4. We start by generalizing the results of (Auneau
and Jensen, 2010). In (Auneau and Jensen, 2010) the measurement function involv-
ing the intrinsic volumes is written as an integral over the object’s boundary and we
extend this to curvature measures. Then we show that when the object of interest
is convex, the measurement function can be written in terms of the radial function
of the sectioned object and an angle in the section plane. The main result can be
found in Section 4.3. Here we give a very basic introduction to Mose theory before
presenting the new rotational Crofton formula for smooth manifolds in Theorem 6.
This theorem is formulated for smooth manifolds as we want to apply classical Morse
theory. As shown in Theorem 7 an analogous result holds for polyconvex sets, where
Hadwiger’s index (Hadwiger, 1955), an index closely related to the Morse index, is
used for determining critical points. When the geometrical quantity of interest is the
surface area of a topologically regular set with smooth boundary, the two theorems
coincide. In Section 4.4 we discuss the formal analogy of the new formula with Kub-
ota’s formula and give a simple computational formula for the measurement function
when the object of interest is a polytope. We conclude the paper with a discussion
on stereological applications of these rotational formulae, both old and new.

2 Preliminaries

Throughout, R™ denotes the n-dimensional Euclidean space and O its origin. The
Euclidean scalar product is denoted by (-,-) and the Euclidean norm by |-||. For
a topological space E we let B(E) be the Borel o-algebra in E. We furthermore
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write He for the d-dimensional Hausdorff measure in R™ (Schneider and Weil, 2008,
p. 634). When n is clear from the context, H%(du) is abbreviated to du?. For a set
Y C R", we define

Y+r={y+z|yeY} zeR" aY ={ay|yeY}, a>0.

We use 0Y for the boundary, intY for the interior, clY for the closure and 1y for
the indicator function of Y. When we want to emphasize the geometric meaning,
we write S(Y) = H" 1Y) for the surface area of a Borel-set Y. Whenever defined,
x(Y") denotes the Euler characteristic of Y. If Y C R! is compact x(Y) is the number
of connected components of Y. The unit ball in R* is B,, = {x € R" : [|z|| < 1}
and the boundary of it is the unit sphere (in R") S"~! = {z € R" : ||z|| = 1}. The
volume of B,, is given by
Kop = 7"PT(1+2)7"

and the surface area of its boundary by
Op = MK, = 27?”/2F(§)_1.
To simplify later expressions, we write

RISV

04y iy " ** Oy
Ju.g2-odk ’

(2.1)

051045 """ Ojy

For o, 8,7 € R,y ¢ {0,—1,-2,...}, we write F(a, 3,7;-) for the hypergeometric

function
= (a)i(B)y, 2"

F(%B;V;Z)—;—mk 5 zel-L)
=0
where (), is the Pochhammer symbol
I'(z+k)
(@) = { F(I)kj I(—z+1) re
(=1) T(—a—kt1) <0.

Let X C R" be a nonempty, compact set which is star-shaped at O (i.e. every line
through O that hits X does so in a (possibly degenerate) line segment). The radial
function of X, px, is defined by

px(z) =sup{a € R | azx € X},

for z € R"\ {O}. The set X is uniquely determined by px. We use K™ for the family
of all convex bodies (compact, convex sets) of R"; cf. (Schneider, 1993) for the theory
of convex bodies. If X € ™ and 0.X does not contain any line segment X is called
strictly convex. For X € K" its support function, hx, is given by
_ n—1
hX(u)—rglggqu,x), ue S
The value hyx(u) is the signed distance from O to the supporting hyperplane to X
with outer unit normal vector u. For ¢ > 0 we define the ¢-flower set H% of X € K"
by
pug (u) = sen(bx (W)hx()f?, e 5 (2.

3



where sgn(-) is the signum function. Note that the right hand side of (2.2) is always
the radial function of some set, as —hx(—u) < hx(u) for all w € S"~'. When ¢ = 1,
H} is the set whose radial function is the support function of X and is referred to
as the support set of X in (Cruz-Orive, 2005). When X is a planar polygon, Hj
is a union of finitely many disks and resembles slightly a flower and was called the
flower of X in (Cruz-Orive, 2011). As already mentioned, we extend that terminology
and speak of a g-flower set, see Section 4.4 for its relevance in connection with the
invariator principle.

We let R™ be the family of all polyconvex sets (sets that can be expressed as
finite unions of convex bodies) of R™. A support element of ) # X € K" is a pair
(r,u) € ¥ = R" x S" ! where x € 0X and u is an outer unit normal vector of
X at x. More formally (x,u) € ¥ is a support element of X if and only if x € X
satisfies hx(u) = (u,x). We let NorX be the set of all support elements of X. As in
(Glasauer, 1997, p. 109) we extend this definition to polyconvex sets. For X € R"
let R(X) be the set of all sequences (X;);en in K™ with X = U2, X; and X; = 0
for almost all ¢ € N and let S(N) be the set of all nonempty subsets of N. Then we
define

NorX = N(x)erx) Uvesm) Nor(ﬂi@,X@'). (2.3)

We follow the notation in (Schneider, 1993, 4.2) and write =,,(X,-), 0 <m <n—1,
for the support measures of X € R"™ on B(X). They are concentrated on NorX. We
obtain the curvature measures by the specialization @,,(X, A) = Z,,(X, A x S*71),
A € B(R"), and the area measures by ¥,,(X, B) = Z,,(X,R" x B), B € B(S"™1),
m € {0,1,...,n — 1}. For m = n, only the curvature measure is defined. We put
e, (X,:) =HI(XN:),so D,(X,) is the restriction of the Lebesgue measure to X
The intrinsic volumes are the total measures V,,,(X) = =,,(X, X). Of special interest
will be the volume V,,, the surface area 2V,,_; and the Euler characteristic V5 = x.
For X € K", integers r,s > 0 and m € {0,1,...,n — 1}, we write

On—m —
d X)=——— | 2’2, (X,d(z,u)),
ol X) = 2 [ S, (X (o)
for the Minkowski tensors. Here x"u® is the symmetric tensor product of rank r 4 s
of the symmetric tensors 2" and u®. For s = 0 we obtain the volume tensor of rank r

1
D, 0(X) = / "0, (X, dr),
X

Sl

which is also defined for m = n. Note also that ®,,0(X) = V,,,(X). For an intro-
duction to Minkowski tensors see (Hug et al., 2008) and references therein.
For 7 =0,1,...,n we let

Lo ={Ljio) € R" | Ljg is a j-dim. linear subspace},

Ly ={L; CR"]| L} is a j-dim. affine subspace}

be the families of all j-dimensional linear and affine subspaces of R”, respectively.
For 0 < j < r < n and a fixed L:}[O] c EZ}[O] we write £§ for the family of all j-
dimensional affine subspaces L within this linear subspace, despite the fact that this
notation does not reflect the surrounding linear space. These spaces are equipped
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with their standard topologies and endowed with their natural invariant measures;
see (Schneider and Weil, 2008). We write dL;P[O], and dL7, respectively, when inte-
grating with respect to these invariant measures. We use the same normalization as
in (Schneider and Weil, 2008):

/ dL;L[O] =1 and
L

3[0]

/ dL; = Rp—j-
{L;eﬁ}‘:L;mBn;ﬁ@}

A random subspace L7, is called isotropic random (IR) if and only if its distribution
is given by
Puy, (4) = /L LadLo, A€ B(Lyg)
ilo]

Similarly, a random flat L € L% is called isotropic uniform random (IUR) hitting
a compact object Y if and only if its distribution is given by

Prn(A) = C/ Langeoecn:cony#0y AL7, A€ B(L}),
£y

where c is a normalizing constant. We write (L;‘)l € L;,_jo for the linear subspace
orthogonal to L;.‘[O} € E;.‘[O] and l"L?[O} for the orthogonal projection of x € R™ onto
L?[O] € C?[O]. We furthermore adopt the convention of writing u* for the orthogonal
complement of the line through O with direction u € S~ !. For n C ¥ and L} e L7,
j€{0,...,n— 1}, we define

n ALY ={(x,u) € © | there are u1, uy € S"' with
(z,u1) € n,x € L}, uz € (L))", u € pos{ur, us}},
where pos{uy, us} = {Ajus+Aaug | A1, Ay > 0} is the positive hull of the set {u, us}.
For B € B(S™1) we let
BAL} ={u¢€ S~ | there are up,up € S™
with u; € B, us € (L?)L,u € pos{uy, us}}.

A generalization of the classical Crofton formula is the following local Crofton for-
mula for polyconvex sets.

Proposition 1 (Glasauer (1997, Theorem 3.4)). Let X € R™ and j, m be integers
satisfying 0 < m < j <n— 1. Then for n € B(NorX)

S jym(X, ) = /L En(X 0L}y ALY)dL. (2.4)

We use the word smooth to mean differentiable of class C'* and refer to (Bredon,
1993, 2.1. Definition p. 68) for a definition of an m-dimensional smooth manifold
in R”. For a manifold X C R" of class C* let T,(X) be the vector space of all
tangent vectors to X at a point x € X. For two manifolds X, Xo C R" of class
C! we write X; h X, in R”, and say that X, intersects X, transversely in R", if
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whenever x € X;NX,, we have T,.(X;1)+7,(Xs) = T,(R™). This is standard notation
in differential geometry (Bredon, 1993, 7.6. Definition p. 84). Correspondingly, for
X e R"and L} € E;‘[O] we write 0X M L% in R" if any supporting hyperplane
of X at any point in 0.X N L;?[O}, together with L?[op spans R"™, that is

( ) € NOI'X T € L][O = U l L;L[O]

When X € R" and O ¢ 90X, we have 90X M L5 in R" for almost all L5, € L.
This was shown for X € K™ in (Jensen and Rataj, 2008, Prop. 1) and generalizes to
polyconvex sets using (2.3). Furthermore, if X; and X5 are embedded submanifolds
of R™, in the sense of (Bredon, 1993, 5.7. Definition p. 79), and X; h X5 in R", then
X1 N X, is a submanifold of R™ of dimension dim(X7;) + dim(X3) —n (Bredon, 1993,
7.7. Theorem p. 84).

3 Invariator principle and rotational Crofton
formulae

The goal of rotational integral geometry is to find analogs of (2.4) where the motion
invariant integration over all affine flats is replaced by rotation invariant integration
over all linear subspaces. In its most general form, a rotational Crofton formula is
thus

B0 = [ alXn Lol (31)
Jj+1[O0]
j=0,1,...,n — 1, for suitable X and functionals «a(:) and §(-). We consider here
only the stereologically motivated question how «a(-) should be chosen in order to
obtain a desired geometric characteristic 5(X) of X. For the question of how 3(X)
can be explicitly calculated, when a(-) is given (e.g. an intrinsic volume) see (Jensen
and Rataj, 2008).

In (Auneau and Jensen, 2010, Proposition 1) and (Gual-Arnau et al., 2010, The-
orem 3.1 with A\ = 0) a functional «a(-) was given such that (3.1) holds where
B(X) = Vu(X), m=n—j,...,n. The key idea is to combine the classical Crofton
formula with a Blaschke-Petkantschin-type result, which is often called the invari-
ator principle in stereology. In stereological terminology, this relation states how a
j-dimensional flat in an isotropic (j + 1)-dimensional subspace must be chosen in
order to obtain an IUR flat in R"™. For all non-negative measurable functions f on

LY and j€{0,1,...,n—1}

FLp)ALY = ¢~ / FILTHAO, L3 7L AL o (32)

En LJ+1
where d(O, L§+1) is the Euclidean distance from O to L;H and the constant ¢}’
is given by (2.1). This follows from (Gual-Arnau and Cruz-Orive, 2009, Corollary
3.1 when A = 0) where different normalizations of the invariant measures have been
used. The same approach leads also to a rotational Crofton formula for support
measures by combining Proposition 1 with (3.2).
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Proposition 2. Let X € R", j € {l,....n—1}, m € {0,...,j — 1} and n €
B(NorX). For B(X) = Z,—j1m(X,n), equation (3.1) holds with

ji+1,n—j+m+1n—j - j+1 j+1 +1\n—j—1 j7j+1
al) = Giining J/LM En(-N L A LTYd(O, LI L,
J

with the leading constant given by (2.1).

The proposition holds in particular for the marginal measures of the support
measures and their total masses, the intrinsic volumes. Explicitly, taking n = A X
S"~1 in Proposition 2, with A € B(R"), it follows that for S(X) = @,_;1m(X, A),
equation (3.1) holds with

a() = iy /E L O LT AN L0, L L (3.3)

0 <m < j <n— 1 Similarly for 3(X) = ¥,,_;,,,(X,B), B € B(S"!), equation
(3.1) holds with

a(-) = Gupimiin " /ﬁm‘Ifm<-mL;-“,BAL;+1>d<0,L§+1> L (3.4)

0 <m < j<n-—1.As already stated in (Auneau and Jensen, 2010, Proposition 1)
and (Gual-Arnau et al., 2010, Theorem 3.1 with A = 0) for more general set classes,
taking n = X, equation (3.1) with 5(X) = V,,_;j1m(X) holds for

al-) = e L V(N L0, LT AL (35)

0 < m < j < n— 1. This relation will be of particular interest when the Euler
characteristic occurs on the right hand side. Taking m = 0 in (3.5), applying the
duality result (Jensen, 1998, Proposition 3.3) and an invariance argument, we note
that 8(X) = V,,_;(X) and

o) = el [ | xenGus w30
STTINL o) Vo0

satisfy (3.1). When the section profile Y = X N L7, is convex, the Euler char-

acteristic of Y N (ru + ut) equals one if the hyperplane ru + ut hits Y, and zero

otherwise. Clearly, for a given u € S" ' n LY oy Tu + wt hits Y if and only if

—thLnH[O](—u) <r< thLnH[O](u). Hence, we can calculate the inner integral in
J J

(3.6) explicitly and obtain, using the reflection invariance of the Hausdorff measure,

Cn—j+1,n—j i .
o) =S [ sl @)ho@P el G)
S"INLE o
If furthermore X contains O, the expression becomes
—gtln—i , )
a() = Sl / B (). (3.8)
! Sn=1inLn

J+1[0]
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For a smooth manifold X C R™ of dimension m, equation (3.1) holds with 5(X) =
H™(X) and

o() =St [ M H e a0, LA )
J

where j is an integer satisfying n —m < j < n — 1. This follows by combining (3.2)
with the Crofton formula for manifolds (Jensen, 1998, Proposition 3.7).

When X € K" a classical Crofton formula for Minkowski tensors (Hug et al.,
2008, Theorem 2.2) (see also (Schneider and Schuster, 1999) for special cases) can
be combined with the invariator principle to obtain rotational Crofton formulae for
Minkowski tensors. The derivation of these formulae is straightforward, but we do
not report them here as the function 3(-) occurring in these formulae is typically
a linear combination of several Minkowski tensors also involving the metric ten-
sor and complicated coefficients. In (Auneau-Cognacq et al., 2012) the notion of
Minkowski tensors was extended to so-called integrated Minkowski tensors obtained
as certain tensor averages of flat sections of X. This extended class has the ap-
pealing property to be closed under rotational Crofton integrals: if «(-) in (3.1) is
an integrated Minkowski tensor, then §(-) is an integrated Minkowski tensor, too
(Auneau-Cognacq et al., 2012, Proposition 4.1). The proof is based on a measure
decomposition that generalizes (3.2); see (3.12) below. A special case of this re-
sult, particularly important for applications, is obtained in (Auneau-Cognacq et al.,
2012, Corollary 4.4 with ¢ = 1): For r € Ny and s € {0, 1} equation (3.1) holds with
6(X) = cI)n-I—m—j—l,r,s(X) and

(i

o) = c/_ o7 (- mL;I“)d(o,L;i“)"*f'*ldL;“. (3.10)
ot o

J+1
W
m—1,r,s

Here 0 <m<j<n-1,9 s the Minkowski tensor relative to L?H and

(m—1)!(n—1)! n,s+m+1,n—j
(G- (n+m—1—j)! "n—j+m+s+1,5,1"

CcC =

Furthermore, for j € {0,1,...,n—1} and any non-negative integer r, equation (3.1)
with 5(X) = ®,,,.0(X) holds for
7,7,0

) j+1 ) ) ) )
o) = /ﬁ B &' (-n LYd(0, LTt a it (3.11)
J

It is not a limitation of the results of this section that they are obtained using
(3.2) instead of the more general measure decomposition (Schneider and Weil, 2008,
p. 285)

FILMALY = e(n, j,7) / L0, Ly
j+1[0] =T

dLi+1dL;L+1[O} )

Lo (3.12)

where f > 0 is a measurable function on £, 0 < r < j < n —1 and ¢(n,j,r) is
a constant depending on n,j and r. Combining this measure decomposition with
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Crofton’s formula produces expressions of the form (3.1) where the measurement
functions are integrals over £I*! instead of E?H. These functionals do though not
depend on r, as was shown for the intrinsic volumes in (Auneau-Cognacq, 2010,
Proposition 2). The proofs for the cases where [(-) is a support measure (in n C
NorX), a Hausdorff measure or @y, , where 1 < k < n—1, r a non-negative integer
and s € {0,1}, are almost identical to the one given there and are based on an
application of Crofton’s formula in L7

4 Representations of the measurement function

The measurement function «(-) in Proposition 2 and the special cases given in (3.3)—
(3.5), as well as (3.9), are difficult to evaluate as they involve a weighted Crofton-
type integration in the section plane L7 (0] More explicit representations for the
measurement function are known, in particular when X has a C? boundary or is a
polytope. We will now give different representations of the measurement function,
which all play a role when applying rotational formulae in stereology.

A particularly simple representation is obtained for the volume functional 5(-) =
H(-). In this case, no assumptions on X, apart from measurability, are required.

Proposition 3. For any X € B(R"), 8(X) = H(X) and
o) =cor [ fellr et
¢)

satisfy (3.1) for any 0 < j <mn—1.

Proposition 3 follows from a twofold application of spherical coordinates and
an invariance argument; see also (Auneau and Jensen, 2010, Proposition 2) for an
alternative proof. It implies in particular that 5(X) = ®,(X, A) and

a() =, /(  lepiaz (4.1)
N

satisfy (3.1) for any X € R", A € B(R").

4.1 The measurement function as an integral over the
profile boundary

We show that the measurement function associated to the curvature measures can
be written as an integral over the boundary of the section profile. As this integral
involves principal curvatures, we assume that X € K" has a boundary of class C?.
For L} € L%, 5 € {1,...,n— 1}, let &'(X N L}) be the relative boundary of X N L%,
i.e. its boundary as a subset of L. As X LY for almost all L} € L7, the principal
curvatures x4 (r), ..., &;_;(x) of (X NL}) C LY at v € (X NLY), as well as the
normalized elementary symmetric functions of the principal curvatures of ' (XNL}),
HO = 1,

o) = (7 1)_1 S K@) (2,

1<ii <<t <j—1

9



m = 1,...,7 — 1, exist almost surely. In addition, we write n’(x) for the (almost
surely unique) outer unit normal of X N L% at x € &'(X N L}).

Proposition 4. Let X € K" with boundary of class C*, A € B(R™) and let j,m be
integers with 0 < m < j <n—1. Then B(X) = ®,_j1m(X,A) and

(X N LYy ypp) = Aty /a o Bon(X O Lo 2)de? (4.2)
4 n

j10)"4
satisfy (3.1), where

j—1 -
( )/L H (@, Loy + @)l (@) Lo 12| (Lo 1" dLo.

The proof of Proposition 4 uses the representation (Schneider and Weil, 2008,
p. 607) of ®,,_;.,,(X,-) as integral involving principal curvatures and follows oth-
erwise the proof of (Auneau and Jensen, 2010, Proposition 3) where (4.2) is shown
for A = R™ without the convexity assumption.

For m = j—1, the function h;_1(XNLY, 0,
curvatures, and was determined in (Auneau and Jensen, 2010, Proposition 4). In
view of (4.2) and using this simplification, 5(X) = ®, (X, A) and

-) does not depend on the principal

a(X N LY o)

o | 2l (=, -2
§(XNLY | o))NA

satisfy (3.1). The special cases A = R" of (4.2) and (4.3) yield the known rotational
Crofton formula (Auneau and Jensen, 2010, Proposition 3 and p. 6) for intrinsic
volumes.

Note that (4.3) can be written using the j-th support measure Z(Y,-) of ¥ =
XN L;LH[O] with respect to L;T‘H[O]; see for instance (Hug et al., 2008, p. 488). Hence
B(X) =, 1(X,A) and

(4.3)

;sin® Z(n/(2), 2))dz?

wlh

(XA Lio) =, | Sl
(ANLY 1o)X (SPTINLT L 16)) (4.4)
F<—%, _n—j—1 % 1, % Sll’l2 Z(U, Z))E;(X N L;L+1[O], d(Z, U))

satisfy (3.1). As support measures are weakly continuous (Schneider, 1993, Theorem
4.2.1) and any convex body can be approximated by a decreasing sequence of convex
bodies with boundary of class C? (Schneider, 1993, pp. 59-60), equation (4.4) is a
solution of (3.1) with S(X) = ®,,_1(X, A) for arbitrary convex bodies, as long as
®,,_1(X,0A) = 0. In particular, the choice A = R" gives a rotational integral formula
for V,,_1(X) for all X € K.
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4.2 The measurement function as an integral over the
sphere

When 8(X) in (3.1) is the surface area of X € K", the measurement function can
be written in terms of the radial function of the section profile and an angle in the
section plane. This is obtained by using representation (4.4) derived in the preceding
section for m = j — 1 and the coarea formula.

Proposition 5. For X € K" with O € intX and L?+1[O] € £?+1[O] let Y =X nN

F(—%, —"7;1; %; sin® o) du? (4.5)

_ 1
W)= [ W

_ cos
SPINLY o)

satisfy (3.1), where « is the angle between the (almost surely unique) outer unit
normal of Y in L?+1[O} at py (u)u and the line connecting this boundary point with O.

Proof. We assume first that X has a unique outer unit normal in every boundary
point. This is equivalent to saying that 90X is a C'-surface; see e.g. (Schneider, 1993,
p. 104). Then (4.3) with A = R" gives

aY) = s [P TP(—d — 2 s a)d
'Y

In the following, we identify L7, with R7*! (and hence assume Y C R7*!). The

claim then follows for X with boundary of class C! if we can show the transformation
formula

[ o) = [ g (4.6
Si oy
with
fRITN\ {0} — 0y
x — py(x)z,
and Jacobian Jf(S7;u) = pl,(u)/ cos a, for arbitrary measurable g > 0.

Equation (4.6) follows from an application of the coarea formula (Jensen, 1998,
Theorem 2.1) by calculation of the Jacobian. We have

oF,
D) = (52

= 2(Vpy () + py (z) 41,

where [, is the (k x k)-identity matrix. If u denotes the outer unit normal of YV
at py(z)x, the directional derivative of f in direction y # O must be a vector in

the tangent space py (z)x + ut, so (Df(z)y)'u = 0. More explicitly, 'V py (z)xtu +

py ()y'u = 0. Choosing y € ut arbitrary, and then y = u gives Vpy () = —evle),,

cos a
SO

Df(z) = py(2)(Ljr1 — ogwu')
when x € S7. The Jacobian is given by

Jf(S7; ) = \/det(ED f(x)'(ED f(x)")")
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where the rows of the matrix £ consist of an orthonormal basis of z*. This gives

P (@) Jdet(1 + ooy Bu(Eu))
2)(1+ IIEUIIQ)l/2

cos? o

as required. Using the continuity of the intrinsic volumes and Lebesgue’s dominated

convergence theorem the C'-assumption can be omitted, as outlined in the following.

If Y has a unique outer unit normal in L Tiio) at Y € dY we say that y is a regular

point of Y. Let regY be the set of regular points of Y, Sy = {u € S"" ' N L"
py (u)u ¢ regY'} and define

i+10] |

g:0Y \regl’ — Sy
x

BN

As (Schneider, 1993, Theorem 2.2.4.) implies ’HJH((?Y \ regY’) = 0 and ¢ is a Lip-

schitz mapping, we have ’HJ +1(Sy) = 0. We therefore only consider v € S ' N
L% 10\ Sy in the following.

Let X; = X + i~ !B, be the parallel body of X at distance ¢~'. Then 0X; is a
Cl-surface. As X; \, X for i — oo we have that ¥; = X; N L?+1[O] converges to
Y = XN L}, and, by continuity of the radial function, py,(u)u = py(v)u, as
i — 00. By the fact that py (u)u € regY’, we conclude that ; — a for i — oo, where
«; is the angle between the outer unit normal of Y; at py; (u)u and the line connecting
this boundary point with O. As O € int X, there exists o such that o; < o/ < 7/2
for all 7 and hence cos a; > cosa’ > 0. This implies that the hypergeometric function
F(—%, — = ; 1.7 T ;sin? ;) can be written as an absolutely convergent power series in
sin® ; and is therefore a continuous function on [0,’]. Therefore, there exists a
finite constant C' = C(Y, n, j) such that

1

Cos @

1 n—j—1.j. .2
F(—5,—"%=;%;sin" ;) < C

for all u € S™~ 1N L" T1[0] and all 7. Furthermore, we have shown pointwise conver-
gence of the integrand
n—j—1,

1 1 2 1 1
cosaiF(_i’_ 2 %Sm i) = py(u )Cosa

F(—%,—”_g L. %smza)

Py (u)
for u € "IN LY (0] \ Sy. Hence Lebesgue’s dominated convergence theorem can
be applied and the result follows without assuming that 0X is a C'-surface. n

We remark that the proposition also holds without assuming O € intX but then
the assumptions that X is strictly convex and 0X a C'-surface have to be added.
Then (4.5) becomes

_.n n—1 1 n—j—1
aY) = Cj+1,1/ Py (U 5Ty
{uesn=1nLr )| 3BER:BueY’} COS &

12
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The hypergeometric function in (4.5) simplifies when n = 3, 7 = 1 (Jensen, 1998,

Example 5.10)

F(—%,—%;%;SiHQQ) = cos o + asin a. (4.7)

Hence, according to Proposition 5, for X € K3 with O € intX, equation (3.1) with
B(X) = Vo(X) is satisfied by

S2mL§[O]

. (u)(1 + atan a)du.

2
3
PxnLy,,

This integral equation is the basis of the well-known surfactor, see Section 5.

4.3 Morse type representation

In the derivation of (3.7), we have seen that a measurement function depending
on the Euler characteristic of hyperplane sections can be expressed by means of
the support function when X is convex. The values of the support function can be
thought of as critical values of the section profiles. We now show that the use of
critical values of the section profiles can be extended to more general sets. We first
formulate the result for smooth manifolds and then for polyconvex sets.

In order to obtain the counting measure on the right hand side of (3.9) we
consider an (n — j)-dimensional manifold X. If we assume that X M L7, in
R™ for almost all L;‘l+1[0} € ,C?H[O], then Y = XN L?+1[O} is almost surely a one-
dimensional smooth manifold; see the discussion at the end of Section 2. To discuss
critical values of the manifold Y we use classical Morse theory. This theory studies
the topology of manifolds in terms of functions defined on the manifolds. For the
convenience of the reader we give here the basics of Morse theory for one-dimensional
manifolds and refer to (Milnor, 1963) for more general results. We describe Morse
theory in R”, but will later apply it to the section plane L;.‘ o) For the purposes
of stating results from Morse theory we introduce CW-complexes. The notion of a
CW-complex is due to (Whitehead, 1949). We will assume that X is compact and
therefore only need to consider finite CW-complexes. A finite CW complex Y is a
topological space such that there is n € Ny and a finite nested sequence

DCYyCYiC---CY, =Y, (4.8)
such that the following two conditions hold

(i) Yo is finite,

(ii) for each d € {1,...,n}, Yy is obtained from Y, ; by attaching finitely many
d-cells, as described in (Lundell and Weingram, 1969, p. 47), where a d-cell is
the image of a continuous function ¢ : B; — X that is injective on intBy.

The number n in the above nested sequence is the dimension of the CW-complex Y.
If ng is the number of elements in Yy, and n, is the number of d-cells attached to
Y41 to obtain Yy, the Euler characteristic of Y is given by (Lee, 2000, p. 373)

n

X(V) = D (1) (49)

d=0
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In the present work only CW-complexes of dimension one play a role, and they will
be used only as a tool to determine the Euler-characteristic of hyperplane sections
and sublevel sets of one-dimensional smooth manifolds.

Let Y C R”™ be a compact smooth manifold of dimension one and let f: Y — R
be a smooth function. A point p € Y is a critical point of f if there is a local
coordinate system ¢ : U — Y, where U is a neighbourhood of O, ¢(O) = p, such
that f = f o ¢ has a usual critical point at O:

df

£<O) = 0.
If furthermore .

d°f

@(O) # 0

we say that p is a non-degenerate critical point. The definition of a critical point
and non-degeneracy does not depend on the choice of the local coordinate system
¢. If p is a critical point of f then f(p) is called a critical value of f. We say that
a function f is a Morse function if all of its critical points are non-degenerate and
with different critical values. It is shown in (Fu, 1989, Section 5) that the height
function f,(y) = (y,u) is a Morse function for almost all u € S"', even under the
weaker assumption that Y is a set of positive reach. A set X C R” is said to be
of positive reach if there exists » > 0 such that for all z € X 4 rB,, there exists a
unique point of X nearest to x.

If the second derivative at a non-degenerate critical point is negative, the critical
point is said to have index one, otherwise it has index zero. Again, the index does not
depend on the local coordinate system chosen. According to the Morse Lemma (Mil-
nor, 1963, Lemma 2.2) the behaviour of f in a neighbourhood of a non-degenerate
critical point p can be completely described by its index: There exists a chart y in
a neighbourhood U of p with y(p) = 0 and such that

f=Ffp)+ (1)

holds throughout U, where A € {0,1} is the index of f at p. From this it follows
that a non-degenerate critical point is isolated.

In the following we will apply Morse theory only to height functions f,, where
u € S" ! is chosen such that f, is a Morse function for a given manifold Y. For a
given 7 € R and u € S"! we define the sub- and superlevel sets

Yoo ={yeY: fuly) <r},
Vor={yeY: fuly) 21}

According to (Bredon, 1993, 7.4. Corollary p. 84) (with € the height function on Y')
and the fact that f, is a Morse function for almost all u, the set Y N (ru +ut) is an
embedded submanifold of Y for almost all » € R and almost all v € S™~!. Therefore
we can use the additivity of the Euler characteristic for manifolds, to write

X(Y'N (ru+ub)) = x(Yer) + x(Var) = x(Y): (4.10)

Let r,79 € R with r; < ry and assume that the set {y € Y : r; < fu(y) < o}
contains no critical points of f,,. Then, by (Milnor, 1963, Theorem 3.1), Y<,, and Y<,,
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are homotopy equivalent. Furthermore if f, has no degenerate critical points, Y has
the homotopy type of a CW-complex with one cell of dimension A for each critical
point of index A (Milnor, 1963, Theorem 3.5). According to (Milnor, 1963, Remark
on p. 24), for all r € R the set Y, has the homotopy type of a finite CW-complex,
with one cell of dimension A for each critical point of index A in Y<,. This holds
even if r is a critical value. In particular, both have the same Euler characteristic.
Let now m = m(u) be the number of critical points of the height function f, on

Y and r; = ri(u), i = 1,...,m, their critical values. We assume without loss of
generality that the critical points are enumerated such that ry < ry < -+ < rp,.
Then, if \; = A\;(u), i =1,...,m, are the indices of the respective critical points, it

follows from (4.9) with n = 1 that
X(Yer) = D (1) (4.11)
r; <r

Applying the same argument with the function f_, and constant —r, we obtain the
Euler characteristic of the superlevel sets

X(Yar) = ) (=)' (4.12)

Ty >T
From (4.11) and (4.12) we get
X(Y) = (=DM =) (=)', (4.13)
i=1 i=1

so x(Y) = 0. Inserting (4.11)—(4.13) into (4.10) gives
XY N(rutut)) =Y (=DM = Y (-1

Gy <r i >
=2) (D)= (=M (4.14)
wry<r iiri=r

We are now equipped with the necessary terminology and results for writing the
measurement function associated to the Hausdorff measures in (3.9) with m =n—j
in terms of critical points of the height function on the section profile.

Theorem 6. Let X C R"™ be a compact smooth manifold of dimension n — j, where
j€40,1,...,n—1}. Assume that X L%, 10y for almost all LY 5 € L7, 5. Then
for B(X) = H"I(X), equation (3.1) holds with

Cn7j+1,n7j .
al-) = %/ M(-,u)du’, (4.15)
J Sn—lmL"H[O]
where
M(Y,u) = Z(sgn(rk)]rk]” —sgn(ry_1)|re—1|"" ZU’ (4.16)
k=2
depends on all the critical values ry < ro < --- <1, of the smooth one-dimensional

manifold Y C LY 5 with respect to the function fu(x) = (x,u). The respective
Morse indices are M1, ..., \p and we abbreviated v; = (—1)%,i=1,...,m
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Proof. Taking m = n — j in (3.9) and using the results leading to (3.6) ((Jensen,
1998, Proposition 3.3) and an invariance argument), the expression becomes

n n—j+1ln—j * n
a(X N Lj+1[0]> = Cn+ﬂ,1 ]/ / Ho(X 0 L o) N (ru+ u'))
SPTINLG oy /o0

]r\"‘j_ldrduj.

(4.17)

Due to the assumption of transversality, X N L? 0] is a one-dimensional embedded

submanifold of R™ for almost all Lt o] € /J;? L1jo)> See the discussion at the end of
Section 2. As f, is a Morse function on X N L?+1[o] for almost all u € S"71N L;?H[O},
(XML o) N (ru+ ut) is a finite set for almost all u € S"~1 N L% o) and r € R.
Hence, the counting measure in (4.17) can be replaced by the Euler characteristic
and the theorem follows by inserting (4.14) into (4.17) and calculating the inner

integral explicitly. O

We remark that it might be possible to generalize Theorem 6 to sets of positive
reach by using (Fu, 1989), where the classical Morse theory is extended to sets of
positive reach. We do not consider this here but give an analogous result for not
necessarily smooth polyconvex sets using Hadwiger’s index, an index closely related
to the Morse index. For Y € R™ and u € S"! let

g (Yir) = lim (x(Y 0 (ru+um)) = x(V 0 ((r = eu+u))), (4.18)
e—
r € R, be the index function given by (Hadwiger, 1955, Eq. (9)). The index function
is non-zero for only finitely many r. Hadwiger (Hadwiger, 1955) showed that

XY) =D gu(ysr) (4.19)

holds for all w € S™'. We use this index to represent the measurement function
(3.6) associated to the intrinsic volumes entirely in terms of critical values in the
section profile. For u € S"~! let

gu(r) = g,(Y;7) — g (Y57), reR (4.20)

We note that g, also depends on Y but decided not to overload the notation. For a
given u € S"1 we say that r € R is a critical value of Y in direction u if g,(r) # 0.

In order to parallel the formulation to Theorem 6 in the following result for
polyconvex sets, we choose §(X) = 2V,,_;(X) for the left hand side of (3.1). That the
factor two is natural here, can be seen in the case j = 1, as 2V,,_1(X) = H"1(9X)
for any convex body X with interior points.

Theorem 7. Let X € R" and j € {0,1,...,n —1}. Then for f(X) = 2V,_;(X),
equation (3.1) holds with

cn7j+1,n7j .
Oz(.) — %/ M(-,u)duj, (4‘21)
S7L710L§L+1

(0]
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where

m k—1
M(Y,u) = (sgn(re)|rel™™ = sgn(re-1)|re-a" ) > v (4.22)
k=2 i=1
depends on all the critical values r1 < ro < -+ <1y of Y C L;'l+1[0] i direction u
with respective indices v; = g, (i), i = 1,...,m, where g, is given by (4.20).

Proof. For Lg+1[0} € £3+1[O the set Y = X N Lg+1[0] is polyconvex. Fix u €
Sm=in L% 1j0)- Using (4.19), we have x(Y) = Yo ge(Y;r;). Furthermore, as the
sublevel set Y<,, r € R, is polyconvex and

gu(Yi1') = gu(Y<pi1")

for v’ < r, its Euler characteristic can be written as

XV<r) = > gi(YVir), reR

ey <r

Similarly, we can write the Euler characteristic of the superlevel set

X(Ys,) = Zg (Ysr), r e R.

LT >T

As (4.10) also holds when Y is a polyconvex set, this gives

XY O (rutuh) = (ga(Vir) = g, (Ysr)) + > gm,(Ysir).

v <r LT, =T

Inserting this into (3.6) and calculating the inner integral explicitly, the result fol-
lows. O

As already noted in (3.7) and at the beginning of this section, when X € K"
there are two critical values for any given direction v € S" 1 N L, o] and these
are hX”L?+1[O]( u) and thL;H[O]( u). Using that _thL;'L+1[O]< ) < hxnrr, o, (u),
that v; = 1 for all u € SN Ll o and all LT, € L%, and that the
Hausdorff measure is reflection invariant, it follows that (4.21) simplifies to (3.7) and
furthermore to (3.8) if X contains O. This shows in particular that when X € K"
has a smooth boundary, the M-functions in (4.16) and (4.22) with j = 1 coincide,
which implies that Theorem 6, applied to 0X, is equivalent to Theorem 7. The M-
functions agree for more general classes of sets than smooth convex sets. Let X be
a compact, topologically regular set, i.e. X = cl(intX). If 90X is a smooth manifold
of dimension n — 1 and 90X LS[O], then the boundary of ¥ = X N Lg[o} is a
one-dimensional smooth manifold. We formulate the result for Y and identify LS[O]
with R2.

Proposition 8. Let Y C R? be compact, topologically reqular and such that 0Y
is a one-dimensional smooth manifold. Then, for almost all uw € S, r is a critical
value of OY with respect to the height function f,, in the sense of classical Morse
theory, if and only if g,(r) # 0 for Y. Furthermore, if X is the Morse index of a
non-degenerate critical point with critical value r, then

gu(r) = (1) (4.23)
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Proof. Let u € S be such that f, is a Morse function. If r is not a critical value in
the sense of Morse theory, (4.14) implies that x(X N (tu + ut)) is constant for all ¢
in a neighbourhood of r. This implies g,(r) = 0, so r is not a critical value in the
Hadwiger sense.

Now assume that r is a critical value in the sense of Morse theory. To simplify
notation, we assume that « = (0,1) and r» = 0 holds. Hence, the z-axis is a tangent
to dY at some point p, which we may assume to be O. As f, is a Morse function,
the origin is non-degenerate and isolated from all other critical points. Assume first
that the index of O is A = 0. Then there is an £ > 0 and a neighbourhood U of O in
the z-axis such that Y NeBy = graph~y for some convex function v : U — R. As Y
is topologically regular, either M, = epiy NeBy = {(z,y) € eBy | v € U,y(x) < y}
or M_ =cl(eBy \ M) coincides with Y N eBs.

Consider the case Y NeBy, = M_. As all other critical values are at positive
distance from r = 0, (4.14) shows that x (X N(tu+u")) does not change for small ¢ <
0 implying g (Y;0) = 0. However, for small ¢ > 0, x(X N (tu+ut)) = x(X Nut)+1
and g*,(Y;0) = —1. This gives ¢,(0) = 1 = (—1)*, as required. The case Y NeBy =
M, is treated in a similar way, and the case A = 1 can be reduced to the above by
replacing u with —u. Summarizing, the definition of critical value is the same for
both, Morse and Hadwiger theory, and (4.23) holds. O

4.4 The generalized flower volume and projection formulae

The invariator principle was first used in (Cruz-Orive, 2005) to estimate volume and

surface area of objects in R3 from 2-dimensional flat sections. Up to a factor 2, the

surface area of X € K? is V(X)) and it follows from (3.7) and the definition (2.2) of
the ¢g-flower set that

V) =2 [ Vil )L, (4.24)
2[0]

For O € X this was observed in (Cruz-Orive, 2005). An analogous result holds in
all dimensions.

Lemma 9. Let X € K" be given. Then, for j € {1,...,n — 1},

n—j
, n—j+1n—j j+1 . g+
Vi (X) = i1 n—j VJ+1(HXmL;+ 1o
n
Lit10)

VAo (4.25)

Proof. Equation (3.7) and the definition (2.2) of the ¢g-flower set imply

—j+1,
n+1,1

c j+1 J
Vn ]( —j / pH?{mL ( )du
+1[O] {UES"_IQL?+1[0]‘thL;?_H[O](U)ZO} J+1[0]
— q Uu / U‘ ;
/ X |PHXQLn (u)P*d J>dL?+1[O]7
{uesn ij+1[O] ‘hXﬁL?+1[O] (u)<0} J+1[0]

where ¢ = (n — j)/(j + 1). Introducing spherical coordinates in L}, shows that

the inner integrals yield the (j + 1)-dimensional volume of HY 20 WP to a factor
J

j+1. 0
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In (Cruz-Orive, 2012, Section 4.3) the formal analogy of (4.24) with Kubota’s
formula (Schneider and Weil, 2008, Eq. (6.11)) was remarked. Kubota’s formula
expresses intrinsic volumes of X € K™ by orthogonal projections X |L:§_j[o] of X
onto Lz_j[o] € 'Cz—j[of

Vioj(X) = e i / i Vi (XIL3_jiopd Ly _ji0)- (4.26)

n—3[0]

The special case n = 3,5 = 1 reads

V(¥) =2 [ VaX|Zo)dLie, (4.27)
2

(0]

so the surface area of X is proportional to the average area of all its projections on
isotropic hyperplanes. Similarly (4.24) expresses V(X)) as average of areas associated
to sections with isotropic hyperplanes, where now, areas of the associated 1-flower

set H)lm ;s have to be taken. Lemma 9 shows that this analogy breaks down in
2[0]

general dimensions for two reasons: the (n — j)th intrinsic volume of X requires
(j + 1)-dimensional sections, and a (n — j)/(j + 1)-flower set has to be considered
instead of a 1-flower set. Only when n is odd and j = (n — 1)/2 the formal analogy
between (4.26) and (4.25) holds, like in the special case n = 3,j = 1. It is thus
questionable if (4.24) should be considered as a 'dual’ of (4.27) in the spirit of the
dual theory of convex geometry. It appears that this analogy is a coincidence due to
a special choice of dimensions.

It should also be noted that formulae like (4.25) trivially hold for some associated
set replacing the (n — 7)/(j + 1)-flower set of X, as any non-negative number « is
the volume of e.g. a (j + 1)-dimensional ball with radius (a/k;1)Y 0+,

Due to the relevance for applications, we return to the analogy of the special
cases (4.24) and (4.27). In (Schneider, 1988) it was shown (in arbitrary dimension)
that (4.27) still holds for X € R?, if the integrand on the right hand side of

VQ(X|L§[O]) = /L3 1X|L§[O] (2)dz"

2[0]

is replaced by the integral of the orthogonal projections of X on L%[O] with multi-
plicities. This is also true for (4.24), if the indicator in

Vo(Hyppa )= /L Ly (2)d2?

2[0] g[o] XﬁLg[O]
is replaced b XNL3,, N(z4+ 2zY)). The latter function only takes integer values
p Y X 2(0] y g

and could be interpreted as ’indicator function of H} with multiplicities’. The

X nLg[o]
next proposition determines this function more explicitly when X is a finite union
of polytopes in K?. We write Y = X N Lg[o] and identify Lg[o} with R?. We restrict

attention to topologically regular sets Y C R2.
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Proposition 10. Let Y C R? be topologically reqular, bounded and polygonal. Then

Y consists of finitely many closed polygonal Jordan paths p™™, p® ...,Zq(k) C R?
such that p N pY) is empty or finite for all 1<i<j<k.If yl), e ,yn?i are the

consecutive vertices when walking along p'¥, then

x(Y N (z+ 2" Zzl yONBD, ()

=1 j=1

for H2-almost all z € R2, where B(y) = ¥ + 1 HBQ and y | = y!".
2 2 m +1 1

Proof. For H3-almost all z € R? we have

x(Y N (z+24)) = %X(ﬁY N (z+2z%))

- Z % i y] ’yHl (Z + Zl))v (4‘28)

=1 j=1

where [y, 3/] is the line segment with endpoints 3,4y’ € R?. By Pythagoras’ theorem,
we have [0,y] N (z + 2z+) # 0 if and only if z € B(y) and hence, for H3-almost all
2z € R?,

.y IN(z+27) #0 e 2 € (By) \ By)) U (BY)\ B(y))-

Thus, for almost all z,

1 Zm ® 0 iy L Zm
24 1X([yj Wl 0 E+) =5, 1(13@;"))\3@;31)( )+ 1600860 ()
= ]:

- 2 1B<y§“)\B(y§21>(z)'
]:

Inserting this into (4.28) gives the assertion. O
When Y C R? is a simply connected, polygonal set with interior points, and
Y1, ..., Ym are its consecutive vertices, then
x(Y N (z+ Zl)) - Z 1B(yi)\B(yi+1)<z)
i=1

for H2-almost all 2 € R?. In other words, x(Y N(z+21)) can be read from the vector
v = (1p@y) (), 1wy (2),. .., 1. (x)) € {0,1}™ by counting the number of blocks
with consecutive 1’s (in a cyclic manner). For instance, when v = (1,1,0,1,1,0, 1),
the number of such blocks is x(Y N (z +21)) = 2. A combination of Proposition 10
and (3.6), together with an explicit calculation gives the following corollary.

Corollary 11. Let X C R? be a simply connected set with interior points that can

be represented as the union of finitely many polytopes in K3. Then, equation (3.1)
holds with B(X) = Vo(X) and

a(X N L) —22% (1) \ B(is1)), (4.29)
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where B(y) = § + ”_gHBQ and Y1, ..., Ym, Yms1 = Y1 are the consecutive vertices of
XN Lg[o]. Equivalently,

NS 2 llysl|2 = (gisgisr) it |2 = (s,yer1) (4.30)
= 521 (mllwill* = v(H%H,ﬁ) —v(l\yml\,%)),

where v(r, ) = r* arccos £ — x\/r? — 2.
T

Proof. The measurement function (3.6) associated to the intrinsic volumes with
n =3 and j = 1 can be written as

a(X N Lg[o]) = 2/ X(XN Lg[o] N (z + 21))d22
Lol
Therefore, using Proposition 10, equation (4.29) is evident.

The latter representation (4.30) is obtained from the first one by direct cal-
culation. We consider the triangle whose vertices are O and the midpoints of the
circles B(y;) and B(y;41). Let ¢ be the angle between the line segments [O, y;/2] and
[Yi+1/2,v:/2] and ¢’ the angle between [O,v;11/2] and [yi4+1/2,y;/2]. Furthermore,
let 7 = ||y;||/2 and 7’ = ||yi41]|/2 be the radii of the circles and m/ = 1||y; — yi11|| be
the lenght of the line segment connecting the midpoints of the circles. Draw the line
orthogonal to the line connecting y;11/2 and y;/2 and passing through O and let

1 2 _ N2 1 2 _ N2
x = —(m'+ ﬂ), 7 = §<m’ - %)
Applying Pythagoras’ theorem, we find
Va(B(yi) \ B(yi+1)) = 7 — (rP¢ — av/r? — a2) — ((r')*¢' — 2’/ (1) — (2')?).

. . . !
Again using Pythagoras’ theorem, we can write ¢ = arccos ¥, ¢' = arccos %,

_ ||yz||2 - (yi,yi+1> d o+ = ||?/z‘+1||2 - <yiayi+1>

2||yz _yi-i-l” 2||f% _yi-i-l”

and the result follows. O]

When X € K2 and O € intX in Corollary 11, alternatives to (4.30) can be found
in (Cruz-Orive, 2011, Proposition 3) and (Cruz-Orive, 2012, Corollary 2).

5 Stereological applications

There are various applications in local stereology of the different representations of
the measurement function given in Section 4. We mention some of them here, with an
emphasis on surface area estimation. We start by a review on existing methods and
then present applications of the new rotational Crofton formulae given in Section 4.3.
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Choosing m = j — 1 in (3.5) and mulitplying by two, a measurement function
for the surface area of the boundary of X € R" is obtained. Similarly, with m = j
we obtain a measurement function for the volume of X. We assume j = 1 in the
following, which gives the relations

S(OX) =2V, (X)) = (n—1)c} / / Vo(X N Lo N L2)d(0, L3)"2AL3d Ly,
L0

= / /ﬁ Vi(X N Ly 0 L3)d(O, L) *d LI L.

Identical relations can be obtained for a smooth manifold by choosing m = n —
jand j = 1 or j = 0, respectively, in (3.9). As mentioned at the beginning of
Section 4.4, the above relations were first applied in stereology in (Cruz-Orive, 2005)
for bounded objects in R? with piecewise smooth boundary of class C'. As evident,
an unbiased estimator for the surface area of 0.X is obtained by taking an IR two-
dimensional subspace and then generating an [UR line (hitting a reference set)
within this subspace, weighting that line by a power of its distance from O and
counting how often the weighted line hits the profile section. In (Cruz-Orive, 2005)
for n = 3 a line obtained in this way is referred to as an r-weighted line, where r
is its distance from O. Similarly, by measuring the length of the intersection of an
r-weighted line and the profile section, an unbiased estimator for the volume of X
is obtained. An r-weighted line in a two-dimensional plane in R?® can be generated
by choosing a uniformly distributed point z in the section plane intersected with
the reference set and taking a line through that point that is orthogonal to the
line connecting z with O. Formally this follows by introducing polar coordinates in
the section plane. An application of these estimators was illustrated in (Cruz-Orive
et al., 2010), where they are denoted invariator estimators (in (Cruz-Orive, 2008)
the estimators are referred to as pivotal estimators).

Already in (Cruz-Orive, 2005) improved surface area estimators were suggested
for three-dimensional convex objects containing O. A first approach is to measure
the support function for a given angle in a given IR subspace instead of generating
an r-weighted line. If the support function can be measured in all directions in the
subspace the flower estimator is obtained

Sho = 2 / Mo, (wWdu, (5.1)
52nL3 201

2[0]

which is (3.8) with n = 3,7 = 1, up to a factor 2. This is the area of the 1-flower
set Hy, .5 , called flower area in (Cruz-Orive, 2011), up to a factor four. In (Cruz-
2(0

Orive, 2011), both the flower estimator for convex bodies and the wedge estimator for
volume based on the invariator principle, were studied. In particular, simple formulae
for calculating the flower area when the object of interest is either an ellipsoid or a
convex polygon, were given. We already referred to the latter case in Section 4.4. As
anticipated in (Cruz-Orive, 2005) a good compromise between accuracy and effort
might be not to measure the whole flower area but apply angular systematic random
sampling in the plane, measuring the support function for N angles for a discrete
approximation of the flower area. In (Dvorak and Jensen, 2013) it was shown that
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the flower estimator for three-dimensional ellipsoids with O in the interior is identical
to its discretization when the support function is measured at four perpendicular
directions. There, a semi-automatic estimation of the flower estimator was proposed
and studied, in analogy to the approach in (Hansen et al., 2011) for the nucleator
volume estimator.

Using the new rotational Crofton-type formulae derived in Section 4.3, we obtain
analogues of these improved estimators in general dimension and without assuming
convexity of the object of interest. We state these in the following. We assume
that X € R" or that X is a compact, topologically regular set with X an (n — 1)-
dimensional smooth manifold satisfying 0.X Lyoyin R" for almost all Lo € 5721[0}'
According to Theorem 7 and Proposition 8 we can use Hadwiger’s index to write
the surface area of 0X as

S(0X) = 3, /

/ M(X 0 Loy, w)du'd Ly, (5.2)
Lo S“—lﬂL;[O]

where M is given by (4.22) with 7 = 1. Then an unbiased estimator for the surface
area of 0.X is given by )

where U is uniformly distributed in S™1 N Lyo and Ly € ES[O] is IR. When
X € K™ the determination of M (X NLyop U ) is equivalent to measuring the support
function in the two opposite directions U and —U. The estimator can be improved
further by finding the critical points in all directions in the two-dimensional IR
subspace. The estimator

gﬁo = Cg,l / M(X N LS[O]? u)dul, (54)
Sr=1nLy

(0]

where L;‘[O} € Lg[o} is IR, is an unbiased estimator for the surface area of X. For
X € K3 containing O, this is equivalent to the flower estimator (5.1) for surface
area. A discretization of the generalized flower estimator gives the following unbiased

estimator
n N—1

A c
Sn =55 2 M(X N Lyjo), tagniz), (5.5)
=0

where u, is a unit vector making an angle o with a fixed axis in the IR section
plane Ly € L), g is uniformly distributed in the interval [0, 7/N) and N is the
number of sampled angles. Choosing N = 1 in (5.5) gives (5.3). We refer to these
estimators as the Morse type surface area estimators. As M (-,U) = M(-,U +), the
Cauchy-Schwarz inequality implies

Var(Syy) < Var(Sy) < Var(S))

for all N € N. This was shown for X € K* in (Dvorék and Jensen, 2013, p. 145).
Furthermore from the law of total variance Var(Sg,) < Var(Sy) for all N € N. The
drawback of Sg, is that it requires finding critical points in all directions in the
section plane, which is usually not feasible in practice (unless the object of interest
is a simply connected polytope as then Corollary 11 can be used).
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In a separate work (Thorisdottir et al., In preparation, 2013) we will apply a semi-
automatic procedure based on these Morse type formulae to estimate the average
surface area of the nuclei of giant-cell glioblastoma from microscopy images. Also
the precision gain in terms of variance reduction compared to earlier approaches is
discussed in (Thorisdottir et al., In preparation, 2013).

The different representations of the measurement functions in Section 4 all stem
from the invariator expressions in Section 3 and are therefore equivalent, for a given
n, 7, m and B(-). This shows in particular that estimators based on these expressions,
some of which were originally derived independently of each other, coincide. We make
this more precise for the intrinsic volumes in the following.

In (Gual-Arnau and Cruz-Orive, 2009) it was asked if equation (3.1) with S(X) =
Vo—j+m(X) holds only if the measurement function is of the invariator form (3.5).
Some light was shed on this uniqueness conjecture in (Cruz-Orive, 2012) by showing
that the integrated versions of the classical estimators of volume and surface area,
the nucleator and the surfactor, respectively, coincide with the invariator estimators.
More specifically, it was shown that the integrated nucleator (Hansen et al., 2011,
Section 2.1.2) coincides with the mean wedge volume estimator (Cruz-Orive, 2012,
Eq. (10)) and that for a strictly convex object with O in its interior and C? boundary,
or a convex polygonal object containing O, the flower estimator coincides with the
integrated surfactor (Cruz-Orive, 2012, Eq. (24)); see (Jensen, 1998, Section 5.6)
for a derivation of the classical surfactor. The proofs rely on the use of figures
and differentials and are restricted to three-dimensional objects. Section 4 presents
alternative proofs of these results in arbitrary dimension, as (4.1) with A = R" is
the integrated nucleator and (4.5) essentially the integrated surfactor. In particular,
as (4.5) and (3.8) with j = 1 are both derived from (3.5) with m = 0, j = 1, we
have for X € K™ with O € intX

[ ma, wa
Sn—1n 2

n 0]
Lol

-/ ity () ——F(— 2 "2 a)du,
Sn-1nLy, 2001 7 cos 2 2 2

which is a generalization of (Cruz-Orive, 2012, Propositions 2 and 3) to arbitrary
dimension and without assuming strict convexity of X. This relation even holds
with arbitrary power of the support and radial functions. We formulate the result
for two-dimensional convex bodies.

Proposition 12. Let Y € K? with O € intY. Then fori € {1,2,...}

( i 1 i— .
/51 R (u)dut = /sl py(u)cosaF(—%,—Tl; L1isin® a)du', (5.6)

where a is the angle between the (almost surely unique) outer unit normal of Y at
p(u)u and the line connecting this boundary point with O.

Proof. The derivation of (3.8) from (3.5) with m = 0 can be repeated with an
arbitrary power of the distance, leading to

/ R (u)du' = 2/ / x(Y N (ru + uh))r Tt drdut
st stJo
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The rest of the proof follows the one of Proposition 5 word by word, where only the
power n — 7 — 1 has to be replaced with ¢ — 1. O

As for Proposition 5, we obtain an expression analogous to (5.6) without assum-
ing O € intY if YV is strictly convex and 9Y is a C'-curve

. . 1 .
/f@%@MWWWWI/‘ oo (1) —— P(~1, ~ 55 Lo sin a)du.
S

{ueS?| 3BeR:BucY} cos o

When i = 1 in Proposition 12 we find a formula for the boundary length of Y € K?

1
COS (v

W) = [ prl)
Sl
which is essentially the Horvitz-Thompson estimator for length (Jensen, 1998, p. 122).
Stereological estimators of Minkowski tensors follow directly from the Minkowski
tensor relations (3.10) and (3.11) as shown in (Jensen and Ziegel, 2013, Propo-
sition 1). In (Jensen and Ziegel, 2013, Section 5) a detailed account of all the
estimators obtained for n = 3 and r + s < 2 is given. These include the classical
estimators of volume and surface area but also new local stereological estimators
of centres of gravity and tensors of rank two. As an example, choosing n = 3 and
r=j=01in (3.11) gives the nucleator estimator for volume while for j = 1 it is the
integrated nucleator. Similarly, letting n =3, r =s=0and j = m =1 1in (3.10) we
obtain the flower estimator for surface area.
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