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Abstract

Recently, non-uniform sampling has been suggested in microscopy to increase
efficiency. More precisely, sampling proportional to size (PPS) has been intro-
duced where the probability of sampling a unit in the population is propor-
tional to the value of an auxiliary variable. Unfortunately, vanishing auxiliary
variables are a common phenomenon in microscopy and, accordingly, part of
the population is not accessible, using PPS sampling. We propose a modifica-
tion of the design, for which an optimal solution can be found, using a model
assisted approach. The optimal design has independent interest in sampling
theory. We verify robustness of the new approach by numerical results, and
we use real data to illustrate the applicability.

Keywords: microscopy, model assisted sampling, optimal allocation, propor-
tional regression models, systematic PPS sampling, vanishing auxiliary vari-
ables

1 Introduction

Non-uniform sampling has considerable practical interest in microscopy, as the struc-
tures under study often show pronounced inhomogeneity. In these cases, when using
uniform sampling, most of the sampled fields of view (FOV) will contain no or only
little information of the feature of interest, and, as a consequence, the sampling be-
comes highly inefficient. Alternatively, one can use automatic computerized image
analysis to provide measurements of auxiliary variables, which are expected to give
information about the feature of interest. Combining this information with non-
uniform sampling may then lead to a considerable reduction in estimator variance
compared to the traditional systematic uniform sampling, see Gardi et al. (2008a,b).

This idea of empirical importance sampling has been given a stochastic formula-
tion in Hansen et al. (2011), using point process theory. In the paper by Hansen et al.
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(2011), statistical tools are developed for assessing the efficiency and constructing
optimal model-based estimators of intensities in the class of generalized proportional
regression models. These estimators can be used in practice, but several problems
arise, which motivates further research.

One of the problems is that if the proportionality assumption is not met, the
model-based estimator may be biased, which is unacceptable for the majority of
researchers working in microscopy. Therefore it may be preferable to keep the original
design-based Horvitz-Thompson estimator, which preserves unbiasedness regardless
of proportionality or not, and focus on modifying the sampling design to improve
efficiency of the estimator.

Another important problem which is not addressed in Hansen et al. (2011) are
vanishing auxiliary variables, which occur in practical applications. The term refers
to cases where there exist FOVs with the auxiliary variable equal to zero but with
positive cell count. In a study of Keller et al. (2013), 10% of the cells were in
fact found in such FOVs. Unbiasedness of the original Horvitz-Thompson estima-
tor requires positive inclusion probabilities for all FOVs with a positive cell count.
In sampling proportional to size (PPS sampling), where size is measured by the
auxiliary variables, one therefore has to change the sampling, if vanishing auxiliary
variables can occur.

The workaround in microscopy, as suggested in Gardi et al. (2008a,b), is to add
a small constant ε > 0 to all auxiliary variables before sampling. Current software
(used in Keller et al. (2013)), uses by default an unrealistically small constant. In
cases as the one described in Keller et al. (2013), the unbiasedness would therefore
be paid for by an extremely high variance, if the default had been used. This is
caused by the rare cases, where the sample includes the problematic FOVs mentioned
above. On the other hand, large values of ε may decrease the efficiency one hopes
to gain from PPS sampling, compared to uniform sampling. Therefore optimal ways
of choosing such ε is important in practical application.

This problem is addressed in the present paper. We consider a sampling design
for a finite population of units, numbered {1, . . . , N}. The sample is a random subset
S ⊆ {1, . . . , N} of the population with n elements, say. Some of the sampling units
i have zero inclusion probabilities πi = P (i ∈ S), for instance,

π1 = · · · = πN0 = 0,

where N0 < N . We modify the design, such that the resulting sample still has size
n, and such that it retains a constant positive inclusion probability π0 for the units
1, . . . , N0 and inclusion probabilities proportional to the original inclusion probabil-
ities for the remaining units. Under mild regularity conditions, we find the optimal
design of this type. This result, which is of independent interest in sampling theory,
can be used to determine an optimal value of ε in the original problem described
above.

The composition of the paper is as follows. The sampling set-up is presented in
Section 2, while the optimal design is derived in Section 3, where it is also shown,
that under a proportional regression model, the optimality result simplifies. This
framework, where both design and model play a role, is often referred to as a model-
assisted approach (Särndal et al., 2003). The robustness of the optimal design against
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parameter misspecification and departures from proportionality is investigated in
Section 4. An analysis of data from microscopy, using the developed methods, is
presented in Section 5. Conclusions may be found in Section 6. A proof concerning
an equivalence between systematic PPS sampling and stratified sampling is deferred
to an appendix.

2 Set-up

We consider a finite population of N units and assume that a realization of a random
variable Yi (the variable of interest) is available for each unit i. Additionally, we
assume that Y1, . . . , YN are uncorrelated. The aim is to predict the population total,
T =

∑N
i=1 Yi, for a realization of Y = {Y1, . . . , YN}.

2.1 The Horvitz-Thompson predictor

Let S ⊆ {1, . . . , N} be a random sample of size n, independent of Y . A predictor
of the population total, well-known from survey sampling theory, cf. Horvitz and
Thompson (1952) and Särndal et al. (2003, p. 42), is the Horvitz-Thompson predictor

T̂ =
∑

i∈S

Yi
πi
, (2.1)

where πi = P (i ∈ S) is the probability that the ith unit is included in the sample.
The sampling design is called non-uniform if the inclusion probabilities πi are non-
constant. The predictor T̂ is design-unbiased, i.e.

E[T̂ |Y ] = T,

if the inclusion probabilities πi > 0 are all positive. Under the assumption that
πi > 0 for all i, the design variance takes the form

Var[T̂ |Y ] =
N∑

i=1

N∑

j=i+1

(πiπj − πij)
(
Yi
πi
− Yj
πj

)2

, (2.2)

where πij is the (i, j)th joint inclusion probability πij = P (i ∈ S, j ∈ S).
The prediction error is defined as E[(T̂−T )2]. A sampling design is called optimal

under a model for Y , if it minimizes the prediction error. Since T̂ is design-unbiased,
the prediction error is equal to the mean design variance

E[(T̂ − T )2] = Var(T̂ )− Var(T ) = E[Var[T̂ |Y ]].

If the inclusion probabilities are proportional to the mean values of the Yis, i.e.

πi ∝ E(Yi),

then we have the following result for the mean variance

E[Var[T̂ |Y ]] =
N∑

i=1

(
1

πi
− 1

)
Var(Yi). (2.3)
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Note that the mean variance only depends on the inclusion probabilities πi and the
variances of the Yis. More detailed properties of the sampling design such as the
joint inclusion probabilities do not appear in the formula.

2.2 Systematic PPS sampling

In order to obtain an efficient predictor of T , the information from a non-random
auxiliary variable xi associated with Yi, i = 1, . . . , N , may be used. We let x =
{x1, . . . , xN}.

Often, the inclusion probability πi is chosen proportional to xi (sampling pro-
portional to size, PPS sampling), as one expects xi to be roughly proportional to Yi.
For a PPS sample S of size n, we have

πi = n
xi
x·
,

where x· =
∑n

i=1 xi.
A PPS sampling scheme, which is widely used in sampling due to its simplicity

and efficiency, is systematic PPS sampling. This design was originally introduced
in Madow (1949), see also Murthy et al. (1967), Iachan (1982) and Särndal et al.
(2003, Section 3.6) for more details and references. It can be implemented as follows.
Let 1, . . . , N refer to an ordering of the units. Sampling is performed on cumulative
weights with a random starting point in [0, x.

n
], followed by equidistant selections

of the units. More precisely, let Wi =
∑i

j=1 xj, i = 1, . . . , N , denote the cumu-
lated weights with W0 = 0. Let V1 ∼ unif([0, x.

n
]), independent of Y and x, and let

Vj = V1 + (j − 1)x.
n
, j = 2, . . . , n. Then, the sample S consists of those units i for

which [Wi−1,Wi] contains at least one Vj. Under the assumption that each interval
[Wi−1,Wi] can contain at most one Vj, we have

n∑

j=1

1{Vj ∈ [Wi−1,Wi]} ≤ 1

for all i, and the inclusion probabilities take the intended form

πi = P (
n∑

j=1

1{Vj ∈ [Wi−1,Wi]} = 1)

= E(
n∑

j=1

1{Vj ∈ [Wi−1,Wi]})

= n
xi
x·
.

Figure 1 illustrates systematic PPS sampling with an ordering according to the size
of the auxiliary variable x. A specific variant of systematic PPS sampling, called the
proportionator, was suggested in Gardi et al. (2008a,b) for analysis of microscopy
images. The design uses the principles of the so-called smooth fractionator (Gunder-
sen, 2002) to order the sampling units, which corresponds to the balanced systematic
sampling described in Murthy et al. (1967, Section 5.9d). If we let 1, . . . , N denote
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V1 ∼ unif([0, x.
n ])

x1

Y1

xi

Yi

xN

YN

Figure 1: Illustration of systematic PPS sampling. Each box represents a sampling unit i
with height given by the variable of interest Yi, and width given by the auxiliary variable
xi. The sampling units have been ordered according to the sizes of the auxiliary variables,
and sampling is then performed on the cumulative weights from a random starting point
in [0, x.n ], followed by equidistant selections of the units.

the ordering such that x1 ≤ x2 ≤ . . . ≤ xN , M = N
2
if N is even and M = N+1

2
if N

is odd, the smooth ordering becomes [1], . . . , [N ], where

[i] =

{
2i− 1, i ≤M,

2(N + 1− i), i > M.
(2.4)

This alternative ordering has been proven to be superior to the ordinary uniform
systematic sampling design, e.g. when linear trend is present (Bellhouse and Rao,
1975), and the efficiency is illustrated in Gundersen (2002).

In the sampling literature, there also exists a with-replacement version of PPS
sampling. Here, the predictor takes the form (Hansen and Hurwitz, 1943)

T̂WR =
1

n

N∑

i=1

#{i ∈ S}Yi
pi
,

where #{i ∈ S} denotes the number of times unit i is sampled and the draw-by-draw
inclusion probability of unit i is given by pi = xi/x·.

2.3 ε-corrected PPS sampling

In the present paper, we will address the problem of vanishing auxiliary variables,
where there exist i ∈ {1, . . . , N}, such that xi = 0 and Yi > 0. As a consequence, if
PPS sampling is used there exist units i with Yi > 0, but πi = 0 and the Horvitz-
Thompson predictor (2.1) will be biased. To adjust for this, one can add a small
constant ε > 0 to the auxiliary variables which are zero. The resulting PPS sampling
design will be called ε-corrected.

Let N0 = #{i|xi = 0}, and suppose that the units are ordered such that

x1 = · · · = xN0 = 0.

Then, the inclusion probabilities of the ε-corrected PPS sampling design with sample
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size n become

πi =





n
ε

x.+N0ε
, i = 1, . . . , N0,

n
xi

x.+N0ε
, i = N0 + 1, . . . , N.

(2.5)

It is important that ε is not chosen too small. When ε is chosen unrealistically
small, like it was done in microscopy until recently, the result is an extremely large
variance. In fact, with inclusion probabilities as specified in (2.5), Var T̂ →∞, when
ε→ 0, if Yi > 0 for just one i ∈ {1, . . . , N0}. To see this, note that

Var T̂ ≥
N∑

i=1

1

πi
Y 2
i − T 2 →∞, as ε→ 0. (2.6)

On the other hand, ε should not be chosen too large, because then the sampling is
directed towards the first N0 units and a possible proportionality between xi and Yi
among units with xi > 0 is not utilized in the sampling.

The ε-corrected systematic PPS sampling can be considered as a kind of strat-
ification, based on the auxiliary variables, cf. Figure 2. This observation opens up
for the possibility of finding an optimal ε, using optimal allocation in stratified
sampling. Early references on optimal allocation are Neyman (1934), Stuart (1954)
and Rao (1968), see also Murthy et al. (1967, Section 7) and Särndal et al. (2003,
Section 3.7). Stratification is a standard variance reduction technique in sampling,

ε xi

Stratum 0 Stratum 1

Figure 2: Illustration of ε-corrected systematic PPS sampling, where a small constant
ε has been added to each unit with xi = 0 to ensure an unbiased predictor. Due to the
systematic sampling, the sampling scheme has a build-in stratification mechanism, such
that an almost fixed fraction of the sampled units will be in each stratum.

where the population is divided into strata and independent samples are taken from
each stratum. In ε-corrected PPS sampling, we can regard the population as di-
vided into two strata, Stratum 0 consisting of the sampling units with xi = 0 and
Stratum 1 consisting of the sampling units with xi > 0. If we let U0 = {1, . . . , N0}
and U1 = {N0 + 1, . . . , N} be the notation used for the two strata, we have for the
Horvitz-Thompson predictor based on ε-corrected PPS sampling

T̂ =
∑

i∈S

Yi
πi

=
∑

i∈S0

Yi
πi

+
∑

i∈S1

Yi
πi

= T̂0 + T̂1,

say, where Sh = S ∩ Uh, h = 0, 1. In the case where the expected number

n0 = n
N0ε

x.+N0ε
(2.7)
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of units sampled from Stratum 0 is an integer, ε-corrected systematic PPS sampling
as illustrated in Figure 2 yields same mean variance as a stratified scheme with two
independent systematic samples, one in each stratum. In the general case where n0

is not necessarily an integer, it is possible to derive an expression for the difference
between the mean variances under the two designs, see Theorem 1 below. The proof
of Theorem 1 is deferred to the Appendix.

Theorem 1. For an ε-corrected systematic PPS sample S, let

T̂ = T̂0 + T̂1 with T̂h :=
∑

i∈S∩Uh

Yi
πi
.

Let T̂ st be a random variable, distributed as T̂ st0 +T̂ st1 , where T̂ st0 and T̂ st1 are indepen-
dent random variables, and T̂ sth is distributed as T̂h, h = 0, 1. Under the assumption
EYi = EYj, j, i ∈ U0,

E[Var[T̂ | Y ]] = E[Var[T̂ st | Y ]]− 2ν(1− ν)τ̄0τ̄1,

where ν = n0 − bn0c, τ̄0 := ET0/n0 and

τ̄1 :=




ET1/n1 (or some arbitrary constant), ν = 0

1

ν
E
[
E(T̂1 − T1 | S)

∣∣#(S ∩ U0) = bn0c
]
, ν > 0,

where n1 = n− n0.

For a model with proportionality in Stratum 1 between EYj and πj such that
EYj/πj = ET1/n1 for all N0 + 1 ≤ j ≤ N , we get

E(T̂1 − T1 | S) =
∑

j∈S∩U1

EYj
πj
− ET1 = (#(S ∩ U1)− n1)

ET1
n1

.

Thus, the definition of τ̄1 reduces to τ̄1 = ET1/n1, and the difference between the
mean variances of the two predictors becomes

E[Var[T̂ | Y ]]− E[Var[T̂ st | Y ]] = −2ν(1− ν)
ET0
n0

ET1
n1

.

In that case, the original design leads to a slightly smaller mean variance than
the stratified design, but, with growing sample size n, the difference decreases of
order n−2.

Since the difference between the variance of the stratified and the original design
is small, only stratified sampling will from this point be considered. We find in the
next section an optimal ε, based on optimal allocation in stratified sampling.

3 An optimal stratified design

Consider a sampling design with sample size n and inclusion probabilities π̃i such
that

∑N
i=1 π̃i = n. Let us suppose that

π̃i = 0, i = 1, . . . , N0,

π̃i > 0, i = N0 + 1, . . . , N.
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We want to modify the design such that the first N0 units are assigned a constant
positive inclusion probability and the remaining units have inclusion probabilities
proportional to the original ones. If we let n0 be the expected sample size among
the first N0 units, the modified sampling design will have the following inclusion
probabilities

πi =





n0

N0

, i = 1, . . . , N0,
(

1− n0

n

)
π̃i, i = N0 + 1, . . . , N.

(3.1)

The theorem below gives the optimal stratified design of this type. Here, as in
the previous section, stratification refers to a division of the population into two
strata, Stratum 0 (1, . . . , N0) and Stratum 1 (N0 +1, . . . , N). The result holds under
the following model assumptions

E(Yi) = β0, V (Yi) = σ2
0, i = 1, . . . , N0, (3.2)

E(Yi) ∝ π̃i, V (Yi) = σ2
i , i = N0 + 1, . . . , N, (3.3)

where σ2
0 > 0 and σ2

i > 0, i = N0 + 1, . . . , N .

Theorem 2. Let S be a sampling design with positive inclusion probabilities of
the form (3.1) and suppose that (3.2) and (3.3) hold. Then, under stratified sam-
pling, the expected variance E[Var[T̂ st|Y ]] of the Horvitz-Thompson predictor T̂ st =∑

i∈S Yi/πi = T̂ st0 + T̂ st1 , where T̂ st0 and T̂ st1 are based on independent samples S0

and S1 in Stratum 0 and Stratum 1, respectively, is minimized if the sample size in
Stratum 0 is chosen as

n0 = min

(
n

N0

N0 +
√
n
∑N

i=N0+1 σ
2
i /(σ

2
0π̃i)

, N0

)
. (3.4)

Proof. The expected variance of T̂ st is

E[Var[T̂ st|Y ]] = E[Var[T̂ st0 |Y ]] + E[Var[T̂ st1 |Y ]],

since, conditionally on Y , T̂ st0 and T̂ st1 are independent. Within each stratum the
mean values of Yi is proportional to the inclusion probabilities πi and, using (2.3)
on each stratum separately, we find

E[Var[T̂ st|Y ]] = N0

(
N0

n0

− 1

)
σ2
0 +

N∑

i=N0+1

(
1(

1− n0

n

)
π̃i
− 1

)
σ2
i = f(n0),

say. We find

f ′(n0) = −N
2
0σ

2
0

n2
0

+
V

n
(
1− n0

n

)2 ,

where

V =
N∑

i=N0+1

σ2
i

π̃i
.
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The equation f ′(n0) = 0 is equivalent to the following equation
(
N2

0

n
σ2
0 − V

)
n2
0 − 2σ2

0N
2
0n0 + nσ2

0N
2
0 = 0,

which has the following two solutions

n0 =
nN0

N0 −
√
nV/σ2

0

,
nN0

N0 +
√
nV/σ2

0

.

Only the second solution will result in a minimum of f(n0). Using that n0 ≤ N0, we
get (3.4).

In the case of PPS sampling with probabilities according to an auxiliary variable,
as described in the previous section, we have π̃i = nxi/x· with x1 = · · · = xN0 = 0.
It follows from Theorem 2 that under PPS sampling with (3.2) and (3.3) fulfilled,
the optimal allocation becomes

n0 = min

(
n

N0

N0 +
√
x·
∑N

i=N0+1 σ
2
i /(σ

2
0xi)

, N0

)
. (3.5)

We will from now on assume that n0 < N0 such that n0 is equal to the first of the
two terms inside the minimum sign. Using the relation (2.7) between n0 and ε, the
ε minimizing E[Var[T̂ st|Y ]] then becomes

ε =

√
σ2
0x·√∑N

i=N0+1 σ
2
i /xi

. (3.6)

Further simplifications are possible if we assume that the Yis in Stratum 1 fulfil
a proportional regression model with 1 ≤ g ≤ 2,

E(Yi) = β1xi, Var(Yi) = σ2
1x

g
i , i = N0 + 1, . . . , N (3.7)

and, in addition, the mean-variance relationship is the same in the two strata, i.e.

σ2
0

βg0
=
σ2
1

βg1
. (3.8)

Then, the optimal allocation becomes

n0 = n
(β0/β1)

g/2N0

(β0/β1)g/2N0 +
√
x·(xg−1)·

, (3.9)

where (xg−1)· =
∑N

i=1 x
g−1
i =

∑N
i=N0+1 x

g−1
i . The optimal allocation in (3.9) can

alternatively be expressed, using the natural parameter q = E(T0)/E(T1), where
T0 =

∑N0

i=1 Yi and T1 =
∑N

i=N0+1 Yi. We find

n0 = n

√
N2−g

0 (qx·)g√
N2−g

0 (qx·)g +
√
x·(xg−1)·

. (3.10)
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In the special cases with g = 1 and g = 2, we find

n0 =





n

√
qk

1 +
√
qk
, g = 1,

n
q

1 + q
, g = 2,

(3.11)

where k = N0/(N−N0). Under the model specified in (3.2), (3.7) and (3.8), q = β0N0

β1x·
.

Notice that under the assumptions of Theorem 2, the optimal choice of n0 (or ε)
does not depend on joint inclusion probabilities within the strata.

4 Robustness

In this section, we investigate the robustness of the optimal allocation under the
extended proportional regression model against departures from this model and
parameter misspecification. We study the relative inflation in mean variance

R =
E[Var[T̂ (n′0)|Y ]]

E[Var[T̂ (n0)|Y ]]
,

where n0 and n′0 are calculated according to (3.10), n0 with the true values of the
parameters and the correct model, and n′0 with alternative parameter values or the
wrong model, and T̂ (.) is the resulting estimator.

4.1 Robustness against parameter misspecification

Consider the case that the extended proportional regression model given by (3.2),
(3.7) and (3.8) holds, but that the parameter g is misspecified. This parameter
controls the mean-variance relation, viz.

VarYi ∝ (EYi)g.

In Table 1, R is shown for the case g = 1. For n′0, the true value of q is used, but
g is wrongly assumed to be 2. Using (3.11), we find

R =
(1 + q)(1 + k)(1− n

N
)

(1 +
√
qk)2 − (1 + q)(1 + k) n

N

. (4.1)

Table 1 shows the value of R for different combinations of k and q, with n/N = 0.1.
The range of k and q has been chosen such that it represents what is expected in
the application we have in mind, see Section 5. It is seen, that the expected variance
is increased quite markedly if we wrongly assume that g = 2. The same conclusion
holds for other choices of n/N . We also considered the ‘opposite’ case, where the
true value of g is 2, but g is wrongly assumed to be 1. In this case, R also depends
on the realized values of the auxiliary variable. With Cx = N(x2)·/((1 + k)x2· ), we
get

R =
(1 +

√
qk)(1 + q2√

qk
)− n

N
(1 + k)( q

2

k
+ Cx)

(1 + q)2 − n
N

(1 + k)( q
2

k
+ Cx)

. (4.2)
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k \ q 0.025 0.05 0.10 0.15

0.25 1.113 1.069 1.028 1.010
0.50 1.278 1.197 1.115 1.071
1.00 1.624 1.468 1.309 1.222
2.00 2.326 2.000 1.683 1.514
4.00 3.781 3.011 2.341 2.010

Table 1: The relative inflation R in mean variance, given by (4.1), by wrongly using g = 2,
when the true value is g = 1. The results are for varying values of q and k, when n/N = 0.1.

If the auxiliary variables xN0+1, . . . , xN are i.i.d. realizations of a random variable X,
we have Cx ≈ E[X2]/E[X]2. The assumption πi = (n− n0)xi/x. ≤ 1 excludes very
skew distributions, thus it prevents large values of Cx. In the case illustrated in
Table 2, where we let Cx = 1.3, R was much closer to one than in the previous case
where g = 1, but g = 2 is assumed. The same conclusion holds for other choices
of n/N . Table 3 shows values of R, when n′0 is calculated, using the true values of
g = 1 and k = 2, and varying values of a guessed value q̂ and a true value of q. The
formula is here

R =
(1 +

√
q̂k)(1 +

√
q2

q̂
k)− (1 + q)(1 + k) n

N

(1 +
√
qk)2 − (1 + q)(1 + k) n

N

. (4.3)

These results indicate that R is robust against misspecification of q.

4.2 Robustness against departures from proportionality

Let us now investigate the robustness of the optimal allocation based on the pro-
portional regression model against departures from proportionality between xi and
EYi. The model used in the robustness investigations is inspired by the applications
we have in mind. We suppose that

Yi ∼ pois(β0), i = 1, . . . , N0,
Yi|Xi = xi ∼ pois(xδi ), i = N0 + 1, . . . , N.

(4.4)

For all choices of δ, this model represents a mean-variance relation with g = 1, i.e.,
VarYi ∝ (EYi)1. If δ = 1, the extended proportional regression model, specified
in (3.2), (3.7) and (3.8), holds with σ2

0 = β0 and σ2
1 = β1. If instead δ 6= 1, the

proportional regression relationship between xi and Yi does not hold for i > N0.
We study the consequences of using n0 as given in (3.11) with g = 1, even though
the underlying assumptions are not fulfilled. In contrast to the case that δ = 1, the
(true) mean variance is now influenced by the specific design. We focus on systematic
PPS sampling in Stratum 1, with inclusion probabilities proportional to the xis.

Various distributions of the auxiliary variable have been tested. Here, we present
the results for the case where xi is a realization of

Xi ∼ beta(γ1, γ2)ρ+ τ, (4.5)

11



i = N0 + 1, . . . , N. Figure 3 shows scatterplots of (X, Y ) for realizations of the
model given by (4.4) and (4.5) with δ=0.5, 1 and 2, respectively. The parameter β0
is chosen such that the parameter q = E(T0)/E(T1) is the same in all three cases.
The relative inflation R in mean variance due to allocation following (3.11) with
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Figure 3: Scatterplots of (X,Y ) for realizations of the model given by (4.5) and (4.4) with
(left to right) δ=0.5, 1 and 2, respectively, together with the mean relation Y = Xδ. The
parameters in the distribution (4.5) are γ1 = γ2 = 2, ρ = 5, τ = 0.5 while the parameter q
is equal to 0.05 in all three cases. The values of N and N0 are N = 1000 and N0 = 2/3N .
The empirical marginal distributions of X and Y is shown on the upper and right side of
the graphs. For more details, see the text.

g = 1 was calculated for various values of q and δ. The correct value of q was used
in the allocation. For each pair of parameters q and δ, one realization of the Xis was
considered, and the true optimal value of n0, which is needed for calculation of the
denominator of R, was determined. In all the cases considered, 0.025 ≤ q ≤ 0.15 and
0.5 ≤ δ ≤ 2, optimal allocation assuming proportionality showed robustness against
departures from proportionality (R ∈ [1; 1.03]). In Figure 4, the mean variance is
shown for n fixed (n = 100) as a function of the sample proportion n0/n in Stratum
0. The variances are shown for simple random sampling (SRS), PPS sampling with
replacement (WR), and systematic PPS sampling, all under stratification. Note that
the variances are only shown for a range of the values of n0, as the variance becomes
very large for extreme choices of n0. This emphasizes the importance of good choices
of n0. Although the variances differ, the optimal allocations are almost identical for
PPS with replacement and systematic PPS sampling. In the case δ = 0.5, shown to
the left of Figure 4, we gain much from using systematic sampling, as PPS WR and
systematic PPS sampling, differ the most in this case. Here, SRS actually performs
better than PPS WR. This can be mainly ascribed to stratification, as without
stratification, the variance of SRS is approximately 35.000 in the case of δ = 0.5.
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Figure 4: The mean variance under simple random sampling (SRS), PPS sampling with
replacement (WR) and systematic PPS sampling, all under stratification, is shown for
q = 0.05 and (from left to right) δ=0.5, 1 and 2, respectively, as a function of the sample
proportion in Stratum 0. The remaining parameter values are specified in Figure 3. For
more details, see the text.

k \ q 0.025 0.05 0.10 0.15

0.25 1.042 1.036 1.020 1.009
0.50 1.079 1.082 1.068 1.050
1.00 1.142 1.160 1.156 1.137
2.00 1.267 1.315 1.329 1.311
4.00 1.670 1.780 1.802 1.752

Table 2: The relative inflation R in the mean variance, given by (4.2), by wrongly using
g = 1, when the true value is g = 2. The results are for varying values of q and k, when
n/N = 0.1 and Cx = 1.3.

q̂ \ q 0.025 0.05 0.10 0.15

0.025 1.000 1.030 1.133 1.185
0.05 1.023 1.000 1.031 1.055
0.10 1.096 1.028 1.000 1.002
0.15 1.155 1.065 1.009 1.000

Table 3: The relative inflation R in mean variance, given by (4.3), for varying values of
the guessed value q̂ and the true value q, when n/N = 0.1, g = 1 and k = 2.
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5 Analyzing data from microscopy

In this section, we use the developed methods in the analysis of a data set from
microscopy (Keller et al., 2013), collected with the purpose of estimating osteoclast
cell numbers in paws from mice with experimental arthritis. The tissue sections
analyzed were divided by a grid into N small fields of view (FOVs) or observation
windows. The random variable Yi is the number of cells in FOV i, while xi indicates
the amount of a pre-chosen colour in FOV i associated with the staining of the
cells. The xi values are easily determined by automatic image analysis at a low
magnification. This is in contrast to the cell counts Yi which are time-consuming to
determine, as they have to be done at high magnification by an expert-user.

The data set from Keller et al. (2013) is unique in the sense that it is exhaustive
comprising 100% of FOVs and covering the total section areas. Figure 5 shows a
scatterplot of the auxiliary variable x and the number of cells y in each of the
N = 2703 FOVs. As the population analyzed in Keller et al. (2013) is completely
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Figure 5: Scatterplot of the auxiliary variable x and the number of cells y in each of the
N = 2703 FOVs. There are N0 = 1915 FOVs with x = 0.

known, containing 10% cells in FOVs with x = 0 (q = 1/9), these data are suitable
for testing how far the allocation provided by the new approach using models in
combination with optimal allocation is from the actual optimum. We first check
the proportionality assumption and choose model parameters, and then study the
variance as a function of allocation.

5.1 Proportionality

In Figure 6, it is investigated whether a linear relationship between x and y is a
satisfactory description of the data in Stratum 1, consisting of N1 = 788 FOVs. The
data was partitioned into bins of size 35 (±1), resulting in a total number of 22 bins.

The mean proportionality in Stratum 1 is not fulfilled, see the left panel in
Figure 6. A linear regression on the log-transformed and binned x and y gave a
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much more satisfactory description, see Figure 6 right panel. The estimated relation
is log y = −3.93 + 2.40 log x, which corresponds to a model with δ = 2.4.
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Figure 6: Means (left) and log means (right) of x and y-values in 22 bins in Stratum 1.
The curve in the left panel was obtained by transforming the regression line from the right
panel.

5.2 Relation between mean and variance

Under the extended proportional regression model, it is assumed that VarYi ∝ EY g
i

holds in Stratum 1, cf. (3.7). To choose an appropriate value for g for use in (3.11), we
compare the empirical means ȳ and variances s2 estimated in the bins in Stratum 1
as specified in Subsection 5.1.

Linear regression of the log transformed s2 and ȳ gives a relation log s2 = 0.44 +
1.22 log ȳ, which is shown in the left panel of Figure 7 (full drawn line). Although
the slope 1.22 is significantly different from 1 (p = 0.021), we will use g = 1 in the
further investigations. For completeness, a line with slope one is also shown in the
left panel (dotted line). Figure 7, right panel, shows the same estimated relations
in a mean-variance plot by transformation of the line in the left panel (full drawn
curve), together with a fitted line through the origin (stippled line).

An additional assumption of the model is given in (3.8), which means that both
strata have the same mean-variance relation, i.e., the ratio VarYi/EY g

i must be the
same. Here we assume g = 1. While s2/ȳ = 1.69 in Stratum 0, the ratio was found
to be 2.03 in Stratum 1, thus (3.8) with g = 1 appears only approximately fulfilled.

5.3 Optimal allocation

Following the results of Section 5.1 and 5.2, we will describe the data by a pro-
portional regression model as used in the simulations in Section 4, with g = 1,
σ2/β = 2, q = 1/9 and δ = 2.4. The simulations in Section 4 indicated that moder-
ate departures from proportionality (δ 6= 1) are not critical for optimal allocation.
It thus seems reasonable to use the optimal allocation given in (3.11) for g = 1. We
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Figure 7: The left panel shows log-variances plotted against log-means of y in each of the
22 bins from Stratum 1, together with a regression line (full drawn) and a fitted line with
slope 1 (dotted). The right panel shows variances plotted against means of y in each bin,
together with a transformation of the left panel regression line (full drawn) and a fitted
line through 0 (stippled).

investigate how well this fits the actual optimum, and compare with the allocation
given by (3.11) for g = 2.

Figure 8 shows the variance of stratified SRS, stratified PPS WR and stratified
systematic PPS (with a balanced ordering of the auxiliary variable, see (2.4)) as
functions of the proportion of the sample of size n = 0.10N , allocated in Stratum 0.
The variances of PPS WR and SRS are smooth functions, whereas the variance of
systematic PPS shows a more complicated behaviour, due to the systematic sam-
pling. It is however clear that the variance of systematic PPS becomes very large if
n0 is chosen too small, and in most cases the variance is smaller than the one for
PPS WR and SRS with the same allocation. An overall impression of the variance
of systematic PPS is obtained by binning of size 20 except for the small (and large)
values of n0, which removes the huge fluctuations, see Figure 8, right panel. Using
the binned data, optimal allocation based on (3.10) for g = 1, corresponding to
n0 = 0.34n, very well fits the true optimum. If instead g = 2 is used, correspond-
ing to n0 = 0.10n, the variance becomes a factor 2 larger. From (2.7) we get that
n0 = 0.34n corresponds to ε = 1.05 and n0 = 0.10n corresponds to ε = 0.23, hence
ε = 1 used in Keller et al. (2013) was in fact remarkable close to the optimal choice.
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Figure 8: Left: The variance of stratified SRS (dotted), stratified PPS WR (stippled)
and systematic PPS with a balanced ordering of the auxiliary variable (open circles) as a
function of n0/n. Right: The same plot, except that the variance for the proportionator
is obtained from a partition of the original ones into bins of size 20, where data begins to
fluctuate. The sample allocations obtained by (3.11) with g = 1 and g = 2 are marked
with vertical lines.

6 Conclusion

In microscopy, vanishing auxiliary variables are dealt with by adding a small positive
constant. In this paper it has been shown, both theoretically and by simulations,
that it is of great importance to choose this constant wisely, in order to obtain an
efficient predictor. To solve the problem of choosing such constant in an optimal
manner, a model-assisted approach has been suggested, where the mean variance
is minimized. The optimization depends on the choice of just a few parameters.
Investigations based on numerical calculation as well as simulations suggest that
the optimum is robust against departures of proportionality in the regression model
and misspecification of the parameter q, determining the part of the population
total stemming from sampling units with vanishing auxiliary variables. Numerical
calculation also showed that the parameter g, controlling the variance of the variables
of interest, given the auxiliary variable, must be chosen with care. Under the assumed
Poisson model with g = 1, choosing g = 2 caused a substantial loss in efficiency,
whereas the opposite case was less pronounced.

To see how well the approach works in practice, data from microscopy was in-
vestigated. Proportionality was not fulfilled, but the simulations suggested that the
lack of proportionality was not critical for the optimum derived for the proportional
regression model with g = 1. Compared to using the optimum for g = 2, the variance
was almost halved.
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Appendix

Proof of Theorem 1. Due to the independence assumptions, we have

Var[T̂ st | Y ] = Var[T̂ st0 | Y ] + Var[T̂ st1 | Y ]

= Var[T̂0 | Y ] + Var[T̂1 | Y ].

However, whilst T̂ st0 and T̂ st1 are independent, their counterparts T̂0 and T̂1 are not,
as they are based on the same sample S. Therefore,

E[Var[T̂ | Y ]] = E[Var[T̂ st | Y ]] + 2E[Cov[T̂0, T̂1 | Y ]].

To find E[Cov[T̂0, T̂1 | Y ]], write

E[Cov[T̂0, T̂1 | Y ]] = Cov[T̂0, T̂1]− Cov[E[T̂0 | Y ],E[T̂1 | Y ]]

= Cov[T̂0, T̂1],

by unbiasedness of the parts T̂h, h = 0, 1. Due to the fact that Yi and Yj are
uncorrelated for i 6= j, T̂0 and T̂1 are also uncorrelated, given the sample S. Thus,

Cov[T̂0, T̂1] = E[Cov[T̂0, T̂1 | S]] + Cov[E[T̂0 | Y ],E[T̂1 | S]]

= Cov[E[T̂0 | Y ],E[T̂1 | S]]

= E
[
E[T̂0 | S]− E T̂0

][
E[T̂1 | S]− E T̂1

]
.

Since the Yis in Stratum 0 all have the same mean,

E[T̂0 | S] =
∑

i∈S∩U0

EYi
πi

= #(S ∩ U0)
EY1
π1

depends only on the cardinality #(S ∩ U0). With probability ν, we have that
#(S ∩ U0) = bn0c+ 1, and with probability 1− ν, #(S ∩ U0) = bn0c. Writing

A := {S | #(S ∩ U0) = bn0c+ 1},

and using the fact that EY1/π1 = ET0/n0 = τ̄0, we get

E[T̂0 | S]− E T̂0 = #(S ∩ U0)τ̄0 − ET0 =

{
(1− ν)τ̄0, S ∈ A,
−ντ̄0, S /∈ A.
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Thus,
[
E[T̂0 | S]− E T̂0

][
E[T̂1 | S]− E T̂0

]

=

{
(1− ν)τ̄0

[
E[T̂1 | S]− ET1

]
, S ∈ A,

−ντ̄0
[
E[T̂1 | S]− ET1

]
, S /∈ A.

(7.1)

Let f1(S) = E[T̂1 | S]− ET1. Taking the expectation of (7.1), we obtain for ν > 0

Cov[T̂0, T̂1] = (1− ν)τ̄0 E[f1(S) | S ∈ A]P (S ∈ A)− ντ̄0 E[f1(S) | S /∈ A]P (S /∈ A)

= [−(1− ν)τ̄0 − ντ̄0]E[f1(S) | S /∈ A]P (S /∈ A),

where we in the second equality have used that

0 = E[f1(S)]

= E[f1(S) | S ∈ A]P (S ∈ A) + E[f1(S) | S /∈ A]P (S /∈ A).
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