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Two-step estimation procedures
for inhomogeneous shot-noise Cox processes

No. 02, February 2014



Two-step estimation procedures for
inhomogeneous shot-noise Cox processes∗

Michaela Prokešová1, Jiří Dvořák1 and Eva B.V. Jensen2

1Department of Probability and Mathematical Statistics, Charles University in Prague
2Department of Mathematics, Centre for Stochastic Geometry and Advanced Bioimaging,

Aarhus University

Abstract

In the present paper we develop several two-step estimation procedures for
inhomogeneous shot-noise Cox processes. The intensity function is parame-
trized by the inhomogeneity parameters while the pair-correlation function
is parametrized by the interaction parameters. The suggested procedures are
based on a combination of Poisson likelihood estimation of the inhomogeneity
parameters in the first step and an adaptation of a method from the homo-
geneous case for estimation of the interaction parameters in the second step.
The adapted methods, based on minimum contrast estimation, composite like-
lihood and Palm likelihood, are compared both theoretically and by means of
a simulation study. Two-step estimation with Palm likelihood has not been
considered before. Asymptotic normality of the two-step estimator with Palm
likelihood is proved.

Keywords: Shot-noise Cox processes, Inhomogeneous spatial point processes,
Two-step estimation methods, Palm likelihood, Asymptotic normality

1 Introduction

Cox point processes (sometimes also called doubly stochastic point processes in the
literature) are the preferred point process models for analysis of clustered point
patterns ([3, 4, 6, 16, 20, 22, 23, 26]). These processes are able to model clustering
of different strength on different scales as well as inhomogeneity dependent on spatial
covariates. As such they are used in a large spectrum of applications, e.g., in biology,
ecology and epidemiology.

Spatial Cox point process models fall into two large classes – the log-Gaussian
Cox processes and the shot-noise Cox processes. Since these two classes have some-
what different properties they are usually considered separately in the literature

∗This project has been supported by Czech Science Foundation, project no. P201/10/0472 and
by Centre for Stochastic Geometry and Advanced Bioimaging, funded by a grant from The Villum
Foundation.
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and their statistical inference is based on different methods (see e.g., [22]). In the
present paper we will consider the shot-noise Cox processes and the problem of pa-
rameter estimation of inhomogeneous models coming from this class. The shot-noise
Cox processes were introduced in [21] and further generalized in [15] without dis-
cussing the statistical inference for the model. Note that the class of shot-noise Cox
processes also includes the very popular Poisson Neyman-Scott processes like the
Thomas process ([28], [16, Section 6.3.2]).

Maximum likelihood estimation for these processes is computationally very in-
tensive (even more so for inhomogeneous models) and involves the development of
a special MCMC numerical algorithm for each particular model and data case, see
e.g., [23, Section 7.3] for an example. Therefore, the easier to compute moment esti-
mation methods (eventhough less efficient than the maximum likelihood estimation)
are often preferred in the applications.

Several moment estimation methods applicable to the stationary shot-noise Cox
processes are available in the literature: minimum contrast estimation ([5, Chap-
ter 6]), composite likelihood ([8]), Palm likelihood ([25], [27]). According to simu-
lation studies, as the ones presented in [7] and [8], the efficiency of the different
estimators on middle sized observation windows depends on the considered model
and the parameter of main interest. There is no uniformly best estimator.

For the nonstationary case (which is much more interesting from the applied
point of view) a two-step estimation procedure was introduced in [30] where first
the inhomogeneous first-order intensity function λ(u) is estimated and then, condi-
tionally on λ(u), the inhomogeneous K-function is used for the minimum contrast
estimation of the interaction parameters of the Cox process. In [10], the same two-
step estimation procedure was investigated with minimum contrast based on the
inhomogeneous g-function in the second step. The main assumption of this two-step
estimation procedure is the second-order intensity-reweighted stationarity (SOIRS)
of the inhomogeneous processes to be analyzed. SOIRS implies existence of a well
defined inhomogeneous g- and K-function (see [1]) used in the second step of the es-
timation procedure. However, the decomposition of the second-order intensity func-
tion λ(2)

λ(2)(u, v) = λ(u)λ(v)g(v − u)

into a product of the first-order intensity function and the inhomogenous pair-
correlation function g implied by SOIRS enables a generalization of the other es-
timation methods from the stationary case to the SOIRS case as well. In a recent
paper ([17]), two-step composite likelihood was discussed.

In the present paper we investigate the above mentioned two-step estimation pro-
cedures for SOIRS inhomogeneous shot-noise Cox processes, including conditions for
the validity of the asymptotic results for these two-step estimation procedures. Fur-
ther we generalize the Palm likelihood estimation to a two-step estimation procedure
for SOIRS inhomogeneous Cox processes and derive conditions for consistency and
asymptotic normality of the estimators. Finally, we compare the efficiency of all the
considered two-step estimation procedures on middle sized observation windows in
a simulation study.

The paper is organized as follows. Basic notions relating to spatial point processes
are given in Section 2 while shot-noise Cox processes are introduced in Section 3.
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An overview of moment estimation methods for stationary Cox processes is given in
Section 4. These methods are adapted to the inhomogeneous case in Section 5. In
Section 6, the focus is on two-step estimation with Palm likelihood and in Section 7
asymptotic normality of this two-step estimator with Palm likelihood is proved.
The performance of the developed two-step estimation methods is compared in a
simulation study presented in Section 8.

2 Background

In this section, we briefly introduce the basic notions relating to spatial point pro-
cesses needed in the following, including first- and second-order properties. For more
detailed information, see the standard references [4] and [26].

Let B(Rd) = Bd be the Borel subsets of Rd. Let X be a point process on X ∈ Bd.
For A ∈ Bd, |A| will denote the volume of A and |X∩A| the number of points fromX
in A (we use the notation |·| for the suitable Hausdorff measure of the set). For R > 0,
B(o,R) is the ball centered at the origin with radius R and A⊕R =

⋃
x∈AB(x,R).

The Euclidean norm of the vector x ∈ Rd is denoted by ‖x‖ and I is the indicator
function.

For any given point u ∈ Rd, let du be the infinitesimal region that contains the
point u. Following [6] we can define the (first-order) intensity function λ of X by

λ(u) = lim
|du|→0

(
E |X ∩ du|
|du|

)
, (2.1)

so that λ(u)du is the mean number of points from X occurring in du. The second-
order intensity function λ(2)(u, v) is defined by

λ(2)(u, v) = lim
|du|,|dv|→0

(
E |(X ∩ du)||(X ∩ dv)|

|du||dv|

)
. (2.2)

When X is simple (does not have multiple points), then λ(2)(u, v)|du||dv| may for
u 6= v be interpreted as the probability that du and dv each contain a point from X.
Higher order intensity functions λ(k) are defined analogously. In the literature the
intensity functions are also called product densities since they are in fact densities
of the factorial moment measures of the process X, see [4] for details.

The point process X is stationary if its distribution is invariant with respect
to the simultaneous shifts of all the points in X. Under stationarity, λ(u) = λ is
constant and we can write

λ(2)(u, v) = λ(2)(0, v − u) = λλo(v − u). (2.3)

Thus, the second order intensity function can be reduced to an equivalent function
of only one argument and, moreover, the function λo is well defined by the decompo-
sition in equation (2.3). The function λo is in fact equal to the (first-order) intensity
function of the Palm distribution of X and is therefore sometimes called the Palm
intensity. Recall that the Palm distribution is the distribution of X conditioned by
the occurrence of a point from X at the origin, see [4] for details.
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Two important characteristics may be defined by means of λ(2). The first one is
the pair-correlation function g(u, v) = λ(2)(u,v)

λ2
which is also sometimes called simply

the g-function. Because of the reducibility (2.3) of λ(2), the g-function of a stationary
point process is a function of just one argument g(u, v) = g(u− v), u, v ∈ Rd. The
second characteristic is the K-function defined by

K(r) =

∫

‖u‖<r
g(u)du =

∫

B(o,r)

g(u)du , r > 0. (2.4)

It can be shown that λK(r) is the mean number of further points of the point pattern
in a ball B(x, r) centered at a typical point x of the point process.

There are several ways to define an inhomogeneous point process, including inho-
mogeneity introduced by transformation [18] or local scaling [12], but in the sequel
we will only deal with the most often used type of inhomogeneity – the second-
order intensity-reweighted stationarity (SOIRS) – which was introduced in [1]. It
is characterized by the fact that the inhomogeneous g-function g(u, v) = λ(2)(u,v)

λ(u)λ(v)
is

translation invariant and thus equal to a well-defined function of only one argument
v − u. Under SOIRS, we can decompose λ(2) as follows:

λ(2)(u, v) = λ(u)λ(v)g(v − u) = λ(u)λu(v) = λ(v)λv(u), (2.5)

where λu(v) is the intensity function in v of the Palm distribution of X conditioned
by the event that a point of X occurs in the location u. This possibility of decom-
posing λ(2) in a multiplicative way will be important for the estimation procedures
developed in Sections 5 and 6.

The inhomogeneous K-function is defined by the relation (2.4) used in the sta-
tionary case but it does not have the simple interpretation from the stationary case
anymore.

3 Shot-noise Cox processes

A Cox point process on a set X ∈ Bd is a doubly-stochastic process which, con-
ditionally on the realization of the random driving field Λ(u), u ∈ X , is a Poisson
process with intensity function Λ.

A shot-noise Cox process X has a driving field of the form

Λ(u) =
∑

(r,v)∈ΠU

rk(u, v), u ∈ X , (3.1)

where ΠU is a Poisson measure on R+ × Rd with intensity measure U and k is a
smoothing kernel, i.e., a non-negative function integrable in both coordinates. Under
some basic integrability assumptions (3.1) is an almost surely locally integrable field
and X is a well-defined Cox process, see [21] and [15] for details.

The shot-noise Cox process X is stationary if the kernel k is just a function
of the difference of the two arguments k(u, v) = k(v − u) and the measure U has
the form U(d(r, v)) = µV (dr)dv, where µ > 0 and V (dr) may be an arbitrary
measure on R+ satisfying the integrability assumption

∫
R+ min(1, r)V (dr) < ∞. A
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large variety of models may be obtained according to the choice of V . The popular
class of Poisson cluster processes is recovered when V is equal to the Dirac measure.

Example 1 (Poisson cluster process). If V (dr) = δ1(dr) is simply a Dirac measure
concentrated in 1, then X is a Poisson cluster process with cluster centers coming
from a stationary Poisson process on Rd with intensity µ (given by U). Let further
k(u) = ck̃(u) where c > 0 and k̃ is a probability density on Rd. Then, conditionally
on the positions of the cluster centers, the clusters are independent with Poisson
distributed number of points with mean value c =

∫
k(v)dv and the points within

the cluster are distributed independently, according to the probability density k̃
around the cluster center. Thus in this case we get the class of Poisson Neyman-Scott
processes, see e.g., [16, Section 6.3.2], which also includes the well-known Thomas
process with the Gaussian kernel k ([28]). Fig. 1, left panel, shows a realization of a
stationary Thomas process.

In fact, all shot-noise Cox processes can be viewed as generalized cluster pro-
cesses. We can rewrite the shot-noise Cox process X as X =

⋃
(r,v)∈ΠU

Xv where Xv

is the cluster centered around a point located at v. Conditionally on ΠU , the cluster
processesXv are independent Poisson processes with intensity function rk(·, v). Note
that even for a compact set A the number of cluster centers in A may be infinute
almost surely, see [21], [15] for details. Therefore, shot-noise Cox processes may be
regarded as a generalization of the standard cluster processes ([16, Section 6.3]).

If we assume the stationary case for simplicity then, under the condition that∫
R+ rV (dr) < ∞, almost surely only a finite number of the clusters Xv will have
nonzero number of points. If we condition by the positions of the centers only (and
not by the whole ΠU) and assume for simplicity that k is a probability density,
then the shifted cluster processes (Xv − v) are independent identically distributed,
and the number of points in a cluster has a mixed Poisson distribution with mixing
distribution governed by the measure V .

Thus, the measure V determines the distribution of the number of points in
the clusters. The standard cluster processes produce point patterns with pretty
homogenous clusters. By choosing an appropriate measure V , we can obtain a much
more variable number of points in the clusters than in Example 1.

Example 2 (Gamma shot-noise Cox process). Let V be defined by V (dr) =
r−1 exp(−θr)dr where θ > 0 is a parameter. Note that V is not integrable in the
neighbourhood of 0. As a consequence, the corresponding shot-noise Cox process X
is not a cluster process in the classical sense ([16, Section 6.3]) since the number of
"clusters" in any compact set is infinite. However, because the weights of the ma-
jority of the clusters are very small, X is still a well-defined Cox process. The name
gamma shot-noise Cox process refers to the fact that V is the Lévy measure of a
gamma distributed random variable ([15, Section 4]). Fig. 1, middle panel, shows a
realization of a stationary gamma shot-noise Cox process. The point process has the
same Gaussian kernel k and intensity as the Thomas process in Fig. 1, left panel,
but has clearly larger variablity in the number of points in different clusters.
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Figure 1: Realizations of (from left to right) a stationary Thomas process, a stationary
gamma shot-noise Cox process and an inhomogeneous gamma shot-noise Cox process. For
details, see the text.

The moment properties of the shot-noise Cox processes are easily available ([15,
Section 4]), in particular for the intensity function we have

λ(u) = µ

∫

R+

r V (dr)

∫

Rd
k(u, v)dv, (3.2)

and for the pair-correlation function

g(u, v) = 1 +
µ
∫
R+ r

2V (dr)
∫
Rd
∫
Rd k(u,w)k(v, w)dw

λ(u)λ(v)
. (3.3)

Note that in both equations we have a product of separate integrals for V and k –
this will be important in the estimation procedures developed in Sections 5 and 6.
Moreover, for the parametric models as the ones described in the examples above
both integrals with respect to V are simple functions of the model parameters. In
Examples 1 and 2,

∫
R+ r V (dr) = 1, 1/θ and

∫
R+ r

2V (dr) = 1, 1/θ2, respectively.
When we apply a location dependent thinning with inhomogeneity function f(u)

to a stationary shot-noise Cox process specified by µ, V and k, a new SOIRS shot-
noise Cox process is obtained with the same µ and V , but with a new kernel function
k̃(u, v) = f(u)k(v − u). In the rest of the paper we will consider such SOIRS shot-
noise Cox processes. It turns out to be useful to use the parametrization by the
homogeneous kernel function k(v − u) and the inhomogeneity function f , instead
of using the inhomogeneous kernel function k̃. One of the reasons is that the inho-
mogeneity function f does not enter into the formula for the g-function, since we
have

g(u, v) = 1 +

∫
R+ r

2V (dr)

µ(
∫
R+ rV (dr))2

∫
Rd k(u,w)k(v, w)dw∫

Rd k(u,w)dw
∫
Rd k(v, w)dw

.

For an example of a realization of an inhomogeneous SOIRS gamma shot-noise
Cox process, see Fig. 1, right panel. The point process is a location dependent
thinning of the point process described in Ex. 2 and shown in Fig. 1, middle panel.
The inhomogeneity in the direction of the x-axis is clearly visible as well as the effect
of the thinning procedure on the clusters in the low intensity areas of the observation
window. For a more detailed description of the model, see Section 8.
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4 Estimation in the stationary case

In this section we give an overview of the moment estimation methods for the sta-
tionary Cox process models, available in the literature. All of them are based on the
second order intensity function λ(2) or on characteristics derived from it.

LetW denote a compact observation window on which we observe the point pro-
cessX. We will assume a parametric model forX. The vector of unknown parameters
will be denoted by η. Particularly, we assume that the stationary Cox point process
X is characterized by its second-order intensity function λ(2)(·; η) (or by some other
equivalent characteristic like K, g or λo). As explained in the previous section, these
characteristics are for many shot-noise Cox process models available in a reasonably
tractable form as functions of the parameter η and thus the maximization of the
respective estimation criteria is numerically feasible.

4.1 Minimum contrast

This estimation method was in the context of spatial statistics described as early as
in [5, Chapter 5]. It can be based either on the K-function or the pair correlation
function g, see e.g., [6, Chapter 6]. In the version based on the g-function it is
required that the process X is isotropic as well as stationary. Under isotropy, the
g-function is a function of a scalar argument.

The vector of parameters η is estimated by minimizing the discrepancy measure
∫ R

r

[
K̂q(u)−Kq(u; η)

]2

du or

∫ R

r

[ĝq(u)− gq(u; η)]2 du (4.1)

between the nonparametric estimate K̂ or ĝ and its theoretical value K(·; η) or
g(·; η), respectively.

The constants q, r and R are used to control the sampling fluctuations in the
estimates of K and g. Recommendations concerning the choice of tuning parameters
and other practical aspects can be found in [6, Section 6.1.1]. Asymptotic properties
of the minimum contrast estimator, based on the K-function, are discussed in [9]
and [14] for stationary case. In [14] strong consistency and asymptotic normality for
minimum contrast estimators, based on the K-function, was proved for stationary
Poisson cluster processes. In [9] asymptotic normality for minimum contrast estima-
tors, based on the K-function, was shown for stationary processes, fulfilling a strong
mixing assumption.

4.2 Composite likelihood

The composite likelihood approach is a general statistical methodology ([19]). In the
context of point processes it is based on adding together individual log-likelihoods for
single points or pairs of points of the process X to form a composite log-likelihood.
Several versions of composite likelihood have been suggested for estimation of differ-
ent types of spatial point processes ([1], [8], [23]). Composite likelihood suitable for
estimation of Cox processes was introduced in [8]. It uses the second-order intensity
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function λ(2)(·; η) to obtain the probability density for two points of X occurring at
locations x and y:

f(x, y; η) =
λ(2)(y − x; η)∫

W

∫
W
λ(2)(u− v; η)dudv

. (4.2)

After adding the individual log-likelihoods, the composite log-likelihood is ob-
tained:

logCL(η)

=
∑

x,y∈X∩W, 0<‖y−x‖<R

[
log λ(2)(y − x; η)

− log
(∫

W

∫

W

λ(2)(u− v; η)I(‖u− v‖ < R)dudv
)]
,

(4.3)

Here, only pairs of points with distance less than R are considered. Disregarding
the pairs of points separated by distance larger than R is motivated by the fact
that pairs of points far apart are often nearly independent. They do not carry much
information about the parameter η, but increase the variability of the estimator.
Consistency and asymptotic normality of the composite likelihood estimator in the
stationary case are proved in [8] under suitable mixing assumptions.

Note that in the stationary case the squared intensity λ2 cancels in (4.2) so that

f(x, y; η) =
g(y − x; η)∫

W

∫
W
g(v − u; η)dudv

,

and (4.3) can be used with g instead of λ(2).

4.3 Palm likelihood

The Palm likelihood estimator for isotropic stationary point processes was intro-
duced in [27] and uses a very “geometrical” approach. It is based on the process of
differences among the points of the observed point process X. Let

Y (R) = {y − x : x 6= y ∈ X ∩W, ‖y − x‖ < R},

be the point process of differences of points in X observed on W with mutual
distance smaller than R. Evidently, Y (R) is a point process contained in B(o,R).
The intensity function of this point process can be derived as follows. Let A be a
Borel subset of B(o,R). Then,

E(|Y (R) ∩ A|) =

∫

W

∫

W

I(y − x ∈ A)λλo(y − x; η)dxdy =

∫

A

γW (u)λλo(u; η)du,

where γW (u) = |W ∩ (W + u)| is the set covariance of the window W (see [26,
p. 126] for further details). The point process Y (R) has thus an intensity function
concentrated on B(o,R) of the form

λR(u) = γW (u)λλo(u; η), u ∈ B(o,R).
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The Palm log-likelihood

logLP (η) =
∑

x 6=y∈X∩W,(y−x)∈B(o,R)

log (|X ∩W |λo(y − x; η))

− |X ∩W |
∫

B(o,R)

λo(r; η)dr,

(4.4)

is obtained by treating Y (R) as an inhomogeneous Poisson process with intensity
function λR(u), replacing the intensity λ of the original point process X by the
observed intensity |X ∩W |/|W | and approximating γW (u), u ∈ B(o,R), by |W |.
This is a reasonable approximation for R substantially smaller than the size of the
observation window W .

An alternative way of arriving at the Palm likelihood goes as follows. Let

Yx = {y − x, x 6= y ∈ X}, x ∈ X ∩W.

Each Yx is an inhomogeneous point process with intensity function equal to the Palm
intensity λo(·; η) of the original process X. Ignoring the interactions in the process
Yx, i.e., approximating Yx by a Poisson process, the log-likelihood of Yx ∩B(o,R) is
(up to a constant) the following:

∑

y∈X∩W,0<||x−y||<R
log λo(x− y; η)−

∫

Rd
I(||u|| < R)λo(u; η)du.

By treating all the Yx, x ∈ X ∩W, as independent, identically distributed repli-
cations (and ignoring the edge effects caused by a bounded observation window W ),
we can sum the individual log-likelihoods over x ∈ X ∩W and get an equivalent
version of the Palm log-likelihood

logLP (η) =
∑

x 6=y∈X∩W,||x−y||<R
log λo(x− y; η)− |X ∩W |

∫

B(o,R)

λo(r; η)dr. (4.5)

Note that even though the Palm likelihood estimation was derived by using the
process of differences it is a second-order moment method because it is based on
the second-order characteristic λo of the observed point process X. An extension
of the Palm likelihood estimation to non-isotropic stationary point processes was
introduced in [25]. Moreover, strong consistency and asymptotic normality of the
Palm likelihood estimator are proved for stationary Cox processes in [25] under
suitable mixing assumptions.

5 Estimation in the inhomogeneous case

For the inhomogeneous (nonstationary) point processes the methods reviewed in the
previous section cannot be used directly. Nevertheless, under the SOIRS assump-
tion they can be adapted to the inhomogeneous case due to the product structure
(2.5) of λ(2), implying the existence of a well-defined inhomogeneous g-function and
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K-function, that can be estimated from the data once we know the intensity func-
tion λ(u).

Following these ideas, [30] introduced a two-step estimation procedure where
first the inhomogeneous first-order intensity function λ(u) is estimated and then,
conditionally on λ(u), the inhomogeneous K-function is used in a minimum contrast
estimation of the interaction parameters of the Cox process. Alternatively, [10] used
minimum contrast estimation with the inhomogeneous g-function in the second step.

The minimum contrast estimation based on theK-function (MCK) is definitively
the most frequently used method in the stationary case, but this method is actually
not necessarily the most efficient. Simulation studies in [8] and [7] show that in
many cases, minimum contrast estimation with the g-function (MCg) is superior to
MCK. In some cases, composite likelihood estimation (CL) is more efficient than
any of the MC methods for estimation of interaction parameters, such as the scale
of the kernel function in the cluster process. This applies in particular to cases when
the total number of points observed in different clusters vary a lot. Examples are
log-Gaussian Cox processes with exponential correlation kernel or shot-noise Cox
processes with nonatomic shape measure V . On the other hand Palm likelihood is
often superior to any other method when estimating the parameter µ for a Thomas
process.

Therefore, there is a need for deriving two-step estimators for the inhomogeneous
case, based on the other methods from Section 4. For composite likelihood it was
done in a recent paper [17]. For the Palm likelihood we will introduce the new
two-step estimator in Section 6.

In the remaining part of this section, we review the estimation of the inhomo-
geneity parameters in the first step and of the interaction parameters in the second
step by minimum contrast estimation or composite likelihood estimation.

Throughout the section, X will be a SOIRS Cox process with second-order prod-
uct density of the form

λ(2)(u, v) = λβ(u)λβ(v)gη(v − u).

Here, η ∈ Rq is a vector of interaction parameters that parametrizes the pair-
correlation function g and β ∈ Rt is the vector of inhomogeneity parameters that
parametrizes the first-order intensity function λ(u). Thus, the full model is parame-
trized by ψ = (β, η) ∈ Ψ ⊂ Rt+q, and we assume that it is possible to separate the
inhomogeneity and interaction parameters, so that we do not have overspecification
in the model. Below, we show an example of such a separation.

Example 2 (continued). Let X be the stationary gamma shot-noise Cox process in
R2 with parameters µ, θ > 0 and smoothing kernel density k equal to the bivariate
Gaussian density

kσ2(u) =
1

2πσ2
exp

(−‖u‖2

2σ2

)
, u ∈ R2.

Suppose we observe X in a compact windowW . Furthermore, let hβ(u) be a noncon-
stant function, parametrized by the vector parameter β = (β1, . . . βt−1), and let each
point x of the process X be independently thinned with the probability hβ(x)

maxv∈W hβ(v)
.
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Then, the resulting inhomogeneous shot-noise Cox process Y has first-order intensity
function

λβ(u) =
µ

θ

hβ(u)

maxv∈W hβ(v)

and inhomogeneous pair-correlation function

gσ2,µ(v − u) = 1 +
1

4πσ2µ
exp

(−‖v − u‖2

4σ2

)
.

In applications, the intensity function has often a log-linear form

λβ(u) = exp(z(u)βT ), u ∈ W,

where z(u) is a vector of covariates observed at the location u. When we reparame-
trize the intensity function λβ as

λβ(u) = exp(β0)hβ(u), (5.1)

where β0 = log(µ
θ
/maxv∈W hβ(v)), then λ is parametrized by the inhomogeneity

parameter (β0, β1, . . . βt−1) ∈ Rt and the (inhomogeneous) pair-correlation function
is parametrized by the interaction parameter η = (σ, µ).

The two-step estimation procedure in [30] can be described as follows. At first,
the inhomogeneity parameter β is estimated by disregarding the interaction in the
model, using the Poisson log-likelihood

logL1(β) =
∑

x∈X∩W
log λβ(x)−

∫

W

λβ(u)du (5.2)

only. The value β̂ at which L1 attains its maximal value is then taken to be the
estimate of β.

In the second step, the interaction parameters η are estimated with the intensity
function λ̂ = λβ̂ taken as fixed. TheK-function is well defined for the inhomogeneous
case and, using the estimate λ̂ of the intensity function, it is possible to estimate
the K-function of the observed process X by

K̂(r) =
∑

x,y∈W∩X

I(0 < ‖x− y‖ < r)

λ̂(x)λ̂(y)
wx,y,

where wx,y is an edge correction weight (see [1]). Analogously, it is possible to esti-
mate the inhomogeneous g-function by kernel smoothing of the differences between
the observed points from X, reweighted by the reciprocal of λ̂(x)λ̂(y), see [10] for
the exact formula. Of course, the precision of the estimates of K and g depends
heavily on the precision of λ̂. Under an appropriate parametric model λ = λβ, the
estimates of K and g will be more stable than in the case where a nonparametric
estimate of λ, obtained by kernel smoothing, is used.

Now the minimum contrast (4.1) can be employed for the estimation of the
interaction parameters η in the same way as for the homogeneous case.
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In [29], it was shown that the estimate of the inhomogeneity parameter β ob-
tained by the Poisson likelihood L1 differs negligibly from the estimate obtained
by a more complicated and computationally much more demanding second-order
estimation equation, which corresponds to the score equation of the full composite
likelihood (4.3) in the inhomogeneous case. This finding supports the use of the
first-order intensity function in L1 for the estimation of β and it appears reasonable
to estimate the rest of the interaction parameters η conditionally on β̂ fixed.

The two-step composite likelihood estimation was suggested in [17]. Here, for-
mula (4.3) is rewritten as

logCL(η) =
∑

x,y∈X∩W
0<‖x−y‖<R

[
log(λ̂(x)λ̂(y)gη(y − x))

− log
(∫

W

∫

W

λ̂(u)λ̂(v)gη(u− v)I(‖u− v‖ < R)dudv
)]
,

(5.3)

and (5.3) with a fixed value λ̂ of the intensity function from the first step is then
maximized with respect to the interaction parameter η. As in the homogeneous case,
R > 0 is a tuning parameter. This two-step maximization is computationally much
less demanding than maximization of the full composite likelihood (4.3) with respect
to the complete parameter ψ.

6 Two-step estimation with Palm likelihood

In this section we generalize the Palm likelihood estimator from the stationary case
to a two-step estimation procedure for SOIRS inhomogeneous shot-noise Cox pro-
cesses. The first step is the same as in the previous section so the inhomogeneity
parameter β is still estimated, using the Poisson likelihood (5.2). However, in order to
estimate the interaction parameters, we need to generalize the Palm likelihood (4.5)
to the inhomogeneous case and this is not a straightforward problem. There are, in
fact, several possibilities.

The first option is to mimic formula (4.5) closely and just plug-in instead of
λo(y − x) the inhomogeneous version of the Palm intensity λx(y) = λ(y)g(y − x)
which now depends on both locations x and y. As a consequence, the quantity
|X ∩W | must be replaced by a sum over x ∈ X ∩W thus arriving at

logLP1(η) =
∑

x,y∈X∩W
0<‖x−y‖<R

log(λ̂(y)gη(y − x))−
∑

x∈X∩W

∫

B(x,R)

λ̂(u)gη(u− x)du. (6.1)

Note that logLP1 can also be rewritten as

logLP1(η) =
∑

x∈X∩W

( ∑

z∈((X∩W )−x)
0<‖z‖<R

log(λ̂(x+ z)gη(z))−
∫

B(x,R)

λ̂(u)gη(u− x)du
)
,

Thus, LP1 is actually equal to the composite loglikelihood composed from the Poisson
likelihoods of the difference processes Yx = {y − x : y ∈ X ∩W, 0 < ‖y − x‖ < R}
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with intensity functions (apart from edge effects) equal to λx(u) and it corresponds
to the second method of derivation of the homogeneous Palm likelihood.

The second option is to use the whole process of differences Y = {x−y : x 6= y ∈
X∩W}∩B(o,R) viewed for the purpose of approximate inference as a superposition
of independent Poisson processes Yx, x ∈ X ∩ W . The intensity of the difference
process Y is (again apart from edge effects) equal to

∑
x∈X∩W λ(x + u)g(u). Thus,

the Palm likelihood LP2 defined as the Poisson likelihood of the process Y can be
expressed as

logLP2(η) =
∑

z=w−y:w,y∈X∩W
0<‖z‖<R

log
( ∑

x∈X∩W
λ̂(x+ z)gη(z)

)

−
∫

B(o,R)

∑

x∈X∩W
λ̂(x+ u)gη(u)du.

(6.2)

However note that the second term in (6.1) and (6.2) is actually the same and
since λ̂ does not depend on η, both (6.1) and (6.2) may be written as

const +
∑

z=w−y:w,y∈X∩W
0<‖z‖<R

log gη(z)−
∑

x∈X∩W

∫

B(x,R)

λ̂(u)gη(u− x)du,

as a function of η. Thus, the two derivations lead to the same Palm likelihood
estimation which we will denote LP1 in the sequel.

The third option for generalization of the Palm likelihood is based on the fol-
lowing observation for the homogeneous case: The normalized number of points
|X ∩W |/|W | is an unbiased estimator of the constant intensity λ of the stationary
process X. Thus, the complete version of the homogeneous Palm likelihood (4.4)
can be expressed as

logLP (η) =
∑

x 6=y∈X∩W,‖y−x‖<R
log (|X ∩W |λo(y − x; η))

− |X ∩W |
∫

Rd
I(‖u‖ < R)λo(u; η)du

=
∑

x 6=y∈X∩W,‖y−x‖<R
log

(
λ̂|W |λo(y − x; η)

)

−
∫

Rd
λ̂|W |I(‖u‖ < R)λo(u; η)du.

Since |W | in the first term does not change the maximum of LP , it can be omitted
and we get

∑

x 6=y∈X∩W,‖y−x‖<R
log

(
λ̂λo(y − x; η)

)
−
∫

W

λ̂

∫

B(v,R)

λo(u− v; η)dudv.

If we now in the inhomogeneous case use λ̂(x) instead of λ̂, decompose the Palm
intensity λx(u) = λ(u)g(u − x) and change the order of integration in the second
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term, we get a third version of the inhomogeneous Palm likelihood

logLP3(η) =
∑

x 6=y∈Y ∩W
‖x−y‖<R

log
(
λ̂(x)λ̂(y)gη(y − x)

)

−
∫

B(o,R)

∫

W∩(W−u)

λ̂(v)λ̂(v + u)gη(u)dvdu.

(6.3)

Finding the estimate (β̂, η̂) by the two-step estimation corresponds to solving
the score equation

U(β, η) = (U1(β), U2(β, η)) = 0, (6.4)
where

U1(β) =
∑

x∈X∩W

λ′β(x)

λβ(x)
−
∫

W

λ′β(u)du,

is the score function for the Poisson log-likelihood (5.2),

U2(β, η) =
d logLP1(η)

dη

=
∑

x 6=y∈X∩W,‖y−x‖<R

g′η(y − x)

gη(y − x)
−

∑

x∈X∩W

∫

B(x,R)

λβ(u)g′η(u− x)du,

is the score function for logLP1 and

U2(β, η) =
d logLP3(η)

dη

=
∑

x 6=y∈X∩W
‖y−x‖<R

g′η(y − x)

gη(y − x)
−
∫

B(o,R)

∫

W∩(W−u)

λβ(v)λβ(v + u)g′η(u)dvdu,
(6.5)

is the score function for logLP3. Here, λ′β and g′η denote the derivatives of the inten-
sity function and the pair-correlation function with respect to β and η, respectively.

Note that (6.4) is an unbiased estimating equation for LP3. To get an unbiased
estimating equation also for LP1, we would need to include an edge correction into
the integrals in the second term of (6.1), obtaining the following unbiased version

logLP1(η) =
∑

x,y∈X∩W, 0<‖x−y‖<R
log(λ̂(y)gη(y − x))

−
∑

x∈X∩W

∫

B(x,R)∩W
λ̂(u)gη(u− x)du.

(6.6)

As in the stationary case, R is a user specified tuning constant that may influence
the efficiency of the estimator. Obviously, if ρ is the (practical) interaction range of
the process, we have g(u) = 1 (or g(u) ≈ 1) for ‖u‖ > ρ. Thus, by using R > ρ, we
only introduce additional variance into the estimation of the interaction parameter η.
Moreover, using R too large may lead to numerical instability of the maximization
procedure, see Section 8 for details. Thus, we recommend to use R somewhat smaller
than the likely interaction range of the analyzed point pattern. For a more detailed
discussion of the influence of the choice of R on the estimation for a selection of
shot-noise Cox process models, see Section 8.
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7 Asymptotic properties

In [30], asymptotic normality of the estimators from the two-step estimation proce-
dure with the minimum contrast based on the K-function is proved under certain
moment and mixing conditions. Fulfillment of these conditions is discussed for Pois-
son Neyman-Scott processes and log-Gaussian Cox processes. These conditions are
also satisfied for shot-noise Cox processes as we show in the two following lemmas.

Lemma 1. Let X be a stationary shot-noise Cox process satisfying
∫
R+ r

kV (dr) <∞,
k ∈ N. Then, X has well-defined moment measures up to the k-th order and all re-
duced factorial cumulant measures up to the k-th order have finite total variation.

Proof. The first statement follows from Theorem 3 and Proposition 2 in [15]. It
is well-known for cluster processes (see e.g., [13]) that if the parent process has
reduced factorial cumulant measures of finite total variation up to order k and the
distribution of the number of points in the clusters has finite moments up to order k,
then also all reduced factorial cumulant measures of the cluster process up to order k
have finite total variation. For any shot-noise Cox process X, it is possible to define
an approximating shot-noise Cox process with only finite number of clusters in a
bounded region (i.e., with

∫
R+ V (dr) <∞) and with the same moment measures up

to the order k. This approximating process is then just a standard cluster process
with stationary Poisson distribution of parents and as such with reduced factorial
cumulant measures up to the k-th order of finite total variation. Since these reduced
factorial cumulant measures are identical to those of the original shot-noise Cox
process X, the second statement follows.

Lemma 2. Let X be a stationary shot-noise Cox process in Rd with
∫
R+ rV (dr) <∞

so that the first-order moment measure is well-defined. Let

αp1,p2(m) = sup{α(FX(A),FX(B)) : d(A,B) ≥ m, |A| ≤ p1, |B| ≤ p2}, (7.1)

where FX(A) denotes the σ-algebra generated by X ∩A, d(A,B) denotes the Haus-
dorff distance between A and B, the supremum is taken over all measurable sets A,
B in Bd and

α(F1,F2) = sup{|P (A ∩B)− P (A)P (B)|, A ∈ F1, B ∈ F2}

denotes the standard strong mixing coefficient.
If there exists a function h such that k(c, v) = h(v − c) and an ε > 0 such that

h(v) = O(|v|−(2d+ε)), as |v| → ∞, then αp,p(m)

max(p,1)
≤ O(m−d−ε).

Proof. Let us rewrite X as
⋃

(r,v)∈ΠU
Xv, where Xv is the cluster centered around

a point located at v with intensity function rk(·, v). Denote X1 =
⋃

(r,v)∈ΠU ,v∈AXv.
Then, using the fact that E(X1 ∩ B) = µ

∫
R+ rV (dr)

∫
A

∫
B
k(v, u)dudv for any

A,B ∈ Bd, the proof is exactly the same as the proof of Lemma 1 in [25].

For the two-step estimation procedure with Palm likelihood in the second step,
consistency and asymptotic normality can be shown along the same lines as in [30,
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Theorem 1]. In particular, Theorem 3 below covers all the point process models
considered in [30]. For simplicity we restrict ourselves to the case of Rd = R2.

We will consider an expanding window asymptotics such that X is observed on a
sequence of windows {Wn} expanding to R2. The estimators obtained from X ∩Wn

by the two-step estimation with either LP1 (formula (6.6)) or LP3 (formula (6.3))
are denoted β̂n and η̂n. The corresponding score functions obtained for X ∩Wn are
Un(β, η) = (Un,1(β), Un,2(β, η)). Further, we denote by β0 and η0 the true values of
the parameters to be estimated.

Let Σn = |Wn|−1 Var(Un(β0, η0)) be the information matrix for the considered
score function and let us define

In =

(
In,11 In,12

0 In,22

)
=

1

|Wn|

(
−E

dUn(β, η)

d(β, η)T

∣∣∣∣
(β,η)=(β0,η0)

)
,

where

In,11 =
1

|Wn|

∫

Wn

(λ′β0(u))Tλ′β0(v)

λβ0(u)
du

and

In,22 =
1

|Wn|

∫

v∈Wn

∫

u∈B(v,R)∩Wn

(g′η0(u− v))Tg′η0(u− v)

gη0(u− v)
λβ0(u)λβ0(v)dudv,

are the same for LP1 and LP3, while

In,12 =
1

|Wn|

∫

Wn

λβ0(v)

∫

B(v,R)∩Wn

(λ′β0(u))Tg′η0(u− v)dudv

for LP1 and a double of this matrix for LP3.

Theorem 3. Let X be a SOIRS Cox process in R2 whose kth-order intensity func-
tions λ(k)

β satisfy

λ
(k)
β (u1, . . . , uk) = λ(k)(u1, . . . uk)

k∏

i=1

λβ(ui), (7.2)

where λβ is the first-order intensity function of X and λ(k) are kth-order intensity
functions of a stationary Cox process. Let {Wn}∞n=1 be a sequence of observation
windows Wn = [an, bn] × [cn, dn], where (b − a) > 0, (d − c) > 0 and 0 ∈ Int(Wn).
For s > 0 let Ai,j = [is, (i+ 1)s)× [js, (j + 1)s)⊕R, i, j ∈ Z2, and

αFp1,p2(m) = sup
{
α(FX(B1),FX(B2)) : B1 =

⋃

M1

Ai,j, B2 =
⋃

M2

Ai,j,

|M1| ≤ p1, |M2| ≤ p2, d(M1,M2) ≥ m,M1,M2 ⊂ Z2
}
,

where d(M1,M2) denotes the minimal distance between M1 and M2 in the grid Z2

and α(F1,F2) is the standard strong mixing coefficient.
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Assume

(A0) λβ(u) = f(z(u)βT ) for some strictly increasing positive differentiable function
f and ‖z(u)‖ < K1, u ∈ R2, for some K1 > 0 (bounded covariates);

(A1) λ(2) and λ(3) are bounded and there exists K2 so that, for all u1, u2 ∈ R2,∫
|λ(3)(0, v, v + u1) − λ(1)(0)λ(2)(0, u1)|dv < K2 and

∫
|λ(4)(0, u1, v, v + u2) −

λ(2)(0, u1)λ(2)(0, u2)|dv < K2;

(A2) λβ(u) and gη(u) have well-defined first and second derivatives with respect to
β and η, and these are continuous functions of (u, β) and (u, η), respectively;

(A3) lim infn→∞(λn,ii) > 0, i = 1, 2, where λn,11 and λn,22 are the smallest eigenval-
ues of In,11 and In,22, respectively. The information matrices Σn converge to a
positive definite matrix Σ as n→∞;

(A4) λ(4+2ν)(u1, . . . , u4+2ν) <∞ for some ν ∈ N;
(A5) There exists an s > 0 such that it holds αF2,∞(m) = O(m−δ) for some δ >

2(2 + ν)/ν.

Then, there exists a sequence {(β̂n, η̂n)}n≥1 for which Un(β̂n, η̂n) = 0 with probability
turning to 1 and

|Wn|1/2{(β̂n, η̂n)− (β0, η0)}InΣ−1/2
n

D−→ N(0,1),

where N(0,1) is the standard normal (t+ q)-dimensional distribution.

Proof. The proof is analogous to the proof of [30, Theorem 1] for the two-step
estimation with minimum contrast for the K-function. But we have used a different
mixing assumption (A5) formulated directly for the mixing coefficient of a random
field. Our assumption is weaker than the one in [30] and it suffices for the application
of the central limit theorem 3.3.1 in [11] for random fields, which is needed in the
proof.

Remark. If the kernel k of a stationary shot-noise Cox process is bounded and the
assumption of Lemma 1 is satisfied, then it follows from the formulas for λ(k) in
[15, Section 4] that these are bounded and continuous. So are the densities of the
reduced factorial cumulant measures up to order k. Moreover, since the k-th order
reduced factorial cumulant measures have finite total variation, it follows that the
integrals of the densities of the reduced factorial cumulant measures up to order k
are bounded. Thus, Lemma 1 for k = 4 implies assumption (A1).

Remark. In [30, Theorem 1] a stronger mixing assumption is used

(Av) there exists a constant a > 8R2 such that αa,∞(m) = O(m−δ) for some δ >
2(2 + ν)/ν.

This assumption is formulated for the mixing coefficient of the point process X and
as such it implies our assumption (A5). However, it is unnecessarily strong and no
simple conditions are available for Poisson Neyman-Scott processes or shot-noise
Cox processes which would ensure fulfillment of (Av). The assumption

sup
w∈[−m/2,m/2]2

{∫

R2\[−m,m]2
k(v − w)dv

}
= O(m−δ−2), (7.3)

17



presented in [30, Appendix E] is not sufficient for (Av). Nevertheless it is sufficient
for assumption (A5), as the following lemma shows.

Lemma 4. Let X be a stationary shot-noise Cox process in R2 with well-defined
first order moment measure and kernel function k, satisfying (7.3). Then X satisfies
condition (A5).

Proof. For a given s, let n = ms − s
2
− R > 0, and consider the sets E1 =

A0,0 − (s/2, s/2), E2 = R2\[−n, n]2 and E3 = [−n/2, n/2]2. Further, using the
cluster representation of X, let X1 =

⋃
(r,v)∈ΠU ,v∈E3

Xv, X2 = X\X1. Then X1, X2

are independent cluster processes and by standard arguments (like those in [30,
Appendix E]), we get

α(FX(E1),FX(E2)) ≤ 5(E |X1 ∩ E2|+ E |X2 ∩ E1|)

≤ 5µ

∫

R+

rV (dr)
(∫

[−n
2
,n
2

]2

∫

R2\[−n,n]2
k(u− v)dudv

+

∫

R2\[−n
2
,n
2

]2

∫

E1

k(u− v)dudv
)

≤ const
(
|E3| sup

v∈[−n
2
,n
2

]2

∫

R2\[−n,n]2
k(u− v)dudv

+ |E1| sup
v∈E1

∫

R2\[−n
2
,n
2

]2
k(u− v)dudv

)
.

If m is sufficiently large such that E1 ⊂ [−n/4, n/4]2 we get from (7.3) that both
terms on the right hand side are O(m−δ). This implies (A5) for αF1,∞(m).

For αF2,∞(m) we just need to consider E1 = (A0,0 ∪ Ai,j) − (s/2, s/2) for some
(i, j) ∈ Z2, E2 = (R2\[−n, n]2)\([−n, n]2 + (is, js)) and E3 = [−n/2, n/2]2 ∪
([−n/2, n/2]2 + (is, js)). We get by similar arguments as the ones given above

α(FX(E1),FX(E2)) ≤ const
(
|E3| sup

v∈[−n
2
,n
2

]2

∫

R2\[−n,n]2
k(u− v)dud

+ |E1| sup
v∈(A0,0−(s/2,s/2))

∫

R2\[−n
2
,n
2

]2
k(u− v)dudv

)
,

where we have used the stationarity of X. Thus, again if s
2

+ R < n
4
holds, we get

from (7.3) that both terms on the right hand side are O(m−δ). This implies (A5)
for αF2,∞(m).

The inhomogeneous shot-noise Cox process, as defined at the end of Section 3,
inherits the mixing properties of the unthinned homogeneous process, since the
inhomogeneous process was derived by location dependent thinning. Therefore, con-
dition (7.3) for the homogeneous kernel k ensures that (A5) is fulfilled also for the
inhomogeneous shot-noise Cox process X.

Remark. The incomplete argument in [30, Appendix E] stems from the fact that a
set E1 = [−h, h]2 was considered for some h > 0 and it was assumed that whatever
Borel set A with fixed volume a will fit into such E1. However, for αa,∞(m) to be of
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order O(m−δ), a universal set E1 would be needed, which could cover all Borel sets
of volume ≤ a. Unfortunately, this is not possible, since the set A may be arbitrarily
“thin” and so there will always exist some set A which is not a subset of any fixed
square E1. Therefore, the tail condition (7.3) can only assure (A5) for the mixing
coefficient of the random field and not (Av) for the mixing coefficient of the point
process X.

It is possible to use Theorem 3 to derive approximate confidence intervals for the
parameter estimates, if we are able to compute the information matrix Σn. Below,
we give the formulas for the submatrices of the block representation, corresponding
to the decomposition into the following two parts of the score function

Σn = |Wn|−1 Var(Un,1(β0), Un,2(β0, η0)) =

(
Σn,11 Σn,12

ΣT
n,12 Σn,22

)
.

For both LP1 and LP3, we obtain the same expression

Σn,11 = In,11 +
1

|Wn|

∫

Wn

∫

Wn

(λ′β0(u))Tλ′β0(v)
(
g′η0(u− v)− 1

)
dudv,

For LP3 we get

Σn,12 =
1

|Wn|

[ ∫

W 3
n

(λ′β0(w))T

λβ0(w)

g′η0(u− v)

gη0(u− v)

× I(‖u− v‖ < R)
(
λ

(3)
β0

(w, u, v)− λβ0(w)λ
(2)
β0

(u, v)
)

dwdudv

+ 2

∫

W 2
n

(λ′β0(u))Tg′η0(u− v)I(‖u− v‖ < R)λβ0(v)dudv

]
,

and for LP1

Σn,12 =
1

|Wn|

[ ∫

W 3
n

(λ′β0(w))T

λβ0(w)
g′η0(u− v)

× I(‖u− v‖ < R)

(
λ

(3)
β0

(w, u, v)

gη0(u− v)
− λβ0(u)λ

(2)
β0

(w, v)

)
dwdudv

+

∫

W 2
n

(λ′β0(u))Tg′η0(u− v)I(‖u− v‖ < R)λβ0(v)dudv

]
.

For LP3 we get

Σn,22,LP3 =
1

|Wn|

[
2

∫

W 2
n

(g′η0(u− v))Tg′η0(u− v)I(‖u− v‖ < R)

gη0(u− v)
λβ0(u)λβ0(v)dudv

+ 4

∫

W 3
n

(g′η0(u− v))Tg′η0(v − w)

gη0(u− v)gη0(v − w)
I(‖u− v‖, ‖v − w‖ < R)

× λβ0(u)λβ0(v)λβ0(w)λ(3)(u, v, w)dudvdw

+

∫

W 4
n

(g′η0(u− v))Tg′η0(w − z)

gη0(u− v)gη0(w − z)
I(‖u− v‖, ‖w − z‖ < R)

×
(
λ

(4)
β0

(u, v, w, z)− λ(2)
β0

(u, v)λ
(2)
β0

(w, z)
)

dudvdwdz

]
,
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and for LP1

Σn,22,LP1 = Σn,22,LP3

+
1

|Wn|

[
− 3

∫

W 3
n

(g′η0(u− v))Tg′η0(v − w)I(‖u− v‖, ‖v − w‖ < R)

× λβ0(u)λβ0(v)λβ0(w)dudvdw

+

∫

W 4
n

(g′η0(u− v))Tg′η0(w − z)I(‖u− v‖, ‖w − z‖ < R)

×
(
λ

(2)
β0

(v, z)λβ0(u)λβ0(w)− 2
λ(3)(v, u, z)

gη0(u− v)
λβ0(w)

)
dudvdwdz

]
.

8 Simulation study

8.1 Design of the simulation study

To compare the performance of the developed two-step estimation methods we ap-
plied them to realizations from the inhomogeneous gamma shot-noise Cox process
(see Example 2) with parameters µ and θ, observed on the unit square W = [0, 1]2.
We chose the smoothing kernel k(u) to be the Gaussian kernel function with standard
deviation σ (density of a zero-mean bivariate radially symmetric normal distribu-
tion).

First, we have generated realizations of a homogeneous version of the process
(with the intensity µ

θ
) and then applied the location dependent thinning, using the

inhomogeneity function

f(x) = exp(β1x1 −max(β1, 0)), x = (x1, x2) ∈ W. (8.1)

Note that f is properly scaled to fulfill the condition maxW f = 1. The intensity
function of the thinned process is therefore µ

θ
f(x), x ∈ W . We can express the

intensity function as

λβ(x) = exp(β0 + β1x1), x ∈ W, (8.2)

where β0 = log µ − log θ − max(β1, 0) and the interaction parameter is η = (µ, σ).
The total intensity of X on W is thus

E |X ∩W | =
∫

W

λβ(x)dx =
µ

θ · |β1|
(1− exp(−|β1|)) . (8.3)

In the first estimation step, we used the Poisson log-likelihood score function (5.2)
to estimate the parameter β = (β0, β1). The estimation was performed by means
of the function ppm from the R package Spatstat ([2]). The vector of interaction
parameters η = (µ, σ) was estimated in the second step by the methods described
in Sections 5 and 6.

The minimum contrast estimation, using the K-function (MCK) and the pair-
correlation function (MCg), was performed by a Spatstat routine. The value of
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the tuning parameter r (see equation (4.1)) was chosen as the minimal observed
interpoint distance in the given point pattern (which is a standard choice in similar
situations in the literature) while the value of the tuning parameter R was 4σ. The
value of 4σ corresponds to the practical range of interaction of the considered point
process. Using larger values of R would result in no further gain of information, only
in larger variability of the estimates. The variance stabilizing exponent q was chosen
to be 1/4 for MCK and 1/2 for MCg, based on our previous studies [7] and [24].

The composite likelihood (CL) and Palm likelihood estimates (PL) were obtained
by a grid search for σ combined with numerical maximization in µ (combination of
golden section search and successive parabolic interpolation performed by the R
function optimize). Simultaneous maximization for the complete vector (µ, σ) by
various optimization algorithms turned out to be numerically unstable. In order to
investigate the influence of the tuning parameter R, the composite and Palm likeli-
hood estimates were computed using three different values of R = 0.1, 0.2 and 0.3.

Finally, the remaining parameter θ was identified from the equation (8.3) where
E |X ∩W | was replaced by the actual number of observed points in W and µ and
β1 were similarly replaced by their respective estimates.

To study properties of the estimators under different cluster size distributions,
we chose the values of µ and θ to be 25 or 50 and 1/10, 1/20 or 1/30, respectively.
Different degree of clustering was obtained by taking the values of σ to be 0.01, 0.02
or 0.03. For the inhomogeneity function we use the parameter value β1 = 1.

We disregarded the two extreme combination of parameters (µ = 25, θ = 1/10
and µ = 50, θ = 1/30). The remaining combinations of parameter values result in a
mean number of points in X ∩W ranging from approx. 310 to 630. For each com-
bination of parameters we generated 500 independent realizations from our model
and re-estimated the parameters. All the estimation procedures were applied to the
same set of simulated patterns. Fig. 2 shows realizations of the point processes for
the combination of parameters considered.

8.2 Results of the simulation study

Tables 1–3 show relative mean squared errors (MSEs) of the estimators and relative
mean biases. Relative quantities are for MSEs obtained by dividing by the square
of the true value of the estimated parameter while in case of biases we have divided
by the true parameter value. The overall conclusion is that there is no uniformly
best estimator. The performance of the different estimators depends both on the
particular parameter which is to be estimated and on the tuning parameter R.
However, the performance (according to the MSE) of the four estimators MCK,
MCg, CL (with properly chosen R) and PL3 (with properly chosen R) is quite
similar. Let us discuss the results for each of the parameters in more detail.

8.2.1 Estimation of σ

The scale parameter σ of the kernel k is the easiest one to estimate. The relative
MSE of the estimators MCK, MCg, CL (with R = 0.01) and PL3 (with R = 0.01)
is at most 2% for all the considered models, thus all these four estimators produce
very good estimates, see Table 1. Both minimum contrast methods have very similar
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Figure 2: Realizations of the point processes used in the simulation study. For details, see
Section 8.1.

performance, but MCK is always slightly better than MCg. When estimating the
kernel scale parameter σ with CL, it is important to choose a reasonably small
value of the tuning parameter R compared to the cluster size, compare with Fig. 2.
Thus, CL with R = 0.1 performs better than CL with larger values of R. CL with
R = 0.1 is also practically unbiased, the small positive bias is in the majority of
cases the smallest among the biases of all the considered estimators. In contrast,
PL1 does not depend very much on the value of R. For models with looser clusters
(σ = 0.02, 0.03), PL1 has the worst performance of all the estimators. It always has
a large negative bias. For σ = 0.02, 0.03, the bias is always substantially larger than
for any other estimator. As for CL, the performance of PL3 depends on R, primarily
for loose clusters (σ = 0.02, 0.03) where it is important not to choose R too large.
In one case, the estimate of σ cannot be determined for the large value of R = 0.3
due to numerical instability of the estimation procedure. MCK had the best overall
performance (according to MSE).

8.2.2 Estimation of µ

The parameter µ is harder to estimate than σ and the performance of all the es-
timators shows the same trends in the dependence of the model parameter values,
see Table 2. The MSEs of the estimators increase with looser clusters (growing σ)
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Table 1: Relative mean squared errors (upper row) and relative mean biases (lower row) of
the estimators of σ, determined by simulation of the point process models with the specified
combinations of the parameters µ, θ and σ, shown in the left column. The estimation
methods considered are MCK, MCg, CL, PL1 and PL3. For the three latter methods with
tuning parameter R = 0.1, 0.2 and 0.3, respectively.

MCK MCg CL PL1 PL3

µ θ σ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

25 1/20 0.01 .004 .006 .007 .020 .013 .009 .009 .009 .011 .011 .011
.003 −.047 .005 .013 .009 −.019 −.019 −.019 −.001 −.001 −.001

25 1/20 0.02 .007 .009 .006 .020 .041 .015 .016 .016 .015 .023 .023
−.010 −.045 .002 .015 .024 −.072 −.072 −.072 −.016 −.009 −.009

25 1/20 0.03 .017 .017 .020 .022 .041 .029 .034 .034 .019 .057 .124
−.021 −.048 .021 .016 .031 −.124 −.147 −.147 −.027 −.006 .013

25 1/30 0.01 .003 .005 .009 .038 .043 .018 .019 .019 .023 .025 .025
−.004 −.048 .006 .024 .026 −.011 −.011 −.011 .008 .009 .009

25 1/30 0.02 .006 .008 .005 .020 .036 .016 .017 .017 .016 .038 .056
−.009 −.039 .001 .020 .030 −.069 −.069 −.069 −.012 .001 .003

25 1/30 0.03 .011 .013 .013 .016 .034 .027 .033 .033 .014 .040 .108
−.034 −.057 .012 .005 .013 −.131 −.154 −.154 −.035 −.023 −.008

50 1/10 0.01 .007 .007 .010 .013 .012 .008 .008 .008 .010 .010 .010
.003 −.045 .012 .014 .012 −.020 −.020 −.020 .003 .003 .003

50 1/10 0.02 .012 .013 .010 .021 .054 .020 .022 .022 .018 .051 .069
−.017 −.052 −.001 .006 .023 −.098 −.098 −.098 −.019 −.003 −.001

50 1/10 0.03 .020 .023 .040 .023 .049 .046 .052 .052 .021 .055 NA
−.038 −.066 .044 .006 .017 −.018 −.020 −.020 −.041 −.022 NA

50 1/20 0.01 .003 .005 .005 .011 .011 .008 .008 .008 .009 .009 .009
−.002 −.046 .002 .004 .004 −.026 −.026 −.026 −.006 −.006 −.006

50 1/20 0.02 .006 .008 .005 .016 .028 .015 .016 .016 .012 .043 .074
−.007 −.038 .006 .013 .018 −.090 −.090 −.090 −.010 .007 .011

50 1/20 0.03 .012 .013 .014 .020 .041 .038 .045 .045 .016 .037 .057
−.021 −.045 .018 .018 .038 −.166 −.190 −.190 −.021 −.008 .001

and smaller number of observed points (growing θ or smaller µ). The minimum con-
trast methods perform also for µ very similarly, but MCK is always slightly better
than MCg. In particular, MCK is less biased than MCg. CL has again the smallest
bias among all the methods. The performance of CL depends on the value of the
tuning parameter R and, generally, a higher precision of the estimates of µ is ob-
tained for the larger values of R = 0.2, 0.3 than for estimation of σ. PL1 does not
perform well. In particular, PL1 has a very large bias which grows with the model
parameter σ. The performance of PL3 is comparable to that of CL and always better
than that of PL1. Its performance depends only slightly on the tuning parameter R.
The overall best performance (according to MSE) is again showed by MCK. All
the estimators overestimate µ but the bias of MCK, MCg and PL3 is comparable
(smaller than the bias of PL1 and larger than the bias of CL).

8.2.3 Estimation of θ

The parameter θ governs the distribution of the number of points in the observed
clusters (or the weight of the clusters) and is the parameter hardest to estimate.
A large number of observed points is necessary to estimate it well. For all esti-
mation methods, θ is computed from equation (8.3), using β̂1 and µ̂. The qual-
ity of θ̂ depends on the quality of µ̂ and β̂1. Table 3 shows in the last column
the MSE and bias of β̂1. Note that the MSE of β̂1 is quite large, especially for
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Table 2: Relative mean squared errors (upper row) and relative mean biases (lower row) of
the estimators of µ, determined by simulation of the point process models with the specified
combinations of the parameters µ, θ and σ, shown in the left column. The estimation
methods considered are MCK, MCg, CL, PL1 and PL3. For the three latter methods with
tuning parameter R = 0.1, 0.2 and 0.3, respectively.

MCK MCg CL PL1 PL3

µ θ σ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

25 1/20 0.01 .098 .111 .249 .139 .126 .154 .154 .154 .125 .125 .125
.156 .177 .089 .093 .104 .229 .229 .229 .183 .183 .183

25 1/20 0.02 .159 .173 .263 .221 .201 .325 .325 .325 .197 .198 .198
.183 .200 .091 .102 .109 .363 .363 .363 .221 .218 .218

25 1/20 0.03 .277 .300 .446 .261 .272 .710 .766 .766 .299 .326 .330
.270 .289 .096 .114 .120 .596 .632 .632 .292 .290 .287

25 1/30 0.01 .097 .102 .263 .155 .133 .145 .145 .145 .122 .122 .122
.141 .148 .089 .086 .087 .207 .207 .207 .162 .162 .162

25 1/30 0.02 .136 .146 .233 .195 .178 .344 .345 .345 .208 .210 .211
.183 .194 .101 .091 .096 .376 .376 .376 .231 .227 .227

25 1/30 0.03 .223 .230 .314 .293 .307 .679 .733 .733 .278 .293 .295
.251 .260 .072 .118 .150 .585 .620 .620 .284 .284 .281

50 1/10 0.01 .068 .082 .111 .086 .086 .101 .101 .101 .081 .081 .081
.113 .144 .061 .068 .079 .175 .175 .175 .125 .125 .125

50 1/10 0.02 .122 .137 .180 .187 .187 .314 .315 .315 .166 .169 .169
.148 .172 .063 .091 .093 .350 .351 .351 .169 .164 .164

50 1/10 0.03 .255 .272 .440 .276 .317 1.07 1.12 1.12 .342 .362 NA
.247 .268 .040 .123 .154 .742 .781 .781 .288 .287 NA

50 1/20 0.01 .065 .070 .120 .088 .086 .104 .104 .104 .083 .083 .083
.100 .110 .055 .063 .069 .169 .169 .169 .122 .122 .122

50 1/20 0.02 .088 .095 .125 .137 .132 .243 .243 .243 .119 .122 .123
.135 .147 .064 .087 .095 .331 .332 .332 .153 .148 .148

50 1/20 0.03 .173 .179 .240 .220 .259 .810 .864 .864 .238 .255 .257
.191 .202 .077 .100 .101 .651 .692 .692 .220 .220 .219

point patterns with smaller number of points and loose clusters. For all the esti-
mators, the precision of the estimates decreases with looser clusters (growing σ)
and smaller number of observed points (growing θ or smaller µ). Between the MC
methods, MCK is always slightly better than MCg. The best estimates of θ are
obtained by MCK in three models considered in the simulation study ((µ, θ, σ) =
(50, 1/10, 0.01), (50, 1/20, 0.01), (50, 1/20, 0.02)), in all the other models CL with an
appropriate value of R produces the best estimates of θ. In most cases, PL3 shows
similar behaviour as CL and is superior to PL1. All the methods overestimate the
value of θ, CL has the smallest bias.

8.2.4 Further observations

Eventhough both LP1 and LP3 lead to unbiased estimating equations, the estimates
of the parameters µ and θ governing the mean number and the distribution of the
weights of the clusters had systematically larger bias for LP1 than for LP3. This
fact can be explained as follows. Formula (6.1) for LP1 does not acknowledge the
“probability of observing” the difference process Yx around the observed point x ∈ X.
This “probability of observing” Yx is the same as the probability of observing a point
of the process X at location x which is proportional to λ(x). We have a higher
probability of encountering a Yx for x from high intensity subareas of W . This is
not acknowledged in (6.1) since all the difference processes Yx have the same weight.
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Table 3: Relative mean squared errors (upper row) and relative mean biases (lower row) of
the estimators of θ, determined by simulation of the point process models with the specified
combinations of the parameters µ, θ and σ, shown in the left column. The estimation
methods considered are MCK, MCg, CL, PL1 and PL3. For the three latter methods with
tuning parameter R = 0.1, 0.2 and 0.3, respectively. The last column shows the relative
mean squared errors (upper row) and relative mean biases (lower row) of the estimated
inhomogeneity parameter β̂1.

MCK MCg CL PL1 PL3 β̂1

µ θ σ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

25 1/20 0.01 .677 .730 .792 .648 .637 .799 .799 .799 .719 .719 .719 .498
.387 .414 .293 .305 .321 .460 .460 .460 .409 .409 .409 −.065

25 1/20 0.02 .690 .728 .790 .705 .668 1.01 1.01 1.01 .739 .737 .737 .492
.363 .384 .249 .269 .277 .552 .553 .553 .400 .397 .397 −.008

25 1/20 0.03 1.03 1.07 1.15 .778 .800 1.93 2.05 2.05 1.08 1.14 1.14 .507
.484 .506 .274 .298 .310 .843 .884 .884 .508 .509 .505 −.007

25 1/30 0.01 .621 .642 .800 .623 .569 .670 .670 .670 .611 .611 .611 .541
.314 .323 .254 .250 .249 .367 .367 .367 .329 .329 .329 −.007

25 1/30 0.02 .635 .661 .674 .644 .627 .929 .931 .931 .692 .690 .690 .441
.318 .331 .227 .217 .223 .510 .510 .510 .360 .354 .354 .044

25 1/30 0.03 .872 .889 .897 .817 .882 1.883 1.993 1.993 1.074 1.096 1.096 .511
.436 .446 .237 .285 .325 .806 .847 .847 .480 .486 .486 .002

50 1/10 0.01 .229 .262 .280 .230 .235 .277 .277 .277 .241 .241 .241 .272
.190 .224 .139 .143 .154 .252 .252 .252 .201 .201 .201 .028

50 1/10 0.02 .320 .352 .302 .363 .375 .557 .559 .559 .357 .361 .361 .257
.210 .235 .109 .150 .153 .412 .413 .413 .229 .224 .224 .026

50 1/10 0.03 .631 .658 .776 .630 .660 1.82 1.89 1.89 .808 .828 NA .266
.328 .349 .096 .195 .227 .839 .879 .879 .376 .375 NA .030

50 1/20 0.01 .198 .209 .231 .198 .201 .254 .254 .254 .220 .220 .220 .263
.180 .191 .129 .137 .145 .249 .249 .249 .200 .200 .200 −.024

50 1/20 0.02 .291 .304 .304 .318 .323 .508 .509 .509 .316 .318 .318 .245
.208 .221 .134 .156 .165 .406 .407 .407 .222 .216 .216 −.017

50 1/20 0.03 .381 .386 .366 .380 .455 1.17 1.24 1.24 .457 .479 .480 .245
.244 .252 .121 .149 .156 .711 .753 .753 .275 .275 .273 .025

Consequently, since Yx from the high intensity areas has a smaller weight than the
correct one, we obtain an extra positive bias for µ̂ (“mean number of clusters”)
to compensate the discrepancy between (6.1) and the data. Formula (6.3) for LP3

includes the approximate “probabilities” λ̂(x) of observing Yx. Therefore, we prefer
LP3 to LP1, particularly for obviously inhomogeneous point process data. Of course,
this issue of reweighting by λ(x) is not encountered in the stationary case described
in Section 4.3.

As stated in the discussion for the particular parameters, a good choice of the
tuning parameter R is crucial for the performance of PL estimates. The best per-
formance of the PL1 and PL3 estimates is always obtained with R = 0.1. For larger
R = 0.2, 0.3, the maximization of the Palm likelihood gets numerically less stable.
We have observed a certain number of very large outlier estimates σ̂ of σ. In some
cases the procedure can even diverge. This happened for one point pattern with the
true parameter values µ = 50, θ = 1/10, σ = 0.03 and PL3 with R = 0.3. Therefore
for this case there is NA in the tables. To a smaller extend the problem with outlier
estimates and numerical instability also applies to the CL estimates with larger R
(in particular R = 0.3).

Concerning the overall numerical complexity of the compared estimation meth-
ods, the fastest are the MCK and MCg estimates as implemented in Spatstat. CL
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and PL estimates are somewhat slower to compute because of the grid search for σ.
They have comparable computation time that increases with increasing value of the
tuning parameter R, since more data from X ∩W needs to be incorporated.

We have also studied the correlation between the estimators. In all cases we
get negative correlation between σ̂ and µ̂. The absolute value of the correlation
ranges between 20% to 30% for the tight clusters case with σ = 0.01, around 50%
for σ = 0.02 and grows up to 60% to 70% for the loose clusters with σ = 0.03.
This is nicely explainable by the fact that with larger σ we observe “looser” and
therefore also less distinguishable clusters in the point pattern. Thus the larger the
estimated size σ̂ of the clusters, the smaller the estimated number µ̂ of the clusters.
The smallest correlation (in absolute value) is always obtained by the MCK and
MCg estimators, the CL and PL estimates usually have 10% larger correlation.

Since θ̂ is derived from µ̂, the correlation between σ̂ and θ̂ follows the same
pattern as the correlation between σ̂ and µ̂. The only difference is that it is uni-
formly approximately 10% smaller in absolute value in all the cases. This loss in the
dependence is explainable by the transformation and the use of the total number
of observed points of X ∩W (a quantity not used for estimation of the other two
parameters).
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