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Abstract

Future mobile networks are visualized as networks that consist of more than one type of base station to cope
with rising user demands. Such networks are referred to as heterogeneous networks. There have been various
attempts at modeling and optimization of such networks using spatial point processes, some of which are alluded
to (later) in this paper. We model a heterogeneous network consisting of two types of base stations by using a
particular Poisson cluster process model. The main contributions are two-fold. First, a complete description of the
interference in heterogeneous networks is derived in the form of its Laplace functional. Second, using an asymptotic
convergence result which was shown in our previous work, we derive the expressions for the mean and variance
of the distribution to which the interference converges. The utility of this framework is discussed for both the
contributions.

Index Terms
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I. INTRODUCTION

HETEROGENEOUS networks (HetNets) are widely regarded, by industry and academia alike, as
the solution to the problem of being able to cope with an ever increasing demand for ubiquitous

coverage along with high data rates. HetNets, in general, involve deploying different types of smaller
base stations in a given area if a macro base station is unable to deal with user demands at a given
location. This method of deployment results in fairly intricate and random deployment topologies. Till
recently, most efforts undertaken to analyze and improve HetNets have been through extensive simulations.
Preliminary efforts involved carrying out simulations using a hexagonal grid of macro base stations with
micro base stations that are randomly distributed within the cell areas of the macro base station. This
model is far from realistic when it comes to mimicking a real world deployment, since geographical and
man-made features (such as mountains, lakes, rivers, monuments, streets, etc.) rarely allow base station
deployments that mimic a hexagonal grid. Another limitation of this approach is that most simulations
are run on proprietary simulators, and it is extremely difficult to verify and compare these results. These
limitations have resulted in recent efforts to model such networks analytically. Theoretic methods enable
us to analyze these networks while saving significant amounts of time and effort required in carrying out
simulations. These methods also provide a bench mark against which results from different proprietary
simulators can be compared.
Unfortunately, a comprehensive mathematical analysis of such scenarios also turns out to be a very
arduous task. However, a theoretic analysis of these networks at a system level is much simpler. Therefore,
simplified system models have been used to understand relationships between various performance metrics,
such as probability of coverage or spectral efficiency, and the effectiveness of wireless networks. One
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such method of theoretic analysis is the use of stochastic geometry or spatial point process theory. For
homogeneous networks, there are several well known works by Baccelli et al., such as [1], [2] and [3],
which use Poisson processes, and more recently, works like [7] and [15] have tried to use models based
on Ginibre point processes. In this case, the main difference is that Ginibre point process models are
slightly more repulsive or regular than Poisson point processes, i.e., the tendency for clustering in the
former case is less pronounced.
A recent paper by Dhillon et al., [4], models HetNets as networks which are essentially superpositions
of k − 1 layers of independent Poisson processes, where each layer represents a different type of base
station. Their paper happens to be one of the first attempts at trying to model and analyze HetNets
theoretically. Though its findings are very insightful, as the layers are independent, the deployment of a
smaller (essentially supplementary) base station is independent of the ability of the larger base station
to cater to the demands in the area. This, however, is not completely accurate for most dense urban
deployments where HetNets are most desired. In most cases, smaller base stations are deployed within
the macro cell areas wherever, and whenever the need arises. Hence, the smaller base stations are (in some
sense) clustered1 around the macro base station. This kind of clustering can be modeled by a Poisson
cluster process as specified in this paper.

A. Contributions and organization of the paper

A topic of crucial importance, and hence, common to all of the above approaches (whether simulation
based or theoretic) is understanding, and describing the behavior of the interference in the area. A similar
approach is followed in this paper. Our primary contribution is a method to analyze interference in HetNets
using a Poisson cluster process which allows computation of certain performance metrics (probability of
coverage, etc.) based on which further network optimization can take place. The contribution can be
divided into two parts. First, we begin by deriving a general expression for the interference based on
system parameters such as transmit power, pathloss, fading, etc. An application of the finding is illustrated
and the insights it provides are analyzed. Second, we describe a method to estimate the interference in
an area based solely on the fact that the user and base station intensities are known, and that a user is
located at a particular distance from the base station closest to it. The latter method is based on a result
in [14] which establishes the asymptotic convergence (in distribution) of the estimator of the interference
to a Gaussian random variable. The mean and variance of the estimator of the interference are derived in
this work. The utility of this method is also discussed.

The remainder of this paper is organized as follows. The introductory paragraphs of Section II describe
the downlink system model. Then, Section II-A details the various notations and definitions used in this
work. Section III contains the first main result which concerns the interference in HetNets, followed by
Section III-A which deals with its utility. A brief recap of the asymptotic behavior of the estimator of the
interference from [14] is given in Section IV, and Section IV-A contains the derivations of the mean and
variance of the estimator, which form the second main result. The validity of the asymptotic behavior is
verified using simulations in Section IV-B. The utility of these findings are discussed in Section IV-C.
Section V contains concluding remarks, and the mathematical details along with proofs are deferred to
Appendices A–C.

II. DOWNLINK SYSTEM MODEL

This work models base stations as points of a stationary Poisson cluster process Φ ⊂ R2 consisting
of two parts: cluster centers and cluster members, modeling the locations of macro base stations and
micro base stations, respectively. Specifically, we model: i) macro base stations (the cluster centers) with

1Note that controlling the degree of clustering can help model scenarios where micro base station deployments are at macro base station
cell edges. An illustration of this is provided in Section II.
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(a) Cluster members generated using a zero-mean radially symmetric
Gaussian density f with variance 0.05.
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(b) Cluster members generated using a zero-mean radially symmetric
Gaussian density f with variance 0.5.

Fig. 1. Poisson cluster process (tessellated around parent points) with λc = 15 and λm = 20. In order to account for boundary effects,
the points were generated in a larger area of 5 × 5 units. Note: Clustering, as illustrated by (a) and (b), becomes less pronounced as the
variance of f increases. Since the clusters (as specified in Section II-A) can overlap, it can be difficult to detect the individual clusters by
the naked eye.

single omni-directional antennas2 by a stationary Poisson process Φc ⊂ R2 with intensity λc > 0, and ii)
conditioned on Φc, the micro base stations (the cluster members) by an inhomogeneous Poisson process
Φm ⊂ R2 with intensity function

ρ(y) = λm
∑

x∈Φc

f(y − x), y ∈ R2, (1)

where λm > 0 is a parameter and f is a continuous density function. The model can be visualized as in
Figure 1, where the blue triangles represent the macro base stations and the green dots represent the micro
base stations. Note that f describes how a micro base station (a cluster member) is distributed around
a macro base station (its cluster center), and λm is the expected number of micro base stations around
each macro base station. Thus, the cluster intensity and the normalized kernel “bandwidth”3 are equal and
fixed. Readers familiar with point process modeling will recognize Φm as a shot noise Cox process (see
[9]), which as described in Section II-A, can be viewed as a Neyman-Scott cluster process (see [12]).
Also note that Φm (not conditioned on Φc) is stationary with intensity λcλm, and the base stations, i.e.
the superposition Φ = Φc ∪Φm, form a stationary Poisson cluster process with intensity λ = λc(1 + λm).

For the point process Φ = {xi}, the Voronoi cell4 (as defined in other works such as [1], [2], [3], etc.)
associated with xi determines the area covered by a base station at xi and is given by

Cxi,Φ =
{
z ∈ R2 : SINRz ≥ T ′

}

=
{
z ∈ R2 : L (z, xi) ≥ T ′

(
IΦ\{xi} (z) +W

)}
,

2It is possible to include sectorization, and this will be considered in future work depending on its analytic tractability. However, sectorization
has not been included because sectorization in modern networks, which typically use distributed Multiple-Input Multiple-Output (MIMO)
over neighboring (overlapping) sectors as well as Cooperative Multi-Point (CoMP), leads to each site looking more like one that has an
omni-directional antenna as shown in [13], and hence, sectorization becomes less important.

3Note:“bandwidth” is a term from mathematical literature (see e.g. [10] and references therein) which defines the spread of the cluster
points around the parent point and shouldn’t be confused with the definition of bandwidth in communications engineering.

4It is important to note that Fig.1 shows a deployment model which defines macro base station coverage areas based on a usual Voronoi
tessellation (see e.g. [8]) where the cell definition is dissimilar to equation (2). The Voronoi tessellation illustrates base station deployment
without any coverage holes.
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where T ′ is a threshold and SINRz is the Signal-to-Interference-plus-Noise Ratio at point z. Further,
L(z, xi) is power received at point z from a base station at location xi, W is the noise power, and
IΦ\{xi} (z) is the interference at point z. This can also be re-written as

Cxi,Φ =
{
z ∈ R2 : L (z, xi) ≥ T (IΦ (z) +W )

}
, (2)

where T = T ′/(1 + T ′) is the new threshold, IΦ (z) is the interference at z, and the rest of the terms
remain unchanged. Recall that the interference at a given location z ∈ R2 is given by

IΦ (z) =
∑

xj∈Φ

L (z, xj) , with L(z, xj) =
h

l (xj − z)
, (3)

where h is a fading parameter, which is independent of Φ and is defined as an exponential random variable
with a mean µ, and l (xj − z) is the path loss function usually considered to be in a power law form
such as ||xj − z||β , (Amax(r0, ||xj − z||))β , or (1 + ||xj − z||)β where β > 2 is the path loss exponent
and r0 > 0 is a parameter. This model assumes that the user at the given location z connects to the base
station (macro or micro base station) closest to it. It should be noted that, for mathematical simplicity, an
identical pathloss model is assumed for macro and micro base stations.

The noise W is now given by σ2
W/PTx, where the noise power σ2

W is assumed to be constant, and
PTx is the transmit power which can be considered as a constant unit power per user. So, for example,
if 5 users are connected to a base station then its total transmit power would be 5PTx. Since macro base
stations cater to a larger number of users, they have a higher transmit power in total. Though uncommon,
this is a simple way to account for different transmit powers of macro and micro base stations. Another
method to model different transmit powers for micro and macro base stations is by considering a two
point distribution to account for different transmit powers of macro and micro base stations. Though, in
this work, we consider the case where PTx is the unit transmit power per user, it is important to note that
the description of the transmit power PTx is not central to the methods described in this paper, and that
altering the assumption (the two point distribution for the transmit power) would not change the methods
of analysis documented in this paper in any way – especially since we focus on the interference and
consider an interference limited scenario.

A. Notations and Definitions

This section provides further details for our Poisson cluster process model and establishes the main
notation used throughout this paper.

Although Section II states that Φ lives in R2, the Poisson cluster point process model for Φ can be
extended to Rd, and we use Rd in the paragraphs that follow because our results would hold for the
general d-dimensional case as well. We shall then restrict the number of dimensions to d = 2, as and
when required. As before, the cluster centers Φc ⊂ Rd form a stationary Poisson process with intensity
λc > 0, and we view the cluster member process Φm ⊂ Rd as a Neyman-Scott cluster point process
specified as follows. Each cluster center x ∈ Φc triggers a cluster member process Φ

(x)
m ⊂ Rd, where

conditioned on Φc, the processes Φ
(x)
m for all x ∈ Φc are mutually independent and Φ

(x)
m is a Poisson

process with intensity function λmf(y − x) for y ∈ Rd, which is in agreement with equation (1). Here,
λm > 0 is a parameter and f is a density function defined on Rd. We let Φm be the superposition of
all cluster member processes, i.e. Φm =

⋃
x∈Φc

Φ
(x)
m . Thereby, conditioned on Φc, we have that Φm is a

Poisson process on Rd with intensity function ρ(y) = λm
∑

x∈Φc
f(y − x), y ∈ Rd.

The notations commonly used in this paper, for locations x, x′, y, . . . ∈ Rd and numbers r > 0, are:
• | · | = d-dimensional Lebesgue measure.
• ‖ · ‖ = length in Rd.
• b(x, r) =

{
y ∈ Rd : ||y − x|| ≤ r

}
is the closed ball with center x and radius r.

• o is the origin in Rd.
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• An increasing sequence of sampling windows W1,W2, . . . in Rd will be considered for asymptotic
results. Moreover, for n = 1, 2, . . ., we consider the eroded sampling window Wn,r ≡ Wn	 b(o, r) =
{x ∈ Wn : b(x, r) ⊆ Wn}.

• δx is the Dirac measure at x.
• The clusters that are “added back” to the point process Φ during the use of the Slivnyak-Mecke

theorem (see Appendix A) are denoted with a tilde on top and satisfy the following conditions:
i) Φ̃

(x)
m for all x ∈ Rd are mutually independent and independent of Φ, and

ii) Φ̃
(x)
m is distributed as Φ

(x)
m .

• A locally finite subset ϕ of Rd is called a point configuration, and Nlf denotes the set of all point
configurations. See Appendix A for details.

• H(x, r) = {ϕ ∈ Nlf : ϕ � b(x, r)} and H(x, x′, r) = {ϕ ∈ Nlf : ϕ � b(x, r) ∪ b(x′, r)} are the sets
of point configurations which are not r-close to x, and x or x′, respectively.

• The probability of Φc not being r-close to an arbitrary fixed point in Rd is

vc(r) ≡ P (Φc � b(x, r)) = exp (−λc |b(o, r)|) .

• The probability of Φ
(x)
m not being r-close to o:

vm(x, r) ≡ P
(
Φ(x)
m � b(o, r)) = exp

(
− λm

∫

‖z‖≤r

f(z − x) dz
)
.

Thus, the probability of Φ
(x)
m not being r-close to y is

P
(
Φ(x)
m � b(y, r)) = exp

(
− λm

∫

‖z−y‖≤r

f(z − x) dz
)

= vm(x− y, r).

In short, we write vm(r) = vm(o, r).
• The void probabilities for Φ are defined by v(K) ≡ P (Φ � K) for compact sets K ⊂ Rd. We have

v(K) = P (Φc � K,Φm � K) = E [1 (Φc � K)P (Φm � K |Φc)]

= E


∏

x∈Φc

1 (x /∈ K) exp


−λm

∫

K

f(y − x)dy






= exp


−λc

∫

Rd


1− 1 (x /∈ K) exp

(
− λm

∫

K

f(y − x) dy
)

 dx


 ,

cf. equation (18) from Appendix A. Thereby,
1) v(r) ≡ v(b(o, r)) is specified by taking K = b(o, r) above;
2) v(x, r) ≡ v(b(o, r) ∪ b(x, r)) is specified by taking K = b(o, r) ∪ b(x, r) above; notice that

v(b(x, r) ∪ b(x′, r)) = v(x− x′, r).
• The probability of Φ̃

(x)
m not being r-close to x or x′ is

um(x− x′, r) ≡ P
(

Φ̃(x)
m ∈ H(x, x′, r)

)
= exp


−λm

∫

b(x,r)∪b(x′,r)

f(y − x) dy



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which after substituting z = y − x results in

um(x− x′, r) = exp


−λm

∫

b(o,r)∪b(x′−x,r)

f(z) dz


 .

• The probability of Φ̃
(y)
m not being r-close to x or x′ is

um(x− x′, y − x′, r) ≡ P
(

Φ̃(y)
m ∈ H(x, x′, r)

)
= exp


−λm

∫

b(x,r)∪b(x′,r)

f(z − y) dz




= exp


−λm

∫

b(o,r)∪b(x′−x,r)

f(z − (y − x′)) dz


 .

III. EXAMINATION OF THE INTERFERENCE

This section examines the interference, IΦ (z), that a user-base station pair (i.e. a user connected to the
base station closest to it, cf. equation (3)) experiences. The most obvious, and intuitive, way to describe
interference is to find its distribution or all of its moments. This is done by finding its generating functional
or (equivalently) the Laplace functional, because repeated differentiation of the Laplace functional can be
used to find the moments of the interference. The Laplace functional of the interference, as shown in [2]
and [3], is given by

LIΦ(z) (s) = E [exp (−sIΦ(z))] = E

[∏

x∈Φ

Lh
(

s

l(x− z)

)]
,

where Lh (s/l(x− z)) is the Laplace functional of the receive power. Given that the fading h on each
link is independent of the point process Φ, and that h ∼ exp(µ) (Rayleigh fading), we obtain

LIΦ(z) (s) = E

[∏

x∈Φ

(
µ

µ+ s
l(x−z)

)]
= E


∏

x∈Φc


 µ

µ+ s
l(x−z)

∏

y∈Φ
(x)
m

µ

µ+ s
l(y−z)




 .

Therefore, conditioning on Φc and using equation (18) from Appendix A results in

LIΦ(z) (s) = E


∏

x∈Φc


 µ

µ+ s
l(x−z)

exp


−λm

∫

Rd

s
l(y−z)

µ+ s
l(y−z)

f(y − x)dy








= exp


−λc

∫

Rd





1− µ

µ+ s
l(x−z)

exp


−λm

∫

Rd

s
l(y−z)

µ+ s
l(y−z)

f(y − x)dy








dx


 . (4)

A. Utility of the Finding
One of our research objectives is to be able to find a framework that is independent of the exact

deployment topology (such as assuming a uniform hexagonal grid) which allows us to ascertain important
performance indicators, such as probability of coverage, spectral efficiency, etc. The use of this framework
results in relationships between user intensity, base station intensity, system parameters (such as transmit
power, pathloss, etc.), and the performance indicators. It enables us to gage the effectiveness of HetNets
over large areas, such as states or countries, where networks of different topologies are deployed in various
localities. Such a framework can then be used to solve various optimization problems related to capital
expenditure, operational expenditure, energy efficiency, etc. It would also help facilitate the design of
strategies to manage and improve such networks.
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1) Probability of Coverage: In this section, for computational simplicity, we assume that d = 2. Denote
p(λc, λm, f(·), T, β |R) as the conditional probability that a user at an arbitrary location is covered by the
nearest base station at a distance R, for a particular pathloss exponent and threshold. By stationarity of
Φ, we can assume that the user is located at o, and hence, R is the random distance from o to the nearest
point (i.e. base station) in Φ. Let g denote the continuous density function of R. Then, the probability of
coverage in an area for the interference limited case5 is given by

p (λc, λm, f(·), T, β) ≡ E
[
P {SIR ≥ T | r}

]
=

∫
P {SIR ≥ T | r} g(r)dr.

We find that g(r) = d
dr
P (Φ ↑ b (o, r)) = − d

dr
v(r). Further, assume that l(xi) = l(R) depends only on the

distance from the user at o to its nearest station xi (as is usually the case in examples of applications).
Now, recalling that h ∼ exp(µ) is independent of Φ and that SIR = L(o, xi)/IΦ(o), for any realization
R = r, we get

p (λc, λm, f(·), T, β | r) ≡ P{SIR ≥ T | r} = P {h ≥ l(r)TIΦ(o) | r}
= E

[
exp (−µl(r)TIΦ(o)) | r

]
= LIΦ(o)(µl(r)T ).

Hence, the conditional probability of coverage can be written as

p (λc, λm, f(·), T, β | r) = exp


−λc

∫

R2




1− µ

µ+ µl(r)T
l(x)

exp


−λm

∫

R2

µl(r)T
l(y)

µ+ µl(r)T
l(y)

f(y − x)dy








dx


 . (5)

Therefore6,

p (λc, λm, f(·), T, β) =∫

R+

exp


−λc

∫

R2





1− µ

µ+ µl(r)T
l(x)

exp


−λm

∫

R2

µl(r)T
l(y)

µ+ µl(r)T
l(y)

f(y − x)dy








dx


 g(r) dr. (6)

For instance, assuming the cluster distribution f(·) to be the density of a zero-mean radially symmetric
Gaussian with variance σ2, integrating equations (5) and (6) numerically allows us to observe the variations
in the probability of coverage based on a pair of parameters, while all the others are kept fixed. The pathloss
function is considered to be of the form l(r) = (1 + r)β and the pathloss exponent β is equal to 4. Since
there are many input parameters, they are dealt with in pairs and lead to the following observations.

Fig. 2 depicts changes in the conditional probability of coverage when the distance between any given
user and base station pair is varied for different micro base station intensities while keeping all other
parameters constant. Overall, the conditional probability of coverage decreases as the average intensity of
micro base stations around a macro base station increases. This is due to an increase in the amount of
inter- and intra- cluster interference experienced by a user in the area which causes the ratio of receive
power to interference power to fall below the threshold value, and thereby, results in coverage holes. The
curve for λm = 1 forms (a sort of) an upper boundary for the conditional probability of coverage due to
the fact that this case has the lowest intra-cluster interference. For higher micro base station intensities, it
is interesting to observe that the probability of coverage increases when the distance between a user and
base station pair is between 0.5− 1.75 km and then decreases as expected. This is because the user base
station distance is quite large, which implies that the rest of the points within the cluster are farther away

5For HetNets, the interference limited scenario (where the effects of the interference dominate) is considered to be more appropriate due
to very dense base station deployments. Therefore, the effects of noise are neglected, i.e., σ2

W = 0.
6Note that µ cancels out in both equations (5) and (6), i.e. we can, e.g., take µ = 1 in (5) and (6).



8

and so are the base stations in other clusters7. This results in lower intra- and inter- cluster interference, and
thereby, an increase in the conditional probability of coverage. However beyond a certain distance (> 2.0
km), regardless of the intensity of micro base stations considered, the probability of coverage decreases
at a uniform rate because the ratio of receive power to interference power falls below the threshold. Note
that the micro base station intensities considered in Fig. 2 are far larger than in other figures. This is to
ensure that, as far as the conditional probability of coverage is concerned, there is no significant added
benefit even when micro base station intensities are extremely large.
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Fig. 2. Conditional probability of coverage vs. distance for various micro base station intensities.

Fig. 3 plots the conditional probability of coverage against various thresholds for selected micro base
station intensities. Intuitively, higher the threshold, lower the probability of coverage. An important aspect
highlighted by the figure is that, an increase in the number of micro base stations causes a corresponding
increase in the intra-cluster interference which results in a sharp decline in the conditional probability of
coverage.

Fig. 4(a) and Fig. 4(b) depict changes in the conditional probability of coverage when the variance of
the cluster distribution is altered for different micro base station intensities. A cursory comparison of the
figures shows that the distance between the user and base station also plays a role in determining the
conditional probability of coverage. However, though a smaller distance between the user and base station
results in a higher conditional probability of coverage, it is important to note that the fundamental shape
of the curves remain unchanged. For very small variance values, the probability of coverage decreases
sharply due to extremely high intra-cluster interference. The effect of intra-cluster interference decreases
as the variance increases resulting in a significant increase in the probability of coverage. Note that, as
σ2 → 0, the conditional probability of coverage is significantly higher (similar to a homogeneous network,
see Fig. 6 in [1]) because f(·) in equation (5) tends to a Dirac delta function which implies that the micro
base stations are at the same location as the macro base station, and can therefore, be considered similar
to a homogeneous wireless network where base stations have multiple transmit antennas.

Finally, Fig. 5 shows the plot of the coverage probability in a given area (from equation (6)) for
increasing micro base station intensities when the other parameters are fixed. For a particular macro base
station intensity, this plot shows that increasing the micro base station intensity does not increase the
coverage probability significantly (≈ 10% increase). It is also interesting to note that, for a given micro
base station intensity, the coverage probability decreases as the macro base station intensity increases.
This decrease is due to an increase in interference power in the area which in turn requires the receive

7This is because we assume that the user connects to the nearest base station.
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Fig. 4. Conditional probability of coverage vs. variance of the cluster distribution for various micro base station intensities.

power to be much larger in order to overcome the restriction imposed by the threshold. Therefore, it
is reasonable to conclude that micro base station deployments are probably better suited for improving
individual user throughputs rather than improving overall coverage in the area.

2) Spatially Averaged Rate: The spatially averaged rate or spectral efficiency, for the interference
limited scenario, is given by

R̄Φ (λc, λm, f(·), β) =

∫

R

p
(
λc, λm, f(·), (eT − 1), β

)
dT, (7)

where p (·) is substituted from equation (6). Note that further numerical analysis has not been included
to ensure brevity of the work.

IV. ASYMPTOTIC BEHAVIOR OF THE INTERFERENCE

An alternate method of describing the interference experienced by a user who is at a distance r from
its nearest base station, IΦ(r), is by observing its asymptotic behavior. Since describing the interference
in the whole area (Rd) is rather complicated, we estimate the interference over smaller subsets of the area
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(sampling windows). The asymptotic behavior of the interference is studied using an increasing sequence
of compact sampling windows8 (Wn)n≥1 in Rd, and eroded sets Wn,r which for technical reasons satisfy
the Regularity Condition9. The estimator of the interference, S(r) = IΦ(r), is defined by

Sn(r) =
1

|Wn,r|
∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx).

Note that we can identify Φ with locally finite counting measures without multiplicities, cf. Appendix A.
This observation becomes convenient in the calculations in the sequel where we simply write Φ instead of
the more cumbersome notation

∑
x∈Φ δx for the corresponding counting measure. Now, a centered random

variable, Zn(r), is constructed from the estimator as

Zn(r) = (|Wn,r|)1/2 (Sn(r)− E [Sn(r)]) .

Then, we have the following theorem, where a rigorous proof (based on [5]) has been elucidated in [14].

Theorem 1. For any radius r ≥ 0, such that lim
n→∞

Var [Zn(r)] = σ2
λ(r) > 0, we have

Zn(r)
D−−−→

n→∞
N (0, σ2

λ(r))

where N (0, σ2
λ(r)) is a zero-mean Gaussian distribution with variance σ2

λ(r).

Significance of the findings: Theorem 1 shows that the interference for heterogeneous networks with
two types of base stations can be approximated by a Gaussian distribution with mean E [Sn(r)] and
variance |Wn,r|σ2

λ(r). It is important to note that, the description of interference as a Gaussian random
variable remains unchanged regardless of functionals such as transmit power, fading, pathloss, etc. that are
attributed to these points (base stations). This result, therefore, implicitly holds for all pathloss exponents
β > 2. The influence of the functionals can be observed solely in the mean and variance of the interference.
Hence, finding the mean and the variance of the estimator will complete the description of the interference.
However, it is also important to note that choosing pathloss functionals that avoid singularities greatly
simplifies computations of the mean and variance.

8Note: The sampling windows cover all of Rd in the limit.
9Please see [14] for the precise definition of the Regularity Condition and its utility. [14] also contains references that specify unbiased

estimators similar to the one defined in this paper.
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A. Finding the Mean and Variance of the Estimator

Fundamentally, the interference as described by equation (3), comprises of three independent compo-
nents – transmit power, fading, and pathloss. Out of the three, only one of them (namely, the pathloss) is
a function dependent on the points Φ (i.e. the base stations). From Section II, we observe that the pathloss
is essentially dependent on the distance between a given user location and the location of a given base
station (a point of Φ). In its simplest form, the pathloss is a function of the distance in power law form
and the pathloss exponent is a constant greater than 2, i.e. β > 2. Based on this observation, we can use
void probabilities or the probability that no other point of the point process is within a distance r of any
user and base station pair. This subsection uses the notations for the void probabilities detailed in Section
II-A to describe the mean and the variance.

1) The Mean:

E [Sn(r)] =
1

|Wn,r|
E

[∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)
]
. (8)

Appendix B details the derivation of equation (17), which when divided by |Wn,r|, gives the mean of the
estimator as

E [Sn(r)] = λcv(r)


vm(r) + λm

∫

‖z‖>r

vm(z, r)f(z)dz


 . (9)

2) The Variance:

σ2
λ(r) = Var (Sn(r)) =

1

|Wn,r|2
Var

([∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)
])

. (10)

As shown in Appendix C,

Var (Sn(r)) =
1

|Wn,r|2
[
ξCC(r) + 2

(
ξCM(r) + ξCCM(r)

)
+

ξCMM(r) + ξCCMM(r) + ξM(r)− {ξM(r)}2

]
, (11)

where

ξCC(r) = λ2
c

∫

‖z‖>r

|Wn,r ∩ (Wn,r + z)| v(z, r) (um(z, r))2dz, (12)

ξCM(r) = λcλm

∫

‖z‖>r

|Wn,r ∩ (Wn,r + z)| v(z, r)um(z, r) f(z)dz, (13)

ξCCM(r) = λ2
cλm

∫∫

‖z−w‖>r
‖z‖>r
‖w‖>r

|Wn,r ∩ (Wn,r + z)| v(z, r)um(z, r)um(z, w, r) f(w) dz dw, (14)

ξCMM(r) = λcλ
2
m

∫∫

‖z‖>r
‖w‖>r
‖z−w‖>r

|Wn,r ∩ (Wn,r + w − z)| v(w − z, r)um(w − z, w, r)
f(z) f(w) dz dw, (15)
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ξCCMM(r) = λ2
cλ

2
m

∫∫∫

‖w‖>r
‖z‖>r
‖w+z′‖>r
‖z−w‖>r
‖z′‖>r

‖z+z′−w‖>r

|Wn,r ∩ (Wn,r + w)| v(w, r)um(w,w − z, r)
um(w,−z′, r) f(z) f(z′) dw dz dz′, (16)

and

ξM(r) = λc |Wn,r| v(r)


vm(r) + λm

∫

‖z‖>r

vm(z, r)f(z)dz


 . (17)

B. Validation of the Asymptotic Behavior
This section contains simulations results that show the validity of the findings of Section IV, which

details the asymptotic behavior of the interference. First, we validate the convergence result based on
system level simulations of a mobile network consisting of base stations distributed according to a Poisson
cluster process with omni-directional antennas. The system level simulation computes the interference
experienced by user and base station pairs (in a HetNet), assuming that the user connects to the base
station from which the maximum receive power is obtained. The receive power at a user location, and
determination of the base station to which it connects, is based on a pathloss exponent equal to 4 (i.e.
β = 4) and Rayleigh fading. The threshold is set at −5 dB according to the SINR threshold applied
in 4G-LTE verification10. The simulation also assumes that the average number of micro base stations
deployed depends on the user density in the area; i.e. larger the number of users, larger the average
number of micro base stations realized per macro base station. The variance of the distribution of the
micro base stations around the macro base station σ2 is set at 0.5 to ensure that micro base stations
are fairly widely spread out. Fig. 6 shows that the interference experienced by a user (connected to its
nearest base station) is indeed Gaussian distributed. This phenomenon was observed consistently when
simulations were carried out for various base station realizations as well as for varying user and base
station distances. Thus, validating the theorem in Section IV.

Fig. 7 compares normalized values of the mean of the interference averaged over various user–base
station distances. The expression for the mean of the interference matches the values obtained by simu-
lations quite closely, especially for high base station intensities. This illustrates that this model, though
simplistic, can prove to be quite accurate in describing the mean interference in such complex networks.
Both theory and simulations indicate that interference increases as the base station intensities increase,
which concurs with the observation in Fig. 2 where the conditional probability of coverage decreases due
an increase in the interference.

Fig. 8 compares normalized values of the variance of the interference averaged over various user–base
station distances. The curves obtained by simulation and theory are fairly similar, though they are not
an exact match as seen in the case of the mean. The curves for λc = 2/km2 are particularly close. The
discrepancy in the curves is due to the fact that the number of Monte-Carlo simulations (though large)
were insufficient to obtain more accurate values. However, it is interesting to note that as the base station
intensities increase, both sets of curves indicate that the deviation of the values of the interference away
from its mean is extremely small. Therefore, for certain optimization problems, the use of the mean of
the interference should suffice.

C. Utility of the Findings
The asymptotic convergence of the interference to a Gaussian distribution greatly simplifies the amount

of effort required to compute the probability of coverage or spectral efficiency as given by equations (5)

10Taken from Annex A Section A.1 of 3gpp TR 36.942 Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF)
system scenarios, http://www.3gpp.org/ftp/Specs/html-info/36942.htm



13

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

Normalized interference values (binned)

N
um

be
r 

of
 in

st
an

ce
s 

ta
ki

ng
 a

 p
ar

tic
ul

ar
 v

al
ue

 

 

Interference values
Gaussian fit from theory

Fig. 6. Histogram for simulated interference values and the Gaussian density with the mean and variance calculated from equations (9)
and (11).
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and (7), respectively. By using the expressions for the mean and variance of the interference derived in
Section IV-A, the exponential term in equation (5) which is rather complicated can be replaced by a much
simpler (Gaussian) term. This makes it easier to optimize such complicated networks with performance
indicators as constraints. It is important to note that, though the expressions for mean and variance appear
rather large and cumbersome, solving them numerically is something that is quite easily done.

V. CONCLUSION

This paper models a HetNet using a Poisson cluster process model and examines the interference
experienced by a user in such a network. The main contributions of this work are a complete description
of the interference, and expressions for the mean and variance of the estimator of the interference whose
convergence to a Gaussian distribution was shown in [14]. The veracity of the theoretic findings have been
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corroborated by simulations. These findings allow us to understand the behavior of such complex networks,
while saving a lot of time and effort that is required for simulation. They also simplify computations of
key system parameters such as the probability of coverage and enable easier re-use in other problems
geared towards calculating and optimizing the efficiency and efficacy of such networks.

APPENDIX A
IMPORTANT THEOREMS

For any subset x ⊆ A, let n(x) denote the cardinality of x, setting n(x) =∞ if x is not finite, and for
any B ⊂ Rd, let xB = x ∩ B be the restriction of x to B. Recall that x is locally finite if n(xB) < ∞
whenever B ⊂ Rd is bounded, and we shall then refer to x as a point configuration. Denote the space of
point configurations by

Nlf =
{
x ⊆ Rd : n(xB) <∞ for all bounded B ⊂ Rd

}
.

Note that Nlf can be identified by the set of locally finite counting measures without multiplicities.
A locally finite spatial point process on Rd without multiple points can be viewed as a random countable

subset X ⊂ Rd, i.e. X takes values in Nlf (for further details, see [11]). Thus X can be identified with
the counting process given by N =

∑
x∈X δx. For simplicity, we write X for N . It will always be clear

from the context whether we view X as a random set or a counting process. For the following two results,
X ⊂ Rd is assumed to be a Poisson process with intensity function ζ . The results are verified in [11].

Poisson Generating Functional for a Poisson process. For any Borel function k : Rd 7→ [0, 1],

E

[∏

x∈X
k(x)

]
= exp

(
−
∫

Rd

(1− k(x))ζ(x) dx

)
. (18)

Slivnyak-Mecke Theorem for a Poisson process. For any non-negative measurable function h defined
on Rd ×Nlf ,

E
∑

x∈X
h(x,X − δx) =

∫

Rd

Eh(x,X) ζ(x)dx

The Slivnyak-Mecke Theorem above can be extended to very general Poisson processes, including
marked Poisson processes (see [6]) and in particular the marked Poisson process {(x,Φ(x)

m ) : x ∈ Φc}.
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Thereby, we obtain the following Slivnyak-Mecke Theorem for the Poisson cluster process Φ, and by
iterative use of this result, the following Extended Slivnyak-Mecke Theorem for Φ is derived.

Slivnyak-Mecke Theorem for Φ. For any non-negative measurable function h defined on Rd×Nlf×Nlf ,

E
∑

x∈Φc

h(x,Φ(x)
m ,Φ− δx) = λc

∫
Eh(x, Φ̃(x)

m ,Φ + Φ̃(x)
m ) dx.

Extended Slivnyak-Mecke Theorem for Φ. For any non-negative measurable function h defined on
Rd × Rd ×Nlf ×Nlf ×Nlf ,

E
6=∑

x,x′∈Φc

h(x, x′,Φ(x)
m ,Φ(x′)

m ,Φ− δx) = λ2
c

∫ ∫
Eh(x, x′, Φ̃(x)

m , Φ̃(x′)
m ,Φ + Φ̃(x)

m + Φ̃(x′)
m + δx′) dx dx′

where 6= over the summation sign means x 6= x′.

APPENDIX B
DERIVATION OF THE MEAN

The RHS of the equation (8) can be derived as follows:

ξM(r) ≡ |Wn,r|E [Sn(r)] = E

[∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)
]

= E
∑

x∈Φc


1Wn,r(x)1H(x,r)(Φ− δx) +

∑

y∈Φ
(x)
m

1Wn,r(y)1H(y,r)(Φ− δy)


 .

Using the Slivnyak-Mecke Theorem for Φ (Appendix A), we get

ξM(r) = λc

∫

Wn,r

E
[
1H(x,r)

(
Φ + Φ̃(x)

m

)]
dx +

λc

∫
E


 ∑

y∈Φ
(x)
m

1Wn,r(y)1H(y,r)(Φ + Φ̃(x)
m + δx − δy)


 dx

since Φ and Φ̃
(x)
m are independent. The use of the Slivnyak-Mecke theorem for the process Φ

(x)
m , after

conditioning on both Φ− Φ
(x)
m and Φ̃

(x)
m , results in

ξM(r) = λc

∫

Wn,r

E
[
1H(x,r)(Φ)1H(x,r)(Φ̃

(x)
m )
]

dx +

λcλm

∫∫

||x−y||>r

1Wn,r(y)P (Φ ∈ H(y, r)) P
(

Φ̃(x)
m ∈ H(y, r)

)
f(x− y) dy dx,

which implies

ξM(r) = λc |Wn,r| v(r) vm(r) + λcλm

∫∫

||x−y||>r

1Wn,r(y) v(r) vm(x− y, r) f(x− y)dy dx.

Thereby, equation (17) is obtained by a simple change of variables.
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APPENDIX C
DERIVATION OF THE VARIANCE

Observe that |Wn,r|2 Var(Sn(r)) is equal to

Var

([∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)
])

=

E

[ 6=∑

x,x′∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)

]
+

E

[∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)
]
−
{
E

[∑

x∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)
]}2

. (19)

The middle term and the last term of the equation are similar to the mean, and have been shown to
be equal to equation (17). The first term of equation (19) needs to be derived considering five different
scenarios which are detailed as follows:

1) If x, x′ belong to the process of cluster centers, the first term of equation (19) is

ξCC(r) ≡ E

[ 6=∑

x,x′∈Φc

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)

]

(a)
= λ2

c

∫

Wn,r

∫

Wn,r

E
[
1H(x,r)

(
Φ + Φ̃(x)

m + Φ̃(x′)
m + δx′

)
1H(x′,r)

(
Φ + Φ̃(x)

m + Φ̃(x′)
m + δx

) ]
dx dx′

(b)
= λ2

c

∫

Wn,r

∫

Wn,r

‖x−x′‖>r

P (Φ ∈ H(x, x′, r))P
(

Φ̃(x)
m ∈ H(x, x′, r)

)
P
(

Φ̃(x′)
m ∈ H(x, x′, r)

)
dx dx′

= λ2
c

∫

Wn,r

∫

Wn,r

‖x−x′‖>r

v(x− x′, r)um(x− x′, r)um(x′ − x, r) dx dx′

where (a) is obtained using the Extended Slivnyak-Mecke Theorem for Φ (Appendix A), and (b)

follows from the independence of Φ, Φ̃
(x)
m , and Φ̃

(x′)
m . Then substitute x−x′ = z. If f(·) is symmetric,

then um(z, r) = um(−z, r), and thereby, we get equation (12).
2) If x belongs to the cluster center process and x′ belongs to the cluster member process triggered

by x, then we have

ξCM(r) ≡ E


∑

x∈Φc

∑

x′∈Φ
(x)
m

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)




(a)
= λc

∫

Wn,r

E


 ∑

x′∈Φ̃
(x)
m

1H(x,r)(Φ + Φ̃(x)
m )1Wn,r(x

′)1H(x′,r)(Φ + Φ̃(x)
m + δx − δx′)


 dx

(b)
= λcλm

∫

Wn,r

∫

Wn,r

‖x−x′‖>r

P (Φ ∈ H(x, x′, r))P
(

Φ̃(x)
m ∈ H(x, x′, r)

)
f(x′ − x)dx dx′

= λcλm

∫

Wn,r

∫

Wn,r

‖x−x′‖>r

v(x− x′, r)um(x′ − x, r)f(x′ − x)dx dx′,
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where (a) is obtained using the Slivnyak-Mecke Theorem for Φ, and (b) is obtained by conditioning
on Φ and using the Slivnyak-Mecke Theorem for Φ̃

(x)
m . Thereby, equation (13) is obtained by a change

of variables and because v(x− x′, r) = v(x′ − x, r).
3) When x belongs to the cluster center process and x′ belongs to the cluster member process triggered

by another cluster center, we get

ξCCM(r) ≡ E


∑

x∈Φc

∑

y∈Φc\{x}

∑

x′∈Φ
(y)
m

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)


 .

Then, using the extended Slivnyak-Mecke Theorem for Φ results in

ξCCM(r) = λ2
c

∫ ∫
1Wn,r(x)E

[ ∑

x′∈Φ̃
(y)
m

1H(x,r)(Φ + Φ̃(x)
m + Φ̃(y)

m + δy)1Wn,r(x
′)

1H(x′,r)(Φ + Φ̃(x)
m + Φ̃(y)

m + δx + δy − δx′)
]
dx dy.

Since Φ, Φ̃
(x)
m , and Φ̃

(y)
m are independent, by conditioning on Φ, Φ̃

(x)
m and using the Slivnyak-Mecke

Theorem for Φ̃
(y)
m , we obtain

ξCCM(r) = λ2
cλm

∫∫∫

‖x−y‖>r
‖x−x′‖>r
‖x′−y‖>r

1Wn,r(x)1Wn,r(x
′)P (Φ ∈ H(x, x′, r))P

(
Φ̃(x)
m ∈ H(x, x′, r)

)

P
(

Φ̃(y)
m ∈ H(x, x′, r)

)
f(y − x′)dx′ dy dx

= λ2
cλm

∫∫∫

‖x−y‖>r
‖x−x′‖>r
‖x′−y‖>r

1Wn,r(x)1Wn,r(x
′) v(x− x′, r)um(x′ − x, r)um(x− x′, y − x′, r)

f(y − x′)dx′ dy dx.

Finally, substituting z = x − x′ and w = y − x′, and the fact that um(−z, r) = um(z, r) results in
equation (14).

4) If x, x′ belong to the process of cluster members triggered by the same point of the cluster center
process, we can write the first term of equation (19) as

ξCMM(r) ≡ E


∑

y∈Φc

6=∑

x,x′∈Φ
(y)
m

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)




= λc

∫
E
[ 6=∑

x,x′∈Φ̃
(y)
m

1Wn,r(x)1H(x,r)(Φ + Φ̃(y)
m + δy − δx)1Wn,r(x

′)

1H(x′,r)(Φ + Φ̃(y)
m + δy − δx′)

]
dy,

where the second equality is obtained by using the Slivnyak-Mecke Theorem for Φ. Then, condi-
tioning on Φ and using the Slivnyak-Mecke Theorem for Φ̃

(y)
m , results in

ξCMM(r) = λcλ
2
m

∫∫∫

‖x−y‖>r
‖x−x′‖>r
‖x′−y‖>r

1Wn,r(x)1Wn,r(x
′)P (Φ ∈ H(x, x′, r)) P

(
Φ̃(y)
m ∈ H(x, x′, r)

)

f(y − x) f(y − x′)dx dx′ dy

= λcλ
2
m

∫∫∫

‖x−y‖>r
‖x−x′‖>r
‖x′−y‖>r

1Wn,r(x)1Wn,r(x
′) v(x− x′, r)um(x− x′, y − x′, r) f(y − x)

f(y − x′)dx dx′ dy.
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Making the substitution z = y − x and w = y − x′, and simplification results in equation (15).
5) When x, x′ belong to cluster member processes triggered by different points of the cluster center

process, the first term of equation (19) is

ξCCMM(r) ≡ E




6=∑

y,y′∈Φc

∑

x∈Φ
(y)
m

∑

x′∈Φ
(y′)
m

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)




= λ2
c

∫∫
E
[ ∑

x∈Φ̃
(y)
m

∑

x′∈Φ̃
(y′)
m

1Wn,r(x)1H(x,r)(Φ + Φ̃(y)
m + Φ̃(y′)

m + δy + δy′ − δx)

1Wn,r(x
′)1H(x′,r)(Φ + Φ̃(y)

m + Φ̃(y′)
m + δy + δy′ − δx′)

]
dy dy′,

where (as before) the second equation is obtained by using the extended Slivnyak-Mecke Theorem
for Φ. Conditioning on Φ, and then using the Slivnyak-Mecke Theorem sequentially for Φ̃

(y)
m and

Φ̃
(y′)
m results in

ξCCMM(r) = λ2
cλ

2
m

∫∫∫∫

‖x−x′‖>r
‖x−y‖>r
‖x−y′‖>r
‖x′−y‖>r
‖x′−y′‖>r
‖y−y′‖>r

1Wn,r(x)1Wn,r(x
′)P (Φ ∈ H(x, x′, r)) P

(
Φ̃(y)
m ∈ H(x, x′, r)

)

P
(

Φ̃(y′)
m ∈ H(x′, x, r)

)
f(x− y) f(x′ − y′) dx dx′ dy dy′

= λ2
cλ

2
m

∫∫∫∫

‖x−x′‖>r
‖x−y‖>r
‖x−y′‖>r
‖x′−y‖>r
‖x′−y′‖>r
‖y−y′‖>r

1Wn,r(x)1Wn,r(x
′) v(x− x′, r)um(x− x′, y − x′, r)

um(x′ − x, y′ − x, r) f(x− y) f(x′ − y′) dx dx′ dy dy′.

Finally, substituting w = x− x′, z = x− y, and z′ = x′ − y′, and the fact that um(−w,−w− z′, r)
is equal to um(w,−w− z′+w, r), which in turn is equal to um(w,−z′, r) results in equation (16).

Therefore, the first term of equation (19) in its entirety is given by

E

[ 6=∑

x,x′∈Φ

1Wn,r(x)1H(x,r)(Φ− δx)1Wn,r(x
′)1H(x′,r)(Φ− δx′)

]
= ξCC(r) + 2

(
ξCM(r) + ξCCM(r)

)
+

ξCMM(r) + ξCCMM(r).
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