Ronan Conlon
(Florida International University)
Seminar
Torsdag, 27 juni, 2019, at 10:30-11:30, in Aud. D3 (
1531-215)
A complete Kähler metric \(g\) on a Kähler manifold \(M\) is a "gradient Kähler-Ricci soliton" if there exists a smooth real-valued function \(f : M \to \mathbb{R}\) with \(\nabla f\) holomorphic such that \(Ric(g)-Hess(f)+\lambda g=0\) for \(\lambda\) a real number. I will present some classification results for such manifolds. This is joint work with Alix Deruelle (Université Paris-Sud) and Song Sun (UC Berkeley).
Kontaktperson: Cristiano Spotti & Martin de Borbon