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RESUME v

Resume

Teorien, som vil blive diskuteret i denne afhandling går tilbage til Atiyah [7], Segal [45]
og Witten [51], som var de første der opdagede og aksiomatiserede (2+1)-dimensional
topologisk kvantefeltteori (TQFT). Edward Wittens studium fra 1989 [51] af Chern–Simons
teori, som en (2 + 1)-dimensional kvantefeltteori giver anledning til det vi kalder for en
topologisk kvantefeltteori. Mere specifikt, lad P → M være et principalbundt over en
3-mangfoldighed M med (simpel) Lie gruppe G som strukturgruppe og lad g være Lie
algebraen hørende til G. Virkningsfunktionalet i Chern–Simons teori er givet ved:

CSM (A) :=
1

8π2

∫

M

Tr(A ∧A+
2

3
A ∧A ∧A),

hvor A ∈ AP = Ω1(M, g). Dette virkningsfunktional indgår i partitionsfunktionen i kvan-
tefeltteori, der er udtrykt ved stiintegralet

Zk(M) =

∫

AP /GP
e2πikCSM (A)DA, (1)

k ∈ N, som dog ikke er matematisk veldefineret. På nuværende tidspunkt eksisterer der
ikke nogen metode til på naturlig vis at knytte et mål DA til det uendeligdimensionale
rum AP /GP . Det lykkedes dog, i tilfældet hvor G er kompakt, for Reshetikhin og Turaev
([44],[43] og [50]), at definere kvantefeltteorier, med de ønskede egenskaber foreskrevet af
Witten.

I denne afhandling vil vi studere et nyt bidrag indenfor topologiske kvantefeltteorier,
som er udviklet af Andersen og Kashaev [6]. Partitionsfunktionen i Andersen–Kashaev
TQFT’en, som vi i nær-værende afhandling er interesseret i, forventes at være relateret til
det ovenstående stiintegral i tilfældet, hvor G = PSL(2,C).

Andersen–Kashaev TQFT’en bygger på kvante-Teichmüllerteori, som den blev udviklet
af Kashaev [28].

I kvantiseringen af Teichmüllerrum tog Kashaev udgangspunkt i Penners parametris-
ering af det dekorerede Teichmüllerrum [38, 39], hvor afbildningsklassegruppen ses ek-
splicit gennem rationale transformationer frembragt af sammensætninger af elementære
Ptolemy-transformationer. Faddeevs kvantedilogaritme optræder som en central ingre-
diens i denne teori. Faddeevs kvantedilogaritme er allerede blevet brugt i tilstandsinte-
gralkonstruktioner af perturbative invarianter af 3-mangfoldigheder af Hikami [20, 21].
Dog er de matematiske aspekter om konvergens og uafhængighed af triangulering ikke
berørt i disse tilfælde. Andersen–Kashaev TQFT’en tager sig af disse spørgsmål.

For nylig har Andersen og Kashaev givet en ny formulering af Andersen–Kashaev
TQFT’en [5]. Det er formodet, at denne teori er ækvivalent med teorien fra [6]. I nærværende
afhandling vil vi gennem udregninger se eksempler på, hvordan de to formuleringer hænger
sammen.

Vi vil desuden give en repræsentation for afbildningsklassegruppen Γ1,1 af den punk-
terede torus . Det viser sig, at Andersen–Kashaev TQFT’en giver anledning til repræsenta-
tioner

ρA–K : Γ1,1 → B(S(R)),

hvor B(S(R)) er begrænsede operatorer på Schwartzrummet.
I den engelsksprogede introduktion giver vi en kapiteloversigt samt en oversigt over

resultater indeholdt i denne afhandling.
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Introduction

The theory we are about to discuss in this dissertation can be traced back to Atiyah [7],
Segal [45] and Witten [51] who were the first ones to discover and axiomatize Topological
Quantum Field Edward Wittens studies from 1989 [51] of Chern–Simons theory as a (2+1)-
dimensional quantum field theory give rise to what we call a topological quantum field
theory (TQFT). More specific, let G be a (simple) Lie group, let P → M be a principal G-
bundle over a 3-manifold M and let g be the Lie algebra corresponding to G. The action
functional of Chern–Simons theory is given by:

CSM (A) :=
1

8π2

∫

M

Tr(A ∧A+
2

3
A ∧A ∧A),

where A ∈ AP = Ω1(M, g). This action functional is a part of the partition function i
quantum field theory which is given by the path integral

Zk(M) =

∫

AP /GP
e2πikCSM (A)DA, (2)

k ∈ N, although not mathematically well-defined. At the time of writing there is method
of associating in a natural way a measure DA to the infinite-dimensional space AP /GP .
However, after a few years, Reshetikhin and Turaev succeeded in defining quantum field
theories with the properties prescribed by Witten’s quantum theory when G is compact
[44],[43],[50].

In the dissertation at hand we will study a new contribution to topological quantum
field theories developed by Andersen and Kashaev [6]. In the Andersen–Kashaev TQFT
the partition function is expected to be related to the path integral above in the case where
G = PSL(2,C).

The Andersen–Kashaev TQFT builds on quantum Teichmüller theory developed by
Kashaev [28], which produces unitary representations of centrally extended mapping class
groups of punctured surfaces in infinite-dimensional Hilbert spaces.

In the quantization of Teichmüller space Kashaev started from the Penner parameteri-
zation of the (decorated) Teichmüller space [38, 39], where the mapping class group is real-
ized explicitly through rational transformations generated by compositions of the elemen-
tary Ptolemy transformations. A central ingredient in this theory is Faddeev’s quantum
dilogarithm. The quantum dilogarithm has already been used in state integral construc-
tions of perturbative invariants of 3-manifolds by Hikami in [20, 21] but the mathematical
aspects of convergence and independence of triangulation have not been addressed so far.
The Andersen–Kashaev TQFT addresses these problems.

Andersen and Kashaev have made a new development reformulating the Andersen–
Kashaev TQFT in [5]. It is conjectured in [5] that the new formulation of the Andersen–
Kashaev TQFT is equivalent to that of [6]. We will see through calculations of specific
examples that this conjecture is well substantiated.

Furthermore we will give a representation of the mapping class group Γ1,1 of the once
punctured torus. It turns out that the Andersen–Kashaev TQFT gives rise to representa-
tions

ρA–K : Γ1,1 → B(S(R)),

where B(S(R)) is bounded operators on the Schwartz space.
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Summary

The dissertation is structured as follows: It is split into 10 chapters and an Appendix, the
first six of which contain relevant background material. The mathematical contents of these
chapters should be well-known to most experts of the field but is included to set up nota-
tion, to ease reference, and also to provide a more gentle introduction to the field. The last
four are devoted to the study of the Andersen–Kashaev TQFT.

Chapter 1, we start off gently, by introducing the fundamentals about the mapping
class group. In chapter 8 we will use some of this background material for calculating
a presentation of the mapping class group of the once punctured torus using the theory
developed by Andersen and Kashaev.

In Chapter 2 we give an outline of gauge theory and the study of connections in prin-
cipal bundles over manifolds. Furthermore we will here look at classical Chern–Simons
theory with a compact gauge group in some detail. Then we will look at Chern–Simons the-
ory with a non-compact gauge group and recall the intimate relation between the Chern–
Simons invariant and the hyperbolic volume.

In Chapter 3 we review the theory of canonical and geometric quantization and go
through pre-quantization as well as polarization.

In Chapter 4 we look at the theory of Teichmüller space. Teichmüller space of a real
topological surface R parametrizes complex structures on R up to the action of homeo-
morphisms that are isotopic to the identity homeomorphism. We recall how one can give
global coordinates to Teichmuller space in order to get a better understanding of it. Indeed
we will decompose a Riemann surface R into pairs of pants which will lead to Fenchel–
Nielsen coordinates. We will recall the Penner coordinates and eventually turn to Kashaev
coordinates and quantization of Teichmüller space in these.

Chapter 5 is concerned with the theory of hyperbolic geometry. We will recall how to do
geometrization of knot complements. Due to Thurston we know that most 3-manifolds are
hyperbolic, and since every closed 3-manifold is obtained by Dehn surgeries on knots in S3,
hyperbolic geometry and knot theory are closely related. It turns out that the hyperbolic
structure is a topological property of the knot.

In Chapter 6 we will turn our attention to the main topic of this dissertation, namely
TQFTs. We will recall the historical background and state the axioms for a TQFT. We will
then again turn to Chern–Simons theory. Again we will present in most detail the compact
version. But we will also look at the quantum Chern-Simons theory with a non-compact
gauge group.

Chapter 7 is devoted to the study of the Andersen–Kashaev TQFT. We will look at the
construction of the Andersen–Kashaev TQFT in its original version.

We will turn to the new formulation of the Andersen–Kashaev TQFT in Chapter 8. Here
we recall the definition of the partition function for closed oriented levelled shaped triangu-
lated pseudo 3-manifolds. We will see how this extends to manifolds with boundary which
gives rise to a TQFT. Further we discuss how to get mapping class group representations
from TQFTs.

In Chapter 9 we will calculate a number of examples verifying conjectures from [6],
[5] and [26]. To be more precise we calculate the first examples of "ideal-" and "one ver-
tex H-triangulations" of knot complements using the new formulation of the Andersen–
Kashaev TQFT, showing that there is indeed a connection between the original and the
new theory. We also do examples regarding the original version of the theory. Some of
these computations were presented at a Winter School in Mathematical Physics 1. Follow-
ing this winter school, proceedings 2 will be published. In these proceedings a calculation
of the Andersen–Kashaev partition function for the knot complement (S3, 61) is done by
the author. Furthermore we see that the partition function for the complement of (S3, 61)

1http://www.unige.ch/math/folks/podkopaeva/leshouches2012/
2Mathematical Aspects of Quantum Field Theories, Springer
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given an H-triangulation is equivalent to the expression for partition function in A TQFT of
Turaev-Viro type on shaped triangulations as conjectured in [26].

In Chapter 10 we will do a presentation of the mapping class group for the once punc-
tured torus Γ1,1 using the theory developed in Chapter 8. We get a family of representations
depending on the shape structure:

ρA–K : Γ1,1 → B(S(R)).

Finally we end this dissertation with Chapter 11 which is an appendix. In this appendix
we prove some of the properties of Faddeev’s quantum dilogarithm. We look at asymptotic
expansions of Faddeevs dilogarithm both for b2 → 0 and b2 → − 1

N . Furthermore we
elaborate on Remark 8.2. To be precise we look at line bundles on a complex torus.



Chapter 1

Mapping Class Group

1.1 Definition and examples

We consider a compact connected orientable surface Σ. By the classification theorem of
surfaces we know that the surface Σ is determined up to homeomorphisms by the number
of connected components of its boundary ∂Σ

b := |π0(∂Σ)| (1.1)

and its genus

g :=
1

2
(rankH1(Σ,Z)− b+ 1).

When we want to emphasise the topological type we will write Σg,b for a surface Σ speci-
fying the genus and number of connected components of the boundary.

Let Homeo(Σ, ∂Σ) denote the group of orientation-preserving homeomorphisms re-
stricting to the identity on the boundary ∂Σ, and let Homeo0(Σ, ∂Σ) denote the normal
subgroup of homeomorphisms that are isotopic to the boundary.

Definition 1.1. The mapping class group of Σ is the quotient group

Γ(Σ) := Homeo(Σ, ∂Σ)/Homeo0(Σ, ∂Σ). (1.2)

There are other common notations for the mapping class group of Σ = Σg,b including
MCG(Σ),Mg,b and Γg,b. Also there are different variations of the definition of the mapping
class group Γ(Σ) which may or may not give the exact same group.

• We could fix a smooth structure on Σ and then replace homeomorphism by diffeomor-
phism. This would not affect the definition of Γ(Σ)

• We could allow homeomorphisms not to be the identity on the boundary. Let Γ(Σ, ∂) be
the resulting group. We have an exact sequence of groups

Zb → Γ(Σ)→ Γ(Σ, ∂)→ Gb → 1. (1.3)

The map Zb → Γ(Σ) sends the i-th canonical vector of Zb to the Dehn twist along a curve
parallel to the i-th component of ∂Σ, the map Γ(Σ) → Γ(Σ, ∂) is the canonical one and
the map Γ(Σ, ∂)→ Gb records how homeomorphisms permute the components of ∂Σ.

• We could allow homeomorphisms not to be orientation-preserving. Let us denote the
resulting group by Γ±(Σ). If the boundary ∂Σ is non-empty, then any boundary fixing
homeomorphism must preserve the orientation. Hence

for b > 0, Γ±(Σ) = Γ(Σ). (1.4)

1



2 CHAPTER 1. MAPPING CLASS GROUP

If the boundary is empty, then we have a short exact sequence of groups:

For b = 0, 1→ Γ(Σ)→ Γ±(Σ)→ Z/2Z→ 1. (1.5)

This sequence is split since there exists an involution Σg → Σg which reverses the orien-
tation.

Remark 1.2. If we give the set Homeo(Σ, ∂Σ) the compact-open topology then a continuous
path ρ : [0, 1] → Homeo(Σ, ∂Σ) is the same thing as an isotopy between ρ(0) and ρ(1). We
therefore have the equality Γ(Σ) = π0(Homeo(Σ, ∂Σ)).

Let us here consider a couple of relatively easy examples. We start by looking at the
disk D2 := {z ∈ C | |z| < 1}, i.e. we look at a surface of genus g = 0 and one boundary
component ∂D2. The mapping class group of this surface Σ0,1 is given by the following
proposition.

Proposition 1.3. The space Homeo(D2, ∂D2) is contractible. In particular we have

Γ(D2) = {1}.

Proof. Let f : D2 → D2 be a homeomorphism which is the identity on the boundary. For
all t ∈ [0, 1], we define a homeomorphism ft : D2 → D2 by

ft(x) :=

{
t · f(x/t) if 0 ≤ |x| ≤ t,
x if t ≤ |x| ≤ 1.

(1.6)

Then the map H : Homeo(Σ, ∂Σ) × [0, 1] → Homeo(Σ, ∂Σ), (f, t) 7→ ft is a homotopy be-
tween the retraction of Homeo(Σ, ∂Σ) to {idD2} and the identity of Homeo(Σ, ∂Σ). There-
fore Homeo(Σ, ∂Σ) deformation retracts to {idD2}.

From Proposition 1.3 it is fairly easy to deduce the mapping class group of the sphere
S2 (or Σ0,0).

Corollary 1.4. Γ(S2) = {1}.

Proof. Let f : S2 → S2 be an orientation-preserving homeomorphism. Let γ be a simple
closed oriented curve in S2. Then f(γ) is isotopic to γ, so WLOG we can assume that
f(γ) = γ. Proposition 1.3 can now be applied to each of the disks which γ splits S2 into.

Let us consider the mapping class group of a 2-torus T2 = S1 × S1. Recall that H1(S1 ×
S1,Z) = Z⊕ Z.

Proposition 1.5. Let (α, β) be the basis of H1(T 2,Z) defined by α := [S1 × 1] and β :=
[1× S1]. Then the map

M : Γ(T2)→ SL(2,Z) (1.7)

which sends the isotopy class [f ] to the matrix of f∗ : H1(T2,Z) → H1(T2,Z) is a group
isomorphism.

Proof. It is clear that we have a group homomorphism M : Γ(T2)→ GL(2,Z). Let us check
that it takes values in SL(2,Z). Let [f ] ∈ Γ(Σ) then

M([f ]) =

(
f∗(a) • b f∗(b) • b
−f∗(a) • a −f∗(b) • a

)
, (1.8)

where • denotes the intersection pairing H1(T2,Z) × H1(T2,Z) → Z, where we use the
fact that f is orientation preserving and therefore leaves the intersection pairing invariant.
Hence detM([f ]) = 1.
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The mapM is surjective. Realise T2 as R2/Z2 such that the loop S1×1 lifts to [0, 1]×1 and
1×S1 lifts to 0× [0, 1]. Any matrix T ∈ SL(2,Z) defines a linear homeomorphism R2 → R2,
which globally leaves Z2 invariant. Therefore T induces an orientation-preserving homeo-
morphism t : R2/Z2 → R2/Z2, and M([t]) = T.

For the injectivity of the map we consider a homeomorphism f : S1×S1 → S1×S1 such
that M([f ]) is trivial. Since the fundamental group π1(S1 × S1) is abelian this implies that
f acts trivially on the level of the fundamental group. The projection R2 → R2/Z2 gives
the universal covering of T2. Thus we can lift f to a unique homeomorphism f̃ : R2 → R2

such that f̃(0) = 0 and by the assumption on f we get that f̃ is Z2-equivariant. The affine
homotopy

H : R2 × [0, 1]→ R2, (x, t) 7→ t · f̃(x) + (1− t) · x
between idR2 and f̃ , descends to a homotopy from idS1×S1 to f . Since homotopy coincides
with isotopy in dimension two, we deduce that [f ] = 1 ∈ Γ(T2).

In a similar manner one can compute the mapping class group of an annulus S1× [0, 1].
Again one uses the universal cover to deduce:

Proposition 1.6.
Γ(S1 × [0, 1]) ≈ Z

For a proof of this fact, one should consult [13].

1.2 Dehn Twists

As we will see in this section, mapping class groups are generated by Dehn twists. A Dehn
twist is a homeomorphism Σ→ Σ having support in a regular neighbourhood of a simple
closed curve. The simple closed curve does not necessarily need to be oriented. Intuitively
we think of a Dehn twist on a surface as obtained by cutting the surface along a curve
giving one of the boundary components a 2π left Dehn twist, and gluing the boundary
components back together as indicated in Figure 1.1.

Figure 1.1: The action of the Dehn twist about a meridian on two simple closed curves in a
torus.

Let α, β be two simply closed curves on Σ. We define their geometric intersection number
or just intersection number to be

i(α, β) := min{|α′ ∩ β′| | α′ isotopic to α, β′ isotopic to β, α′ t β′}. (1.9)
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Definition 1.7. Let α be a simple closed curve on Σ. We choose a regular neighbourhoodN
of α in Σ and we identify it with S1 × [0, 1] in a way such that the orientation is preserved.
A Dehn twist along α is the homeomorphism tα : Σ→ Σ defined by

tα =

{
tα(x) = x, if x /∈ N,
(e2πi(θ+r), r), if x = (e2πiθ, r) ∈ N = S1 × [0, 1].

(1.10)

Figure 1.2: The action of the twist map tα : N → N on a horizontal line β in the annulus.

The isotopy class of tα does only depend on the isotopy class of the curve α. The Dehn
twist tα has infinite order in Γ(Σ) if [α] 6= 1 ∈ π1(Σ). One can prove the following fact:

∀ simple closed curves β ⊂ Σ, ∀k ∈ Z, i(tkα(β), β) = |k| · i(α, β)2. (1.11)

A proof of this statement can be found in [13].
The conjugate of a Dehn twist is again a Dehn twist. Indeed if f : Σ → Σ is an

orientation-preserving homeomorphism, then we have the following lemma

Lemma 1.8. For f ∈ Γ(Σ), we have

f ◦ tα ◦ f−1 = tf(α). (1.12)

When we write a product of mapping classes we always apply them from left to right.

Proof. Let φ be a representative for the mapping class f , and let γ be a representative of α.
Then φ−1 takes a neighbourhood of φ(γ) to a regular neighbourhood of gamma. We use
this neighbourhood to obtain the relation tφ(γ) = φtγφ

−1.

We can consider the Dehn twist along the "middle" of the annulus S1 × [0, 1]. With the
notation from Proposition 1.6 We see that J(tα) = 1. It follows that Γ(S1 × [0, 1]) is infinite
cyclic generated by tα. More general we have the following result which goes back to Dehn.

1.3 Generators of the Mapping Class Group

Theorem 1.9 (Dehn). The group Γ(Σ) is generated by Dehn twists along non-separating
simple closed curves and simple closed curves encircling some boundary components.

In order to prove the above theorem the following result comes in handy. We here
assume that the surface Σ is endowed with an arbitrary smooth structure and a Riemannian
metric. The results here go back to [10].

Theorem 1.10 (Birman’s exact sequence). Let Σ′ be the compact oriented surface obtained
from Σ by removing a disk D. Then there is an exact sequence of groups

π1(U(Σ))
Push // Γ(Σ′)

∪idD // Γ(Σ)→ 1 . (1.13)
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Here U(Σ) denotes the total space of the unit tangent bundle of Σ and the Pushmap is gen-
erated by some products of Dehn-twists along curves which are non-separating or which
encircle boundary components.

Sketch of proof. We let Diffeo(Σ, ∂Σ) denote the group of orientation-preserving and bound-
ary fixing diffeomorphisms Σ → Σ. In dimension two "diffeotopy groups" coincide with
"homeotopy groups" and we have the equality

Γ(Σ) = π0(Diffeo(Σ, ∂Σ)). (1.14)

Let v be a unit tangent vector of D and consider the subgroup Diffeo(Σ, ∂Σ, v) consisting
of diffeomorphisms whose differential fixes v. One can the show that

Γ(Σ′) = π0(Diffeo(Σ, ∂Σ, v)). (1.15)

The map Diffeo(Σ, ∂Σ) → U(Σ) defined by f 7→ dpf(v) is a fibre bundle where the fibre
is Diffeo(Σ, ∂Σ, v). According to (1.14) and (1.15), the long exact sequence for homotopy
groups induced by this fibration terminates with

π1(Diffeo(Σ, ∂Σ)) // π1(U(Σ))
Push // Γ(Σ′)

∪idD // Γ(Σ) // 1 . (1.16)

The map π1(U(Σ)) → Γ(Σ′) is called the "Push" map because of the following description.
A loop γ in U(Σ) based at v can be seen as an isotopy of the disk I : D2 × [0, 1] → Σ such
that I(·, 0) = I(·, 1) is a fixed parametrisation D2 ∼= D of the disk D ⊂ Σ. This isotopy can
be extended to an ambient isotopy Ī : Σ× [0, 1]→ Σ starting with Ī(·, 0) = idΣ. Define now

Push([γ]) := [restriction of Ī(·, 1) to Σ′ = Σ\D] (1.17)

Now assume that γ is the unit tangent vector field of a smooth simple closed curve α. Let
N be a closed regular neighbourhood of α and let α−, α+ be the boundary components of
N . Then we have

Push([γ]) = tα−t
−1
α+
, (1.18)

as is seen in Figure 1.3.

Figure 1.3: The Push map.

From the long exact sequence in homotopy for the fibration U(Σ) → Σ we get an exact
sequence of groups

π1(S1)→ π1(U(Σ))→ π1(Σ)→ 1. (1.19)
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Hereby we see that π1(U(Σ)) is generated by the fiber and by unit tangent vector fields of
smooth simple closed curves which are non-separating or which encircle components of
the boundary ∂Σ. Since the image of the fiber S1 by the Push-map is t∂D, we conclude that
Push(π1(U(Σ))) is generated by products of Dehn twists along non-separating curves or
curves which encircle boundary components.

For a more precise version of the proof we ask the reader to consult [32].
This allows us to prove Theorem 1.9.

Proof of theorem 1.9. We deduce from Theorem 1.10 that if the statement holds at a given
genus g for b = 0 boundary components then it holds for every b ≥ 0. So without loss of
generality we can assume that Σ is closed and the proof now goes by induction on g ≥ 0.
For g = 0 there is nothing to show since we have already shown that Γ(S2) = {1} in
Proposition 1.4. For g = 1, we use Proposition 1.5. The group SL(2,Z) is generated by the
two elements

S :=

(
1 1
0 1

)
, T :=

(
1 0
−1 1

)
. (1.20)

which corresponds to Dehn-twists along the curves [S1 × 1] and [1 × S1] respectively. So
assume that g ≥ 2.

Let f ∈ Γ(Σ) and let α be a non-separating simple closed curve on Σ. The image f(α)
is of course another non-separating simple closed curve on Σ. The following fact due to
Lickorish [33] comes in handy. A proof can be found in [13]

Claim 1.11 (Connectedness of curves.). Assume g ≥ 2. Then for any two non-separating
simple closed curves γ and γ′ there exists a sequence of non-separating simple closed
curves

γ = γ1, γ2, . . . , γn = γ′

such that i(γj , γj+1) = 0 for j ∈ {1, 2, . . . , n− 1}.

Further we make use of the following claim:

Claim 1.12. If β and γ are two non-separating closed curves on Σ such that i(β, γ) = 0,
then there is a product of Dehn twists T along non-separating simple closed curves such
that T (β) = γ.

We can find another non-separating simple closed and oriented curve α ⊂ Σ such that
i(α, γ) = i(α, β) = 1. We have tαtγ ◦ tβtα(β) = tαtγ(α) = γ. The two claims say that
there is a product of Dehn twists along non-separating curves such that T (α) = f(α). In
other words we can assume that f fixes α. In this case we consider a non-separating curve
β such that the intersection number i(α, β) = 1. Notice that tβt2αtβ preserves α but re-
verses its orientation. Therefore after possible multiplication with tβt

2
αtβ we can assume

that f preserves α with orientation. Since there is only one orientation-preserving homeo-
morphism of S1 up to isotopy, we can assume that f is the identity on α. Further we can
assume that f is the identity on a closed regular neighbourhood of N of α.

Let Σ′ := Σ\ int(N) and we let f ′ be the restriction of f to Σ′ The surface Σ′ has genus
g′ = g − 1 and has b′ = b+ 2 boundary components. We conclude by induction hypothesis
since a non-separating circle in Σ′ is non-separating in Σ and a boundary curve in Σ′ is
either a boundary curve in Σ or is isotopic to α.

Actually one can improve to show that only finitely many Dehn twists are required in
order to generate the mapping class group. We have already mentioned that the mapping
class group for the torus is generated by elements S, T which corresponds to two closed
curves. This is a special case of the following theorem.
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Figure 1.4: The curves appearing in the Dehn–Lickorish theorem in the case where g = 3.

Theorem 1.13 (Dehn–Lickorish). For g ≥ 1, the group Γ(Σg) is generated by the Dehn
twists along the following 3g − 1 simple closed curves:

Later Humphries showed for g ≥ 2 that 2g + 1 Dehn twists are actually enough to gen-
erate the mapping class group Γ(Σg). More precisely the mapping class group is generated
by the Dehn twists along the curves β1, . . . , βg, γ1, . . . , γg−1, α1, α2 using the notation from
above. For a proof see [24].

Humphries also proved that the mapping class group cannot be generated by fewer
Dehn twists when g ≥ 2.

1.4 Presentation

We want to be able to find presentations for mapping class groups, whose generators are
Dehn twists. First of all, one should find out which relations exists between two Dehn
twists. It is intuitively clear that the relations must depend on how much the two curves
intersect each other.

Lemma 1.14 (Disjointness relation). Dehn twists about two simple closed curves commute
if and only if the isotopy classes of the curves have zero intersection number

Proof. Let α and β be representatives for curves. It is obvious that Dehn twists of non-
intersecting curves commute. It follows from Lemma 1.8 and the fact that tα = tβ implies
α = β that a given mapping class f commutes with a Dehn twists tα if and only if f fixes
α. So if tαtβ = tβtα we obtain that tα(b) = b and from (1.11), we get

i(α, β)2 = i(tα(β), β) = 0.

Lemma 1.15 (Braid relations). Let α and β be isotopy classes for two simple closed curves
on Σ with i(α, β) = 1. Then we have the braid relation tαtβtα = tβtαtβ .

Proof. Let us first prove tαtβ(α) = β. By using the change of coordinate principle we as-
sume that α and β are represented by curves as in Figure 1.5 which indicates that the
equality is true. It follows that ttαtβ(α) = tβ . Again we use Lemma 1.8 to conclude that
tαtβtα(tαtβ)−1 = tβ .

Remark 1.16. From the classification of surfaces it follows that there exists a orientation pre-
serving homeomorphism of Σ taking one simple closed curve to another if and only if the
two results of cutting the surface along the two curves will be homeomorphic surfaces. I.e.
up to homeomorphism there is only one non-separating curve and finitely many separating
ones, and we may assume that α is one of the curves in Figure 1.6, see [13].

If i(α, β) ≥ 2 then tα and tβ generate a free group on two generators [25]. In other words
there are no relations between tα and tβ .
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Figure 1.5: The curves α, β and the equation tαtβ(α) = β. The last map is a simple isotopy.

Figure 1.6: Using the change of coordinate principle to simplify a curve.

Theorem 1.17. Let α and β be isotopy classes for two simple closed curves on T2 with
intersection number 1. Let A := tα be a Dehn twist along the curve α and B := tβ be a
Dehn twist along the curve β, we have

Γ(T2) =
〈
A,B |ABA = BAB, (AB)6 = 1

〉
. (1.21)

Note that the first relation is the braid relation from above.

Proof. Let PSL(2,Z) be the quotient of SL(2,Z) by its order 2 subgroup {±I}. PSL(2,Z) is
a free product group Z2 ∗ Z3. As a matter of fact we have

PSL(2,Z) =
〈
T ,U | T 2

= 1, U
3

= 1
〉

where T and U are the classes of the following matrices:

T :=

(
0 1
−1 0

)
, U :=

(
0 1
−1 −1

)
.

From the short exact sequence

0 // {±I} // SL(2,Z) // PSL(2,Z) // 0 ,

we deduce the presentation

SL(2,Z) =
〈
T,U | T 4 = 1, U3 = 1, [U, T 2] = 1

〉
.

If we set V :=

(
1 1
−1 0

)
, and observe that U = V −1T 2, we obtain the equivalent presenta-

tion

SL(2,Z) =
〈
T, V | V 6 = 1, T 2 = V 3

〉
.
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Finally we set

A :=

(
1 1
0 1

)
B :=

(
1 0
−1 1

)
,

so that A and B are the two mapping classes in Theorem 1.17. We make the observation
that T = ABA and V = BA and obtain the presentation

SL(2,Z) =
〈
A,B | (ABA)2 = (BA)3, (BA)6 = 1

〉

which is equivalent to (1.21).

For higher genus, we consider the involution h of Σg ⊂ R3 which is a rotation around
a appropriate line by the angle π. This involution can be written in terms of Lickorish’s
generators in the following manner

h = tαg tβg tγg−1
tβg−1

. . . tγ2
tβ2
tγ1
tβ1
tα1

tα1
tβ1
tγ1
tβ2
tγ2

. . . tβg−1
tγg−1

tβg tαg .

Figure 1.7: The hyperelliptic involution as a rotation of a surface.

Then we have a second relation between Lickorish’s generators. The first one is obvious
and the second one follows from the braid relation and the fact that h(αg) = αg .

Lemma 1.18 (Hyperelliptic involution). In Γ(Σg), we have the relations h2 = 1 and [h, tαg ] =
1

The hyperelliptic relations allow a presentation of Γ(Σ2) which is due to Birman and
Hilden [8].

Theorem 1.19 (Birman–Hilden). Let A := tα1
, B := tβ1

, C := tγ1
, D := tβ2

and E := tα2
.

Then the mapping class group for a genus 2 surface has the following presentation:

Γ(Σ2) ∼=
〈
A,B,C,D,E | disjointness, braid, (ABC)4 = E2, [H,A] = 1, H2 = 1

〉
. (1.22)

Here braid stands for the 4 possible braid relations between A,B,C,D,E and disjointness
stands for relations between them and H := EDCBA2BCDE.

Two particular elements of SL(2,Z) are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Theorem 1.20. The matrices S and T generate SL(2,Z).

For a proof see [30, App. A]





Chapter 2

Classical Chern–Simons theory

In this chapter we will start by recalling preliminary framework for what will be used later
on. Then we will define the moduli space of flat connections of a principal G-bundle, since
this is an important quantity in the study of Chern–Simons theory. In the end of this chapter
we will turn to classical Chern–Simons theory with a compact gauge group. We give the
definition of the Chern–Simons action which we will come back to in a later chapter.

The theory discussed in this chapter follows Kobayashi and Nomizu’s book: Founda-
tions of differential geometry [31], lecture notes by Himpel: Lie groups and Chern–Simons Theory
[22] and Freed’s Classical Chern–Simons Theory, Part 1 [15].

2.1 Connections in Principal G-bundles

Definition 2.1. Let M be a manifold and G a Lie group. A principal G-bundle over M is a
manifold P satisfying the following conditions.

1. There is a right action of G on P such that the quotient space of P under this action is
M , and the quotient π : P → P/G = M is smooth.

2. P is locally trivializable; i.e. every point of M has a neighbourhood U with an equivari-
ant diffeomorphism π−1(U)→ U ×G covering the identity on M .

Remark 2.2. As a consequence the transition functions fαβ satisfy

i) fαβ : Uα ∩ Uβ → G,

ii) (fα ◦ f−1
β )(x, g) = (x, fαβ(x)g) for every x ∈ Uα ∩ Uβ , g ∈ G,

iii) fαα = e,

iv) fαβ(x)fβγ(x) = fαγ(x) for every x ∈ Uα ∩ Uβ ∩ Uγ .

The action ofG on the tangent bundle is denoted by vg, v ∈ TP and g ∈ G.On the other
side, the infinitesimal action of an element X of the Lie algebra g at p ∈ P is given by

pX :=
d

dt

∣∣∣∣
t=0

p exp(tX),

which is an element of the tangential space of P at the point p. The set

Vp := {pX ∈ TpP | X ∈ g}
is called the vertical space at the point p. Because G preserves the fibers and is transitive, the
vertical space at p is equal to the kernel of dπ(p) where dπ(p) : TpP → Tπ(p)M , or we could
view Vp as the tangential space Tp(π−1(x)) where x = π(p). The subbundle

V := {(p, pX) ∈ TP | p ∈ P,X ∈ g} ⊂ TP

11
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is called the vertical space of the principal bundle P .

Definition 2.3. A connection is an equivariant function A : TP → g, i.e.

(i) A(p, pX) = X ∀p ∈ P,X ∈ g,

(ii) A(pg, vg) = g−1Ap(v)g ∀p ∈ P,∀v ∈ TpP.

Throughout the rest of this report, let AP denote the set of connections on the principal
bundle P →M .

Locally, a connection A ∈ A(P ) is a 1-form Aα ∈ Ω1(Uα, g), where, for an Xp ∈ TpP

Aα(x, dpπ(Xp)) = f−1
α (p)A(p,Xp)fα(p)− dpfα(Xp)f

−1
α (p),

and therefore on Uα ∩ Uβ ,

Aβ = f∗αβAα = f−1
αβAαfαβ + f−1

αβ dfαβ . (2.1)

A connection can be seen as a choice of an equivariant horizontal distribution H ⊂ TP
which corresponds to the kernel of A and at each point p ∈ P induces the short exact
sequence:

0 // Hp = kerA(p, ·) ι // TpP // Vp // 0 , (2.2)

where the map ι : Hp → TpP is just the inclusion and Hpg = Hpg. Since Vp = ker dπ(p)
and TpP = Hp ⊕ Vp, dπ(p) induces an isomorphism between Hp and Tπ(p)M , hence the
horizontal distribution is isomorphic to the pullback π∗TM and this implies that a vector
field X on M has a unique horizontal lift X̃ such that X̃(p) ∈ Hp and dpπ(X̃p) = X(π(p)).

Definition 2.4. A Lie group defines on itself a conjugation

c : G→ Aut(G)

g 7→ cg

such that cg(h) = g−1hg for all h ∈ G. The derivative at the identity acts on the Lie algebra
g and it is called the adjoint representation, i.e. Ad : G → End(g), g 7→ Adg and, for an
element X ∈ g we have

Adg(X) =
d

dt

∣∣∣∣
t=0

cg(h(t)),

where h(t) is a curve in the Lie group G such that h(0) = e and d
dt

∣∣
t=0

h(t) = X . We
can choose the exponential map exp(tX) as h(t) and we write Adg(X) = g−1Xg, where
multiplication between an element g ofG and an elementX of g is defined as the derivative
at the identity of the left translation by g in the direction of X

gX =
d

dt

∣∣∣∣
t=0

g exp(tX) ∈ TgG,

and the multiplication between an element of the Lie algebra g and one of the group G
using right translation is

Xg =
d

dt

∣∣∣∣
t=0

exp(tX)g ∈ TgG.

Definition 2.5. Let π : P → M be a principal G-bundle, let N be a manifold and let f :
G → Diffeo(N) where again Diffeo(N) denote the diffeomorphisms on N . The associated
bundle P×fN is the locally trivialG-bundle with fibreN , consisting of equivalence classes
[pg, n] ≡ [p, f(g)(n)] and projection π1 : P ×f N →M given by π1([p, n]) = π(p).
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Remark 2.6. Notice that ifN is a vector space, then the associated bundle, P ×fN is a vector
bundle. If for example N = g then the associated bundle P ×Ad g is denoted gP and we call
this bundle the adjoint bundle, here we have

[pg,X] ≡ [p,Adg(X)] = [p, g−1Xg].

The set of all equivariant horizontal functions α : TP → g, i.e. smooth functions α
where V ⊂ kerα, is denoted by Ω1

Ad,H(P, g) and we let ΩkAd,H(P, g) denote the space of
horizontal equivariant k-forms.

An ω ∈ ΩkAd,H(P, g) satisfies the conditions

ω(pg; v1g, v2g, . . . , vkg) = g−1ω(p; v1, v2, . . . , vk)g,

ω(p, v1, . . . , vk) = 0 if vi = pX for an i ∈ {1, . . . , k}.

where p ∈ P, g ∈ G,X ∈ g, vi ∈ TpP. In other words the horizontal and equivariant k-forms
ΩkAd,H(P, g) correspond to the k-forms over M with values in the adjoint bundle g. In other
words ΩkAd,H(P, g) = Ωk(M, gP ).

We now fix a connection A0. Then for every α ∈ Ω1
Ad,H(P, g), A0 + α is again a connec-

tion. In fact, ∀p ∈ P,∀X ∈ g,∀v ∈ TpP we have

A0(p, pX) + α(p, pX) = X + 0 = X, (2.3)

and

A0(pg, vg) + α(pg, vg) = g−1A0(p, v)g + g−1α(p, v)g = g−1(A0(p, v) + α(p, v))g. (2.4)

Conversely we have that the difference between two connections is an element of Ω1
Ad,H(P, g).

It follows that the space A(P ) is an affine space and we can write

A(P ) = A0 + Ω1
Ad,H(P, g) = A0 + Ω1(M,P ×Ad g). (2.5)

Definition 2.7. The Lie group GP of equivariant smooth maps u : P → G is called the
gauge group of P , i.e.

GP = {u ∈ C∞(P,G) | u(pg) = g−1u(p)g, ∀p ∈ P, ∀g ∈ G}.

Because G acts on P , every element of the gauge group induces a gauge transformation of
the bundle P , i.e.

ũ : P → P

p 7→ pu(p).

The gauge transformation is a G-bundle isomorphism. Conversely, a G-bundle iso-
morphism comes from a gauge transformation since G acts freely. The gauge group GP
is isomorphic to the group of sections of the associated bundle P ×c G, where we have
the equivalence [p, g] ≡ [pq, q−1gq] for every p ∈ P and g, q ∈ G. For an element of
the gauge group, say, u ∈ GP the section is defined as the map M → P ×c G given by
π(p) 7→ [p, u(p)]. Conversely a section u which takes π(p) 7→ [p, u(p)] induces a gauge trans-
formation ũ(p) = pu(p). This implies that GP = C∞(M,P ×c G) = Ω0(M,P ×c G) and
therefore the Lie algebra of GP is the space of equivariant, horizontal 0-forms over P ;

TidGGP = Ω0(M, gP )

where idG : M → G; x 7→ e is the identity of GP .
An element u of the gauge group GP acts on a connection A ∈ A(P ) in the following

way: Let Xp ∈ TpP , then, because an element of the gauge group acts as the pullback of its
gauge transformation and the connection A is linear we get



14 CHAPTER 2. CLASSICAL CHERN–SIMONS THEORY

u∗A(p,Xp) :=ũ∗A(p,Xp) = A(ũ(p), dpũ(Xp))

=A(pu(p), dp(pu(p))(Xp)) = A(pu(p), Xpu(p) + pdpu(Xp))

=A(pu(p), Xpu(p)) +A(pu(p), pdpu(Xp))

=u(p)−1A(p,Xp)u(p) +A(pu(p), (pu(p))u(p)−1dpu(Xp))

=u(p)−1A(p,Xp)u(p) + u(p)−1dpu(Xp),

This means that

u∗A = u−1Au+ u−1du,

and we can consider u as a change of trivialization. To compute the infinitesimal gauge
transformation on a connection A, choose an element φ of the Lie algebra Ω0(M, gP ) and
set ut = exp(tφ) = 1 + tφ+O(t2), then

d

dt

∣∣∣∣
t=0

(u∗tA) = − d

dt

∣∣∣∣
t=0

(u−1
t Aut + u−1

t dut)

= −[A, φ]− dφ.

Choosing a connection A ∈ A(P ) lets us define the covariant derivative

dA : Ω0(M, gP )→ Ω1(M, gP )

φ 7→ dAφ = dφ+ [A, φ]

and the exterior derivative

dA : Ωk(M, gP )→ Ωk+1(M, gP ),

ω 7→ dAω = dω + [A ∧ ω],

where [ω1∧ω2] := ω1∧ω2−(−1)lkω2∧ω1 denotes the Lie bracket operator for ω1 ∈ Ωl(M, gP )
and ω2 ∈ Ωk(M, gP ). Locally (dAω)α = dωα + [Aα ∧ ωα].

2.2 Holonomy

Let A ∈ A(P ) and let γ : [0, 1] → M be a C1 curve on the base manifold. Then γ lifts to a
unique horizontal curve ΦA(γ, p) : [0, 1]→ P for each p ∈ π−1(γ(0)), i.e.

(i) ΦA(γ, p)(0) = p,

(ii) π(ΦA(γ, p)(t)) = γ(t) ∀t ∈ [0, 1],

(iii) d
dtΦA(γ, p)(t) ∈ HΦA(γ,p)(t) and dΦA(γ,p)(t)π( ddtΦA(γ, p)(t)) = d

dtγ(t) for every t ∈ [0, 1].

Choosing γ as a loop in M we have that π(γ(0)) = π(γ(1)) and we see that γ induces a
homomorphism ΨA(γ) on the fiber π−1(γ(0)) as follows

ΨA(γ) : π−1(γ(0))→ π−1(γ(0)),

p 7→ ΨA(γ)(p) = ΦA(γ, p)(1).

G acts freely on the fibers, so if we choose a point p ∈ π−1(x), then for each ΨA(γ) there
exists an element gp(ΨA(γ)) ∈ G such that ΨA(γ)(p) = gp(ΨA(γ))p and

Holp(A) := {gp(ΨA(γ)) ∈ G | γ ∈ C1([0, 1],M), γ(0) = γ(1) = π(p)} (2.6)

is called the holonomy group of A in p. The holonomy group is a subgroup of G since
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(i) e = gp(ΨA(γ)) when we choose γ as the constant loop.

(ii) For every g ∈ Holp(A) if there exists ΦA(γ1, p) joining p and gp then g−1ΦA(γ1, p)
horizontally joins p and g−1p and therefore g−1 ∈ Holp(A).

(iii) For every h ∈ Holp(A), ΦA(γ2, p) going from p to hp, gΦA(γ2, p) goes from gp to ghp
and therefore gΦA(γ2, p) ◦ ΦA(γ1, p) goes from p to ghp and hence gh ∈ Holp(A).

If we now let p, q ∈ P such that there is a C1 horizontal curve β connecting them. If
g ∈ Holp(A) and ΦA(γ1, p) goes from p to gp, then gβ ◦ΦA(γ1, p)◦β−1 goes from q to gq. We
conclude that p and q have the same holonomy group. Moreover Holgp(A) = gHolp(A)g−1

and we can consider the holonomy group as an equivalence class of subgroups ofG defined
using the conjugation in G. Hence we can simply write Hol(A).

We define the subgroup Hol0p(A) of Holp(A) in the following way:

Hol0p(A) := {gp(ΨA(γ)) ∈ Holp(A) | γ ∈ C1([0, 1],M), γ(0) = γ(1) = p, γ is null-homotopic}.

Remark 2.8. Like Holp(A) the subgroup Hol0p(A) does not depend on p and we can write
Hol0(A).

If we choose two 0-homotopic loops γ0, γ1 ⊂ M , such that γ0(0) = γ0(1) = γ1(0) =
γ1(1), there is a continuous homotopy h : [0, 1] × [0, 1] → M , h0(s) = γ0(s), h1(s) = γ1(s).
Thus, gp(ΨA(hs)) is a curve in Hol0(A) from gp(ΨA(γ0)) to gp(ΨA(γ1)) and hence Hol0p(A)
is connected and every connected subgroup of a Lie group is itself a Lie group. Next let
γ0 ⊂ M be a 0-homotopic loop and γ2 be a generic loop in M such that γ0(0) = γ0(1) =
γ2(0) = γ2(1), then (γ2)−1 ◦ γ0 ◦ γ2 is 0-homotopic too. Therefore Hol0p(A) is normal in
Holp(A), and we have

Lemma 2.9. If M is connected, p ∈ P , then Hol0p(A) is a connected Lie subgroup of G and
it is a normal subgroup of Holp(A).

Further we have

Lemma 2.10. There is a surjective group homomorphism

θ : π1(M)→ Hol(A)/Hol0(A). (2.7)

Proof. We work with Holp(A) and Hol0p(A). Let

[γ] 7→ gp(ΨA(γ)).Hol0p(A)

where γ is a loop in M , γ(0) = γ(1) = π(p) and [γ] is the equivalence class in π1(M). θ
is surjective because of the definition of Holp(A) and for every two loops γ1, γ2 ⊂ M with
[γ1] = [γ2], γ := γ2 ◦ (−γ1) is 0-homotopic and hence gp(ΨA(γ)) ∈ Hol0p(A).

If we now choose a point p ∈ P . Then

P (p) := {ΦA(γ, p)(1) ∈ P | γ ∈ C1([0, 1],M), γ(0) = π(p)}

is a submanifold of P and π|P (p) : P (p) → M is a principal Holp(A)-bundle with the con-
nection A|P (p) because its horizontal distribution is equal to the restriction on P (p) of the
horizontal distribution of P with respect to A and is therefore well-defined. We have

Theorem 2.11. A principal G-bundle π : P → M with connection A is equivalent to
π|P (p) →M with connection A|P (p) for any p ∈ P.
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2.3 Inner product on Ω∗(M, gP )

We now wish to construct an inner product on Ω∗(M, gP ). We first stress the fact, that
on every Lie algebra g of a compact Lie group G there exists an inner product which is
invariant under the adjoint action of the group.

〈Adg ξ,Adg ν〉g = 〈ξ, ν〉g ∀ξ ∈ g,∀g ∈ G.

This inner product on the Lie algebra g can easily be constructed in terms of the Killing
form.

Now an inner product on the Lie algebra induces a well-defined inner product on the
fiber π−1(x)×Ad g ⊂ gP for every x ∈M , namely

〈[p, ξ], [p, ν]〉gP = 〈ξ, ν〉g ,

g ∈ G, p ∈ π−1(x) and ξ, ν ∈ g. It is easy to see that the inner product 〈·, ·〉gP on gP does not
depend on the choice of p ∈ π−1(x), since, for any g ∈ G we have

〈[p, ξ], [p, ν]〉gP = 〈ξ, ν〉g = 〈Adg ξ,Adg ν〉g = 〈[p,Adg ξ], [p,Adg ν]〉gP = 〈[gp, ξ], [gp, ν]〉gP .

This is true since the inner product on g was invariant under the adjoint action.
Let us recall the definition of the Hodge operator ∗.

Definition 2.12. Let (M, g) be an n-dimensional, oriented, pseudo-Riemannian manifold.
Let dvolM ∈ Ωn(M) be the volume form on M corresponding to g and let ω ∈ Ωk(M). In
the local set Uα ⊂M we can choose orthogonal coordinates (e1, . . . , en) and using Einstein
sum convention we can write

ωα =
1

k!
ωj1...jkde

j1 ∧ · · · ∧ dejk ,

(dvolM)α =
1

n!
vi1...inde

i1 ∧ · · · ∧ dein .

For all k ∈ {1, . . . n}we define the Hodge operator ∗ to be the map

∗ : Ωk(M)→ Ωn−k(M)

ω 7→ ∗ω,

where in the local set Uα we have

(∗ω)α =
1

k!
vi1...ing

i1j1 . . . gikjkωj1...jkde
ik+1 ∧ · · · ∧ dein . (2.8)

The Riemannian metric g defines an inner product on Ωk(M). Let ω, θ ∈ Ωk(M). Then
the inner product on the space of k-forms is given by

〈ωα, να〉TM =
1

k!
ωi1...ikg

i1j1 . . . gikjkνj1...jk (2.9)

and therefore we get the equality ω ∧ ∗ν = ν ∧ ∗ω = 〈ω, ν〉TM dvolM.
The Hodge star defines a dual in the sense that when it is applied twice, the result is an

identity on the exterior algebra, up to sign,

∗(∗ω) = (−1)k(n−k) sign(g)ω,

where sign(g) is the signature of the metric. And we can write the adjoint operator of the
exterior derivative as follows,

d∗Aθ = (−1)(n−k+1)(k+1) ∗ dA ∗ θ.
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The Hodge operator acts on k-forms with values in the Lie algebra gP too. Recall that
Ωk(M, gP ) = Γ( kT ∗M ⊗ gP ), where the latter denotes the sections of ΛkT ∗M ⊗ gP → M .
Then ∀ω ∈ Ωk(M),∀ξ ∈ Ω0(M, gP ), we define

∗(ω ⊗ ξ) := ∗ω ⊗ ξ.

Now we can finally use the two inner products mentioned above to construct an inner
product on the k-forms Ωk(M, gP ),

〈α, β〉 =

∫

M

〈α ∧ ∗β〉 ∀α, β ∈ Ωk(M, g). (2.10)

Because TAA(P ) = Ω1(M, gP ) then for every connection A ∈ (P ) the space of connec-
tions in the principal bundle A(P ) is a symplectic manifold with symplectic form:

ωA(α, β) =

∫

M

〈α ∧ β〉 ∀α, β ∈ Ω1(M, gk). (2.11)

For two vector fields X,Y on M we have

〈α ∧ β〉 (X,Y ) = 〈α(X), β(Y )〉 − 〈α(Y ), β(X)〉 .

Because the symplectic two form does not depend on the base connection A, it is constant
and therefore closed.

The inner product satisfies the condition 〈dAω, θ〉 = 〈ω, d∗Aθ〉 for every ω ∈ Ωk(M, gP )
and every θ ∈ Ωk+1(M, gP ).

2.4 Curvature

Let A ∈ A(P ), the two form FA := dA + 1
2 [A∧A] ∈ Ω2(M, gP ) is called the curvature of the

connection A.
Let us here write down a couple of properties for the curvature FA.

Proposition 2.13. For the curvature FA we have the following

(i) FA ∧ ω = dAdAω.

(ii) The curvature can geometrically be seen as an obstruction to the integrability of the
horizontal sub-bundle of TP .

Proof. (i) Let ω ∈ Ωk(M, gP ) then because d[A ∧ ω] = [dA ∧ ω]− [A ∧ dω] we have

dAdAω = d2ω + d[A ∧ ω] + [A ∧ dω] + [A ∧ [A ∧ ω]] = [FA ∧ ω].

For (ii) we let p ∈ P and Xp, Yp ∈ Hp. We then have

FA(p,Xp, Yp) = dA(p,Xp, Yp) +
1

2
[A(p,Xp) ∧A(p, Yp)] = dA(p,Xp, Yp) = dA(p, [Xp, Yp]).

Therefore [Xp, Yp] ∈ Hp if and only if FA|p = 0.

A consequence of (ii) is that FA(p,Xp, Vp) = 0 if either Xp or Yp is in Vp.
With the definition of the curvature in hand we are in a position to define the space of

flat connections:
FP = {A ∈ A(P ) | FA = 0}.
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For a connection A ∈ FP , since dA ◦ dA = 0 the cohomology groups are well defined.

Hk
A(M, gP ) =

ker dA
im dA

∣∣∣∣
Ωk(M,gP )

= ker dA ∩ ker d∗A

∣∣∣∣
Ωk(M,gP )

, ∀k ∈ N.

It is not hard to see that the space of k-forms with values in the Lie algebra gP has the
decomposition

Ωk(M, gP ) = dAΩk−1(M, gP )⊕Hk
A(M, gP )⊕ d∗AΩk+1(M, gP )

Indeed if we let α ∈ Ωk−1(M, gP ), β ∈ Hk
A(M, gP ) and γ ∈ d∗AΩk+1(M, gP ), we have;

〈dAα, d∗Aγ〉 = 〈dAdAα, γ〉 = 0, since dAdA = 0,

〈dAα, β〉 = 〈α, d∗Aβ〉 = 0, since β ∈ ker d∗A,

〈d∗Aγ, β〉 = 〈γ, dAβ〉 , since β ∈ ker dA.

Lemma 2.14. Let A0 ∈ FP . Then TA0
FP = ker dA0

.

Proof. LetAt = A0+
∑∞
j=1 t

iαi be a curve inFP with α1 = d
dt

∣∣∣∣
t=0

At ∈ TA0
FP for t ∈ (−ε, ε),

ε > 0. Since the curvature 0 = FA0
= FAt we have that

0 =
d

dt

∣∣∣∣
t=0

FAt =
d

dt

∣∣∣∣
t=0

(
FA0

+ tdA0
α1 +O(t2)

)
= dA0

α1,

and hence, α1 ∈ ker dA0
.

2.5 The moduli space of flat connections

Definition 2.15. A principal bundle homomorphism between two principal G-bundles P
and P ′ is a G-equivariant bundle homomorphism. If P = P ′ it is called a gauge transforma-
tion of the bundle. Denote by GP the group of all gauge transformations P → P .

Remark 2.16. To every G-equivariant map u : P → G, p 7→ up, we associate a gauge
transformation Φ : P → P by letting Φ(p) = p · up. Here, g ∈ G acts on itself on the right by
h 7→ g−1hg. This association is a bijection.

The group GP acts onAP via pullback, and the action preservesFP . For aG-equivariant
map u : P → G, we write this action A 7→ A · u.

The space which we are interested in quantizing is the moduli space of flat connections
in a trivializable principal G-bundle.

Definition 2.17. The moduli space of flat connections on a trivializable principal G-bundle
P →M is the spaceMFlat(G,M) = FP /GP .

This space can be given a set theoretical description using the holonomy map. The
proofs of the following results can be found in [22].

Proposition 2.18. Let A be a flat connection in P and assume that M is connected. Let
x0 ∈M , let p0 ∈ π−1(x0) and let γ be a loop in M with base point x0. Up to conjugation in
G, the association A 7→ gp(ΨA(γ)) is independent of the base point x0, the choice of lift p0,
the gauge transformation class of the connection A and the homotopy class of γ. In short,
we have a well defined map

hol :MFlat(G,M)→ Hom(π1(M), G)/G,

where G acts on Hom(π1(M), G) on the right, (ρ · g)(γ) = g−1ρ(γ)g.
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Definition 2.19. A flat principal G-bundle on a manifold M is a pair (P,A) consisting of a
principal G-bundle P → M and a flat connection A in P . Two flat principal G-bundles
(P,A) and (P ′, A′) are called isomorphic if there is a principal bundle homomorphism Φ :
P → P ′ such thatA = Φ∗(A′). The setMG of isomorphism classes is called the moduli space
of flat principal G-bundles on M.

Theorem 2.20. The map MFlat(G,M) → Hom(π1(M), G)/G taking [(P,A)] to [holA] is a
bijection.

2.6 Chern–Simons Theory

Three-dimensional Chern–Simons gauge theory is an example of what we later in this the-
sis will view as a topological quantum field theory (TQFT). Chern–Simons theory with a
compact gauge group G is a well-known and studied subject with a history going back to
the 1980’s. We will here review this theory following Freed [15]. Then we will briefly dis-
cuss the case, where G is no longer compact. I.e. we will discuss what happens when G is
replaced by its complexification GC the Lie algebra g is replaced by gC.

For now, we will assume that G is a simple, connected, simply connected and compact
Lie group. It is a well known fact that any principal G-bundle P over M where dimM ≤ 3
is trivializable. Let M be a compact and oriented 3-manifold with boundary Σ. Let P →M
be a principalG-bundle. Trivializing P ∼= M×G by using the trivialization p→ (π(p), gp) is
equivalent to choosing a section s : M → P through the identification p·gp = s(π(p)).Using
a section like this, the pull-back of a connection determines an identification between the
space of connections and one forms onM with values in the Lie algebra, i.e. AP ∼= Ω1(M, g)
and further we can identify GP ∼= C∞(M,G).

Definition 2.21. For a connection A ∈ AP with curvature FA ∈ Ω2(M, gP ) we define the
Chern–Simons form α(A) ∈ Ω3(P ) by

α(A) = 〈A ∧ FA〉 −
1

6
〈A ∧ [A ∧A]〉 (2.12)

Definition 2.22. The Chern–Simons action of Chern–Simons functional ofA for a trivialization
s : M → P of the bundle P →M is given by

CSs(A) =

∫

M

s∗(α(A)) ∈ R.

Let us see how the Chern–Simons functional behaves under gauge transformation (see
[15, Prop. 2.10])

Proposition 2.23. Let θ ∈ Ω1(G; g) be the Mauer–Cartan form i.e. θ(v) = (dlg−1)v ∈ g for
v ∈ TgG. Let Ψ : P → P be a gauge transformation with associated map u : P → G, and
let θu = (u ◦ s)∗θ. Then for a connection A ∈ Ω1(M, g) we have

CSΨ◦s(A) = CSs(Ψ
∗A)

= CSs(A) +

∫

∂M

〈
Ad(u◦s)−1 A ∧ θu

〉
− 1

6

∫

M

〈θu ∧ [θu ∧ θu]〉 .

Assume know that 〈·, ·〉 is normalized such that − 1
6 〈θ ∧ [θ ∧ θ]〉 represents an integral

class in H3(G,R), then the last integral in Proposition 2.23 is an integer.

Definition 2.24. In the case where M is a closed 3-manifold we obtain the Chern–Simons
action

CSM : AP /GP → R/Z. (2.13)
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Here we have forgotten the subscript s since any two sections are related by a gauge trans-
formation and by Proposition 2.23 this function is independent of s. Instead we put on the
subscript M to remind the reader that the Chern Simons action depends on the manifold.

It turns out, that the Chern–Simons action can be written in the form

CSM (A) =
1

8π2

∫

M

Tr(A ∧ dA+
2

3
A ∧A ∧A), (2.14)

where A ∈ Ω1(M, g), (If G = SU(N) then Tr should denote the trace in the N -dimensional
representation).

2.6.1 The Chern–Simons line bundle

Let us now discuss the case whereM is a 3-manifold with boundary ∂M = Σ. LetQ = P |Σ.

Lemma 2.25. For any gauge transformation g ∈ C∞(M,G) the functional

WΣ(g) =

∫

M

−1

6
〈g∗θ ∧ [g∗θ ∧ g∗θ]〉 (mod 1) (2.15)

only depends on the restriction of g to Σ.

This is what is called the Wess-Zumino-Witten functional, and a proof can be found in [15,
2.12].

It is easily seen that any two sections of P →M are related via a gauge transformation,
which implies that CSs only depends on the restriction to the boundary. This can be used
to to define a principal U(1)-bundle over AQ such that

e2πiCSM (A) ∈ LQ. (2.16)

which is essentially for defining a Lagrangian field theory.

Remark 2.26. As we have already mentioned, principal G-bundles P →M are trivializable
when dimM ≤ 3. As sections correspond to trivializations of P , we can suppress the
reference to P in (2.16).

We consider the principal G-bundle Q→ Σ. We may think of a principal U(1)-bundle L
over AQ as the (complex) line bundle L associated to the defining representation U(1) ↪→
C∗ = GL(C) over AQ known as the Chern–Simons line bundle.

As the space of connections AQ is contractible, L will be trivializable. We could there-
fore describe it using one single chart. However, we need the trivialization

φs : LQ → AQ × C

to depend in a non-trivial way on the section s : Σ→ Q in the same way the Chern–Simons
function behaves, so that Equation (2.16) is satisfied.

In order for L to be a line bundle, the transition functions φss′ := φsφ
−1
s′ must then

satisfy the cocycle condition:

φs3s2φs2s1 = φs3s1 .

A section s : Σ → Q gives identifications s∗ : AQ → Ω1(Σ, g) and gs : GQ → C∞(Σ, G)
determined by Φ ◦ s(x) = s(x) · gs(Ψ)(x). In view of the behaviour of the Chern-Simons
function under a gauge transformation Ψ it turns out that what we want to have forA ∈ AQ
is:

φΨ◦s = cΣ(s∗A, gs(Ψ))φs (2.17)
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where

cΣ(A, g) := exp

(
2πi

(∫

Σ

〈Adg−1A ∧ g∗θ〉+WΣ(g)

))
. (2.18)

It can be shown that cΣ satisfies the cocycle condition

cΣ(g∗A, h)cΣ(A, g) = cΣ(A, gh).

If u 7→ Au is a smooth family of connections varying over a smooth manifold U . Then
the transition functions u 7→ cΣ(s∗Au, gs(Ψ)) are smooth, so that L is a smooth vector
bundle over U . Further, we constructed it so that A 7→ exp(2πiCSs(A)) is a section of L,
which is the Chern–Simons invariant for manifolds X with boundary.

Remark 2.27. From here it can be shown that the Chern–Simons action is the action of a
local Lagrangian field theory. See e.g. [22].

To summarise what we have seen so far, we get a line bundle on the moduli space, i.e.,
if for the manifold M with boundary ∂M = Σ we have

r∗L

��

L

��
MFlat(G,M)

e2πiCSM (A)

AA

r //MFlat(G,Σ)

2.6.2 Symplectic form on the moduli space

The main purpose of this section is to construct a symplectic structure on some subspace of
the moduli space. This is done through a quotient construction. The technicalities in this
construction are great since we are dealing withAQ which is actually a infinite-dimensional
manifold, modelled on the space of 1-forms on Σ with values in g. The technical detail
are omitted and we will simply state that for any given connection A ∈ AQ, there is an
identification TAAQ ∼= Ω1(Σ, g). Then there is a natural symplectic form ω onAQ, invariant
under GQ, defined by

ω(α, β) = −
∫

Σ

〈α ∧ β〉 (2.19)

for α, β ∈ Ω1(Σ, g). If we use the identification TidGQ ∼= C∞(Σ, g), a moment map µ : A →
C∞(Σ, g)∗ for the action of GQ on AQ is given by

µξ(A) = 2

∫

Σ

〈FA ∧ ξ〉 ,

for ξ ∈ C∞(Σ, g), and A ∈ AQ with curvature FA ∈ Ω2(Σ, g). The key fact is now, that the
Marsden–Weinstein quotient 1

MFlat(G,Σ) = µ−1({0}) � GQ

is exactly the moduli spaceMFlat(G,Σ) of flat connections on Q up to gauge transforma-
tions.

If we now consider the subspace A∗Q ⊂ AQ consisting of flat irreducible connections in
Q, i.e. connections A such that ∇A (the induced connection in AdP ) is injective, and let
MFlat(G,Σ)∗ = A∗Q/GQ. This space can be shown to be an open subset ofMFlat(G,M) and
therefore one obtains the structure of a symplectic manifold through the quotient construc-
tion.

1Actually the infinite-dimensional analogue of the Marsden–Weinstein quotient.
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We let L̃Q = AQ × C be the trivial bundle over AQ and we lift the action of GQ to G̃Q
using the function cΣ defined above. Then there exists a connection B on L̃Q given in a
trivialization s : Σ→ Q by

(Bs)A(ζ) =

∫

Σ

〈A ∧ ζ〉 ,

A ∈ AQ ∼= Ω1(Σ, g), ζ ∈ TAAQ ∼= Ω1(Σ, g). This connection on L̃Q satisfy what in the
next chapter will define as the pre-quantum condition. (3.1). It turns out that the connection
B is preserved by the lifted action of GQ and induces a connection B on the line bundle
L → MFlat(G,Σ)∗ defined to be all equivalence classes of elements of A∗Q × C under the
relation

(A, z) ∼ (g∗A, cΣ(A, g) · z),
for all gauge transformations g in GQ. We recall that the function cΣ is U(1) and therefore
the line bundle L carries a hermitian structure, and the connection B is compatible with
this structure. Thus we can summarise and we obtain the following:

Theorem 2.28. Let Σ be a closed surface and let Q→ Σ be a principal G-bundle. Then the
moduli spaceMFlat(G,Σ)∗ of irreducible flat connections is pre-quantizable.

2.6.3 Complex Chern–Simons

Let us now complexify the action. This means that the compact Lie group G is replaced
by its complexifycation GC, the moduli spaceMFlat(G,M) is replaced by the moduli space
MFlat(GC,M), and the Chern–Simons action CSM by CSM,C :

CSM,C : APC/GPC → C/Z. (2.20)

Here PC denotes a principal GC-bundle PC →M . Again the action can be written as

CSM,C(A) =
1

8π2

∫

M

Tr(A ∧ dA+
2

3
A ∧A ∧A), (2.21)

where now A ∈ Ω1(M, gC).
The Chern-Simons functional is intimately related to the volume of a hyperbolic mani-

fold in the sense that
CSM,C(A) = Vol(M) + iCSM (A).

We will return to this subject in Chapter 6, where we will look at the quantization of the
Chern–Simons theory.



Chapter 3

Geometric Quantization

3.1 Quantization

In this section we will discuss quantization as a mathematical concept. Quantization has
its roots in the world of physics, but the physical motivation for the different approaches
will not be discussed. We take a more axiomatic way of reasoning. The main references are
[1, 18]. First we discuss general axioms for quantization. As these lead to contradictions we
turn to geometric quantization. This will be our preferred method of quantizing symplectic
manifolds.

3.1.1 Canonical Quantization

Quantization is concerned with the transition from a classical physical theory to a quantum
mechanical theory. In other words we seek a quantum theory that in some certain limit
yields back the classical theory we started with. In the classical mechanics we consider
Rn and we have the phase space T ∗Rn with coordinates (q1, . . . , qn, p1, . . . , pn) where the
qi’s are the position coordinates and pi’s are the momentum coordinates. The standard
symplectic form in these coordinates is ωstd =

∑
j dqj ∧dpj , the observables are the smooth

functions defined on Rn. An important operation on the observables is the Poisson bracket
given by

{f, g} =
∑

j

∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj
,

described in terms of the symplectic form as {f, g} = ωstd(Xf , Xg) where Xf is the Hamil-
tonian vector field defined by −df = ω(Xf , ·). It follows that

[Xf , Xg] = X{f,g}.

Quantization of this system is a way to assign to a class of observables f a self-adjoint
operator Qf on L2(Rn, dq). The assignment should satisfy the following properties:

(i) The map f 7→ Qf is R-linear.

(ii) Q1 = id.

(iii) The functional calculus for self-adjoint operators should yield φ(Qf ) = Qφ◦f for φ :
R→ R, where defined.

(iv) The operators corresponding to the coordinate functions should satisfy

Qqjψ = qjψ, Qpjψ = −i~ ∂ψ
∂qj

.

23
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(v) The commutator of two operators should be [Qf , Qg] = −i~Q{f,g}, which we call
the canonical commutation relation, and which of course expresses the celebrated
Heisenberg uncertainty principle.

The type of quantization described is what is called canonical quantization. Unfortunately
it turns out that the axioms (i)-(v) are not quite consistent: (i)-(iv) make it possible for
us to express Qf for the function f(q,p) = q2

1p
2
1 = (q1p1)2 in two different ways. See

[1]. There are ways to handle this inconvenient fact. One, which we will use, is to keep
the quantization axioms but quantize only few observables. This will lead us to geometric
quantization. Another approach is based on the principle that the commutation relation
should hold asymptotically as ~ goes to zero and therefore be replaced by

[Qf , Qg] = −i~Q{f,g} +O(~2) as ~→ 0.

This procedure would lead to deformation quantization which we will not go deeper into.

3.1.2 Geometric Quantization

In geometric quantization, we wish to quantize a symplectic manifold (M,ω) which is usu-
ally called the phase spase by assigning a separable Hilbert space H and a linear map
Q : f 7→ Qf from a subspace F of real valued functions on M which is a Lie algebra un-
der the Poisson bracket, into self-adjoint operators on a dense subset D ⊂ H satisfying the
following axioms:

(a) The assignment f → Qf is R-linear.

(b) Q1 = id, where 1 is the constant function and id is the identity operator onH.

(c) [Qf , Qg] = −i~Q{f,g}, for f, g ∈ F .

(d) If given two symplectic manifolds (M,ω) and (M̃, ω̃) and a symplectomorphism be-
tween those φ : (M,ω) → (M̃, ω̃), then for f ∈ F̃ we require that Qf◦φ and Q̃f are
conjugate by a unitary operator fromH to H̃.

(e) For M = R2n with the standard symplectic form, we recover the operators Qqj and Qpj
from the canonical quantization.

Let us describe the construction according to Kostant and Souriau. We start by con-
structing a pre-quantization by ignoring that we should recover the Schrödinger represen-
tation when (M,ω) = (R2n, ωstd). We follow Woodhouse [54].

3.1.3 Pre-quantization

Let L →M be a complex Hermitian line bundle over the symplectic manifold (M,ω), let∇
be the canonical connection induced by the Hermitian metric. Locally over an open subset
U ⊂M let θ be the connection matrix and sU a non-vanishing section in L. Then,

∇X(fsU ) = X(f)sU + θ(X)fsU .

The pre-quantization operator Q : C∞(M)→ OP(D), is given by:

f 7→ f − i~∇Xf ,

where D = L2
0(M,L) ⊂ L2(M,L), is the subset of smooth square integrable sections of L

with compact support. The metric on L2(M,L) is given by

〈s1, s2〉 =

∫

M

s1s2
ωn

n!
.
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Since the integral of the Lie derivative of a top form over a manifold M without bound-
ary is 0, it follows that Qf is self-adjoint when f is a smooth real function on M . The
assignment of the pre-quantization operator is further linear.

With the assignment of pre-quantum operator above we get the commutator:

[Qf , Qg] = −~2[∇Xf ,∇Xg ]− 2i~{f, g}.

Recall that in terms of the connection the curvature is determined by the formula:

F∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Using this fact we see that goving a condition on the commutator of quantum operators
gives constraint on the curvature of∇. When we have equality i~F∇(Xf , Xg) = ω(Xf , Xg)
this is exactly the commutator relation which we want. In other word, the decided com-
mutator appears when

[
i

2π
F∇

]
= c1(L) =

[
1

~
ω

]
∈ Im(H2(M,Z)→ H2(M,R)).

Definition 3.1. A pre-quantum line bundle on the symplectic manifold (M,ω) is a triple
(L,∇, (·, ·)) consisting of a complex line bundle L → M with a Hermitian structure (·, ·),
and a compatible connection∇ satisfying the pre-quantum condition

F∇ =
−i
~
ω. (3.1)

A symplectic manifold admitting a pre-quantum line bundle is called pre-quantizable. As
we have seen it is definitely not every symplectic manifold which admits a pre-quantum
line bundle. For further details see e.g. [54].

The cohomological investigation further reveals that, if a pre-quantum line bundle ex-
ists, the inequivalent choices of pre-quantum line bundles are parametrized byH1(M,U(1)).

Prequantization satisfies all the properties required of a quantization, except that it fails
to reproduce canonical quantization when applied to R2n. In a sense, it produces a Hilbert
space of wave functions which depend on twice as many variables as they should. Indeed,
if ωstd = −dθ where θ =

∑
j pjdqj and if Xf is a Hamiltonian vector field for a function f ,

Xf =

n∑

j=1

∂f

∂qj

∂

∂pj
− ∂f

∂pj

∂

∂qj
,

and because∇Xf = Xf − i
~Xf · θ the operator Qf is given by:

Qf = f +
∑

j=1n

pj
∂f

∂pj
− i~




n∑

j=1

∂f

∂pj

∂f

∂qj
− ∂f

∂qj

∂f

∂pj


 ,

which does not act on L2(Rn) but L2(R2n) instead. We therefore need to restrict Q to the
space of functions only depending on the q−variables and is quadratic integrable over this
variable in order to get the Schrödinger representation we want.

A standard way around this is to pick an polarization on M and consider the space of
polarized sections of the line bundle.

3.1.4 Polarization

Polarizations are the geometric objects that are used to decrease the dependency to n vari-
ables. Given a symplectic manifold (M,ω) of dimension 2n, we will choose n directions in
M by a choice of a special distribution P ∈ TMC called a polarization. Then we say that a
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section s of a pre-quantum line bundle is polarized if it is constant along all vector fields X
of P , so

∇Xs = 0.

In general it is not sufficient to take the quantization space to be the L2 integrable po-
larized sections, it still has to be modified in some way. In what follows we define polar-
izations, consider some special kinds, namely real and Kähler polarizations.

Definition 3.2. Let (M,ω) be a symplectic manifold. A complex polarization is a distribu-
tion P of TMC satisfying the following criterions

1 P is Lagrangian, i.e. P = {X ∈ TMC | ω(X,Y ) = 0 for all Y ∈ P}.
2 P is involutive, i.e. [X,Y ] ∈ P fo all X,Y ∈ P .

3 dim(Px ∩ Px ∩ TxM) is constant for all x ∈M .

It is not hard to check that if P is a polarization then P is also a polarization. The
involutivity condition is equivalent to P being integrable by the Frobenius Criterion.

3.1.5 Real and Kähler polarizations

Given a symplectic manifold (M,ω) a polarization P of M is real if P = P .

Definition 3.3. Let P be a complex polarization on a symplectic manifold (M,ω). The
polarization P is called a Kähler polarization if the Hermitian form on P defined by h(u, v) =
iω(u, v) is positive definite.

With a Kähler polarization we can define a complex structure I on M by letting P be
the −i-eigenspace of I and P the i-eigenspace of I . Involutivity of P gives integrability of
I , and by the Newlander-Nirenberg Theorem there exists a unique complex structure on
M which induces I . The metric which we can define by the formula g(X,Y ) = ω(X, IY )
for vector fields X,Y on M is positive definite. Furthermore it is Hermitian and since ω is
closed (M,ω, I) is a Kähler manifold. Conversely every Kähler manifold admits a Kähler
polarization by choosing the polarization P to be the −i-eigenspace. To summarise we
have shown:

Proposition 3.4. Given a symplectic manifold (M,ω) and a complex structure I , then P be
the−i-eigenspace and P be the i-eigenspace are Kähler polarizations. Conversely if (M,ω)
has a Kähler polarization then there exists a compatible complex structure I on M .

With a Kähler polarization on M , the line bundle L → M has a natural complex struc-
ture. A section s of L is called holomorphic if∇Xs = 0 for all X ∈ P . If two non-vanishing
sections s, s′ of L differ by a non-vanishing function φ, s = ψs′ and if s, s′ are both holo-
morphic then

0 = ∇Xs = ∇X(φs′) = X(φ)

ψ is holomorphic. By choosing a trivialization of L → M of holomorphic sections, the
transition functions are holomorphic.

The space D = {s ∈ L2(M,L) | ∇Xs = 0 for all X ∈ P}, is a closed subspace of
L2(M,L) and therefore a Hilbert space, see e.g. [54] Operators on D will be the target
space of the quantization map. Let us check which observables we are able to quantize.

The covariant derivative of (Qf )s with respect to X ∈ P is calculated to be

∇X((Qf )s) = −i~∇X∇Xf s+X(f)s+ f∇Xs
= Qf (∇Xs)− i~∇[X,Xf ]s,

so for X ∈ P , Qf preserves D is [X,Xf ] ∈ P . Hereby we have found the space of quan-
tiziable observables

D̃ = {f ∈ C∞(M) | [X,Xf ] ∈ P for all X ∈ P}.
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Example 3.5. Let us consider two simple examples in relation to geometric quantization.
Let M = T ∗Q with the canonical basis {qi, pi} and symplectic form ωstd =

∑
dqi ∧ dpi. We

take the polarization P to be the vertical vector fields, i.e. the span of { ∂
∂pi
}ni=1. The polar-

ized sections s are sections for which ∂s
∂pi

= 0, so those which are constant along the fibers.
This is the Schrödinger representation of (T ∗M,ω). The quantum operators corresponding
to to the observables positions and momenta are

Qqj = qj and Qpj = −i~ ∂

∂qj
.

If Q = Rn we could take P to be spanned by { ∂
∂qi
}ni=1. Then we would obtain the

momentum representation. The quantum operators in this case are

Qqj = i~
∂

∂pj
and Qpj = pj .

We observe that the relation between these two representations is the Fouriertransform.

Example 3.6. If we now let M = T ∗Q but take as basis zj , zj , where zj = pj + iqj . Then the
standard symplectic form becomes ω = 1

2

∑
dzj ∧dzj , and the complex structure is defined

by Izi = izi, Izi = −izi. Choosing the Kähler polarization corresponding to I , that is P is
spanned by { ∂

∂zj
}nj=1 the polarized sections s must satisfy ∂s

∂zj
= 0 so they are holomorphic

sections. This is the Bargman-Fock representation. If instead we had chosen P we would
have obtained the anti-holomorphic sections.

3.1.6 Change of polarization

Let us here explain how a change of polarization is related to the Fourier transform. The
reference for this section is [2]. For simplicity we will just consider R2n with the standard
symplectic structure

ωstd =

n∑

i=1

dxi ∧ dxn+i.

We can define

α =
1

2

n∑

i=1

(xidxn+i − xn+idxi).

Then we have
ωstd = dα.

The one form α defines a connection ∇ in the trivial line bundle L = R2n × C. For any
polarization P on R2n we can consider the space of sections of Lk, which are covariant
constant along P :

HP = {φ ∈ C∞(R2n,Lk) | φ(∇Xs) = 0 ∀X ∈ P, s ∈ C∞(R2n,Lk)}.

For a general Lagrangian subspace P we can find a Lagrangian subspace P ′ of R2n which
is transversal to P and which induces a reducible polarization on M . We will construct an
isomorphism

U : HP → HP′

Suppose P1 and P2 are two transverse Lagrangian subspaces of R2n. We can then find
a Lagrangian subspace Y transversal to both P1 and P2. Let

ρi : R2n → Y
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be the projection R2n = Pi ⊕ Y → Y. Sections of L̃k covariant constant along Pi can be
identified with sections of L̃k|Y . Let s be a covariant constant section of L̃k|Y . By using swe
identify C∞c (L̃k|Y ) with C∞c (Y ). Extend s to a section si of L̃k|Y by extending covariantly
constant along Pi. Assume that s is of unit length, hence so is si. Let (q, p) be symplectic
coordinates on R2n such that ρ2(q, p) = q′. Then

q′i = qi +

n∑

i=1

Sijpj ,

where S is a symmetric matrix and non-singular since P1 and P2 are transversal. Let S(Y )
denote the space of Schwartz functions on Y . Consider the operator

U : S(Y )→ S(Y )

given by

U(f)(q) =

∫

Y

exp(iπk〈Sp, p〉)f(q + Sp)dp

for f ∈ S(Y ). Since S is invertible, we get that

U(f)(q) = exp(iπk〈S−1q, q〉)
∫

Y

exp(iπk〈p, Sp− 2q〉)f(Sp)dp.

Define operators V,W : S(Y )→ S(Y ) by

V (f)(p) = exp(iπk〈S−1p, p〉)f(p),

W (f)(p) = f(Sp),

and the Fourier transform F : S(Y )→ S(Y ) by

F(f)(q) =

∫

Y

exp(−2iπk〈p, q〉)f(p)dp.

Since all these maps are isomorphisms we conclude that U = V ◦ F ◦W ◦ V is an isomor-
phism on S(Y ). Actually we get an isomorphism

U : HP → HP′

and we see directly that a change of polarization is related to the Fourier transform. In
Chapter 4 we will an analogue of this fact when coordinates are changed in Teichmüller
space. The story is not as simple as in the case described above since the coordinate trans-
formations used are not as simple.



Chapter 4

Quantum Teichmüller theory

Teichmüller space will play an important role later on in this thesis. Therefore, we would
like to identify useful global coordinates on Teichmüller space to get a better understanding
of it. We construct the Fenchel–Nielsen coordinates and generalise these coordinates to a
Riemann surface with punctures and holes. We look at another set of coordinates due to
Penner [40]; these coordinates can be given on a surface with at least one hole or puncture.
Finally in this section we will look at Kashaev coordinates for Teichmüller space and the
quantization Teichmüller space in these coordinates.

4.1 Pants decomposition

Given a connected Riemann surface R of genus g we would like to decompose it into a
number of building blocks. If the genus g is at least two one can show that there exist a
collection Γ = {γi}3g−3

i=1 of simple closed geodesics on R which decomposes R into 2g − 2
pairs of pants. The genus 2 case is illustrated in Figure 4.1

Definition 4.1. A pair of pants P of a Riemann surface R is a simple subsurface of R whose
boundary ∂P in R consists of three simple closed geodesics.

Figure 4.1: Two different pair of pants decompositions of a genus 2 surface.

The complex structure of a pair of pants P is uniquely determined by the lengths of
the geodesics γ1, γ2, γ3 of the boundary ∂P we denote these lengths as l1, l2, l3 respectively.
To see this decompose P into two right angled hexagons by cutting along three shortest
geodesics with lengths d12, d13, d23 connecting the boundary components, see figure 4.2.
Because the hexagons have the three edges d12, d13, d23 in common, then by elementary
hyperbolic trigonometry the two hexagons must be identical. Therefore each hexagon is
uniquely determined by the lengths l1/2, l2/2, l3/2 and hence P is uniquely determined by
l1, l2, l3. This is illustrated in Figure 4.3.

4.2 Fenchel–Nielsen coordinates

Since the complex structure is already fixed we only need to specify how we glue the pairs
of pants back together to reconstruct our Riemann surface. This is done by defining twist-
ing parameters τi; one for each closed geodesic in Γ. Notice that after choosing an order-

29
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Figure 4.2: A pair of pants given by a region of the Poincaré disk.

Figure 4.3: A pair of pants given by a region of the Poincaré disk.

ing of boundary components in each pair of pants, the connecting geodesics with lengths
d12, d13, d23 define distinguished points on γ1, γ2, γ3 respectively. We define the twisting
parameter τi modulo γi to be the distance along γi between the two distinguished points
corresponding to the two pairs of pants glued along γi.

Due to a result known as Teichmüller Theorem we know that Teichmüller space Tg is
simply connected and therefore the parameters τi are allowed to run over the whole set R.
We have the following consequence:

Lemma 4.2 (Fenchel–Nielsen coordinates). Given a collection Γ of decomposing simple
closed curves on R, fixing the zeroes of the twisting parameters, we obtain a diffeomor-
phism Ψ : Tg → R3g−3

+ × R3g−3.

In other words we have a global set of coordinates on Teichmüller space which is known
as the Fenchel–Nielsen coordinates.

4.3 Punctures and holes

Using the pair of pants decomposition one can easily generalise Teichmüller space to Rie-
mann surfaces having holes or punctures. We decompose our Riemann surface R of genus
g into pairs of pants such that one pair of pants looks like a handle and throw this away to
obtain a Riemann surface of genus g − 1 with a hole with geodesic boundary length equal
to the corresponding Fenchel–Nielsen coordinate.
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Define T l1,...,lsg,s to be the Teichmüller space of a Riemann surface of genus g with s holes
of geodesic boundary lengths γ1, . . . , γs. Considering the pair of pants decomposition leads
to the fact that T γ1,...,γs

g,s is a space of dimension 6g − 6 + 2s and again the Fenchel–Nielsen
coordinates define global coordinates.

We would also like to allow zero boundary length, which corresponds to a Riemann sur-
face with punctures. Figure 4.2 and elementary hyperbolic geometry leads to the following
equations:

sinh d23

sinh 1
2 l1

=
sinh d13

sinh 1
2 l2

=
sinh d12

sinh 1
2 l3

. (4.1)

Therefore fixing the geodesic lengths l2, l3 of γ2 and γ3 and letting l1 approach zero d12 and
d13 will go to infinity. Punctures therefor correspond to a Riemann surface having infinitely
long spikes.

If we let γ be the Möbius transformation corresponding to a path around a puncture
then from the equation

|Tr(γ)| = 2 cosh

(
lγ
2

)
(4.2)

we see that |Tr(γ)| = 2 and therefore γ has to be parabolic, which means that it has a fixed
point on the boundary of H, which of course is the puncture.

Remark 4.3. In the case where punctures appear we must reformulate our notion that a
Fuchsian group only consists of the identity element and hyperbolic conjugacy classes. A
Fuchsian model ofRwith s punctures consists of the identity element and exactly s distinct
parabolic conjugacy classes and hyperbolic conjugacy classes.

4.4 Penner coordinates

Dealing with Riemann surfaces having punctures there is another useful set of coordinates
on Teichmüller space.

Let R be a Riemann surface of genus g with s > 0 punctures. There exists 6g − 6 + 3s
disjoint geodesics running between punctures of R which decompose R into 4g − 4 + 2s
triangles. Dual to this triangulation is a trivalent graph called a fat graph on R.

It would be tempting to view the lengths of the geodesic edges of the triangulation as
coordinates. This is of course not possible since the geodesics connect punctures and are
therefore infinitely long.

Instead we choose a horocycle around each of the punctures. A horocycle for a puncture
is a path around the puncture which is perpendicular to all geodesics originating from the
puncture.

Example 4.4. In the the Poincaré disc horocycles are given by circles tangent to the bound-
ary.

The length le of an edge e in the triangulation is defined to be the distance along the
edge e between the horocycles of the punctures which it connects. Shifting a horocycle for
some puncture just corresponds to adding a constant to the lengths of all edges coming
from that puncture. Modulo this symmetry the set of lengths {le}e∈∆ constitute global
coordinates on Tg,s which are called Penner coordinates.

4.5 Kashaev coordinates

Quantization of the Teichmüller space of a surface with boundary and holes was achieved
by Kashaev in [28] and independently by Chekhov–Fock [14]. The main ingredient in
both constructions is the very special function called the quantum dilogarithm. There is
a universal setting for the construction, namely quantization of the universal Teichmüller
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space, which we think of as Teichmüller space of the open disk D with certain boundary
behaviour, or of the closed unit disc with a countable number of distinguished points on
the boundary. Quantization requires the choice of a coordinate system on the Teichmüller
space, which depends on the choice of a certain infinite triangulation of the surface D,
which is called a Tessellation of D. Let us now introduce the Kashaev coordinates for Te-
ichmüller space. After this definition we will look at the quantization of Teichmüller space
following the outline from [28]

4.5.1 Tessellations

In this subsection we put up a universal setting for ideal triangulations of hyperbolic sur-
faces. The surface we want to deal with is the open unit discD = {z ∈ C | |z| < 1} equipped
with the Poincaré metric ds2 = |z|2

(1−|z|2)2 .

Definition 4.5. An ideal arc connecting two fixed distinct ideal points on the unit circle
S1 = ∂D is a homotopy class of smooth arcs in D connecting the points. No orientation on
arcs is imposed. A region bounded by 3 ideal arcs connecting three distinct ideal points is
called an ideal triangles.

Definition 4.6 (Tessellation). A tessellation τ of the unit disc D is a locally finite triangula-
tion, i.e., any point of D admits a neighbourhood meeting only finitely many geodesics in
τ, of D into ideal triangles. The vertices of a tessellation are the endpoints of the ideal arcs
in the tessellation. The collection of vertices, ideal arcs and ideal triangles of a tessellation
is denoted by τ (0), τ (1) and τ (2) respectively.

Definition 4.7. By µ we denote the Cayley transform from the upper half-plane H = {z ∈
C | Im z > 0} to the unit disc D, which also extends to their boundaries:

H = H ∪ RP1 ←→ D ∪ S1 (4.3)

x 7→ x− i
x+ i

, (4.4)

here we think of RP1 = ∂H = R ∪ {∞}. When we use a Möbius transformation we will
mean an element of the automorphism group PSL(2,R) of the hyperbolic space H given
by the fractional linear transformation

(
a b
c d

)
,∈ PSL(2,R) : x ∈ H 7→ ax+ b

cx+ d
∈ D, (4.5)

when we mention the action on D of an element g of the automorphism group PSL(2,R)
or its subgroup PSL(2,Z) we mean the conjugated action µ ◦ g ◦ µ−1.

Definition 4.8. A nonzero rational number is said to be in reduced form if it’s written as
p/q where gcd(p, q) = 1, with p, q ∈ Z, q > 0. We set 0

1 for the reduced expression of 0, and
1
0 or −1

0 for the reduced expression for∞. We call Q ∪ {∞} the extended rationals.

Definition 4.9. The Farey tessellation τ∗ is the tessellation whose vertices are all the rational
points of S1, and two rational points µ(a/b) and µ(c/d) are connected by an ideal arc if and
only if |ad− bc| = 1. Alternatively one could start with the basic ideal triangle with vertices
µ( 0

1 ), µ( 1
0 ), µ(− 1

1 ) ∈ S1 and take the orbit of its sides under the PSL(2,Z)-action.

We are interested in a bit more general tessellation than just the Farey tessellation. We
say that a tessellation is of Farey-Type if it satisfies the following definition.

Definition 4.10. A Farey-type tessellation is a tessellation whose vertices are the rational
points of S1, all but finitely many of whose ideal arcs are those of the Farey tessellation. In
this section we let F := {Farey-type Tessellations τ}.
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(B) A more general tessellation

Figure 1. Examples of tessellations (µ is omitted in the vertex labels)

It is often necessary to put some decoration on the tessellation. One way is to specify the
choice of an ideal arc with an orientation on it:

Definition 2.8. A marked tessellation (τ, a⃗), or a tessellation with d.o.e. (d.o.e. = distin-
guished oriented edge) is a tessellation τ with the choice of an oriented (ideal) arc a⃗, sometimes
called the d.o.e. The d.o.e. a⃗ is indicated by an arrow in the picture (see Fig. 2). The stan-
dard marked tessellation (τ∗, a⃗∗) is the Farey tessellation τ∗ with the d.o.e. a⃗∗ being the arc
connecting µ(0) and µ(∞) (with the direction µ(0)→ µ(∞)); see Fig. 2A. We require that all
but finitely many ideal arcs of a marked tessellation are those of the Farey tessellation τ∗. For
a more general example, see Fig. 2B. Denote the set of all marked tessellations by

Ftessmark = {marked (Farey-type) tessellations (τ, a⃗)}.(2.4)

If the d.o.e. a⃗ is not ambiguous from the context, we will denote (τ, a⃗) by τmark for convenience,
and the standard marked tessellation (τ∗, a⃗∗) by τ∗

mark.
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(A) The standard marked tessellation
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(B) A more general marked tessellation

Figure 2. Examples of marked tessellations

Figure 4.4: On the left the Farey tessellation, on the right a Farey-type tessellation.

4.5.2 Decorated Tessellations

It is often necessary to put some decoration on the tessellation. Different authors use dif-
ferent types of decorations. In [40] Penner uses a distinguished edge as decoration. Here
we will use a distinguished corner in each triangle as decoration of the tessellation along
with a labelling rule of the ideal triangles in the tessellation.

Definition 4.11. A tessellation τ with a choice of distinguished corner for each triangle
τ (2) ∈ τ is called a decorated ideal triangulation (d.i.t.). Further we impose the condition
that a decorated ideal triangulation should also have a labelling L, which is just a bijection
between the triangles τ (2) ∈ τ and Q∗ = Q\{0}. We let

Fdot := {Decorated Farey-type Tessellations τ}
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Another way of decorating a tessellation is to specify the choice of a corner in each ideal
triangle, together with a labeling rule of the triangles:

Definition 2.9. A dotted tessellation (τ, D, L) is a tessellation τ with a rule D which assigns
to each triangle a distinguished corner, indicated by a dot (•) in the picture (see Fig. 3), and
a choice L of labeling of the triangles by Q× = Q \ {0}, i.e. a bijection between the set τ (2) of
ideal triangles of τ and Q×, where in the picture we write [j] for the triangle labeled by j ∈ Q×;
see Fig. 3 for examples.
The standard dotted tessellation (τ∗, D∗, L∗) is the Farey tessellation τ∗ with the dots on the

‘middle’ vertices of the triangles (for a triangle with the vertices µ(a
b ), µ(a+c

b+d ), µ( c
d ), the ‘middle

vertex’ is µ(a+c
b+d ); see Rem. 2.6), where the label of each triangle comes from the middle vertex;

see Fig. 3A. We require that all but finitely many ideal triangles of a dotted tessellation to be
those of the Farey tessellation τ∗ with the choice of dots on them coinciding with that in the
case for the standard dotted tessellation. For a more general example, see Fig. 3B. Denote the
set of all dotted tessellations by

Ftessdot = {dotted (Farey-type) tessellations (τ, D, L)}.(2.5)

If D and L are not ambiguous from the context, we will denote (τ, D, L) by τdot for convenience,
and the standard dotted tessellation (τ∗, D∗, L∗) by τ∗

dot.
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(B) A more general dotted tessellation

Figure 3. Examples of dotted tessellations

Remark 2.10. For the Farey tessellation τ∗ (therefore for any Farey-type tessellation τ too),
we saw that the set of vertices are naturally identified with the extended rationals Q∪{∞}, and
the set of triangles with the nonzero rationals Q× = Q\{0} (by the ‘middle vertex’ of triangles).
Each ideal arc except the one connecting µ(0) = −1 ∈ S1 and µ(∞) = 1 ∈ S1 is contained in
a unique ideal triangle in which the ‘middle vertex’ is to the opposite of the arc. If we label
the arc by the rational number labeling that triangle (and the one connecting µ(0) and µ(∞) by
−1), then we get an identification of the set (τ∗)(1) (hence τ (1)) of ideal arcs with Q \ {0, 1}.
There are natural maps

Ftessmark → Ftess and Ftessdot → Ftess(2.6)

Figure 4.5: Examples of dotted Tessellations. On the left the standard d.i.t. On the right a
more general d.i.t.

There is of course a natural map

Fdot → F ,

which just forgets the decoration and returns the underlying tessellation.
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4.5.3 Automorphisms of Fdot

Now we proceed to study actions on the decorated tessellations. It turns out that it is more
natural to consider a groupoid, instead of a group.

Definition 4.12. Let the Ptolemy groupoid Pt be the category whose objects are the (Farey-
type) tessellations τ ∈ F , and for two objects τ, τ ′, there is exactly one morphism denoted
by [τ, τ ′]. We let composition of morphisms be given as

[τ ′, τ ′′] ◦ [τ, τ ′] = [τ, τ ′′], (4.6)

just like the composition of functions. Analogously, define the decorated Ptolemy groupoid
Ptdot to be the category whose objects are decorated Tessellations τdot ∈ Fdot and for any
two objects τdot, τ ′dot there is exactly one morphism denoted by [τdot, τ

′
dot].

Definition 4.13. For any edge e of a (Farey-type) Tessellation τ , there are exactly two ideal
triangles in τ (2) having e as one of their sides. These two triangles form an ideal quadrilat-
eral which has e as a diagonal arc. Replace e with the other diagonal e′ of the quadrilateral
to obtain a new tessellation τ ′. The morphism [τ, τ ′] is called the flip of τ with respect to e.

One can easily observe:

Proposition 4.14. Any two Farey-type tessellations τ, τ ′ can be related through a finite
number of flips.

The flips as defined in the previous definition require the choice of a tessellation τ to-
gether with one of its arcs e. In the next definition we will instead describe and give names
to the elementary morphisms of Ptdot in a decorated tessellation only in terms of the labels
of the involved triangles.

Definition 4.15. We describe the elementary moves A[j], T[j][k], P(jk) of Ptdot for j, k ∈
Q∗, j 6= k, each representing a morphism of Ptdot.

(i) Let τ ′dot ∈ Fdot be obtained from τdot ∈ Fdot by moving the distinguished corner of the
triangle in τ (2) labelled by j ∈ Q∗ in the counterclockwise direction to the next corner
in that triangle, leaving all other information intact. This morphism τ · τ ′ is denoted
A[j]. See Figure 4.6.

(ii) Suppose that for τdot ∈ Fdot the triangles labelled by [j] and [k] share one common
edge and that the distinguished corners of [j], [k] are exactly as in Figure 4.7. If τ ′dot ∈
Fdot is obtained from τdot ∈ Fdot by replacing the common arc of the triangles labelled
by [j], [k] by the other diagonal arc of the ideal quadrilateral formed by these two
triangles, and setting the distinguished corners according to the picture on the right
of Figure 4.7, as if we rotate the diagonal arc clockwise while letting the dots • and
triangle labels be floating and thus pushed according to the rotation arc, while leaving
all other information intact, then we name the morphism [τdot, τ

′
dot] of Ptdot by T[j][k].

(iii) If τ ′dot ∈ Fdot is obtained from τdot by exchanging the labels of the two triangles la-
belled by [j], [k] ∈ Q∗ and leaving all other information intact, then we name the
morphism [τdot, τ

′
dot] of Ptdot by P(jk).

Proposition 4.16. The morphism between any two objects of Ptdot can be written as a
finite composition of elementary morphisms and therefore can be represented as a finite
composition of elementary moves.

The proposition is easily observed since two Farey-type tessellations are related by a
finite number of flips [40].
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Figure 8. The action of A[j] on Ftessdot

Theorem 2.29 (See Teschner [Te] for proof; see also Kashaev [Kas3]). All the nontrivial
algebraic relations among the elementary moves of Ptdot are the consequences of

A3
[j] = id,(2.11)

T[k][ℓ]T[j][k] = T[j][k]T[j][ℓ]T[k][ℓ],(2.12)

A[j]T[j][k]A[k] = A[k]T[k][j]A[j],(2.13)

T[j][k]A[j]T[k][j] = A[j]A[k]P(jk),(2.14)

where j, k, ℓ ∈ Q× are mutually distinct. Also there are trivial relations, satisfied by the index
permutations P(jk)

P 2
(jk) = id, P(jk)f··· ,j,··· ,k,···P(jk) = f··· ,k,··· ,j,···, P(jk) = P(kj),(2.15)

where f··· ,j,··· ,k,··· is any composition of the elementary moves (conjugation by P(jk) results in
exchanging the subscripts j and k), and that any two words (i.e. composition) in the elementary
moves whose collections of subscripts (indices) don’t intersect with each other commute (for
example, A[j]T[j][k] and A[ℓ] commute if j, k, ℓ are mutually distinct).

Each of the above relations is meant such that whenever the LHS can be applied to some
τdot ∈ Ftessdot, then the RHS can also be applied to τdot and they yield the same result τ ′

dot.

We find it convenient to define an abstract group with generators and relations, using Def.
2.27 and Thm. 2.29.

Definition 2.30 (See Frenkel-Kim [FrKi]). For any index set I, define the Kashaev group GI

associated to I by generators and relations, with the generators A[j], T[j][k], P(jk) (j, k ∈ I, j ̸= k)
and the relations (2.11), (2.12), (2.13), (2.14),(2.15), and the commuting relation mentioned at
the end of Thm. 2.29.

For our case when I = {triangle lables} = Q×, we denote this group by

Gdot = GQ× = ⟨A[j], T[j][k], P(jk)⟩/(relations mentioned in Thm. 2.29),(2.16)

which can be thought of as the formal group of changes of dotted tessellations.

Remark 2.31. To be more precise, we should let the group Gdot also include the more general
index permutations Pγ (for permutations γ of Q×; see Def. 2.27 for Pγ); see (2.26).

Figure 4.6: The action of A[j]
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2) Suppose that for τdot ∈ Ftessdot, the triangles of τ labeled by j and k (where j ̸= k) are
adjacent to each other (i.e. share one side) and that the dots of those two triangles are
exactly as in the LHS of Fig. 7 (relative to the common arc of the two triangles). If τ ′

dot

is obtained from τdot by replacing the common arc of the triangles labeled by j, k by the
other diagonal arc of the ideal quadrilateral formed by those two triangles, and setting
the new dots and labels as in the RHS of Fig. 7, as if we rotate clockwise the diagonal
arc of the quadrilateral while letting the dots • and triangle labels [j], [k] be ‘floating’
and thus pushed accordingly by the rotating arc, while leaving all the other information
intact, then we name the morphism [τdot, τ

′
dot] of Ptdot by T[j][k]; see Fig. 7.

3) If τ ′
dot is obtained from τdot by exchanging the labels of the two triangles labeled by

j, k ∈ Q× and leaving all the other information intact, then we name the morphism
[τdot, τ

′
dot] of Ptdot by P(jk). We sometimes call P(jk) an index permutation. In the

same spirit, for any permutation γ of Q×, we denote by Pγ the corresponding index
permutation, which relabels each triangle by j #→ γ(j).

In each of the above cases, we say τ ′
dot is obtained from τdot by applying the relevant move. Any

morphism of Ptdot corresponding to one of the cases above is called an elementary morphism
of Ptdot.

•
•

[ j ]

[ k ]

··
·

· · ·

··
·

· · ·

T[j][k]

• •
[ j ]

[ k ]

··
·

· · ·

··
·

· · ·

Figure 7. The action of T[j][k] on Ftessdot

So, any elementary morphism of Ptdot is represented by an elementary move. It’s easy to see
the following:

Proposition 2.28. The morphism between any two objects of Ptdot (i.e. two elements of
Ftessdot) can be written as the composition of a finite number of elementary morphisms, hence
can be represented as the composition of a finite number of elementary moves.

As usual, we read the composition of (or ‘a word in’) the elementary moves from the right;
for example, A[j]T[j][k] means applying T[j][k] first and then A[j]. The elementary move T[j][k] is
the enhanced version of the ‘flip’ for Pt defined in Def. 2.25. The elementary moves of Ptdot

satisfy some algebraic relations, for example the one corresponding to the previously mentioned
“twice-flip is the identity”, and the pentagon relation for the ‘flips’ as mentioned briefly before.

Figure 4.7: The action of T[j],[k]

Theorem 4.17 (Kashaev). All nontrivial algebraic relations among the elementary moves
of Ptdot are consequences of

A3
[j] = id, (4.7)

T[k][l]T[j][k] = T[j][k]T[j][l]T[k][l], (4.8)
A[j]T[j][k]A[k] = A[k]T[k][j]A[j], (4.9)

T[j][k]A[j]T[k][j] = A[j]A[k]P(jk), (4.10)

where j, k, l ∈ Q∗ are distinct.
There are trivial relations too, subject to the index permutations

P 2
(jk) = id, P(jk) = P(kj), P(jk)f...,j,...,k,...P(kj) = f...,k,...,j,...,

where f...,j,...,k,... is any composition of elementary moves (conjugation by P(jk) results in
exchanging the subscripts j and k), and that any two words in the elementary moves whose
collections of subscripts do not intersect with each other commute. See [46, 29]

It is convenient to define the following group GI , see [16]

Definition 4.18. For any index set I , define the Kashaev group GI associated to the index set
Q∗ by generators and relations, with generators A[j], T[j][k], P(jk), (j, k ∈ I, j 6= k) and the
relations (4.7), (4.8), (4.9), (4.10) and the commuting relations mentioned in theorem 4.17.

We think about the Kashaev group as the formal group of changes of decorated tessel-
lations.

Let T denote the universal Teichmüller space. We will here briefly review Kashaev’s
quantization of the universal Teichmüller space. One should consult [28, 29]. Suppose we
have chosen a horocycle at each puncture (vertices of τ ).
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Definition 4.19 (Kashaev coordinates of the universal Teichmüller space). In Kashaev’s
quantization of the universal Teichmüller space T each choice of a decorated triangulation
τdot gives rise to a coordinate system on T , which to each traingle j ∈ τ (2) assigns two
coordinates pj , qj . I.e. we have an injective map T → (Rτ(2)

)2, where

pj = lj,1 − lj,2, qj = lj,3 − lj,2,

where lj,1, lj,2, lj,3 are the geodesic lengths of the sides of the triangle j where the cyclic la-
belling of the three sides is determined by the choice of decoration, where we trim the sides
using the chosen horocycles (lengths might be negative). These lengths are the logarithm
of the lambda lengths of Penner. See figure 4.8.
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j ∈ τ (2) = Q× the two coordinates pj , qj, i.e. an injective map T (1) → (Rτ (2)

)2 = (RQ×
)2,

where

pj = ℓj,1 − ℓj,2, qj = ℓj,3 − ℓj,2,(3.6)

called the Kashaev coordinates, where ℓj,1, ℓj,2, ℓj,3 are the geodesic lengths of the sides of the
triangle j where the cyclic labeling of the three sides of each triangle is determined by the choice
of the distinguished corner (or dot •), where we trim the sides using the chosen horocycles (so
some length ℓ can be negative); see Fig. 11. These ℓ’s are the logarithm of the ‘lambda lengths’
of Penner (see e.g. [P1] or [P2]).

ℓj,2

ℓj,3
ℓj,1

Figure 11. The lambda lengths for the triangle j; here ℓj,1 < 0, ℓj,2 > 0,
ℓj,3 > 0, and the dotted circles are the chosen horocycles at the vertices

Denote by {·, ·} the canonical Weil-Petersson Poisson bracket on the algebra of functions on
T (1).

Proposition 3.7. The Kashaev’s coordinate functions satisfy

{pj, qk} = δj,k, {pj, pk} = {qj, qk} = 0, ∀j, k ∈ τ (2) = Q×,(3.7)

where δj,k = 1 when j = k and 0 when j ̸= k. This system has a canonical quantization

pj → p̂j = 2πbPj , qj → q̂j = 2πbQj,(3.8)

realized as self-adjoint operators on (a dense subspace of) the Hilbert space

M = L2(Rτ (1)

) = L2(RQ×
)(3.9)

(where any element of M is a function in the variable x = (xj)j∈Q×), where b ∈ R is the
generic quantization parameter (so that b2 /∈ Q), and the operators Pj , Qj on M are given by

Pjf =
1

2πi

∂

∂xj
f, Qjf = xjf, for f ∈M = L2(RQ×

),(3.10)

satisfying [Pj , Qk] = 1
2πiδj,k, [Pj , Pk] = [Qj , Qk] = 0 (the Heisenberg algebra). Then one has

[p̂j , q̂k] = −2πib2δj,k, [p̂j, p̂k] = [q̂j , q̂k] = 0.(3.11)

Figure 4.8: The lambda lengths for a triangle labelled by [j]

Before turning to the quantization of Teichmüller space let us describe the change of
Kashaev variables induced by a change of trianglation. Following [28], define the following
two transformations associated to the elementary moves A[j] and T[j][k] respectively:

A[j] : (qj , pj) 7→ (pj − qj ,−qj). (4.11)

T[j][k] :

{
(Xj , Yj) 7→ (XjXk, XjYk + Yj),

(Xk, Yk) 7→ ((XkYj)(XjYk + Yj)
−1, Yk(XjYk + Yj)

−1),
(4.12)

where we have set Xj ≡ eqj and Yj ≡ epj for all j ∈ τ (2).

4.6 Quantization of Teichmüller space

Denote by {·, ·} the canonical Weil–Petersson Poisson bracket on the space of functions on
T .

Proposition 4.20. The Kashaev coordinates satisfy

{pi, qj} = δi,j , {pi, pj} = {qi, qj} = 0, ∀i, j ∈ τ (2). (4.13)

This system has a canonical quantization

pj → p̂j = 2π bPj , qj → q̂j = 2π bQj , (4.14)
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realised as self-adjoint operators on (a dense subspace) the Hilbert space H = L2(Rτ(1)

),
where any element of H is a function in the variable x = (xj)j∈τ(2) where b ∈ R is the
quantisation parameter, and b2 /∈ Q. The operators Pj , Qj are given by

Pjf =
1

2πi

∂

∂xj
f, Qjf = xjf ∀f ∈ L2(Rτ

(1)

), (4.15)

which satisfy [Pi, Qj ] = 1
2πiδi,j , [Pi, Pj ] = [Qi, Qj ] = 0 [The Heisenberg algebra]. Then one

has
[p̂i, q̂j ] = −2πib2 δi,j , [p̂i, p̂j ] = [q̂i, q̂j ] = 0. (4.16)

Usually, quantization of T is described as a family of non-commutative algebras de-
pending on a real parameter, whose generators are realised as self-adjoint operators on a
Hilbert space. In this case, we use the exponents

X̂j = eq̂j , Ŷj = ep̂j , (4.17)

as the generators of the non-commutative algebra, subject to the relations (4.16).

Definition 4.21. For b ∈ R, b2 /∈ Q, define q ∈ C∗ to be the number

q = eπi b2

. (4.18)

For a decorated triangulation τdot, let the Kashaev algebra Kqτdot be the algebra generated
by X̂j , Ŷj , j ∈ τ (2) with the relations

X̂j Ŷj = q2ŶjX̂j , [X̂j , Ŷk] = [X̂j , X̂k] = [Ŷj , Ŷk] = 0. (4.19)

Elements of Kqτdot can be thought of as operators on a Hilbert space L2(Rτ(1)

) via the repre-
sentation π given by:

π(X̂j) = e2πiQj , π(Ŷj) = e2πiPj , (4.20)

where Pj , Qj is defined in (4.15).

The Kashaev algebra

Kqτdot =
〈
X̂i, Ŷi | j ∈ τ (2)

〉
/(rel. in (4.19))

is the non-commutative deformation under this quantization of the algebra of functions
on T generated by the (exponents of the) coordinate functions Xj = eqj , Yj = epj which
depend on τdot.

For a finite type surface, i.e. surfaces isomorphic to a compact surface with a finite
number of points removed, the Weil–Petersson Poisson structure on Teichmüller space is
preserved under the action of the mapping class group of the surface. For the case of the
universal Teichmüller space T , each element of the universal mapping class group can be
represented by an element of the Kashaev group Gdot (changes of dotted tessellations). In
other words this means that a change of decorated tessellation of T yields a correspond-
ing change of the Kashaev coordinates on T . It turns out that the Weil–Petersson Poisson
structure on T is preserved under the coordinate change induced by the Kashaev group G.

The quantization of Teichmüller space should therefore done in such a manner thatGdot
still acts on the non-commutative algebra Kqτdot preserving the algebra structure. If we can
identify Kqτdot for different decorated tessellations, this would correspond to Gdot acting on
Kq
τdot

as algebra automorphisms.
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Definition 4.22. Suppose τdot, τ ′dot ∈ Fdot, whose triangle label rules let us identify τ (2)

with {j : j ∈ Q∗} and (τ ′)(2) with {j′ : j ∈ Q∗}. Define the map Iτdot,τ ′dot : Kqτdot → K
q
τ ′dot

by
Iτdot,τ ′dot(Ŷj) = Ŷj′ and Iτdot,τ ′dot(Ẑj) = Ẑj′ , (4.21)

which is easily seen to be an algebra isomorphism.

Before stating the main result of Kashaev on the quantization of Teichmüller space let
us introduce Faddeev’s quantum dilogarithm.

Definition 4.23. Faddeev’s quantum dilogaritm is a function of two complex arguments z
and b, defined by the formula

Φb(z) = exp

(∫

C

e−2izω

4 sinh(ω b) sinh(ω b−1)ω
dω

)
,

where the contour C runs along the x-axis, deviating into the upper half plane in the vicinity
of the origin, and where the parameter ~ is in C\R≤0, and b ∈ C is chosen such that ~ =
(b + b−1)−2.

We will look much more into this function later on in this thesis. Therefore we ask the
reader to see (11.9) for more information about this function.

Following [29] closely we define a projective representation of the Ptolemy groupoid in
therms of the following set of unitary operators:

Theorem 4.24. Let the dotted Kashaev group Gdot be given as a finitely presented group
Gdot = Fdot/Ndot where Fdot is the group generated by A[j], T[j][k], P(jk), (j, k ∈ I, j 6= k),
andNdot is the normal subgroup generated by the relations in Theorem 4.17. For the Hilbert
spaceH := L2(Rτ(1)

) consider the group homomorphism

ρ : Fdot → GL(H)

given by assigning to each generator of Fdot a unitary operator onH as follows:

ρ(A[j]) = e−πi/3e3πiQ2
j eπi(Pj+Qj)

2

, (4.22)

ρ(T[j][k]) = e2πiPjQkΦb(Qj + Pk −Qk)−1, (4.23)
(ρ(P(jk))f)(. . . , xj , . . . , xk, . . . ) = f(. . . , xk, . . . , xj , . . . ), (4.24)

where Pj , Qj are as in (4.15). Then the quantum version of the coordinate change induced
by an element g of Gdot is given by conjugation in ρ(g) in the following way. Then for each
g ∈ Gdot which can be applied to τdot, we associate an algebra isomorphism

Ψq
g : Kqτdot → Kqg.τdot

which after identification of Kqg.τdot with Kqτdot via (4.21) is as follows, in terms of the repre-
sentation π of Kqg.τdot :

π(Ig.τdot,τdot ◦Ψq
g) : π(Kqτdot)→ π(Kqτdot), (4.25)

this is the mapping π(x̂) 7→ ρ(g)π(x̂)ρ(g)−1, for all x̂ ∈ Kqτdot . The map (4.25) is well defined,
and it provides an algebra isomorphism of π(Kqτdot) since it is a conjugation. When q =

eπi b2 → 1 as b→ 0 in R, the limit of the map (4.25) recovers the classical coordinate change
map induced by g.

Remark 4.25. The operators defined in Theorem 4.24 are unitary; when b is real or on the
unit circle

(1− |b|)Im b = 0⇒ Φb(z) = 1/Φb(z).
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Example 4.26 (The action of the operators A[j] and T[j][k] on L2). Let us first look at the
action of ρ(A[j]). One sees that this operator only involves use of the two operators Pj and
Qj we therefore think of this operator as an operator acting on L2(R, dxj). This operator is
written in the following way: First for a f ∈ L1(R) ∩ L2(R), or in the Schwartz space. By
continuity the operator extends to the whole L2(R, dxj) we denote this operator by Â:

(Âf)(xj) = e−πi/12

∫

R
e2πiyjxjeπix

2
jf(yj)dyj . (4.26)

This operator is the unique unitary operator up to scalar multiplication by a complex num-
ber of modulus one which satisfies

ÂQÂ−1 = P −Q, ÂP Â−1 = −Q. (4.27)

where P = 1
2πi

d
dx and Q = x are symmetric operators on a dense subset of L2(R, dx). The

equations (4.27) can still be written as

ÂeisQÂ−1 = eis(P−Q), ÂeisP Â−1 = e−isQ, s ∈ R. (4.28)

which translate to

Â : eisxf(x) 7→ es
2/(4πi)(Âf)

(
x+

s

2π

)
, f

(
x+

s

2π

)
7→ e−isx(Âf)(x). (4.29)

The operators that can be written as the exponential of a quadratic expression in P and Q
are analogues of the Fourier transform F : f 7→

(
x 7→

∫
R e
−2πixyf(y)dy

)
which is charac-

terised up to a multiplicative constant by FQF−1 = −P and FPF−1 = Q.
For the operator ρ(T[j][k]) in Theorem 4.24 we view its right hand side as an operator

acting on L2(R2, dxjdxk). The unitary operator e2πiPjQk acts in the following way:

(e2πiPjQk)f(xj , xk) = f(xj + xk, xk).

For the remaining part of the operator we write Φb(Qj +Pk−Qk)−1 = ÂkΦb(Qj +Qk)Â−1
k

using (4.27). We know how the unitary operators Âk, Â−1
k act. We still need to know what

the operator Φb(Qj +Qk)−1 do, but this is just multiplication by Φb(xj + xk)−1.

We have the result:

Proposition 4.27 (Kashaev). The map ρ satisfies

ρ(A[j])
3 = id, (4.30)

ρ(T[k][l])ρ(T[j][k]) = ρ(T[j][k])ρ(T[j][l])ρ(T[k][l]), (4.31)
ρ(A[j])ρ(T[j][k])ρ(A[k]) = ρ(A[k])ρ(T[k][j])ρ(A[j]), (4.32)

ρ(T[j][k])ρ(A[j])ρ(T[k][j]) = ζρ(A[j])ρ(A[k])ρ(P(jk)), (4.33)

where ζ = e−πi(b + b−1)2/12, as well as the trivial relations:

ρ(P(jk))
2 = id, (4.34)

ρ(P(jk))f...,[j],...,[k],...ρ(P(jk)) = f...,[j],...,[k],..., (4.35)
ρ(P(jk)) = ρ(P(kj)). (4.36)

Therefore ρ : Fdot → GL(H) is an "almost Gdot-homomorphism" into GL(L2(H) in other
words ρ(Rdot) = C∗.

Remark 4.28. In Chapter 3 we saw that a change of polarization was related via the Fourier
transform. In quantization of Teichmüller space the story is more involved. We saw in
(4.11), (4.12) that elementary moves changes coordinates not in a trivial way. We need some
kind of logarithm for handling the sum in equation (4.12). What saves us is the Faddeev
quantum dilogarithm function which let us translate from one set of coordinates to another.

From the quantization of Teichmüller space Andersen and Kashaev build tetrahedral
operators satisfying conditions related to the change of coordinates on the Teichmüller
space. We will look at this in greater detail in Chapter 7.





Chapter 5

Hyperbolic geometry

5.1 Hyperbolic geometry

Recall that the hyperbolic 3-space H3 can be viewed as the upper half space {(x1, x2, x3) ∈
R3 | x3 > 0}with metric

ds2 =
1

x2
3

(dx2
1 + dx2

2 + dx2
3), x3 > 0, (5.1)

of constant curvature −1. The boundary ∂H3, topologically a two-sphere, consists of the
plane x3 = 0 together with a point at infinity. The group of isometries of H3 is PSL(2,C)
which acts on the boundary via Möbius transformations. In the upper half-space model the
geodesic surfaces are spheres of any radius which intersect the boundary ∂H3 orthogonally.

An ideal tetrahedron ∆ in H3 has by definition all its faces along geodesic surfaces, and
all vertices lies on the boundary of H3. Using Möbius transformations one can always fix
three of the vertices of an ideal tetrahedron to be (0, 0, 0), (1, 0, 0) and ∞. The last vertex
having the coordinate (x1, x2, 0), with x2 ≥ 0. This fourth vertex defines a complex number
z = x1 + ix2 which is usually called the shape parameter. At the various edges the faces of
the tetrahedron form dihedral angles arg zj , (j = 1, 2, 3). The invariants zj , j = 1, 2, 3, are
given by

z1 = z, z2 = 1− 1

z
, z3 =

1

1− z . (5.2)

Figure 5.1: On the left hand side we see an ideal tetrahedron in upper half space. On the
right hand side we se the projection of the tetrahedron onto the boundary plane.

Although all points of the ideal tetrahedron ∆ lie on the boundary which implies ∆ to
be noncompact, the (hyperbolic) volume is finite: The hyperbolic volume of a tetrahedron

41
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∆z with shape variable z, is given by

Vol ∆z = D(z), (5.3)

where D(z) is the Bloch–Wigner dilogarithm function, related to the usual dilogarithm
function (see Section 11) Li2 by the relation

D(z) = Im(Li2(z)) + arg(1− z) log|z|. (5.4)

One should here note that any zj can be taken to be the shape parameter of ∆, and that
D(zj) = Vol(∆z) for each j. We allow the shape parameter z to take values in C\{0, 1},
noting that for z ∈ R the tetrahedron is degenerate and that for Im z < 0 the tetrahedron
will have negative volume due to orientation.

5.2 Geometrization of knot complements

A hyperbolic structure on a 3-manifold is a metric that is locally isometric to H3. Most 3-
manifolds are hyperbolic. Among these are the majority of knot and link complements in
S3. We call a 3-manifold hyperbolic if it admits a hyperbolic structure that is geodesically
complete and has finite volume. We say that a knot K ∈ S3 is hyperbolic if the knot
complement S3\K is homeomorphic to H3/Γ, where Γ is a torsion free subgroup of the
group of orientation preserving isometries of H3. Thurston proved that a knot complement
is hyperbolic as long as the knot is not a torus or a satellite knot [47]. Every closed 3-
manifold can be obtained by Dehn surgery on a knot in S3. Employing Dehn surgery on a
hyperbolic knot in S3 yields hyperbolic manifolds for all but finitely many such surgeries
[48].

It is clear that if two hyperbolic knot complements are isometric then their complements
in S3 are homeomorphic as well. What is far from clear is that the opposite should be true.
However by the Mostow–Prasad Rigidity theorem this is indeed the case. In other words;
two knot complements H3/Γ1 and H3/Γ2 are homeomorphic if and only if Γ1 and Γ2 are
conjugate in the isometry group.

One can also phrase the property of hyperbolicity of a knot in terms of representations
of its fundamental group ρ : π1(S3\K) → PSL(2,C). Having a complete hyperbolic struc-
ture amounts to have a unique (up to conjugation) faithful representation. The importance
of these observations is that the hyperbolic structure is a topological property of the knot.
Hence geometric information can be used to distinguish knots. In a more mathematical
language, geometric invariants become topological invariants and since the hyperbolic vol-
ume of a knot complement is a geometric invariant it also becomes a topological invariant.

It is not clear how to define the volume in the case where the knot is not hyperbolic. The
standard thing to do is to extend the hyperbolic volume by stating it to be additive under
connected sum so we can restrict to prime knots. So suppose we have a non-hyperbolic
prime knot. By Thurston’s theorem such a knot is either a torus knot or a satellite knot. We
now define the volume of a torus knot to be zero and the volume of a satellite knot to be the
volume of its companion plus the volume of its pattern. This provides a natural extension
of the volume to all knot complements that is known to agree with the Gromov norm of
knot complement.

5.3 Ideal triangulation

Any orientable hyperbolic 3-manifold M is homeomorphic to the interior of a compact
manifold M with boundary consisting of finitely many tori. M itself can be viewed or
thought of as M union neighbourhood of the cusps each of the neighbourhoods homeo-
morphic to T2 × [0,∞). Therefore we can construct hyperbolic manifolds from knot or
link complements in closed 3-manifolds. Furthermore every hyperbolic manifold has an
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ideal triangulation which means a finite decomposition into ideal tetrahedra where some
of the tetrahedra might be degenerate. See e.g.[48]. It is believed and conjectured that
non-degenerate tetrahedra are sufficient.

Given a finite set of tetrahedra {∆i}ni=1 one can construct a manifold M by gluing faces
of tetrahedra in pairs. Of course vertices of tetrahedra are not a part of the manifold M
and that the combined boundaries of their neighbourhoods in M are tori. One can always
find a triangulation of M where edges are oriented such that the boundary of each face
(shared by two tetrahedra) has two edges oriented in the same direction and the last one
opposite. Vertices of each tetrahedra can now canonically be labeled by numbers 0, 1, 2, 3
corresponding to the number of edges entering the vertices. Now each tetrahedron can be
identified with one of the tetrahedra in Figure 5.2.

Figure 5.2: Different orientations of tetrahedra. On the left hand side a positively oriented
tetrahedron, on the right hand side a negatively oriented tetrahedron.

This labelling of vertices induces an orientation of each tetrahedron. Having an orien-
tation of each tetrahedron allows us to give shape parameters to the tetrahedra (zi1, z

i
2, z

i
3)

running counterclockwise around each vertex if the tetrahedron is positively oriented and
clockwise if the orientation is negative. See figure 5.2

For a manifold M with cusps specified by holonomy parameters uj the shape parame-
ters zik of the tetrahedron ∆i in its triangulation are fixed by two sets of conditions.

(i) The product of shape parameters zij around every edge in the triangulation must
equal 1 in order for the hyperbolic structure between adjacent tetrahedra to match.

(ii) One can compute the holonomy eigenvalues around each torus boundary in M as a
product of zij ’s by mapping out the neighbourhood of each vertex in what is called a
developing map, and following the procedure illustrated in [35]. There is one distinct
vertex inside each boundary torus. It is then required that the eigenvalues of the
holonomy around the k-th component are equal to e±uk .

These conditions are what is usually referred to as the edge and cusp condition respectively.

5.3.1 The Bloch group and hyperbolic volume

When studying hyperbolic manifolds one of the interesting objects to consider is the vol-
ume spectrum

Vol = {VolM |M is a hyperbolic 3-manifold} ⊂ R+.

From the work of Jørgensen and Thurston it is known that Vol is a countable and well-
ordered subset of R+. And its exact nature is of great interest in both topology and number
theory. Equation (5.3) as it stands says nothing about this since any real number can be
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written as a finite number of values D(z), z ∈ C. However the shape parameters zj of the
tetrahedra triangulating a complete hyperbolic 3-manifold satisfy an extra relation, namely

n∑

i=1

zi ∧ (1− zi) = 0, (5.5)

where the sum is taken in the abelian group Λ2C∗. Now (5.3) does give information about
Vol because the set of numbers

∑n
i=1D(zi) with zi satisfying (5.5) is countable. This state-

ment can be made more precise by introducing the Bloch group. Consider an abelian group
of formal sums

[z1] + · · ·+ [zn] ∈ C∗\{1}
satisfying (5.5). It is not hard to see that the elements

[x] + [1/x], [x] + [1− x], [x] + [y] +

[
1− x
1− xy

]
+ [1− xy] +

[
1− y

1− xy

]
(5.6)

with x, y ∈ C∗\{1}, xy 6= 1 corresponding to the symmetry properties and the five-term
relation satisfied by D(·), are contained in the Bloch group.

Definition 5.1. The Bloch group is defined as

BC = {[z1] + · · ·+ [zn] satisfying (5.5)}/(subgroup generated by the elements (5.6)).

Every 3-manifold M has a well-defined class in the Bloch group. The five-term rela-
tion takes into account the fact that a polyhedron with five ideal vertices can be decom-
posed into ideal tetrahedra in multiple ways. The five ideal tetrahedron in this poly-
gon, each obtained by deleting an ideal vertex, can be given the five shape parameters
x, y, 1−x

1−xy , 1 − xy,
1−y

1−xy appearing in relation (5.6). The signs of the different terms corre-
spond to orientations. Geometrically this five-term relation can be visualised as the "2-3"
Pachner move, illustrated in Figure 5.3.

Figure 5.3: The "2-3" Pachner move.

The class [M ] of a hyperbolic 3-manifold M in the Bloch group can be computed by
summing (with orientation) the shape parameters [zi] corresponding to any ideal triangu-
lation, but is independent of triangulation. Hence hyperbolic invariants may be obtained
from functions compatible with (5.6). And the hyperbolic volume of a 3-manifold M trian-
gulated by {∆i}ni=1 is given by

VolM =

n∑

i=1

εiD(zi), (5.7)

where εi is either plus or minus 1 corresponding to the orientation of the tetrahedron in
question.



Chapter 6

Topological quantum field theory

6.1 The historical background

The idea of topological invariants defined by use of path integrals was actually first in-
troduces by A.S. Schwarz (1977) and formalised in its full power by E. Witten (1988) who
introduced the notion of a Topological quantum field theory (TQFT). Such a theory, inde-
pendent of Riemannian metrics, is rather rare in quantum physics. On the other hand such
theories admit a rather simple axiomatic description first suggested by Atiyah [7]. This
description was inspired by Segal’s axioms for a 2-dimensional conformal field theory. The
axiomatic formulation makes the theories suitable for purely mathematical research, which
involves combining methods from topology, algebra and mathematical physics.

In the 80′s Witten interpreted the Chern–Simons action (with compact gauge group) as
the Lagrangian of a quantum field theory. In these theories the partition function plays an
important role. This function is related to the partition function in statistical mechanics.
In the case of quantum field theory the partition function is given by a path integral. Let
M be a 3-manifold and G a (simple) Lie group. The quantum partition function is defined
formally by the following path integral

Zk(M) =

∫

AP /GP
e2πikCSM (A)DA,

k ∈ N. This is an ill-defined quantity since the space we integrate over is infinite-dimensional
and therefore there is currently no canonical way to make sense of the integral. Neverthe-
less Witten argues on the physical level of rigour that the path integral defines a topological
invariant of the 3-manifold.

Subsequently Reshetikhin and Turaev were able to define TQFTs using the representa-
tion theory of quantum groups [44],[43],[50] in the case where G is compact. We should
of course also mention the skein theoretical construction of TQFT due to Blanchet, Habeg-
ger, Masbaum and Vogel [9]. Essentially equivalent to the construction of Reshetikhin and
Turaev with gauge group G = SU(2).

6.2 TQFT from the axiomatic point of view

Let us look at the axioms for a TQFT following Turaev [49].
An (n+ 1)-dimensional TQFT (V,Z) over a scalar field k assigns to any closed oriented

n-manifold Σ a finite dimensional vector space V (Σ) over k and assigns to every cobordism
(M,Σ,Σ′) a k-linear map

Z(M) = Z(M,Σ,Σ′) : V (Σ)→ V (Σ′).

Here a cobordism (M,Σ,Σ′) between Σ and Σ′ is a compact oriented (n+1)-dimensional
manifold endowed with a orientation preserving diffeomorphism ∂M ' Σ t Σ′, where

45
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the overline indicates that the orientation is reversed. All manifolds and cobordisms are
supposed to be smooth. In order for (V,Z) to be a TQFT, the following axioms must be
satisfied.

(i) Naturality. Any orientation preserving diffeomorphism f of closed oriented n-dimen-
sional manifolds Σ and Σ′ induces an isomorphism f] : V (Σ) → V (Σ′). For a diffeo-
morphism g between cobordisms (M,Σ1,Σ2) and (M ′,Σ′1,Σ

′
2) the following diagram

must commute:

V (Σ1)

Z(M)

��

(g|Σ1
)]// V (Σ′1)

Z(M ′)

��
V (Σ2)

(g|Σ2 )]// V (Σ′2)

(ii) Functoriality. If a cobordism (W,Σ,Σ′) is obtained by gluing two cobordisms (M,Σ, Σ̃)

and (M ′, Σ̃′,Σ′) along a diffeomorphism f : Σ̃ → Σ̃′ then the following diagram
should commute:

V (Σ)

Z(M)

��

Z(W ) // V (Σ′)

Z(M ′)
��

V (Σ̃)
f] // V (Σ̃′)

(iii) Normalization. For any n-dimensional manifold Σ, the linear map

Z([0, 1]× Σ) : V (Σ)→ V (Σ)

is the identity.

(iv) Multiplicativity. There are functorial isomorphisms

V (Σ t Σ′) ' V (Σ)⊗ V (Σ′),

V (∅) ' k,
such that the following diagrams commute:

V ((Σ t Σ′) t Σ′′)

��

' (V (Σ)⊗ V (Σ′))⊗ V (Σ′′)

��
V (Σ t (Σ′ t Σ′′)) ' V (Σ)⊗ (V (Σ′)⊗ V (Σ′′))

V (Σ t ∅)

��

' V (Σ)⊗ k

��
V (Σ) = V (Σ)

Here ⊗ = ⊗k is the tensor product over k. The vertical maps are the ones induced
by the obvious diffeomorphisms, and the standard isomorphisms of vector spaces
respectively.

(v) Symmetry. The isomorphism

V (Σ t Σ′) ' V (Σ′ t Σ)

induced by the obvious diffeomorphism corresponds to the standard isomorphism of
vector spaces

V (Σ)⊗ V (Σ′) ' V (Σ′)⊗ V (Σ).

Given a TQFT (V,Z), we obtain an action of the group of diffeomorphisms of a closed
oriented n-dimensional manifold Σ on the vector space V (Σ). This action can be used
to study this group. An important feature of a TQFT (V,Z) is that it provides numerical
invariants of compact oriented (n + 1)-dimensional manifolds without boundary. This is
so because such a manifold M can be considered as a cobordism between two copies of ∅.
In this case Z(M) ∈ Homk(k, k) = k.
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6.3 Quantum Chern–Simons

In Chapter 2 we introduced the basics of classical Chern–Simons gauge theory. We de-
fined the Chern–Simons action (2.13) which was done by integrating the Chern–Simons la-
grangian or form (2.12) over space-time (a compact oriented 3-manifold). Since the Chern-
Simons form lives on the total space of a bundle, and not on the base, we choose a section
of the bundle to define the action. On closed 3-manifolds we saw, that the integral was
independent of the section, up to an integer, if an appropriate normalization was done
on the bilinear form. We ended up by defining a line bundle on the moduli space of flat
connections, both if M was closed and if M has boundary ∂M = Σ.

The story is very different in the non-compact case. And there is still no mathemat-
ical definition of the path integral in this case. We will now follow Wittens approach to
quantum Chern–Simons theory:

6.4 The complex story

We now shift gear since what we really want is the complex variant of the story. Now let
G denote a compact gauge group and denote its non-compact complexification by GC, the
respective Lie algebras will be denoted by g and gC. We assume that the gauge groups
G,GC are reductive.

It turns out that the classical action of Chern–Simons theory with a complex gauge
group is purely topological, as is in the compact case. In other words; the action is inde-
pendent of the metric of the underlying 3-manifold M .

Definition 6.1. The Chern–Simons action for a complex gauge field A on a 3-manifold M
can be written as a sum of two classically topological terms, one for A and one for the
complex conjugate A:

L =
t

8π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

t

8π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (6.1)

The field A is a locally defined gC-valued one-form on the manifold M . The two cou-
pling constants t and t is conveniently written as

t = k + is, t = k − is,

with k, s being real and A = A + iB with A,B being g-valued one forms. The Lagrangian
then takes the form

L =
k

4π

∫

M

Tr

(
A ∧ dA−B ∧ dB +

2

3
A ∧A ∧A− 2A ∧B ∧B

)

− s

2π
Tr

(
A ∧ dB + 2A ∧A ∧B − 2

3
B ∧B ∧B

)
. (6.2)

The parameter k is subject to the same quantization law as in Chern–Simons theory with
compact gauge group G. So if ” Tr ” is normalized correctly (if G = SU(N) then Tr should
denote the trace in the N dimensional representation), then k must be an integer. In [52] it
is furthermore shown that s has to be either real or imaginary in order to obtain a unitary
field theory. As an example, let us look at the case, where GC = SL(2,C). This is the group
that describes (2 + 1)-dimensional gravity in a space-time of Lorentz signature and with a
positive cosmological constant. Writing the Lagrangian (6.2) it is convenient to take G to
be the real form SL(2,R) of SL(2,C), then A can be identified with the spin connection ω
of general gravity, and B with the vierbein e. Then the term of (6.2) proportional to s is
the Einstein–Hilbert action with a cosmological constant, and under the resulting unitary
structure the coupling s must be real.
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It is explained in [52] that introducing a non-compact gauge group is a perfectly accept-
able option in Chern–Simons theory. In Yang–Mills theories, a non-compact gauge group
would lead to a kinetic term that is not positive definite, and hence to unbounded energy
(or an ill-defined path integral). In Chern-Simons theory with complex gauge group the
kinetic term is indefinite, but this is no problem: The Hamiltonian of the theory vanishes
due to topological invariance, so the “energy” is always exactly zero.

Given a 3-manifold M (possibly with boundary), Chern–Simons theory associates to
M a "quantum GC-invariant" which we in this section denote as Zphys

k (M). Physically,
this quantum invariant is the partition function of the Chern–Simons gauge theory on M ,
defined as the path integral

Z
phys
k (M) =

∫

AP /GP
eiLDA. (6.3)

From a mathematical point of view, this path integral is ill-defined. There is currently no
canonical way to make sense of the integral over the infinite dimensional space AP /GP .
Nevertheless, since the action is independent of the metric of M , one might expect that the
quantum GC invariant Zphys

k (M) is a topological invariant of M .
The question then rises: How does one compute the invariant Zphys

k (M)? In Chern–
Simons theory with compact gauge group the invariant is computed by cutting M into
simple pieces, where the path integral can be evaluated. Then by gluing rules the invariant
is assembled. A similar set of gluing rules should exist in a theory with complex gauge
group, but these are expected to be much more involved than those in the compact case.
The reason being that the Hilbert space of this theory is infinite dimensional. One conse-
quence is that where finite sums which appear in gluing rules for Chern–Simons theory
with compact gauge group we will now have integrals over continuous parameters.

To be modest one can try to compute Zphys
k (M) perturbatively, by expanding the inte-

gral (6.3) in inverse powers of t and t around a saddle point which is a classical solution. In
Chern–Simons theory, the classical solutions, or extrema of the action (6.2), are flat connec-
tions. These are connections satisfying the equations

dA+A ∧A = 0, dA+A ∧A = 0.

The flat GC connections on a 3-manifold M are determined by their holonomies. So the
flat connections are determined by a homomorphism from the fundamental group of the
3-manifold into the group GC, i.e.

ρ : π1(M)→ GC,

This homomorphism is of course only defined modulo gauge transformations, which act
via conjugation by elements in GC. Therefore the moduli space of classical solutions can be
written as

Mflat(GC;M) = Hom(π1(M);GC)/GC.

Consider a gauge equivalence class of a given flat connection A ∈ Mflat(GC;M) corre-
sponding to the homomorphism ρ. The classical Chern–Simons action is a sum of terms for
A and A, and it turns out that the perturbative expansion Zρ(M) of the partition function
Z

phys
k (M) will factorize into a product of holomorphic and antiholomorphic terms:

Zρ(M) = Zρ(M ; t)Zρ(M ; t). (6.4)

As argued in [53] and [11] the exact non-perturbative function Zphys
k (M) depends in a non-

trivial way on both t and t, and the best hope is that it can be written in the form

Z
phys
k (M) =

∑

ρ

Zρ(M ; t)Zρ(M ; t),
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where the sum is over all classical solutions. In [11] the perturbative function Zρ(M) is
studied. Due to the factorization into its holomorphic and antiholomorphic part, it suffices
to study the holomorphic part Zρ(M ; t). The perturbative expansion of this function is in
inverse powers of t, so it becomes convenient to introduce a new expansion parameter

~ =
2π

t
,

which plays the role of Planck’s constant.
The semiclassical limit corresponds to ~ → 0. The perturbative function Zρ(M ; ~) is

an asymptotic power series in ~. The general form is found by doing a stationary phase
approximation to the integral (6.3) and turns out to be

Zρ(M ; ~) = exp

(
1

~
S

(ρ)
0 − 1

2
δ(ρ) log ~ +

∞∑

n=0

S
(ρ)
n+1~

n

)
.

This is the general form of the perturbative partition function in Chern–Simons gauge the-
ory with any gauge group, compact or non-compact.

The leading term S
(ρ)
0 in the asymptotic expansion is the value of the classical Chern–

Simons functional evaluated on a flat gauge connection A(ρ) associated with a homomor-
phism ρ. The coefficient of the second term δ(ρ) is an integer which like all other terms
depends on the manifold M , the gauge group GC and the classical solution ρ. The rest of
the terms S(ρ)

n are obtained by summing over Feynman diagrams with n loops.

6.4.1 Quantization

We now turn to the problem of quantization of the basic Lagrangian (6.1):

L =
t

8π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

t

8π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

on a 3-manifold of the form Σ× R where Σ is an oriented closed two dimensional surface.
And A is a connection on a principal GC-bundle E over M .

Canonical quantization will associate a Hilbert space HΣ to the Riemann surface Σ.
It turns out that the Hilbert space HΣ must depend only on Σ as a topological surface,
with no chosen metric or complex structure. The Hilbert space HΣ will be obtained by
quantizing an appropriate symplectic manifold. The symplectic manifold we would like
to quantize is the moduli space of stationary points of the Lagrangian (6.1). The Euler–
Lagrange equations derived from (6.1) are as follows. If we vary the connection in S

δL =
t

8π

∫

M

Tr (δA ∧ dA+A ∧ dδA+ 2δA ∧A ∧A)

+
t

8π

∫

M

Tr
(
δA ∧ dA+A ∧ dδA+ 2δA ∧A ∧A

)
.

Using the fact that d is an odd derivation, we get the equation

Tr(A ∧ dδA) = −dTr(A ∧ δA) + Tr(dA ∧ δA),

which implies

δL =
t

4π

∫

M

Tr(δA ∧ (dA+A ∧A)) +
t

8π

∫

∂M

Tr(δA ∧A)

+
t

4π

∫

M

Tr(δA ∧ (dA+A ∧A)) +
t

8π

∫

∂M

Tr(δA ∧A),
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where the boundary terms drop out because we have assumed that ∂M = ∅. In summary
the Euler–Lagrange equation is the flatness of the curvature

FA = dA+A ∧A = 0, FA = dA+A ∧A = 0.

This tells us that the moduli space that must be quantized is the moduli spaceMflat(GC;M)
of flat GC-connections on Σ, up to gauge transformations. The moduli spaceMflat(GC;M)
has a t-dependent symplectic structure that can be deduced from the Lagrangian,

ω =
i

4~

∫

Σ

Tr(δA ∧ δA). (6.5)

The Hilbert spaceHΣ is then obtained by quantizing the moduli space of flatGC-connections
on Σ with symplectic structure (6.5) as described by Witten in [52], done by regarding
Mflat(GC;M) as the symplectic quotient of the space AP,C of all GC−connections on Σ, by
the action of the group of gauge transformations. Quantization ofMflat(GC;M) proceeds
by quantizing AP,C and the picking out the GC-invariant subspace.

According to Witten, the line bundle can be characterized by saying that the commuta-
tors of covariant derivatives in AP,C acting on sections of Lpr, are

[
δ

δAai (z)
,

δ

δAbj(w)

]
= − t

8π
δabεijδ(z, w),

[
δ

δAai (z)
,

δ

δAbj(w)

]
= − t

8π
δabεijδ(z, w),

with all other components vanishing. Here εij is the Levi–Civita tensor density on the
oriented surface Σ and we have expand the connection A =

∑AaTa, where {Ta} is a basis
of the real Lie algebra g whose complexification is gC.

One then defines a pre-quantum Hilbert space Hpr consisting of square integrable sec-
tions of the pre-quantum line bundle. The constraint operators, which are the generators of
the gauge group, are acting on the pre-quantum Hilbert spaceHΣ and the gauge invariant
subspace ofHpr is the subspace annihilated by these operators.

The pre-quantum Hilbert space is much bigger than the desired Hilbert space and the
Hilbert space is obtained from Hpr by a choice of polarization. We will not go further into
details about the polarization.

We now look at a 3-manifoldM with boundary ∂M = Σ, and the associated state |M〉 ∈
HΣ. In a semi-classical theory, quantum states correspond to Lagrangian submanifolds of the
classical phase space. In this case, the phase space is Mflat(GC;M) and the Lagrangian
submanifold associated to a 3-manifold M with boundary ∂M = Σ consists of the classical
solutions on M , which is the moduli space of flat connections on M ,

Mflat(GC,M) = Hom(π1(M), GC)/GC.

Then
L = ι(Mflat(GC,M)),

under the map ι :Mflat(GC,M)→Mflat(GC,Σ) induced by the natural inclusion π1(Σ)→
π1(M).

6.4.2 Perspectives

Let us try to relate the story to what we saw in Chapter 2 where we looked at Chern–Simons
theory with compact gauge group. In [41] it is shown with G = SU(2) that

S(k)(A) =

∫

A∈A/G
e2πikCSM (A)DA (6.6)
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where ι∗ΣA = A gives a holomorphic section of the bundle Lk:

Lk

��
MFlat(G,Σ) = µ−1(0)/G ⊆ A/G.

Sk

AA

If we let T be a smooth manifold parametrizing Kähler structures on M . That is, assume
there is a map I : T → C∞(M,End(TM)) mapping σ → Iσ such that for every σ ∈ T ,
(M,ω, Iσ) is Kähler. We denote by Mσ the Kähler manifold (M,ω, Iσ). Then it turns out
that S(k)

σ ∈ H0(Mσ,Lkσ). In [4] Andersen proved that one can construct a Hitchin connection
∇H and the quantum spaces associated with different complex structures can be identified
through parallel transport of the Hitchin connection. For a deeper investigation on this
subject se also [17].

However in the non-compact case G = SL(2,C) one obtains smooth sections of T ×
C∞(M,Lk) → T . And the connection needed to identify quantum spaces is even more
subtle than the Hitchin connection. This work is under construction by Andersen and
Gammelgaard. Who have constructed a Hitchin–Witten connection, which is needed to
identify quantum spaces.

The Chern–Simons theory with non-compact gauge group is expected to be related to
the Andersen–Kashaev TQFT which we are going to study in the next chapters.





Chapter 7

Andersen–Kashaev TQFT

In this section we recall the work of Jørgen Ellegaard Andersen and Rinat Kashaev in their
joint work A TQFT from quantum field theory [6]. We will recall the setup and state the main
results and conjectures regarding their work before continuing to their new formulation of
the theory which is presented in their joint work A new formulation of the Teichmüller TQFT
[5].

7.1 Preliminaries

7.1.1 Oriented triangulated pseudo 3-manifolds

This subsection contains some of the preliminaries for defining the Andersen–Kashaev
TQFT. We start by defining oriented triangulated pseudo 3-manifolds and equip them with
some extra structure, which will be of great importance later on.

Let Y be a finite union of disjoint compact 3-simplices each having totally ordered ver-
tices, which induces an orientation on the tetrahedra, and let Ψ be a collection of affine ver-
tex order-preserving and orientation reversing affine homeomorphisms {ψ1, . . . , ψr} such
that

1. for each ψi, there are two distinct codimension-1 faces τi and δi in Y for which the map
ψi : τi → δi is an affine homeomorphism, and

2. {τi, δi} ∩ {τj , δj} = ∅ for i 6= j.

The quotient space X = Y/Ψ, obtained from Y by identifying x ∈ τi with ψi(x) ∈ δi for
each i, is called an oriented triangulated pseudo 3-manifold it is a specific CW-complex with
oriented edges. For i ∈ {0, 1, 2, 3}, we will denote by ∆i(X) the set of cells with dimension
i in X . For any i > j we denote

∆j
i (X) = {(a, b) | a ∈ ∆i(X), b ∈ ∆j(a)}

with a natural projection map

φi,j : ∆j
i (X)→ ∆j(X).

We also have the canonical partial boundary maps

∂i : ∆j(X)→ ∆j−1(X), 0 ≤ i ≤ j.

In the case where S = [v0, . . . , vj ] is a j-dimensional simplex with ordered vertices, the
boundary map takes the form

∂iS = [v0, . . . , vi−1, vi+1, . . . , vj ], i ∈ {0, . . . , j}.

53
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7.1.2 Shaped pseudo 3-manifolds

Let X be an oriented triangulated pseudo 3-manifold.

Definition 7.1. A shape structure on X is an assignment to each edge of each tetrahedron of
X a positive number called the dihedral angle

αX : ∆1
3(X)→ R+,

so that the sum of the three angles at the edges from each vertex of each tetrahedron is π.
(For a generalized shape structure the map αX goes to R) An oriented triangulated pseudo
3-manifold with a shape structure will be called a shaped pseudo 3-manifold.

It is straightforward to see that opposite edges of any tetrahedron must have the same
dihedral angle. So each tetrahedron acquires three dihedral angles associated to three pairs
of opposite edges which sum up to π. This is of course closely connected to the shape
variable from section 5.1. Indeed, the usual shape variable for a tetraahedron [v0, v1, v2, v3],
with dihedral angles α, β, γ associated to the edges [v0, v1], [v0, v2], [v0, v3], is

z =
sinβ

sin γ
eiα.

Definition 7.2. To each shape structure on X , we associate a Weight function

ωX : ∆1(X)→ R+,

which to each edge e of X associates the sum of dihedral angles around it,

ωX(e) =
∑

b∈(φ3,1)−1(e)

αX(b).

Definition 7.3. An edge e of a shaped triangulated pseudo 3-manifold X will be called
balanced if it is internal and ωX(e) = 2π. An edge which is not balanced will be called
unbalanced. A shaped 3-manifold where all edges are balanced will be called fully balanced.

Remark 7.4. A shape structure whose weight function takes the value 2π on each edge of a
closed triangulated pseudo 3-manifold is the same as the angle structure introduced by Cas-
son, Rivin and Lackenby. To study the necessary and sufficient conditions for angle struc-
tures to exist on the interior M of a compact ideal (topological) triangulated 3-manifold
with non-empty boundary one should consult [34]. Feng and Tillmann uses normal sur-
face theory to state under which condition angle structures are possible. Cason and Rivin
observed that the existence of an angle structure implies that all boundary components of
the manifold in question are tori or Klein bottles and that the manifold is irreducible and
atoroidal.

Theorem 7.5 (Hodgson, Rubinstein, Segerman). is a cusped hyperbolic 3-manifold home-
omorphic to the interior of a compact 3-manifold M with torus or Klein bottle boundary
components. If

H1(M ;Z2)→ H1(M ; ∂M ;Z2)

is the zero map thenM admits an ideal triangulation with a fully balanced shape structure.

For a proof see [23].
A corollary is that if M is a hyperbolic link complement in S3, then M admits an ideal

triangulation with a fully balanced shape structure.
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7.1.3 Z/3Z action on pairs of opposite edges of tetrahedra

For an oriented triangulated pseudo 3-manifold X we let ∆
1/p
3 denote the set of pairs of

opposite edges of all tetrahedra in the triangulation of X . Set theoretically this is just the
quotient of the set ∆1

3(X) with respect to the equivalence relation given by all pairs of
opposite edges of all tetrahedra. The quotient map is written as

p : ∆1
3(X)→ ∆

1/p
3 (X).

We define a skew symmetric function ε : ∆
1/p
3 (X)×∆

1/p
3 (X)→ {0,±1} by

εe,e′ =





0 if e = e′ or if e and e′ belong to different tetrahedra
1 if e′ is right after e in cyclic order
−1 if e′ is right before e in cyclic order

Remark 7.6. ε gives us a symplectic structure on R∆
1/p
3 (X)

+ and on R∆
1/p
3 (X), the latter is the

set of generalized shape structures.

7.1.4 Levelled shaped 3-manifolds

What we have defined so far is a shaped oriented triangulated pseudo 3-manifold. Let us
now also define what is called the level for our shaped 3-manifold.

Definition 7.7. A levelled shaped 3-manifold is a pair (X, lX) where X is a shaped pseudo
3-manifold X and a real number lX ∈ R called the level.

This definition extends the shape structure by a real parameter which will make the
TQFT to be defined well defined.

One can show that the TQFT will enjoy a certain gauge-invariance which is as follows.

Definition 7.8. Two levelled shaped pseudo 3-manifolds (X,αX , lX) and (Y, αY , lY ) are
called gauge equivalent if there exists an isomorphism h : X → Y of the underlying cellular
structures and a function

g : ∆1(X)→ R

such that

∆1(∂X) ⊂ g−1(0), αY (h(a)) = αX(a) + π
∑

b∈∆1
3(X)

εp(a),p(b)g
(
φ3,1(b)

)
∀a ∈ ∆1

3(X)

and

lY = lX +
∑

e∈∆1(X)

g(e)
∑

a∈(φ3,1)−1(e)

(
1

3
− αX(a)

π

)

Proposition 7.9. The weights on edges are gauge invariant in the sense that

ωX = ωY ◦ h,

if X,Y are gauge equivalent.
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Proof. Let e be an edge in X . We want to show, that ωX(e) = ωY (h(e)). The left hand side
gives us

ωX(e) =
∑

a∈(φ3,1)−1(e)

αX(a) =
∑

a∈(φ3,1)−1(e)


αY (h(a))− π

∑

b∈∆1
3(X)

εp(a),p(b)g(φ3,1(b))




=
∑

a∈(φ3,1)−1(e)

αY (h(a)) = (ωY ◦ h)(e),

because the sum π
∑
b∈∆1

3(X) εp(a),p(b)g(φ3,1(b)) disappears: Either φ3,1(b) is in ∆1(∂X)

which makes g(φ3,1(b)) = 0, or else the edge e is shared by different tetrahedra and ε = 0,
or (φ3,1)−1(e) lies in the same tetrahedron but then p(a) = p(b) because of the gluing con-
ditions and ε = 0. Thereby the left hand side is equal to the right hand side for every
e ∈ ∆1(X).

The gauge equivalence is called based gauge equivalence in the case where the isomor-
phism h : X → X is an isomorphism.

We observe that the (based) gauge equivalence relation on leveled shaped pseudo 3-
manifolds induces a (based) gauge equivalence relation on shaped pseudo 3-manifolds
under the map which forgets the level. Let the set of gauge equivalence classes of based
levelled shape structures on X be denoted LSr(X) and let Sr(X) denote the set of gauge
equivalence classes of based shape structures on X .

7.1.5 Categroid

The Andersen–Kashaev TQFT will be well defined on a certain sub-categroid of the cate-
gory of levelled shaped pseudo 3-manifolds. A categroid C consists of a family of objects
Obj(C) and for any pair of objects A,B from Obj(C) a set of morphisms MorC(A,B) such
that the following two properties are satisfied:

1. For any three objects A,B,C ∈ Obj(C) there is a subset

KCA,B,C ⊂ MorC(A,B)×MorC(B,C),

called the composable morphisms and a composition map

◦ : KCA,B,C → MorC(A,C),

such that composition of morphisms is associative.

2. For any object A ∈ Obj(C) we have an identity morphism idA ∈ MorC(A,A) which is
composable with any morphism f ∈ MorC(A,B) or g ∈ MorC(B,A) and we have the
equations

idA ◦f = f and g ◦ idA = g.

Let B be the category where the objects are triangulated surfaces and composition is
gluing along the relevant parts of the boundary by edge orientation preserving and face
orientation reversing CW-homeomorphisms with the obvious composition of dihedral an-
gles and addition of levels. ForX,Y ∈ B the morphisms Mor(X,Y ) are equivalence classes
of levelled shaped pseudo 3-manifolds with boundary identified with X t Y . i.e.

[(X,αX , lX)] ◦ [(Y, αY , lY )] = [(X ∪Σ Y, αX ∪ αY , lX + lY )]
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Remark 7.10. There are of course different ways of splitting the boundary. Therefore a lev-
elled shaped pseudo 3-manifold can be interpreted as different morphisms inB. The canon-
ical choice is the following: For a tetrahedron T in R3 with ordered vertices [v0, v1, v2, v3]
we can define its sign by

sign(T ) = sign(det (v1 − v0, v2 − v0, v3 − v0)).

Furthermore we define the sign on faces by

sign(∂iT ) = (−1)i sign(T ), i ∈ {0, 1, 2, 3}.

For a triangulated pseudo 3-manifold X , the sign of faces of the tetrahedra in the triangu-
lation of X induces a sign function on the faces of the boundary of X ,

signX : ∆2(∂X)→ {±1}.

This gives us a splitting of the boundary into two parts, one negative and one positive;

∂X = ∂−X ∪ ∂+X, ∆2(∂X) = sign−1(±1).

We will think of the equivalence class of levelled shaped pseudo 3-manifolds X as the B-
morphisms between the objects ∂−X and ∂+X .

Before defining the source categroid we need the notion of an admissible pseudo 3-
manifold.

Definition 7.11. An oriented triangulated pseudo 3-manifold X is called admissible if

H2(X −∆0(X),Z) = 0.

7.1.6 The source categroid

Definition 7.12. The categroid Ba is the subcategroid of B whose morphisms consist of
equivalence classes of admissible levelled shaped pseudo 3-manifolds.

KBaA,B,C = {(X1, X2) ∈ MorBa(A,B)×MorBa(B,C) |H2(X1 ◦X2 −∆0(X1 ◦X2),Z) = 0}

are the composable morphisms.

7.1.7 The target categroid

Recall that the space of complex tempered distributions S ′(Rn) is the space of continuous
linear functionals on the complex Schwartz space S(Rn).

Definition 7.13. The categroid D has as objects finite sets and for two finite sets n,m the
set of morphisms from n to m is

HomD(n,m) = S ′(Rntm).

In [36] we examined under which circumstances tempered distributions could be com-
posed. We here omit proofs and refer the reader to [42, 36]. Let L(S(Rn),S ′(Rm)) denote
the space of continuous linear maps from S(Rn) to S ′(Rm) and let φ ∈ L(S(Rn),S ′(Rm)),
f ∈ S(Rn) and g ∈ S(Rm). Then the element φ(f)(g) is a separately continuous bilinear
function on S(Rn) × S(Rm). The Nuclear theorem [42, Theorem V.12], tells us that there
exists a unique tempered distribution φ̃ such that

φ(f)(g) = φ̃(f ⊗ g).
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By this formula we have established an isomorphism

·̃ : L(S(Rn),S ′(Rm))→ S ′(Rntm).

Given elements T1 ∈ S ′(Rntm) and T2 ∈ S ′(Rmtl), for positive integers n,m, l we
would like to be able to compose these tempered distributions. According to Hörmander
we have pull-back maps induced by the projection:

π∗n,m : S ′(Rmtn)→ S ′(Rntmtl) and π∗m,l : S ′(Rmtl)→ S ′(Rntmtl).

In order to make sense of a product of tempered distributions we first introduce the
wave front set of the pull-back. Let ZRn denote the zero section of the cotangent bundle of
Rn.

Definition 7.14. For a tempered distribution T ∈ S ′(Rn), its wave front set is defined to be
the following subset of the cotangent bundle of Rn:

WF(T ) = {(x, ξ) ∈ T ∗(Rn)− ZRn | ξ ∈ Σx(T )},

where
Σx(T ) =

⋂

φ∈C∞x (Rn)

Σ(φT ).

Here
C∞x (Rn) = {φ ∈ C∞0 | φ(x) 6= 0},

i.e. smooth functions with compact support which do not vanish at x, and Σ(S) are all
η ∈ Rn\{0} having no conic neighborhood V such that

|Ŝ(ξ)| ≤ CN (1 + |ξ|)−N , N ∈ Z+, ξ ∈ V.

In here a set Γ is conic if ξ ∈ Γ implies that aξ ∈ Γ for all a>0. The following result
makes it easier to calculate the wave front set of some special tempered distributions.

Lemma 7.15. Suppose u is a bounded density on a smooth sub-manifold Y of Rn, then
u ∈ S ′(Rn) and

WF(u) = {(x, ξ) ∈ T ∗(Rn) | x ∈ supp(u), ξ 6= 0 and ξ(TxY ) = 0}

Definition 7.16. Let T and S be tempered distributions on Rn. We define

WF(T )⊕WF(S) = {(x, ξ1 + ξ2) ∈ T ∗(Rn) | (x, ξ1) ∈WF(T ), (x, ξ2) ∈WF(S)}.

Theorem 7.17. Let S, T be tempered distributions on Rn and letZRn denote the zero section
of the cotangent bundle of Rn. If

WF(S)⊕WF(T ) ∩ ZRn = ∅ (7.1)

then the product of the tempered distributions exists and ST ∈ S ′(Rn).

This enables us to say when two morphisms of D can be composed.

Definition 7.18. Denote by S(Rn)m the set of all φ ∈ C∞(Rn) such that

sup
x∈Rn
|xβ∂αφ(x)| <∞

for all multi-indices α and β such that if αi = 0 then βi = 0 for n − m < i ≤ n. Define
S ′(Rn)m to be the continuous dual of S(Rn)m with respect to these semi-norms.
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Observe that if π : Rn → Rn−m is the projection onto the first n −m coordinates, then
π∗(S(Rn−m)) ⊂ S(Rn)m, i.e., we have a well-defined push forward map

π∗ : S ′(Rn)m → S ′(Rn −m).

Theorem 7.17 leads to the following:

Definition 7.19. For A ∈ HomD(n,m) and B ∈ HomD(m, l) satisfying

(WF(π∗n,m(A))⊕WF(π∗m,l(B))) ∩ Zntmtl = ∅,

and such that π∗n,m(A)π∗m,l(B) extends continuously to S(Rntmtl)m, we define

AB = (πn,l)∗(π
∗
n,m(A)π∗m,l(B)) ∈ HomD(n, l).

This does indeed define a categroid if we let the composable morphisms be the set

KDn,m,l = {(A,B) ∈ S ′(Rntm)×S ′(Rmtl)|The conditions from the definition above are satisfied}

7.2 The TQFT functor

Definition 7.20. For anyA ∈ L(S(Rn),S ′(Rm)) we define the unique adjointA∗ ∈ L(S(Rm),S ′(Rn))
by

A∗(f)(g) = fA(g)

for all f ∈ S(Rm) and all g ∈ S(Rn).

Definition 7.21. A functor F : Ba → D is said to be a ∗-functor if

F (X) = F (X)∗

where X is again X with opposite orientation, and F (X)∗ is the dual map of F (X).

Andersen and Kashaev have proven the following theorem which is the main theorem
of [6]. Here ~ := (b + b−1)−2, and Φb is Faddeev’s quantum dilogarithm, see Section 11.

Theorem 7.22 (Andersen–Kashaev). For any ~ ∈ R+ there is a unique ∗-functor F~ : Ba →
D such that

F~(A) = ∆2(A) ∀A ∈ Obj(Ba),

and for any admissible levelled shaped pseudo 3-manifold (X, lX),

F~(X, lX) = Z~(X)eiπ
lX
4~ ∈ S ′(R∆2(∂X)),

where Z~(X) for a tetrahedron T with positive sign, is given by

Z~(T )(x) = δ(x0 + x2 − x1)
exp

(
2πi(x3 − x2)(x0 + α3

2i~ ) + πiφT4~

)

Φb

(
(x3 − x2) + 1−α1

2i~
) ,

where δ(t) is Dirac’s delta-function,

φT = α0α2 +
1

3
(α0 − α2)− 2~ + 1

6
, αi :=

1

π
αT (∂i∂0T ), i = 1, 2, 3,

and
xi := x(∂i(T )), x : ∆2(∂T )→ R.
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For a closed oriented triangulated pseudo 3-manifold with a shape structure α, associate
the function

Z~(X,α) :=

∫

R∆2(X)

∏

T∈∆3(X)

Z~(T, x, α)dx. (7.2)

If the 3-manifold X is admissible the quantity |Z~(X,α)| is well defined in the sense that
the integral is absolutely convergent. It depends only on the gauge equivalence class of α
and it is invariant under ”3− 2” Pachner moves.

Andersen and Kashaev remarks [6, Rem. 1]

Remark 7.23. We emphasize that for an admissible pseudo 3-manifoldX , our TQFT functor
provides us with the following well defined function

F~ : LSr(X)→ S ′(R∂X). (7.3)

7.2.1 Invariants of knots in 3-manifolds

By considering one-vertex ideal triangulations of complements of hyperbolic knots in com-
pact oriented closed 3-manifolds, we obtain knot invariants. In this case, for such an X , the
Andersen–Kashaev invariant is a complex valued function on the affine R-bundle LSr(X)

over Sr(X), which forms an open convex (if non-empty) subset of the affine space S̃r(X),
which is modelled on the real cohomology of the boundary of a tubular neighborhood of
the knot.

Another possibility is to consider a one-vertex Hamiltonian triangulation (H-triangu-
lation) of pairs (a closed 3-manifold M , a knot K in M ), i.e., a one-vertex triangulation of
M , where the knot is represented by one edge, with degenerate shape structures, where
the weight on the knot approaches zero and where simultaneously the weights on all other
edges approach the balanced value 2π. This limit by itself is divergent as a simple pole
(after analytic continuation to complex angles) in the weight of the knot, but the residue at
this pole is a knot invariant which is a direct analogue of Kashaev’s invariants [27] which
were at the origin of the hyperbolic volume conjecture.

Jørgen Ellegaard Andersen and Rinat Kashaev have set forth the following conjecture:

Conjecture 7.24. Let M be a closed oriented 3-manifold. For any hyperbolic knot K ⊂ M ,
there exists a smooth function JM,K(~, x) on R>0 × R which has the following properties.

(1) For any fully balanced shaped ideal triangulation X of the complement of K in M ,
there exists a gauge invariant real linear combination of dihedral angles λ, a (gauge
non-invariant) real quadratic polynomial of dihedral angles φ such that

Z~(X) = ei
φ
~

∫

R
JM,K(~, x)e

− xλ√
~ dx.

(2) For any one vertex shaped H-triangulation Y of the pair (M,K) there exists a real
quadratic polynomial of dihedral angles φ such that

lim
ωY→τ

Φb

(
π − ωY (K)

2πi
√
~

)
Z~(Y ) = ei

φ
~−iπ/12JM,K(~, 0),

where τ : ∆1(Y ) → R takes the value 0 on the knot K and the value 2π on all other
edges.

(3) The hyperbolic volume of the complement of K in M is recovered as the limit

lim
~→0

2π~ log |JM,K(~, 0)| = −Vol(M\K).
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Theorem 7.25 (Andersen–Kashaev). The above conjecture is true for the hyperbolic knots
41 and 52.

For a proof see [6]

Theorem 7.26. (1) and (2) in conjecture 7.24 is satisfied for the two hyperbolic knots 61 and
62.

For a proof see the calculations in Chapter 9.

Remark 7.27. The volume conjecture has until now only been approached numerically by
use of the computer software mathematica. A rigorous proof is still in process.

7.3 The tetrahedral operator

In Chapter 4 we looked at Kashaev’s quantization of Teichmüller space of punctured sur-
faces with the Weil–Petersson symplectic structure. Kashaev showed, starting from Pen-
ner’s parameterization of the (decorated) Teichmüller space [38], that the Teichmüller space
of marked conformal types of hyperbolic metrics on a punctured surface with the Weil–
Petersson symplectic form and the action of the mapping class group can be described as
the Hamiltonian reduction of a finite dimensional symplectic manifold which we know
how to quantize. Moreover the action of the mapping class group is realized through the
quantum dilogarithm introduced by Faddeev (4.23).

Upon canonical quantization of the cotangent bundle T ∗Rn with the standard symplec-
tic structure in the position representation, the Hilbert space we get is L2(Rn). We consider
instead the pre-Hilbert space S(Rn) and its dual space S ′(Rn), the space of tempered dis-
tributions. The position coordinates qi and momentum coordinates pi on the cotangent
bundle become operators qi and pi respectively acting on S(Rn) via the formulae

qi(f)(x) = xif(x) and pi(f)(x) =
1

2πi

∂

∂xi
(f)(x), ∀x ∈ Rn ∀f ∈ S(Rn).

These operators extend continuously to operators on the space of tempered distributions
S ′(Rn), still satisfying the Heisenberg commutator relations,

[pi,pj ] = [qi, qj ] = 0, [pi, qj ] = (2πi)−1δij .

Fix a b ∈ C such that Re(b) 6= 0. From the spectral theorem we can define operators

ui = e2π b qi , vi = e2π b pi .

These operators are contained in L(Sα(Rn), Sα−Re(b)(Rn)), where Sα(Rn) = eαρS(Rn) for
any α ∈ R, and where ρ is a smooth function which coincides with the function |x| on the
complement of compact subset of Rn. Commutator relations between these operators are

[ui,uj ] = [vi, vj ] = 0, ui vj = e2πi b2 δij vj ui .

In [28], Kashaev introduces two operations for wi = (ui, vi), i = 1, 2 namely

w1 ·w2 := (u1 u2,u1 v2 + v1),

w1 ∗w2 := (v1 u2(u1 v2 + v1)−1, v2(u1 v2 + v1)−1).

These operations correspond exactly to the change of coordinates in the Kashaev coordi-
nates on Teichmüller space. See (4.11) and (4.12).
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Proposition 7.28. [28] Let ψ be some solution to the functional equation

ψ(z + i b /2) = ψ(z − i b /2)(1 + e2π b z) (7.4)

Then, the operator T = T12 := e2π p1 q2ψ(q1 + p2− q2) = ψ(q1−p1 + p2)e2π p1 q2 defines an
element of L(S(R4),S(R4)), which satisfies the equations

w1 ·w2 T = Tw1, w1 ∗w2 T = Tw2. (7.5)

Remark 7.29. The operator T furthermore satisfies the following system of equations

T q1 = (q1 + q2)T (7.6)
T(p1 + p2) = p2 T (7.7)
T(p1 + q2) = (p1 + q2)T (7.8)

Te2π b p1 = (e2π b(q1 + p2) + e2π b p1)T (7.9)

A proof of proposition 7.28 is given in [6].

Remark 7.30. We will prove later in this chapter (11.4) that the inverse of Faddeev’s quan-
tum dilogarithm satisfies the functional equation (7.4), i.e., a particular solution is

ψ(z) = 1/Φb(z).

An important fact about the operator T with ψ given by 1/Φb(z) is that it satisfies the
pentagon identity

T12T13T23 = T23T12

which is a consequence of the five-term identity (11.14).

7.3.1 Charged tetrahedral operators

Let a, c ∈ R be positive real numbers such that b := 1
2 − a − c is also positive. Then we

define charged T-operators by the formulae:

T(a, c) = e−πic
2
b(4(a−c)+1)/6e4πicb(c q2−a q1)Te−4πicb(a p2 +c q2),

T(a, c) = eπic
2
b(4(a−c)+1)/6e−4πicb(a p2−c q2)Te4πicb(c q2 +a q1),

where cb = i(b + b−1)/2 is purely imaginary. These charged operators T(a, c),T(a, c) take
S(R2) to S(R2).

By substituting in the operator T we have the formula

T(a, c) = e2πi p1 q2ψa,c(q1− q2 + p2),

where
ψa,c(x) = ψ(x− 2cb(a+ c))e−4πicba(x−cb(a+c))e−πic

2
b (4(a−c)+1)/6.

In Dirac’s bra-ket notation we have for T(a, c) ∈ S ′(R4) :

〈x0, x2 | T (a, c) | x1, x3〉 = δ(x0 + x2 − x1)ψ̃′a,c(x3 − x2)e2πix0(x3−x2).

where
ψ̃′a,c(x) := e−πix

2

ψ̃a,c(x), ψ̃a,c(x) =

∫

R
ψa,c(y)e−2πixydy. (7.10)

Remark 7.31. The condition that the positive real numbers a, b, c must sum to 1
2 is to ensure

that the Fourier integral above is absolutely convergent.
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7.3.1.1 Rules for the dilogarithm function

The Fourier transformation formula for the quantum dilogarithm (Appendix A in [6]) leads
to the identity

ψ̃′a,c(x) = e−
πi
12ψc,b(x).

With respect to complex cunjugation, the following formula holds:

ψa,c(x) = e−
πi
6 eπix

2

ψc,a(−x) = e−
πi
12 ψ̃b,c(−x).

From these it follows that

ψ̃a,c(x) = e
πi
12ψc,b(x) = e−

πi
12 eπix

2

ψb,c(−x).

We are now in a position to calculate and obtain a formula for T (a, c):

〈x, y|T (a, c)|u, v〉 = 〈u, v|T (a, c)|x, y〉
= δ(u+ v − x)ψ̃′a,c(y − v)e−2πiu(y−v)

= δ(u+ v − x)ψb,c(v − y)e−
πi
12 eπi(v−y)2

e−2πiu(y−v).

7.3.1.2 Charged pentagon equation

Proposition 7.32. The charged tetrahedron operators satisfy a pentagon equation given by

T12(a4, c4)T13(a2, c2)T23(a0, c0) = eπic
2
bPe/3T23(a1, c1)T12(a3, c3) (7.11)

where Pe = 2(c0 + a2 + c4)− 1
2 and ai, ci ∈ R, 0 ≤ i ≤ 4, such that

a1 = a0 + a2, a3 = a2 + a4, c1 = c0 + c4, c3 = a0 + c4, c2 = c1 + c3. (7.12)

Proof. Write
T(a, c) = f(a− c)T̃(a, c)

where

T̃(a, c) := e−4πicb(a q1−c q2)Te−4πicb(a p2 +c q2) = ξ(a q1−c q2)Tξ(a p2 +c q2),

and
f(x) := e−πic

2
b(4x+1)/6.

Under condition (7.12) we have

f(a4 − c4)f(a2 − c2)f(a0 − c0)

f(a1 − c1)f(a3 − c3)
= e−πic

2
b(4(a4−c4)+4(a2−c2)+4(a0−c0)+3−4(a1−c1)−4(a3−c3)−2)/6

= e−πic
2
b(4(a3−a3+c2−c2−a2−c0−c4)+1)/6

= eπic
2
b(2(c0+a2+c4)− 1

2 )/3

= eπic
2
bPe/3.

We see that showing the (7.11) is equivalent to showing that

T̃12(a4, c4)T̃13(a2, c2)T̃23(a0, c0) = T̃23(a1, c1)T̃12(a3, c3). (7.13)

Calculating the right hand side yields

T̃23(a1, c1)T̃12(a3, c3) = (ξa1 q2−c1 q3T23ξ
a1 p3 +c1 q3)(ξa3 q1−c3 q2T12ξ

a3 p2 +c3 q2)

= ξa3 q1ξa1 q2−c1 q3T23ξ
−c3 q2T12ξ

a1 p3 c1 q3ξa3 p2 +c3 q2

= ξa3 q1 +(a1−c3) q2−(c1+c3) q3T23T12ξ
a3 p2 +c3 q2 +a1 p3 +c1 q3 .
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In the first equality we used the trivial commutativity and in the second we used the fact
that T23ξ

−c3 q2 = ξ−c3(q2 + q3)T23 coming from (7.6). Likewise one can compute the left
hand side of the equation. Using the rules (7.6)-(7.9) and the Heisenberg commutativity
relations yields that

T̃12(a4, c4)T̃13(a2, c2)T̃23(a0, c0)

= ξ−c4 q2 +a4 q1ξa2(q1 + q2)−c2 q3T12T13T23ξ
cb(a2c2+a4c4)+a2(p2 + p3)ξa4(p2 + q3)ξc3 q2

Note that (7.12) gives us that the factors on the left hand side of the equations are equal i.e.

ξ−c4 q2 +a4 q1 +a2(q1 + q2)−c2 q3 = ξ(a4+a2) q1 +(a2−c4) q2−c2 q3 = ξa3 q1 +(a1−c3) q2−(c1+c3) q3 .

From the terms on the right hand side of the equations we get

ξcb(a2c2+a4c4)+a2(p2 + p3)+a4(p2 + q3)+c3 q2 +a0 p3 +c0 q3 = ξa3 p2 +c3 q2 +a1 p3 +c1 q3 ,

equivalent to the equation

a2c2 + a4c4 + a4(a0 − c3) = a2(a4 + c0 + c3),

clearly satisfied under the relation (7.12).

Define now two tempered distributions A,B ∈ S ′(Rn) by the formulae

A(x, y) = 〈x, y|A〉 = δ(x+ y)eiπ(x2+ 1
12 ) and B(x, y) = 〈x, y|B〉 = eiπ(x−y)2

.

Lemma 7.33. The following three identities are satisfied.
∫

R2

〈v, s | A〉〈x, s | T(a, c) | u, t〉〈t, y | A〉dsdt = 〈x, y | T(a, b) | u, v〉, (7.14)

∫

R2

〈u, s | A〉〈s, x | T(a, c) | v, t〉〈t, y | B〉dsdt = 〈x, y | T(b, c) | u, v〉, (7.15)

∫

R2

〈u, s | B〉〈s, y | T(a, c) | t, v〉〈t, x | B〉dsdt = 〈x, y | T(a, b) | u, v〉. (7.16)

Proof. Let us just check (7.14). In order for the product on the left hand side to make sense
one has to check the wave front set condition. One does this using Lemma 7.15. The rest is
straight forward computation:

∫

R2

〈v, s | A〉〈x, s | T(a, c) | u, t〉〈t, y | A〉dsdt

=

∫

R2

δ(v + s)δ(t+ y)eπi(y
2−v2)〈x, s | T(a, c) | u, t〉dsdt

= 〈x,−v|T (a, c)|u,−y〉eπi(y2−v2)

= δ(x− v − u)ψ̃′a,c(−y + v)e2πix(−y+v)eπi(y
2−v2)

= δ(u+ v − x)e−
πi
12ψc,b(v − y)eiπ(v−y)(2u+v−y)

= δ(u+ v − x)e−
πi
12ψc,b(v − y)eiπ(v−y)2

e−2πiu(y−v)

= 〈x, y|T (a, c)|u, v〉.

Remark 7.34. The partition function for the Andersen–Kashaev TQFT defined in this chap-
ter also satisfies gauge transformation properties. Further, convergence properties under
gluing of tetrahedra is proven by Andersen and Kashaev. We will not here elaborate on
these subjects but instead refer the reader to [6].



Chapter 8

New formulation of the
Andersen–Kashaev TQFT

In this chapter we will describe the new version of the Andersen–Kashaev TQFT. In this
description the Weil–Gel’fand–Zak transform of Faddeev’s quantum dilogarithm plays an
important role. Using this transform Andersen and Kashaev propose a state-integral model
for the Andersen–Kashaev TQFT.

The setup for this model is analogous to the setup in the original version, so we refer to
Chapter 7 for the notation.

For any map
x : ∆1(X)→ R,

define a Boltzmann weight

B(T, x) = gα1,α3(x02 + x13 − x03 − x12, x02 + x13 − x01 − x23)

if T is positively oriented and the complex conjugate if it carries the opposite orientation.
The variable xij := x(vivj) and αi = αT (v0vi).

The map ga,c ∈ C∞(T2, L) is defined by the map:

ga,c(s, t) =
∑

m∈Z
ψ̃′a,c(s+m)eπit(s+2m), (8.1)

where the map ψ̃′a,c(s) is defined in section 7.3.

Theorem 8.1 (Andersen – Kashaev). Let X be a closed levelled, shaped, triangulated and
oriented pseudo 3-manifold. The quantity

Znew
~ (X) := e

πilX
4~

∫

[0,1]∆1(X)


 ∏

T∈∆3(X)

B(T, x|∆1(T ))


 dx (8.2)

admits an analytic continuation to a meromorphic function of the complex shapes which is
invariant under all shaped ”2− 3” and ”3− 2” Pachner moves (along balanced edges).

Remark 8.2. The state integral in (8.2) extends to arbitrary (non-closed) levelled, shaped,
triangulated and oriented pseudo 3-manifolds. In the case, where the pseudo-manifold is
not closed one only has to integrate over state variables living on internal edges. The result
is a meromorphic section of a line bundle over a complex torus (C∗)∆1(X)

Conjecture 8.3. The model proposed in this section is equivalent to the Andersen–Kashaev
TQFT of [6].

65
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The proof of Theorem 8.1 is given in [5]. We will not go through the proof, but only state
the crucial part of the theorem where we see that the Boltzmann weights satisfies a certain
integral identity which is called the pentagon identity. This identity is a direct analogue of
the charged pentagon equation 7.32.

Proposition 8.4. For any (x, y, z, w) ∈ R4 the following integral identity is satisfied:
∫

[0,1]

ga4,c4(z − v, x+ w − v)ga2,c2(v, y + w)ga0,c0(x− v, y + z − v)dv (8.3)

= e
−πi
12~ Pega1,c1(x, y)ga3,c3(z, w), (8.4)

where Pe := 2(c0 + a2 + c4)− 1
2 , and the set of positive reals {ai, ci | i = 0, 1, . . . , 4} is such

that
bi :=

1

2
− ai − ci > 0, i = 0, 1, . . . , 4,

and

a1 = a0 + a2, a3 = a2 + a4, c1 = c0 + a4, c3 = a0 + c4, c2 = c1 + c3.

Proposition 8.4 is proven in the paper [5]. It is proved there in great detail, and therefore
we omit the proof in this section.

8.1 Weil–Gel’fand–Zak transformation

To a function f ∈ S(R) the WGZ transformation associates a smooth section of the line
bundle L over the two torus corresponding to the quasi-periodicity properties:

g(x+ 1, y) = e−πiyg(x, y),

g(x, y + 1) = eπixg(x, y).

We define the Weil–Gel’fand–Zak (WGZ) transformation by the formula

(Wf)(x, y) = eπixy
∑

m∈Z
f(x+m)e2πimy.

The inverse of the WGZ transformation is given by the formula

(W−1g)(x) =

∫ 1

0

g(x, y)e−πixy dy. (8.5)

In the language above, the Boltzmann weights are given by the section ga,c of the line
bundle L over the 2-torus with the periodicity properties mentioned above, or the complex
conjugate of this section. There are several symmetry properties for the WGZ transforma-
tion of Faddeev’s dilogarithm function which are proven in [5]. Together with an analytic
continuation, TQFT-rules and tetrahedral symmetries Andersen and Kashaev have proven
Theorem 8.1

8.2 Results of calculations via the new formulation

The results we here impart will be proven in the Chapter 9. See also this chapter for nota-
tion.

Theorem 8.5. We have proven that the new formulation of the theory correspond to the
old formulation for the knots 41 and 52. The partition function for the knot complement
X = (S3, 41) given an ideal triangulation is given by

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi6 W (χ41)(u, v).
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For an H-triangulation Y of the knot complement (S3, 41) the renormalised partition func-
tion takes the form

Z̃new
~ (Y ) =

e−
πi
12

νc0,0
χ41(0)

Where the function χ41
(x) =

∫
R−i0

Φb(x−y)
Φb(y) e2πix(2y−x)dy, and u, v are linear combinations

of dihedral angles, u = 2cb(b+ − b−) and v = 2b− + c− = 2b+ + c+.
The partition function for the knot complement V = (S3, 51) given an ideal triangula-

tion is given by

Znew
~ (V ) = νc1,b1νb2,a2

νc3,b3Wχ52
(u, v).

For an H-triangulation U of the knot complement (S3, 52) the renormalised partition func-
tion takes the form

Z̃new
~ (U) =

eπi/4

νc0,0
χ52

(0).

where χ52
(u) is given by the formula

χ52
(u) = e−

πi
3

∫

R−i0

eπi(w−u)(w+u)

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dw.

where u = 2cb(a1 − a3) and v = 2cb(a1 − c1 + b2 − a3).

The proof of these facts will follow from the computations in Chapter 9.

8.3 TQFT from the new formulation

The state integral in Theorem 8.5 extends to arbitrary non-closed levelled, shaped, oriented,
triangulated pseudo 3-manifolds. In this case we only integrate over the state variables
living on internal edges as remarked in [5, Rem. 1].

It is evident from the axioms in Section 6.2 that in order to have a TQFT (V,Z) over the
field C we need to specify V . To every compact surface Σ we assign the vector space V (Σ)
and to every cobordism (M,Σ,Σ′) we get a linear map

Z(M) = Z(M,Σ,Σ′) : V (Σ)→ V (Σ′).

In our case the pseudo 3-manifold comes with a triangulation. That means that the bound-
ary surfaces have triangulations. The edges of these triangulations are equipped with state
variables. Since the Boltzmann weights above are specified by sections ga,c of a line bundle
L over a 2-torus the vector space we associate to a triangulated surface Σ is C∞(Tn,L),
where n here denotes the number of edges in the triangulation of Σ.

Hence, if (M,Σ,Σ′) is a cobordism where |∆1(Σ)| = n and |∆1(Σ′)| = m we have

Z(M) : C∞(Tn,L)→ C∞(Tm,L).

Furthermore we deal with shaped triangulations. This puts restrictions on which cobor-
disms we can compose. Actually we have a shape structure on the cobordism manifold
(M,Σ,Σ′) which to each edge induces a weight.

The constraint on dihedral angles on boundary edges is that they must sum to 2π when
we compose cobordisms. We will assume that generators of mapping class elements can
be constructed such that all dihedral angles are positive. We will see in an application in
Chapter 10 that this is indeed the case for the generators of Γ1,1.
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Remark 8.6. Although we assume above that all dihedral angles are positive there is no re-
striction on angles in the new formulation of the Andersen–Kashaev TQFT. The tetrahedral
weights in the new formulation admits analytic continuation to meromorphic sections of
line bundles over complex tori. This means that the partition function can be analytically
continued to arbitrary complex shapes so that the theory is well-defined without imposing
positivity conditions on shapes. A consequence of this is that the "2−3" and "3−2" Pachner
moves are valid without restrictions.

8.4 Mapping class group representations from TQFTs

The axioms for a TQFT given in Section 6.2 hint at how to construct representations of
mapping class groups of closed surfaces from a (2 + 1)-dimensional TQFT.

Let Σ be a closed oriented surface, and let f : Σ → Σ be an orientation-preserving
diffeomorphism f : Σ → Σ. Now, let φ ∈ Γ(Σ) denote the mapping class of f . Put
ρ(φ) = f] : V (Σ)→ V (Σ), and let

Mf = Σ×
[
0,

1

2

]
∪f Σ×

[
1

2
, 1

]

be the mapping cylinder of f obtained by gluing together the two copies of Σ×
{

1
2

}
using

f .

Proposition 8.7. The map ρ : Γ(Σ) → End(V (Σ)) is a well-defined representation of Γ(Σ).
Furthermore, if φ is the mapping class of f as above, then ρ(φ) = Z(Mf ).

Proof. Let ft : Σ → Σ be an isotopy between orientation-preserving diffeomorphisms f0

and f1. The map Σ× I → Σ× I given by

(x, t) 7→ (f1f
−1
t (x), t)

extends the map f1f
−1
0 t id : Σ t −Σ → Σ t −Σ, and it follows from the axioms that

(f1f
−1
0 )] = id and (f0)] = (f1)]. The last statement follows since f t id : Σt−Σ→ Σt−Σ

extends to an orientation preserving diffeomorphism Σ× I →Mf . It follows that

Z(Mf ) = f] = ρ(φ).

The axioms for a TQFT also hint that for a 3-manifold M with boundary ∂M = Σ, the
action of the mapping class [f ] on a vector Z(M) ∈ V (Σ) is given by

ρ(φ)(Z(M)) = Z(M ∪Σ Mf ).

We will get back to specific mapping class group representations in Chapter 10.



Chapter 9

Calculations of specific knot complements

In the following examples we encode as in [6] an oriented triangulated pseudo 3-manifold
X into a diagram where a tetrahedron is represented by an element

where vertical segments, ordered from left to right, correspond to the faces ∂0T, ∂1T, ∂2T
and ∂3T respectively. When we glue tetrahedron along faces, we illustrate this by joining
corresponding segments.

In the calculations we will denote:

vx,y := e−πic
2
b(4(x−y)+1)/6.

9.1 The complement of the figure-8-knot

Let X be represented by the usual diagram
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11.4. The complement of the figure–eight knot. Let X be represented by the
diagram

(36)

Again, choosing an orientation, it consists of one positive tetrahedron T+ and one
negative tetrahedron T− with four identifications

∂2i+jT+ ≃ ∂2−2i+jT−, i, j ∈ {0, 1},

so that ∂X = ∅. Combinatorially, we have ∆0(X) = {∗}, ∆1(X) = {e0, e1},
∆2(X) = {f0, f1, f2, f3}, and ∆3(X) = {T+, T−} with the boundary maps

f2i+j = ∂2i+jT+ = ∂2−2i+jT−, i, j ∈ {0, 1},

∂ifj =

{
e0, if j − i ∈ {0, 1};
e1, otherwise,

∂iej = ∗, i, j ∈ {0, 1}.

The topological space X \ {∗} is homeomorphic to the complement of the figure–
eight knot. The set ∆3,1(X) consists of elements (T±, ej,k) for 0 ≤ j < k ≤ 3. We
fix a shape structure

αX : ∆3,1(X) → R>0

by the formulae

αX(T±, e0,1) = 2πa±, αX(T±, e0,2) = 2πb±, αX(T±, e0,3) = 2πc±,

where a± + b± + c± = 1
2 . The weight function

ωX : ∆1(X) → R>0

takes the values

ωX(e0) = 2π(2a+ + c+ + 2b− + c−) =: 2πw, ωX(e1) = 2π(2 − w).

As the figure–eight knot is hyperbolic, the completely balanced case w = 1 is ac-
cessible directly, the complete hyperbolic structure corresponding to the symmetric
point

a± = b± = c± =
1

6
.

We calculate the partition function

Z!(X) =

∫

R4

dx0dx1dx2dx3 ⟨x0, x2|T(a+, c+)|x1, x3⟩⟨x2, x0|T(a−, c−)|x3, x1⟩

=

∫

R4

dx0dx1dx2dx3 δ(x0 + x2 − x1)δ(x2 + x0 − x3)

× ψc+,b+(x3 − x2)ψc−,b−(x1 − x0)e
i2π(x0(x3−x2)−x2(x1−x0))

=

∫

R2

dxdy ψc+,b+(x)ψc−,b−(y)ei2π(x2−y2) = ϕc+,b+ϕc−,b− ,

where

ϕc,b :=

∫

R
dz ψc,b(z)ei2πz2

= µc,bϕ(2b + c),

µc,b := νc,be
i8πc2

b b(b+c),

ϕ(x) :=

∫

R−id

dz
ei2πz2+i4πcbzx

Φb(z)

Choosing an orientation, the diagram consists of one positive tetrahedron T+ and one neg-
ative T−. ∂X = ∅ and combinatorially we have ∆0(X) = {∗}, ∆1(X) = {e0, e1}. The gluing
of the tetrahedra is vertex order preserving which means that edges are glued together in
the following manner.

e0 = x+
01 = x+

03 = x+
23 = x−02 = x−12 = x−13 =: x,

e1 = x+
02 = x+

13 = x+
12 = x−01 = x−03 = x−23 =: y.

The topological space X\{∗} is homeomorphic to the complement of the figure-eight knot.
The set ∆1

3(X) consists of elements (T±, ej,k) for 0 ≤ j < k ≤ 3. We fix a shape structure

αX : ∆1
3(X)→ R+

by the formulae

αX(T±, e0,1) = 2πa±, αX(T±, e0,2) = 2πb±, αX(T±, e0,3) = 2πc±,

where a± + b± + c± = 1
2 . This result in the following weight functions

ωX(e0) = 2a+ + c+ + 2b− + c−, ωX(e1) = 2b+ + c+ + 2a− + c−.

69
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In the completely balanced case these equations correspond to

a+ − b+ = a− − b−.

The Boltzmann weights is given by the functions

B
(
T+, x|∆1(T+)

)
= ga+,c+(y − x, 2(y − x)),

B
(
T−, x|∆1(T−)

)
= ga−,c−(x− y, 2(x− y)).

We calculate the partition function for the Andersen–Kashaev TQFT using the new formu-
lation.

Znew
~ (X) =

∫

[0,1]2

∑

m,n∈Z
ψ̃′a+,c+(y − x+m)ψ̃′a−,c−(x− y + n)e4πi(y−x)(m+n) dxdy

=

∫

[0,1]

∑

m,n∈Z
ψ̃′a+,c+(y +m)ψ̃′a−,c−(−y + n)e4πiy(m+n)dy

=
∑

m,n∈Z

∫

[m,m+1]

ψ̃′a+,c+(y)ψ̃′a−,c−(−y +m+ n)e4πi(y−m)(m+n)dy

=
∑

p∈Z

∫

R
ψ̃′a+,c+(y)ψ̃′a−,c−(−y + p)e4πiypdy

= e−
πi
6

∑

p∈Z

∫

R
ψc+,b+(y)ψb−,c−(y − p)eπi(y−p)2

e4πiypdy

= e−
πi
6

∑

p∈Z

∫

R
ψ(y − 2cb(c+ + b+))ψ(y − p− 2cb(b− + c−))eπiy

2

eπip
2

e2πiyp

× e−4πicbc+(y−cb(c++b+))e−4πicbb−(y−p−cb(b−+c−))

× e−πi(4(c+−b+)+1)/6e−πi(4(b−−c−)+1)/6dy.

We set Y = y − 2cb(c+ + b+). Assuming that we are in the completely balanced case we
have

−b− − c− + c+ + b+ = −b+ + b−.

Furthermore we have y2 = Y 2 + 4c2b(c+ + b+)2 + 4cbY (c+ + b+). Implementing this we get
the following.

Znew
~ (X) = νc+,b+νb−,c−e

−πi6
∑

p∈Z

∫

R
ψ(Y − p− 2cb(b+ − b−))ψ(Y )

× eπi(Y 2+4c2b(c++b+)2+4cbY (c++b+))eπip
2

× e2πi(Y+2cb(c++b+))p

× e−4πicbc+(Y+cb(c++bx))e−4πicbb−(Y−p−cb(b−+c−)+2cb(c++b+))dY

= νc+,b+νb−,c−e
−πi6

∑

p∈Z

∫

R

1

Φb(Y − p− 2cb(b+ − b−))

1

Φb(Y )

× eπiY 2

eπip
2

e−4πicbY (−c+−b++c++b−)e2πiY p

× e−4πicbp(−(c++b+)−b−)

× e4πic2b((c++b+)2−c+(c++b+)−b−(b−+c−−2(c++b+))dY.

Now set u = 2cb(b+ − b−) and v = 2b− + c− = 2b+ + c+, and use the formula

Φb(z)Φb(−z) = ζ−1
inve

πiz2

.
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along with the calculation:

b− + b+ + c+ = b− + b+ − 2b+ + 2b− + c− = −(b+ − b−) + (2b− + c−).

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi6
∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )
e−πi(Y

2+u2+p2−2Y u−2Y p+2up)

× eπiY 2

eπip
2

e2πiY ue2πiY pdY

× e−2πipue2πipv

× e4πic2b((c++b+)2−c+(c++b+)−b−(b−+c−−2(c++b+)).

Using the balance condition and formulas for u and v we get the equality

− 4πic2b{(c+ + b+)2 + b−(−b− − c− + 2c+ + 2b+) + c+(c+ + b+)} =

− 4πic2b{(−(b+ − b1)2)− c+b+ + c+b− + b−c+ − b−c−} =

− 2πicb{−(c+ + 2b−)u}+ πiu2 =

− 2πicb{−(2b− + c−)u+ 2(b+ − b−))u}+ πiu2 = πi(uv − u2).

We get the following expression for the partition function:

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi6
∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )
e−πiu

2

× e4πiY ue4πiY pe−4πipue2πipveπi(uv−u
2)dY

= νc+,b+νb−,c−ζinve
−πi6

∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )

× e4πiY ue4πiY pe−4πipue2πipveπiuve−2πiu2

dY

= νc+,b+νb−,c−ζinve
−πi6

∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )
e2πi(u+p)(2Y−u−p)dY · e2πipveπiuv.

Using the Weil-Gel’fand-Zak transform we see that the partition function has the form:

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi6 W (χ41)(u, v)

Where the function χ41
(x) =

∫
R−i0

Φb(x−y)
Φb(y) e2πix(2y−x)dy. The function χ41

(x) is exactly the
function JS3,41

from [6, Thm. 5]. It should be noted that this result is connected to Hikami’s
invariant. Andersen and Kashaev observes in [6] that the expression

1

2π b
χ41

(
− u

π b
,

1

2

)
,

where χ41(x, λ) = χ41(x)e4πicbλ is equal to the formal derived expression in [21].
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9.2 One vertex H-triangulation of the figure-8-knot

Let X be represented by the diagram

28 JØRGEN ELLEGAARD ANDERSEN AND RINAT KASHAEV

where d ∈ R is chosen so that the integral converges absolutely. The condition
w = 1 corresponds to fully balanced case which implies that

λ := 2b+ + c+ = 2b− + c−

so that in this case the partition function takes the form

µc−,b−

µc+,b+

Z!(X) = |ϕ(λ)|2 =

∫

R+i0

dxχ41(x, λ),

where

(37) χ41(x, λ) := χ41(x)ei4πcbxλ, χ41(x) :=

∫

R−i0

dy
Φb(x − y)

Φb(y)
ei2πx(2y−x).

It would be interesting to tie these computations up with the refined asymptotics
given in Theorem 1 of [AH].

11.5. One-vertex H-triangulation of (S3, 41). Let X be given by the diagram

where the figure-eight knot is represented by the edge of the central tetrahedron
connecting the maximal and the next to maximal vertices. Choosing positive central
tetrahedron, the left tetrahedron will be positive and the right one negative. For
technical reasons, we impose the following condition on the shape structure: 2b+ +
c+ = 2b− + c− =: λ, and consider the following function

fX(x) :=

∫

R3

dydudv ⟨y, u|T(a+, c+)|x, v⟩⟨u, y|T(a−, c−)|v, x⟩

=

∫

R3

dydudv δ(y+u−x)δ(u+y−v)ψ̃′
a+,c+

(v−u)ψ̃′
a−,c−(x − y)ei2π(y(v−u)−u(x−y))

=

∫

R
dy ψ̃′

a+,c+
(y)ψ̃′

a−,c−(x − y)ei2π(y2−(x−y)2)

=
νc+,b+

νc−,b−

∫

R
dy

Φb(x − y − 2cba− + cb)

Φb(y + 2cba+ − cb)
ei2πx(2y−x)−i4πcb(yc++(x−y)c−)

=
νc+,b+

νc−,b−
ei2πc2

b (c2
−−c2

+)χ41(x + cb(c− − c+), λ),

where the function χ41(x, λ) is defined in (37). The partition function has the form

Z!(X) = fX(0)
e−iπ/12νc0,b0

Φb(2cba0 − cb)
,

where the weight on the knot is 2πa0. In the limit when a0 → 0 the conditions
a+ = a−, b+ = b− imply that all edges except for the knot become balanced, and
the renormalized partition function takes the form

Z̃!(X) := lim
a0→0

Φb(2cba0 − cb)Z!(X) =
e−iπ/12

ν(c0)
χ41(0).

where the figure-eight knot is represented by the edge of the central tetrahedron connecting
the maximal and next to maximal vertices. Choosing an orientation, the diagram consists
of two positive tetrahedra T1, T3 and one negative T2. ∂X = ∅ and combinatorially we have
∆0(X) = {∗}, ∆1(X) = {x, y, z, x′}. The gluing of the tetrahedra is vertex order preserving
which means that edges are glued together in the following manner.

x = x1
01 = x1

03 = x2
02 = x3

02 = x3
03,

y = x1
02 = x1

12 = x1
13 = x2

01 = x2
03 = x2

23 = x2
23,

y = x1
23 = x2

12 = x2
13 = x3

12 = x3
13,

x′ = x3
01.

This result in the following equations for the dihedral angles when we balance all edges
but one edge.

b1 + a3 = b2, a1 = a2 + a3.

In the limit where we let a3 → 0 we get the equations

b1 = b2, a1 = a2.

The Boltzmann weights is given by the functions

B
(
T1, x|∆1(T1)

)
= ga1,c1(y − x, 2y − x− z),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x− y, x+ z − 2y),

B
(
T3, x|∆1(T3)

)
= ga3,c3(0, x+ z − x′ − y).

Znew
~ (X) =

∫

[0,1]4

∑

m,n,l∈Z
ψ̃′a1,c1(y − x+m)eπi(2y−x−z)(y−x+2m)

ψ̃′a2,c2(x− y + n)e−πi(x+z−2y)(x−y+2n)

ψ̃′a3,c3(l)e2πi(x+z−x′−y)l dxdydzdx′.

Integration over x′ removes one of the sums since
∫ 1

0
e−2πix′ldx′ = δ(l). Hence

Znew
~ (X) = ψ̃′a3,c3(0)

∫

[0,1]3

∑

m,n∈Z
ψ̃′a1,c1(y − x+m)eπi(2y−x−z)(y−x+2m)

ψ̃′a2,c2(x− y + n)e−πi(x+z−2y)(x−y+2n) dxdydz

= ψ̃′a3,c3(0)

∫

[0,1]3

∑

m,n∈Z
ψ̃′a1,c1(y − x+m)ψ̃′a2,c2(x− y + n)

e2πi(2y−x)(m+n)e−2πiz(m+n) dxdydz.

Now integration over z gives
∫ 1

0
e−2πiz(m+n)dz = δ(n+m). So the partition function takes

the form
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Znew
~ (X) = ψ̃′a3,c3(0)

∫

[0,1]2

∑

m∈Z
ψ̃′a1,c1(y − x+m)ψ̃′a2,c2(x− y −m) dxdy,

We make the shift y 7→ y + x to get the expression

Znew
~ (X) = ψ̃′a3,c3(0)

∫

[0,1]2

∑

m∈Z
ψ̃′a1,c1(y +m)ψ̃′a2,c2(−y −m) dxdy

= ψ̃′a3,c3(0)

∫

[0,1]

∑

m∈Z
ψ̃′a1,c1(y +m)ψ̃′a2,c2(−y −m) dy

= ψ̃′a3,c3(0)

∫

R
ψ̃′a1,c1(y)ψ̃′a2,c2(−y) dy

= e−
πi
6 ψ̃′a3,c3(0)

∫

R
ψc1,b1(y)ψb2,c2(y)eπiy

2

.

We set Y = y − 2cb(c1 + b1) = y − cb(1− 2a1). Assuming that we are in the case where all
but one edge is balanced we have a1 = a2

y2 = Y 2 + c2b(1− 2a1)2 + 2cbY (1− 2a1).

Implementing this we get the following.

Znew
~ (X) = e−

πi
6 ψ̃′a3,c3(0)

∫

R
ψ(Y )ψ(Y )eπi(Y

2+c2b(1−2a1)2+2cbY (1−2a1))

e−4πicbc1(Y+cb(1/2−a1))νc1,b1

e−4πicbb2(Y+cb(1/2−a1))νb2,c2dy

= e−
πi
6 νc1,b1νb2,c2 ψ̃

′
a3,c3(0)

∫

R−0i

1

Φ(Y )2
eπiY

2

dy e
iφ
~ .

This result corresponds exactly to the partition function in the original formulation, see [6,
Chap. 11]. I.e. in the limit where a3 → 0 we get the renormalised partition function

Z̃new
~ (X) := lim

a3→0
Φb(2cba3 − cb)Znew

~ (X) =
e−πi/12

ν(c3)
χ41(0).
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9.3 The complement of the knot 52

Let X be represented as the diagramA TQFT FROM QUANTUM TEICHMÜLLER THEORY 29

11.6. The complement of the knot 52. Let X be represented by the diagram

We denote T1, T2, T3 the left, right, and top tetrahedra respectively. We choose the
orientation so that all tetrahedra are positive. We impose the conditions that all
edges are balanced which correspond to two equations

2a3 = a1 + c2, b3 = c1 + b2.

Let us denote
ψa,c(x, y) := ψ̃′

a,c(y)ei2πxy.

The partition function has the form Z!(X) =
∫

R dx fX(x), where

fX(x) :=
∫

R5

dydzdudvdw ⟨z, w|T(a1, c1)|u, x⟩⟨x, v|T(a2, c2)|y, w⟩⟨y, u|T(a3, c3)|v, z⟩

=

∫

R5

dydzdudvdw δ(z+w−u)δ(x+v−y)δ(y+u−v)ψa1,c1(z, x−w)ψa2,c2(x, w−v)

× ψa3,c3(y, z − u) =

∫

R2

dydz ψa1,c1(z, z + 2x)ψa2,c2(x, −y − z)ψa3,c3(y, x + z)

=

∫

R2

dydz ψa1,c1(z − x, z + x)ψa2,c2(x, x − y − z)ψa3,c3(y, z)

=

∫

R2

dydz ψa1,c1(z − x, z + x)ψa2,c2(x, y)ψa3,c3(x − y − z, z)

= e−iπ/4

∫

R2

dydz ψc1,b1(z + x)ψc2,b2(y)ψc3,b3(z)ei2π(x−y)(z−x))

= e−iπ/4

∫

R
dz ψc1,b1(z + x)ψ̃c2,b2(z − x)ψc3,b3(z)ei2π(z−x)x

= e−iπ/3

∫

R
dz ψc1,b1(z + x)ψb2,a2(z − x)ψc3,b3(z)eiπ(z−x)(z+x) = e−iπ/3ν′

c1,b1ν
′
b2,a2

× ν′
c3,b3

∫

R−i0

dz
eiπ(z−x′+cb(1−2c2))(z+x′+cb(1−2a1))−i4πcb(c1(z+x′)+b2(z−x′)+c3z)

Φb(z + x′)Φb(z − x′)Φb(z)

= ν′
c1,b1ν

′
b2,a2

ν′
c3,b3e

iπc2
b (1−2a1)(1−2c2)χ52(x

′, a1 − c1 + b2 − a3)

where
x′ := x + 2cb(a1 − a3),

(38)

χ52(x, λ) := χ52(x)ei4πcbxλ, χ52(x) := e−iπ/3

∫

R−i0

dz
eiπ(z−x)(z+x)

Φb(z + x)Φb(z − x)Φb(z)
.

11.7. One-vertex H-triangulation of (S3, 52). Let X be represented by the
diagram

We denote T0, T1, T2, T3 the central, left, right, and top tetrahedra respectively. If
we choose the orientation so that the central tetrahedron T0 is negative then all

Choosing an orientation the diagram consists of three positive tetrahedra. We denote
T1, T2, T3 the left, the right an top tetrahedra respectively. The combinatorial data in this
case are ∆0(X) = {∗}, ∆1(X) = {e0, e1, e2}, ∆2(X) = {f0, f1, f2, f3, f4, f5} and ∆3(X) =
{T1, T2, T3}.

The edges are glued in the following manner:

e0 = x1
02 = x1

12 = x2
13 = x2

23 = x3
01 = x3

23 =: x,

e1 = x1
03 = x1

23 = x2
02 = x2

03 = x3
03 = x3

13 = x3
12 =: y

e2 = x1
01 = x1

13 = x2
01 = x2

12 = x3
02 =: z.

We impose the condition that all edges are balanced which exactly corresponds to the two
equations

2a3 = a1 + c2, b3 = c1 + b2.

The Bolzmann weights are given by the equations

B
(
T1, x|∆1(T1)

)
= ga1,c1(z − y, x− y),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x− z, y − z),

B
(
T2, x|∆1(T2)

)
= ga3,c3(z − y, z + y − 2x).

We calculate the following function

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ga1,c1(z − y, x− y)ga2,c2(x− z, y − z)

ga3,c3(z − y, z + y − 2x) dxdydz.

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1(z − y + j)eπi(x−y)(z−y+2j)ψ̃′a2,c2(x− z + k)eπi(y−z)(x−z+2k)

× ψ̃′a3,c3(z − y + l)eπi(z+y−2x)(z−y+2l) dxdydz.

Shift x 7→ x+ z,

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1(z − y + j)eπi(x+z−y)(z−y+2j)ψ̃′a2,c2(x+ k)eπi(y−z)(x+2k)

× ψ̃′a3,c3(z − y + l)eπi(y−2x−z)(z−y+2l) dxdydz.
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Shift z 7→ z + y

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1(z + j)eπi(x+z)(z+2j)ψ̃′a2,c2(x+ k)eπi(−z)(x+2k)

× ψ̃′a3,c3(z + l)eπi(−2x−z)(z+2l) dxdydz

=

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1(z + j)ψ̃′a2,c2(x+ k)ψ̃′a3,c3(z + l)

× eπi(x+z)(z+2j)eπi(−z)(x+2k)eπi(−2x−z)(z+2l) dxdydz

=

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1(z + j)ψ̃′a2,c2(x+ k)ψ̃′a3,c3(z + l)

× e2πi(x(j−2l−z)+z(j−k−l) dxdydz.

Integration over y contributes nothing. We now shift x 7→ x − k and integrate over the
interval [−k,−k + 1].

Znew
~ (X) =

∑

j,k,l∈Z

∫

[0,1]

∫

[−k,−k+1]

ψ̃′a1,c1(z + j)ψ̃′a2,c2(x)ψ̃′a3,c3(z + l)

× e2πi((x−k)(j−2l−z)+z(j−k−l) dxdz

=
∑

j,k,l∈Z
e2πik(2l−j)

∫

[0,1]

∫

[−k,−k+1]

ψ̃′a1,c1(z + j)ψ̃′a2,c2(x)ψ̃′a3,c3(z + l)

× e2πi(x(j−2l−z)+z(j−l)) dxdz

=
∑

j,l∈Z

∫

[0,1]

ψ̃′a1,c1(z + j)ψ̃′a3,c3(z + l)e2πiz(j−l)
∫

R
ψ̃′a2,c2(x)e−2πix(z+2l−j)dx dz

=e−
πi
12

∑

j,l∈Z

∫

[0,1]

ψ̃′a1,c1(z + j)ψ̃′a3,c3(z + l)e2πiz(j−l)
∫

R
ψc2,b2(x)e−2πix(z+2l−j)dx dz

=e−
πi
4

∑

j,l∈Z

∫

[0,1]

ψc1,b1(z + j)ψc3,b3(z + l)ψ̃c2,b2(z + 2l − j)e2πiz(j−l)dz.

We set m = j − l.

Znew
~ (X) =e−

πi
4

∑

l,m∈Z

∫

[0,1]

ψc1,b1(z + l +m)ψc3,b3(z + l)ψ̃c2,b2(z + l −m)e2πizm dz

=e−
πi
4

∑

l,m∈Z

∫

[l,l+1]

ψc1,b1(z +m)ψc3,b3(z)ψ̃c2,b2(z −m)e2πizm dz

=e−
πi
3

∑

m∈Z

∫

R
ψc1,b1(z +m)ψc3,b3(z)ψb2,a2(z −m)eπi(z−m)2

e2πizm dz

=e−
πi
3

∑

m∈Z

∫

R
ψc1,b1(z +m)ψc3,b3(z)ψb2,a2

(z −m)eπi(z
2+m2) dz.
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Znew
~ (X) = e−

πi
3

∑

m∈Z

∫

R
ψ(z +m− cb(1− 2a1))e−4πicbc1{(z+m)−cb(1/2−a1)}

e−πic
2
b(4(c1−b1)+1)/6

ψ(z −m− cb(1− 2c2))e−4πicbc1{(z+m)−cb(1/2−c2)}

e−πic
2
b(4(c1−b1)+1)/6

ψ(z − cb(1− 2a3))e−4πicbc3{(z+m)−cb(1/2−a3)}e−πic
2
b(4(c3−b3)+1)/6

eπiz
2

eπip
2

dz.

Set w = z − cb(1− 2a3)

Znew
~ (X) = e−

πi
3

∑

m∈Z

∫

R−i0
ψ(w +m+ 2cb(a1 − a3))ψ(w −m+ 2cb(c2 − a3))ψ(w)

×eπip2

eπiw
2

e4πic2b(1/2−a3)2

e4πicbw(1/2−a3)

e−4πicbc1{w+p+cb(1−2a3)−cb(1/2−a1)}

e−4πicbc1{w−p+cb(1−2a3)−cb(1/2−c2)}

e−4πicbc1{w+cb(1/2−a3)}νc1,b1νb2,a2
νc3,b3 dw.

Simplify by setting u = 2cb(a1 − a3). Using c1 + b2 + c3 + a3 − 1/2 = 0 we are left with

Znew
~ (X) =e−

πi
3

∑

m∈Z

∫

R−i0
ψ(w +m+ u)ψ(w −m− u)ψ(w)

eπiw
2

eπim
2

e4πicb(b2−c1)m

e−4πic2b{−b23−b3c3+c1(b3+c3)+b2(b3+c3)+(c1−b2)(a1−a3)} dw

νc1,b1νb2,a2
νc3,b3 .

Let v = 2cb(a1 − c1 + b2 − a3), then Note that

4πicb(b2 − c1)p = 4πicb(a1 − c1 + b2 − a3)p− 4πicb(a3 − a1) = 2πi(vp− up),
−b23 − b3c3 + c1(b3 + c3) + b2(b3 + c3) = 0,

and

−4πic2b((c1−b2)(a1−a3)) = 4πic2b((a1−c1+b2−a3)(a1−a3)−(a1−a3)(a1−a3)) = πi(vu−u2).

Znew
~ (X) =e−

πi
3 eπiuv

∑

m∈Z

∫

R−i0

eπiw
2

e−πim
2

e−πiu
2

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dwe2πivm

νc1,b1νb2,a2νc3,b3

=e−
πi
3 eπiuv

∑

m∈Z

∫

R−i0

eπi(w+(u+m))(w−(u+m))

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dwe2πivm

νc1,b1νb2,a2νc3,b3

=Wχ52(u, v)νc1,b1νb2,a2νc3,b3 .

Where χ52
(u) is given by the formula

χ52
(u) = e−

πi
3

∫

R−i0

eπi(w−u)(w+u)

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dw.

Again the function χ52
is that of [6], which again is related to Hikami’s invariant, in partic-

ular Hikami’s formally derived expression in [21, (4.10)] is equal to eπi
c
b2
3

1
2π bχ52(−uπ b ,

1
2 ),

where χ52 := χ52(x)e4πicbxλ.
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9.4 One vertex H-triangulation of (S3, 52)

Let X be represented by the diagram

A TQFT FROM QUANTUM TEICHMÜLLER THEORY 29

11.6. The complement of the knot 52. Let X be represented by the diagram

We denote T1, T2, T3 the left, right, and top tetrahedra respectively. We choose the
orientation so that all tetrahedra are positive. We impose the conditions that all
edges are balanced which correspond to two equations

2a3 = a1 + c2, b3 = c1 + b2.

Let us denote
ψa,c(x, y) := ψ̃′

a,c(y)ei2πxy.

The partition function has the form Z!(X) =
∫

R dx fX(x), where

fX(x) :=
∫

R5

dydzdudvdw ⟨z, w|T(a1, c1)|u, x⟩⟨x, v|T(a2, c2)|y, w⟩⟨y, u|T(a3, c3)|v, z⟩

=

∫

R5

dydzdudvdw δ(z+w−u)δ(x+v−y)δ(y+u−v)ψa1,c1(z, x−w)ψa2,c2(x, w−v)

× ψa3,c3(y, z − u) =

∫

R2

dydz ψa1,c1(z, z + 2x)ψa2,c2(x, −y − z)ψa3,c3(y, x + z)

=

∫

R2

dydz ψa1,c1(z − x, z + x)ψa2,c2(x, x − y − z)ψa3,c3(y, z)

=

∫

R2

dydz ψa1,c1(z − x, z + x)ψa2,c2(x, y)ψa3,c3(x − y − z, z)

= e−iπ/4

∫

R2

dydz ψc1,b1(z + x)ψc2,b2(y)ψc3,b3(z)ei2π(x−y)(z−x))

= e−iπ/4

∫

R
dz ψc1,b1(z + x)ψ̃c2,b2(z − x)ψc3,b3(z)ei2π(z−x)x

= e−iπ/3

∫

R
dz ψc1,b1(z + x)ψb2,a2(z − x)ψc3,b3(z)eiπ(z−x)(z+x) = e−iπ/3ν′

c1,b1ν
′
b2,a2

× ν′
c3,b3

∫

R−i0

dz
eiπ(z−x′+cb(1−2c2))(z+x′+cb(1−2a1))−i4πcb(c1(z+x′)+b2(z−x′)+c3z)

Φb(z + x′)Φb(z − x′)Φb(z)

= ν′
c1,b1ν

′
b2,a2

ν′
c3,b3e

iπc2
b (1−2a1)(1−2c2)χ52(x

′, a1 − c1 + b2 − a3)

where
x′ := x + 2cb(a1 − a3),

(38)

χ52(x, λ) := χ52(x)ei4πcbxλ, χ52(x) := e−iπ/3

∫

R−i0

dz
eiπ(z−x)(z+x)

Φb(z + x)Φb(z − x)Φb(z)
.

11.7. One-vertex H-triangulation of (S3, 52). Let X be represented by the
diagram

We denote T0, T1, T2, T3 the central, left, right, and top tetrahedra respectively. If
we choose the orientation so that the central tetrahedron T0 is negative then allChoosing an orientation, the diagram consists of four positive tetrahedra T0, T1, T2, T3.

∂X = ∅ and combinatorially we have ∆0(X) = {∗}, ∆1(X) = {x, y, z, w, x′}. The glu-
ing of the tetrahedra is vertex order preserving which means that edges are glued together
in the following manner.

x = x0
03 = x0

13 = x1
01 = x3

12 = x3
02,

y = x1
03 = x1

12 = x1
13 = x2

02 = x2
03 = x3

03 = x3
23,

z = x0
01 = x1

02 = x2
01 = x2

12 = x3
01 = x3

13

v = x0
02 = x0

12 = x1
23 = x2

13 = x2
23,

x′ = x0
23.

This result in the following equations for the dihedral angles when we balance all edges
but one edge.

a3 = a1 − a0 = c2, a0 + b1 = b2 + c3, a1 + a2 + b3 =
1

2
+ c1.

The Boltzmann weights is given by the functions

B
(
T0, x|∆1(T0)

)
= ga0,c0(0, v + x− z − x′),

B
(
T1, x|∆1(T1)

)
= ga1,c1(z − y, z + y − x− v),

B
(
T2, x|∆1(T2)

)
= ga2,c2(v − z, y − z),

B
(
T3, x|∆1(T3)

)
= ga3,c3(z − y, x− y).

The partition function is represented by the integral

Znew
~ (X) =

∫

[0,1]5

∑

m,n,k,p∈Z
ψ̃′a0,c0(m)eπi(v+x−z−x′)(2m)

ψ̃′a1,c1(z − y + n)eπi(z+y−x−v)(z−y+2n)

ψ̃′a2,c2(v − z + k)eπi(y−z)(v−z+2k)

ψ̃′a3,c3(z − y + p)eπi(x−y)(z−y+2p) dx′dxdydzdv

Integration over x′ removes one of the sums since
∫ 1

0
e−2πix′mdx′ = δ(m). Hence

Znew
~ (X) = ψ̃′a0,c0(0)

∫

[0,1]4

∑

n,k,p∈Z
ψ̃′a1,c1(z − y + n)eπi(z+y−x−v)(z−y+2n)

ψ̃′a2,c2(v − z + k)eπi(y−z)(v−z+2k)

ψ̃′a3,c3(z − y + p)eπi(x−y)(z−y+2p) dx′dxdydzdv
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Now integration over x gives
∫ 1

0
e−2πix(n−p)dx = δ(n− p). Implementing this and shifting

the variable v 7→ v + z, the partition function takes the form

Znew
~ (X) = ψ̃′a0,c0(0)

∫

[0,1]3

∑

n,k∈Z
ψ̃′a1,c1(z − y + n)eπi(y−v)(z−y+2n)

ψ̃′a2,c2(v + k)eπi(y−z)(v+2k)

ψ̃′a3,c3(z − y + n)e−πiy(z−y+2n) dydzdv.

We make the shift z 7→ z + y to get the expression

Znew
~ (X) = ψ̃′a0,c0(0)

∫

[0,1]3

∑

n,k∈Z
ψ̃′a1,c1(z + n)eπi(y−v)(z+2n)

ψ̃′a2,c2(v + k)e−πiz(v+2k)

ψ̃′a3,c3(z + n)e−πiy(z+2n) dydzdv,

which is independent of y so we can remove the integration over this variable. We integrate
over the variable v.

∑

k∈Z

∫

[0,1]

ψ̃′a2,c2(v + k)e−2πiv(z+n)dve−2πizk =
∑

k∈Z

∫ k+1

k

ψ̃′a2,c2(v)e−2πiv(z+n)dv

e−2πizke2πik(z+n)

=e−
πi
12

∫

R
ψc2,b2(v)e−2πiz(z+n)dv

=e−
πi
12 ψ̃c2,b2(z + n)

=e−
πi
6 eπi(z+n)2

ψb2,a2
(z + n).

We therefore get the expression

Znew
~ (X) = e−

πi
3 ψ̃′a0,c0(0)

∫

[0,1]

∑

n∈Z
ψc1,b1(z + n)ψb2,a2(z + n)ψc3,b3(z + n)eπi(z+n)2

dz

= e−
πi
3 ψ̃′a0,c0(0)

∫

R
ψc1,b1(z)ψb2,a2

(z)ψc3,b3(z)eπi(z)
2

We set Z = z − 2cb(c1 + b1) = y − cb(1− 2a1). Assuming that we are in the case where all
but the edge representing the knot is balanced, i.e. a0 → 0, we have a1 = c2 = a3.

z2 = Z2 + c2b(1− 2a1)2 + 2cbZ(1− 2a1).

Implementing this we get the expression.

Znew
~ (X) = e−

πi
3 ψ̃′a0,c0(0)

∫

R
ψ(Z)ψ(Z)ψ(Z)eπi(Z

2+c2b(1−2a1)2+2cbZ(1−2a1))

e−4πicbc1(Z+cb(1/2−a1))νc1,b1

e−4πicbb2(Z+cb(1/2−c2))νb2,a2

e−4πicbc2(Z+cb(1/2−a3))νc3,b3dz.

Znew
~ (X) = νc1,b1νb2,a2

νc3,b3e
−πi3 e

φi
~ ψ̃′a0,c0(0)

∫

R
ψ(Z)3eπiZ

2

dz

= νc1,b1νb2,a2
νc3,b3e

−πi3 e
φi
~ ψ̃′a0,c0(0)

∫

R

eπiZ
2

Φb(Z)3
dz
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Because the combination of dihedral angles in front of Z sums to 0.

−4πicbZ(c1 + b2 + c3 −
1

2
+ a1) = −4πicbZ(a1 + b1 + c1 −

1

2
) = 0

This corresponds to the partition function in the original formulation, see [6].
In this case the renormalised partition function takes the form.

Z̃new
~ (X) = lim

a0→0
ΦbZ

new
~ (X) =

eiπ/4

νc0,0
χ52(0).
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9.5 The complement of the knot 61

We calculate the partition function of the Andersen–Kashaev TQFT for an ideal triangula-
tion of the complement of the hyperbolic knot 61. Let X be represented by the diagram

Associating a shape structure as in the previous examples gives us the following equations
when weights on edges are fully balanced:

2a1 + a4 = c2 + a3, a1 + b1 + b2 − c2 + c3 = 0, c1 + c2 + b3 + b4 = 1, a3 = b2 + b4.

Z~(X) =

∫

R8

〈b, d|Ta1,c1 |g, c〉 〈f, e|Ta2,c2 |g, h〉〈d, i|Ta3,c3 |c, f〉 〈e, i|Ta4,c4 |b, h〉 dx

=

∫

R8

δ(b+ d− g)δ(f + e− g)δ(d+ i− c)δ(e+ i− b)

× ψ̃′a1,c1(c− d)e2πib(c−d)ψ̃′a2,c2(h− e)e−2πif(h−e)

× ψ̃′a3,c3(f − i)e−2πid(f−i)ψ̃′a4,c4(h− i)e2πie(h−i)dx

By integrating over four of the variables g, f, i, e we have the identities

g = b+ d, f = c, i = c− d, e = b+ d− c,

and we are left with the intergral

Z~(X) =

∫

R4

ψ̃′a1,c1(c− d)ψ̃′a2,c2(h+ c− b− d)ψ̃′a3,c3(d)ψ̃′a4,c4(h+ d− c)

× e2πi{b(c+h)−c(d+2h)+dh}dx

Integration over the variable b
∫

R
ψ̃′a2,c2(h+ c− b− d)e−2πib(c+h) db =

∫

R
ψ̃′a2,c2(−b̃)e−2πi(b̃+h+c−d)(c+h) db̃

=

∫

R
ψ̃′a2,c2(−b̃)e−2πib̃(c+h) db̃ e2πi(h+c−d)(c+h)

= e
πi
12 ψ̃c2,b2(−c− h)e2πi(h+c−d)(c+h)

= ψa2,b2(c+ h)e2πi(h+c−d)(c+h).

We continue the calculation of the partition function.

Z~(X) =

∫

R3

ψ̃′a1,c1(c− d)ψa2,b2(c+ h)ψ̃′a3,c3(d)ψ̃′a4,c4(h+ d− c) e2πi{c2−2cd+h2}dx

= e−
πi
4

∫

R3

ψc1,b1(c)ψa2,b2(c+ h+ d)ψb3,c3(−d)ψc4,b4(h− c)eπi(2c2−d2+2h2)dx.
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Now use the definition of the function ψa,c(x).

ψc1,b1(c) = ψ(c− cb(1− 2a1))e−4πicbc1(c−cb(1/2−a1))e−πic
2
b(4(c1−b1)+1)/6

= ψ(c̃)e−4πicbb3(c̃+cb(1/2−a1))νc1,b1 .

ψb3,c3(−d) = ψ(−d− cb(1− 2a3))e−4πicbb3(−d−cb(1/2−a3))e−πic
2
b(4(b3−c3)+1)/6

= ψ(d̃)e−4πicbb3(d̃+cb(1/2−a3))νb3,c3 .

ψc4,b4(h− c) = ψ(h− c̃− 2cb(1− (a1 + a4)))e−4πicbc4(h−c̃−cb(1−2a1)−cb(1/2−a4))νc4,b4

= ψ(h̃− c̃)e−4πicbc4(h̃−c̃+cb(1/2−a4))νc4,b4 .

ψa2,c2(c+ h+ d) =ψ(c̃+ h̃− d̃+ cb(1 + 2(a3 + c2 − a4 − 2a1))

e−4πicba2(c̃+h̃−d̃+cb(3/2−c2))νa2,b2 .

Z~(X) = νc1,b1νa2,b2νb3,c3νc4,b4e
−πi4

∫

R3

ψ(c̃)ψ(c̃+ h̃− d̃+ cb)ψ(d̃)ψ(h̃− c̃)

× e−4πicbc1(c̃+cb)

× e−4πicba2(c̃+h̃−d̃+cb(3/2−c2))

× e−4πicbb3(d̃+cb(1/2−a3))

× e−4πicbc4(h̃−c̃+cb(1/2−a4))

× e2πi{c̃2− 1
2d

2+h̃2}e2πic2b((1−2a1)2− 1
2 (1−2a3)2+4(1−(a1+a4))2)

× e2πi(2c̃cb(1−2a1
)−d̃cb(1−2a3)4h̃cb(1−(a1+a4)))dx

Collecting the factor of −4πicbc̃ in the exponent we get

c1 + a2 − c4 − (1− 2a1) =: λ,

Then collecting the factor of −4πicbd̃ in the exponent one gets

b3 − a2 +
1

2
(1− 2a3) = −a2 + b3 + 1/2− a3 = −a2 + b3 + 1/2 + c2 − 2a1 − a4

= −a2 − 2a1 + c4 + 1− c1 = −λ.

The factor of −4πicbh̃

a2 + c4 − 2 + 2a1 + 2a4 = a2 + 1/2− b4 − 2 + 2a1 + a4

= −3

2
+ a2 + c2 + a3 − b4 = −1− b2 − b4 + a3

= −1.

Now set x = c̃ − d̃, and we can write the partition function for the knot complement of 61

as conjecture 7.24 suggests.
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Z~(X) =e
iφ
~

∫

R3

ψ(x+ d̃)ψ(x+ h̃+ cb)ψ(d̃)ψ(h̃− x− d̃)

× e2πi(x2+ 1
2 d̃

2+h̃2+2xd̃)e−4πicb(λx−h̃)dd̃dh̃dx

=e
iφ
~

∫

R3

1

Φb(x+ d̃)Φb(x+ h̃+ cb)Φb(d̃)Φb(h̃− x− d̃)

× e2πi(x2+ 1
2 d̃

2+h̃2+2xd̃)e−4πicb(λx−h̃)dd̃dh̃dx

=e
iφ
~

∫

R
JS3,61

(~, x)e
− xλ√

~ dx.
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9.6 One vertex H-triangulation of (S3, 61)-knot

We here calculate the partition function for the H-triangulation of the knot 61 using the
formulation from [6] Let X be represented by the diagram

This one vertex H-triangulation of (S3, 61) consists of 5 tetrahedra T1 and T3 which are
negatively oriented tetrahedra and t2, T4, T5 which are positively oriented tetrahedra. The
tetrahedra are situated in the following way: In the bottom we have T1, T2, T3 from left to
right. And on top we have T4, T5 from right to left. The gluing pattern of faces results in
the gluing of edges:

x := x1
02 = x1

03 = x2
01 = x2

02 = x3
01,

y := x2
03 = x2

13 = x3
02 = x3

03 = x3
13 = x4

02 = x4
03 = x5

03,

z := x2
23 = x3

12 = x4
12 = x5

01,

v := x1
12 = x1

13 = x3
23 = x4

23 = x5
12 = x5

13,

w := x1
23 = x2

12 = x4
01 = x4

13 = x5
02 = x5

23,

x′ := x1
01.

From here we can easily get a shape structure. We balance all but one edge. This results in
the following equations on the shape parameters:

a3 = a1 + c2, a3 + a4 = a1 + a5, a1 + c2 = c4 + c5,

1

2
+ b3 + c5 = a2 + a3 + a4, 1 = a2 + c3 + c4 + a5.

We calculate the partition function for the Andersen–Kashaev TQFT.

Z~(X) =

∫

R10

〈J,E | Ta1,c1 | F,E〉 〈H,B | Ta2,c2 |G,F 〉 〈K,B | Ta3,c3 | C,G〉

〈D,L | Ta4,c4 | C,H〉 〈J,K | Ta5,c5 | L,D〉 dx̄

Z~(X) =

∫

R10

δ(J + E − F )δ(H +B −G)δ(K +B − C)δ(D + L− C)δ(J +K − L)

ψ̃′a1,c1(0)e−2πiJ(0)

ψ̃′a2,c2(F −B)e2πiH(F−B)

ψ̃′a3,c3(G−B)e−2πiK(G−B)

ψ̃′a4,c4(H − L)e2πiD(H−L)

ψ̃′a5,c5(D −K)e2πiJ(D−K) dBdCdDdEdFdGdHdJdKdL
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Integrating over five variables E,G,C,L, J yields the expression:

Z~(X) = ψ̃′a1,c1(0)

∫

R5

ψ̃′a2,c2(F −B)e2πiH(F−B)

×ψ̃′a3,c3(H)e−2πiKH

×ψ̃′a4,c4(H +D −K −B)e2πiD(H+D−K−B)

×ψ̃′a5,c5(D −K)e2πi(B−D)(D−K) dBdDdFdHdK.

We integrate over the variable F using the Fourier transform.

e−
πi
12

∫

R
ψc2,b2(F −B)e2πiH(F−B)dF = e−

πi
12 ψ̃c2,b2(−H) = e−

πi
6 eπiH

2

ψb2,a2
(−H).

Using formulas from Section 7.3.1.1 we can write

Z~(X) = e−
3πi
12 ψ̃′a1,c1(0)

∫

R4

ψb2,a2
(−H)eπiH

2

ψb3,c3(−H)πiH
2

ψ̃′a4,c4(H +D −K −B)ψ̃′a5,c5(D −K)

e2πi(DH−KH−BK) dBdDdHdK.

Integration over the variable B becomes
∫

R
ψ̃′a4,c4(H +D −K −B)e−2πiBKdB = e−

πi
12 ψ̃c4,b4(−K)e2πi(K2−HK−DK)

= e−
πi
6 ψb4,a4

(−K)e2πi( 3
2K

2−HK−DK)

Z~(X) = e−
5πi
12 ψ̃′a1,c1(0)

∫

R2

ψb2,a2
(−H)ψb3,c3(−H)ψb4,a4

(−K)ψ̃′a5,c5(D −K)

e2πi(DH−2KH+H2+ 3
2K

2−DK) dKdDdH

Integration over D now gives

e−
πi
12

∫

R
ψc5,b5(D −K)e−2πiD(K−H)dD = e−

πi
12 ψ̃c5,b5(K −H)e−2πi(K2−KH)

=e−
πi
6 ψb5,a5(K −H)eπi(K−H)2

e−2πi(K2−KH).

So the partition function takes the form:

Z~(X) = e−
7πi
12 ψ̃′a1,c1(0)

∫

R2

ψb2,a2
(−H)ψb3,c3(−H)ψb4,a4

(−K)ψb5,a5
(K −H)

e2πi(−2KH+ 3
2H

2+K2) dDdH.

Set −H̃ = −H − cb(1− 2c2) and −K̃ = −K − cb(1− 2c4). Then

−H − cb(1− 2a3) = −H̃ + cb(1− 2c2)− cb(1− 2a3) = −H̃,

because a3 → c2 in the limit where a1 → 0. Further we have

K −H = K̃ − cb(1− 2c4)− H̃ + cb(1− 2c2)− cbq(1− 2c5) = K̃ − H̃ − cb
because

c4 + c5 − c2 → 0
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when a1 → 0.
We can now write the partition function in the following way

Z~(X) = e−
7πi
12

∫

R2

ψ(−H̃)ψ(−H̃)ψ(−K̃)ψ(K̃ − H̃ − cb)ψ̃′a1,c1(0)

e−4πi(H̃−cb(1−2c2))(K̃−cb(1−2c4))+3πi(H̃−cb(1−2c2))2+2πi(K̃−cb(1−2c4))2

e−4πicbb2(−H̃+cb(1/2−c2))νa2,b2

e−4πicbb3(−H̃+cb(1−2c2)−cb(1/2−a3))νb3,c3

e−4πicbb4(−K̃−cb(1/2−c4))νb4,a4

e−4πicbb5(K̃−H̃−cb(1−2c4)+cb(1−2c2)−cb(1/2−c5))νb5,a5
dD̃dH̃

In front of H̃ we have the factor

− 4πicb(−1 + 2c4 + 3/2− 3c2 − b2 − b3 − b5)

= −4πicb(1/2 + 2c4 − 2c2 − b2 − a3 − b3 − b5)

= −4πicb(1/2 + 2c4 − c2 − 1/2 + a2 − 1/2 + c3 − 1/2 + a5 + c5)

= −4πicb(−1 + 1 + c4 − c2 + c5) = 0.

In front of K̃ we also have the factor 0 since

b5 − b4 − 1 + 2c2 + 1− 2c4 =
1

2
− a5 − c5 − c4 − b4 − c4 + 2c2

=
1

2
− a5 −

1

2
+ a4 + a3 = 0.

This gives us the partition function

Z~(X) = ei
φ
~ e−

7πi
12 ψ̃′a1,c1(0)

∫

R2

ψ(−H̃)ψ(−H̃)ψ(−K̃)ψ(K̃ − H̃ − cb)

e2πi( 3
2 H̃

2+K̃2−2K̃H̃)dK̃dH̃.

Z~(X) = ei
φ′
~ e−

7πi
12 ψ̃′a1,c1(0)

∫

R2

Φb(H̃)

Φb(−H̃)Φb(−K̃)Φb(K̃ − H̃ − cb)
e2πi(K̃−H̃)2

dK̃dH̃.

Let K̃ 7→ K̃ + H̃ + cb

Z~(X) = ei
φ′
~ e−

7πi
12 ψ̃′a1,c1(0)

∫

R2

Φb(H̃)

Φb(−H̃)Φb(−K̃ − H̃ − cb)Φb(K̃)
e2πi(K̃+cb)2

dK̃dH̃

= ei
φ′
~ e−

7πi
12 ψ̃′a1,c1(0)

∫

R2

Φb(H̃)Φb(−K̃)

Φb(−H̃)Φb(−K̃ − H̃ − cb)
eπiK̃

2+4πicbK+2πic2bdK̃dH̃

Finally we get to the expression

Z~(X) = ei
φ
~ e−

7πi
12 ψ̃′a1,c1(0)

∫

R2

Φb(H̃)Φb(K̃)

Φb(−H̃)Φb(K̃ − H̃ − cb)
eπiK̃

2−4πicbK̃dK̃dH̃

which exactly corresponds to the result for a given H-triangulation of the 61 knot in A TQFT
of Turaev-Viro type on shaped triangulations [26]. Further it is easily checked the part two of
conjecture 7.24 is satisfied when all but the knotted edge is balanced.

The volume conjecture has until now only been approached by use of mathematica. A
rigorous proof of the conjecture in this case is still to be made.
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9.7 The complement of the knot 62

We now let X be represented by the diagram below.

Choosing an orientation it consists of three positive tetrahedra T1 and T2 and T4 and two
negative tetrahedra T3 and T5. The diagram shows how to glue the faces of the four tetra-
hedra. Remember that the affine gluing homeomorphisms must be vertex order preserving
and orientation reversing.

Combinatorially we have that ∂X = ∅. ∆0(X) = {∗}, ∆1(X) = {e1, e2, e3, e4, e5},
∆2(X) = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10} and ∆3(X) = {T1, T2, T3, T4, T5}. The topo-
logical space X\{∗} is homeomorphic to the complement of the 62 knot. We fix a shape
structure

αX : ∆1
3(X)→ R+

by the formulae

αX(Ti, e0,1) = 2πai, αX(Ti, e0,2) = 2πbi, αX(Ti, e0,3) = 2πci,

where ai + bi + ci = 1
2 for i ∈ {0, 1, 2, 3}.

The weight function takes the values

ωX(e1) = 2π(b1 + c1 + b2 +a3 + b4 + c4 + b5), ωX(e2) = 2π(a1 + c1 +a2 + b2 + b3 +a4 +a5),

ωX(e3) = 2π(a1 + c2 + b3 + c3 + b5 + c5), ωX(e4) = 2π(b1 + c2 + c3 + b4),

ωX(e5) = 2π(a2 + a3 + a4 + c4 + a5 + c5).

As the 62 knot is hyperbolic, the completely balanced case is accessible directly. This gives
us the equations:

1

2
+ c1 + b2 = c2 + c3 + c5, a1 + c2 = a3 + a5,

a2 + a3 = b4 + b5, a1 + c5 = b2 + b4, 1 = b1 + c2 + c3 + b4.

.
We write down the partition function:

Z~(X) =

∫

R10

〈ε, α|T (a1, c1)|a, d〉 〈β, δ|T (a2, c2)|b, α〉〈e, ε|T (a3, c3)|c, a〉

× 〈γ, d|T (a4, c4)|β, c〉 〈γ, δ|T (a5, c5)|e, b〉dadbdcdddedα dβ dγdδ dε

=

∫

R10

δ(ε+ α− a)δ(β + δ − b)δ(e+ ε− c)δ(γ + d− β)δ(γ + δ − e)

× ψ̃′a1,c1(d− α)e2πiε(d−α)ψ̃′a2,c2(α− δ)e2πiβ(α−δ)ψ̃′a3,c3(a− ε)e2πie(a−ε)

× ψ̃′a4,c4(c− d)e2πiγ(c−d)ψ̃′a5,c5(b− δ)e2πiγ(b−δ).
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From the δ-functions we have

a = ε+ α, b = β + δ, c = γ + δ + ε, d = β − γ, e = γ + δ.

Z~(X) =

∫

R5

ψ̃′a1,c1(β − γ − α)e2πiε(β−γ−α)ψ̃′a2,c2(α− δ)e2πiβ(α−δ)ψ̃′a3,c3(α)e2πi(γ+δ)(α+ε−ε)

× ψ̃′a4,c4(2γ + δ + ε− β)e2πiγ(2γ+δ+ε−β)ψ̃′a5,c5(β)e2πiγβ dα dβ dγ dδdε.

Integrating over ε and δ yields
∫

R
ψ̃′a4,c4(2γ + δ + ε− β)e2πiε(β−α)dε =

∫

R
ψ̃′a4,c4(ε)e2πi(ε−2γ−δ+β)(β−α)dε

= e2πi(β−2γ−δ)(β−α)

∫

R
ψ̃′a4,c4(ε)e−2πiε(α−β)dε

= e−
πi
12 ψ̃c4,b4(α− β)e2πi(β−2γ−δ)(β−α).

∫

R
ψ̃′a2,c2(α− δ)e2πiδ(γ−2β)dδ =

∫

R
ψ̃′a2,c2(δ)e2πi(α−δ)(γ−2β)dδ

= e2πiα(γ−2β)

∫

R
ψ̃′a2,c2(δ)e−2πiδ(γ−2β)dδ

= e−
πi
12 e2πiα(γ−2β)ψ̃c2,b2(γ − 2β).

Z~(X) =e−
πi
6

∫

R3

ψ̃′a1,c1(β − γ − α)ψ̃c2,b2(γ − 2β)ψ̃′a3,c3(α)ψ̃c4,b4(α− β)ψ̃′a5,c5(β)

× e2πi(β2+2γ2+2αγ−4βγ−2αβ)dα dβ dγ

=e−
7πi
12

∫

R3

ψc1,b1(β − γ − α)ψb2,a2
(γ − 2β)ψb3,c3(−α)ψb4,a4

(α− β)ψb5,c5(−β)

× e2πi(α2+4β2+ 5
2γ

2−3αβ+2αγ−6βγ)dα dβ dγ.

Changing to parameters:

−β̃ = −β − cb(1− 2a5), −α̃ = −α− cb(1− 2a3), γ̃ = γ + cb(1− 2(2a5 − c2)

yields the formula

Z~(X) =

∫

R3

e−
7πi
12 ψ(−α̃)ψ(−β̃)ψ(α̃− β̃ − cb)ψ(γ̃ − 2β̃)ψ(β̃ − γ̃ − α̃)

× e−4πicbc1(β̃−γ̃−α̃+cb(1/2−a1))eπic
2
b(4(c1−b1)+1)/6

× e−4πicbb2(γ̃−2β̃+cb( 1
2−c2))eπicb(4(b2−a2)+1)/6

× e−4πicbb3(−α̃+cb( 1
2−a3))eπicb(4(b3−c3)+1)/6

× e−4πicbb4(α̃−β̃−cb+cb(1/2−c4))eπicb(4(b4−a4)+1)/6

× e−4πicbb5(−β̃+cb( 1
2−a5))eπicb(4(b5−c5))/6

× e2πi(α̃2+4β̃2+ 5
2 γ̃

2−3α̃β̃+2α̃γ̃−6β̃γ̃)

× e−4πicbα̃(1−2a3− 3
2 (1−2a5)+1−2(2a5−c2))

× e−4πicbβ̃(4(1−2a5)− 3
2 (1−2a3)−3(1−2(2a5−c2)))

× e−4πicbγ̃( 5
2 (1−2(2a5−c2))+1−2a3−3(1−2a5))

× eπic2b(2(1−2a3)2+8(1−2a5)2+5(1+2(2a5−c2))2)

× eπic2b(4(1−2a3)(1+2(2a5−c2))−12(1−2a5)(1+2(2a5−c2))−6(1−2a3)(1−2a5).
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Collecting the shape variables which are multiplied onto −4πicbα̃, we get

− c1 − b3 + b4 −
3

2
(1− 2a5) + 1− 2(2a5 − c2) + (1− 2a3)

= −c1 − b3 + b4 +
1

2
− a5 + 2c2 − 2a3

= −a1 − c1 + c2 − b3 − a3 + b4 +
1

2
=

1

2
.

Collecting the shape variables which are multiplied onto −4πicbγ̃, we get

5

2
+ 1− 3− c1 + b2 − 10a5 + 5c2 − 2a3 + 6a5 =

1

2
− c1 + b2 − 4a5 + 5c2 − 2a3 =: λ.

Collecting the shape variables which are multiplied onto −4πicbβ̃, we get

−1

2
+ c1 − b2 + 4a5 − 5c2 + 2a3 −

1

2
= −λ− 1

2
.

Z~(X) = ei
φ
~

∫

R
JS3,62

(~, x)e−
λx
~ dx

where

JS3,62
(~, x) =

∫

R2

1

Φb(−α̃)

1

Φb(−β̃)

1

Φb(−α̃− β̃ − cb)

1

Φb(x− β̃)

1

Φb(−x− α̃)

e2πi(α̃2+ 1
2 β̃

2+ 5
2x

2−α̃β̃+2α̃x−β̃x)e−4πicb(α̃−β̃)dα̃dβ̃,

where φ is the quadratic term of dihedral angles and λ is defined above.

9.8 One vertex H-triangulation of (S3, 62)-knot

Let X be represented by the diagram

We choose an orientation of the diagram. The edge representing the knot has weight
frm−eπa6. In the limit a6 → 0 all edges except for the knot becomes balanced under
equivalent conditions as in the case for the ideal triangulation of the same knot. The renor-
malised partition function takes the form

Z̃~(X) := lim
a6→0

Φb(2cb)Z~(X) = ei
φ
~
e−πi/12

νc0,0
JS3,62

(~, 0),

where the function JS3,62
is defined above.

We omit the tedious calculations since they are similar to the calculations in previous
examples.

The volume conjecture has until now only been approached by use of mathematica. A
rigorous proof of the conjecture in this case is still to be made.



Chapter 10

A–K representation of the mapping class
group Γ1,1

In this chapter we give a representation for the mapping class group of the once punctured
torus by use of the new formulation of the Andersen–Kashaev TQFT.

10.1 The once punctured torus

We have that H1(Σ1,1;Z) ≈ H1(T2;Z) ≈ SL(2,Z). Therefore there is a homomorphism
σ : Γ1,1 → SL(2,Z). The map is surjective since any element of SL(2,Z) can be realised
as a map of R2 that is equivariant with respect to Z2 and that fixes the origin; such a map
descends to a homeomorphism of Σ1,1 with the desired action on homology. It is also
injective: Let α and β be simple closed curves in Σ1,1 that intersects at one point. If f ∈ kerσ
is represented by φ, then φ(α) and φ(β) are isotopic to α and β. We can then modify ψ
by isotopy so that it fixes α and β pointwise. If we cut Σ1,1 along α ∪ β, we obtain a
once-punctured disk, and φ induces a homomorphism of this disk fixing the boundary. By
Alexander’s trick, this homomorphism of the punctured disk is homotopic to the identity
by a homotopy that fixes the boundary. It follows that φ is homotopic to the identity. Recall
from Theorem 1.20 that SL(2,Z) is generated by the elements

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

In spite of Section 8.4 we want to build a cobordism (M,T2,T2′) from one triangulation
of T2 to the image of this triangulation under the action of S and likewise for the action of
T . We triangulate the torus T2 = S1 × S1 according to Figure 10.1. In this triangulation
opposite arrows are identified and this gives us a triangulation with two triangles and
three edges. We build the cobordism for S according to Figure 10.2 and the cobordism for
T according to Figure 10.3. We see that on each boundary component we have three edges.
The cobordisms that we build are given shaped triangulations. We can choose the dihedral
angles such that they are all positive. And we are able to compose these cobordisms.

For each edge in these triangulations we assign a state variable. We abuse notation and
label an edge and a state variable by the same letter. We assign a multiplier to each edge
(see Section 11.3.2). As we will see below in Lemma 10.3 and Lemma 10.5 it turns out,
that all internal edges each have trivial multiplier. Further we emphasise that there is a
direction on each of the two boundary tori where the multiplier is trivial.

The Andersen–Kashaev TQFT gives an operator between the vector spaces associated
to each of the boundary components. We will see that we get representations

ρA–K : Γ1,1 → B(C∞(T3,L′)),
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of the mapping class group Γ1,1 into bounded operators on the smooth sectionsC∞(T3,L′).
However, we will show below that we actually get representations into B(S(R), bounded
operators on the Schwartz space S(R).

Figure 10.1: Triangulation of the torus into two triangles.

Figure 10.2: The cobordism for the operator S which we triangulate.

Figure 10.3: The cobordism for the operator T which we triangulate.

Theorem 10.1. The Andersen–Kashaev TQFT provides us with representations

ρA–K : Γ1,1 → B(S(R))
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of the mapping class group Γ1,1 into bounded operators on the Schwarz space S(R). In
particular we get operators ρA–K(S), ρA–K(T ) : S(R) → S(R) according to the diagram
(10.1).

S(R)
ρA–K(S),ρA–K(T ) //

W

��

S(R)

W

��
C∞(T2,L)

π∗

��

// C∞(T2,L)

π∗

��
π∗
(
C∞(T2,L)

)
// π∗
(
C∞(T2,L)

)

C∞(T3,L′)

∩
ρ(S)

ρ(T )
// C∞(T3,L′)

∩

(10.1)

where L′ = π∗L.

Proof. We know that the Weil–Gel’fand–Zak transformation gives an isomorphism from
the Schwarz space to smooth sections of the complex line bundle L over the 2-torus. If a
section of C∞(T2,L) is pulled back to π∗

(
C∞(T2,L)

)
we show in Lemma 10.4 and Lemma

10.6 that the operators ρ(S), ρ(T ) acting on C∞(T3,L′) take this pull back of a section to the
pull back of a section in π∗

(
C∞(T2,L)

)
. In Lemma 10.3 and 10.5 we prove that multipliers

on internal edges are trivial. Further we show that the multipliers on the two boundary
tori are trivial in the direction (1, 1, 1). We can therefore integrate over the fibre in this
direction. We then use the inverse WGZ transformation. In other words we have shown
that the operators ρ(S), ρ(T ) induce operators ρA–K(S), ρA–K(T ) : S(R)→ S(R) given by

ρA–K(S) = W−1 ◦
∫

Fz′
◦ ρ(S) ◦ π∗ ◦W,

ρA–K(T ) = W−1 ◦
∫

Fz′
◦ ρ(S) ◦ π∗ ◦W.

Remark 10.2. Above we obtained a representation for the mapping class group Γ1,1. We do
not in a similar manner get a representation for the mapping class group Γ1,0. The reason
is that not all edges in the cobordisms can be balanced without turning to negative angles.

10.2 Line bundle over the two boundary torus

Let us here describe how the line bundles we pull back looks like.
Let π : R3 → R2 be defined by π(x1, x2, x3) = (ax1 + bx2 + cx3, αx1 +βx2 + γx3). Recall

that we have the relation on multipliers

eπ
∗
λ (x, y, z) = eπ(λ)(π(x, y, z)). (10.2)

Note that the map π sends λx1
= (1, 0, 0), λx2

= (0, 1, 0), λx3
= (0, 0, 1) to the following

elements of R2

π(λx1
) = (a, α), π(λx2

) = (b, β), π(λx3
) = (c, γ).

The equation (10.2) gives the following relations:
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In the λx1
-direction

e2πi(x3−x2) =e(1,0,0)(x1,x2,x3) = e(a,α)(ax1 + bx2 + cx3, αx1 + βx2 + γx3)

=e(a,0)(ax1 + bx2 + cx3, αx1 + βx2 + γx3)

e(0,α)(ax1 + bx2 + cx3, α(x1 + 1) + βx2 + γx3)

=e−πia(αx1+βx2+γx3)eπi(ax1+bx2+cx3)

=eπi((αb−aβ)x2+(αc−aγ)x3),

In the λx2
-direction

e2πi(x1−x3) =e(0,1,0)(x1,x2,x3) = eπi((βa−αb)x1+(βc−bγ)x3),

In the λx3
-direction

e2πi(x2−x1) =e(0,0,1)(x1,x2,x3) = eπi((γa−αc)x1+(γb−cβ)x2).

In other words we only need to solve the three equations

αb− aβ = −2, αc− aγ = 2, βc− bγ = −2. (10.3)

One particular solution is a = −2, b = 0, c = 2, α = 0, β = −1, γ = 1 which gives the map

π(x1, x2, x3) = (−2x1 + 2x3,−x2 + x3).

10.3 The operator ρ(S)

The operator ρ(S) can be viewed as the cobordism XS which is triangulated into 6 tetrahe-
dra T1, . . . , T6 where T1, T3, T4, T6 have positive orientation and the tetrahedra T2, T5 have
negative orientation. See the gluing pattern in figure 10.5.

In the triangulation we have ten edges x1, x2 . . . , x7, x
′
1, x
′
2, x
′
3. To each of the edges on

the boundary we associate the a weight function:

ωXS (x1) = 2π(a1 + a5 + c3), ωXS (x2) = 2π(a4 + c5 + a6), ωXS (x3) = 2π(b5 + b6),

ωXS (x′1) = 2π(a1 + c2 + a3), ωXS (x′2) = 2π(a2 + c3 + a4), ωXS (x′3) = 2π(b2 + b3).

and to the edges x4, x5, x6, x7 we associate the weight functions:

ωXS (x4) = 2π(a1 + c2 + b4 + c5 + c6), ωXS (x5) = 2π(c1 + b3 + b4 + a5 + a6),

ωXS (x6) = 2π(b1 + a2 + a3 + c4 + b6), ωXS (x7) = 2π(b1 + c2 + c3 + c4 + b5).

When we balance edges x4, x5, x7 and the boundary edges on the bottom torus are given
weights ωXS (x1) = α, ωXS (x2) = β, ωXS (x3) = γ. We then get the following restrictions on
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the dihedral angles:

a1 = α+ β + γ + b4 + c4 − c3 + c6,

a2 = α+ β + γ − b2 + 2b4 − c3 + c4 + c5 + 2c6 − 2,

a3 = −2γ − β − 2α− b4 + 2c3 − 3c5 − 3c6 + 3,

a4 =
1

2
− b4 − c4,

a5 =
3

2
− γ − β − b4 − c4 − c6,

a6 = β + b4 + c4 − c5 − c6,

b1 = α+ b4 − 2c3 − c4 + 2c5 + c6 −
1

2
,

b3 = 2γ + β + 2α+ b4 − 3c3 + 3c5 + 3c6 −
5

2
,

b5 = γ + β + b4 + c4 − c5 + c6 − 1,

b6 = −β − b4 − c4 + c5 − c6 + 1,

c1 = −γ − β − 2α− 2b4 + 3c3 − 2c5 − 2c6 +
5

2
,

c2 = −γ − β − α− 2b4 + c3 − c4 − c5 − 2c6 +
5

2
,

and b2, b4, c3, c4, c5, c6 are free variables. Since the edges x1, x2, x3 form a triangle the sum of
the weights α+β+γ must sum to 1

2 . It is easily checked that the variables α̃ := a1 +c2 +a3,
β̃ := a2 + c3 + a4 and γ̃ := b2 + b3 sum to α̃ + β̃ + γ̃ = 1

2 , where now α̃, β̃, γ̃ represents
the weights on the edges x′1, x′2, x′3 respectfully. We can choose solutions such that dihedral
angles are positive.

10.3.1 Boltzmann weights

The Bolzman weights assigned to the tetrahedra are

B
(
T1, x|∆1(T1)

)
= ga1,c1(x7 + x6 − x4 − x5, x7 + x6 − x′1 − x1),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x′3 + x4 − x′1 − x7, x′3 + x4 − x′2 − x6),

B
(
T3, x|∆1(T3)

)
= ga3,c3(x′3 + x5 − x′2 − x7, x

′
3 + x5 − x′1 − x6)

B
(
T4, x|∆1(T4)

)
= ga4,c4(x5 + x4 − x7 − x6, x5 + x4 − x′2 − x2)

B
(
T5, x|∆1(T5)

)
= ga5,c5(x7 + x3 − x4 − x2, x5 + x4 − x5 − x1)

B
(
T6, x|∆1(T6)

)
= ga6,c6(x6 + x3 − x4 − x1, x6 + x3 − x5 − x2).

Lemma 10.3. The multipliers corresponding to the edges are calculated to be 1 for the
internal edges x4, x5, x6, x7. And the multipliers for the remaining 6 edges are calculated
to be

eλx1
(x) = e2πi(x3−x2), eλx2

(x) = e2πi(x1−x3), eλx3
(x) = e2πi(x2−x1),

eλx′1
(x) = e2πi(x′2−x′3), eλx′2

(x) = e2πi(x′3−x′1), eλx′3
(x) = e2πi(x′1−x′2),

where x denotes the tuple x = (x1, x2, x3, x
′
1, x
′
2, x
′
3).
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Figure 10.4: The tetrahedra of the triangulation of XS

Figure 10.5: The tetrahedra of the triangulation ofXS are glued together following the rules
of this diagram.

Proof. The multipliers are calculated by use of (11.20). Let us here just calculate the mul-
tiplier for the direction x4. The rest follows by analogous calculations. The edge x4 is an
edge in the tetrahedra T1, T2, T4, T5, T6 each contributing to the multiplier. The contribution
from T1 corresponds to the multiplier

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = e−(1,0)(x5 + x4 − x7 − x6, x5 + x4 − x′2 − x2)

= eπi(x7+x6−x′1−x1).

The contribution from T2 corresponds is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = e(1,1)(x

′
3 + x4 − x′1 − x7, x′3 + x4 − x′2 − x6)

= −e−πi(x′2+x6−x′1−x7).

The contribution from T4 corresponds is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = e(1,1)(x5 + x4 − x7 − x6, x5 + x4 − x′2 − x2)

= −eπi(x′2+x2−x6−x7).

The contribution from T5 corresponds is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = −e−πi(x7+x3−x5−x1).
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The contribution from T6 corresponds is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = −eπi(x6+x3−x5−x2).

Multiplying these contributions gives e0 = 1.

We remark that the multiplier on each boundary component in direction (1, 1, 1) is triv-
ial.

We are interested in how the operator ρ(S) works. Recall from section 6.2 that a TQFT
assigns to a cobordism (M,Σ,Σ′) a linear map from the from the vector space assigned to
Σ to the vector space assigned to Σ′. We look at the expression for the operator ρ(S). This
is done using 8.2. The expression we get is the kernel of an integral, we therefore express
the operator ρ(S) in terms of the integeral kernel KS . The operator ρ(S) acts on sections in
the following manner:

ρ(S)(s)(x′1, x
′
2, x
′
3) =

∫

[0,1]3
KS(x′1, x

′
2, x
′
3, x1, x2, x3)s(x1, x2, x3) dx1dx2dx3. (10.4)

Let us look at the expression for the kernel KS :

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =∫

[0,1]4

∑

k,l,m,n,p,q

ψ̃′a1,c1(x7 + x6 − x4 − x5 + k)eπi(x7+x6−x′1−x1)(x7+x6−x4−x5+2k)

ψ̃′a2,c2(x′3 + x4 − x′1 − x7 + l)e−πi(x
′
3+x4−x′2−x6)(x′3+x4−x′1−x7+2l)

ψ̃′a3,c3(x′3 + x5 − x′2 − x7 +m)eπi(x
′
3+x5−x′1−x6)(x′3+x5−x′2−x7+2m)

ψ̃′a4,c4(x5 + x4 − x7 − x6 + n)eπi(x5+x4−x′2−x2)(x5+x4−x7−x6+2n)

ψ̃′a5,c5(x7 + x3 − x4 − x2 + p)e−πi(x7+x3−x5−x1)(x7+x3−x4−x2+2p)

ψ̃′a6,c6(x6 + x3 − x4 − x1 + q)eπi(x6+x3−x5−x2)(x6+x3−x4−x1+2q)

dx4dx5dx6dx7.

Making shifts x′3 7→ x′3 − x4 + x7, x′2 7→ x′2 − x4 + x5, x3 7→ x3 + x4 − x7, x1 7→ x1 + x6 − x7,
x7 7→ x7 − x6 + x4 + x5 and x5 7→ x5 + x6 we arrive at the expression:

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]4

∑

k,l,m,n,p,q

ψ̃′a1,c1(x7 + k)eπi(−x
′
1−x1+2x7+2x4+2x5)(x7+2k)

ψ̃′a2,c2(x′3 − x′1 + l)e−πi(x
′
3−x′2+2x4−2x6+x7)(x′3−x′1+2l)

ψ̃′a3,c3(x′3 − x′2 +m)eπi(x
′
3−x′1+2x5+x7)(x′3−x′2+2m)

ψ̃′a4,c4(−x7 + n)eπi(2x4−x′2−x2)(−x7+2n)

ψ̃′a5,c5(x3 − x2 + p)e−πi(x3−x1+2x4−2x6+x7)(x3−x2+2p)

ψ̃′a6,c6(x3 − x1 + q)eπi(x3−x2−2x5−x7)(x3−x1+2q)

dx4dx5dx6dx7.

Integration over x6 gives

∫ 1

0

e2πix6(x′3−x′1+x3−x2+2(l+p))dx6 =
e2πi(x′3−x′1+x3−x2+2(l+p)) − 1

2πi(x′3 − x′1 + x3 − x2 + 2(p+ l))
=: I l,p1 (x2, x3, x

′
1, x
′
3).
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Integration over x4 gives

∫ 1

0

e2πix4(x′1−x′3−x3+x2+2(k−l+n−p))dx4 =
e2πi(x′1−x′3−x3+x2+2(k−l+n−p)) − 1

2πi(x′1 − x′3 − x3 + x2 + 2(k − l + n− p))
=: Ik,l,n,p2 (x2, x3, x

′
1, x
′
3).

We collect the terms where x7 and x5 appear.

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =

∑

k,l,m,n,p,q

∫

[0,1]2
ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 + n)

e2πix7(x2−x3+x7+x5+2k+m−p−q)

e2πix5(x′3−x′2−x3+x1+k−q)dx5dx7

ψ̃′a2,c2(x′3 − x′1 + l)e−πi(x
′
3−x′2)(x′3−x′1+2l)

ψ̃′a3,c3(x′3 − x′2 +m)eπi(x
′
3−x′1)(x′3−x′2+2m)

ψ̃′a5,c5(x3 − x2 + p)e−πi(x3−x1)(x3−x2+2p)

ψ̃′a6,c6(x3 − x1 + q)eπi(x3−x2)(x3−x1+2q)

I l,p1 (x2, x3, x
′
1, x
′
3)Ik,l,n,p2 (x2, x3, x

′
1, x
′
3).

Simplifying this we end up with the integral kernel

KS(x1, x2, x3, x
′
1, x
′
2, x
′
3) :=

∑

k,l,m,n,p,q

∫

[0,1]2
ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 + n)

e2πix7(x2−x3+x7+x5+2n−m+k−j)

e2πi(x′3−x′2−x3+x1+k−j)dx5dx7

ψ̃′a2,c2(x′3 − x′1 + l)e−2πi(x′3−x′2)l

ψ̃′a3,c3(x′3 − x′2 +m)e2πi(x′3−x′1)m

ψ̃′a5,c5(x3 − x2 + p)e−2πi(x3−x1)p

ψ̃′a6,c6(x3 − x1 + q)e2πi(x3−x2)q

I1(x2, x3, x
′
1, x
′
3)I2(x2, x3, x

′
1, x
′
3).

We want to show that the operator S takes the pull back of a section to the pull back of a
section. Using integration by parts it is enough to check that the sum of partial derivatives
disappear.

Lemma 10.4. The sum of the partial derivatives of KS disappears. I.e.

∂KS

∂x′1
+
∂KS

∂x′2
+
∂KS

∂x′3
+
∂KS

∂x1
+
∂KS

∂x2
+
∂KS

∂x3
= 0.

Proof. Let

In,m,k,j3 (x1, x2, x3, x
′
2, x
′
3) :=

∫

[0,1]2
ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 + n)

e2πix7(x2−x3+x7+x5+2n−m+k−j)

e2πi(x′3−x′2−x3+x1+k−j)dx5dx7
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The partial derivatives of I3 with respect to x1, x2, x3, x
′
2, x
′
3 are easily calculated to be

∂

∂x1
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = 2πix5I3(x1, x2, x3, x

′
2, x
′
3) =: I ′3(x1, x2, x3, x

′
2, x
′
3),

∂

∂x2
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = 2πix7I3(x1, x2, x3, x

′
2, x
′
3) =: I ′′3 (x1, x2, x3, x

′
2, x
′
3),

∂

∂x3
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = −I ′3(x1, x2, x3, x

′
2, x
′
3)− I ′′3 (x1, x2, x3, x

′
2, x
′
3),

∂

∂x′2
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = −I ′3(x1, x2, x3, x

′
2, x
′
3),

∂

∂x′3
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = I ′3(x1, x2, x3, x

′
2, x
′
3).

The partial derivatives of I2 with respect to the variables x2, x3, x
′
1, x
′
3 are

∂

∂x2
Ik,l,n,p2 (x2, x3, x

′
1, x
′
3) =

e2πi(x′1−x′3−x3+x2+2(k,l,n,p))(x′1 − x′3 − x3 + x2 + 2(k, l, n, p))

(x′1 − x′3 − x3 + x2 + 2(k, l, n, p))2

− (e2πi(x′1−x′3−x3+x2+2(k,l,n,p)) − 1)

2πi(x′1 − x′3 − x3 + x2 + 2(k, l, n, p))2

= : I ′2(x2, x3, x
′
1, x
′
3),

∂

∂x3
Ik,l,n,p2 (x2, x3, x

′
1, x
′
3) =− I ′2(x2, x3, x

′
1, x
′
3),

∂

∂x′1
Ik,l,n,p2 (x2, x3, x

′
1, x
′
3) =I ′2(x2, x3, x

′
1, x
′
3),

∂

∂x′3
Ik,l,n,p2 (x2, x3, x

′
1, x
′
3) =− I ′2(x2, x3, x

′
1, x
′
3).

The partial derivatives of I1 with respect to the variables x2, x3, x
′
1, x
′
3 are

∂

∂x2
I l,p1 (x2, x3, x

′
1, x
′
3) =− e2πi(x′3−x′1−x2+x3+2(m+q))(x′3 − x′1 − x2 + x3 + 2(m+ q))

(x′3 − x′1 − x2 + x3 + 2(m+ q))2

+
(e2πi(x′3−x′1−x2+x3+2(m+q)) − 1)

2πi(x′3 − x′1 − x2 + x3 + 2(m+ q))2

=I ′1(x2, x3, x
′
1, x
′
3),

∂

∂x3
I l,p1 (x2, x3, x

′
1, x
′
3) =− I ′1(x2, x3, x

′
1, x
′
3),

∂

∂x′1
I l,p1 (x2, x3, x

′
1, x
′
3) =I ′1(x2, x3, x

′
1, x
′
3),

∂

∂x′3
I l,p1 (x2, x3, x

′
1, x
′
3) =− I ′1(x2, x3, x

′
1, x
′
3).

The rest of the terms in KS all depends on pairs of the variables x1, x2, x3, x
′
1, x
′
2, x
′
3 with

opposite sign, summing all contributions together therefore shows that the sum of the par-
tial derivatives disappears.

10.4 The operator ρ(T )

The operator ρ(T ) can be seen as the cobordism Ys which is triangulated into 6 tetrahe-
dra T1, . . . , T6 where T1, T4, T5 have negative orientation and the tetrahedra T2, T3, T6 have
positive orientation.
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Figure 10.6: The tetrahedra of the triangulation of XT

Figure 10.7: The tetrahedra of the triangulation ofXT are glued together following the rules
of this diagram.

In the triangulation we have ten edges x1, x2 . . . , x7, x
′
1, x
′
2, x
′
3. The weight functions

corresponding to this triangulation for the edges x1, x2, x3, x
′
1, x
′
2, x
′
3 are

ωYT (x1) = 2π(c3 + a6), ωYT (x2) = 2π(b2 + a3 + b6), ωYT (x3) = 2π(b3 + b5 + c6),

ωYT (x′1) = 2π(a1 + c4), ωYT (x′2) = 2π(b1 + a4 + b5), ωYT (x′3) = 2π(c1 + b2 + b4).

and to the edges x4, x5, x6, x7 we associate the weight functions:

ωYT (x4) = 2π(a1 + c2 + c5 + a6), ωYT (x5) = 2π(b1 + a2 + b3 + b4 + a5 + b6),

ωYT (x6) = 2π(c1 + a2 + a3 + a4 + a5 + c6), ωYT (x7) = 2π(b2 + c3 + c4 + c5).

When we balance edges x4, x5, x7 and the boundary edges on the bottom torus are given
weights ωXT (x1) = δ, ωXS (x2) = ε, ωXS (x3) = ζ. We then get the following restrictions on
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the dihedral angles:

a1 = 1− a6 − c5 − c2,

a2 =
1

2
− c2 − b2,

a3 =
1

2
− δ − b3 − a6,

a4 = −ζ + δ + b1 − c2,

a5 = −ζ − ε− δ + b2 − c5 +
3

2
,

b4 = ζ − b1 + c2 − b3 + b2 + c5 + a6 − 1,

b5 = δ + ε+ ζ − b2 − 1,

b6 = ε+ δ + b3 − b2 − a6 −
1

2
,

c1 = −b1 + c2 + c5 + a6 −
1

2
,

c3 = δ − a6,

c4 = −a− b2 − c5 − a6 + 1,

c6 = ε− δ − b3 + b2 + 1,

and a6, b1, b2, b3, c2, c5 are free variables. We can choose solutions such that dihedral angles
are positive.

The Bolzman weights assigned to the tetrahedra are

B
(
T1, x|∆1(T1)

)
= ga1,c1(x5 + x′2 − x′3 − x6, x5 + x′2 − x′1 − x4),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x′3 + x2 − x7 − x4, x

′
3 + x2 − x5 − x6),

B
(
T3, x|∆1(T3)

)
= ga3,c3(x5 + x3 − x7 − x1, x5 + x3 − x6 − x2)

B
(
T4, x|∆1(T4)

)
= ga4,c4(x′3 + x5 − x7 − x′1, x3 + x5 − x′2 − x6)

B
(
T5, x|∆1(T5)

)
= ga5,c5(x′2 + x3 − x7 − x4, x′2 + x3 − x6 − x5)

B
(
T6, x|∆1(T6)

)
= ga6,c6(x2 + x5 − x3 − x6, x2 + x5 − x4 − x1).

Lemma 10.5. The multipliers corresponding to the edges are calculated to be 1 for the
internal edges x4, x5, x6, x7. And the multipliers for the remaining 6 edges are calculated
to be

eλx1
(x) = e2πi(x3−x2), eλx2

(x) = e2πi(x1−x3), eλx3
(x) = e2πi(x2−x1),

eλx′1
(x) = e2πi(x′2−x′3), eλx′2

(x) = e2πi(x′3−x′1), eλx′3
(x) = e2πi(x′1−x′2),

where x denotes the tuple x = (x1, x2, x3, x
′
1, x
′
2, x
′
3).

Proof. The proof is straight forward verification. The computations are analogue to the
calculations in 10.3.
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We also calculate the integral kernel for the operator ρ(T ).

KT (x′1, x
′
2, x
′
3, x1, x2, x3) =∫

[0,1]4

∑

k,l,m,n,p,q

ψ̃′a1,c1(x5 + x′2 − x′3 − x6 + k)e−πi(x5+x′2−x′1−x4)(x5+x′2−x′3−x6+2k)

ψ̃′a2,c2(x′3 + x2 − x7 − x4 + l)eπi(x
′
3+x2−x5−x6)(x′3+x2−x7−x4+2l)

ψ̃′a3,c3(x5 + x3 − x7 − x1 +m)eπi(x5+x3−x6−x2)(x5+x3−x7−x1+2m)

ψ̃′a4,c4(x′3 + x5 − x7 − x′1 + n)e−πi(x
′
3+x5−x′2−x6)(x′3+x5−x7−x′1+2n)

ψ̃′a5,c5(x′2 + x3 − x7 − x4 + p)e−πi(x
′
2+x3−x6−x5)(x′2+x3−x7−x4+2p)

ψ̃′a6,c6(x2 + x5 − x3 − x6 + q)eπi(x2+x5−x4−x1)(x2+x5−x3−x6+2q)

dx4dx5dx6dx7.

We make the following shifts in the variables: x2 7→ x2 − x5, x3 7→ x3 − x6, x′2 7→ x′2 + x6 +
x7 + x4, x3 7→ x′3 + x4 + x5 + x7, x′1 7→ x′1 + x4 + 2x5 and x1 7→ x1 + x5 − x6 − x7, and we
get the expression

KT (x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]4

∑

k,l,m,n,p,q

ψ̃′a1,c1(x′2 − x′3 + k)

e−πi(x
′
2−x′1−x4−x5+x6+x7)(x′2−x′3+2k)

ψ̃′a2,c2(x′3 + x2 + l)

eπi(x
′
3+x2+x4−x5−x6+x7)(x′3+x2+2l)

ψ̃′a3,c3(x3 − x1 +m)

eπi(2x5+x3−2x6−x2)(x3−x1+2m)

ψ̃′a4,c4(x′3 − x′1 + n)

e−πi(x
′
3−x′2+2x5−2x6)(x′3−x′1+2n)

ψ̃′a5,c5(x′2 + x3 + p)

e−πi(x
′
2+x3+x4−x5−x6+x7)(x′2+x3+2p)

ψ̃′a6,c6(x2 − x3 + q)

eπi(x2−x1−x4−x5+x6+x7)(x2−x3+2q)

dx4dx5dx6dx7.

Integration over the variable x4 gives

∫ 1

0

e2πix4(k+l−p−q)dx4 = δ(k + l − p− q).
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This removes one of the sums in the expression and we are left with

KT (x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]4

∑

k,l,m,n,p

ψ̃′a1,c1(x′2 − x′3 + k)e−πi(x
′
2−x′1−x5+x6+x7)(x′2−x′3+2k)

ψ̃′a2,c2(x′3 + x2 + l)eπi(x
′
3+x2−x5−x6+x7)(x′3+x2+2l)

ψ̃′a3,c3(x3 − x1 +m)eπi(2x5+x3−2x6−x2)(x3−x1+2m)

ψ̃′a4,c4(x′3 − x′1 + n)e−πi(x
′
3−x′2+2x5−2x6)(x′3−x′1+2n)

ψ̃′a5,c5(x′2 + x3 + k + l − q)
e−πi(x

′
2+x3−x5−x6+x7)(x′2+x3+2(k+l−q))

ψ̃′a6,c6(x2 − x3 + q)eπi(x2−x1−x5+x6+x7)(x2−x3+2q)

dx5dx6dx7.

We chance the signs of the three variables x1, x2, x3 which does not affect the operator and
then we integrate over the three remaining variables.

KT (x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]4

∑

k,l,m,n,p

ψ̃′a1,c1(x′2 − x′3 + k)eπi(x
′
2−x′1−x5+x6+x7)(x′3−x′2−2k)

ψ̃′a2,c2(x′3 − x2 + l)eπi(x
′
3−x2−x5−x6+x7)(x′3−x2+2l)

ψ̃′a3,c3(x3 − x1 +m)eπi(x2−x3+2x5−2x6)(x3−x1+2m)

ψ̃′a4,c4(x′3 − x′1 + n)eπi(x
′
3−x′2+2x5−2x6)(x′1−x′3−2n)

ψ̃′a5,c5(x′2 − x3 + k + l − q)
eπi(x

′
2−x3−x5−x6+x7)(x3−x′2−2(k+l−q))

ψ̃′a6,c6(x3 − x2 + q)eπi(x1−x2−x5+x6+x7)(x3−x2+2q)

dx5dx6dx7.

Integration over the variable x5 is

∫ 1

0

e2πix5(−2x′3−2x3+x1+x′1+x2+x′2+2(m−n+p−l))dx5 = Jm,n,p,l1 (x1, x2, x3, x
′
1, x
′
2, x
′
3).

Integration over the variable x6 gives

∫ 1

0

e2πix6(x3+x′3−x1−x′1+2(m+n))dx6 =
e2πi(x3+x′3−x1−x′1+2(m+n)) − 1

2πi(x3 + x′3 − x1 − x′1 + 2(m+ n))

=Jm,n2 (x1, x3, x
′
1, x
′
3).

Integration over the variable x7 gives

∫ 1

0

e2πix7(x′3−x2−x′2+x3+2(l−p))dx6 =
e2πi(x′3−x2−x′2+x3+2(l−p)) − 1

2πi(x′3 − x2 − x′2 + x3 + 2(l − p))
=J l,p3 (x2, x3, x

′
2, x
′
3).
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So we have the expression for the operator KT

KT (x1, x2, x3, x
′
1, x
′
2, x
′
3) =

∑

k,l,m,n,p

ψ̃′a1,c1(x′2 − x′3 + k)eπi(x
′
2−x′1)(x′3−x′2−2k)

ψ̃′a2,c2(x′3 − x2 + l)eπi(x
′
3−x2)(x′3−x2+2l)

ψ̃′a3,c3(x3 − x1 +m)eπi(x2−x3)(x3−x1+2m)

ψ̃′a4,c4(x′3 − x′1 + n)eπi(x
′
3−x′2)(x′1−x′3−2n)

ψ̃′a5,c5(x′2 − x3 + k + l − q)eπi(x′2−x3)(x3−x′2−2(k+l−q))

ψ̃′a6,c6(x3 − x2 + q)eπi(x1−x2)(x3−x2+2q)

Jm,n,p,l1 (x1, x2, x3, x
′
1, x
′
2, x
′
3)

Jm,n2 (x1, x3, x
′
1, x
′
3)J l,p3 (x2, x3, x

′
2, x
′
3).

Again, in order to check that the operator ρ(T ) takes the pull back of a section to a pull
back of a section we show the following Lemma.

Lemma 10.6. The sum of the partial derivatives of KT disappears. I.e.

∂KT

∂x′1
+
∂KT

∂x′2
+
∂KT

∂x′3
+
∂KT

∂x1
+
∂KT

∂x2
+
∂KT

∂x3
= 0

Proof. In each term of the expression for KT there is an equal number of variables one half
having positive coefficient and the other half having negative coefficient. Therefore the
sum of the partial differentials must equal zero.

10.4.1 Change of coordinates

Clearly the multipliers are trivial in the direction

z = x1 + x2 + x3 and z′ = x′1 + x′2 + x′3.

We change coordinates to

x = −2x1 + 2x3, x′ = 2x′1 − 2x′3
y = −x2 + x3, y′ = −x′2 + x′3
z = x1 + x2 + x3, z′ = x′1 + x2 + x′3,

In these coordinates we have

x1 =
1

3
(z + y − x) , x′1 =

1

3
(z′ + y′ + x′) ,

x2 =
1

3

(
z − 2y +

1

2
x

)
, x′2 =

1

3

(
z′ − 2y′ − 1

2
x′
)
,

x3 =
1

3

(
z + y +

1

2
x

)
, x′3 =

1

3

(
z′ + y′ − 1

2

)
.

Note that the transformation x = x(x1, x2, x3), y = y(x1, x2, x3) and z = z(x1, x2, x3)
changes the volume element dxdydz = |J(x1, x2, x3)|dx1dx2dx3. Here J is just the usual
Jacobian. In out case |J(x1, x2, x3)| = 6.
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10.4.2 WGZ-transformation of wavelet

Let us shortly describe how a wavelet transforms under the Weil–Gel’fand–Zak transfor-
mation.

We let f ∈ S(R) be the wavelet function defined by f(x) = 1
2π e
− 1

2x
2

. We let Ta,b be the
translation Ta,b(x) = ax+ b then we define the function fa,b(x) := f ◦ Ta,b(x) ∈ S(R).

Lemma 10.7. Let fa,b ∈ S(R), then we have the following transformation rule

(Wfa,b)(x, y) = eπixyfa,b(x) · θ
(
y − ab+ a2x

2πi
,
−a2

2πi

)
, (10.5)

where θ(z; τ) ≡∑n∈Z e
πiτn2+2πizn is Riemann’s theta function.

Proof. The proof is direct computation.

(Wfa,b)(x, y) = eπixy
∑

m∈Z
fa,b(x+m) · e2πimy

=
1

2π
eπixy

∑

m∈Z
e−

1
2 (a(x+m)+b)2 · e2πimy

=
1

2π
e−

b2

2 eπixy
∑

m∈Z
e−

1
2 (a2(x+m)2)e−abxe−abm · e2πimy

=
1

2π
e−

b2

2 eπixy
∑

m∈Z
e−

1
2 (a2(x2+m2+2mx))e−abxe−abm · e2πimy

= eπixyfa,b(x)
∑

m∈Z
e−

1
2 (am)2+m(2πiy−ab−xa2)

= eπixyfa,b(x) · θ
(
y − ab+ a2x

2πi
,
−a2

2πi

)
.

10.4.3 Properties of the Theta function

The Theta function behaves very regularly with respect to its quasi-period τ and satisfies
the functional equation

θ(z + p+ qτ, τ) = θ(z, τ)e−πiτq
2−2πiqz

where p, q are integers.

θ(z + p+ qτ, τ) =
∑

n∈Z
eπiτn

2+2πi(z+p+qτ)n =
∑

n∈Z
eπiτ(n+q)2−πiτq2+2πizn

=
∑

l∈Z
eπiτl

2−πiτq2+2πizl−2πiqz = θ(z, τ)e−πiτq
2−2πiqz

We apply this formula to the Theta function θ
(
y + q − ab+2a2(x̃−m)

2πi , −a
2

2πi

)
. Here τ =

− a2

2πi . Direct calculation shows that

θ

(
y + q − b

a
τ + 2τ(x̃−m), τ

)
= θ

(
y +

b

a
τ + 2τx, τ

)
e+4πimye2m2a2−2mab−4ma2x

Therefore we get the much simpler expression for the product

θ

(
y + q − b

a
τ + 2τ(x̃−m), τ

)
· fa,b(2(x̃−m)) = e4πimyθ

(
y − b

a
τ + 2τ x̃, τ

)
· fa,b(2x̃).
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10.5 Representations of ρA–K(S), ρA–K(T )

10.5.0.1 Representation of ρA–K(T )

The operator ρA–K(T ) = W−1 ◦
∫
Fz′
◦ ρ(T ) ◦ π∗ ◦W , where

∫
F ′z

is integration over the fiber
and ρ(T ) acts in the following way:

ρ(T ).(s)(x′1, x
′
2, x
′
3) =

∫

[0,1]3
KT (x′1, x

′
2, x
′
3, x1, x2, x3)s(x1, x2, x3) dx1dx2dx3 (10.6)

Recall that the expression for the kernel is given by

KT (x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]3

∑

k,l,m,n,q

ψ̃′a1,c1(x′2 − x′3 + k)e−πi(x
′
2−x′1−x5+x6+x7)(x′2−x′3+2k)

ψ̃′a2,c2(x′3 + x2 + l)eπi(x
′
3+x2−x5−x6+x7)(x′3+x2+2l)

ψ̃′a3,c3(x3 − x1 +m)eπi(2x5+x3−2x6−x2)(x3−x1+2m)

ψ̃′a4,c4(x′3 − x′1 + n)e−πi(x
′
3−x′2+2x5−2x6)(x′3−x′1+2n)

ψ̃′a5,c5(x′2 + x3 + p)

e−πi(x
′
2+x3−x5−x6+x7)(x′2+x3+2(k+l−q))

ψ̃′a6,c6(x2 − x3 + k + l − p)
eπi(x2−x1−x5+x6+x7)(x2−x3+2q)

dx5dx6dx7.

Writing this in the coordinates x′, y′, z′, x, y, z we get the integral kernel

KT (x′, y′, z′, x, y, z) =

∫

[0,1]3

∑

k,l,m,n,q

ψ̃′a1,c1(−y′ + k)e−πi(−y
′− 1

2x
′−x5+x6+x7)(−y′+2k)

ψ̃′a2,c2(
1

3
(z′ + y′ − 1

2
x′ + z − 2y +

1

2
x) + l)

eπi(
1
3 (z′+y′− 1

2x
′+z−2y+ 1

2x)−x5−x6+x7)( 1
3 (z′+y′− 1

2x
′+z−2y+ 1

2x)+2l)

ψ̃′a3,c3(
1

2
x+m)eπi(y+2x5−2x6)( 1

2x+2m)

ψ̃′a4,c4(−1

2
x′ + n)e−πi(y

′+2x5−2x6)(− 1
2x
′+2n)

ψ̃′a5,c5(
1

3
(z′ − 2y′ − 1

2
x′ + z + y +

1

2
x) + k + l − q)

e−πi(
1
3 (z−2y′− 1

2x
′+z+y+ 1

2x)−x5−x6+x7)( 1
3 (z−2y′− 1

2x
′+z+y+ 1

2x)+2(k+l−q))

ψ̃′a6,c6(−y + q)eπi(
1
2x−y−x5+x6+x7)(−y+2q)

dx5dx6dx7.
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We shift z 7→ z − z′ − y′ + 1
2x
′ + 2y − 1

2x.

KT (x′, y′, z′, x, y, z) =

∫

[0,1]3

∑

k,l,m,n,q

ψ̃′a1,c1(−y′ + k)e−πi(−y
′− 1

2x
′−x5+x6+x7)(−y′+2k)

ψ̃′a2,c2(
1

3
z + l)eπi(

1
3 z−x5−x6+x7)( 1

3 z+2l)

ψ̃′a3,c3(
1

2
x+m)eπi(y+2x5−2x6)( 1

2x+2m)

ψ̃′a4,c4(−1

2
x′ + n)e−πi(y

′+2x5−2x6)(− 1
2x
′+2n)

ψ̃′a5,c5(
1

3
z − y′ + y + k + l − q)

e−πi(
1
3 z−y′+y−x5−x6+x7)( 1

3 z−y′+y+2(k+l−q))

ψ̃′a6,c6(−y + q)eπi(
1
2x−y−x5+x6+x7)(−y+2q)

dx5dx6dx7.

ρ(T )(π∗(Wfa,b))(x
′, y′, z′) =

∫

[0,1]6

∑

k,l,m,n,q

ψ̃′a1,c1(−y′ + k)e−πi(−y
′− 1

2x
′−x5+x6+x7)(−y′+2k)

ψ̃′a2,c2(
1

3
z + l)eπi(

1
3 z−x5−x6+x7)( 1

3 z+2l)

ψ̃′a3,c3(
1

2
x+m)eπi(y+2x5−2x6)( 1

2x+2m)

ψ̃′a4,c4(−1

2
x′ + n)e−πi(y

′+2x5−2x6)(− 1
2x
′+2n)

ψ̃′a5,c5(
1

3
z − y′ + y + k + l − q)

e−πi(
1
3 z−y′+y−x5−x6+x7)( 1

3 z−y′+y+2(k+l−q))

ψ̃′a6,c6(−y + q)eπi(
1
2x−y−x5+x6+x7)(−y+2q)

dx5dx6dx7

eπiyxfa,b(x) · θ
(
y − ab+ a2x

2πi
,
−a2

2πi

)
1

6
· dxdydz
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Note that this is independent of z′. Therefore integration over the fiber is trivial. For sim-
plicity we write z̃ = 1

3z, x̃ = 1
2x and x̃′ = 1

2x
′. Note that 6dx̃dz̃ = dxdz

ρA–K(T )(fa,b)(x̃
′) =

∑

k,l,m,n,q

∫

[0,1]3
ψ̃′a1,c1(−y′ + k)ψ̃′a2,c2(z̃ + l)ψ̃′a3,c3(x̃+m)ψ̃′a4,c4(−x̃′ + n)

ψ̃′a5,c5(z̃ − y′ + y + k + l − q)ψ̃′a6,c6(−y + q)
∫ 1

0

e2πix5(y−y′+x̃+x̃′+2(k−q+m−n))dx5

∫ 1

0

e−2πix6(x̃+x̃′+2(m−n))dx6

∫ 1

0

e2πix7(y′−y+2(q−k))dx7

e2πiz̃((y′−k)+(−y+q))e2πix̃qe2πix̃′k

e2πiy(y′+m−k−l)e−2πiy′2e2πiy′(2k+l−q−n)

e2πiyx̃fa,b(2x̃) · θ
(
y − ab+ 2a2x̃

2πi
,
−a2

2πi

)

e−2πix̃′y′ dx̃dydz̃dy′.

We do the following substitution in order move the summation variables to the integrals i.e.
to change

∑
m

∫ 1

0
f(x+m)dx into

∑
m

∫m+1

m
f(x)dx. The substitutions look like: y′ 7→ y′+k,

z̃ 7→ z̃ − l, x̃ 7→ x̃−m and y 7→ y + q We have the expression

ρA–K(T )(fa,b)(x̃
′) =

∑

k,l,m,n,q

∫ y′=k+1

y′=k

∫ z̃=−l+1

z̃=−l

∫ x̃=−m+1

x̃=−m

∫ y=q+1

y=q

ψ̃′a1,c1(−y′)ψ̃′a2,c2(z̃)

ψ̃′a3,c3(x̃)ψ̃′a4,c4(−x̃′ + n)ψ̃′a5,c5(z̃ − y′ + y)ψ̃′a6,c6(−y)
∫ 1

0

e2πix5(y−y′+(k−q)+x̃+x̃′+m−2n)dx5

∫ 1

0

e2πix6(x̃+x̃′+m−2n)dx6

∫ 1

0

e2πix7(y′−y+k−q)dx7

e2πi(z̃−l)(y′−y)e2πi(x̃−m)qe2πix̃′k

e2πi(y+q)(y′+m−l)

e−2πi(y′+k)2

e2πi(y′+k)(2k+l−q−n)e2πi(y+q)(x̃−m)e−2πĩ(x′)(y′+k)

fa,b(2(x̃−m)) · θ
(
y + q − ab+ 2a2(x̃−m)

2πi
,
−a2

2πi

)
dx̃dydz̃dy′
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Reducing the phase we get

ρA–K(T )(fa,b)(x̃
′) =

∑

k,l,m,n,q

∫ y′=k+1

y′=k

∫ z̃=−l+1

z̃=−l

∫ x̃=−m+1

x̃=−m

∫ y=q+1

y=q

ψ̃′a1,c1(−y′)ψ̃′a2,c2(z̃)

ψ̃′a3,c3(x̃)ψ̃′a4,c4(−x̃′ + n)ψ̃′a5,c5(z̃ − y′ + y)ψ̃′a6,c6(−y)
∫ 1

0

e2πix5(y−y′+(k−q)+x̃+x̃′+m−2n)dx5

∫ 1

0

e2πix6(x̃+x̃′+m−2n)dx6

∫ 1

0

e2πix7(y′−y+k−q)dx7

e2πi(z̃)(y′−y)e4πix̃qe2πix̃′)ke−2πiy′2

e2πiyy′e−2πiy′ne2πiyx̃e−2πix̃′y′e−2πix̃′k

fa,b(2(x̃−m)) · θ
(
y + q − ab+ 2a2(x̃−m)

2πi
,
−a2

2πi

)
dx̃dydz̃dy′

Hence

ρA–K(T )(fa,b)(x̃
′) =

∑

k,l,m,n,q

∫ y′=k+1

y′=k

∫ z̃=−l+1

z̃=−l

∫ x̃=−m+1

x̃=−m

∫ y=q+1

y=q

ψ̃′a1,c1(−y′)ψ̃′a2,c2(z̃)

ψ̃′a3,c3(x̃)ψ̃′a4,c4(−x̃′ + n)ψ̃′a5,c5(z̃ − y′ + y)ψ̃′a6,c6(−y)
∫ 1

0

e2πix5(y−y′+(k−q)+x̃+x̃′+m−2n)dx5

∫ 1

0

e2πix6(x̃+x̃′+m−2n)dx6

∫ 1

0

e2πix7(y′−y+k−q)dx7

e2πi(z̃)(y′−y)e4πix̃qe−2πiy′2

e2πiyy′e−2πiy′ne2πiyx̃e−2πix̃′y′

fa,b(2(x̃−m)) · θ
(
y + q − ab+ 2a2(x̃−m)

2πi
,
−a2

2πi

)
dx̃dydz̃dy′.

Integration over the variable z can now be carried out:

∑

l∈Z

∫ −l+1

−l
ψ̃′a2,c2(z̃)ψ̃′a5,c5(z̃ − y′ + y)e2πiz̃(y′−y) dz

=

∫

R
ψ̃′a2,c2(z̃)ψb5,c5((y′ − y)− z̃)eπi(z̃−y′+y)e−2πiz(y′−y) dz

=

∫

R
eπiz̃

2

ψ̃′a2,c2(z̃)ψb5,c5((y′ − y)− z̃) dz eπi(y2+y′2)e−2πiy′y

= (ga2,c2 ∗ ψb5,c5)(y′ − y) · e−2πiy′yeπi(y
2+y′2),

where ga2,c2(z̃) = eπiz̃
2 · ψ̃′a2,c2(z). The first equality follows from the properties of the

charged tetrahedral operators.
We now have the expression
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ρA–K(T )(fa,b)(x̃
′) =

∑

k,m,n,q

∫ y′=k+1

y′=k

∫ x̃=−m+1

x̃=−m

∫ y=q+1

y=q

ψ̃′a1,c1(−y′)ψ̃′a3,c3(x̃)

ψ̃′a4,c4(−x̃′)ψ̃′a6,c6(−y)(ga2,c2 ∗ ψb5,c5)(y′ − y)
∫ 1

0

e2πix5(y−y′+(k−q)+x̃+x̃′+m−n)dx5

∫ 1

0

e2πix6(x̃+x̃′+m−n)dx6

∫ 1

0

e2πix7(y′−y+k−q)dx7

e4πix̃qe−πiy
′2
eπiy

2

e−2πiy′ne2πiyx̃e−2πix̃′y′

fa,b(2(x̃−m)) · θ
(
y + q − ab+ 2a2(x̃−m)

2πi
,
−a2

2πi

)
dx̃dydy′.

Using the property of the Theta function we can write down the expression

ρA–K(T )(fa,b)(x̃
′) =

∑

k,m,n,q

∫ y′=k+1

y′=k

∫ x̃=−m+1

x̃=−m

∫ y=q+1

y=q

ψ̃′a1,c1(−y′)ψ̃′a3,c3(x̃)

ψ̃′a4,c4(−x̃′)ψ̃′a6,c6(−y)(ga2,c2 ∗ ψb5,c5)(y′ − y)
∫ 1

0

e2πix5(y−y′+(k−q)+x̃+x̃′+m−n)dx5

∫ 1

0

e2πix6(x̃+x̃′+m−n)dx6

∫ 1

0

e2πix7(y′−y+k−q)dx7

e4πix̃qe4πiỹme−πiy
′2
eπiy

2

e−2πiy′ne2πiyx̃e−2πix̃′y′

fa,b(2x̃) · θ
(
y − ab+ 2a2x̃

2πi
,
−a2

2πi

)
dx̃dydy′.

10.5.0.2 Representation of Ŝ

The operator ρA–K(S) = W−1 ◦
∫
Fz′
◦ ρ(S) ◦ π∗ ◦W , where again

∫
F ′z

is integration over the
fibre and ρ(S) acts in the following way:

ρ(S)(s)(x′1, x
′
2, x
′
3) =

∫

[0,1]3
KS(x′1, x

′
2, x
′
3, x1, x2, x3)s(x1, x2, x3) dx1dx2dx3. (10.7)
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Recall that the expression for the kernel is given by

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]4

∑

k,l,m,n,p,q

ψ̃′a1,c1(x7 + k)eπi(−x
′
1−x1+2x7+2x4+2x5)(x7+2k)

ψ̃′a2,c2(x′3 − x′1 + l)

e−πi(x
′
3−x′2+2x4−2x6+x7)(x′3−x′1+2l)

ψ̃′a3,c3(x′3 − x′2 +m)eπi(x
′
3−x′1+2x5+x7)(x′3−x′2+2m)

ψ̃′a4,c4(−x7 + n)eπi(2x4−x′2−x2)(−x7+2n)

ψ̃′a5,c5(x3 − x2 + p)

e−πi(x3−x1+2x4−2x6+x7)(x3−x2+2p)

ψ̃′a6,c6(x3 − x1 + q)eπi(x3−x2−2x5−x7)(x3−x1+2q)

dx4dx5dx6dx7.

We shift x6 7→ x6 + x4 Which gives the expression

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]4

∑

k,l,m,n,p,q

ψ̃′a1,c1(x7 + k)eπi(−x
′
1−x1+2x7+2x4+2x5)(x7+2k)

ψ̃′a2,c2(x′3 − x′1 + l)e−πi(x
′
3−x′2−2x6+x7)(x′3−x′1+2l)

ψ̃′a3,c3(x′3 − x′2 +m)eπi(x
′
3−x′1+2x5+x7)(x′3−x′2+2m)

ψ̃′a4,c4(−x7 + n)eπi(2x4−x′2−x2)(−x7+2n)

ψ̃′a5,c5(x3 − x2 + p)e−πi(x3−x1−2x6+x7)(x3−x2+2p)

ψ̃′a6,c6(x3 − x1 + q)eπi(x3−x2−2x5−x7)(x3−x1+2q)

dx4dx5dx6dx7.

We can now do the integration

∫ 1

0

e2πix4(k+n)dx4 = δ(k + n),

which also removes one of the summations.

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]3

∑

k,l,m,p,q

ψ̃′a1,c1(x7 + k)eπi(−x
′
1−x1+2x7+2x5)(x7+2k)

ψ̃′a2,c2(x′3 − x′1 + l)e−πi(x
′
3−x′2−2x6+x7)(x′3−x′1+2l)

ψ̃′a3,c3(x′3 − x′2 +m)eπi(x
′
3−x′1+2x5+x7)(x′3−x′2+2m)

ψ̃′a4,c4(−x7 − k)eπi(x
′
2+x2)(x7+2k)

ψ̃′a5,c5(x3 − x2 + p)e−πi(x3−x1−2x6+x7)(x3−x2+2p)

ψ̃′a6,c6(x3 − x1 + q)eπi(x3−x2−2x5−x7)(x3−x1+2q)

dx5dx6dx7.
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We collect the terms where x5, x7 appears.

KS(x′1, x
′
2, x
′
3, x1, x2, x3) =

∫

[0,1]2

∑

k,l,m,p,q

ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 − k)

e2πix7(x7+x5+x2−x3+2k−l+m−p−q)dx7

e2πix5(x′3−x′2+x3−x1+2(m+k+q))dx5
∫ 1

0

e2πix6(x′3−x′1+x3−x2+2(p+l))dx6

ψ̃′a2,c2(x′3 − x′1 + l)e−2πil(x′3−x′2)

ψ̃′a3,c3(x′3 − x′2 +m)e2πim(x′3−x′1)

e−2πik(x′1+x1)e2πik(x′2+x2)

ψ̃′a5,c5(x3 − x2 + p)e−2πip(x3−x1)

ψ̃′a6,c6(x3 − x1 + q)e2πiq(x3−x2).

We wish to find an expression for the operator ρA–K(S) : S(R)→ S(R), where

ρA–K(S) = W−1 ◦
∫

Fz′
◦ρ(S) ◦ π∗ ◦W,

where ρ(S) is the operator

ρ(S)(s)(x′1, x
′
2, x
′
3) =

∫

[0,1]3
KS(x′1, x

′
2, x
′
3, x1, x2, x3) · s(x1, x2, x3) dx1dx2dx3.

Again we change coordinates according to section 10.4.1.

ρ(S)(π∗(Wfa,b))(x
′, y′, z′) =

∫

[0,1]3

∫

[0,1]2

∑

k,l,m,p,q

ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 − k)

e2πix7(x7+x5−y+2k−l+m−p−q)dx7

e2πix5(y′+ 1
2x+2(m+k+q))dx5

∫ 1

0

e2πix6(− 1
2x
′+y+2(p+l))dx6

ψ̃′a2,c2(−1

2
x′ + l)e−2πil(y′)

ψ̃′a3,c3(y′ +m)e−2πim( 1
2x
′)

e−2πik( 1
3 (z′+y′+x′+z+y−x))

e2πik( 1
3 (z′−2y′− 1

2x
′+z−2y+ 1

2x))

ψ̃′a5,c5(y + p)e−2πip( 1
2x)

ψ̃′a6,c6(
1

2
x+ q)e2πiqy

eπixyfa,b(x) · θ
(
y − ab+ 2a2x̃

2πi
,
−a2

2πi

)

1

6
· dxdydz

We see that this expression is independent of both z and z′. Integration over the fiber F ′z
becomes trivial. We obtain the following expression for the operator ρA–K(S) on a wavelet
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fa,b ∈ S(R).

ρA–K(S)(fa,b)(x̃
′) =

∑

k,l,m,p,q

∫

[0,1]2

∫

[0,1]3

∫

[0,1]2
ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 − k)

e2πix7(x7+x5−y+2k−l+m−p−q)dx7

e2πix5(y′+x̃+2(m+k+q))dx5
∫ 1

0

e2πix6(−x̃′+y+2(p+l))dx6

ψ̃′a2,c2(−x̃′ + l)e−2πily′

ψ̃′a3,c3(y′ +m)e−2πimx̃′

e−2πik( 1
3 (z′+y′+2x̃′+z+y−2x̃))

e2πik( 1
3 (z′−2y′−x̃′+z−2y+x̃))

ψ̃′a5,c5(y + p)e−2πip(x̃)

ψ̃′a6,c6(x̃+ q)e2πiqy

e2πix̃yfa,b(2x̃)

θ

(
y − ab+ 2a2x̃

2πi
,
−a2

2πi

)
dx̃dydzdz̃′

e−2πix̃′y′dy′

Rewriting this we get the expression:

ρA–K(S)(fa,b)(x̃
′) =

∑

k,l,m,p,q

∫ y′=1

y′=0

∫

[0,1]2

∫

[0,1]2
ψ̃′a1,c1(x7 + k)ψ̃′a4,c4(−x7 − k)

e2πix7(x7+x5−y+2k−l+m−p−q)dx7

e2πix5(y′+x̃+2(m+k+q))dx5
∫ 1

0

e2πix6(−x̃′+y+2(p+l))dx6

ψ̃′a2,c2(−x̃′ + l)ψ̃′a3,c3(y′ +m)

ψ̃′a5,c5(y + p)ψ̃′a6,c6(x̃+ q)

e−2πily′e−2πimx̃′

e−2πik(y′+y+x̃′−x̃)e−2πipx̃e2πiqy

e2πix̃ye−2πix̃′y′

fa,b(2x̃) · θ
(
y − ab+ 2a2x̃

2πi
,
−a2

2πi

)
dx̃dydy′

Unfortunately we have not yet been able to arrive at nice expressions for the represen-
tation. This is still work in progress.
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Appendix

11.1 Appendix A

11.1.1 Quantum dilogarithm

Since the quantum dilogarithm plays an important role in this thesis we here take time
to discuss some of its properties. There are more than one function that carries the name
quantum dilogarithm. They are not equal but nevertheless connected.

(i) The quantum dilogarithm function Li2(x; q), studied by Fadeev–Kashaev [12] and
other authors, is the function of two variables defined by the series

Li2(x; q) =

∞∑

n=1

xn

n(1− qn)
, (11.1)

where x, q ∈ C, with |x|, |q| < 1. It is connected to the classical Euler dilogarithm Li2
given by Li2(x) =

∑∞
n=1

xn

n2 in the sense that it is a q-deformation of the classical one
in the following manner

lim
ε→0

(
εLi2(x, e−ε)

)
= Li2(x), |x| < 1. (11.2)

Indeed using the expansion 1
1−e−t = 1

t + 1
2 + t

12 − t3

720 + . . . we obtain a complete
asymptotic expansion

Li2(x, e−ε) = Li2(x)ε−1 +
1

2
log

(
1

1− x

)
+

x

1− x
ε

12
− x+ x2

(1− x)3

ε3

720
+ . . . (11.3)

as ε→ 0 with fixed x ∈ C, |x| < 1.

(ii) The second quantum dilogarithm (x; q)∞ defined for |q| < 1 and all x ∈ C is given as
the function

(x; q)∞ =

∞∏

i=0

(1− xqi). (11.4)

This second quantum dilogarithm is related to the first by the formula

(x; q)∞ = exp(−Li2(x; q)). (11.5)

This is easily proven by a direct calculation

− log (x; q)∞ =

∞∑

i=0

log(1−xqi) =

∞∑

i=0

∞∑

n=1

1

n
xnqin =

∞∑

n=1

xn

n(1− qn)
= Li2(x; q). (11.6)
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Proposition 11.1. The function (x; q)∞ and its reciprocal have the Taylor expansions

(x; q)∞ =

∞∑

n=0

(−1)n

(q)n
q
n(n−1)

2 xn,
1

(x; q)∞

∞∑

n=0

1

(q)n
xn, (11.7)

around x = 0, where

(q)n =
(q; q)∞

(qn+1; q)∞
= (1− q)(1− q2) · (1− qn).

The proofs of these formulas follows easily from the recursion formula (x; q)∞ =
(1 − x)(qx;x)∞, which together with initial value (0; q)∞ = 1 determines the power
series for (x; q)∞ uniquely.

Yet another famous result for the function (x; q)∞, which can be proven by use of
the Taylor expansion and the identity

∑
m−n=k

qmn

(q)m(q)n
= 1

(q)∞
, is the Jacobi triple

product formula

(q; q)∞(x; q)∞(qx−1; q)∞ =
∑

k∈Z
(−1)kq

k(k−1)
2 xk, (11.8)

which relates the quantum dilogarithm function to the classical Jacobi theta-function.

(iii) The quantum dilogarithm functions introduced are related to yet another quantum
dilogarithm function named after Faddeev.

Definition 11.2. Faddeev’s quantum dilogarithm Faddeev’s quantum dilogarithm
function is a function in two complex arguments z and b defined by the formula

Φb(z) =

∫

C

exp

(
e−2izwdw

4 sinh(w b) sinh(w/b)w

)
, (11.9)

where the contour C runs along the real axis, deviating into the upper half plane in
the vicinity of the origin.

Proposition 11.3. Faddeev’s quantum dilogarithm function Φb(z) is related to the
function (x; q)∞ :=

∏∞
i=0(1 − xqi), where |q| < 1, in the following sense. When

Im(b2) > 0, the integral can be calculated explicitly

Φb(z) =

(
e2π(z+cb)b; q2

)
∞(

e2π(z−cb)b; q̃2
)
∞

(11.10)

where q ≡ eiπb2

and q̃ ≡ e−πib−2

.

Proof. We collect a residue of the integrand I(z,b) = 1
4

∫
C

e−2izw

sinh(w b) sinh(w/ b)wdw. The
integrand has poles at w = πinb and w = πinb−1 . The residue at c of a fraction i.e.
f(x) = g(x)

h(x) can be calculated as Res f(c) = g(c)
h′(c) when c is a simple pole. Therefore
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we get by the residue theorem

I(z,b) =
πi

2

∞∑

n=1

e2πz bn

πinb(−1)n sinh(πinb2)
+

e2πz b−1 n

πinb(−1)n sinh(πinb−2)

=

∞∑

n=1

eπine2πz bn

n(eπin b2 − e−πin b2
)

+
eπine2πz b−1 n

n(eπin b−2 − e−πin b−2
)

=

∞∑

n=1

−

(
e2πz b +πi+πi b2

)n

n(1− e2πi b2 n)
+

(
e2πz b−1−πi−πi b−2

)n

n(1− e−2πi b−2 n)

=

∞∑

n=1

− e2π(z+cb) bn

n(1− e2πi b2 n)
+

e2π(z−cb) b−1 n

n(1− e−2πi b−2 n)

= log
(
e2π(z+cb) b; q2

)
∞
− log

(
e2π(z−cb) b; q̃2

)
∞
.

The result follows by taking the exponential of both sides.

Lemma 11.4. Faddeev’s quantum dilogarithm function satisfies the two functional
equations:

1

Φb(z + ib/2)
=

1

Φb(z − ib/2)

(
1 + e2πbz

)
, (11.11)

Φb(z)Φb(−z) = eiπ(1+2c2b)/6eiπz
2

. (11.12)

Proof. Let us first prove (11.11). We have

Φb(z − ib/2)

Φb(z + ib/2)
= exp

∫

C

e−2i(z−ib/2)w − e−2i(z+ib/2)w

4 sinh(wb) sinh(w/b)w
dw

= exp

∫

C

e−2izw
(
e−bw − ebw

)

4 sinh(wb) sinh(w/b)w
dw

= exp

(
−1

2

∫

C

e−2izw

sinh(w/b)w

)
dw

Let a > 0. Let ε = 1 if Im(−2iz) ≥ 0 and ε = −1 otherwise. Put δ−a = [−a, iεa] and
δ−a = [iεa, a]. The integrals

∫
δa±

e−2izw

2 sinh(w/b)w dw converge to zero as a→∞. Therefore

∫

C

e−2izw

sinh(w/b)w
dw = ε2πi

(
cε +

∞∑

n=1

Resw=εiπbn

{
e−2izw

sinh(w/b)w

})
,

where c1 = 0 and c−1 = Resw=0

{
e2izw

sinh(w/b)w

}
= −2izb. For n ∈ Z\ {0}we have

Resw=πinbε

{
e−2izw

sinh(w/b)w

}
=

(−1)ne2zπbεn

πin

so ∫

C

e−2izw

sinh(w/b)w
dw = (ε− 1)2πzb− 2 log(1 + e2zπbε),

giving the first result.

To prove equation (11.12) let us choose the path C = (−∞,−ε] ∪ ε exp([πi, 0]) ∪ [ε,∞)
and let ε→ 0. The rest is just calculations:

log Φb(z)Φb(−z) =
1

2

∫

C

cos(2wz)

sinh(w b) sinh(w/b)w
dw
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Note that

1

2

∫

(−∞,−ε]

cos(2wz)

sinh(w b) sinh(w/b)w
dw = −1

2

∫

[ε,∞)

cos(2wz)

sinh(w b) sinh(w/b)w
dw.

i.e. it is enough to collect the half residue around w = 0 of the remaining intergral.

1

2

∫

ε([πi,0])

cos(2wz)

sinh(w b) sinh(w/b)w
dw =

πi

2
Resw=0

cos(2wz)

sinh(w b) sinh(w/b)w

=
πi

2

(
b2 + b−2

6
+ 2z2

)

= eπi(1+2c2b)/6eπiz
2

.

The functional equation (11.11) shows that Φb(z), which in its initial domain of defi-
nition has no zeroes and poles, extends (for fixed b with Im b2 > 0) to a meromorphic
function of z with zeroes and poles:

(Φb(z))
±1

= 0 ⇐⇒ z = ∓(cb +mi b +nib). (11.13)

11.1.2 Five term relation

The quantum dilogarithm function satisfy various five term relations, of which the five
term relation for the dilogarithm function Li2(x) is a limiting case, when the arguments are
non-commuting variables. The far simplest relation is the following

(Y ; q)∞(X; q)∞ = (X; q)∞(−Y X; q)∞(Y ; q)∞,

where the operators X and Y satisfy the equation XY = qY X .
From this equation one deduces the famous quantum pentagon identity

Φb(p̂)Φb(q̂) = Φb(q̂)Φb(p̂+ q̂)Φb(p̂), (11.14)

where p̂, q̂ ∈ L2(R) are selfadjoint operators satisfying

[p̂, q̂] = (2πi)−1.

11.1.3 Asymptotic expansion

Proposition 11.5. For fixed x and b→ 0 we have the following asymptotic expansion

log Φb

( x

2π b

)
=

∞∑

n=0

(2πib)2n−1B2n(1/2)

(2n)!

∂2n Li2(−ex)

∂x2n
, (11.15)

where B2n(1/2) are the Bernoulli polynomials evaluated at 1/2.

Proof. From (11.11) we have that

log




Φb

(
x−iπ b2

2π b

)

Φb

(
x+iπ b2

2π b

)


 = log(1 + ex)

The left hand side yields

log Φb

(
x− iπ b2

2π b

)
− log Φb

(
x+ iπ b2

2π b

)
= −2 sinh(iπb2∂/∂x) log Φb

( x

2π b

)
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where we have used the fact that

f(x+ y) = ey
∂
∂x (f(x)) ,

which is just the Taylor expansion of f around x. While the right hand side can be written
in the following manner

log(1 + ex) =
∂

∂x

∫ x

−∞
log(1 + ez) dz = − ∂

∂x
Li2(−ex).

Using the expansion
z

sinh(z)
=

∞∑

n=0

B2n(1/2)
(2z)2n

(2n)!

gives exactly (11.8).

Corollary 11.6. For fixed x and b→ 0 one has

Φb

( x

2π b

)
= exp

(
1

2πib2
Li2(−ex)

)(
1 +O(b2)

)
. (11.16)

11.1.4 Asymptotic expansion at a N ’th root of unity

An open and very interesting question for the TQFT studied in this thesis is, what happens
when b2 approaches a negative rational. Only a little progress was made in this direction.
Nevertheless we write down what is examined about the quantum dilogarithm (x; q)∞.
We recall that Faddeev’s quantum dilogarithm can be writen as a fraction of the dilogaritm
function (11.10).

In the results for the partition function of the Andersen–Kashaev TQFT Faddeev’s quan-
tum dilogarithm is evident and therefore it would be nice to be able to evaluate these re-
sults when b2 approaches a negative rational. Unfortunately this leads to integration over
a function with infinitely many zeroes and poles, which the author was not able to handle.

Let b2 = ε − 1/N , where Im(b2) > 0. Note that q = e2πiεe−2πi/N = wp, where p is a
primitive root of unity. i.e. qN = (wp)N = wn. We write n = α+ kN , then

(x; q)∞ =

∞∏

n=0

(1− qnx) =

∞∏

k=0

N−1∏

α=0

(1− qα+kNx)

=

N−1∏

α=0

∞∏

k=0

(1− qkN · qαx) =

N−1∏

α=0

(
(wp)αx;wN

)
∞ .

We want to make an expansion of each of the N factors
(
x(wp)α;wN

)
∞ as ε→ 0.

Let us here recall the Euler-Maclaurin formula [37].

Proposition 11.7. The Euler-Maclaurin formula reads:

n∑

j=a

f(j) =

∫ n

a

f(x) dx+
1

2
f(a)− 1

2
f(n) +

m−1∑

s=1

B2s

(2s)!

{
f (2s−1)(n)− f (2s−1)(a)

}
+Rm(n)

where a,m and n are arbitrary integers such that a < n and m > 0., and

Rm(n) =
b2m

(2m)!

{
f (2m−1)(n) − f (2m−1)(a)

}
−
∫ n

a

B2m(x− [x])

(2m)!
f (2m)(x) dx.

Proposition 11.8. The quantum dilogarithm (x; q)∞ has the following expansion for q → 1

(
x; e−τ

)
∞ = (1− x)1/2 exp

(
−1

τ
Li2(x) +

τ

12
· x

x− 1

)(
1 +O(τ3)

)
, τ → 0.
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Proof. We apply the Euler-Maclaurin formula to the logarithm of (x; q)∞.

log (x; q)∞ = log

∞∏

j=0

(
1− xqj

)
=

∞∑

j=0

log
(
1− xqj

)

=

∫ ∞

0

log
(
1− xe−τy

)
dy +

1

2
log(1− x) +

τ

12
· x

x− 1
+R1(∞)

= −
[

Li2(xe−τy)

log(e−τ )

]∞

0

+
1

2
log(1− x) +

τ

12
· x

x− 1
+R1(∞)

= −1

τ
Li2(x) +

1

2
log(1− x) +

τ

12
· x

x− 1
+R1(∞),

Therefore we get the expansion

(
x; e−τ

)
∞ = (1− x)

1/2
exp

(
−1

τ
Li2(x) +

τ

12
· x

x− 1

)(
1 +O(τ3)

)
.

Proposition 11.9. Let b2 = ε − 1
N , where = b2 > 0 and assume that |x| < 1. For k =

0, 1, . . . , N − 1 the function
(
x(wξ)k;wN

)
∞ has the following expansion.

(
x(wξ)k;wN

)
∞ =

√
1− (wξ)kx·exp

(
1

2πiεN
Li2(x(wξ)k) +

2πiεN

12

x(wξ)k

x(wξ)k − 1

)(
1 +O(ε3)

)
,

(11.17)
where w = e2πiε and ξ = e−

2πi
N .

Proof. This is an immediate consequence of proposition 11.8.

Proposition 11.10. When |x| < 1, q = wp = e−τ/N
2

ξ where ξ = e−2πi 1
N is a primitive root

of unity, then for τ → 0 we have the asymptotic form

(x; q)∞ =
√

1− xN · g(x) · exp

(
−1

τ
Li2(xN ) +

τ

12N

N−1∑

k=0

xξk

xξk − 1

)
(
1 +O(τ3)

)
, (11.18)

where g(x) =
∏N−1
k=0 (1− xξk)k/N .

Proof. As above we write

(x; q)∞ =

N−1∏

k=0

(
xqk; qN

)
∞ .

Now use proposition 11.9 to each factor in the product and expand this product in a series
in τ this yields the following

(x; q)∞ =

N−1∏

k=0

(
1− xξk

) 1
2− 1

N exp

(
−N
τ

N−1∑

k=0

Li2(xξk) +
τ

12N

N−1∑

k=0

xξk

xξk − 1

)
(
1 +O(τ3)

)
.

Note that
∏N−1
k=0 (1− xξk) = (1− xN ) since ξ is a primitive root of unity. We show below in

lemma 11.11 have the identity

Li2(xN ) = N

N−1∑

k=0

Li2(xξk).

which gives the result.



11.2. APPENDIX B 119

Lemma 11.11. When ξ is a primitive N th root of unity we have the identity

Li2(xN ) = N

N−1∑

k=0

Li2(xξk).

Proof. The proof is shown by direct computation.

Li2(xN ) = N2
∞∑

n=1

(
xN
)n

n2N2
= N

∞∑

n=1

N∑

k=0

(ξN )kn
(
xN
)n

n2N2
= N

∞∑

m=1

N−1∑

k=0

ξkm
xm

m2
= N

N−1∑

k=0

Li2(xξk),

because
N−1∑

k=0

ξkm =

{
0 when N - m,
1 when N | m.

Remark 11.12. The function g has the following property. Again here ξ is a primitive root of
unity.

g(xξ) =

N−1∏

k=0

(1− xξk+1)k/N =

N−1∏

k=1

(1− xξk+1)k/N =

N−1∏

j=0

(1− xξk)
k−1
N

=

N∏

k=1

(1− xξk)k/N

(1− xξk)1/N
=

∏N
k=0(1− xξk)k/N

∏N
k=1(1− xξk)1/N

=
(1− xξN )

∏N−1
k=0 (1− xξk)

(1− xN )1/N

=
(1− x)g(x)

(1− xN )1/N
.

In other words
g(xξ)

g(x)
=

1− x
(1− xN )1/N

.

From here it follows, that

g(xξn)

g(x)
=

g(xξn)

g(xξn−1)

g(xξn−1)

g(xξn−2)
· · · g(xξ)

g(x)
=

(x; ξ)n
(1− xN )1/N

.

Hopefully future studies will lead to an answer of what happens for the partition func-
tion Z~ from the Andersen–Kashaev TQFT when b2 → − 1

N , and thereby maybe connect
the theory to Liouville theory.

11.2 Appendix B

11.3 Line bundles on a complex torus

As mentioned above the Boltzmann weights are given by sections of a certain line bundle.
Therefore, we will look at line bundles on a complex torus.

Let us construct line bundles on a manifoldM given by a quotientM = V/Λ by complex
functions on the universal cover satisfying some functional equations. We will also discuss
the space of holomorphic sections of a line bundle over a torus and see that a basis of this
space is given by theta functions. This section is based on [19] and [3].

Before dealing with the concrete case of a torus let us recall the Riemann conditions.
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11.3.1 Riemann condition

Let V be a complex vector space of dimension n, Λ ⊂ V a discrete lattice of maximal rank,
The complex torus M = V/Λ is called an abelian variety if it is a projective algebraic variety
i.e. can be embedded into projective space.

We will recall the necessary and sufficient conditions for embedding M into projective
space. Kodaira’s embedding theorem gives such a condition, and we will use this and
rewrite it for our purpose. The result we get to is the Riemann conditions.

We will start by looking at the cohomology of M . By an argument using harmonic
forms one can show that

H∗(M,C) = ∧∗V ⊗ ∧∗V . (11.19)

Let us give a basis forH∗(M,C) expressing the complex structure and a basis for∧∗V ⊗∧∗V
expressing Λ and the rational structure of H1(M,Z). V has euclidian coordinates z =
(z1, . . . , zn) given by a complex basis (e1, . . . , en) and dz1, . . . , dzn, dz1, . . . , dzn are global
1-forms on M . H∗(M,C) = spanC{dzA ∧ dzB}A,B , where A,B are multi-indices. Let γ
be a loop in H1(M,Z) with base point [0] ∈ M . γ lifts to a path γ̃ ∈ V which starts at 0
and ends at λ ∈ Λ. V is the universal cover of M and hence Λ is the deck transformations
so H1(M,Z) = Λ. Let {λ1, . . . , λ2n} be a basis for Λ. It follows since Λ was of maximal
rank that {λi} is a real basis of V . Let {x1, . . . , x2n} be the dual coordinates on V and
let {dx1, . . . , dx2n} be one forms on M . By definition of the coordinates, integrating dxi
around the loop λj gives δij and therefore we can write H1(M,Z) = spanZ{dx1, . . . , dx2n},
and generally Hk(M,Z) = spanZ{dxI}|I|=k.

This gives us two different bases for the cohomology on M . {dzα, dzα} which reflects
the complex structure onH∗(M,C) and {dxi} reflecting the rational structure. Now Kodaira
embedding theorem says that M is algebraic if and only if there exists a Hodge form on M . I.e.
a closed, positive form of type (1, 1) representing a rational cohomology class.

For the remaining part of this chapter we let greek indices run from 1 to n and latin
indices run from 1 to 2n. Let Π = (πiα) be the 2n× n-matrix such that Π̃ = (Π,Π) changes
basis from {dzα, dzα} to {dxi}. Let Ω = (wαi) be the period matrix of Λ i.e. λi =

∑
α wαieα.

Finally ω = 1
2

∑
ij qijdxi ∧ dxj a two-form with Q = (qij) an integral skew-symmetric

2n× 2n-matrix.

Proposition 11.13 (Riemann Conditions). M is an abelian variety if and only if one of the
following equivalent conditions are satisfied.

(i) There exists an integral skew-symmetric matrix Q such that

ΠQΠ = 0 and − iΠTQΠ = 0

(ii) There exists an integral skew-symmetric matrix Q such that

ΩQ−1ΩT = 0 and − iΩQ−1Ω
T

= 0

(iii) There exists an integral basis {λ1, . . . , λ2n} for Λ and a complex basis e1, . . . , en for
V such that Ω = ∆δ, Z with ∆δ diagonal with integer entries and Z symmetric and
Im(Z) > 0.

Lemma 11.14. If Q is an integral skew-hermitian quadratic form on Λ ' Z2n, then there
exists a basis λ1, . . . , λ2n for Λ in terms of which Q is given by the matrix

Q =

(
0 ∆δ

−∆δ 0

)
, where ∆δ =



δ1 0

. . .
0 δn


 .
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With this lemma, the symmetry of Z follows from ΩQ−1 which is a necessary condition
for ω to be of type (1,1). Im(Z) > 0 follow from −iΩQ−1Ω

T
= 0, which is necessary for ω

to be positive. The cohomology class [ω] is called a polarization of M , and if all δi are 1, M
is called principal polarized.

If (MZ , ω) is a principal polarized abelian variety, Z reflects the complex structure on V .
Since ω is both non-degenerate and positive symplectic form, the metric g(·, ·) = ω(·, IZ ·) is
positive definite, where IZ is the complex structure defined by Z, hence (MZ , ω) is actually
Kähler.

11.3.2 Line bundles

Let L → M be a complex line bundle. If we pull back L to V by the projection map
π : V →M , the line bundle π∗L is trivial since V is contractible. This is an easy consequence
of parallel transport.

Proposition 11.15. If F0, F1 : N → M are smoothly homotopic maps and E is a vector
bundle over M , then F ∗0N and F ∗1N are isomorphic vector bundles over N .

Proof. Let J0, J1 : N → N × [0, 1] be the smooth maps defined by

J0(p) = (p, 0), J1(p) = (p, 1).

If F0 is smoothly homotopic to F1, there exists a smooth map H : N × [0, 1]→M such that

H ◦ J0 = F0, H ◦ J1 = F1.

Thus is suffices to show that if E is a vector bundle over N × [0, 1], then J∗0E is isomorphic
to J∗1E. Give E a connection and let τp : E(p,0) → E(p,1) denote parallel transport along the
curve t→ (p, t). We can then define a vector bundle isomorphism τ : J∗0E → J∗1E by

τ(p, v) = (p, τp(v)), for v ∈ E(p,0) = J∗0E.

Corollary 11.16. Every vector bundle over a contractible manifold is trivial.

Proof. If M is contractible then the identity map on M is homotopic to the constant map,
and hence any vector bundle over M is isomorphic to the pullback bundle over a point via
the constant map.

Pick a global trivialization φ : π∗L → V × C. In each fiber (π∗L)z we have an iso-
morphism φz : (π∗L)z → C. From the definition of the pullback and the periodicity of
our lattice we have that (π∗L)z = Lπ(z) = Lπ(z+λ) = (π∗L)z+λ, for λ ∈ Λ. If we compose
trivializations φz+λ ◦ φ−1

z : C → C we get an automorphism of C. Composition of trivial-
izations are thus multiplication by complex numbers depending on z and λ. Let us denote
this number by eλ(z). Varying z gives a family of functions {eλ ∈ O∗(V )}λ∈Λ which we call
multipliers. These must satisfy the relations

eλ(z)eλ′(z + λ) = eλ′(z)eλ(z + λ′) = eλ′+λ(z), (11.20)



122 CHAPTER 11. APPENDIX

which follow from the commutativity of the diagram below.

(π∗L)z
φz // C

eλ(z)

��
eλ+λ′ (z)

��
eλ′ (z)

xx

(π∗L)z+λ
φz+λ // C

eλ′ (z+λ)

��
(π∗L)z+λ+λ′

φz+λ+λ′ // C

(π∗L)z+λ′
φz+λ′ // C

eλ(z+λ′)

OO

Assume given such family of non-vanishing holomorphic functions {eλ}λ∈Λ satisfying the
above equations. Let L →M be the quotient of V ×C by identifying (z, ξ) ∼ (z+λ, eλ(z)ξ).
ThenL is a line bundle overM with the given functions as multipliers. By the compatibility
relation we can give such a collection by specifying eλα for some basis {λα} for Λ so long
as the functions eλα satisfy the relation

eλα(z + λβ)eλβ (z) = eλβ (z + λα)eλα(z).

We want to show that any line bundle L → M can be given by multipliers of a simple
character. First we construct a line bundle having arbitrary positive Chern class, using
elementary functions eλ. Then we show that any positive line bundleL→M is determined
by its Chern class.

If {λ1, . . . , λ2n} is a basis for Λ over Z with {λ1, . . . , λn} linearly independent over C,
we have

V

Z{λ1, . . . , λn}
∼= (C∗)n

and we can factor our projection map π : V →M by

V → V

Z{λ1, . . . , λn}
→M.

By Poincaré’s ∂̄-lemma
H1((C∗)n,O) = H2((C∗)n,O) = 0.

Combining this result with a long exact sequence on sheaf cohomology it turns out that

c1 : H1((C∗)n,O∗)→ H2((C∗)n,Z)

is an isomorphism. I.e. any line bundle on (C∗)n is determined by its first Chern class.
For any line bundle L →M we can choose our basis λ1, . . . , λ2n for Λ such that in terms

of the dual coordinates x1, . . . , x2n on V the first Chern class is given by

c1(L) =

n∑

i=1

δαdxα ∧ dxα+n.

The functions xα+n are well-defined global functions on V/Z{λ1, . . . , λn}, so we have [dxα+n] =
0 ∈ H1

DR(V/Z{λ1, . . . , λn}). This means that c1(π∗1L) = π∗1(c1(L)) = 0 and π∗1(L) is trivial.
Let φ̃ : π∗1L → (C∗)n×C be a trivialization and choose our trivialization φ of π∗L to extend
φ̃, that is φz = φ̃π2(z) and φz+λα = φ̃π2(z+λα) for every α = 1, . . . , n.
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C

eλα (z)

��

(π∗L)z
φzoo (π∗1L)π2(z+λ2)

φ̃π2(z) // C

fλα (z)

��
C (π∗L)z+λα

φz+λαoo (π∗L)π2(z+λα)
// C

Since φ̃π2(z) = φ̃π2(z+λα), fλα is forced to be constantly 1. Commutativity and the fact
that φ extends φ̃ implies that eλα = 1 for α = 1, . . . , n. I.e. we only need to consider
multipliers with the first n being equal to 1.

Now assume ω is any invariant integral form, positive of type (1, 1) on V . Choose a
basis {λ1, . . . , λ2n} for Λ over Z such that in terms of the dual coordinates x1, . . . , x2n on V
the form ω can be written as

ω =

n∑

α=1

δαdxα ∧ dxα+n, δα ∈ Z.

Further we require that the first n of the λ′αs are linearly independent over C. Because
ω is non-degenerate each δα 6= 0 and we can define eα = δ−1

α λα, α = 1, · · · , n. We let

z1, · · · , zn be the corresponding coordinates on V . We can write (λ1, . . . , λ2n) =



e1

...
en


Ω,

i.e.



dz1

...
dzn


 = ΩT (dx1, . . . , dx2n), where Ω = (∆z, Z) and the third Riemann condition

implies that Z = ZT and ImZ > 0.

Lemma 11.17. The line bundle L → M defined by multipliers eλα = 1 and eλα+n
(z) =

e−2πizα−πiZαα , α = 1, . . . , n has Chern class c1(L) = [ω].

Proof. Let us first check that these multipliers satisfies the line bundle condition (11.20). We
have to show that

eλα(z + λβ)eλβ (z) = eλβ (z + λα)eλα(z) = eλα+λβ (z).

This is clearly satisfied for α or β ≤ n and writing Z = (Zαβ)

eλn+β
(z + λn+α)eλn+α

(z) = e2πi(zβ+Zβα)e−πiZββe−2πi(zα)e−πiZαα

= e2πi(zα+Zαβ)e−πiZββe−2πi(zβ)e−πiZαα

= eλn+α
(z + λn+β)eλn+β

(z).

as required. Now let φ : π∗L → V × C be a trivialization of π∗L inducing the given
multipliers. Then for any section θ̃ of L over U ⊂M, θ = φ∗(π∗θ̃) is an analytic function on
π−1(U) satisfying

θ(z + λα) = θ(z), and θ(z + λn+α) = e−2πizα−πiZααθ(z), (11.21)

for α = 1, . . . , n and conversely any such function defines a section of L. If || · || is any
metric on L then ||θ̃(z)||2 = h(z)|θ(z)|2 for every section θ̃ of L where |·| is the usual inner
product on C. h will be a positive smooth function of z and satisfies the equation:

h(z)|θ(z)|2 = ||θ̃(z)||2 = h(z + λ)|θ(z + λ)|2 (11.22)
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for any λ ∈ Λ. It follows that

h(z + λα) = h(z)

h(z + λn+α) = |e2πizαπiZαα |2h(z).

Conversely, any h satisfying the above equations will be a metric on L.
Now let Z ∈ H = {Z ∈ Matn×n(C) | ZT = Z, ImZ > 0}. Write Z = X + iY , where

X;Y are real n× n matrices. Clearly Y is invertible and we define W = (Wαβ) = Y −1. The
function

h(z) = e
π
2

∑
Wαβ(zα−zα)(zβ−zβ) = e−2πy·Y y, (11.23)

where of course z = x+Zy, satisfies the equations above. This is straight forward verifica-
tion see e.g. [19].

Now one can compute the curvature form ΘL associated to the metric given by h.

ΘL = ∂∂̄ log
1

h
= π

∑

α,β

Wα,βdzα ∧ dz̄β

In terms of the basis {dxα, dxn+α}we have

dzα = δαdxα +
∑

β

zαβdxn+β

dz̄α = δαdxα +
∑

β

z̄αβdxn+β

Hence

ΘL = −2πi
∑

α

δαdxα ∧ dxn+α.

and finally

c1(L) =

[
i

2π
ΘL

]
= [ω]. (11.24)

For further details the detailed proofs are written out in [19].

11.3.3 Theta functions

In the previous section we introduced a Hermitian structure h〈·, ·〉C, where 〈·, ·〉C is the
standard inner product on C. Since

h(z + λ) =
1

|eλ(z)|2h(z),

we see that this Hermitian structure is Λ−invariant and induces a Hermitian structure on
the line bundle L.

If we let C denote the space of complex structures on V , which are compatible with the
metric, that is C consists of the symplectomorphisms I : V → V such that the symmet-
ric form ω(·, I·) is a positive definite inner product on V . If all δα are 1 then the triple
MI = (M,ω, I) is a principal polarized abelian variety. Using the basis {λ1, . . . , λ2n}
one can identify the space C with the Siegel generalized upper half space H = {Z ∈
Matn×n(C) | ZT = Z, ImZ > 0} For any I ∈ C {λ1, . . . , λn} is a basis for V over C with
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respect to I . We let z = (z1, . . . , zn) be the dual coordinates on V relative to the basis
{λ1, . . . , λn}. The complex structure determines a unique Z ∈ H such that

z = x+ Zy (11.25)

Since any Z ∈ H gives a positive complex structure, say I(Z), compatible with the sym-
plectic form, we have a bijective map I : H→ C, given by sending Z ∈ H to I(Z).

If multipliers are chosen with respect to the complex structure we get a line bundle LI
over MI . The space of holomorphic sections of LkI , H0(M,LkI ), has dimension kn and they
give a bundle H(k) over C by letting H(k)

I = H0(MI ,LkI ). The L2 inner product on the latter
is given by

(s1, s2) =

∫

M

s1(z)s2(z)e−2πy·Y ydxdy, (11.26)

for s1, s2 ∈ H0(MI ,LkI ).
This space has an explicit basis given in terms of Theta functions of level k:

Θα,k(z, Z) =
∑

l∈Zn
eπik(l+α)·Z(l+α)e2πik(l+α)·z.

For further details one should consult [3] and [19].

Remark 11.18. If c1(L) is a principal polarization of M , H0(M,L) is one dimensional and
generated by the section θ̃ with corresponding

θ(z) =
∑

l∈Zn
eiπl·Zle2πil·z

satisfying the functional equation (11.21). These functions are called Riemann theta func-
tions of the principal polarized abelian variety (M,ω). Since these functions depends on
both z, Z one often writes θ(z, Z). These functions appear when the Weil–Gel’fand–Zak
transform is used on a wavelet as we will se later.

Further we note that we have actually constructed a pre-quantum line bundle over a
torus.

Example 11.19 (Complex line bundle over the Torus). A complex line bundle over the torus
Tm = Rm/Zm can as above be described by a cocycle

Zm → C∞(Rm, S1) : λ→ eλ

which satisfies
eλ+λ′(z) = eλ′(z + λ)eλ(z),

for z ∈ Rm and λ, λ′ ∈ Zm. The associated complex line bundle is

L :=
Rm × C

Zm
, [z, ξ] ≡ [z + λ, eλ(z)ξ], ∀λ ∈ Zm.

A Hermitian connection in L has the form

∇ = d+A, A =

n∑

i=1

A(x)dxi,

where the function A : R2 → iR satisfy the condition

A(x+ λ)−A(x) = −eλ(x)−1 ∂eλ
∂xi

(x).
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If we specify our multipliers to be e(1,0)(u
′
1, u
′
2) = e−πiu

′
2 and e(0,1)(u′1,u

′
2) = eπiu

′
1 Our

connection is determined by

A1((u′1, u
′
2) + (1, 0))−A((u′1, u

′
2)) = −e(1,0)(u

′
1, u
′
2)−1 ∂

∂u′1
e(1,0)(u

′
1, u
′
2) = πiu′2

and

A2((u′1, u
′
2) + (0, 1))−A((u′1, u

′
2)) = −e(0,1)(u

′
1, u
′
2)−1 ∂

∂u′1
e(0,1)(u

′
1, u
′
2) = −πiu′1

And we have
∇ = d+ πi(u′1du

′
2 − u′2du′1).

11.3.3.1 Pull back of line bundles

In the following we want to consider the necessities for a line bundle to be a pull back
of some other line bundle. In the following lemma we consider the restrictions on the
multipliers for the pull back bundle.

Lemma 11.20. Let Tn = Rn/Λ1 and Tm = Rm/Λ2. Let f : Tm → Tn be a map. If L is a
line bundle over Tn determined by multipliers e(1)

λ′ , λ
′ ∈ Λ1 then the pullback bundle f∗L

is determined by multipliers satisfying the formula

e
(2)
λ (x) = e

(1)
F (λ) (F (x)) ,

where F is the map covering f and λ ∈ Λ2.

Rm F //

p2

��

Rn

p1

��
Tm

f // Tn

.

Proof. Note that f ◦ p2 = p1 ◦ F. We look at the following diagram

p∗2(f∗L) //

��

f∗L

��

// L

����

p∗1Loo

��
Rm

p2 // Tm
f // Tn Rn

p1oo

Since Rn and Rm both are contractible we can choose global trivializations φ : p∗1L → Rn×C
and ψ : p∗2(f∗L)→ Rm × C for the pull back bundles. Furthermore we note that for λ ∈ Λ2

F (λ) ∈ Λ1. This follows since

p1(F (λ)) = f(p2(λ)) = f([0](2)) = [0](1),

Hence F (λ) ∈ ker(p1) i.e. F (λ) ∈ Λ1.
For F (z) ∈ Rn, F (λ) ∈ Λ1 we have equalities of fibers by definition of pull back bundle

(p∗1L)F (z) = Lp1(F (z)) = Lp1(F (z)+F (λ)) = (p∗1L)F (z)+F (λ).

φF (z)+F (λ)◦φ−1
F (z) is thus multiplication by a complex number which we denote e(1)

F (λ)(F (z)).

Multipliers for the pull back bundle p∗2(f∗L) is given in the same way as above. Now it
is enough to note that for z ∈ Rm we have the following equalities of fibers.

(p∗2(f∗L))z = (f∗L)p2(z) = Lf◦p2(z) = Lp1◦F (z) = (p∗1L)F (z).

It follows that
e

(2)
λ (z) = e

(1)
F (λ)(F (z)).
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Because the multipliers for a given line bundle depends on the global trivialization
χ : π∗L → V ×C we see that multiplication by a nowhere vanishing holomorphic function
g : V → C∗ the set of original multipliers {eλ}λ∈Λ is replaced by a new set of multipliers
{e′λ}λ∈Λ satisfying the relation

g(z)

g(z + λ)
e′λ(z) = eλ(z).

Hence we assume that E → Tm is a line bundle isomorphic to the line bundle f∗L →
Tm. Since these line bundles are bundles over the same base space it follows that an iso-
morphism Φ : E → f∗L locally has the form Φ(z, ξ) = (z, g(z) · ξ). Where g : Rm → C∗ is a
holomorphic function.

Proposition 11.21. Let E → Tm be a line bundle and let f : Tm → Tn be a map having
F : Rm → Rn as a covering map. There exists a line bundle L → Tn such that E = f∗L.

Proof. We need to define multipliers for the line bundle L over Tn such that the pull back
bundle f∗L has the multipliers of E. By the lemma above, and the observation that holo-
morphic line bundles differ by a cocycle we see that the restriction of multipliers must be

e
(3)
λ (z) = e

(1)
F (λ)(F (z))

g(z + λ)

g(z)
. (11.27)

In other words we need to choose a holomorphic function g : Rm → C∗ such that equation
(11.27) is satisfied. For every λ /∈ kerF we set g(z+λ)

g(z) = 1. Now let λ ∈ kerF be a basis

vector in the lattice Zn. Since F (λ) = 0 the multiplier e(1)
F (λ)(F (z)) = e

(1)
0 (F (z)) = 1 so we

rewrite (11.27) and solve the equation

g(z)e
(3)
λ (z) = g(z + λ). (11.28)

solving this equation is equivalent to solving the equation

eπiγ(z)eπiαλ(z) = eπiγ(z+λ),

hence we look for a solution to the problem

αλ(z) = γ(z + λ)− γ(z).

Writing αλ(z) =
∑m
i=1 αizi a solution to this problem is given by the function

γ(z) =
∑

i,j

Aijxixj +
∑

i

Bixi + C

where A is chosen to be the symmetric matrix with entries

Aij = Aji =

{
αj
2 for λi = 1, j ∈ {1, . . . , n}.

0 for all other entries

and

Bi =

{
−αi2 λi = 1,

0 otherwise

and C is just a constant.
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