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Resume

Teorien, som vil blive diskuteret i denne afhandling gar tilbage til Atiyah [7], Segal [45]
og Witten [51], som var de feorste der opdagede og aksiomatiserede (2+1)-dimensional
topologisk kvantefeltteori (TQFT). Edward Wittens studium fra 1989 [51] af Chern-Simons
teori, som en (2 + 1)-dimensional kvantefeltteori giver anledning til det vi kalder for en
topologisk kvantefeltteori. Mere specifikt, lad P — M veere et principalbundt over en
3-mangfoldighed M med (simpel) Lie gruppe G som strukturgruppe og lad g veere Lie
algebraen herende til G. Virkningsfunktionalet i Chern-Simons teori er givet ved:

CSar(A) : L/ Tr(A/\A-I—%A/\A/\A),
M

= 8n2

hvor A € Ap = Q'(M, g). Dette virkningsfunktional indgér i partitionsfunktionen i kvan-
tefeltteori, der er udtrykt ved stiintegralet

Zk;(M) — / eQTrik CSM(A)DA, (1)
Ap/Gp

k € N, som dog ikke er matematisk veldefineret. Pa nuveerende tidspunkt eksisterer der
ikke nogen metode til pa naturlig vis at knytte et mal DA til det uendeligdimensionale
rum Ap/Gp. Det lykkedes dog, i tilfaeldet hvor G er kompakt, for Reshetikhin og Turaev
([441,[43] og [50]), at definere kvantefeltteorier, med de enskede egenskaber foreskrevet af
Witten.

I denne afhandling vil vi studere et nyt bidrag indenfor topologiske kvantefeltteorier,
som er udviklet af Andersen og Kashaev [6]. Partitionsfunktionen i Andersen-Kashaev
TQFT’en, som vi i neer-veerende afhandling er interesseret i, forventes at veere relateret til
det ovenstdende stiintegral i tilfeeldet, hvor G = PSL(2, C).

Andersen-Kashaev TQFT en bygger pa kvante-Teichmidillerteori, som den blev udviklet
af Kashaev [28].

I kvantiseringen af Teichmdiillerrum tog Kashaev udgangspunkt i Penners parametris-
ering af det dekorerede Teichmdillerrum [38, 39], hvor afbildningsklassegruppen ses ek-
splicit gennem rationale transformationer frembragt af sammenseetninger af elementeere
Ptolemy-transformationer. Faddeevs kvantedilogaritme optreeder som en central ingre-
diens i denne teori. Faddeevs kvantedilogaritme er allerede blevet brugt i tilstandsinte-
gralkonstruktioner af perturbative invarianter af 3-mangfoldigheder af Hikami [20} 21].
Dog er de matematiske aspekter om konvergens og uaftheengighed af triangulering ikke
berort i disse tilfeelde. Andersen-Kashaev TQFT en tager sig af disse spergsmal.

For nylig har Andersen og Kashaev givet en ny formulering af Andersen-Kashaev
TQFT’en [5]. Det er formodet, at denne teori er eekvivalent med teorien fra [6]. I neerveerende
athandling vil vi gennem udregninger se eksempler pd, hvordan de to formuleringer haenger
sammen.

Vi vil desuden give en repreesentation for afbildningsklassegruppen I'; ; af den punk-
terede torus . Det viser sig, at Andersen-Kashaev TQFI"en giver anledning til repreesenta-
tioner

pax L1 — B(S(R)),

hvor B(S(R)) er begraensede operatorer pa Schwartzrummet.
I den engelsksprogede introduktion giver vi en kapiteloversigt samt en oversigt over
resultater indeholdt i denne afhandling.
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Introduction

The theory we are about to discuss in this dissertation can be traced back to Atiyah [7],
Segal [45] and Witten [51] who were the first ones to discover and axiomatize Topological
Quantum Field Edward Wittens studies from 1989 [51]] of Chern-Simons theory asa (2+1)-
dimensional quantum field theory give rise to what we call a topological quantum field
theory (TQFT). More specific, let G be a (simple) Lie group, let P — M be a principal G-
bundle over a 3-manifold M and let g be the Lie algebra corresponding to G. The action
functional of Chern-Simons theory is given by:

CSar(A) : L/ Tr(A/\A-I—%A/\A/\A),
M

= 8n2

where A € Ap = Q(M,g). This action functional is a part of the partition function i
quantum field theory which is given by the path integral

Zk;(M) — / eQTrik CSM(A)DA, (2)
Ap/Gp

k € N, although not mathematically well-defined. At the time of writing there is method
of associating in a natural way a measure DA to the infinite-dimensional space Ap/Gp.
However, after a few years, Reshetikhin and Turaev succeeded in defining quantum field
theories with the properties prescribed by Witten’s quantum theory when G is compact
[44],[43],[50].

In the dissertation at hand we will study a new contribution to topological quantum
field theories developed by Andersen and Kashaev [6]. In the Andersen-Kashaev TQFT
the partition function is expected to be related to the path integral above in the case where
G =PSL(2,C).

The Andersen-Kashaev TQFT builds on quantum Teichmdiller theory developed by
Kashaev [28]], which produces unitary representations of centrally extended mapping class
groups of punctured surfaces in infinite-dimensional Hilbert spaces.

In the quantization of Teichmiiller space Kashaev started from the Penner parameteri-
zation of the (decorated) Teichmiiller space [38}[39], where the mapping class group is real-
ized explicitly through rational transformations generated by compositions of the elemen-
tary Ptolemy transformations. A central ingredient in this theory is Faddeev’s quantum
dilogarithm. The quantum dilogarithm has already been used in state integral construc-
tions of perturbative invariants of 3-manifolds by Hikami in [20} 21] but the mathematical
aspects of convergence and independence of triangulation have not been addressed so far.
The Andersen-Kashaev TQFT addresses these problems.

Andersen and Kashaev have made a new development reformulating the Andersen—
Kashaev TQFT in [5]. It is conjectured in [5] that the new formulation of the Andersen-—
Kashaev TQFT is equivalent to that of [6]. We will see through calculations of specific
examples that this conjecture is well substantiated.

Furthermore we will give a representation of the mapping class group I'; ; of the once
punctured torus. It turns out that the Andersen-Kashaev TQFT gives rise to representa-
tions

pax : 11 — B(S(R)),

where B(S(R)) is bounded operators on the Schwartz space.
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Summary

The dissertation is structured as follows: It is split into 10 chapters and an Appendix, the
first six of which contain relevant background material. The mathematical contents of these
chapters should be well-known to most experts of the field but is included to set up nota-
tion, to ease reference, and also to provide a more gentle introduction to the field. The last
four are devoted to the study of the Andersen—-Kashaev TQFT.

Chapter 1, we start off gently, by introducing the fundamentals about the mapping
class group. In chapter 8 we will use some of this background material for calculating
a presentation of the mapping class group of the once punctured torus using the theory
developed by Andersen and Kashaev.

In Chapter 2 we give an outline of gauge theory and the study of connections in prin-
cipal bundles over manifolds. Furthermore we will here look at classical Chern-Simons
theory with a compact gauge group in some detail. Then we will look at Chern-Simons the-
ory with a non-compact gauge group and recall the intimate relation between the Chern-
Simons invariant and the hyperbolic volume.

In Chapter 3 we review the theory of canonical and geometric quantization and go
through pre-quantization as well as polarization.

In Chapter 4 we look at the theory of Teichmiiller space. Teichmiiller space of a real
topological surface R parametrizes complex structures on R up to the action of homeo-
morphisms that are isotopic to the identity homeomorphism. We recall how one can give
global coordinates to Teichmuller space in order to get a better understanding of it. Indeed
we will decompose a Riemann surface R into pairs of pants which will lead to Fenchel-
Nielsen coordinates. We will recall the Penner coordinates and eventually turn to Kashaev
coordinates and quantization of Teichmiiller space in these.

Chapter 5 is concerned with the theory of hyperbolic geometry. We will recall how to do
geometrization of knot complements. Due to Thurston we know that most 3-manifolds are
hyperbolic, and since every closed 3-manifold is obtained by Dehn surgeries on knots in 53,
hyperbolic geometry and knot theory are closely related. It turns out that the hyperbolic
structure is a topological property of the knot.

In Chapter 6 we will turn our attention to the main topic of this dissertation, namely
TQFTs. We will recall the historical background and state the axioms for a TQFT. We will
then again turn to Chern-Simons theory. Again we will present in most detail the compact
version. But we will also look at the quantum Chern-Simons theory with a non-compact
gauge group.

Chapter 7 is devoted to the study of the Andersen—Kashaev TQFT. We will look at the
construction of the Andersen-Kashaev TQFT in its original version.

We will turn to the new formulation of the Andersen-Kashaev TQFT in Chapter 8. Here
we recall the definition of the partition function for closed oriented levelled shaped triangu-
lated pseudo 3-manifolds. We will see how this extends to manifolds with boundary which
gives rise to a TQFT. Further we discuss how to get mapping class group representations
from TQFTs.

In Chapter 9 we will calculate a number of examples verifying conjectures from [6],
[5] and [26]. To be more precise we calculate the first examples of "ideal-" and "one ver-
tex H-triangulations" of knot complements using the new formulation of the Andersen-
Kashaev TQFT, showing that there is indeed a connection between the original and the
new theory. We also do examples regarding the original version of the theory. Some of
these computations were presented at a Winter School in Mathematical Physics ﬂ Follow-
ing this winter school, proceedingsﬂwill be published. In these proceedings a calculation
of the Andersen-Kashaev partition function for the knot complement (S3,6,) is done by
the author. Furthermore we see that the partition function for the complement of (5%, 6;)

1h’rtp: / /www.unige.ch/math/folks/podkopaeva/leshouches2012/
2Mathematical Aspects of Quantum Field Theories, Springer
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given an H-triangulation is equivalent to the expression for partition function in A TQFT of
Turaev-Viro type on shaped triangulations as conjectured in [26].

In Chapter 10 we will do a presentation of the mapping class group for the once punc-
tured torus I'; ; using the theory developed in Chapter[8| We get a family of representations
depending on the shape structure:

PA-K Fl,l — B(S(R))

Finally we end this dissertation with Chapter 11 which is an appendix. In this appendix
we prove some of the properties of Faddeev’s quantum dilogarithm. We look at asymptotic
expansions of Faddeevs dilogarithm both for b> — 0 and b — —+. Furthermore we

elaborate on Remark([8.2} To be precise we look at line bundles on a complex torus.



Chapter 1

Mapping Class Group

1.1 Definition and examples

We consider a compact connected orientable surface ¥. By the classification theorem of
surfaces we know that the surface 3 is determined up to homeomorphisms by the number
of connected components of its boundary 0%

b= |m(0%)] (1.1)
and its genus
g:= %(rankHl(Z,Z) —b+1).

When we want to emphasise the topological type we will write ¥, for a surface ¥ speci-
fying the genus and number of connected components of the boundary.

Let Homeo(X,0X) denote the group of orientation-preserving homeomorphisms re-
stricting to the identity on the boundary 0%, and let Homeo (X, 0X) denote the normal
subgroup of homeomorphisms that are isotopic to the boundary.

Definition 1.1. The mapping class group of ¥ is the quotient group
I'(32) := Homeo(X, 0%)/ Homeoy (X, 0%). (1.2)

There are other common notations for the mapping class group of 3 = X, including
MCG(X), Mgy, and Ty . Also there are different variations of the definition of the mapping
class group I'(X) which may or may not give the exact same group.

e We could fix a smooth structure on ¥ and then replace homeomorphism by diffeomor-
phism. This would not affect the definition of I'(X)

e We could allow homeomorphisms not to be the identity on the boundary. Let I'(¥, 9) be
the resulting group. We have an exact sequence of groups

7' - T(%) = I(%,0) = &, — 1. (1.3)

The map Zb — I'(X) sends the i-th canonical vector of Z’ to the Dehn twist along a curve
parallel to the i-th component of 93, the map I'(X) — I'(X, 0) is the canonical one and
the map I'(X, 9) — &, records how homeomorphisms permute the components of 93.

e We could allow homeomorphisms not to be orientation-preserving. Let us denote the
resulting group by I'*(X). If the boundary 9 is non-empty, then any boundary fixing
homeomorphism must preserve the orientation. Hence

forb >0, TEX)=T(%). (1.4)
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If the boundary is empty, then we have a short exact sequence of groups:
Forb=0, 1—I(%)—=T5X) = 7Z/2Z — 1. (1.5)

This sequence is split since there exists an involution ¥, — ¥, which reverses the orien-
tation.

Remark 1.2. 1If we give the set Homeo(X, 0%) the compact-open topology then a continuous
path p : [0,1] — Homeo(X, 9%) is the same thing as an isotopy between p(0) and p(1). We
therefore have the equality I'(X) = 7o (Homeo(X, 9%)).

Let us here consider a couple of relatively easy examples. We start by looking at the
disk D? := {z € C | |z| < 1}, i.e. we look at a surface of genus g = 0 and one boundary
component dD?. The mapping class group of this surface ¥y ; is given by the following
proposition.

Proposition 1.3. The space Homeo(D? dD?) is contractible. In particular we have
(D% = {1}.

Proof. Let f : D* — D? be a homeomorphism which is the identity on the boundary. For
all ¢ € [0,1], we define a homeomorphism f; : D? — D? by

t-flx/t) if0<|z| <t,

ft(x):z{ Jlefny o= ol = (16)

x ift <|z| <1.

Then the map H : Homeo(X, 9%) x [0,1] — Homeo(X, 9%), (f,t) — f; is a homotopy be-
tween the retraction of Homeo(3, 9%) to {idp=} and the identity of Homeo(X, 0X). There-
fore Homeo(%, %) deformation retracts to {idp=}. O

From Proposition [1.3|it is fairly easy to deduce the mapping class group of the sphere
S 2 (Or 2070).

Corollary 1.4. T'(S?) = {1}.

Proof. Let f : S — S? be an orientation-preserving homeomorphism. Let « be a simple
closed oriented curve in S?. Then f(v) is isotopic to v, so WLOG we can assume that
f(v) = ~. Proposition[1.3|can now be applied to each of the disks which v splits S into. [

Let us consider the mapping class group of a 2-torus T? = S! x S'. Recall that H;(S! x
SL.7)=Z®Z.

Proposition 1.5. Let (o, 3) be the basis of H;(T?,Z) defined by o := [S! x 1] and 3 :=
[1 x S'. Then the map

M :T(T?) — SL(2,Z) (1.7)

which sends the isotopy class [f] to the matrix of f. : H1(T? Z) — H;(T? Z) is a group
isomorphism.

Proof. 1tis clear that we have a group homomorphism M : I'(T?) — GL(2,Z). Let us check
that it takes values in SL(2,Z). Let [f] € T'(X) then

mam = (et SO, 19

where e denotes the intersection pairing H;(T?,Z) x Hy(T? Z) — Z, where we use the
fact that f is orientation preserving and therefore leaves the intersection pairing invariant.
Hence det M([f]) = 1.
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The map M is surjective. Realise T? as R? /Z? such that the loop S* x 1 lifts to [0, 1]x 1 and
1 x St lifts to 0 x [0, 1]. Any matrix T' € SL(2,Z) defines a linear homeomorphism R? — R?,
which globally leaves Z? invariant. Therefore T induces an orientation-preserving homeo-
morphism ¢ : R?/Z? — R?/7Z?, and M([t]) = T.

For the injectivity of the map we consider a homeomorphism f : S* x St — S xS such
that M ([f]) is trivial. Since the fundamental group m; (S x S') is abelian this implies that
[ acts trivially on the level of the fundamental group. The projection R* — R?/Z? gives
the universal covering of T2. Thus we can lift f to a unique homeomorphism f : R? — R?
such that f(0) = 0 and by the assumption on f we get that f is Z?-equivariant. The affine
homotopy

H:R?*x[0,1] > R? (x,t) —t- f(z)+(1—1) -z

between idg> and f, descends to a homotopy from idg: , g1 to f. Since homotopy coincides
with isotopy in dimension two, we deduce that [f] = 1 € '(T?). O

In a similar manner one can compute the mapping class group of an annulus S* x [0, 1].
Again one uses the universal cover to deduce:

Proposition 1.6.
N(S'x[0,1]) = Z

For a proof of this fact, one should consult [13].

1.2 Dehn Twists

As we will see in this section, mapping class groups are generated by Dehn twists. A Dehn
twist is a homeomorphism > — ¥ having support in a regular neighbourhood of a simple
closed curve. The simple closed curve does not necessarily need to be oriented. Intuitively
we think of a Dehn twist on a surface as obtained by cutting the surface along a curve
giving one of the boundary components a 27 left Dehn twist, and gluing the boundary
components back together as indicated in Figure[L.1}

< T
O

Figure 1.1: The action of the Dehn twist about a meridian on two simple closed curves in a
torus.

Let «, 5 be two simply closed curves on X. We define their geometric intersection number
or just intersection number to be

i(a, B) == min{|a’ N B'| | & isotopic to a, 3 isotopic to 3, a’ M '} (1.9)
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Definition 1.7. Let a be a simple closed curve on 3. We choose a regular neighbourhood N
of a in ¥ and we identify it with S x [0, 1] in a way such that the orientation is preserved.
A Dehn twist along « is the homeomorphism ¢, : ¥ — ¥ defined by

to(z) =z, ifx ¢ N,
. | | 1.10
{(62771(9+T)7T)7 ifr= (627”9,7“) cN = Sl « [0, 1] ( )

Figure 1.2: The action of the twist map ¢, : N — N on a horizontal line £ in the annulus.

The isotopy class of ¢, does only depend on the isotopy class of the curve a.. The Dehn
twist ¢, has infinite order in I'(Y) if [a] # 1 € m1(X). One can prove the following fact:

V simple closed curves 3 C X, Vk € Z, i(th(B),8) = |k|-i(a, B)% (1.11)

A proof of this statement can be found in [13].
The conjugate of a Dehn twist is again a Dehn twist. Indeed if f : ¥ — X is an
orientation-preserving homeomorphism, then we have the following lemma

Lemma 1.8. For f € T'(X), we have

fotao fTh =tp. (1.12)
When we write a product of mapping classes we always apply them from left to right.

Proof. Let ¢ be a representative for the mapping class f, and let y be a representative of c.
Then ¢! takes a neighbourhood of ¢(v) to a regular neighbourhood of gamma. We use
this neighbourhood to obtain the relation ¢4,y = ¢t ¢~ O

We can consider the Dehn twist along the "middle" of the annulus S* x [0, 1]. With the
notation from PropositionWe see that J(t,) = 1. It follows that T'(S* x [0, 1]) is infinite
cyclic generated by ¢,. More general we have the following result which goes back to Dehn.

1.3 Generators of the Mapping Class Group

Theorem 1.9 (Dehn). The group I'(X) is generated by Dehn twists along non-separating
simple closed curves and simple closed curves encircling some boundary components.

In order to prove the above theorem the following result comes in handy. We here
assume that the surface ¥ is endowed with an arbitrary smooth structure and a Riemannian
metric. The results here go back to [10].

Theorem 1.10 (Birman's exact sequence). Let ¥’ be the compact oriented surface obtained
from ¥ by removing a disk D. Then there is an exact sequence of groups

U

m(U(R) 2uh ey 22 1(m) > 1. (1.13)
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Here U (X) denotes the total space of the unit tangent bundle of ¥ and the Push map is gen-
erated by some products of Dehn-twists along curves which are non-separating or which
encircle boundary components.

Sketch of proof. We let Diffeo(X, 0X) denote the group of orientation-preserving and bound-
ary fixing diffeomorphisms ¥ — ¥. In dimension two "diffeotopy groups" coincide with
"homeotopy groups" and we have the equality

I'(X) = mo(Diffeo(X, O%)). (1.14)

Let v be a unit tangent vector of D and consider the subgroup Diffeo(3, 9%, v) consisting
of diffeomorphisms whose differential fixes v. One can the show that

I'(Y) = m(Diffeo(S, 0%, v)). (1.15)

The map Diffeo(X,0%) — U(X) defined by f +— d,f(v) is a fibre bundle where the fibre
is Diffeo(X, 0%, v). According to (I.14) and (I.15), the long exact sequence for homotopy
groups induced by this fibration terminates with

Push Uidp

N3

m1(Diffeo(X, 0%)) —— m (U(X)) rE ——1. (1.16)
The map 71 (U (X)) — I'(Y’) is called the "Push" map because of the following description.
Aloop v in U(X) based at v can be seen as an isotopy of the disk I : D? x [0,1] — ¥ such
that I(-,0) = I(-,1) is a fixed parametrisation D? = D of the disk D C X. This isotopy can
be extended to an ambient isotopy I : X x [0, 1] — X starting with I(-,0) = idy. Define now

Push([y]) := [restriction of I(-,1) to ¥’ = X\ D] (1.17)

Now assume that ~ is the unit tangent vector field of a smooth simple closed curve o. Let
N be a closed regular neighbourhood of « and let a_, oy be the boundary components of
N. Then we have

Push([v]) = ta_t;i, (1.18)
as is seen in Figure[1.3]
push[a]
—>
a-

Figure 1.3: The Push map.

From the long exact sequence in homotopy for the fibration U(X) — X we get an exact
sequence of groups

71 (SY) = m(U(B)) = m(Z) — 1. (1.19)
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Hereby we see that 71 (U (X)) is generated by the fiber and by unit tangent vector fields of
smooth simple closed curves which are non-separating or which encircle components of
the boundary 9. Since the image of the fiber S* by the Push-map is t5p, we conclude that
Push(m1(U(X))) is generated by products of Dehn twists along non-separating curves or
curves which encircle boundary components. O

For a more precise version of the proof we ask the reader to consult [32].
This allows us to prove Theorem[1.9}

Proof of theorem[1.9, We deduce from Theorem that if the statement holds at a given
genus g for b = 0 boundary components then it holds for every b > 0. So without loss of
generality we can assume that ¥ is closed and the proof now goes by induction on g > 0.
For g = 0 there is nothing to show since we have already shown that I'(S?) = {1} in
Proposition[1.4] For g = 1, we use Proposition[l.5 The group SL(2, Z) is generated by the

two elements
1 1 1 0
s (00, 7 (1 0). a0

which corresponds to Dehn-twists along the curves [S* x 1] and [1 x S'] respectively. So
assume that g > 2.

Let f € T'(X) and let a be a non-separating simple closed curve on X. The image f(«)
is of course another non-separating simple closed curve on Y. The following fact due to
Lickorish [33] comes in handy. A proof can be found in [13]

Claim 1.11 (Connectedness of curves.). Assume g > 2. Then for any two non-separating
simple closed curves v and ' there exists a sequence of non-separating simple closed
curves

V=02 =
such that i(vy;,vj41) =0forj € {1,2,...,n — 1}.
Further we make use of the following claim:

Claim 1.12. If 5 and « are two non-separating closed curves on ¥ such that i(5,v) = 0,
then there is a product of Dehn twists T' along non-separating simple closed curves such
that T'(8) = .

We can find another non-separating simple closed and oriented curve oo C X such that
i(a,y) = i(a,B) = 1. We have t,t, o tgta(8) = taty(a) = 7. The two claims say that
there is a product of Dehn twists along non-separating curves such that T'(a) = f(a). In
other words we can assume that f fixes . In this case we consider a non-separating curve
$3 such that the intersection number i(c, 3) = 1. Notice that tgt2¢s preserves a but re-
verses its orientation. Therefore after possible multiplication with ¢4t2¢3 we can assume
that f preserves o with orientation. Since there is only one orientation-preserving homeo-
morphism of S! up to isotopy, we can assume that f is the identity on «. Further we can
assume that f is the identity on a closed regular neighbourhood of N of c.

Let ¥/ := ¥\ int(N) and we let f’ be the restriction of f to ¥’ The surface ¥’ has genus
¢’ =g —1and has b’ = b+ 2 boundary components. We conclude by induction hypothesis
since a non-separating circle in ¥’ is non-separating in ¥ and a boundary curve in ¥’ is
either a boundary curve in ¥ or is isotopic to a. O

Actually one can improve to show that only finitely many Dehn twists are required in
order to generate the mapping class group. We have already mentioned that the mapping
class group for the torus is generated by elements .S, T" which corresponds to two closed
curves. This is a special case of the following theorem.
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Figure 1.4: The curves appearing in the Dehn-Lickorish theorem in the case where g = 3.

Theorem 1.13 (Dehn-Lickorish). For g > 1, the group I'(¥,) is generated by the Dehn
twists along the following 3¢g — 1 simple closed curves:

Later Humphries showed for g > 2 that 2¢g 4+ 1 Dehn twists are actually enough to gen-
erate the mapping class group I'(X,). More precisely the mapping class group is generated
by the Dehn twists along the curves 31, ..., 84,71, -.,74—1, @1, @2 using the notation from
above. For a proof see [24].

Humphries also proved that the mapping class group cannot be generated by fewer
Dehn twists when g > 2.

1.4 Presentation

We want to be able to find presentations for mapping class groups, whose generators are
Dehn twists. First of all, one should find out which relations exists between two Dehn
twists. It is intuitively clear that the relations must depend on how much the two curves
intersect each other.

Lemma 1.14 (Disjointness relation). Dehn twists about two simple closed curves commute
if and only if the isotopy classes of the curves have zero intersection number

Proof. Let a and S be representatives for curves. It is obvious that Dehn twists of non-
intersecting curves commute. It follows from Lemma(1.8|and the fact that ¢, = ¢g implies
o = f that a given mapping class f commutes with a Dehn twists ¢, if and only if f fixes
a. Soif tots = tpt, we obtain that ¢, (b) = b and from (L.I1)), we get

i(a,ﬁ)Q = i(ta(ﬁ)7ﬁ) =0.
O

Lemma 1.15 (Braid relations). Let o and 3 be isotopy classes for two simple closed curves
on ¥ with (¢, ) = 1. Then we have the braid relation t,tsta = tgtats.

Proof. Let us first prove t,tz(a) = 8. By using the change of coordinate principle we as-
sume that o and / are represented by curves as in Figure which indicates that the
equality is true. It follows that ¢ ;,(») = ts. Again we use Lemma [1.8|to conclude that
tatgta(tats) ™! = tg. O

Remark 1.16. From the classification of surfaces it follows that there exists a orientation pre-
serving homeomorphism of 3] taking one simple closed curve to another if and only if the
two results of cutting the surface along the two curves will be homeomorphic surfaces. Le.
up to homeomorphism there is only one non-separating curve and finitely many separating
ones, and we may assume that « is one of the curves in Figure[L.6} see [13].

If i(a, B) > 2 then t,, and tg generate a free group on two generators [25]. In other words
there are no relations between ¢, and ¢3.
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B, /

2\

Figure 1.5: The curves «, 3 and the equation t,t3(a) = 3. The last map is a simple isotopy.

Figure 1.6: Using the change of coordinate principle to simplify a curve.

Theorem 1.17. Let « and f3 be isotopy classes for two simple closed curves on T? with
intersection number 1. Let A := ¢, be a Dehn twist along the curve o and B := tg be a
Dehn twist along the curve 3, we have

I(T?) = (A,B| ABA = BAB, (AB)° =1). (1.21)
Note that the first relation is the braid relation from above.

Proof. Let PSL(2,Z) be the quotient of SL(2, Z) by its order 2 subgroup {+I}. PSL(2,Z) is
a free product group Z; * Z3. As a matter of fact we have

PSL(2,Z) = <T,U|T2 —1,0° = 1>

where T and U are the classes of the following matrices:

re (S ) o= (4 4

From the short exact sequence
0 —— {£I} —SL(2,Z) —— PSL(2,Z) — 0,
we deduce the presentation

SL(2,Z) = (T, U | T*=1,U% = 1,[U,T?*| = 1).

IfwesetV := <_1 0

tion

! 1) , and observe that U = V ~'T2, we obtain the equivalent presenta-

SL(2,Z) =(T,V | Vo =1, T* = V?).
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Finally we set

) s )

so that A and B are the two mapping classes in Theorem We make the observation
that "= ABA and V = BA and obtain the presentation

SL(2,Z) = (A, B| (ABA)? = (BA)?, (BA)® =1)
which is equivalent to (L.21). O

For higher genus, we consider the involution h of £, C R? which is a rotation around
a appropriate line by the angle =. This involution can be written in terms of Lickorish’s
generators in the following manner

h = tagtﬁgt’fq—ltﬁg—l sty tgoty tg o tar g by sty - - - tﬁg—lt"/g—ltﬁgtag'

Figure 1.7: The hyperelliptic involution as a rotation of a surface.

Then we have a second relation between Lickorish’s generators. The first one is obvious
and the second one follows from the braid relation and the fact that h(ay) = ay.

Lemma 1.18 (Hyperelliptic involution). InT'(X,), we have the relations »* = 1and [h, to,] =
1

The hyperelliptic relations allow a presentation of I'(¥5) which is due to Birman and
Hilden [8]].

Theorem 1.19 (Birman-Hilden). Let A :=t,,, B :=tg,, C :=1t,,, D = tg, and E := t,,.
Then the mapping class group for a genus 2 surface has the following presentation:

I'(%,) = (A, B,C, D, E | disjointness, braid, (ABC)* = E®, [H,A] =1, H> =1). (1.22)

Here braid stands for the 4 possible braid relations between A, B, C, D, E and disjointness
stands for relations between them and H := EDCBA?BCDE.

Two particular elements of SL(2, Z) are

0 -1 11
S_<1 0) and T—(O 1).
Theorem 1.20. The matrices S and T generate SL(2, Z).

For a proof see [30, App. A]






Chapter 2

Classical Chern-Simons theory

In this chapter we will start by recalling preliminary framework for what will be used later
on. Then we will define the moduli space of flat connections of a principal G-bundle, since
this is an important quantity in the study of Chern-Simons theory. In the end of this chapter
we will turn to classical Chern-Simons theory with a compact gauge group. We give the
definition of the Chern-Simons action which we will come back to in a later chapter.

The theory discussed in this chapter follows Kobayashi and Nomizu’s book: Founda-
tions of differential geometry [31]], lecture notes by Himpel: Lie groups and Chern—Simons Theory
[22] and Freed'’s Classical Chern—Simons Theory, Part 1 [[15].

2.1 Connections in Principal G-bundles

Definition 2.1. Let M be a manifold and G a Lie group. A principal G-bundle over M is a
manifold P satisfying the following conditions.

1. There is a right action of G on P such that the quotient space of P under this action is
M, and the quotient 7 : P — P/G = M is smooth.

2. P islocally trivializable; i.e. every point of M has a neighbourhood U with an equivari-
ant diffeomorphism 7~ (U) — U x G covering the identity on M.

Remark 2.2. As a consequence the transition functions f,z satisfy
i) fap:UaNUg = G,
ii) (foo fﬁ_l)(x,g) = (z, fap(z)g) forevery x € U, NUg, g € G,
iil) foa =€,
iv) fap(z)fay(x) = fay(z) forevery z € U, NUg N U,.

The action of G on the tangent bundle is denoted by vg,v € TP and g € G. On the other
side, the infinitesimal action of an element X of the Lie algebra g at p € P is given by

d
X (= — tX
pX = | pes(x),

which is an element of the tangential space of P at the point p. The set
Vpi={pX eT,P| X cg}

is called the vertical space at the point p. Because G preserves the fibers and is transitive, the
vertical space at p is equal to the kernel of dr(p) where dr(p) : T, P — Ty, M, or we could
view V,, as the tangential space T},(7~*(z)) where x = 7(p). The subbundle

V.={(p,pX)eTP|pe P, X e€g}CTP

11
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is called the vertical space of the principal bundle P.

Definition 2.3. A connection is an equivariant function A : TP — g, i.e.
@) Alp,pX)=X VpeP Xe€gy,
(i) A(pg,vg) =g '4,(v)g Vpe PVveT,P.

Throughout the rest of this report, let Ap denote the set of connections on the principal
bundle P — M.
Locally, a connection A € A(P) is a 1-form A, € Q' (U,, g), where, for an X, € T,,P

Au(@,dp(Xp)) = [ (0) AW, Xp) fa(p) — dpfa(Xp) [ (D),
and therefore on U, N Ug,
Ap = fapAa =[5 Aatap + fo5dfap- 2.1)

A connection can be seen as a choice of an equivariant horizontal distribution H C TP
which corresponds to the kernel of A and at each point p € P induces the short exact
sequence:

0 — H, = ker A(p,") ——=T,P Vy 0, (2.2)

where the map ¢ : H, — T,P is just the inclusion and H,, = H,g. Since V,, = ker dr(p)
and T,P = H, ® V), dr(p) induces an isomorphism between H, and Ty, M, hence the
horizontal distribution is isomorphic to the pullback 7*T'M and this implies that a vector
field X on M has a unique horizontal lift X such that X (p) € H, and d,7(X,) = X (7(p)).

Definition 2.4. A Lie group defines on itself a conjugation

¢: G — Aut(G)

grrcg

such that ¢,(h) = g~ 'hg for all h € G. The derivative at the identity acts on the Lie algebra
g and it is called the adjoint representation, i.e. Ad : G — End(g), ¢ — Ad, and, for an
element X € g we have

d

Ady(X) = dat

cq(h(1)),

t=0

where h(t) is a curve in the Lie group G such that 2(0) = e and %|t20h(t) = X. We
can choose the exponential map exp(tX) as h(t) and we write Ad,(X) = g~ Xg, where
multiplication between an element g of G and an element X of g is defined as the derivative
at the identity of the left translation by ¢ in the direction of X

d
x=2
93 =

gexp(tX) € T,G,
t=0

and the multiplication between an element of the Lie algebra g and one of the group G
using right translation is

Xg:i

o exp(tX)g € T,G.

t=0

Definition 2.5. Let 7 : P — M be a principal G-bundle, let N be a manifold and let f :
G — Diffeo(NN) where again Diffeo(V) denote the diffeomorphisms on N. The associated
bundle P x ; N is the locally trivial G-bundle with fibre N, consisting of equivalence classes
[pg,n] = [p, f(g)(n)] and projection 71 : P xy N — M given by 7 ([p,n]) = n(p).
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Remark 2.6. Notice that if N is a vector space, then the associated bundle, P x ¢ N is a vector
bundle. If for example N = g then the associated bundle P X oq g is denoted gp and we call
this bundle the adjoint bundle, here we have

[pg, X] = [p, Ady(X)] = [p, g~ ' Xg].

The set of all equivariant horizontal functions o : TP — g, i.e. smooth functions «
where V' C ker o, is denoted by Q}, (P, g) and we let Q% (P, g) denote the space of
horizontal equivariant k-forms.

Anw € QF 4 (P, g) satisfies the conditions

W(pg;vlg7029,u~7vkg) :g_10~)(p;’l}1,'l)2,...,'l)k)g,
w(p,v1,...,v5) =0 if v;=pX foranie {1,...,k}.

wherep € P,g € G, X € g,v; € T, P. In other words the horizontal and equivariant k-forms
sz‘d7 1 (P, g) correspond to the k-forms over M with values in the adjoint bundle g. In other
words Q% 5 (P,g) = Q"(M, gp).

We now fix a connection Ag. Then for every o € Q} 4 (P, g), Ao + « is again a connec-
tion. In fact, Vp € P,VX € g,Vv € T,P we have

and

Ao(pg, vg) + alpg,vg) = g~ Ao(p,v)g + g~ alp,v)g = g~ (Ao(p,v) + alp,v))g.  (24)
Conversely we have that the difference between two connections is an element of Q% a.m(P9).
It follows that the space A(P) is an affine space and we can write

A(P) = Ao + Qg (P, g) = Ag + Q' (M, P X aq 9). (2.5)

Definition 2.7. The Lie group Gp of equivariant smooth maps u : P — G is called the
gauge group of P, i.e.

Gp ={u e C®(P,G)| u(pg) = g 'u(p)g, Vp € P, Vg € G}.

Because G acts on P, every element of the gauge group induces a gauge transformation of
the bundle P, i.e.

The gauge transformation is a G-bundle isomorphism. Conversely, a G-bundle iso-
morphism comes from a gauge transformation since G acts freely. The gauge group Gp
is isomorphic to the group of sections of the associated bundle P x. G, where we have
the equivalence [p,g] = [pg,q 'gq] for every p € P and g,q € G. For an element of
the gauge group, say, v € Gp the section is defined as the map M — P x. G given by
7(p) — [p, u(p)]. Conversely a section w which takes 7(p) — [p, u(p)] induces a gauge trans-
formation @(p) = pu(p). This implies that Gp = C*(M, P x.G) = Q°(M, P x. G) and
therefore the Lie algebra of Gp is the space of equivariant, horizontal 0-forms over P;

TagGp = Q°(M, gp)

where id G : M — G; x — e is the identity of Gp.

An element u of the gauge group Gp acts on a connection A € A(P) in the following
way: Let X, € T,,P, then, because an element of the gauge group acts as the pullback of its
gauge transformation and the connection A is linear we get
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u*A(p, Xp) =" Ap, Xp,) = A(a(p), dpii( X))

), dp(pu(p))(Xp)) = Alpu(p), Xpu(p) + pdyu(Xp))
p), Xpu(p)) + A(pu(p), pdpu(Xy))

L A(p, Xp)u(p) + Alpu(p), (pu(p))ulp) " dpu(X,))
_1A(p, Xp)u(p) + u(p)_ldpu(Xp),

— =

=u(p

This means that
w*A = v Au + v tdu,

and we can consider u as a change of trivialization. To compute the infinitesimal gauge
transformation on a connection A4, choose an element ¢ of the Lie algebra Q°(M, gp) and
set u; = exp(tp) = 1+ té + O(t?), then

d d
— *A) = —— Y| ~1
p t:O(Ut ) o t:O(Ut us + uy - dug)

Choosing a connection A € A(P) lets us define the covariant derivative
da: QO(MagP) - Ql(MagP)
¢ = dagp =do+[A,¢]

and the exterior derivative

da: Q¥ (M, gp) = Q"1(M, gp),
wi daw = dw + [A A w],

where [w1 Aws] 1= w1 Aws—(—1)*wy Aw; denotes the Lie bracket operator forw; € Q'(M, gp)
and wy € Q% (M, gp). Locally (daw)o = dwa + [Aa A wa].

2.2 Holonomy

Let A € A(P) and let~ : [0,1] — M be a C' curve on the base manifold. Then 7~ lifts to a
unique horizontal curve ® 4(v, p) : [0,1] — P for each p € 7~1(v(0)), i.e.

(i) ®a(v,p)(0) =p,
(i) w(®a(y,p)(t) =~(t) Vte[0,1],
(111) %(I)A("}/,p)(t) € H<I>A('y,p)(t) and d(bA(%p)(t)ﬂ'(%(pA(V,p)(t)) = %’y(t) for everyt S [0, 1]

Choosing v as a loop in M we have that 7(v(0)) = 7(y(1)) and we see that -y induces a
homomorphism ¥ 4(7) on the fiber 7=!(v(0)) as follows

a(y): 7 H(4(0)) = 7 (~(0)),
p=Ya()(p) = @a(y,p)(1).

G acts freely on the fibers, so if we choose a point p € 771(z), then for each W 4(v) there
exists an element g, (¥ 4 (7)) € G such that ¥ 4(v)(p) = g,(¥a(v))p and

Hol, (A) := {g,(¥a(y)) € G |y € C'([0,1],M),7(0) = v(1) = n(p)} (2.6)

is called the holonomy group of A in p. The holonomy group is a subgroup of G since
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(i) e = gp(Va(v)) when we choose v as the constant loop.

(ii) For every g € Hol,(A) if there exists ®4(v1,p) joining p and gp then g7 '@ 4(v1,p)
horizontally joins p and g~'p and therefore g=! € Hol, (A).

(iii) For every h € Hol,(A), ®4(y2,p) going from p to hp, gP4(y2,p) goes from gp to ghp
and therefore g® 4 (2, p) © 4 (71,p) goes from p to ghp and hence gh € Hol,(A).

If we now let p,q € P such that there is a C'! horizontal curve 3 connecting them. If
g € Hol,(A) and @ 4(v1,p) goes from p to gp, then gB 0 ® 4(y1,p) o B~ goes from q to gg. We
conclude that p and ¢ have the same holonomy group. Moreover Hol,,(A) = g Hol,(A)g~!
and we can consider the holonomy group as an equivalence class of subgroups of G defined
using the conjugation in G. Hence we can simply write Hol(A).

We define the subgroup Holg(A) of Hol,(A) in the following way:

Holg(A) = {g,(¥a(v)) € Hol,(A) | v € C*([0,1], M), 4(0) = (1) = p, y is null-homotopic}.
Remark 2.8. Like Hol,(A) the subgroup Hol)(A4) does not depend on p and we can write

Hol’(A).

If we choose two 0-homotopic loops 7o,71 C M, such that y9(0) = (1) = 11(0) =
~1(1), there is a continuous homotopy % : [0, 1] x [0,1] — M, ho(s) = vo(s), h1(s) = 11 (s).
Thus, g,(¥ 4(hs)) is a curve in Hol(A) from g, (¥ (o)) to g,(¥a(71)) and hence Holg(A)
is connected and every connected subgroup of a Lie group is itself a Lie group. Next let
Yo C M be a 0-homotopic loop and v; be a generic loop in M such that v¢(0) = (1) =
72(0) = 72(1), then (y2)~! o 49 o 2 is 0-homotopic too. Therefore Holg(A) is normal in
Hol,(A), and we have

Lemma 2.9. If M is connected, p € P, then Holg(A) is a connected Lie subgroup of G and
it is a normal subgroup of Hol,(A).

Further we have
Lemma 2.10. There is a surjective group homomorphism
6 : w1 (M) — Hol(A)/ Hol’(A). (2.7)

Proof. We work with Hol,,(A) and Holg(A). Let

[V = 9p(Ta(7)). Hol(A)

where «y is a loop in M, v(0) = (1) = n(p) and [7] is the equivalence class in w1 (M). 0
is surjective because of the definition of Hol,(A) and for every two loops 1,72 C M with
[71] = [y2], v := ¥2 o (—1) is 0-homotopic and hence ¢, (¥ 4 (7)) € Holg(A). O

If we now choose a point p € P. Then

P(p) :=={®a(y,p)(1) € P|v € C'([0,1], M),7(0) = (p)}

is a submanifold of P and 7|p(y) : P(p) — M is a principal Hol,(A)-bundle with the con-
nection A|p(,) because its horizontal distribution is equal to the restriction on P(p) of the
horizontal distribution of P with respect to A and is therefore well-defined. We have

Theorem 2.11. A principal G-bundle 7 : P — M with connection A is equivalent to
7| p(p)y — M with connection A|p(,) for any p € P.
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2.3 Inner product on Q*(M, gp)

We now wish to construct an inner product on Q*(M,gp). We first stress the fact, that
on every Lie algebra g of a compact Lie group G there exists an inner product which is
invariant under the adjoint action of the group.

(Adg &, Adgr), = (§v), VEeg Vged.

This inner product on the Lie algebra g can easily be constructed in terms of the Killing
form.

Now an inner product on the Lie algebra induces a well-defined inner product on the
fiber 71 (x) xaq g C gp for every z € M, namely

([p.€),[p. Vg, = (€ 1)y

g€ G,penl(z)and &, v € g. Itis easy to see that the inner product (-, ), ON gp does not
depend on the choice of p € 7~!(xz), since, for any g € G we have

{Ip, €l [p, V]>gp = <§,y>g = <Ad9§7Adg V>g = <[paAdg 3t [vadg V]>gp = (lgp, €] lgp. V]>gp'

This is true since the inner product on g was invariant under the adjoint action.
Let us recall the definition of the Hodge operator .

Definition 2.12. Let (M, g) be an n-dimensional, oriented, pseudo-Riemannian manifold.
Let dvoly € Q"(M) be the volume form on M corresponding to g and let w € Q*(M). In
the local set U, C M we can choose orthogonal coordinates (e',.. ., e") and using Einstein
sum convention we can write

1 . )
Wo = ijl...jkdeh Ao ANdel®,
1 . )
(dvolym)a = —'Uil__.q;nde“ A Ade'.
n!

Forall k € {1,...n} we define the Hodge operator * to be the map
w: QF (M) — Q" k(M)

W — *wW,

where in the local set U, we have

(*w) o = Evilming“jl .. .gi’“jkwjl_,,jkdei’““ A« Adetr. (2.8)

The Riemannian metric g defines an inner product on Q*(M). Let w,6 € QF(M). Then
the inner product on the space of k-forms is given by

1 o o
(War Va)ppy = gwh...ikg“h R N (2.9)

and therefore we get the equality w A v = v A xw = (w, V) 1), dvoly.
The Hodge star defines a dual in the sense that when it is applied twice, the result is an
identity on the exterior algebra, up to sign,

*(xw) = (1) " sign(g)w,

where sign(g) is the signature of the metric. And we can write the adjoint operator of the
exterior derivative as follows,

d50 = (=) FHDEHD 4 d, « 6.
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The Hodge operator acts on k-forms with values in the Lie algebra gp too. Recall that
QOF(M,gp) = T(*T*M ® gp), where the latter denotes the sections of A¥T*M ® gp — M.
Then Yw € QF(M), V¢ € Q°(M, gp), we define

*(w®E) i=*xw®E.

Now we can finally use the two inner products mentioned above to construct an inner
product on the k-forms Q* (M, gp),

(o, B) = /M (a ANxB) Va,B € QF(M,g). (2.10)

Because T4 A(P) = Q'(M, gp) then for every connection A € (P) the space of connec-
tions in the principal bundle A(P) is a symplectic manifold with symplectic form:

aat@ )= [ (anp) vape (L), @11)
M
For two vector fields X,Y on M we have

(@n B) (X,Y) = (a(X), B(Y)) — (a(Y), B(X)) .

Because the symplectic two form does not depend on the base connection 4, it is constant
and therefore closed.

The inner product satisfies the condition (daw, ) = (w,d%0) for every w € Q¥(M, gp)
and every 6 € QF¥T1(M, gp).
2.4 Curvature

Let A € A(P), the two form Fy :=da + 3[AN A] € Q*(M, gp) is called the curvature of the
connection A.
Let us here write down a couple of properties for the curvature F4.

Proposition 2.13. For the curvature F4 we have the following
(1) FyANw=dadyw.

(if) The curvature can geometrically be seen as an obstruction to the integrability of the
horizontal sub-bundle of T'P.

Proof. (i) Letw € QF(M, gp) then because d[A A w] = [dA A w] — [A A dw] we have
dadaw = d*w + d[AANW] + [ANdw] + [AN[AAW] = [Fa Aw).
For (ii) we let p € P and X,,,Y,, € H,. We then have
Fa(p, Xy, V) = da(p, X, i) + 5 [A X,) A A, Y,)] = dap, X, Yy) = da(p, X%,
Therefore [X,,,Y,] € H, if and only if F4|, = 0. O
A consequence of (i) is that Fia(p, X;, Vp) = 0 if either X, or Y, isin V,.
With the definition of the curvature in hand we are in a position to define the space of

flat connections:
Fp= {AE.A(PHFA ZO}.



18 CHAPTER 2. CLASSICAL CHERN-SIMONS THEORY

For a connection A € Fp, since d4 o d4 = 0 the cohomology groups are well defined.

k
erda = kerdy Nkerd . VkeN.

H}Z(M,QP) =
IIndA Qk(M,gp) Qk(M,gp)

It is not hard to see that the space of k-forms with values in the Lie algebra gp has the
decomposition

QF(M,gp) = daQ" (M, gp) ® Hi (M, gp) ® d5Q" (M, gp)

Indeed if we let o € Q*~1(M, gp), 3 € H5(M,gp) and v € d,QFT1(M, gp), we have;

(daa,dyy) = (dadaa,y) =0, since dads =0,
(dac, B) = (o, d48) = 0, since 3 € kerd,
< 2’77B> = <77dAﬂ>7 SinCeﬂ S keI‘dA.

Lemma 2.14. Let Ay € Fp. Then Ty, Fp = kerda,.

Proof. Let A, = Ao—i—Zj‘;l t'a;; be a curve in Fp with oy = % Ay € Ty, Fpfort € (—¢,¢),
t=0
€ > 0. Since the curvature 0 = F4, = F4, we have that

d d
0=—| Fa=—| (Fa, +td o(t?*) =d
dt t=0 Ar dt t=0 ( Ao g ( )) Aot
and hence, a; € kerdg,. O

2.5 The moduli space of flat connections

Definition 2.15. A principal bundle homomorphism between two principal G-bundles P
and P’ is a G-equivariant bundle homomorphism. If P = P’ it is called a gauge transforma-
tion of the bundle. Denote by Gp the group of all gauge transformations P — P.

Remark 2.16. To every G-equivariant map v : P — G, p — u,, we associate a gauge
transformation ® : P — P by letting ®(p) = p - u,,. Here, g € G acts on itself on the right by
h +— g~ 'hg. This association is a bijection.

The group Gp acts on Ap via pullback, and the action preserves Fp. For a G-equivariant
map u : P — G, we write this action A — A - u.

The space which we are interested in quantizing is the moduli space of flat connections
in a trivializable principal G-bundle.

Definition 2.17. The moduli space of flat connections on a trivializable principal G-bundle
P — M is the space Mg (G, M) = Fp/Gp.

This space can be given a set theoretical description using the holonomy map. The
proofs of the following results can be found in [22].

Proposition 2.18. Let A be a flat connection in P and assume that A is connected. Let
zo € M, let pg € 7! (x0) and let vy be a loop in M with base point zo. Up to conjugation in
G, the association A — g, (¥ (7)) is independent of the base point zg, the choice of lift p,,
the gauge transformation class of the connection A and the homotopy class of +. In short,
we have a well defined map

hol : Mgt (G, M) — Hom(m (M), G)/G,

where G acts on Hom(m; (M), G) on the right, (p- g)(7) = g7 *p(7)g.
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Definition 2.19. A flat principal G-bundle on a manifold M is a pair (P, A) consisting of a
principal G-bundle P — M and a flat connection A in P. Two flat principal G-bundles
(P,A) and (P’, A’) are called isomorphic if there is a principal bundle homomorphism & :
P — P'such that A = ®*(A’). The set M€ of isomorphism classes is called the moduli space
of flat principal G-bundles on M.

Theorem 2.20. The map Mg (G, M) — Hom(m (M), G)/G taking [(P, A)] to [hol4] is a
bijection.

2.6 Chern-Simons Theory

Three-dimensional Chern-Simons gauge theory is an example of what we later in this the-
sis will view as a topological quantum field theory (TQFT). Chern-Simons theory with a
compact gauge group G is a well-known and studied subject with a history going back to
the 1980’s. We will here review this theory following Freed [15]. Then we will briefly dis-
cuss the case, where G is no longer compact. L.e. we will discuss what happens when G is
replaced by its complexification G¢ the Lie algebra g is replaced by gc.

For now, we will assume that G is a simple, connected, simply connected and compact
Lie group. It is a well known fact that any principal G-bundle P over M where dim M < 3
is trivializable. Let M be a compact and oriented 3-manifold with boundary ¥. Let P — M
be a principal G-bundle. Trivializing P = M x G by using the trivialization p — (7 (p), g,) is
equivalent to choosing a section s : M — P through the identification p-g, = s(7(p)). Using
a section like this, the pull-back of a connection determines an identification between the
space of connections and one forms on M with values in the Lie algebra, i.e. Ap = Q'(M, g)
and further we can identify Gp = C*°(M, G).

Definition 2.21. For a connection A € Ap with curvature Fy € Q?(M, gp) we define the
Chern—Simons form a(A) € Q3(P) by

_ % (AA[AN A 2.12)

a(A) = (ANFa)
Definition 2.22. The Chern—Simons action of Chern—Simons functional of A for a trivialization
s : M — P of the bundle P — M is given by

CSy(A) = /M s*(a(A) € R.

Let us see how the Chern-Simons functional behaves under gauge transformation (see
[15, Prop. 2.10])

Proposition 2.23. Let § € Q!(G; g) be the Mauer—Cartan form i.e. 6(v) = (dl,-1)v € g for
v € T4G. Let ¥ : P — P be a gauge transformation with associated map u : P — G, and
let 6, = (u o s)*6. Then for a connection A € Q!(M, g) we have

CSyos(A) = CS, (" A)
= CS,(A) + /

1
<Ad(uos)—1A/\9u> - */ <0u/\ [eu/\gub
oM 6

M

Assume know that (-, -) is normalized such that —2 (9 A [0 A §]) represents an integral

class in H3(G, R), then the last integral in Proposition is an integer.

Definition 2.24. In the case where M is a closed 3-manifold we obtain the Chern-Simons
action
CSM : Ap/gp —>R/Z. (2.13)
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Here we have forgotten the subscript s since any two sections are related by a gauge trans-
formation and by Proposition this function is independent of s. Instead we put on the
subscript M to remind the reader that the Chern Simons action depends on the manifold.

It turns out, that the Chern—-Simons action can be written in the form

CSar(A) = 87;2 /M Tr(A A dA + %A AAAA), (2.14)

where A € Q' (M, g), (If G = SU(N) then Tr should denote the trace in the N-dimensional
representation).

2.6.1 The Chern-Simons line bundle

Let us now discuss the case where M is a 3-manifold with boundary OM = 3. Let Q = P|s.

Lemma 2.25. For any gauge transformation g € C*°(M, G) the functional

Wis(g) = /M—é@w[g*ew*ep (mod 1) (2.15)

only depends on the restriction of g to X.

This is what is called the Wess-Zumino-Witten functional, and a proof can be found in [15]
2.12].

It is easily seen that any two sections of P — M are related via a gauge transformation,
which implies that CS, only depends on the restriction to the boundary. This can be used
to to define a principal U(1)-bundle over A such that

e2mi CSm(A) ¢ Lo. (2.16)

which is essentially for defining a Lagrangian field theory.

Remark 2.26. As we have already mentioned, principal G-bundles P — M are trivializable
when dim M < 3. As sections correspond to trivializations of P, we can suppress the
reference to P in (2.16).

We consider the principal G-bundle @) — 3. We may think of a principal U(1)-bundle £
over Ag as the (complex) line bundle £ associated to the defining representation U(1) —
C* = GL(C) over Ag known as the Chern—Simons line bundle.

As the space of connections A is contractible, £ will be trivializable. We could there-
fore describe it using one single chart. However, we need the trivialization

(bs:ﬁQ*)AQX(C

to depend in a non-trivial way on the section s : ¥ — () in the same way the Chern-Simons
function behaves, so that Equation is satisfied.

In order for £ to be a line bundle, the transition functions ¢, := qu(zS;l must then
satisfy the cocycle condition:

¢5352 ¢5251 = ¢8381 .

A section s : ¥ — Q gives identifications s* : Ag — Q'(Z,g) and ¢° : Go — C7(Z,G)
determined by ® o s(z) = s(x) - ¢°(¥)(z). In view of the behaviour of the Chern-Simons
function under a gauge transformation W it turns out that what we want to have for A € Ag
is:

¢\I/os = CZ(S*A798(\II))¢S (217)
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where

es(A, g) == exp <27ri (/ (Adg-1 AN g™ 0) + Wg(Q))) (2.18)
N
It can be shown that cy; satisfies the cocycle condition
cs(9" A, h)es(A, g) = cs(A, gh).

If u — A, is a smooth family of connections varying over a smooth manifold U. Then
the transition functions v — cx(s* Ay, ¢°(¥)) are smooth, so that £ is a smooth vector
bundle over U. Further, we constructed it so that A — exp(27i CS;(A)) is a section of L,
which is the Chern—Simons invariant for manifolds X with boundary.

Remark 2.27. From here it can be shown that the Chern-Simons action is the action of a
local Lagrangian field theory. See e.g. [22].

To summarise what we have seen so far, we get a line bundle on the moduli space, i.e.,
if for the manifold M with boundary 0M = ¥ we have

r*L

L
£271 CS pp (A) ( i \L

MFlat(G7 M) TH MFlat(G7 Z)

2.6.2 Symplectic form on the moduli space

The main purpose of this section is to construct a symplectic structure on some subspace of
the moduli space. This is done through a quotient construction. The technicalities in this
construction are great since we are dealing with Ao which is actually a infinite-dimensional
manifold, modelled on the space of 1-forms on ¥ with values in g. The technical detail
are omitted and we will simply state that for any given connection A € A, there is an
identification T4 A = Q' (X, g). Then there is a natural symplectic form w on A, invariant
under G, defined by

w(a, B) = _/z (a A\ B) (2.19)

for a, B € Q'(%, g). If we use the identification T34Go = C*°(X, g), a moment map u : A —
C>* (%, g)* for the action of Gg on A is given by

u§<A>=2/Z<FAA£>,

for £ € C™(%,g), and A € Ag with curvature Fy € Q*(3, g). The key fact is now, that the
Marsden-Weinstein quotient

Mpa(G,Z) = = ({0}) / G

is exactly the moduli space Mpjt(G, ¥) of flat connections on ) up to gauge transforma-
tions.

If we now consider the subspace A7, C Aq consisting of flat irreducible connections in
Q, i.e. connections A such that V4 (the induced connection in Adp) is injective, and let
Mpat(G, 2)* = Aj /Go- This space can be shown to be an open subset of Mg (G, M) and
therefore one obtains the structure of a symplectic manifold through the quotient construc-
tion.

! Actually the infinite-dimensional analogue of the Marsden-Weinstein quotient.
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We let [ZQ = Ag x C be the trivial bundle over Ag and we lift the action of G to QQ
using the function c5; defined above. Then there exists a connection B on Lg given in a
trivialization s : ¥ — Q by

(BL)a(C) = / (ANG),

b

A€ Ag = QY(X,g),¢ € Tadg = Q'(2,g). This connection on L satisfy what in the
next chapter will define as the pre-quantum condition. (3.I). It turns out that the connection
B is preserved by the lifted action of G; and induces a connection B on the line bundle
L — Mpat(G, X)* defined to be all equivalence classes of elements of Azg x C under the
relation

(A,2) ~ (9" A, es(A, g) - 2),

for all gauge transformations g in Gg. We recall that the function cy, is U(1) and therefore
the line bundle £ carries a hermitian structure, and the connection B is compatible with
this structure. Thus we can summarise and we obtain the following:

Theorem 2.28. Let ¥ be a closed surface and let Q — X be a principal G-bundle. Then the
moduli space Mt (G, £)* of irreducible flat connections is pre-quantizable.

2.6.3 Complex Chern-Simons

Let us now complexify the action. This means that the compact Lie group G is replaced
by its complexifycation G¢, the moduli space Mg, (G, M) is replaced by the moduli space
Mepat(Ge, M), and the Chern-Simons action CSjys by CSys ¢ :

CSM@ : .Apc/gpC — (C/Z. (2.20)

Here Pc denotes a principal Ge-bundle Pc — M. Again the action can be written as

1 2
CSarc(A) = 8—2/ TH(AANA+ AN AN A), (2.21)
s M 3

where now A € Q' (M, g¢).
The Chern-Simons functional is intimately related to the volume of a hyperbolic mani-
fold in the sense that
CSM,C(A) = VO](M) +1CSm (A)

We will return to this subject in Chapter 6| where we will look at the quantization of the
Chern-Simons theory.



Chapter 3

Geometric Quantization

3.1 Quantization

In this section we will discuss quantization as a mathematical concept. Quantization has
its roots in the world of physics, but the physical motivation for the different approaches
will not be discussed. We take a more axiomatic way of reasoning. The main references are
[1,[18]. First we discuss general axioms for quantization. As these lead to contradictions we
turn to geometric quantization. This will be our preferred method of quantizing symplectic
manifolds.

3.1.1 Canonical Quantization

Quantization is concerned with the transition from a classical physical theory to a quantum
mechanical theory. In other words we seek a quantum theory that in some certain limit
yields back the classical theory we started with. In the classical mechanics we consider
R™ and we have the phase space 7*R"™ with coordinates (g1, ..., ¢n,DP1,--.,Pn) Where the
gi’s are the position coordinates and p;’s are the momentum coordinates. The standard
symplectic form in these coordinates is wsa = »_; dg; A dpj, the observables are the smooth
functions defined on R". An important operation on the observables is the Poisson bracket
given by
9f 09 _ 9f 9y

{f>g} 22877]07(]]_87%87)]’

described in terms of the symplectic form as { f, g} = wsa (X, Xy) where X is the Hamil-
tonian vector field defined by —df = w(Xy, -). It follows that

[Xf’Xg] = X{1.g}-

Quantization of this system is a way to assign to a class of observables f a self-adjoint
operator Qs on L*(R", dq). The assignment should satisfy the following properties:

(i) The map f +— @y is R-linear.
(i) Q1 = id.

(iii) The functional calculus for self-adjoint operators should yield ¢(Q ) = Qg0 for ¢ :
R — R, where defined.

(iv) The operators corresponding to the coordinate functions should satisfy

L0
Qoo = a6, Qb = —ma;i.

23
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(v) The commutator of two operators should be [Qf,Q,] = —ihQy 4}, which we call
the canonical commutation relation, and which of course expresses the celebrated
Heisenberg uncertainty principle.

The type of quantization described is what is called canonical quantization. Unfortunately
it turns out that the axioms (i)-(v) are not quite consistent: (i)-(iv) make it possible for
us to express @ for the function f(q,p) = ¢?p? = (q1p1)? in two different ways. See
[1]. There are ways to handle this inconvenient fact. One, which we will use, is to keep
the quantization axioms but quantize only few observables. This will lead us to geometric
quantization. Another approach is based on the principle that the commutation relation
should hold asymptotically as / goes to zero and therefore be replaced by

[Qf, Q4] = —ihQyy. gy + O(R®) as h— 0.

This procedure would lead to deformation quantization which we will not go deeper into.

3.1.2 Geometric Quantization

In geometric quantization, we wish to quantize a symplectic manifold (M, w) which is usu-
ally called the phase spase by assigning a separable Hilbert space # and a linear map
Q : f — Qy from a subspace F of real valued functions on M which is a Lie algebra un-
der the Poisson bracket, into self-adjoint operators on a dense subset D C H satisfying the
following axioms:

(a) The assignment f — Q¢ is R-linear.
(b) @1 =id, where 1 is the constant function and id is the identity operator on H.

(C) [Qfa Qg] = _ZhQ{f,g}a for fvg eF.

(d) If given two symplectic manifolds (M, w) and (Z\ZJ @) and a symplectomorphism be-
tween those ¢ : (M,w) — (M,®), then for f € F we require that Qo4 and Q are
conjugate by a unitary operator from # to #.

(e) For M = R?" with the standard symplectic form, we recover the operators Qq; and Q,,
from the canonical quantization.

Let us describe the construction according to Kostant and Souriau. We start by con-
structing a pre-quantization by ignoring that we should recover the Schrodinger represen-
tation when (M, w) = (R?", wgq). We follow Woodhouse [54].

3.1.3 Pre-quantization

Let £ — M be a complex Hermitian line bundle over the symplectic manifold (M, w), let V
be the canonical connection induced by the Hermitian metric. Locally over an open subset
U C M let § be the connection matrix and sy a non-vanishing section in £. Then,

Vx(fsv) =X (f)sv +0(X)fsu.
The pre-quantization operator Q) : C*°(M) — OP(D), is given by:
f = f - ithfv

where D = L3(M, L) C L*(M, L), is the subset of smooth square integrable sections of £
with compact support. The metric on L?(M, L) is given by

wn

(s1,82) = /M S1§2H~
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Since the integral of the Lie derivative of a top form over a manifold M without bound-
ary is 0, it follows that Q¢ is self-adjoint when f is a smooth real function on M. The
assignment of the pre-quantization operator is further linear.

With the assignment of pre-quantum operator above we get the commutator:

[Qf,Qq4] = —h*[Vx,,Vx,] — 2ih{f,g}.
Recall that in terms of the connection the curvature is determined by the formula:
FV(X, Y) =VxVy -VyVx — V[X’y].

Using this fact we see that goving a condition on the commutator of quantum operators
gives constraint on the curvature of V. When we have equality ihFy (X, X;) = w(X, X,)
this is exactly the commutator relation which we want. In other word, the decided com-
mutator appears when

{;WFV} =c1(L) = Hw] € Im(H?*(M,Z) — H*(M,R)).
Definition 3.1. A pre-quantum line bundle on the symplectic manifold (M,w) is a triple
(L,V,(-,-)) consisting of a complex line bundle £ — M with a Hermitian structure (-, ),
and a compatible connection V satisfying the pre-quantum condition
Fo=_! 1
VvV — Ew. (3 )
A symplectic manifold admitting a pre-quantum line bundle is called pre-quantizable. As
we have seen it is definitely not every symplectic manifold which admits a pre-quantum
line bundle. For further details see e.g. [54].
The cohomological investigation further reveals that, if a pre-quantum line bundle ex-
ists, the inequivalent choices of pre-quantum line bundles are parametrized by H'(M, U(1)).
Prequantization satisfies all the properties required of a quantization, except that it fails
to reproduce canonical quantization when applied to R?". In a sense, it produces a Hilbert
space of wave functions which depend on twice as many variables as they should. Indeed,
if wiq = —df where 6 = . p;dg; and if X is a Hamiltonian vector field for a function f,

"L of 0 of 0
Xp=y 24— L —
I ; (')qj 8])]' 8pj 8q]‘

and because Vx, = X; — £ X - § the operator @ is given by:

i of of of of
1 (9p] aQJ 8qj [“)p]

of .
Qr=1r+ ijaf—lﬁ
j:1’!L pj J:
which does not act on L?(R") but L?(R?") instead. We therefore need to restrict Q) to the
space of functions only depending on the ¢—variables and is quadratic integrable over this
variable in order to get the Schrodinger representation we want.
A standard way around this is to pick an polarization on M and consider the space of

polarized sections of the line bundle.

3.1.4 Polarization

Polarizations are the geometric objects that are used to decrease the dependency to n vari-
ables. Given a symplectic manifold (M, w) of dimension 2n, we will choose n directions in
M by a choice of a special distribution P € T'M¢ called a polarization. Then we say that a
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section s of a pre-quantum line bundle is polarized if it is constant along all vector fields X
of P, so
\V4 XS = 0.

In general it is not sufficient to take the quantization space to be the L? integrable po-
larized sections, it still has to be modified in some way. In what follows we define polar-
izations, consider some special kinds, namely real and K&hler polarizations.

Definition 3.2. Let (M,w) be a symplectic manifold. A complex polarization is a distribu-
tion P of T'M¢ satisfying the following criterions

1 Pis Lagrangian,ie. P ={X € TM¢ |w(X,Y)=0forallY € P}.
2 Pisinvolutive, ie. [X,Y] e Pfoall X,Y € P.
3 dim(P, NP, N T, M) is constant for all z € M.

It is not hard to check that if P is a polarization then P is also a polarization. The
involutivity condition is equivalent to P being integrable by the Frobenius Criterion.

3.1.5 Real and Kihler polarizations
Given a symplectic manifold (M, w) a polarization P of M is real if P = P.

Definition 3.3. Let P be a complex polarization on a symplectic manifold (M,w). The
polarization P is called a Kihler polarization if the Hermitian form on P defined by h(u,v) =
iw(u, v) is positive definite.

With a Kéhler polarization we can define a complex structure I on M by letting P be
the —i-eigenspace of I and P the i-eigenspace of I. Involutivity of P gives integrability of
I, and by the Newlander-Nirenberg Theorem there exists a unique complex structure on
M which induces I. The metric which we can define by the formula g(X,Y) = w(X,IY)
for vector fields X,Y on M is positive definite. Furthermore it is Hermitian and since w is
closed (M, w,I) is a Kahler manifold. Conversely every Kahler manifold admits a Kahler
polarization by choosing the polarization P to be the —i-eigenspace. To summarise we
have shown:

Proposition 3.4. Given a symplectic manifold (M, w) and a complex structure I, then P be
the —i-eigenspace and P be the i-eigenspace are Kéhler polarizations. Conversely if (M, w)
has a Kéhler polarization then there exists a compatible complex structure / on M.

With a Kéhler polarization on M, the line bundle £ — M has a natural complex struc-
ture. A section s of £ is called holomorphic if Vxs = 0 for all X € P. If two non-vanishing
sections s, s’ of £ differ by a non-vanishing function ¢, s = s’ and if s, s’ are both holo-
morphic then

0= Vs = Vx(és) = X(9)
1 is holomorphic. By choosing a trivialization of £ — M of holomorphic sections, the
transition functions are holomorphic.

The space D = {s € L*(M,L) | Vxs = Oforall X € P}, is a closed subspace of
L?*(M, L) and therefore a Hilbert space, see e.g. [54] Operators on D will be the target
space of the quantization map. Let us check which observables we are able to quantize.

The covariant derivative of (Q ;)s with respect to X € P is calculated to be

Vx((Qf)S) = —iﬁVXVXfS + X(f)s + fVXS

so for X € P, Q; preserves D is [X, X;] € P. Hereby we have found the space of quan-
tiziable observables

D={fecC=(M)|[X,Xs] €Pforall X € P}.
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Example 3.5. Let us consider two simple examples in relation to geometric quantization.
Let M = T*Q with the canonical basis {¢;, p;} and symplectic form wgg = > dg; A dp;. We
take the polarization P to be the vertical vector fields, i.e. the span of {5 - 9 1n . The polar-
ized sections s are sections for which 3 as =0, so those which are constant along the fibers.
This is the Schrodinger representation of (T*M,w). The quantum operators corresponding
to to the observables positions and momenta are

0
Qu =g and Qy, =—ih-—.

0q;
If @ = R™ we could take P to be spanned by {% i 1. Then we would obtain the
momentum representation. The quantum operators in this case are

L 0
@, = ihg - and @, =p;.
J

We observe that the relation between these two representations is the Fouriertransform.

Example 3.6. If we now let M = T*() but take as basis z;,Z;, where z; = p; +ig;. Then the
standard symplectic form becomes w = £ 3" dz; Adz;, and the complex structure is defined
by Iz; = iz;, I1Z; = —iz;. Choosing the Kdhler polarization corresponding to I, that is P is
spanned by {% 7= the polarized sections s must satisfy g—% = 0 so they are holomorphic
sections. This is the Bargman-Fock representation. If instead we had chosen P we would
have obtained the anti-holomorphic sections.

3.1.6 Change of polarization

Let us here explain how a change of polarization is related to the Fourier transform. The
reference for this section is [2]. For simplicity we will just consider R?" with the standard
symplectic structure

n
Wetd = Z dz; N dz,4i.

i=1

We can define
n

1
a=3 ;(gcidmnﬂ — Tptid;).
Then we have
wWetg = dar.

The one form « defines a connection V in the trivial line bundle £ = R?" x C. For any
polarization P on R*" we can consider the space of sections of £, which are covariant
constant along P:

Hp ={p € C°R™ LF) | ¢(Vxs) =0 VX € P, s c CR™, L)

For a general Lagrangian subspace P we can find a Lagrangian subspace P’ of R*" which
is transversal to P and which induces a reducible polarization on M. We will construct an
isomorphism

U:Hp — Hp

Suppose P; and P, are two transverse Lagrangian subspaces of R*"". We can then find
a Lagrangian subspace Y transversal to both P; and P,. Let

pi : R* =Y
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be the projection R2" = P, &Y — Y. Sections of £* covariant constant along P; can be
identified with sections of £¥|y. Let s be a covariant constant section of £*|y. By using s we
identify C>°(L¥|y) with C2°(Y). Extend s to a section s; of £L*|y by extending covariantly
constant along P;. Assume that s is of unit length, hence so is s;. Let (g, p) be symplectic
coordinates on R?" such that ps(q, p) = ¢’. Then

n
4% =a+> Sipi
i=1

where S is a symmetric matrix and non-singular since P; and P, are transversal. Let S(Y)
denote the space of Schwartz functions on Y. Consider the operator

U:8(Y)—SY)
given by
U(f)(a) = /Y exp(ink(Sp,p)) (g + Sp)dp

for f € S(Y). Since S is invertible, we get that

U(f)(q) = explink(S ¢, )) /Y exp(imk{p, Sp — 24)) f(Sp)dp.

Define operators V,W : S(Y) — S(Y) by
V(f)(p) = exp(imk(S™'p,p)) f(p),

W(f)(p) = f(Sp),
and the Fourier transform F : S(Y) — S(Y") by

F(f)lg) = /Y exp(—2imk(p,q)) f (p)dp.

Since all these maps are isomorphisms we conclude that U = V o F o W o V is an isomor-
phism on S(Y). Actually we get an isomorphism

U:Hp — Hp

and we see directly that a change of polarization is related to the Fourier transform. In
Chapter ] we will an analogue of this fact when coordinates are changed in Teichmiiller
space. The story is not as simple as in the case described above since the coordinate trans-
formations used are not as simple.



Chapter 4

Quantum Teichmiiller theory

Teichmiiller space will play an important role later on in this thesis. Therefore, we would
like to identify useful global coordinates on Teichmiiller space to get a better understanding
of it. We construct the Fenchel-Nielsen coordinates and generalise these coordinates to a
Riemann surface with punctures and holes. We look at another set of coordinates due to
Penner [40]; these coordinates can be given on a surface with at least one hole or puncture.
Finally in this section we will look at Kashaev coordinates for Teichmdiller space and the
quantization Teichmiiller space in these coordinates.

4.1 Pants decomposition

Given a connected Riemann surface R of genus g we would like to decompose it into a
number of building blocks. If the genus g is at least two one can show that there exist a
collection I = {7;}297® of simple closed geodesics on R which decomposes R into 2g — 2
pairs of pants. The genus 2 case is illustrated in Figure [.1]

Definition 4.1. A pair of pants P of a Riemann surface R is a simple subsurface of R whose
boundary 0P in R consists of three simple closed geodesics.

Figure 4.1: Two different pair of pants decompositions of a genus 2 surface.

The complex structure of a pair of pants P is uniquely determined by the lengths of
the geodesics 71, 72, 73 of the boundary 0P we denote these lengths as 1, I, I3 respectively.
To see this decompose P into two right angled hexagons by cutting along three shortest
geodesics with lengths d;9, di3, d23 connecting the boundary components, see figure
Because the hexagons have the three edges di2, d13,d23 in common, then by elementary
hyperbolic trigonometry the two hexagons must be identical. Therefore each hexagon is
uniquely determined by the lengths 1, /2, 15/2,13/2 and hence P is uniquely determined by
l1,12,13. This is illustrated in Figure

4.2 Fenchel-Nielsen coordinates
Since the complex structure is already fixed we only need to specify how we glue the pairs

of pants back together to reconstruct our Riemann surface. This is done by defining twist-
ing parameters 7;; one for each closed geodesic in I". Notice that after choosing an order-

29
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Figure 4.3: A pair of pants given by a region of the Poincaré disk.

ing of boundary components in each pair of pants, the connecting geodesics with lengths
dy2,d13, da3 define distinguished points on 71, v2,y3 respectively. We define the twisting
parameter 7, modulo v; to be the distance along v; between the two distinguished points
corresponding to the two pairs of pants glued along ;.

Due to a result known as Teichmiiller Theorem we know that Teichmiiller space 7, is
simply connected and therefore the parameters 7; are allowed to run over the whole set R.
We have the following consequence:

Lemma 4.2 (Fenchel-Nielsen coordinates). Given a collection I' of decomposing simple
closed curves on R, fixing the zeroes of the twisting parameters, we obtain a diffeomor-
phism ¥ : 7, — R3™% x R39-3,

In other words we have a global set of coordinates on Teichmdiller space which is known
as the Fenchel-Nielsen coordinates.

4.3 Punctures and holes

Using the pair of pants decomposition one can easily generalise Teichmiiller space to Rie-
mann surfaces having holes or punctures. We decompose our Riemann surface R of genus
g into pairs of pants such that one pair of pants looks like a handle and throw this away to
obtain a Riemann surface of genus g — 1 with a hole with geodesic boundary length equal
to the corresponding Fenchel-Nielsen coordinate.
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Define 7], to be the Teichmiiller space of a Riemann surface of genus g with s holes
of geodesic boundary lengths 71, . . ., ;. Considering the pair of pants decomposition leads
to the fact that 7,717 is a space of dimension 6g — 6 + 2s and again the Fenchel-Nielsen
coordinates define global coordinates.

We would also like to allow zero boundary length, which corresponds to a Riemann sur-
face with punctures. Figure 4.2|and elementary hyperbolic geometry leads to the following
equations:

sinh ds3 sinh dy3 sinh dy2
— 1 = 1 = T (4.1)
sinh §l1 sinh §l2 sinh 5[3

Therefore fixing the geodesic lengths [z, I3 of 2 and 3 and letting I, approach zero d;3 and
dy3 will go to infinity. Punctures therefor correspond to a Riemann surface having infinitely
long spikes.

If we let v be the Mobius transformation corresponding to a path around a puncture
then from the equation

|Tr(y)| = 2 cosh (g) 4.2)

we see that |Tr(y)| = 2 and therefore « has to be parabolic, which means that it has a fixed
point on the boundary of H, which of course is the puncture.

Remark 4.3. In the case where punctures appear we must reformulate our notion that a
Fuchsian group only consists of the identity element and hyperbolic conjugacy classes. A
Fuchsian model of R with s punctures consists of the identity element and exactly s distinct
parabolic conjugacy classes and hyperbolic conjugacy classes.

4.4 Penner coordinates

Dealing with Riemann surfaces having punctures there is another useful set of coordinates
on Teichmdiller space.

Let R be a Riemann surface of genus g with s > 0 punctures. There exists 6g — 6 + 3s
disjoint geodesics running between punctures of R which decompose R into 4g — 4 + 2s
triangles. Dual to this triangulation is a trivalent graph called a fat graph on R.

It would be tempting to view the lengths of the geodesic edges of the triangulation as
coordinates. This is of course not possible since the geodesics connect punctures and are
therefore infinitely long.

Instead we choose a horocycle around each of the punctures. A horocycle for a puncture
is a path around the puncture which is perpendicular to all geodesics originating from the
puncture.

Example 4.4. In the the Poincaré disc horocycles are given by circles tangent to the bound-
ary.

The length [, of an edge e in the triangulation is defined to be the distance along the
edge e between the horocycles of the punctures which it connects. Shifting a horocycle for
some puncture just corresponds to adding a constant to the lengths of all edges coming
from that puncture. Modulo this symmetry the set of lengths {l.}.ca constitute global
coordinates on 7, , which are called Penner coordinates.

4.5 Kashaev coordinates

Quantization of the Teichmiiller space of a surface with boundary and holes was achieved
by Kashaev in [28] and independently by Chekhov-Fock [14]. The main ingredient in
both constructions is the very special function called the quantum dilogarithm. There is
a universal setting for the construction, namely quantization of the universal Teichmiiller
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space, which we think of as Teichmiiller space of the open disk D with certain boundary
behaviour, or of the closed unit disc with a countable number of distinguished points on
the boundary. Quantization requires the choice of a coordinate system on the Teichmdiller
space, which depends on the choice of a certain infinite triangulation of the surface D,
which is called a Tessellation of D. Let us now introduce the Kashaev coordinates for Te-
ichmiiller space. After this definition we will look at the quantization of Teichmdiller space
following the outline from [28]

4.5.1 Tessellations

In this subsection we put up a universal setting for ideal triangulations of hyperbolic sur-
faces. The surface we want to deal with is the open unit disc D = {z € C||z| < 1} equipped
2

with the Poincaré metric ds? = 7(1_‘7;2)2 .

Definition 4.5. An ideal arc connecting two fixed distinct ideal points on the unit circle
S! = 9D is a homotopy class of smooth arcs in D connecting the points. No orientation on
arcs is imposed. A region bounded by 3 ideal arcs connecting three distinct ideal points is
called an ideal triangles.

Definition 4.6 (Tessellation). A tessellation T of the unit disc I is a locally finite triangula-
tion, i.e., any point of D admits a neighbourhood meeting only finitely many geodesics in
7, of I into ideal triangles. The vertices of a tessellation are the endpoints of the ideal arcs
in the tessellation. The collection of vertices, ideal arcs and ideal triangles of a tessellation
is denoted by 7(?), 7(1) and 7(?) respectively.

Definition 4.7. By 1 we denote the Cayley transform from the upper half-plane H = {z €
C | Im z > 0} to the unit disc D, which also extends to their boundaries:

H=HURP! +— DuUS"! 4.3)
Py —— (4.4)
x4+

here we think of RP! = 9H = R U {co}. When we use a Mdbius transformation we will
mean an element of the automorphism group PSL(2,R) of the hyperbolic space H given
by the fractional linear transformation

wth g 4.5)

d

(a b),ePSL(?,R):xGHH
c cr+d

when we mention the action on D of an element g of the automorphism group PSL(2,R)
or its subgroup PSL(2,Z) we mean the conjugated action o go .

Definition 4.8. A nonzero rational number is said to be in reduced form if it's written as
p/q where ged(p, q) = 1, with p,q € Z,q > 0. We set % for the reduced expression of 0, and
& or & for the reduced expression for co. We call Q U {oc} the extended rationals.

Definition 4.9. The Farey tessellation 7* is the tessellation whose vertices are all the rational
points of S', and two rational points x(a/b) and u(c/d) are connected by an ideal arc if and
only if |ad — bc| = 1. Alternatively one could start with the basic ideal triangle with vertices

1($), 1(5), w(—1) € S* and take the orbit of its sides under the PSL(2, Z)-action.

We are interested in a bit more general tessellation than just the Farey tessellation. We
say that a tessellation is of Farey-Type if it satisfies the following definition.

Definition 4.10. A Farey-type tessellation is a tessellation whose vertices are the rational
points of S!, all but finitely many of whose ideal arcs are those of the Farey tessellation. In
this section we let 7 := {Farey-type Tessellations 7}.
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Figure 4.4: On the left the Farey tessellation, on the right a Farey-type tessellation.

4.5.2 Decorated Tessellations

It is often necessary to put some decoration on the tessellation. Different authors use dif-
ferent types of decorations. In [40] Penner uses a distinguished edge as decoration. Here
we will use a distinguished corner in each triangle as decoration of the tessellation along
with a labelling rule of the ideal triangles in the tessellation.

Definition 4.11. A tessellation 7 with a choice of distinguished corner for each triangle
72 € 7 is called a decorated ideal triangulation (d.it.). Further we impose the condition
that a decorated ideal triangulation should also have a labelling L, which is just a bijection
between the triangles 7(?) € 7 and Q* = Q\{0}. We let

Faor := {Decorated Farey-type Tessellations 7}

Figure 4.5: Examples of dotted Tessellations. On the left the standard d.i.t. On the right a
more general d.i.t.

There is of course a natural map
F. dot — F s

which just forgets the decoration and returns the underlying tessellation.
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4.5.3 Automorphisms of F;,;

Now we proceed to study actions on the decorated tessellations. It turns out that it is more
natural to consider a groupoid, instead of a group.

Definition 4.12. Let the Ptolemy groupoid Pt be the category whose objects are the (Farey-
type) tessellations 7 € F, and for two objects 7,7/, there is exactly one morphism denoted
by [, 7’]. We let composition of morphisms be given as

[, 7" o [r,7'] = [, 7], (4.6)

just like the composition of functions. Analogously, define the decorated Ptolemy groupoid
Pt ot to be the category whose objects are decorated Tessellations 74,: € Fgor and for any
two objects Tyot, 75, there is exactly one morphism denoted by [T40t, 75, -

Definition 4.13. For any edge e of a (Farey-type) Tessellation 7, there are exactly two ideal
triangles in 7(?) having e as one of their sides. These two triangles form an ideal quadrilat-
eral which has e as a diagonal arc. Replace e with the other diagonal ¢’ of the quadrilateral
to obtain a new tessellation 7’. The morphism [r, 7] is called the flip of 7 with respect to e.

One can easily observe:

Proposition 4.14. Any two Farey-type tessellations 7,7’ can be related through a finite
number of flips.

The flips as defined in the previous definition require the choice of a tessellation 7 to-
gether with one of its arcs e. In the next definition we will instead describe and give names
to the elementary morphisms of Pt4,: in a decorated tessellation only in terms of the labels
of the involved triangles.

Definition 4.15. We describe the elementary moves Ay, Tk, Pjk) of Ptaot for j k €
Q*, j # k, each representing a morphism of Ptg,;.

(i) Let 7}, € Fao be obtained from 745, € Fgor by moving the distinguished corner of the
triangle in 7(?) labelled by j € Q* in the counterclockwise direction to the next corner
in that triangle, leaving all other information intact. This morphism 7 - 7’ is denoted

A(j)- See Figure[d.6}

(if) Suppose that for 74,: € Fyo: the triangles labelled by [j] and [k] share one common
edge and that the distinguished corners of [j], [k] are exactly as in Figure If 7}, €
Faot is obtained from 74, € Fgot by replacing the common arc of the triangles labelled
by [j], [k] by the other diagonal arc of the ideal quadrilateral formed by these two
triangles, and setting the distinguished corners according to the picture on the right
of Figure as if we rotate the diagonal arc clockwise while letting the dots e and
triangle labels be floating and thus pushed according to the rotation arc, while leaving
all other information intact, then we name the morphism [74,¢, 7;,,] of Ptao: by Tij1-

(iii) If 7),, € Faor is obtained from 74, by exchanging the labels of the two triangles la-
belled by [j],[k] € Q* and leaving all other information intact, then we name the
morphism [740¢, 7j,] Of Ptaot by P(jr)-

Proposition 4.16. The morphism between any two objects of Pt4,; can be written as a
finite composition of elementary morphisms and therefore can be represented as a finite
composition of elementary moves.

The proposition is easily observed since two Farey-type tessellations are related by a
finite number of flips [40].
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Figure 4.7: The action of T, (5]

Theorem 4.17 (Kashaev). All nontrivial algebraic relations among the elementary moves
of Ptg,; are consequences of

AP = id, 4.7)

T T = Tim Tow Tk (4.8)
AT Aw) = Aw T Al (4.9)
Tt At Ty = A Ak Pk (4.10)

where j, k,[ € Q* are distinct.
There are trivial relations too, subject to the index permutations

Pl =id,  Piry = Pijys PSPy = Froobreonjons

where f._; . k.. is any composition of elementary moves (conjugation by P results in
exchanging the subscripts j and k), and that any two words in the elementary moves whose
collections of subscripts do not intersect with each other commute. See [46, 29]

It is convenient to define the following group Gy, see [16]

Definition 4.18. For any index set I, define the Kashaev group G associated to the index set
Q* by generators and relations, with generators Ay, Ti;jii), Pjry, (4,k € I,j # k) and the

relations (4.7), #.8), ¢.9), (4.10) and the commuting relations mentioned in theorem [4.17]

We think about the Kashaev group as the formal group of changes of decorated tessel-
lations.

Let 7 denote the universal Teichmiiller space. We will here briefly review Kashaev’s
quantization of the universal Teichmiiller space. One should consult [28] 29]. Suppose we
have chosen a horocycle at each puncture (vertices of 7).
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Definition 4.19 (Kashaev coordinates of the universal Teichmdiiller space). In Kashaev’s
quantization of the universal Teichmiiller space 7 each choice of a decorated triangulation
Tdot gives rise to a coordinate system on 7, which to each traingle j € 7(?) assigns two

coordinates pj;, g;. L.e. we have an injective map 7 — (RTQ) )?, where
pi =1l =2, ¢ =13 =12,

where [} 1,1; 2,15 3 are the geodesic lengths of the sides of the triangle j where the cyclic la-
belling of the three sides is determined by the choice of decoration, where we trim the sides
using the chosen horocycles (lengths might be negative). These lengths are the logarithm
of the lambda lengths of Penner. See figure

Figure 4.8: The lambda lengths for a triangle labelled by [5]

Before turning to the quantization of Teichmiiller space let us describe the change of
Kashaev variables induced by a change of trianglation. Following [28]], define the following
two transformations associated to the elementary moves A(; and 7}, respectively:

Ay« (g5.p5) = (5 — 45, —45)- 4.11)

VL (X Ya) = (X0 Y5) (XY + Y5) L Ya(X, Y+ Y)) ),

where we have set X; = e% and Y; = P forall j € 7(2).

4.6 Quantization of Teichmiiller space

Denote by {-, -} the canonical Weil-Petersson Poisson bracket on the space of functions on

Proposition 4.20. The Kashaev coordinates satisfy

{pira;} =615, {pisps} ={aiq;} =0, Vi,jer®. (4.13)
This system has a canonical quantization

pj —>]§j:2ﬂ'bpj, q; —)(jj:27Tij, (414)
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realised as self-adjoint operators on (a dense subspace) the Hilbert space H = LQ(RT(I)),
where any element of A is a function in the variable z = (z;);c, where b € R is the

quantisation parameter, and b® ¢ Q. The operators P;, Q; are given by

1 0 9 (1)
Pif = %%jﬂ Qif =x;f VfeL R ), (4.15)
which satisfy [P;, Q] = ﬁém, [P;, Pj] = [Qi,Q;] = 0 [The Heisenberg algebra]. Then one

has
[bi,4j] = —27ib* 8 5, [Bi, D] = [dirdj] = 0. (4.16)

Usually, quantization of 7 is described as a family of non-commutative algebras de-
pending on a real parameter, whose generators are realised as self-adjoint operators on a
Hilbert space. In this case, we use the exponents

Xj=el, Yj=eb, (4.17)
as the generators of the non-commutative algebra, subject to the relations (4.16).
Definition 4.21. Forb € R, b? ¢ Q, define ¢ € C* to be the number
g=e"". (4.18)

For a decorated triangulation 74, let the Kashaev algebra K¢, = be the algebra generated
by X;,Y;, j € 7 with the relations

XY =YX, (X5, V] = (X5, Xi] = [V;, Vi] = 0. (4.19)

Elements of K4 can be thought of as operators on a Hilbert space L? (RT(D) via the repre-
sentation 7 given by:

m(X;) =% (V) = e*™h, (4.20)
where P}, Q; is defined in (4.15).

The Kashaev algebra

K = <XY FE 7'(2)> /(rel. in @&19))

is the non-commutative deformation under this quantization of the algebra of functions
on 7 generated by the (exponents of the) coordinate functions X; = e%,Y; = ePi which
depend on 7y.

For a finite type surface, i.e. surfaces isomorphic to a compact surface with a finite
number of points removed, the Weil-Petersson Poisson structure on Teichmidiller space is
preserved under the action of the mapping class group of the surface. For the case of the
universal Teichmiiller space 7, each element of the universal mapping class group can be
represented by an element of the Kashaev group G, (changes of dotted tessellations). In
other words this means that a change of decorated tessellation of 7 yields a correspond-
ing change of the Kashaev coordinates on 7. It turns out that the Weil-Petersson Poisson
structure on 7 is preserved under the coordinate change induced by the Kashaev group G.

The quantization of Teichmdiller space should therefore done in such a manner that G4
still acts on the non-commutative algebra K¢ = preserving the algebra structure. If we can
identify K2 ot for different decorated tessellations, this would correspond to G4, acting on
K¢ asalgebra automorphisms.
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Definition 4.22. Suppose 7o, 7, € Faot, Whose triangle label rules let us identify 7(2)

with {j : j € Q*} and (v')® with {j’ : j € Q*}. Define themap I, , -, : K2  — ICgé
by
ITdohTéot (YJ) =Yy and ITdotﬂ—(/jot (Zj) =Zj, (4.21)

which is easily seen to be an algebra isomorphism.

Before stating the main result of Kashaev on the quantization of Teichmdiller space let
us introduce Faddeev’s quantum dilogarithm.

Definition 4.23. Faddeev’s quantum dilogaritm is a function of two complex arguments z
and b, defined by the formula

e—lew

u(2) = exp (/c 4sinh(wb) sinh(w bl)wdw> ’

where the contour C runs along the z-axis, deviating into the upper half plane in the vicinity
of the origin, and where the parameter % is in C\R<q, and b € C is chosen such that h =
(b+Db7H)72

We will look much more into this function later on in this thesis. Therefore we ask the
reader to see for more information about this function.

Following [29] closely we define a projective representation of the Ptolemy groupoid in
therms of the following set of unitary operators:

Theorem 4.24. Let the dotted Kashaev group G+ be given as a finitely presented group

Gaot = Faot/Naot where Fy,; is the group generated by Ay, Tijjix), Piiry, (4, k € 1,5 # k),

and Ny, is the normal subgroup generated by the relations in Theorem[4.17] For the Hilbert
2 rmpr () . .

space H := L“(R"™ ) consider the group homomorphism

p: Faor — GL(H)

given by assigning to each generator of F;,; a unitary operator on X as follows:

p(Apy)) = e /33T P+ Qi) (4.22)
p(Tijwy) = €79y (Q; + P — Q1) ™, (4.23)
(P(P(]k))f)( ey Ljyee ey Thy oo ) = f( s Ly ey Ty ), (424)

where P;, ; are as in (4.15). Then the quantum version of the coordinate change induced
by an element g of G4, is given by conjugation in p(g) in the following way. Then for each
g € Ggot which can be applied to 74,¢, we associate an algebra isomorphism

\I]Z : K?—dot - ’CZ-Tdat
which after identification of K¢ with £2  via (4.21) is as follows, in terms of the repre-

A 9-Tdot Tdot
sentation 7 of KZ -
Y-Tdot

Ty g raoe © V) = (KL, ) = 7(KL,,), (4.25)

Tdot Tdot

this is the mapping 7(2) — p(g)m(&)p(g) ", forall & € K2 . The map [@25) is well defined,

and it provides an algebra isomorphism of 7(KZ ) since it is a conjugation. When ¢ =

e™b* 5 lasb — 0in R, the limit of the map (4.25) recovers the classical coordinate change
map induced by g.

Remark 4.25. The operators defined in Theorem are unitary; when b is real or on the
unit circle

(1— [b)Imb =0 = Bp(z) = 1/B(3).
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Example 4.26 (The action of the operators A[;; and T} on L?). Let us first look at the
action of p(Ay;)). One sees that this operator only involves use of the two operators P; and
Q; we therefore think of this operator as an operator acting on L?(R, dz;). This operator is
written in the following way: First for a f € L!'(R) N L?*(R), or in the Schwartz space. By
continuity the operator extends to the whole L(R, dz;) we denote this operator by A:

(Af)(as) = 12 [ emmnsemisd )y, (4.26)
R

This operator is the unique unitary operator up to scalar multiplication by a complex num-
ber of modulus one which satisfies

AQA™'=P-Q, APA'=-qQ. (4.27)
where P = ;1.4 and @ = x are symmetric operators on a dense subset of L*(R, dz). The
equations (4.27) can still be written as

AePCA™ = ¢3(P=@)  feP A7 =739 s e R. (4.28)
which translate to
Ao f(a) s e AT (Af) (1: + %) O f (ac + %) e (Af) (). (4.29)

The operators that can be written as the exponential of a quadratic expression in P and @
are analogues of the Fourier transform F : f — (z — [p e 2™ f(y)dy) which is charac-
terised up to a multiplicative constant by FQF ! = —Pand FPF ! = Q.

For the operator p(7j;j5)) in Theorem we view its right hand side as an operator
acting on L?(R?, dx;dxy). The unitary operator e>Fi@* acts in the following way:

(627rinQk)f($j7 q;k) = f(.TJ + Tk, l‘k)

For the remaining part of the operator we write ®,(Q; + P, — Q) ™! = Akq)b(Qj + Qk)/l,;l
using (@.27). We know how the unitary operators Ay, A, act. We still need to know what
the operator ®,(Q; + Q) ' do, but this is just multiplication by ®y,(z; + z5) '

We have the result:

Proposition 4.27 (Kashaev). The map p satisfies

p(A)? =1id, (4.30)
P(Tiwu)p(Tiw) = p(T110) (T1510) P (T ) (4.31)
( DP(Tim) p(Apw) = p(Ap) p(Tiky 1) p(Ap)) (4.32)
p(Tm) p(A)) p(Tir ) = (A p(Ar) p(Piny ) (4.33)
where ¢ = e~ mi(b+b)?/ 12, as well as the trivial relations:
p(Pi)? = id, (4.34)
P(PG) Ll PP GRY) = S K] (4.35)
P(Piry) = p(Pkj))- (4.36)

Therefore p : Fyo — GL(H) is an "almost G 4,:-homomorphism" into GL(L?(#) in other
words p(Rgot) = C*.

Remark 4.28. In Chapter 3| we saw that a change of polarization was related via the Fourier
transform. In quantization of Teichmiiller space the story is more involved. We saw in
@.11), that elementary moves changes coordinates not in a trivial way. We need some
kind of logarithm for handling the sum in equation (#.12). What saves us is the Faddeev
quantum dilogarithm function which let us translate from one set of coordinates to another.

From the quantization of Teichmiiller space Andersen and Kashaev build tetrahedral
operators satisfying conditions related to the change of coordinates on the Teichmiiller
space. We will look at this in greater detail in Chapter 7}






Chapter 5

Hyperbolic geometry

5.1 Hyperbolic geometry

Recall that the hyperbolic 3-space H3 can be viewed as the upper half space {(z1, 22, z3) €
R? | 23 > 0} with metric

1
ds® = ﬁ(dx% + da3 4 da3), a3 >0, (5.1)
3

of constant curvature —1. The boundary H?3, topologically a two-sphere, consists of the
plane z3 = 0 together with a point at infinity. The group of isometries of H?* is PSL(2, C)
which acts on the boundary via Mobius transformations. In the upper half-space model the
geodesic surfaces are spheres of any radius which intersect the boundary 9H? orthogonally.

An ideal tetrahedron A in H? has by definition all its faces along geodesic surfaces, and
all vertices lies on the boundary of H3. Using Mébius transformations one can always fix
three of the vertices of an ideal tetrahedron to be (0,0,0), (1,0,0) and co. The last vertex
having the coordinate (z1, z2,0), with zo > 0. This fourth vertex defines a complex number
z = 1 + ixe which is usually called the shape parameter. At the various edges the faces of
the tetrahedron form dihedral angles arg z;, (j = 1,2, 3). The invariants z;,j = 1,2, 3, are
given by

1 1

=2, 2o=1——, 23= .
z 1—=2

(5.2)

Figure 5.1: On the left hand side we see an ideal tetrahedron in upper half space. On the
right hand side we se the projection of the tetrahedron onto the boundary plane.

Although all points of the ideal tetrahedron A lie on the boundary which implies A to
be noncompact, the (hyperbolic) volume is finite: The hyperbolic volume of a tetrahedron

41
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A, with shape variable z, is given by
Vol A, = D(z), (5.3)

where D(z) is the Bloch-Wigner dilogarithm function, related to the usual dilogarithm
function (see Section Lis by the relation

D(z) = Im(Liz(2)) + arg(1l — z) log|z|. (5.4)

One should here note that any z; can be taken to be the shape parameter of A, and that
D(z;) = Vol(A,) for each j. We allow the shape parameter z to take values in C\{0, 1},
noting that for z € R the tetrahedron is degenerate and that for Im z < 0 the tetrahedron
will have negative volume due to orientation.

5.2 Geometrization of knot complements

A hyperbolic structure on a 3-manifold is a metric that is locally isometric to H3. Most 3-
manifolds are hyperbolic. Among these are the majority of knot and link complements in
S3. We call a 3-manifold hyperbolic if it admits a hyperbolic structure that is geodesically
complete and has finite volume. We say that a knot K € S® is hyperbolic if the knot
complement S3\ K is homeomorphic to H?/T, where T is a torsion free subgroup of the
group of orientation preserving isometries of H*. Thurston proved that a knot complement
is hyperbolic as long as the knot is not a torus or a satellite knot [47]. Every closed 3-
manifold can be obtained by Dehn surgery on a knot in S®. Employing Dehn surgery on a
hyperbolic knot in S? yields hyperbolic manifolds for all but finitely many such surgeries
[48].

It is clear that if two hyperbolic knot complements are isometric then their complements
in S3 are homeomorphic as well. What is far from clear is that the opposite should be true.
However by the Mostow-Prasad Rigidity theorem this is indeed the case. In other words;
two knot complements H?/T'; and H?/T'y are homeomorphic if and only if I'; and I'y are
conjugate in the isometry group.

One can also phrase the property of hyperbolicity of a knot in terms of representations
of its fundamental group p : 71 (S*\K) — PSL(2,C). Having a complete hyperbolic struc-
ture amounts to have a unique (up to conjugation) faithful representation. The importance
of these observations is that the hyperbolic structure is a topological property of the knot.
Hence geometric information can be used to distinguish knots. In a more mathematical
language, geometric invariants become topological invariants and since the hyperbolic vol-
ume of a knot complement is a geometric invariant it also becomes a topological invariant.

It is not clear how to define the volume in the case where the knot is not hyperbolic. The
standard thing to do is to extend the hyperbolic volume by stating it to be additive under
connected sum so we can restrict to prime knots. So suppose we have a non-hyperbolic
prime knot. By Thurston’s theorem such a knot is either a torus knot or a satellite knot. We
now define the volume of a torus knot to be zero and the volume of a satellite knot to be the
volume of its companion plus the volume of its pattern. This provides a natural extension
of the volume to all knot complements that is known to agree with the Gromov norm of
knot complement.

5.3 Ideal triangulation

Any orientable hyperbolic 3-manifold A is homeomorphic to the interior of a compact
manifold M with boundary consisting of finitely many tori. M itself can be viewed or
thought of as M union neighbourhood of the cusps each of the neighbourhoods homeo-
morphic to T? x [0,00). Therefore we can construct hyperbolic manifolds from knot or
link complements in closed 3-manifolds. Furthermore every hyperbolic manifold has an
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ideal triangulation which means a finite decomposition into ideal tetrahedra where some
of the tetrahedra might be degenerate. See e.g.[48]. It is believed and conjectured that
non-degenerate tetrahedra are sufficient.

Given a finite set of tetrahedra {A,}7_; one can construct a manifold M by gluing faces
of tetrahedra in pairs. Of course vertices of tetrahedra are not a part of the manifold M
and that the combined boundaries of their neighbourhoods in M are tori. One can always
find a triangulation of M where edges are oriented such that the boundary of each face
(shared by two tetrahedra) has two edges oriented in the same direction and the last one
opposite. Vertices of each tetrahedra can now canonically be labeled by numbers 0, 1,2, 3
corresponding to the number of edges entering the vertices. Now each tetrahedron can be
identified with one of the tetrahedra in Figure

Figure 5.2: Different orientations of tetrahedra. On the left hand side a positively oriented
tetrahedron, on the right hand side a negatively oriented tetrahedron.

This labelling of vertices induces an orientation of each tetrahedron. Having an orien-
tation of each tetrahedron allows us to give shape parameters to the tetrahedra (21, 23, 2%)
running counterclockwise around each vertex if the tetrahedron is positively oriented and
clockwise if the orientation is negative. See figure

For a manifold M with cusps specified by holonomy parameters v; the shape parame-
ters z¢ of the tetrahedron A, in its triangulation are fixed by two sets of conditions.

(i) The product of shape parameters 2z} around every edge in the triangulation must

equal 1 in order for the hyperbolic structure between adjacent tetrahedra to match.

(if) One can compute the holonomy eigenvalues around each torus boundary in M as a
product of z/’s by mapping out the neighbourhood of each vertex in what is called a
developing map, and following the procedure illustrated in [35]. There is one distinct
vertex inside each boundary torus. It is then required that the eigenvalues of the
holonomy around the k-th component are equal to e*"*.

These conditions are what is usually referred to as the edge and cusp condition respectively.

5.3.1 The Bloch group and hyperbolic volume

When studying hyperbolic manifolds one of the interesting objects to consider is the vol-
ume spectrum

Vol = {Vol M | M is a hyperbolic 3-manifold} C Ry.

From the work of Jergensen and Thurston it is known that Vol is a countable and well-
ordered subset of R . And its exact nature is of great interest in both topology and number
theory. Equation (5.3) as it stands says nothing about this since any real number can be
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written as a finite number of values D(z), z € C. However the shape parameters z; of the
tetrahedra triangulating a complete hyperbolic 3-manifold satisfy an extra relation, namely

Zz A(1—2;) =0, (5.5)
=1

where the sum is taken in the abelian group A?C*. Now does give information about
Vol because the set of numbers Y. | D(z;) with z; satisfying is countable. This state-
ment can be made more precise by introducing the Bloch group. Consider an abelian group
of formal sums

[21] + -+ + [zn] € C*\{1}
satisfying (5.5). It is not hard to see that the elements

11—z

R R s R et R P P BT

1—=zy 1

with z,y € C*\{1}, zy # 1 corresponding to the symmetry properties and the five-term
relation satisfied by D(-), are contained in the Bloch group.

Definition 5.1. The Bloch group is defined as
Be = {[z1] + - - - + [2x] satisfying (5.5)} / (subgroup generated by the elements (5.6)).

Every 3-manifold M has a well-defined class in the Bloch group. The five-term rela-
tion takes into account the fact that a polyhedron with five ideal vertices can be decom-
posed into ideal tetrahedra in multiple ways. The five ideal tetrahedron in this poly-
gon, each obtained by deleting an ideal vertex, can be given the five shape parameters
2,9y, 1o 1 — zy, f_‘xyy appearing in relation (5.6). The signs of the different terms corre-
spond to orientations. Geometrically this five-term relation can be visualised as the "2-3"
Pachner move, illustrated in Figure

Figure 5.3: The "2-3" Pachner move.

The class [M] of a hyperbolic 3-manifold M in the Bloch group can be computed by
summing (with orientation) the shape parameters [z;] corresponding to any ideal triangu-
lation, but is independent of triangulation. Hence hyperbolic invariants may be obtained
from functions compatible with (5.6). And the hyperbolic volume of a 3-manifold M trian-
gulated by {A;}!, is given by

Vol M = "D(2"), (5.7)
i=1

where ¢; is either plus or minus 1 corresponding to the orientation of the tetrahedron in
question.



Chapter 6

Topological quantum field theory

6.1 The historical background

The idea of topological invariants defined by use of path integrals was actually first in-
troduces by A.S. Schwarz (1977) and formalised in its full power by E. Witten (1988) who
introduced the notion of a Topological quantum field theory (TQFT). Such a theory, inde-
pendent of Riemannian metrics, is rather rare in quantum physics. On the other hand such
theories admit a rather simple axiomatic description first suggested by Atiyah [7]. This
description was inspired by Segal’s axioms for a 2-dimensional conformal field theory. The
axiomatic formulation makes the theories suitable for purely mathematical research, which
involves combining methods from topology, algebra and mathematical physics.

In the 80’s Witten interpreted the Chern-Simons action (with compact gauge group) as
the Lagrangian of a quantum field theory. In these theories the partition function plays an
important role. This function is related to the partition function in statistical mechanics.
In the case of quantum field theory the partition function is given by a path integral. Let
M be a 3-manifold and G a (simple) Lie group. The quantum partition function is defined
formally by the following path integral

Zk(M) _ / e27rilc CSM(A)DA,
Ap/Gp

k € N. This is an ill-defined quantity since the space we integrate over is infinite-dimensional
and therefore there is currently no canonical way to make sense of the integral. Neverthe-
less Witten argues on the physical level of rigour that the path integral defines a topological
invariant of the 3-manifold.

Subsequently Reshetikhin and Turaev were able to define TQFTs using the representa-
tion theory of quantum groups [44],[43],[50] in the case where G is compact. We should
of course also mention the skein theoretical construction of TQFT due to Blanchet, Habeg-
ger, Masbaum and Vogel [9]. Essentially equivalent to the construction of Reshetikhin and
Turaev with gauge group G = SU(2).

6.2 TQFT from the axiomatic point of view

Let us look at the axioms for a TQFT following Turaev [49].

An (n + 1)-dimensional TQFT (V, Z) over a scalar field k assigns to any closed oriented
n-manifold ¥ a finite dimensional vector space V(%) over k and assigns to every cobordism
(M,%,Y') a k-linear map

Z(M) = Z(M,2,%) : V(T) = V().

Here a cobordism (1, ¥, ') between X and %' is a compact oriented (n+1)-dimensional
manifold endowed with a orientation preserving diffeomorphism oM ~ ¥ U ¥/, where

45
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the overline indicates that the orientation is reversed. All manifolds and cobordisms are
supposed to be smooth. In order for (V, Z) to be a TQFT, the following axioms must be
satisfied.

(i) Naturality. Any orientation preserving diffeomorphism f of closed oriented n-dimen-
sional manifolds ¥ and ¥’ induces an isomorphism f; : V(X) — V(X'). For a diffeo-
morphism g between cobordisms (M, X1, 33) and (M, £, £5) the following diagram
must commute:

vz P visy)

Z(N[)l Z(M’)

V(5) D72 (s

(ii) Functoriality. If a cobordism (W, X, ') is obtained by gluing two cobordisms (M, 3, %)
and (M’,Y',Y') along a diffeomorphism f : ¥ — 3’ then the following diagram
should commute:

v(g) 2™ v s
Z(M) Z(M")
V(E) v
(iii) Normalization. For any n-dimensional manifold ¥, the linear map
Z([0,1] x ) : V(X) = V(X)
is the identity.
(iv) Multiplicativity. There are functorial isomorphisms
VEUY) ~ V() V(E),
V(0) ~ k,

such that the following diagrams commute:

V(EUD)UYY) ~ (V(E)eVE)eVE")  VEU) ~ V(E)ek

| | l l

V(EuE ux”) VE)e (VE)e V(X)) V(Z) = V(%)

1

Here ® = ®, is the tensor product over k. The vertical maps are the ones induced
by the obvious diffeomorphisms, and the standard isomorphisms of vector spaces
respectively.

(v) Symmetry. The isomorphism
VEuUY)~VEuU)

induced by the obvious diffeomorphism corresponds to the standard isomorphism of

vector spaces
VE)eVE)~V(E)e V(D).

Given a TQFT (V, Z), we obtain an action of the group of diffeomorphisms of a closed
oriented n-dimensional manifold ¥ on the vector space V(X). This action can be used
to study this group. An important feature of a TQFT (V, Z) is that it provides numerical
invariants of compact oriented (n + 1)-dimensional manifolds without boundary. This is
so because such a manifold M can be considered as a cobordism between two copies of (.
In this case Z(M) € Homy(k, k) = k.
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6.3 Quantum Chern-Simons

In Chapter [2| we introduced the basics of classical Chern-Simons gauge theory. We de-
fined the Chern-Simons action which was done by integrating the Chern-Simons la-
grangian or form over space-time (a compact oriented 3-manifold). Since the Chern-
Simons form lives on the total space of a bundle, and not on the base, we choose a section
of the bundle to define the action. On closed 3-manifolds we saw, that the integral was
independent of the section, up to an integer, if an appropriate normalization was done
on the bilinear form. We ended up by defining a line bundle on the moduli space of flat
connections, both if M was closed and if M has boundary OM = X.

The story is very different in the non-compact case. And there is still no mathemat-
ical definition of the path integral in this case. We will now follow Wittens approach to
quantum Chern-Simons theory:

6.4 The complex story

We now shift gear since what we really want is the complex variant of the story. Now let
G denote a compact gauge group and denote its non-compact complexification by G, the
respective Lie algebras will be denoted by g and gc. We assume that the gauge groups
G, G¢ are reductive.

It turns out that the classical action of Chern-Simons theory with a complex gauge
group is purely topological, as is in the compact case. In other words; the action is inde-
pendent of the metric of the underlying 3-manifold M.

Definition 6.1. The Chern-Simons action for a complex gauge field A on a 3-manifold M
can be written as a sum of two classically topological terms, one for A and one for the
complex conjugate A:

2 t - =2
L= m(anda+2anana i/ T (ANdA+ 2ANANA) . (6.1)
8 M 3 ™ JMm 3
The field A is a locally defined gc-valued one-form on the manifold M. The two cou-
pling constants ¢ and # is conveniently written as

t=k+is, t=k—is,

with &, s being real and A = A + iB with A, B being g-valued one forms. The Lagrangian
then takes the form

L:ﬁ Tr(A/\dA—B/\dB+;A/\A/\A—QA/\B/\B>

A Jr

—28Tr(A/\dB+2A/\A/\B—§B/\B/\B>. 6.2)
Y8

The parameter k is subject to the same quantization law as in Chern-Simons theory with
compact gauge group G. So if ” Tr” is normalized correctly (if G = SU(N) then Tr should
denote the trace in the N dimensional representation), then k¥ must be an integer. In [52] it
is furthermore shown that s has to be either real or imaginary in order to obtain a unitary
field theory. As an example, let us look at the case, where G¢ = SL(2, C). This is the group
that describes (2 + 1)-dimensional gravity in a space-time of Lorentz signature and with a
positive cosmological constant. Writing the Lagrangian it is convenient to take G to
be the real form SL(2,R) of SL(2,C), then A can be identified with the spin connection w
of general gravity, and B with the vierbein e. Then the term of proportional to s is
the Einstein—Hilbert action with a cosmological constant, and under the resulting unitary
structure the coupling s must be real.



48 CHAPTER 6. TOPOLOGICAL QUANTUM FIELD THEORY

It is explained in [52] that introducing a non-compact gauge group is a perfectly accept-
able option in Chern-Simons theory. In Yang-Mills theories, a non-compact gauge group
would lead to a kinetic term that is not positive definite, and hence to unbounded energy
(or an ill-defined path integral). In Chern-Simons theory with complex gauge group the
kinetic term is indefinite, but this is no problem: The Hamiltonian of the theory vanishes
due to topological invariance, so the “energy” is always exactly zero.

Given a 3-manifold M (possibly with boundary), Chern-Simons theory associates to

M a "quantum Gc-invariant” which we in this section denote as Z,Ehys(M ). Physically,
this quantum invariant is the partition function of the Chern-Simons gauge theory on M,
defined as the path integral

7P (M) = / ¢''DA. (6.3)
Ap/Gp

From a mathematical point of view, this path integral is ill-defined. There is currently no
canonical way to make sense of the integral over the infinite dimensional space Ap/Gp.
Nevertheless, since the action is independent of the metric of M, one might expect that the

quantum G invariant ZP™®(M) is a topological invariant of M.

The question then rises: How does one compute the invariant ZP™*(M)? In Chern-
Simons theory with compact gauge group the invariant is computed by cutting A into
simple pieces, where the path integral can be evaluated. Then by gluing rules the invariant
is assembled. A similar set of gluing rules should exist in a theory with complex gauge
group, but these are expected to be much more involved than those in the compact case.
The reason being that the Hilbert space of this theory is infinite dimensional. One conse-
quence is that where finite sums which appear in gluing rules for Chern-Simons theory
with compact gauge group we will now have integrals over continuous parameters.

To be modest one can try to compute Z,Ehys(M ) perturbatively, by expanding the inte-
gral in inverse powers of ¢ and ¢ around a saddle point which is a classical solution. In
Chern-Simons theory, the classical solutions, or extrema of the action (6.2), are flat connec-
tions. These are connections satisfying the equations

dA+ANA=0, dA+ANA=0.

The flat G¢ connections on a 3-manifold M are determined by their holonomies. So the
flat connections are determined by a homomorphism from the fundamental group of the
3-manifold into the group G, i.e.

p:m (M) — Gg,

This homomorphism is of course only defined modulo gauge transformations, which act
via conjugation by elements in G¢. Therefore the moduli space of classical solutions can be
written as

Mﬂat(Gc; M) = HOm(7T1 (M), G((;)/G(c.

Consider a gauge equivalence class of a given flat connection A € My, (Gc; M) corre-
sponding to the homomorphism p. The classical Chern-Simons action is a sum of terms for
A and A, and it turns out that the perturbative expansion Z” (M) of the partition function

ZPM3 (M) will factorize into a product of holomorphic and antiholomorphic terms:
2°(M) = Z°(M; )27 (M; 7). (6.4)

As argued in [53] and [11]] the exact non-perturbative function ZEhyS(M ) depends in a non-
trivial way on both ¢ and ¢, and the best hope is that it can be written in the form

ZE (M) =" 2°(M; )2 (M F),
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where the sum is over all classical solutions. In [11]] the perturbative function Z?(M) is
studied. Due to the factorization into its holomorphic and antiholomorphic part, it suffices
to study the holomorphic part Z?(M;t). The perturbative expansion of this function is in
inverse powers of ¢, so it becomes convenient to introduce a new expansion parameter

_27T

h="T,
t

which plays the role of Planck’s constant.

The semiclassical limit corresponds to 7 — 0. The perturbative function Z#(M;h) is
an asymptotic power series in /. The general form is found by doing a stationary phase
approximation to the integral and turns out to be

1 1 -
Z°(M; ) = exp (hsgf’) — 50 logh+ Y sf{ﬁlh"> :

n=0

This is the general form of the perturbative partition function in Chern-Simons gauge the-

ory with any gauge group, compact or non-compact.

The leading term S(()p ) in the asymptotic expansion is the value of the classical Chern—

Simons functional evaluated on a flat gauge connection .A(") associated with a homomor-
phism p. The coefficient of the second term §(*) is an integer which like all other terms
depends on the manifold M, the gauge group G¢ and the classical solution p. The rest of

the terms S\ are obtained by summing over Feynman diagrams with n loops.

6.4.1 Quantization

We now turn to the problem of quantization of the basic Lagrangian (6.1):

t

L=_—
8 M

Tr <A/\d.A+ 2A/\A/\A) i/ Tr <A/\dA+ 2A/\A/\A> :
3 87 S 3
on a 3-manifold of the form ¥ x R where ¥ is an oriented closed two dimensional surface.
And A is a connection on a principal G¢-bundle E over M.

Canonical quantization will associate a Hilbert space Hs to the Riemann surface 3.
It turns out that the Hilbert space Hsx must depend only on ¥ as a topological surface,
with no chosen metric or complex structure. The Hilbert space Hyx will be obtained by
quantizing an appropriate symplectic manifold. The symplectic manifold we would like
to quantize is the moduli space of stationary points of the Lagrangian (6.I). The Euler—
Lagrange equations derived from are as follows. If we vary the connection in S

5L:i/ Tr(SANdA+ ANdSA+25AN AN A)

8 M

b [ T (AN A+ AN dSA+ 25ANANT).

™ JMm

Using the fact that d is an odd derivation, we get the equation
Tr(AAdOA) = —dTr(ANSA) + Tr(dANGA),
which implies
t t
0L=— [ Tr(0ANA (dA+ANA))+ —/ Tr(6AN A)
4 M 8m oM

+ L Tr(d]A(d]nLTAAX))Jri/ Tr(5AN A),
87 oM

47TM
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where the boundary terms drop out because we have assumed that 9M = §). In summary
the Euler-Lagrange equation is the flatness of the curvature

Fa=dA+ANA=0, Fz=dA+ANA=0.

This tells us that the moduli space that must be quantized is the moduli space My, (Gc; M)
of flat G¢c-connections on ¥, up to gauge transformations. The moduli space Mga(Ge; M)
has a t-dependent symplectic structure that can be deduced from the Lagrangian,
w= 4% : Tr(5A A SA). (6.5)

The Hilbert space Hy is then obtained by quantizing the moduli space of flat G¢-connections
on % with symplectic structure as described by Witten in [52]], done by regarding
Mot (Ge; M) as the symplectic quotient of the space Ap ¢ of all Gec—connections on ¥, by
the action of the group of gauge transformations. Quantization of Mg, (Gc; M) proceeds
by quantizing Ap ¢ and the picking out the G¢c-invariant subspace.

According to Witten, the line bundle can be characterized by saying that the commuta-
tors of covariant derivatives in A p ¢ acting on sections of £, are

s o] -t

AL (2)” 6 AL (w) 87

1) ) t
—a, o — | = —*5%51"5(2’710),
[Mi (2) 5A§(w)] g

with all other components vanishing. Here ¢;; is the Levi-Civita tensor density on the
oriented surface ¥ and we have expand the connection A = ) .A*T,, where {T,} is a basis
of the real Lie algebra g whose complexification is gc.

One then defines a pre-quantum Hilbert space #,, consisting of square integrable sec-
tions of the pre-quantum line bundle. The constraint operators, which are the generators of
the gauge group, are acting on the pre-quantum Hilbert space 5 and the gauge invariant
subspace of H,, is the subspace annihilated by these operators.

The pre-quantum Hilbert space is much bigger than the desired Hilbert space and the
Hilbert space is obtained from . by a choice of polarization. We will not go further into
details about the polarization.

We now look at a 3-manifold M with boundary OM = X, and the associated state | M) €
Hs. In a semi-classical theory, quantum states correspond to Lagrangian submanifolds of the
classical phase space. In this case, the phase space is Mg, (Ge; M) and the Lagrangian
submanifold associated to a 3-manifold M with boundary M = 3 consists of the classical
solutions on M, which is the moduli space of flat connections on M,

Maat(Ge, M) = Hom(m1 (M), Ge)/Ge.

Then
L= L(Mﬂat(GCa M))v

under the map ¢ : Mg (Ge, M) = Mgat(Ge, ¥) induced by the natural inclusion 7 (X) —
1 (M)

6.4.2 Perspectives

Let us try to relate the story to what we saw in Chapter2Jwhere we looked at Chern-Simons

theory with compact gauge group. In [41] it is shown with G = SU(2) that

S®) (4) = / 2Tk CSu(A)p g (6.6)
AeA/G
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where (A = A gives a holomorphic section of the bundle £*:

ﬁk

(]

Meae(G,2) = p~1(0)/G € A/G.

If we let 7 be a smooth manifold parametrizing Kahler structures on M. That is, assume
thereisamap I : 7 — C*°(M,End(TM)) mapping 0 — I, such that for every o € T,
(M,w, I,) is Kdhler. We denote by M,, the Kdhler manifold (M,w,I,). Then it turns out

that S € H° (M, £Y). In [4] Andersen proved that one can construct a Hitchin connection
V1 and the quantum spaces associated with different complex structures can be identified
through parallel transport of the Hitchin connection. For a deeper investigation on this
subject se also [17].

However in the non-compact case G = SL(2,C) one obtains smooth sections of 7 x
C>=(M,L*F) — T. And the connection needed to identify quantum spaces is even more
subtle than the Hitchin connection. This work is under construction by Andersen and
Gammelgaard. Who have constructed a Hitchin-Witten connection, which is needed to
identify quantum spaces.

The Chern-Simons theory with non-compact gauge group is expected to be related to
the Andersen—-Kashaev TQFT which we are going to study in the next chapters.






Chapter 7

Andersen—Kashaev TQFT

In this section we recall the work of Jergen Ellegaard Andersen and Rinat Kashaev in their
joint work A TQFT from quantum field theory [6]. We will recall the setup and state the main
results and conjectures regarding their work before continuing to their new formulation of
the theory which is presented in their joint work A new formulation of the Teichmiiller TQFT
[5].

7.1 Preliminaries

7.1.1 Oriented triangulated pseudo 3-manifolds

This subsection contains some of the preliminaries for defining the Andersen-Kashaev
TQFT. We start by defining oriented triangulated pseudo 3-manifolds and equip them with
some extra structure, which will be of great importance later on.

Let Y be a finite union of disjoint compact 3-simplices each having totally ordered ver-
tices, which induces an orientation on the tetrahedra, and let ¥ be a collection of affine ver-
tex order-preserving and orientation reversing affine homeomorphisms {1, ...,%,} such
that

1. for each v;, there are two distinct codimension-1 faces 7; and J; in Y for which the map
; : ; — 0; is an affine homeomorphism, and

2. {Ti,(si} N {Tj,5j} = fori ;éj

The quotient space X = Y/U, obtained from Y by identifying = € 7; with ¢;(z) € d; for
each 14, is called an oriented triangulated pseudo 3-manifold it is a specific CW-complex with
oriented edges. For ¢ € {0, 1,2, 3}, we will denote by A;(X) the set of cells with dimension
¢in X. For any ¢ > j we denote

AN(X) ={(a,b) | a € Ay(X),b € Aj(a)}
with a natural projection map
6" AJ(X) = A(X).
We also have the canonical partial boundary maps
0 Aj(X) = Aj1(X), 0<i<y.

In the case where S = [v,...,v;] is a j-dimensional simplex with ordered vertices, the
boundary map takes the form

(915 = [’U(),...,Uifl,UH,l,...,’UjL 1€ {0,7]}

53
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7.1.2 Shaped pseudo 3-manifolds

Let X be an oriented triangulated pseudo 3-manifold.

Definition 7.1. A shape structure on X is an assignment to each edge of each tetrahedron of
X a positive number called the dihedral angle

ax t AY(X) = Ry,

so that the sum of the three angles at the edges from each vertex of each tetrahedron is 7.
(For a generalized shape structure the map ax goes to R) An oriented triangulated pseudo
3-manifold with a shape structure will be called a shaped pseudo 3-manifold.

It is straightforward to see that opposite edges of any tetrahedron must have the same
dihedral angle. So each tetrahedron acquires three dihedral angles associated to three pairs
of opposite edges which sum up to 7. This is of course closely connected to the shape
variable from section Indeed, the usual shape variable for a tetraahedron [vg, v1, Ve, v3],
with dihedral angles «, 3, v associated to the edges [vo, v1], [vo, V2], [vo, V3], is

sinf3
—B e,

sin y

Definition 7.2. To each shape structure on X, we associate a Weight function
wx Al(X) — R+,

which to each edge e of X associates the sum of dihedral angles around it,

wx(e)= > ax(b).

be($3 1) (e)

Definition 7.3. An edge e of a shaped triangulated pseudo 3-manifold X will be called
balanced if it is internal and wx(e) = 27. An edge which is not balanced will be called
unbalanced. A shaped 3-manifold where all edges are balanced will be called fully balanced.

Remark 7.4. A shape structure whose weight function takes the value 27 on each edge of a
closed triangulated pseudo 3-manifold is the same as the angle structure introduced by Cas-
son, Rivin and Lackenby. To study the necessary and sufficient conditions for angle struc-
tures to exist on the interior M of a compact ideal (topological) triangulated 3-manifold
with non-empty boundary one should consult [34]. Feng and Tillmann uses normal sur-
face theory to state under which condition angle structures are possible. Cason and Rivin
observed that the existence of an angle structure implies that all boundary components of
the manifold in question are tori or Klein bottles and that the manifold is irreducible and
atoroidal.

Theorem 7.5 (Hodgson, Rubinstein, Segerman). is a cusped hyperbolic 3-manifold home-
omorphic to the interior of a compact 3-manifold M with torus or Klein bottle boundary
components. If

Hy(M;Zy) — Hy(M;0M; L)
is the zero map then M admits an ideal triangulation with a fully balanced shape structure.

For a proof see [23].
A corollary is that if M is a hyperbolic link complement in S, then M admits an ideal
triangulation with a fully balanced shape structure.
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7.1.3 7Z/3Z action on pairs of opposite edges of tetrahedra

For an oriented triangulated pseudo 3-manifold X we let A;)/ P denote the set of pairs of
opposite edges of all tetrahedra in the triangulation of X. Set theoretically this is just the
quotient of the set A}(X) with respect to the equivalence relation given by all pairs of
opposite edges of all tetrahedra. The quotient map is written as

P AX) = AFP(X).
We define a skew symmetric function ¢ : AY?(X) x AY?(X) — {0, +1} by

0 ife=¢€ orif eand ¢’ belong to different tetrahedra
+=4q1 ife isrightafter e in cyclic order

€e.e

—1 if ¢ is right before e in cyclic order

. . 3P / .
Remark 7.6. e gives us a symplectic structure on R% (%) and on RA:7 (X ), the latter is the
set of generalized shape structures.

7.1.4 Levelled shaped 3-manifolds

What we have defined so far is a shaped oriented triangulated pseudo 3-manifold. Let us
now also define what is called the level for our shaped 3-manifold.

Definition 7.7. A levelled shaped 3-manifold is a pair (X,lx) where X is a shaped pseudo
3-manifold X and a real number [ x € R called the level.

This definition extends the shape structure by a real parameter which will make the
TQFT to be defined well defined.
One can show that the TQFT will enjoy a certain gauge-invariance which is as follows.

Definition 7.8. Two levelled shaped pseudo 3-manifolds (X, ax,ix) and (Y, ay,ly) are
called gauge equivalent if there exists an isomorphism h : X — Y of the underlying cellular
structures and a function

g:A1(X) =R
such that
Al(aX) C gil(O), ay(h(a)) = ayx (CL) +7 Z €p(a),p(b)9 (¢3’1(b)) Va € Aé(X)
bEAL(X)

and

Iy =Ix+ Y, gle > (;_a;;(@)

e€A1(X) a€(¢®1) " (e)
Proposition 7.9. The weights on edges are gauge invariant in the sense that
wx = Wy © h’v

if X,Y are gauge equivalent.
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Proof. Let e be an edge in X. We want to show, that wx (e) = wy (h(e)). The left hand side
gives us

wx(e)= Y ax(@= Y (OéY(h(a)) -y Ep(a),p(b)9(¢3’1(b)))
a€(¢® 1)~ (e) ag(¢®1) =1 (e) beEAZ(X)
= ) ay(h(a) = (wy oh)(e),

ag(g>1) "1 (e)

because the sum 737y a1 (x) Ep(a) p(5) (¢ (b)) disappears: Either ¢! (b) is in A1(9X)
which makes g(¢%1(b)) = 0, or else the edge e is shared by different tetrahedra and ¢ = 0,
or (¢>1)~1(e) lies in the same tetrahedron but then p(a) = p(b) because of the gluing con-
ditions and € = 0. Thereby the left hand side is equal to the right hand side for every
e c Al(X) O

The gauge equivalence is called based gauge equivalence in the case where the isomor-
phism A : X — X is an isomorphism.

We observe that the (based) gauge equivalence relation on leveled shaped pseudo 3-
manifolds induces a (based) gauge equivalence relation on shaped pseudo 3-manifolds
under the map which forgets the level. Let the set of gauge equivalence classes of based
levelled shape structures on X be denoted LS, (X) and let S, (X) denote the set of gauge
equivalence classes of based shape structures on X.

7.1.5 Categroid

The Andersen-Kashaev TQFT will be well defined on a certain sub-categroid of the cate-
gory of levelled shaped pseudo 3-manifolds. A categroid C consists of a family of objects
Obj(C) and for any pair of objects A, B from Obj(C) a set of morphisms Mor¢(A, B) such
that the following two properties are satisfied:

1. For any three objects A, B,C' € Obj(C) there is a subset
K 5.c C Morc(A, B) x More(B, C),
called the composable morphisms and a composition map
o: K§ po — Morc(A,C),
such that composition of morphisms is associative.
2. For any object A € Obj(C) we have an identity morphism id4 € Mor¢ (A, A) which is

composable with any morphism f € Mor¢(A, B) or g € Mor¢(B, A) and we have the
equations

idgaof=f and goidg=g.

Let B be the category where the objects are triangulated surfaces and composition is
gluing along the relevant parts of the boundary by edge orientation preserving and face
orientation reversing CW-homeomorphisms with the obvious composition of dihedral an-
gles and addition of levels. For X, Y € B the morphisms Mor(X, Y') are equivalence classes
of levelled shaped pseudo 3-manifolds with boundary identified with X LY. i.e.

[(X,Oéx,lx)] o [(Y,Ozy,ly)] = [(X Us Y,ax Uay,lx +ly)]
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Remark 7.10. There are of course different ways of splitting the boundary. Therefore a lev-
elled shaped pseudo 3-manifold can be interpreted as different morphisms in 3. The canon-
ical choice is the following: For a tetrahedron T in R? with ordered vertices [vg, v1, v2, v3]
we can define its sign by

sign(7T) = sign(det (vy — vg, v2 — v, v3 — Vg)).
Furthermore we define the sign on faces by
sign(9;T) = (—1)"sign(T), i€ {0,1,2,3}.

For a triangulated pseudo 3-manifold X, the sign of faces of the tetrahedra in the triangu-
lation of X induces a sign function on the faces of the boundary of X,

signy : Ag(0X) — {£1}.
This gives us a splitting of the boundary into two parts, one negative and one positive;
0X =0_X U0, X, Ay(0X)=sign *(£1).

We will think of the equivalence class of levelled shaped pseudo 3-manifolds X as the 5-
morphisms between the objects _ X and 04 X.

Before defining the source categroid we need the notion of an admissible pseudo 3-
manifold.

Definition 7.11. An oriented triangulated pseudo 3-manifold X is called admissible if

Hy(X — Ao(X),Z) = 0.

7.1.6 The source categroid

Definition 7.12. The categroid B, is the subcategroid of B whose morphisms consist of
equivalence classes of admissible levelled shaped pseudo 3-manifolds.

KETB,C = {(Xl,XQ) S MOI‘BHV(A,B) X MOI‘BG(B,C) | HQ(Xl o X2 — Ao(Xl OXQ),Z) = 0}

are the composable morphisms.

7.1.7 The target categroid

Recall that the space of complex tempered distributions S’ (R™) is the space of continuous
linear functionals on the complex Schwartz space S(R").

Definition 7.13. The categroid D has as objects finite sets and for two finite sets n,m the
set of morphisms from n to m is

Homp(n,m) = S'(R™™).

In [36] we examined under which circumstances tempered distributions could be com-
posed. We here omit proofs and refer the reader to [42] [36]. Let £(S(R™),S’(R™)) denote
the space of continuous linear maps from S(R") to §'(R™) and let ¢ € L(S(R"),S'(R™)),
f € S(R") and g € S(R™). Then the element ¢(f)(g) is a separately continuous bilinear
function on S(R") x S(R™). The Nuclear theorem [42, Theorem V.12], tells us that there
exists a unique tempered distribution ¢ such that

o(f)(g) = o(f ® g).
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By this formula we have established an isomorphism
T L(SR™), S (R™)) — S'(R™™).

Given elements 7} € S'(R"™™) and Ty € S'(R™), for positive integers n,m,l we
would like to be able to compose these tempered distributions. According to Hormander
we have pull-back maps induced by the projection:

W;ym . S/(Rmun) N S/(]Rnumul) and W:nJ :S/(le_ll) N S/(Rnl_lml_ll).
In order to make sense of a product of tempered distributions we first introduce the

wave front set of the pull-back. Let Zg~» denote the zero section of the cotangent bundle of
R™.

Definition 7.14. For a tempered distribution T' € S’(R"™), its wave front set is defined to be
the following subset of the cotangent bundle of R":

WFE(T) = {(z,&) e T*"(R"™) — Zgn | £ € X,(T)},
where
ST = () S(eT).
peC (R™)
Here

Cr(R™) ={¢ € C5° | ¢(x) # O},

i.e. smooth functions with compact support which do not vanish at z, and 3(S) are all
n € R™\{0} having no conic neighborhood V such that

1S <Cy(L+ €)™Y, NeZ,ceV.

In here a set I is conic if { € I' implies that a{ € I for all a>0. The following result
makes it easier to calculate the wave front set of some special tempered distributions.

Lemma 7.15. Suppose u is a bounded density on a smooth sub-manifold Y of R", then
u € §’'(R™) and

WF(u) = {(z,£) € T*(R") | ¢ € supp(u),€ # 0and £(T,Y) = 0}
Definition 7.16. Let T"and S be tempered distributions on R™. We define
WE(T) ® WE(S) = {(z, 61 + &) € T"(R™) [ (2, &) € WE(T), (z,&2) € WF(S)}.

Theorem 7.17. Let S, T be tempered distributions on R™ and let Zg~ denote the zero section
of the cotangent bundle of R". If

WE(S) & WF(T) N Zgn =0 (7.1)
then the product of the tempered distributions exists and ST € S’(R™).
This enables us to say when two morphisms of D can be composed.
Definition 7.18. Denote by S(R™),, the set of all ¢ € C*°(R™) such that

sup |2°0%¢(x)| < oo
zERn

for all multi-indices o and 3 such that if a; = 0 then 8; = 0 for n — m < ¢ < n. Define
S'(R™),y, to be the continuous dual of S(R™),,, with respect to these semi-norms.
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Observe that if 7 : R” — R"~™ is the projection onto the first n — m coordinates, then
™ (S(R*™)) C S(R"),, i.e., we have a well-defined push forward map

et S'(R™),, — S'(R™ — m).
Theorem 7.17]leads to the following:
Definition 7.19. For A € Homp(n,m) and B € Homp(m, !) satisfying
(WE (7,1, (A4)) © WE (77, 1(B))) N Znimon = 0,
and such that 7, ,,(A)7, ;(B) extends continuously to S (RnEmUL)  we define
AB = (7,0)+(3 1 (A)50,1(B)) € Homp (n, ).
This does indeed define a categroid if we let the composable morphisms be the set

KP .. =1{(4,B) € S'(R"™™)xS'(R™")|The conditions from the definition above are satisfied}

7.2 The TQFT functor

Definition 7.20. Forany A € £(S(R"), S'(R™)) we define the unique adjoint A* € L(S(R™), S’ (R™))
by

forall f € S(R™) and all g € S(R™).
Definition 7.21. A functor F : B, — D is said to be a *-functor if
F(X)=F(X)*
where X is again X with opposite orientation, and F(X)x is the dual map of F(X).

Andersen and Kashaev have proven the following theorem which is the main theorem
of [6]. Here /i := (b + bfl)_2, and @y, is Faddeev’s quantum dilogarithm, see Section

Theorem 7.22 (Andersen-Kashaev). For any i € R there is a unique *-functor F}, : B, —
D such that
F(A) = Az (A) VA € Obj(Ba),

and for any admissible levelled shaped pseudo 3-manifold (X,lx),
Fu(X, Ix) = Zn(X)e™ 3 € §'(R22(0X)),
where Z;,(X) for a tetrahedron T" with positive sign, is given by

exp (27Ti(x3 —x2) (o + 555 ) + 772'%)

Py (w3 — 22) + 1552)

Zh(T)(x) = (5(370 + x5 — 1‘1)

)

where §(t) is Dirac’s delta-function,

2h+1 1
+ o, = ;aT(&aOT), 1= 1, 2, 3,

1
¢T:Oé0042+§(040*0¢2)* 6

and
x; = x(0;(T)), x:A2(0T)— R.
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For a closed oriented triangulated pseudo 3-manifold with a shape structure o, associate
the function

Zn(X,a) = / I 272 0)ds. (7.2)
RA2(X) Tens(X)

If the 3-manifold X is admissible the quantity |Z; (X, «)| is well defined in the sense that
the integral is absolutely convergent. It depends only on the gauge equivalence class of «
and it is invariant under ”3 — 2” Pachner moves.

Andersen and Kashaev remarks [6, Rem. 1]

Remark 7.23. We emphasize that for an admissible pseudo 3-manifold X, our TQFT functor
provides us with the following well defined function

Fj : LS. (X) — S'(R9X). (7.3)

7.2.1 Invariants of knots in 3-manifolds

By considering one-vertex ideal triangulations of complements of hyperbolic knots in com-
pact oriented closed 3-manifolds, we obtain knot invariants. In this case, for such an X, the
Andersen-Kashaev invariant is a complex valued function on the affine R-bundle LS, (X)
over S,(X), which forms an open convex (if non-empty) subset of the affine space S,(X),
which is modelled on the real cohomology of the boundary of a tubular neighborhood of
the knot.

Another possibility is to consider a one-vertex Hamiltonian triangulation (H-triangu-
lation) of pairs (a closed 3-manifold M, a knot K in M), i.e., a one-vertex triangulation of
M, where the knot is represented by one edge, with degenerate shape structures, where
the weight on the knot approaches zero and where simultaneously the weights on all other
edges approach the balanced value 27. This limit by itself is divergent as a simple pole
(after analytic continuation to complex angles) in the weight of the knot, but the residue at
this pole is a knot invariant which is a direct analogue of Kashaev’s invariants [27] which
were at the origin of the hyperbolic volume conjecture.

Jorgen Ellegaard Andersen and Rinat Kashaev have set forth the following conjecture:

Conjecture 7.24. Let M be a closed oriented 3-manifold. For any hyperbolic knot K C M,
there exists a smooth function Jys x (A, 2) on Rs¢ x R which has the following properties.

(1) For any fully balanced shaped ideal triangulation X of the complement of K in M,
there exists a gauge invariant real linear combination of dihedral angles )\, a (gauge
non-invariant) real quadratic polynomial of dihedral angles ¢ such that

A

Zn(X) :ei%/JM,K(mx)e‘ﬁdx.
R

(2) For any one vertex shaped H-triangulation Y of the pair (M, K) there exists a real
quadratic polynomial of dihedral angles ¢ such that
T —wy (K)
2mivh

where 7 : A1(Y) — R takes the value 0 on the knot K and the value 27 on all other
edges.

lim ‘I)b < ) Zh(Y) = ei%_iﬂ/uJ]\LK(h, 0),

(3) The hyperbolic volume of the complement of K in M is recovered as the limit

iliin% 2nhlog|Ja k (B, 0)] = — Vol(M\K).
—
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Theorem 7.25 (Andersen-Kashaev). The above conjecture is true for the hyperbolic knots
41 and 52.

For a proof see [6]

Theorem 7.26. (1) and (2) in conjecture is satisfied for the two hyperbolic knots 6; and
6o.

For a proof see the calculations in Chapter (9]

Remark 7.27. The volume conjecture has until now only been approached numerically by
use of the computer software mathematica. A rigorous proof is still in process.

7.3 The tetrahedral operator

In Chapter | we looked at Kashaev’s quantization of Teichmiiller space of punctured sur-
faces with the Weil-Petersson symplectic structure. Kashaev showed, starting from Pen-
ner’s parameterization of the (decorated) Teichmiiller space [38], that the Teichmiiller space
of marked conformal types of hyperbolic metrics on a punctured surface with the Weil-
Petersson symplectic form and the action of the mapping class group can be described as
the Hamiltonian reduction of a finite dimensional symplectic manifold which we know
how to quantize. Moreover the action of the mapping class group is realized through the
quantum dilogarithm introduced by Faddeev (#.23).

Upon canonical quantization of the cotangent bundle 7*R"™ with the standard symplec-
tic structure in the position representation, the Hilbert space we get is L?(R™). We consider
instead the pre-Hilbert space S(R™) and its dual space S’(R"), the space of tempered dis-
tributions. The position coordinates ¢; and momentum coordinates p; on the cotangent
bundle become operators q, and p, respectively acting on S(R") via the formulae

_ L9
B 271 8%

q;(f)(x) = zif(x) and p,;(f)(z) (Nx), vVeeR" VfeSR").

These operators extend continuously to operators on the space of tempered distributions
S'(R™), still satisfying the Heisenberg commutator relations,

[pip;] = laiq;] =0, [psq,] = (2mi) 71655
Fix a b € C such that Re(b) # 0. From the spectral theorem we can define operators

:€27rbqi’ 2627"]3?7‘,.

u; Vi

These operators are contained in £(S4(R"), Sq_grer) (R")), where S, (R") = e*?S(R") for
any a € R, and where p is a smooth function which coincides with the function |z| on the
complement of compact subset of R”. Commutator relations between these operators are

[wi, ;] = [vi,v;] =0, w;v;=e" b* b1 AZRIT
In [28]], Kashaev introduces two operations for w; = (u;, v;), ¢ = 1,2 namely
w1 - Wo i= (U5 Ug,uy vo + V1),
w1 % Wo = (viug(ug vo +vi) " va(ug v +vi)7h).

These operations correspond exactly to the change of coordinates in the Kashaev coordi-
nates on Teichmiiller space. See (4.11) and (4.12).
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Proposition 7.28. [28] Let 1) be some solution to the functional equation
Y(z+ib/2) = (2 —ib /2)(1 + 2™ P?) (7.4)

Then, the operator T = Tig := €*™P192¢)(qy + py — qy) = ¥(q; — Py + Po)e?™P1 92 defines an
element of £(S(R?*), S(R*)), which satisfies the equations

wy -we T =Twy, wypsxweT =Tws. (7.5)

Remark 7.29. The operator T furthermore satisfies the following system of equations

Taq; = (q; +q2)T (7.6)

T(p; +p2) =po T @.7)
T(p; +dz) = (p1 +a2)T @8)
Te2mbP1 — (27bas +P2) | (27bPy)T (7.9)

A proof of proposition is given in [6]].
Remark 7.30. We will prove later in this chapter (11.4) that the inverse of Faddeev’s quan-
tum dilogarithm satisfies the functional equation (7.4), i.e., a particular solution is

P(2) = 1/®p(2).

An important fact about the operator T with ¢ given by 1/®(z) is that it satisfies the
pentagon identity
T12T13T23 = TasTh2

which is a consequence of the five-term identity (11.14).

7.3.1 Charged tetrahedral operators

Let a,c € R be positive real numbers such that b := 1 — a — c is also positive. Then we

2
define charged T-operators by the formulae:

T(a, C) _ effricﬁ(4(a7c)+1)/6647Ticb(cq2 7aq1)T6747ricb(ap2 +cq2)7

T(a, C) — ewicﬁ(4(a—c)+1)/6e—4‘n’icb(a Pa —cqg)Te47ricb(c qs ta ql)7

where ¢, = i(b+b~')/2 is purely imaginary. These charged operators T(a, c), T(a, c) take
S(R?) to S(R?).
By substituting in the operator T we have the formula

T(a, C) = ™' P q2’(/)a,c(C11 — Qs+ p2)7

where 4
Vo) = (o — 2ep(a + ) )e~mivela=en(ate)e” " b (a1 1)/6

In Dirac’s bra-ket notation we have for T(a,c) € S'(R?) :

(0,22 | T(a,c) | z1,23) = 8(x0 + 22 — 21)V), (23 — T) e w0 (T3772),

where

&;,C(I) = 67Wix27/~’a,0(x)a Jja,C(I) = /Rwa,f:(y)eizmmydy (7.10)

Remark 7.31. The condition that the positive real numbers a, b, c must sum to % is to ensure
that the Fourier integral above is absolutely convergent.
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7.3.1.1 Rules for the dilogarithm function

The Fourier transformation formula for the quantum dilogarithm (Appendix A in [6]) leads
to the identity

Ul () = e Fapy(2).

With respect to complex cunjugation, the following formula holds:

24y o (—1).

- i

Ya,c(x) =€ 6
From these it follows that
Va,e(x) = eTFPey(z) = e ™ gy o(—a).

We are now in a position to calculate and obtain a formula for T'(a, c):

‘ 3

Nl

eﬂ'l@zd}c,a(_fﬂ) — e

(z,y[T(a,c)|u,v) = (u,v|T(a, )|z, y)
d(u+v—x) ~(/L,C(y — U)ef%i“(y*”)

= (5(1}, + v — x)’(/;b,c(v — y)e—%em’(v—y)26—2m‘u(y—v).

7.3.1.2 Charged pentagon equation

Proposition 7.32. The charged tetrahedron operators satisfy a pentagon equation given by
.2
T12(as, ca)Tis(az, c2)Tas(ao, co) = e™o7/3Toz(ay, c1)T1a(as, ¢s) (7.11)
where P, =2(co+as +c¢4) — 2 and a;,¢; € R, 0<i<4, suchthat
a1 = ap + az, az = az + a4, €1 = Cg + C4, €3 = A + ¢4, C2 = €1 + C3. (7.12)

Proof. Write )
T(a,c) = f(a —¢)T(a,c)
where

T(a, C) — 6747Ticb(a q, 7cq2)T€747ricb(ap2 +cap) g(aq1 7cq2)T€(a Pa +cq2)’

and
flz) = e—ﬂ'icg(4x+l)/6.

Under condition (7.12) we have

flas — ca)f(ag — ca) f(ao — co) _ o~ icd (4(as—ea) +4(az—es)+4(ao—co)+3—4(ar—e1)—4(as —c5)~2)/6
flar —e1)f(az — c3)

_ e—ﬂ'icﬁ(4(a3—a3+02—02—a2—co—04)+1)/6

_ eﬂicﬁ(Z(c0+a2+C4)7%)/3

_ em‘cg Pe/3
We see that showing the is equivalent to showing that

Ty (a4, C4)T13(a2, 62)T23(a0, o) = TQS(ah Cl)T12(a37 c3). (7.13)
Calculating the right hand side yields

T23(a1, C1)T12(a3, c3) = (£%1 92 7€ AT yz£ Ps +e ) (93 N T3 A €93 P2 +es 42

_ €a3 q1§a1 dp —¢1 q3T235783 dz T12€a1 P31 Q3§a3 Py +¢3dy

= 93 % +(a1—c3) az —(c1+e3) A3y T'19£% P2 +csds +a1py+eray
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In the first equality we used the trivial commutativity and in the second we used the fact
that Tog¢ ™92 = ¢3(42+93)Ty3 coming from (7.6). Likewise one can compute the left
hand side of the equation. Using the rules (7.6)-(7.9) and the Heisenberg commutativity
relations yields that

T12(aa, ca) T13(az, c2)Ta3(ao, co)
=% +ay qlgaz(ql +as)—c2qs T12T13T23€Cb(a202+a404)+(12(P2 + p3)§a4(p2 + qg)503 dz

Note that (7.12) gives us that the factors on the left hand side of the equations are equal i.e.
geads +asqy +az(ay +dz)—cz2az §(a4+a2) q; +(az—ca)dy —c2q3 _ ges +(a1—ez) ap —(c1tez)ag

From the terms on the right hand side of the equations we get

Scb(a202+a404)+az(Pz +p3)+aa(ps +dz)+cs dp +aops +coas — £a3P2 +cs gy +a1 pg +ec1 Gs
equivalent to the equation

agCo + aygcq + a4(a0 — 63) = ag(a4 +co + 03)7
clearly satisfied under the relation (7.12). O
Define now two tempered distributions 4, B € S’(R"™) by the formulae
. 2 1 . 2
Alz,y) = (z,y]4) = 6(x +y)e™ ¥12) and  B(z,y) = (z,y|B) = ™7,

Lemma 7.33. The following three identities are satisfied.

/ (05 [ Az, s | T(are) |, t)(t,y | Addsdt = {x,y | T(a,b) w0}, (7.14)

R2

/ (s A)(s,x | T(a,e) | 0,8)(t,y | B)dsdt = (x,y | T(b.c) |u,0),  (7.15)
R2

/ (s | BY(s,y | T(ayc) | t,0)(t,x | B)dsdt = (z,y | T(a,b) [u,0).  (7.16)
RQ

Proof. Let us just check (7.14). In order for the product on the left hand side to make sense
one has to check the wave front set condition. One does this using Lemma The rest is
straight forward computation:

/]Rz (v,8 | Az, s | T(a,c) | u,t){t,y | A)dsdt

= [ S(v+s)d(t+ y)e”i(92_1’2)(x, s | T(a,c) | u,t)dsdt

R2
= (&, —0|T(a, ¢)|u, —y)e™ @ ="
=6z —v—u (—y+ v)eQmw(_yﬂ)em(yz_”z)

m‘i‘ )

(v — )T ut=y)

=d6ut+v—z

)
=d6(ut+v—x)e 1
)
= <1:,y|T(a, C)|

/
e 2thep
e*%wc b(v _ y)eifr(vfy)r‘)ef%riu(yfv)
u, v).

O
Remark 7.34. The partition function for the Andersen-Kashaev TQFT defined in this chap-
ter also satisfies gauge transformation properties. Further, convergence properties under

gluing of tetrahedra is proven by Andersen and Kashaev. We will not here elaborate on
these subjects but instead refer the reader to [6].



Chapter 8

New formulation of the
Andersen-Kashaev TQFT

In this chapter we will describe the new version of the Andersen-Kashaev TQFT. In this
description the Weil-Gel’fand—Zak transform of Faddeev’s quantum dilogarithm plays an
important role. Using this transform Andersen and Kashaev propose a state-integral model
for the Andersen-Kashaev TQFT.

The setup for this model is analogous to the setup in the original version, so we refer to
Chapter[/]for the notation.

For any map

x: A (X) = R,

define a Boltzmann weight
B(T,z) = ga, a5 (To2 + T13 — Toz — T12, To2 + T13 — To1 — T23)
if T is positively oriented and the complex conjugate if it carries the opposite orientation.

The variable z;; := z(v;v;) and a; = ar(vov;).
The map g, . € C°°(T?, L) is defined by the map:

Ga,c(s,t) = Z 151/1,6(8 + m)emt(s-‘er)a (8.1)
meZ

where the map &;,C(s) is defined in section

Theorem 8.1 (Andersen — Kashaev). Let X be a closed levelled, shaped, triangulated and
oriented pseudo 3-manifold. The quantity

Z0W(X) 1= e / I BTl | de (8.2)
.49 \ 1o nL(x)
admits an analytic continuation to a meromorphic function of the complex shapes which is
invariant under all shaped "2 — 3” and ”3 — 2” Pachner moves (along balanced edges).

Remark 8.2. The state integral in extends to arbitrary (non-closed) levelled, shaped,
triangulated and oriented pseudo 3-manifolds. In the case, where the pseudo-manifold is
not closed one only has to integrate over state variables living on internal edges. The result
is a meromorphic section of a line bundle over a complex torus (C*)21(X)

Conjecture 8.3. The model proposed in this section is equivalent to the Andersen-Kashaev
TQEFT of [6].
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The proof of Theorem[8.1is given in [5]. We will not go through the proof, but only state
the crucial part of the theorem where we see that the Boltzmann weights satisfies a certain
integral identity which is called the pentagon identity. This identity is a direct analogue of
the charged pentagon equation [7.32}

Proposition 8.4. For any (z,y,z, w) € R? the following integral identity is satisfied:

/[ ] Gag.ca(Z =V, T+ W —0)Gay,co (VY + W) Gag,co (T — v,y + 2 — v)dv (8.3)
0,1
= G%Pegal,cl (:Cay>ga3763 (va)a (84)
where P, := 2(co + az + ¢4) — %7 and the set of positive reals {a;,¢; | i =0,1,...,4} is such
that )
bZ‘Z:§—CLZ‘—Ci>O, i=0,1,...,4,
and

a1 =ap+az, az=az+a4, C1=C +ayg, C3=ap+cCc4, C2=2C1+C3.

Proposition[8.4]is proven in the paper [5]. It is proved there in great detail, and therefore
we omit the proof in this section.

8.1 Weil-Gel’fand-Zak transformation

To a function f € S(R) the WGZ transformation associates a smooth section of the line
bundle L over the two torus corresponding to the quasi-periodicity properties:
gl +1y) = e "g(z,y),
g(z,y+1) =e™g(z,y).
We define the Weil-Gel'fand-Zak (WGZ) transformation by the formula
(Wh)(w,y) = €™ Y fla+m)e .
meZ

The inverse of the WGZ transformation is given by the formula

1
(W g)(x) :/O g(x,y)e ™" dy. (8.5)

In the language above, the Boltzmann weights are given by the section g, . of the line
bundle L over the 2-torus with the periodicity properties mentioned above, or the complex
conjugate of this section. There are several symmetry properties for the WGZ transforma-
tion of Faddeev’s dilogarithm function which are proven in [5]. Together with an analytic
continuation, TQFT-rules and tetrahedral symmetries Andersen and Kashaev have proven

Theorem

8.2 Results of calculations via the new formulation

The results we here impart will be proven in the Chapter [0} See also this chapter for nota-
tion.

Theorem 8.5. We have proven that the new formulation of the theory correspond to the
old formulation for the knots 4; and 55. The partition function for the knot complement
X = (53,4,) given an ideal triangulation is given by

Z;i‘ew(X> =Vey by Vb_jc_ Cinve_% W(X41 )(U, ’U).
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For an H-triangulation Y of the knot complement (52, 41) the renormalised partition func-
tion takes the form

fus
e 12

Zp(Y) = X4, (0)
VCO ,0
Where the function x4, (z) = [, ‘bg(bl Y) 2miz(2y=2) gy and u, v are linear combinations

of dihedral angles, u = 20b(b+ —b_)andv =2b_ +c_ =2b; +cy.
The partition function for the knot complement V' = (S3,5,) given an ideal triangula-
tion is given by

Zirilew(v) = Vei,b1Vby,a3Ves,bs Wixs, (u, U)'
For an H-triangulation U of the knot complement (53, 55) the renormalised partition func-
tion takes the form
e7ri/4

Zy(U) = X5, (0)-

I/C(),O

where x5, (u) is given by the formula

v mi(w—u)(w+u)

m 6
e (u) = =% dw.
X5z (1) /HHO Py, (w +m + )Py (w — m — u) Py (w)

where u = 2¢p (a1 — a3) and v = 2¢p (a1 — ¢1 + by — ag).

The proof of these facts will follow from the computations in Chapter 9}

8.3 TQFT from the new formulation

The state integral in Theoremextends to arbitrary non-closed levelled, shaped, oriented,
triangulated pseudo 3-manifolds. In this case we only integrate over the state variables
living on internal edges as remarked in [5, Rem. 1].

It is evident from the axioms in Section that in order to have a TQFT (V, Z) over the
field C we need to specify V. To every compact surface ¥ we assign the vector space V' (X)
and to every cobordism (M, X, %) we get a linear map

Z(M) = Z(M,%,%) : V() = V().

In our case the pseudo 3-manifold comes with a triangulation. That means that the bound-
ary surfaces have triangulations. The edges of these triangulations are equipped with state
variables. Since the Boltzmann weights above are specified by sections g, . of a line bundle
L over a 2-torus the vector space we associate to a triangulated surface ¥ is C*°(T", L),
where n here denotes the number of edges in the triangulation of ¥.

Hence, if (M, X, Y) is a cobordism where |A;(X)| = n and |A1(X')| = m we have

Z(M) : C>(T", L) — C=(T™, L).

Furthermore we deal with shaped triangulations. This puts restrictions on which cobor-
disms we can compose. Actually we have a shape structure on the cobordism manifold
(M, %, %) which to each edge induces a weight.

The constraint on dihedral angles on boundary edges is that they must sum to 27 when
we compose cobordisms. We will assume that generators of mapping class elements can
be constructed such that all dihedral angles are positive. We will see in an application in
Chapter[I0|that this is indeed the case for the generators of I'; ;.
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Remark 8.6. Although we assume above that all dihedral angles are positive there is no re-
striction on angles in the new formulation of the Andersen—Kashaev TQFT. The tetrahedral
weights in the new formulation admits analytic continuation to meromorphic sections of
line bundles over complex tori. This means that the partition function can be analytically
continued to arbitrary complex shapes so that the theory is well-defined without imposing
positivity conditions on shapes. A consequence of this is that the "2 —3" and "3 — 2" Pachner
moves are valid without restrictions.

8.4 Mapping class group representations from TQFTs

The axioms for a TQFT given in Section [0.2| hint at how to construct representations of
mapping class groups of closed surfaces from a (2 + 1)-dimensional TQFT.

Let ¥ be a closed oriented surface, and let f : ¥ — X be an orientation-preserving
diffeomorphism f : ¥ — X. Now, let ¢ € I'(X) denote the mapping class of f. Put
p(@) = fp: V(E) = V(X), and let

1 1
My;=% = Yx|z,1
r=exog]urex 3]
be the mapping cylinder of f obtained by gluing together the two copies of ¥ x {1} using

f

Proposition 8.7. The map p : I'(X) — End(V (X)) is a well-defined representation of I'(X).
Furthermore, if ¢ is the mapping class of f as above, then p(¢) = Z(Mjy).

Proof. Let f; : ¥ — X be an isotopy between orientation-preserving diffeomorphisms fj
and f;. The map X x I — X x I given by

(,t) = (fuf (@), 1)

extends the map fif; ' Uid : ¥ U -% — ¥ U %, and it follows from the axioms that
(fifoh)s =idand (fo)s = (f1)s- The last statement follows since f Uid : SU—% — X1 -
extends to an orientation preserving diffeomorphism ¥ x I — M;. It follows that

Z(My) = f3 = p(¢).
O

The axioms for a TQFT also hint that for a 3-manifold M with boundary OM = ¥, the
action of the mapping class [f] on a vector Z(M) € V(X) is given by

p(0)(Z(M)) = Z(M Us; My).

We will get back to specific mapping class group representations in Chapter[10}



Chapter 9

Calculations of specific knot complements

In the following examples we encode as in [6] an oriented triangulated pseudo 3-manifold
X into a diagram where a tetrahedron is represented by an element

L

where vertical segments, ordered from left to right, correspond to the faces 9T, 01T, 0T
and 05T respectively. When we glue tetrahedron along faces, we illustrate this by joining
corresponding segments.

In the calculations we will denote:

Ve 1= e~ TR (@@=,

9.1 The complement of the figure-8-knot

Let X be represented by the usual diagram

XX

Choosing an orientation, the diagram consists of one positive tetrahedron 7y and one neg-
ative T_. 0X = () and combinatorially we have Ao (X) = {x}, A1(X) = {eo, e1}. The gluing
of the tetrahedra is vertex order preserving which means that edges are glued together in
the following manner.

et ot ot — o — — .
€0 = Tg1 = L3z = Loz = Lg2 = 12 = X33 =+ L,
O N N NN
€1 = Tgg = T3 = L2 = Loy = Lo3 = Loz = Y-

The topological space X\ {*} is homeomorphic to the complement of the figure-eight knot.
The set A}(X) consists of elements (T, e;x) for 0 < j < k < 3. We fix a shape structure

ax : AY(X) = Ry
by the formulae
ax(Ty,e01) =2max, ax(Ti,ep2)=2mby, ax(Ty,ep3)=2mcy,
where a4 + b4 + ¢4 = % This result in the following weight functions

wx(eg) =2ay +cy +2b_ +c_, wx(er) =2by +cp +2a_ +c_.
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In the completely balanced case these equations correspond to
a+—b+:a_—b_.
The Boltzmann weights is given by the functions
B (T+,£B‘A1(T+)) = Yay,ct (y -z, Q(y - ZL’)),

B (T—7x‘A1(T7)> = ga7,07 (aj - y,2($ - y))

We calculate the partition function for the Andersen-Kashaev TQFT using the new formu-
lation.

ze = [
[0,1]?

Vioyer W=+ m)_ o (@ =y + )T dady

A+45C+
m,nez
= / Z ’(/;t/hr,mr (y + m) ~</17,c, (_y + n>€47riy(m+n)dy
0,1] ez

/[ ] 1;‘/1+7C+ (y) ~é,,c, (—y+m+ n)e4m(y—m)(m+n)dy
m,ne”L m,m+1

> / Do o o (—y +p)e ™ Py

PEZ

Z/wwlu wb oo (y p) mi(y—p)® 47szpdy

PEL

=B S [ 0y = 2l 006l —p 2o+ e ))er e
PpEL
~ e—47mcbc+(y—cb(c++b+))e—47ricbb_(y—p—cb(b_—i-c_))

« 677”‘(4(6+7b+)+1)/667ﬂ—i(4(b7707)+1)/6dy.

WesetY = y — 2¢,(cy + by). Assuming that we are in the completely balanced case we
have

—b, —07+C++b+ = —b++b,.
Furthermore we have y? = Y2+ 4c¢?(cy + b1)? +4cpY (e + by ). Implementing this we get
the following.

ZneW(X) =Ve, b Vb_,c_ e~ Z/’(/} Y p— QCb(bJr—b ))’(/)(Y)

PEZL

% e‘n’i(Y2+4ci(c++b+) +4ch(c++b+))67rip2
w 2mi(Y +2ep(c4+b4))p

% e—47ricbc+(Y+cb(c++bm))e—47ricbb, (Y —p—cp(b_+c— )+2cb(c++b+))dy

=v, v e Z/ L L
et Ay B (Y —p = 26(by — b2)) B(Y)

2 ) . .
% e'n'zY eTiP 6747rzch(fc+fb++c++b,)627rsz

w e~ 4micop(=(c++by)=b-)

o edmich (e 4bi)® =i (e tbi)=b— (b—+e——2(ct+b1)) gy
Now set u = 2¢, (b4 —b_)and v = 2b_ + ¢_ = 2by + ¢4, and use the formula

Dy, (2)P(—2) = Ci:i)em'ZQ .
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along with the calculation:

bo+by+cy =b_+byr —2bp +2b_ +c_=—(by —b_)+ (2b_ +c_).

dew(X) Vey b Vo_ e Ginve 0 / (I)b p + v >6 mi(Y 2 +u?+p? —2Y u—2Y p+2up)
4,04 Vb, § :
PEZ

2.2 )
% eﬂ'lY e eQﬂ'zYue27rszdY

X 6727mpue27rzpv

« eAmich ((c4Hbi)® —cy (ctbi) —b— (b—Fe—2(cy+by))

Using the balance condition and formulas for u and v we get the equality

—dmicp{(cs +by)? +b(=bo —co +2cq +2b4) +eicy +b4)} =
—Amict{(—(by — b)) —cyby d b 4+bocy —bc )} =
—2micp{—(cq + 2b_)u} + miu® =

—2micp{—(2b_ + c_)u+2(by — b_))u} + wiu? = wi(uv — u?).

We get the following expression for the partition function:

Dy, ( — N
Znew(X) =Vey by Vb_ e Cinve 6 Z / b p + u )e_mu2

PEZL
. . . 2
% e47mYue47rszef47rzpu 2mwipv ‘n'z(uvfu )dY
Py ( p + Pp(ptu-Y)
=Vey by Vb_ e Cin'ue E

PEZL

% 47mYu 47rszef47rzpu 27rzpv TIUY 727rzu dY

(I)b p+u— . o ) N
= Ve by Vb_jc Cinve~ Z ) 627n(u+p)(2Y u p)dy . 2TipY gTiuy
pel (I)b

Using the Weil-Gel'fand-Zak transform we see that the partition function has the form:

Znew(X) =V by Vb_jc_ Cinve_%W(XALI)(U, U)

Where the function x4, () = [;_,, @;}bw(y v) g2miz(2y—2) gy The function x4, (z) is exactly the

function Jgs 4, from [6} Thm 5]. It should be noted that this result is connected to Hikami’s
invariant. Andersen and Kashaev observes in [6] that the expression

1 _u 1
27 b X4 b2/’

where x4, (7, \) = x4, (z)e*™? is equal to the formal derived expression in [21].
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9.2 One vertex H-triangulation of the figure-8-knot

Let X be represented by the diagram

=

where the figure-eight knot is represented by the edge of the central tetrahedron connecting
the maximal and next to maximal vertices. Choosing an orientation, the diagram consists
of two positive tetrahedra 7', T5 and one negative 7T5. 9X = () and combinatorially we have
Ao(X) = {x}, A1(X) = {z,y, z,2'}. The gluing of the tetrahedra is vertex order preserving
which means that edges are glued together in the following manner.
1 1 2 3 3
T =Tp1 = To3 = To2 = To2 = To3>
1 1 2 2 2 2
Y= Tgy = Ty = Tig = Tgy = Tog = Thg = Tas,
y =3 =1ty = aiy = 2y = iy,

=3,

This result in the following equations for the dihedral angles when we balance all edges
but one edge.
bl+(l3:b2, a; = as + as.

In the limit where we let a3 — 0 we get the equations
b1 = bg, a; = as.
The Boltzmann weights is given by the functions
B <T17'r‘A1(T1)) = gal,cl (y - $7 2y — T — Z)?
B <T2>x\A1<T2)) = Yas,co (I’ - Y, T+ z— 2y)7

B (T?”x\Al(Ts)) = Yaz,eca (va +z—2' — y)-

neW / Z ¢“1701 e + m)eﬂ-i(QyiziZ)(’yfxﬁ»Qm)
0,1]4

m,n,l€Z
,LZ}/ (l’ —y+ n)e—wi(;c+z—2y)(x—y+2n)
az,c2

O (D)2 @t T =0l g dydzda

as,cs3

. . 1 _omia’
Integration over 2’ removes one of the sums since [, e~ 7" ldx’ = §(1). Hence

Z8V(X) =l o ( / Z Ul o, (y — @ +m)em Bymrm 2 ymatam)
[0,1]3

m,n€”z

Vg oo (T =y + m)e T2V ddyd

o>/m S oy — 2+ M), @ — g+ 1)

I m,n€”Z

e271'2'(2y7:v) (m+n) 6727riz(m+n) dZEdde

Now integration over z gives fol e2mz(m+n) dz = §(n 4+ m). So the partition function takes
the form
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207 (X) =, .. (0) / B A A L
0,1]2

mEZ

We make the shift y — y + x to get the expression

78 (X) = J, .. (0) /[ Y vl )Tl (g = m) dady

2
? mEeZ

72}213,03(0) /[;)1 Z 1’[}01,01 y+m)mdy

mEZ

as, 03 / wahcl ag,cz( y) dy
= 67%1#:13703 <0) /]R wchbl (y)wbz,cz (y)eﬂiyz-

WesetY =y — 2cp(c1 +b1) =y — cp(1 — 2a1). Assuming that we are in the case where all
but one edge is balanced we have a; = as

v =YY%+ (1 —2a1)* + 26, Y (1 — 2a1).

Implementing this we get the following.

ZneW(X) _ 67%7,; 63 /w o™il (Y242 (1—2a1)?4+2¢, Y (1—2a1))
e—dmicher (Ytep(1/2— al)) b
1,b1
6747r7,cbb2(Y+cb(1/2 al))yb27(}2dy
_mi ~ 1 Y2 i
= e 6 VC17b1Vb27c2’l/);37C3(0) /ROZ-(I)(Weﬂz dy€ [

This result corresponds exactly to the partition function in the original formulation, see [6)
Chap. 11]. Le. in the limit where a3 — 0 we get the renormalised partition function

—i/12
Z0V(X) = hm Dy, (2chas — ep) Zp(X) = <

e Wxéll (0).
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9.3 The complement of the knot 5,

Let X be represented as the diagram

ErZaN

Choosing an orientation the diagram consists of three positive tetrahedra. We denote
T1,T5,T5 the left, the right an top tetrahedra respectively. The combinatorial data in this

case are Ag(X) = {*}, A1(X) = {eo,e1,e2}, Ao(X) = {fo, 1, fo, f3, fa, [s} and Ag(X) =
{Tl,T27T3}.

The edges are glued in the following manner:
1 _ .1 _ .2 _ .2 _ 3 _ 3 _,
€0 = Tp2 = P12 = T3 = T3 = To1p = T3 = T

1 .1 _ .2 _ .2 _ .3 _ .3 _ 3 _.
€1 = Loz = Loz = Lo = Lo3 = Loz — L13 = L12 =Y

1 _ .1 _ .2 _ .2 _ 3 _.
€2 = gy = L13 = Lo = L12 = Lo =- 2.

We impose the condition that all edges are balanced which exactly corresponds to the two
equations

2a3 = a1 + ¢co, bz =c1 + bs.

The Bolzmann weights are given by the equations

B (Tl’xlAl(Tl)) = Yaq,c1 (Z YT — y)7
B (Tz’xlAl(T2)> = Yasz,c2 (.13 —zY— Z)a

B (T27x|A1(T2)) = Yas,cs (z =y, 2 +y—22).

We calculate the following function

Gas,es(z2 — Y,z +y — 22) dodydz.

Zp(X) :/[ . E 1/3;1701 (z—y+ j)effi(ﬂﬂ—y)(z—y-i-2j)12};2762 (x—2z+ k)eﬂi(y—Z)(w—Z-i-%)
0,1]3
’ 3.k, LEZL

X 7,/;:13(3 (z —y + D)emEHy=22)E=v+2D qodydz.

Shift x — = + 2z,

,(Z}/ (Z —y +j)e7ri(z+z—y)(z—y+2j)1;/ (l‘ + k)eﬂz’(y—z)(ac+2k)

ai,ci az,C2

ze = [

[0.1% j k ez
XA o0 (2 =y 4 Dm0 20=DC0R2) gy,
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Shift 2 v 2 +y

) = [ S Bl (e )G e
0,11 5 klez

X Py o (2 + D™ 22 ET2 dady

:/0 ’ Z 1/;:11,01(2+j)1/~}</12,c2(96+k)1/~)a3 (41

? jkIEL
% eﬂ'i(x+z)(z+2j)67ri(7z)(x+2k:)eﬂ'i(72w7z)(z+2l) d(Edde

ol D SECNCE AN AR

AP kiez

x 2T @G =2l=2)+2G=k=0) oy,

Integration over y contributes nothing. We now shift # — = — k and integrate over the
interval [k, —k + 1].

dew - / / a1 c1 (Z + J)waz 62( )w‘“ €3 (Z + l)
0,1] k,—k+1]

. k,J€L
« 6271'1((1:716)(]72lfz)+z(]7k7l) drdz

=S e [ e D e
0,1 J[=k,—k+1]

J.kl€Z
% e2mi@(i=21=2)+2(G~1) grd

=3 [ e e 0O [ @ e s
jlez’[0:1] R

—e Y o W o (24 )L, o (2 + D)2 / Ve o ()22 CH2=) 4y
J,LEZL ’

267% Z [0,1] d)clvbl (Z +])¢Ca,bs (Z + l)wcz) ba (Z + 20 — ]) 2miz(i - l)dz
0,1

Z;i‘eW(X) :e_% Z wcl,ln (Z + l + m)l/)(;s’ba (Z + 1)1/302’172 (Z + | — m)62ﬂ'izm dz
l,meZ [0,1]
—e~ T Z / ey by (2 + m)z/)%bg(z)qﬁcz’bz (z — m)ezm'zm da
l,m€EZ [1i+1]
_e_%i Z / wchbl z+ m)¢c3,b3( )¢b2,a2 (Z _ ) wi(z—m)? e2mizm g,
meZ

Z / wchbl o +m>wc3xb3( )'(/)bz,az (Z - ) TF’L(Z +m? ) dz.

meZ
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Z;’;GW(X) — e~ Z /w erm—cb(l 72&1)) —4micher {(z4+m)—cp(1/2—a1)}
mEZ
e—ﬂ'icb(4(cl—b1)+l)/6

w(z —m — Cb(l _ 282))6747ricbcl{(z+m)7cb(1/27c2)}

efm‘ci(4(c17b1)+l)/6

’(/)(Z _ Cb<1 _ 2@3))6—47ricb(:3{(z+m)—cb(1/2—a3)}e—ﬂic%(4((:3—b3)+1)/6
ewi2267rip2 dz.

Setw = z — ¢p(1 — 2a3)

2 ) = F Y [ vl mes 2o - )l - mo+ 26 (e — a)o(w)

meZ

Xe'frip miw? e47ricb(1/27a3) 647ricbw(1/27a3)

e—47ricbcl {w+p+cp(1—2a3)—cnL(1/2—a1)}

(&

6747ricbcl {w—p+cp(1—2a3)—cnL(1/2—c2)}

—4micyer{w+cep(1/2—a
€ ver »(1/ 3)}1/01,51”72,0«2”03,173 dw.

Simplify by setting u = 2¢p (a1 — a3). Using ¢ + b2 + ¢3 + ag — 1/2 = 0 we are left with
ZpW(X Z / P(w+m+ u)p(w —m — u)p(w)
20

meZ

. 2 .
eTiw” pmim 647T’ch(b2 c1)m

e—dmich{—b3—bscs+ci(bs+es)+ba(bstes)+(c1—b2)(ar1—as)} g,
Vey by Vbg,asVes,bs -
Let v = 2¢p(a; — ¢1 + b — a3), then Note that
4micy(by — c1)p = 4micy (a1 — €1 + by — as)p — 4micy(ag — a1) = 2mi(vp — up),
—b3 — bgcg 4 c1 (b3 + c3) + ba(bz + c3) = 0,
and

—4mict ((c1—by)(a1—as)) = 4mict ((a1—c1+ba—a3)(a1—a3)— (a1 —a3) (a1 —a3)) = wi(vu—u?).

7Mw2 —mwim?  —miu?

e e ;
ZneW(X —e~ 3€7rzuv§ :/ dwe27rwm

2= Jr—io Dy, (w 4+ m 4+ u) Py (w — m — u) Py, (w)

Vei,b1Vbs,a2Ves,bs
wi(w+(u+m))(w7(u+m))

7r7,uv dwe27rwm
Z/ 0 Po(w+m+ u)Pp(w —m — u)Pp(w)

mEZ

Vey,b1Vbs,a2Ves,bs
=W X5, (U V)Ve, by Vos,asVes bs -
Where x5, (u) is given by the formula

| mi(w—u)(wtu)
o =e ¥ [ ¢ dw.
0 Po(w +m+ uw)Pp(w — m — u)Pp(w)

Again the function s, is that of [6], which again is related to Hikami’s invariant, in partic-

ular Hikami’s formally derived expression in [21} (4.10)] is equal to emiH 325 X5: (Fh 3 )
where x5, 1= x5, (z)etTioTA,



9.4. ONE VERTEX H-TRIANGULATION OF (53, 55) 77

9.4 One vertex H-triangulation of (S5?,5,)

Let X be represented by the diagram

=T

Choosing an orientation, the diagram consists of four positive tetrahedra Ty, 77,75, T5.
0X = () and combinatorially we have Ag(X) = {*}, A1(X) = {x,y,2,w,2'}. The glu-
ing of the tetrahedra is vertex order preserving which means that edges are glued together
in the following manner.

T = 5583 = 95(1)3 = 35(1)1 = x%z = 55827

y= $(1)3 = $%2 = xig = x%z = ng = 5533 = x%iﬂ’
z = 3381 = xgm = J/’(Qn = 73%2 = 9381 = 33?3

v = xgz = m?z = xés = x%s = 35337

0
I‘ = To3-

This result in the following equations for the dihedral angles when we balance all edges
but one edge.

1
ag =ay —ag =C2, ao+ by =ba+cs, a1+a2+b3:§+cl.

The Boltzmann weights is given by the functions
B(T07x|A1(TO)) Gag.co (0,0 + 2 — 2 — '),
B (Tl’xlAl(Tﬁ) = Yar,ar
B <T2a I|A1(T2)) Yaz,co

B (T37x|A1(T3)) 903703 e y’x_ )

2=y, z+y—x—v),
v— 2,y — 2),

(
(
(
(

The partition function is represented by the integral

0,1

5 m,n,k,pEZ
(z —y+ n) mi(z+y—z—v)(z2—y+2n)

1;/
Vg o (0 = 2+ k)T Wm0
Ul oz =y + p)e™ @NCEVER) 4o/ dudydzdy

. . 1 onia!
Integration over 2’ removes one of the sums since [ e~ ™" " dz" = §(m). Hence

ZneW( ) = ’(Z}t/zo,co (0) / 1[}:11,01 (Z —y+ n)eﬂi(z+y_m_v)(z_y+27l)
[0,1]* n,k,pEZ
7 mi(y—z)(v—2z+2k
1/%/12,@(@ —z+k)e (y—2)(v—2+2k)
7 mi(x— z—y+2
Vs os (2 — Y+ D)e @=9)(z=v+2) 4o/ dadydzdv
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Now integration over = gives fol e 2m@(n=P)dy = §(n — p). Implementing this and shifting
the variable v — v + z, the partition function takes the form

ZneW( _ 00700 / Z wahq znyrn) mi(y—v)(z—y+2n)
01°  kez

w (U + k) mi(y—z)(v+2k)
az,Cc2
UL (2 —y+n)e "VETYE) qudade.

as,cs
We make the shift z — z + y to get the expression

X)) [ 5 et
0,1]3

n,kEZ
1/)/ (’U+k) —miz(v+2k)

az,C

ﬁaa ez n)e —miy(z+2n) dydzdv,

which is independent of y so we can remove the integration over this variable. We integrate
over the variable v.

k+1
,(/) (’U + k‘) —2mv(z+n)dve—2mzk Z / T (v)e—ZTrw(z+n)d,U
az,c2 a2,62

kez” [0:1] keZ
e—27'mzk627rzk(z+n)

:e_%/ Voo by (V) 2Ty
R

:67%1[)62’52 (Z + n)

_mi 2
=c ¢ e7TZ(Z+TL) wbz,a2 (Z + n)

We therefore get the expression

ZI‘[QW (X)

e‘?%o’m( /[0 . Z Yoy by (2 4 M)y (2 + )Wy by (2 + 0)e™ T 4z

neZ
= a0 [ Vo s (s (7

Weset Z = z — 2¢p(c1 + 01) = y — cp(1 — 2a1). Assuming that we are in the case where all
but the edge representing the knot is balanced, i.e. ag — 0, we have a; = ¢2 = as.

22 =72+ (1 —2a1)* + 2, Z(1 — 2ay).

Implementing this we get the expression.

Z3(X) = € 5 4l 4, (0) / WZW(Z)p(2)em @ Feb( e 20 2120))
,Co
R

—4ricye1 (Z+cep(1/2—a
e be1(Z+ep(1/ 1))Vc1,b1

e_4ﬂZCbb2(Z+Cb(l/2_62))l/b2,a2

6—47mcb02(Z+cb(1/2—a3))chbedZ.

B

W\

i <b
new _ — = 3 7'mZ
Zh (X) = Vey,b1Vbs,a0Ves,bs€ 2 €7 Wy Co / w dz

~ eTrzZ
Wi )/]R P (2)° 4

[

L
3

m\

= Vey,b1Vbs,a2Ves b3 €
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Because the combination of dihedral angles in front of Z sums to 0.

1 1
—47TiCbZ(Cl + by + c3 — 5 +a1) = —47TiCbZ(a1 +b1+c — 5) =0

This corresponds to the partition function in the original formulation, see [6].
In this case the renormalised partition function takes the form.

25 (X) = lim @25 (X)

79
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9.5 The complement of the knot 6,

We calculate the partition function of the Andersen-Kashaev TQFT for an ideal triangula-
tion of the complement of the hyperbolic knot 6;. Let X be represented by the diagram

)

1

&

7

Associating a shape structure as in the previous examples gives us the following equations
when weights on edges are fully balanced:

2a1 +ag=cog+az, a1 +bi+by—co+c3=0, c14+co+b3s+bs=1, a3z=by+ by.

Zp(X) :/]R8 <bvd|Ta1,cl|g7c> <fv€|Ta2’62|97 h)(d, i‘Ta3,C3‘cv f) (e, i‘Ta4,C4‘ba h) dz

=/ 6b+d—g)d(f+e—g)d(d+i—c)d(le+i—10b)
Rg

% J’;Lwl (c —d)e 27ib(c— d)mef%rif(hfe)
XDl o (F = e T0GL (b= i) Ddg
By integrating over four of the variables g, f,, e we have the identities
g=b+d, f=c¢ i=c—d, e=b+d—c,

and we are left with the intergral

/ wal cl a2 Cz(h+c_b_d) GSCa(d)wa4c4(h+d_c)

27Tz{b(c+h) c(d+2h)+dh} dx

Integration over the variable b

/7/)&2 . thCi b— d)e 2mib(c+h) Jph = / waz 02 )e 27i(b+h+c—d)(c+h) db

/ ¢a27bz —2mb(c+h) db e2m (h4c—d)(c+h)

=cfi 1552,172( ¢ — h)e2rithtemd)(cth)

= Yy by (¢ + h)e2minFemd(eth)

We continue the calculation of the partition function.
~ < i[e2_9c 2
Z0(3X) = [ D€ = Db+ WP (@) (B +d = ) 2000 g

=% [ e (s Q) (), (b e,
s



9.5. THE COMPLEMENT OF THE KNOT 6, 81

Now use the definition of the function v, ().

wq by (C) — ¢(C _ Cb(l _ 2a1))e—4ﬂicbc1(c—cb(l/Z—al))e—ﬂ'icg(4(c1—b1)+1)/6

_ ¢(6)6_4ﬂi0bb3(5+Cb(1/2_a1))Vcl,bl )

- (—d) = ¥(—d — cp(1 — 2a3))e—4m'cbb3(—d—cb(1/2—a3))e—mcg(4(b3—C3)+1)/6

— ¢(d)e*4ﬂicbb3(d~+Cb(1/27‘13))

Vbg,c3-

¢C4,b4 (h _ C) — ¢(h — 2Cb(1 _ (al + a4)))e—4ﬂ'icb04(h—é—cb(1—2(11)—cb(l/2—a4))yc4’b4

_ w(ﬁ . é)e—4mcb04(ﬁ—a+cb(1/2—a4))VC4 by

Vas.eo(€+h+d) =p(E+h —d+ cn(1+ 2(az + ca — as — 2ay))

6747ricb az(é+h—d+cy(3/2—c2)) Vay.by-

Zh(X) = Ve osiat st ® [ @0+ h—d+ )@~

% e—47ricb c1(C+cp)

% e—47ricba2(E+}~z—cz+cb(3/2—cQ))

~ e—4ﬂicbb3(J+Cb(1/2_a3))

% e—4m‘cbC4(E—a+cb(1/2—a4))

% 62711'{&2—%d2+ﬁ2}62ﬂ'ici((l—2a1)2—%(1—2a3)2+4(1—(a1+a4))2)

% 627!'72(2&0})(172(11)7d~cb(172a3)4l~wb(17(a1+a4)))d£

Collecting the factor of —4micy,¢ in the exponent we get
1 Fag—cqg—(1—2a1) = A,
Then collecting the factor of —47ic,d in the exponent one gets
b3—a2+%(1—2a3) =—ay+bs+1/2—a3=—as+b3+1/2+c2—2a1 —ay
=—ag—2a1+cg+1—cp =—\
The factor of —4micyh
g+ ey —242a1 +2a4 =a3+1/2—by — 24 2a1 + ay

3
:—§+a2+02+a3—b4:—l—bg—b4+a3

=1

Now setx = ¢ — ci, and we can write the partition function for the knot complement of 6,
as conjecture[7.24)suggests.
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Zy(X) = / W+ Ayl + it e )b (@ph - - d)

% 627ri(m2+%Jz+ﬁ2+2xd~)6747ricb()\zfl~z)dcidﬁdl,

io 1
—=e h = = = = =
/]]{3 fbb(l‘ + d)(I)b(.T + h+ Cb)q)b(d)q)b(h — T — d)
% e27rz'(x2+%622+ﬁ2+23:d~)e—4wicl)(>\m—l~z)dd'dﬁdx

zA

:e%/Jss,Gl(FL,x)e—ﬁ dz.
R
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9.6 One vertex H-triangulation of (5%, 6,)-knot

We here calculate the partition function for the H-triangulation of the knot 6; using the
formulation from [6] Let X be represented by the diagram

L&JH\J
IRNn

This one vertex H-triangulation of (S3,61) consists of 5 tetrahedra T} and T3 which are
negatively oriented tetrahedra and t,, T4, 75 which are positively oriented tetrahedra. The
tetrahedra are situated in the following way: In the bottom we have T, T5, T3 from left to
right. And on top we have Ty, T5 from right to left. The gluing pattern of faces results in
the gluing of edges:

€T= 95(1)2 = ‘T(1J3 = x%l = x%z = 9531»

Y= x(QJB = 33%3 = 9532 = xg?) = C15:133 = 3732 = 9533 = 35837
Z = 5”%3 = $?2 = 554112 = x(sna

U= xb = 33%3 = 3733 = 3333 = $?2 = xi)?,v
w = x%a = x%2 = 9331 = 95%3 = ng = xg:;v

A |
T = Tgq-

From here we can easily get a shape structure. We balance all but one edge. This results in
the following equations on the shape parameters:

ag =ai+c2, az+ag=a;+as, a3+cy=cq4+cCs,

1
§+b3+05:a2+a3+a4, l=as+c3+c4+as.

We calculate the partition function for the Andersen-Kashaev TQFT.

Zn(X) = /RmU,EITal,cl | ESE) (H, B[ Tay e, | G, F) (K, B [ Tag s | C, G)

(D, LTy, ey |C,H)(J, K| Ty, e | L,D)dZ

Zn(X) = Rwa(J +E—-F)§(H+B—-G)J(K+B—-C)§D+L—-C)5(J+K—1L)

—271J(0)
a1 C1 (0)6 (

2niH(F—B
bl e (F — B)e )
2miK(G—B
a3 C3 (G B)e ( )
2miD(H—L
(14,(/4 (H L)e ( )

U

Ul oo (D — K)e*™(P~K) 4BdCdDIEdFdGdHdJdK dL
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Integrating over five variables F, G, C, L, J yields the expression:

ZE(X) = al cl / wag 02 F B) 2miH(F—B)
X /

H)€727mKH
X’(/Ja4 C4(H+D K — B) 2niD(H+D—K—B)
xip_ . (D — K)e2™B=D)D=K) yBiDdFdHdK.

as,Cs5

ag,cg(

We integrate over the variable F using the Fourier transform.

—xi i — —=i 7 -t niH?
er /wc?vl& (F - B)62 H(E B)dF =e 29, 27b2( ) =e T wbzﬂfz(_H)'
R

Using formulas from Section|7.3.1.1jwe can write

_3miTY, i H? riH?

Z(3X) = B UL 0) [ s )y (~H)
Ql)a4c4(H+D K - B)waOCg;(D_K)

2 (PH-KH=-BEK) gBiDIHdK.

Integration over the variable B becomes

i i H+D - K—-RB 6727TiBKdB — 6771% ~c b - K 6271’1;([(27HK7DK)
a4,C4 4,04
R

_ e_%lpM a4(_K)62m‘(%K2—HK—DK)

Zn(X) = F / Bbnsas (— H )y s (—H) s 0y (~ K)o (D — K

e2mi(DH—2KH+H*+§K*~DK) q1o 1D H

Integration over D now gives

/w% b (D — K)e 2mPE=H) g *%qu (K_H)€727T7;(K2,KH)
:e—?wb&as (K _ H)eﬂi(K_H)Qe_Qﬂ-i(K2_KH).

So the partition function takes the form:

Zh<X) =e g 1,c1 / ’l/)bzﬂlz wb3703( )¢b4,a4(—K>¢b5,a5(K - H)

p2mi(—2KH+4 H?+K?) dDdH.

Set —H = —H — ¢p(1 — 2¢5) and —K = —K — ¢p,(1 — 2¢4). Then

—H — cp(1 — 2a3) = fHJer(l —2cp) —cp(l —2a3) = —H,

because a3 — ¢y in the limit where a; — 0. Further we have

K—H:f(—cb(l—204)—I~{+cb(1—202)—cbq(1—205):K—H—cb

because
cqg+c5—co— 0
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when a; — 0.
We can now write the partition function in the following way

7

i /Rz¢(_f{)¢(_f{)¢(—f()’¢(f(—f{_ Cb)m

e—4m‘(f'1—cb(1—2C2))(K—cb(1—204))+37ri(f”1—cb(1—202))2+2m(i<—cb(1—2C4))2

Z}'L(X) =e

6_47”Cbb2(_H+Cb(l/2_62))1/az’b2

e*47‘l’icbb3(7H+Cb(17202)7cb(1/27(13))ng’cs

e—4m(zbb4(—K—cb(1/2—64))1,b4)a4

e*4ﬂ'icbb5(k71~{76b(17204)4’6})(17202)7Cb(1/2765))1/b57a5 dDdI:[

In front of H we have the factor
— 47T’icb(—1 + 2¢4 —|—3/2 — 3¢y — by — by — b5)
= —47TiCb(1/2 +2¢4 — 2¢9g — by — a3z — b3 — b5)
= —dmicy(1/24+2¢c4 —ca —1/2+as —1/2+ ¢35 — 1/2 + a5 + ¢5)
= —dmic,(=1+14+cs —ca +¢5) =0.

In front of K we also have the factor 0 since

1
b5—b4—1—|—262+1—204:5—@5—05—04—1)4—64-1-202
_1 1+ + =0
—2 as 9 ay4 az = U.

This gives us the partition function

Zn(X) = eihem T, (0) /Rﬂ(_ﬁ)w(_ﬁ)w(—f(m(f( —H—c)

ezm(%ﬁ%ﬁ@&f(ﬁ[)dkdf{.

— Oy, (H)
ai,c1 (0) /]RZ (I)b(—g)q)b(_f()q)b(f( —H - Cb)

eQm(k_ﬁ)zdf(dﬁ.

Let K — K + H + ¢

m\é*\

T

e T4, 0, (0)

Py (H) _ e%i(kﬂbﬁdﬁ'dﬂ

Zn(X) /]Rz Oy (—H)®L(—K — H — ¢,) @, (K)

el

e, L, (0) / PolH)Py (K] rikamientcsomicd g gy
’ R2 @b(—H)éb(—K — H — Cb)

e

>

el

Finally we get to the expression

Py, (H) Py (K)

- - J eﬂikz—4ﬂicbkdkdﬁ
H)q)b(K — H — Cb)

) i~
Zp(X)=c¢€'re 129 0/
W(X) 0 [ o

which exactly corresponds to the result for a given H-triangulation of the 6; knotin A TQFT
of Turaev-Viro type on shaped triangulations [26]. Further it is easily checked the part two of
conjecture [7.24)is satisfied when all but the knotted edge is balanced.

The volume conjecture has until now only been approached by use of mathematica. A
rigorous proof of the conjecture in this case is still to be made.




86 CHAPTER 9. CALCULATIONS OF SPECIFIC KNOT COMPLEMENTS

9.7 The complement of the knot 6

We now let X be represented by the diagram below.

1 2 3

4 3

Choosing an orientation it consists of three positive tetrahedra 77 and 7 and 7y and two
negative tetrahedra 73 and 75. The diagram shows how to glue the faces of the four tetra-
hedra. Remember that the affine gluing homeomorphisms must be vertex order preserving
and orientation reversing.

Combinatorially we have that 0X = 0. Ag(X) = {x}, A1(X) = {e1,ez,e3,€4,€5},
Do(X) = {f1, f2, f3, fas [5, fe, 1, fs, fo, f10} and A3(X) = {T1,T5,T3,T4,T5}. The topo-
logical space X\{*} is homeomorphic to the complement of the 65 knot. We fix a shape
structure

ax : AY(X) = Ry

by the formulae
ax(T;,e01) =2ma;, ax(Tieo2) =2mb;, ax(T;,eo3) =2mc;,

where a; + b; + ¢; = § fori € {0,1,2,3}.
The weight function takes the values

wx(er) =2m(by+ec1+ba+as+bys+es+bs), wx(es) =2m(a1+c1+as+bs+bs+as+as),

OJX(€3) = 27T(Cl1 + ¢y + b3 +c3 + bs + 05), WX(€4) = 27T(b1 +co+c3+ b4),
wx(es) = 2m(ag + as + ag + c4 + as + c5).

As the 6, knot is hyperbolic, the completely balanced case is accessible directly. This gives
us the equations:

1
§+C1+b2202+c3+05, a1+ c2 = az + as,

as+a3=by+bs, a14+c5=0by+by, 1=0b1+cy+c3+ by.

We write down the partition function:

Zh(X) = /]Rlo <67 a|T(a1, Cl)lav d> <ﬂ7 5‘T(a2’ 02)|b7 a> <67 E‘T(a& C3)|Cv a>

X {7y,d|T(aq,cq4)|B, ) {,0|T (as, cs)|e,b)dadbdecdd de da dB dydd de

= Se+ta—a)d(B+o—b)d(et+e—c)d(y+d—B)S(y+d—e)
R10

X 1;1’11701 (d _ 04)62”6(‘170‘)1%2,@ (a _ 5)627”-6(&76)1;&3,03 (a _ 6)6271'1'6((1—6)

X ey e = DG (b= gy,

as,Cs
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From the §-functions we have

a=¢€e+a, b=p+6 c=v+d+e d=B—-v, e=7+0.

Zp(X) :/R5 %l,q

(B—~— a)e%ie(ﬁ_”*_o‘)l/;;z@(a — 5)627%6(0:—6)1[}/ (a)e2mi(y+o)(ate—e)

as,cs3

X Pl o (27 + 6+ € — B)2TCIEIHB I ()e2min8 da df dy dode.

as,Cs5

Integrating over € and 4 yields

/ Ul ea(27 + 0+ € — B)e?™ P de = / Gl o, ()3T 21=548) B0 g
R R

i
/ Paz,cz
R

:627Ti(B_2’Y_5)(B_a)/]Rz/;;4,64(6)6_2ﬂi6(a_ﬂ)d6

= 67%12)04 ba (O[ - 5)€2ﬂi(ﬁ7277§)(ﬁia)'

(a — 6)e2i80=28) g5 — / B (§)e2mia=0-28)g5
R

:eZﬂia('yf2ﬂ)/1;(/12702(6)6727ri6('y72ﬁ)d6
R

= 6_%62“&(7_2’8)1/;02,172 (’V - 25)

23) =% [ (8= = 0 es a0 = 200 (@)= BT (P

~ e27ri(ﬂ2+272+2a7—4[37—2aﬂ)da dﬁ d’}/

_ 7w

=e 2 /]1{3 wclybl (ﬁ -7 a)wbzﬂlz (7 - 2B)wb3,63(_a)wb4,a4 (Ot - ﬁ)wb&cs(_ﬁ)

% eQTri(a2+462+%v2—3a,8+2a'y—6ﬁ'y)da dﬁ d’}/

Changing to parameters:

—B=—B—e(1—2a;5), —a=—-a—cp(l—-2as), 7=v+cp(1—2(2a5—c2)

yields the formula

20(X) = [ e b)) — - )~ 2803 -7 - a)

X

X

X

X

X

X

X

X

X

X

X

e—47ricbcl(B—’y—&+cb(1/2—a1))eﬂ'icg(4(c1—b1)+1)/6
6*47Ticbb2(’NY*QBJer(%*62))e7fi0b(4(b2*a2)+1)/6
e—47ricbb3(—o’z+cb(%—a3))eﬂicb(4(b3—03)+1)/6
6—47"icbb4(5¢—5—cb+6b(1/2—64))e‘ﬂ’icl>(4(b4—a4)+1)/6
6*47Ti0bb5(*5+0b(%*05))eﬁicb(4(b5*05))/6
62wi(&2+452+g~72735¢B+2d7y765’y)
e—47ricbo'¢(1—2a3—%(1—2&5)+1—2(2a5—c2))

o 4micy B(4(1-2a5)— 3 (1-2a3)~3(1-2(2a5—c2)))
e—47rz’cbfy(g(1—2(2%—cQ))+1—2a3—3(1—2a5))

efricﬁ(2(1720,3)2+8(172a5)2+5(1+2(2a57C2))2)

eﬂicg(4(1—2@3)(1-‘,-2(2(15—02))—12(1—2@5)(1+2(2a5—02))—6(1—2a3)(1—2a5) )
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Collecting the shape variables which are multiplied onto —4mic, &, we get
3
—C1 7b3+b47 5(172&5)4’172(2@5 702)%‘(172@3)

1
:—cl—b3+b4+§—a5+202—2a3

+e—b tbit i
=—a;—c+ca—bz3—a —=_.
1 1 2 3 3 4 9 D)

Collecting the shape variables which are multiplied onto —47ic,7y, we get

5 1
5—1—1—3—01+b2—10a5+502—2a3+6a5:§—cl+b2—4a5—|—502—2a3::)\.

Collecting the shape variables which are multiplied onto —47icy,3, we get

1 1 1
—§+Cl—b2+4a5—562+2a3—§Z—)\—i.

Zr(X) :ei%/,]ss,%(h,x)e*%dx
R

where

1 1 1 1 1
JS3762(h7 l‘) = /]1&2 (I)b(_d) ‘I)b(_B) (bb(_& _ B _ Cb) (I)b(.lf — B) @b(—.’L' - O~l)

e27ri(&2+%Bz—i-%J;Q—dé-&-?&x—,@w)e—47ricb(&—é)d0~éd8,

where ¢ is the quadratic term of dihedral angles and ) is defined above.

9.8 One vertex H-triangulation of (S5?, 6,)-knot

Let X be represented by the diagram

1 2 3

]

We choose an orientation of the diagram. The edge representing the knot has weight
frm—emag. In the limit as — 0 all edges except for the knot becomes balanced under
equivalent conditions as in the case for the ideal triangulation of the same knot. The renor-
malised partition function takes the form

4 s 6

Zn(X) i= lim ®p(2cp)Zn(X) = €'

ag—0 Veo,0

where the function Jgs g, is defined above.

We omit the tedious calculations since they are similar to the calculations in previous
examples.

The volume conjecture has until now only been approached by use of mathematica. A
rigorous proof of the conjecture in this case is still to be made.



Chapter 10

A-K representation of the mapping class
group 1’ ;

In this chapter we give a representation for the mapping class group of the once punctured
torus by use of the new formulation of the Andersen-Kashaev TQFT.

10.1 The once punctured torus

We have that Hq(X1,1;Z) ~ Hi(T?*Z) =~ SL(2,Z). Therefore there is a homomorphism
o :T'11 — SL(2,Z). The map is surjective since any element of SL(2,7Z) can be realised
as a map of R? that is equivariant with respect to Z? and that fixes the origin; such a map
descends to a homeomorphism of 3; ; with the desired action on homology. It is also
injective: Let & and /8 be simple closed curves in 31 ; that intersects at one point. If f € ker o
is represented by ¢, then ¢(«) and ¢(53) are isotopic to @ and 3. We can then modify
by isotopy so that it fixes oo and 8 pointwise. If we cut ¥;; along o U 5, we obtain a
once-punctured disk, and ¢ induces a homomorphism of this disk fixing the boundary. By
Alexander’s trick, this homomorphism of the punctured disk is homotopic to the identity
by a homotopy that fixes the boundary. It follows that ¢ is homotopic to the identity. Recall
from Theorem that SL(2,Z) is generated by the elements

S = (? _01> and T = ((1) })

In spite of Section|8.4{we want to build a cobordism (M, T2, T2) from one triangulation
of T? to the image of this triangulation under the action of S and likewise for the action of
T. We triangulate the torus T? = S! x S! according to Figure In this triangulation
opposite arrows are identified and this gives us a triangulation with two triangles and
three edges. We build the cobordism for S according to Figure and the cobordism for
T according to Figure[10.3] We see that on each boundary component we have three edges.
The cobordisms that we build are given shaped triangulations. We can choose the dihedral
angles such that they are all positive. And we are able to compose these cobordisms.

For each edge in these triangulations we assign a state variable. We abuse notation and
label an edge and a state variable by the same letter. We assign a multiplier to each edge
(see Section [11.3.2). As we will see below in Lemma [10.3] and Lemma [10.5] it turns out,
that all internal edges each have trivial multiplier. Further we emphasise that there is a
direction on each of the two boundary tori where the multiplier is trivial.

The Andersen-Kashaev TQFT gives an operator between the vector spaces associated
to each of the boundary components. We will see that we get representations

PA-K F1’1 — B(COO(T37£/))7

89
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of the mapping class group I'; ; into bounded operators on the smooth sections C> (T3, £').
However, we will show below that we actually get representations into 5(S(R), bounded
operators on the Schwartz space S(R).

Figure 10.1: Triangulation of the torus into two triangles.

X}
xl

X5 I
X].

X!

2

>X1
=T T
% TR %
xl

e 5(_3 4

Figure 10.3: The cobordism for the operator 7' which we triangulate.

Theorem 10.1. The Andersen-Kashaev TQFT provides us with representations

pax : 11— B(S(R))
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of the mapping class group I'; ; into bounded operators on the Schwarz space S(R). In
particular we get operators pa«(S), pax(T) : S(R) = S(R) according to the diagram
(10.1).

S(R) (10.1)

where £/ = 7* L.

Proof. We know that the Weil-Gel'fand-Zak transformation gives an isomorphism from
the Schwarz space to smooth sections of the complex line bundle £ over the 2-torus. If a
section of C*°(T?, £) is pulled back to 7* (C*°(T?, £)) we show in Lemma and Lemma
that the operators p(9), p(T') acting on C>° (T3, £’) take this pull back of a section to the
pull back of a section in 7* (C*°(T?, £)). In Lemma and [10.5|we prove that multipliers
on internal edges are trivial. Further we show that the multipliers on the two boundary
tori are trivial in the direction (1,1,1). We can therefore integrate over the fibre in this
direction. We then use the inverse WGZ transformation. In other words we have shown
that the operators p(5), p(T') induce operators pax(S), pax(T) : S(R) — S(R) given by

pa(S) =W e [ ap(s)ontow.
F,

o) =W o [ op(S)on oW
F,

O
Remark 10.2. Above we obtained a representation for the mapping class group I'; 1. We do

not in a similar manner get a representation for the mapping class group I'; o. The reason
is that not all edges in the cobordisms can be balanced without turning to negative angles.

10.2 Line bundle over the two boundary torus

Let us here describe how the line bundles we pull back looks like.
Let m : R® — R? be defined by 7(x1, z2, x3) = (ax1 + bxs + cxs, axy + fra +y3). Recall
that we have the relation on multipliers

6§* (a:,y,z) = €r(\) (7T($,y,2))- (102)

Note that the map 7 sends A,, = (1,0,0), Az, = (0,1,0), Az, = (0,0, 1) to the following
elements of R?

T(Aey) = (a,0),  7(Aay) = (b, 8), 7(Asy) = (¢,7)-
The equation (10.2) gives the following relations:
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In the )\, -direction

e?mi(wa—az2) =€(1,0,0)(21,02,03) = €(a,a)(@T1 + b2 + cx3, w1 + By + Y3)

=e(q,0)(ax1 + bxy + cr3, 021 + Bag + yw3)
e(0,0)(az1 + bz + cx3, a(zy + 1) + fas + ya3)
:efﬂ'ia(awl +Bxo +'yx3)67ri(aw1 +bxo+cxs)

_emil(ab—aB)z> +(ac—ay)zs)

In the \,,-direction

=€(0,1,0)(z1,m2,23) = em((ﬁaiab)zﬁr(ﬁcfb“/)ms)7

In the )\, ,-direction

627”(3017303)

eQTri(mg—wl) mi((ya—ac)z1+(yb—cB)x2)

=€(0,0,1)(z1,z2,x3) — € .
In other words we only need to solve the three equations

ab—af=-2, ac—ay=2, fc—by=-2. (10.3)
One particular solutionis a = —2,b =0,c = 2,a =0, f = =1,y = 1 which gives the map

71'(1'1,$2,.’,E3) = (72561 + 293‘37 —x9 + Ig).

10.3 The operator p(S)

The operator p(S) can be viewed as the cobordism X g which is triangulated into 6 tetrahe-
dra 711, ...,Ts where T, T3, Ty, Ts have positive orientation and the tetrahedra 75, 75 have
negative orientation. See the gluing pattern in figure[10.5

In the triangulation we have ten edges x1,z5 ..., z7, 2], 5, z5. To each of the edges on
the boundary we associate the a weight function:

wxg(z1) =2m(a1 + a5 +c3),  wxg(w2) =27m(as + c5 + ag), wxg(w3) = 2m(bs + be),
wxs (7)) = 2m(ay + e + a3), wxs(zh) = 2m(ag + c3 + aq), wxs(r5) = 2m(by + b3).

and to the edges x4, x5, x¢, £7 We associate the weight functions:

wxg(ra) =2m(a + c2 + by + c5 + c5), wxg(rs5) = 2m(c1 + b3 + ba + a5 + ag),
wXS(atG) = 27T(b1 +ag +as+cq4+ bﬁ), wXS(x7) = 27T(b1 +co+c3+cq+ b5)

When we balance edges x4, x5, z7 and the boundary edges on the bottom torus are given
weights wx (21) = o, wx,(22) = B, wx(x3) = . We then get the following restrictions on
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the dihedral angles:

a; =a+f+y+by+cs—c3+ce,
as=a+B+v—by+2by —c3+cqg+ 5+ 2c6 — 2,
a3 = —2v— B —2a — by + 2c3 — 3¢5 — 3¢ + 3,

1
a4:§—b4—64

3
a5=§—W—5—b4—C4—06,

ag =+ by + c4 — 5 — cg,

1
b1:a+b47203704+205+06757

)
b3:Q'y+ﬂ+2a+b4—303+305+306—5,

bs =7+ B+bst+ca—cs+es—1,
b =—B—bys—cqg+c5 —ce+1,

)
c1:—7—ﬁ—2a—2b4+303—205—206—&—5,

5
02:—7—5—04—2b4+03—04—05—206+§,

and b, by, c3, ¢4, 5, Cg are free Variables Since the edges x1, 2, 3 form a triangle the sum of
the weights o+ 5+ must sum to 5. Itis easily checked that the variables & := a; +c2+as,

B = as+cs+agand 5 := b2+63 sumtoa+ f+7 = 2,wherenowa B, 7 represents
the weights on the edges 2/, 24, 25 respectfully. We can choose solutions such that dihedral
angles are positive.

10.3.1 Boltzmann weights

The Bolzman weights assigned to the tetrahedra are

/
B (Tlvx\A1<Tl)) = Gay,e1 (T7 + 26 — T4 — T5, 27 + 6 — T — X1),

! ! !
= Gag.c (T + g — 2} — x7, 25 + 14 — xh — x6),

! !
Gas,cs (T + T5 — Ty — 7,05 + w5 — T} — T6)

= as,cs(T7 + T3 — T4 — T2, T5 + T4 — T5 — T1)

(T ﬂ%ﬂm) Gas.es (T5 + T4 — T7 — T, 5 + T4 — TH — T2)

= Gag,ce(T6 + T3 — T4 — T1,T6 + T3 — T5 — T2).

Lemma 10.3. The multipliers corresponding to the edges are calculated to be 1 for the
internal edges x4, z5, 26, 7. And the multipliers for the remaining 6 edges are calculated
to be

_ 2mi(zz—x2) 27i(x1—x3) 2ni(x2—x1)

€x,, (x)=e , eAmQ(x) =e e, (x)=¢e ,
2771‘(95’2—:53)7 e, (X) —e ex,, (X) — eQm’(zll—zlz)’

2mi(zh—])
@x ? C
2 3

ex, (x)=e

1

where x denotes the tuple x = (1, z2, x3, 21, Th, 2%).
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Figure 10.5: The tetrahedra of the triangulation of X g are glued together following the rules
of this diagram.

Proof. The multipliers are calculated by use of (I1.20). Let us here just calculate the mul-
tiplier for the direction x4. The rest follows by analogous calculations. The edge z4 is an
edge in the tetrahedra 77, 1%, T4, T, T each contributing to the multiplier. The contribution
from T} corresponds to the multiplier

!/ / /! !/
ex,, (71,22, ..., 27,77, 29, 25) = e_(1,0)(T5 + T4 — T7 — X6, T5 + Ta — TH — T2)

— eﬂi(z7 +x6 —x’l —x1)

The contribution from 75 corresponds is

A A 7 7 7 7
ex,, (T1, T, ., 7, Y, 5, 75) = (1 1) (25 + T4 — T) — T7, 75 + T4 — T — T6)

_ _e—ﬂi(w'2+m6—;ﬂ/1 —x7)

The contribution from T, corresponds is

/ ! / /
ex,, (T1,T2, ..., T7, 2], Ty, 5) = €1 1)(¥5 + T4 — T7 — X6, T5 + T4 — Ty — T2)

T4

_ _ewi(z’2+m2 —z—x7) )
The contribution from 75 corresponds is

2 / ry\ —mi(xr+xr3—xrs—21
ex,, (T1, T2, ..., 07,27, 79, 73) = —€ ( ),
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The contribution from 7§ corresponds is

/ / N wi(re+xs—x5—x
ex,, (T1, T2, ..., x7, 27,75, 73) = —e (@t —z5—22)

Multiplying these contributions gives e = 1. O

We remark that the multiplier on each boundary component in direction (1, 1, 1) is triv-
ial.

We are interested in how the operator p(S) works. Recall from section that a TQFT
assigns to a cobordism (M, ¥, ¥’) a linear map from the from the vector space assigned to
¥ to the vector space assigned to ¥'. We look at the expression for the operator p(S). This
is done using The expression we get is the kernel of an integral, we therefore express
the operator p(.S) in terms of the integeral kernel Ks. The operator p(.S) acts on sections in
the following manner:

p(S)(S)(SC/hl‘/Q,:Eé): 0.1J5 KS(Ill,IIQ,mg,x17$271‘3)8(1‘171‘2,:173) dxldIde3' (104)
1

Let us look at the expression for the kernel K :

! / /
Ks(xl,$2,$37$1,$2,$3) =

~ . !
/ 1/](/11761 (1’7 + 26 — T4 — X5 + k)eﬂz(x7+15—ml—xl)(;v7+w5—m4—w5+2k)
0

4
Ak lmon,pg

—mi(zh+za—xh—m6)(Th+xa—2] —27+21)
hgcn (T3 + 2y — 2 — 7+ )e 3 2 3 1

ri(zh4rs—x" —x6)(vh+15—2,—274+2mM
a3<:3x + x5 — _x7+m)e (z5+x5—x) —x6) (w5 +@5 —T5 —T7 )

) mi(z5+xa—Th—32)(T5+Ta—T7—T6+2N)

(

(
a4c4(x5+x4—x7—x6+n

(

+x3—x5— +r3—x4—T2+2
a o l’7+l’37’£47:}32+p) —mi(rr+r3—25—21)(T7+T3—Ta—T2+2p)

7 S r3—T5—x 3—Xy— 2
w;&cs (xG + o3 — T4 — 21+ q)e‘f”(’ﬂs-‘rTe» x5 —w2)(Te+r3—2T4—214+2q)

drydrsdrgdry.

Making shifts z5 — x§ — x4 + x7, T4 — ThH — T4 + T5, T3 — Ty + T4 — T7, T1 > T1 + Te — T7,
X7 — 7 — T + T4 + o5 and x5 — x5 + 6 We arrive at the expression:

. ;L
Ks(x,h 33/2) mé’n xy1, T2, .7,‘3) = / w/ (.’177 + k)eﬂz(—xl—m1+2$7+2x4+2x5)(x7+2k)

14 a1,C1
[0.1] k,l,m,n,p,q

aQ,CQ(ZJS xl + ) —mi(zh—zh+2x4 —2ze+7) (Th— +21)

Tl oo (@h — T + m) T2 ) —at2m)

a4, 4( $7+n) mi(2z4—xh—x2)(—T7+2n)

as,cs (x3 —z2 +Dp)e —mi(x3—x1+2x4s—2x6+27) (T3 —T2+2D)
7%16,05 (l‘3 — T+ q)em(%*12*2I5*I7)(m37x1+2q)
dw4dm5d$6dﬂ77.

Integration over x¢ gives

eZ'n’i(:}c"3 —zi+zs—z2+2(1+p)) _ 1

2mi(zh — 2y + w3 —z2+2(p+ 1))

1
. T _ l
/ 6271'116(:03 T +xz3 x2+2(l+p))dx6 — =: Il’p(l'Q,x37x/17xg)'
0
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Integration over x4 gives

627ri(z'17Iéfa:3+x2+2(k7l+nfp)) -1

2mi(z) —ah —x3+ o+ 2(k—1+n—p))
k,ln.p
=1y (

1
. ’ ’
/ 6271'1:1:4 (z7 7:1:37m3+z2+2(k7l+nfp))dl,4 _
0
/ /
T2, X3,T1, Z‘3).

We collect the terms where z7 and x5 appear.

Ks(l‘ll,.%'é,xé,l‘l,xg,l‘g) = Z wal cl($7+k)¢a4 C4( x7+n)
k.lm,n,p,q (0117

62ﬂi$7(1'2 —z3+a7+rs+2k+m—p—q)

. ’ ’
eZTrlxg,(xa—r2—13+m1+k—q)dx5dx7

nco (T3 — T7 + l)e*”i(ﬂ/’%*w’z)(mgf‘w'ﬁzl)
ag c3 (25 — x5 + m)eWi(wé_wi)(wé—w/2+2m)
a5, 0(333 - T2 +p)€7m.(z3711)(13712+2p)
ae,cs (r3 — 21+ q)e mi(x3—z2)(zs—x1+29)

k, lm,P(

l,p / /
Il (3327%'3,1'1,.733)] $2,Z‘3,x1,$3).

Simplifying this we end up with the integral kernel

/A AN
KS(x17x2ax3ax17x27x3) E § ¢a1,c1(337+k)¢a4 04( l‘?-‘r?’l)
kol m,n,p.q ? 10117
627rix7(w2—x3+x7+w5+2n—m+k—j)

oy , .
627”(IS_zQ_z3+ml+k_J)d$5d$7

_ xll + l)ef%ri(wgfw;)l

3
ool
.Té _ LL’IQ + m)62ﬂ1(£3 xzi)m

e
(13 (;3(
( —27i(zz—x1)p

hs.cs (T3 — T2 +Dp)e
,(/'}/ (.%'3 — oz + q>627ri(:c3—;c2)q

a6,C6

11(1'2,1'3, xllaxé)]é(x% ‘163,.%/1,1'%).

We want to show that the operator S takes the pull back of a section to the pull back of a
section. Using integration by parts it is enough to check that the sum of partial derivatives
disappear.

Lemma 10.4. The sum of the partial derivatives of K¢ disappears. Le.

0Ks 0Kg 0Ks O0Kg 8KS+6KS

=0.

Proof. Let

Igmz,k,j(xhx%xz;,l‘/g, xé) = o1 Q/Jahcl (.7;7 + k)?ﬁw 04( xr7 + n)
0,1

627ri:r7(:r2 —z3tzrt+rs+2n—m+k—j)

eQ‘n’i(a:é—a:é—xg-‘rwl +k_j)d.’L'5d£L'7
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The partial derivatives of I3 with respect to z1, z2, x3, 25, 24 are easily calculated to be

0

n,m,k,j / AN - / N .1/ / /
e I3 (x1, %2, T3, 25, ) = 2mivsI3(T1, T2, T3, x5, x4) =: I5(x1, 22, T3, Ty, 5),
1
0 In,m,k,j / / — iz / AN I// / /
533 3 (m1,x2,x3,x2,$3) = 4TixT7 3(.171,.’1)2,1‘3,1’2,.’133) - 3($1,x2,$3,x2,l’3),
2
0 n,m,k,j / I\ I/ / / I// ’ /
8I 3 ($1,$2,$37$2,$3) - - 3($17$2,$3,$27$3) — 13 (1’17$2,$3,$2,$3),
3
8 In,m,lc,j / AN I/ / /
8.13/ 3 ($1,$2,$3,1’2,1'3) - - 3($1,$2,$3,$2,$3)7
2
0 In,m,k,j / / 71—/ / /
8$/ 3 ($1,$2,x3,l’2,1’3) - 3(%1,.%2,1'371'2,1'3).
3

The partial derivatives of I with respect to the variables x4, x5, ], 245 are

. ! !
O kinp , . ermilemagmetea 2 b)) (g gl — gg 4 a9 + 2(k, 1, n, p))
P 12 Y (x2ax3ax1ax3) = 7 / k.l 2
o (2} — 2 — x5 + 22+ 2(k, 1, n,p))
(e2mi(mi—z5—astext2(klnp) _ 1)
2mi(z) — xf — x3 + x2 + 2(k,l,n, p))?
/ o
=:Iy(xq,x3,27,75),
a Ik"l’n’p / Iy I/ / /
Dag 2 (z2, 23,77, 73) = — I5(w2, 73,7, T3),
0 Ik,l,n,p / / _I/ / /
o’ 2 (37271‘37331"773)_ 2(1‘2,1‘3,$1,l‘3),
1
0 Ik,l,n,p / AN I/ / /
3:53 2 ($2,$3,Z‘1,Jf3) - = 2(.T2,$3,x1,$3).

The partial derivatives of I; with respect to the variables x2, z3, 2}, 2% are

9 4,

2mi(zh—x) —zotx3+2(m—+q)) () _ Al _

e 37 % T T To + 3+ 2(m +

5 Il’p(xg,mg,mll,xg) _ ( 3 1 2 3 ( q))
X2

(25 — 2} — 22+ 23+ 2(m + q))?
<e27ri(acé—x/1—x2+$3+2(m+Q)) —-1)
2mi(zl — ) —xa + 3+ 2(m+¢q))?

211(1‘271}3,1}/173},3)7

0

l,p WA / o
ox [1 (IQ,$3,I1,$3) *711(55279:371‘171'3)5
3
0 Il’p / / _I/ / /
o’ 1 (l‘g,l‘g,l‘l,x?)) - 1(332,$3,$1,$3),
1
0 Il’p / AN I/ / /
9.1 (z2, 23,77, 75) = — [ (22, 73,77, 73).
3

The rest of the terms in Kg all depends on pairs of the variables x1, z2, 23, 2}, 25, 25 with
opposite sign, summing all contributions together therefore shows that the sum of the par-
tial derivatives disappears. O

10.4 The operator p(7')

The operator p(T") can be seen as the cobordism Y, which is triangulated into 6 tetrahe-
draTy,...,Ts where T1, Ty, Ts have negative orientation and the tetrahedra 75, T3, T have
positive orientation.
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N

T, T, T,

Figure 10.7: The tetrahedra of the triangulation of X are glued together following the rules
of this diagram.

In the triangulation we have ten edges =1,z ..., x7, 2,25, z5. The weight functions
corresponding to this triangulation for the edges z1, x2, x3, 2}, x5, =5 are

WYT(xl) = 27T(03+(16), WYT(xQ) = 271'(62 +a3+b6), wYT(Cﬁg) = 27T(b3+b5+06)7
wyy () = 27 (ay + c4), wy; (75) = 2m(by + a4 + bs), wyy (x4) = 2m(c1 + by + by).

and to the edges 4, =5, x¢, £7 We associate the weight functions:

Wyr (.T4) = 27r(a1 “+co + 5 + CLG), wyT(a:5) = 27T(b1 +ag +bs + by + a5+ bﬁ),
Wy (56'6) = 27‘((01 + ag + a3 + aq4 + a5 + C6)7 wYT($7) = 27T(b2 +c3+cq4 + 05).

When we balance edges x4, 5, z7 and the boundary edges on the bottom torus are given
weights wx,. (z1) = 0, wxs(22) = €, wx, (x3) = . We then get the following restrictions on
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the dihedral angles:

a1
az
as
Gy

as

by
bs

bg

C1

C3

Cq

1—ag—c5—co,

1

5 —c2— by

1
5*5*b3*a6,
7<+5+b1*02;

3
—C—€—5+b2—65+§,

(—by+co—bg+by+cs+ag—1,
(5+E+C—bz—1,
1

5+5+b37b2—a6—§,

1
—b1+02+65+06—§7

:(S—CLG,

7@71)27657&64*1,

cg=€e€—0—bz+by+1,

99

and ag, b1, b2, b3, c2, c5 are free variables. We can choose solutions such that dihedral angles

are positive.

The Bolzman weights assigned to the tetrahedra are

/

— / / /
Tl,x‘A“Tl)) = Gay,cr (@5 + h — xh — 6,05 + xh — ) — x4),

= Gas,co (T4 + T2 — Ty — T4, T + 22 — T5 — X)),

= Qag,c5 (5 + T3 — T7 — T1, L5 + T3 — T — T2)

= Gag,cs (T + x5 — w7 — 2, 23 + 25 — TG — xp)

= as,cs (Th + T3 — T7 — T4, ThH + T3 — Tg — T5)

Gag,ce (X2 + L5 — T3 — Te, Lo + s — Ta — T1).

Lemma 10.5. The multipliers corresponding to the edges are calculated to be 1 for the
internal edges x4, x5, 26, z7. And the multipliers for the remaining 6 edges are calculated

to be

ex,, (x) =e

e (x)=¢e

2mi(xs—x2)
)

2mi(xy—xh)
b

2mi(x1—x3)

ry () = 2T ey () = i)

ex, (x) = e27ri(;cg—;c'1)7 ex, (X) _ eQm’(J;’l—J;’z)
x

2 3

where x denotes the tuple x = (z1, 2, x3, T, 25, 25).

9

)

Proof. The proof is straight forward verification. The computations are analogue to the

calculations in [10.3]

O
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We also calculate the integral kernel for the operator p(T').

/ / !
Kr(zy, w5, 05,21, T2, 73) =

~ il o _ Il g2
J D S N e s
[

O ko tmn,p,q
xé + Ty — 7 — x4+ l)eﬂ’i(z'ermg7x57m6)(xl3+a:2717714+21)

x5+ T3 — 7 — T + m)eﬂi(:c5+x3—gcg—xg)(x5+:c3—ac7—ac1+2m)

(
Viag,ea
P

(

/ / —ni(zh+zs—al,—x6)(zh+xs—x7—2" +2n
agq,Cq x3+x5f:c77;1:1+n)e (s —op —we) (g a5 —wr oy )

7/ —mi(zh+x3—T6—5)(Th+T3—T7—T4+2p)
as,cs5

xh+ a3 — w7 — x4+ p)e

w/ (xQ + x5 — x5 — 26 + q)ewi(szrws7w47w1)(w2+m57m37m6+2q)

ae,C6

d$4d$5dl‘6dﬂf7.

We make the following shifts in the variables: zo — zo — x5, 3 — 3 — Tg, T — Th + T +
X7+ T4, Ty — Th + T4 + x5 + 27, ) — 2] + 24 + 225 and 21 — 21 + 25 — 26 — 27, and we
get the expression

roo _ § / / /

KT(xl?x2ax3ax1a$27x3) _/[ i al,cl(xQ_x3+k)
0,1

7 kLlLmun,p,q

efm‘(wgfw'l7w47w5+$6+w7)(90/2*90§+2k)

i ’
11Z)a2,C2 (1‘3 + IQ + Z)
eﬂi(:vg-‘ra:z-i-:m—:v5—w6+x7)(x'3+w2+2l)

11;:13,(13 (I3 - l’l + m)

ewi(2x5+x3—2x6—x2)(x3—ac1 +2m)

~£J.4,C4 (Il3 - xll + n)

e—ﬂi(wg —$/2+2w5 —2x5)(xé —x/l +2n)

T /
as,cs ($2 + 3 +p)
efwi(x’2+z3+w4fx5fxe+z7)(ac'2+x3+2p)

77;(,16,06 (1‘2 — 3+ Q)

eTi(@2—z1—za—z5+Tet7) (T2 —T3+29)

diE4d£L’5dl’6d£L’7.

Integration over the variable x4 gives

1
/ P U= g, = (k41— p—q).
0
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This removes one of the sums in the expression and we are left with

/ ’ / _ § 7 / ’ —mi(ah,—z! —xs+ae+zr)(xh—zh+2k
KT($1,$2,£U3,£L'1,1'2,{E3) _/ al,cl(x2_‘r3+k)e (w2 ! shotor)(w; =g )
(0,1 k,l,m,n

56,1, P

—ps— 2
az o x —|—x2—|—l) Th4To—5—z6+x7)(Th+T2+21)

T3 — 11 + m) mi(2es+x3—2x6—x2)(T3—T1+2m)

ag Cg(
/ / —mi(zh—xh+2x5—2x6) (v —x) +2n)
a4,C4 (mB Ty + n)e 3 2 ° 8 '

a5,5r(x2 +‘T3 +k+l_ q)
e—ﬂ(xz+xa—x5—xs+x7)(x2+xs+2(k+l—q))

w;e . (xg — 3+ q)emmzﬂn7m5+ws+m7)(m27m3+2q)

dl‘5dl‘6dl‘7.

We chance the signs of the three variables z1, x2, 23 which does not affect the operator and
then we integrate over the three remaining variables.

/ / / _ " / / mi(zh—x! —xs+xeta7)(xh—al,—2k
KT(xl,x27x3,x1,m2,x3)—/ oo (@ — b+ ke (w3~} —w5+we-tur)(zs —25—2k)

4 a1,C1
[0,1] Bilmnp

i(xh—xo—T5— - 21
a2762 4 _x2+l)ewz(m3 To—xs—xe+x7) (x5 —2x2+20)

T3 — 11 + m) mi(ze—x3+2w5—226) (3 —x1+2m)

o mi(zh—xh+2w5—226) (T —25—2n)
nac (T3 — 27 +n)e

(x
Vages(
(
(

hs.cs (T — 23 +k+1—q)
ewz(asz793379357a:6+m7)(w37w'272(k+l7q))

,&/ (xg — o+ q)ewi(xl—12—15+z6+x7)(13—x2+2q)

ae,Ce
drsdredxy.
Integration over the variable x5 is
1 ) , , / l
/ 6271'215(—213—213-1—11+11+12+z2+2(m—n+p—l))dm5 _ J{n,mpv (‘rlv T, T3, ‘Tllv x/Q’ ‘ré)
0

Integration over the variable z¢ gives

eQTFi(.’L‘g-‘rI/S—]Jl—])/1+2(7TL+1'L)) -1
2mi(zs + o — 1 — ) + 2(m +n))

=J3"" (21, 23, 2], 7).

1
/ e?‘n’ia:@ (z3+xh—21—7] +2(m+n))dx6 —
0

Integration over the variable 7 gives

e2mi(zz—wa—ay+as+2(l-p)) _ |

2mi(xh — xo — xh + 23+ 2(1 — p))

1
/ 627ri:v7(mg—m2—m/2+13+2(l—p))dx6 —
0

:Jé’p($2,$371‘/2,$l3).
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So we have the expression for the operator Kr

KT(ZL'l,Z'Q, $3,11,$2,$3 E ,l/)al Cl 1'3 + k) mi(zy—ay) (v —xy—2k)
k,l,m,n,p
1; (I/ — 29+ l)eﬂi(l‘g—l‘Q)(l‘é—l‘Q-i-Ql)
az,C2
’l/; ((Eg — x4 m) mi(xe—x3)(z3—21+2m)
as,c3
q; (J) mll + n)eﬂ-i(mé—m;)(m’l—mg—%ﬁ
Cq
a5 o ({E —xs+k+1— q)e‘n'i(:plz7w3)(w37w'272(k:+l7q))
(Z‘3 T + q)eﬂi(ml—zg)(mg—zg+2q)
a5,05
n,p,l / / /
Jl (x171’23x37x17x2ax3)

J;n,n(xhx37$/17xé)Jé7p(x27x37x/2’ l‘é)

Again, in order to check that the operator p(7T') takes the pull back of a section to a pull
back of a section we show the following Lemma.

Lemma 10.6. The sum of the partial derivatives of K1 disappears. Le.

OKr OKr OKr OKr OKr OKr

=0

Proof. In each term of the expression for K1 there is an equal number of variables one half
having positive coefficient and the other half having negative coefficient. Therefore the
sum of the partial differentials must equal zero. O

10.4.1 Change of coordinates

Clearly the multipliers are trivial in the direction
z=z1+x3+2z3 and 2 =z} + b + 5.

We change coordinates to

T = —2x; + 23, x =2z — 2,
y=—x2+ s, y'——332+$3
Z2=x1+ T2+ T3, Z =z +x2+x3,

In these coordinates we have

1 1
T g(z+y—:v)7 x’1=§(z’—|—y’+a:’),

1 1 1 1
x2:3(z—2y+2x>, x'2:3<z’—2y’—2a:'>,
1 1 o1, 1

17315 Z+y+§I , :cgzg z+y—§

Note that the transformation = = z(z1, 22, 23), ¥y = y(z1,22,23) and z = z(x1,x2,x3)
changes the volume element dzdydz = |J(x1, z2,x3)|dx1drodzs. Here J is just the usual
Jacobian. In out case |J(x1, z2, 23)| = 6.
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10.4.2 WGZ-transformation of wavelet

Let us shortly describe how a wavelet transforms under the Weil-Gel'fand-Zak transfor-

mation.
We let f € S(R) be the wavelet function defined by f(x) = ie‘ézz. We let T, ;, be the
translation T, () = ax + b then we define the function f, ;(z) := f o Ty p(x) € S(R).

Lemma 10.7. Let f,;, € S(R), then we have the following transformation rule

2. 2
ab+a’r —a >, (105)

)

(W fap)(@,y) = ™ fop(x) - 0 (y -

21 211

NP _
where 0(z;7) =), o, €77 T272" js Riemann'’s theta function.

Proof. The proof is direct computation.
(Wfa,b)(xvy) = emxy Z fa,b(x + m) : e27rimy
meZ
%eﬂmy Z e—%(a(z+m)+b)2 .627rimy
g mEZ
%67%67”-1@/ Z e—%(az(m+m)2)67abmefabm . eQﬂ'imy
™

mEZ

_bv2 (a2 (22 4m2 —abr  — ;
— e Ty § e 2(11 (z“+m +2ma:))e abze abm.eQTrzmy

_ eﬂ—myfa,b(x) e 3 (am)*+m(2wiy—ab—za™)

10.4.3 Properties of the Theta function

The Theta function behaves very regularly with respect to its quasi-period 7 and satisfies
the functional equation

0(z+p+qr,7) = 0(z, 7)e T4 ~2miaz
where p, ¢ are integers.

9(2 +p+qr ,7_) _ Z eﬂ'i‘rn2+27ri(z+p+q‘r)n _ Z eTriT(n+q)277riTq2+27rizn
)
neL nez
— Z 67ri7'l277r727'q2+27rizl727riqz _ G(Z, 7,)ef'n'i'rqz727r7,'qz

leZ

We apply this formula to the Theta function (y +q- ab+2aX(3—m) ’“2) . Here 7 =

27 ’ 27

— ;—; Direct calculation shows that

b b ,
0 (y +q——7+27(T —m), 7') =0 (y + =7+ 27z, T) etamimy g2m®a® —2mab—dma®s
a a

Therefore we get the much simpler expression for the product

0 (y +q— 27‘ +27(Z — m), 7’> - fap(2(Z —m)) = erimyg <y - 27’ + 2717, T) - fa.b(27).
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10.5 Representations of pa_k(.5), pa-x (1)

10.5.0.1 Representation of pa-(7T')

The operator psx(T) =W~ o f F, )on* o W, where f = is integration over the fiber
and p(T) acts in the followmg way:

p(T).(s)(z}, 25, x5) = o Kr (2, xh, x5, 1, 0, w3)8(21, T2, 3) dr1dredrs (10.6)

Recall that the expression for the kernel is given by

/ / / _ 7 / / —mi(zh —x" —xs+xe+a7)(x, —xh+2k
K (2}, 25,25, 21, v, 73) */ le,cl(xzfoJfk)e (= —es s for) (w; w5 +2K)
[0

3
A kdmng

— 2
a2 o .’Eg-‘r.ﬁz +l> mi(zh+xe—T5—T6+T7)(T5+T2+21)

wi(2xs5+x3—2x6—2) (T3 —x1+2m)

(
a3 03(1'3 -1+ m)
(x5

’ / —mi(zh—xh+2x5—2w6) (Th—2) +2n)
a4 [ - + n)e s ° B

a co(xZ + 3 +p)
e—‘ﬂ'l(12+.L3—.L5—.L6+l7)(];/2+.'l)3+2(k+l—q))

Vg s (@2 — 3+ k+1—p)

e‘ﬂ'i(mz —z1—x5+ze+x7)(T2—T3+29)

d$5d$6d$7.

Writing this in the coordinates z’,y/, 2/, x, y, z we get the integral kernel

KT(m/7 yla Z/, z,Y, Z) :/ Z ~(IJ,1,C1 (_y/ + k)e_ﬂ—i(_y _7£ _£5+$6+£7)( Y +2k)

0117 o.1,m,m,q

~ 1 1 1
Vs (37 +9 = 52" +2 =2+ 5a) +1)
em’(%(z’+y/—%x/+z—2y+%x)—x5—x6+x7)(%(z/+y’—%x'+z—2y+%x)+2l)

,(/)(/ls’cs (%l’ + m)eﬂi(y+21572m6)(%m+2m)

~ 1 Y _ 1.0
{14764(77x’+n)e mi(y' +2x5—2z6)( 3T +2n)

~ 1 1 1
:15705(5(3/_21/—§$/+Z+y+§x)+k+l—q)

efﬂi(%(272y'7%x’+z+y+%z)715713+x7)(%(zf2y'7%z'+z+y+%x)+2(k+l7q))
i ni(to—y—xs5+tre+a7)(—y+2
Vi (—y + Qe (zr—y—zstretzr)(—y+2q)

drsdredry.
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We shift z +— z — 2/ —y/ + 22’ + 2y — La.

12 12 12 _ S l_l /_ 5 + _ ’ 2k
KT(:L‘ )y ;Z 7$7y7 / al,Cl( y/ + k)e 7”( v 2x z -‘rﬂC(, x7)( Y + )
[0,1]3 klmnq

Ves.e (§Z + 1)emil5Fws—zatar)(52420)
12}‘/7«3,03 (%(L‘ + m>eﬂ'i(y+2x5_2-736)(%;5-1-27”)

~ 1 . ! 1 ’
/ e —mi(y +2x5—2x6)(— 52" +2n
a4,c4( 21’ + n)e ( g o) 2 )

~ 1
35,65(§z—y’+y+k+lfq)

e~ mi(Fz—y ty—zs—z6+w7)(3 2~y +y+2(k+l=q))

1[}/ (7y + q)eﬂ'i(%rfy7m5+zg+m7)(fy+2q)

ag,C6

d$5 d$6dl‘7.

o(T)(7* (W fap)) (@', ', 2") / V. Cl( Y +k)e —mi(—y' — L2’ —astaetar)(—y +2k)
0

16 klmn,q

12;;2 o (éz + l)eﬂ'i(%2715713+m7)(%z+2l)

12):13,03 (%I + m)eﬂ'i(y+2m5f2zg)(%w+2m)

1 ! 1
/ ) —mi(y' +2x5—2x6)(— 52" +2n)
a4,04( 233 + n)e 2

1

a5,C5(3Z_y +y+k+l_Q)

e~ mi(F2—y ty—zs—zetar)(32—v +y+2(k+l—q))
lz/ (_y +q)eﬂ'i(%m—y—r5+zg+m7)(—y+2q)

ae6,C6

drsdredxy

e -

ab+a’zx —a?\ 1
DL 0 ) 2 dadyd
omi ’2m'> 6 e
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Note that this is independent of 2’. Therefore integration over the fiber is trivial. For sim-
plicity we write Z = 3z, & = jz and &’ = 12’ Note that 6didz = dxdz

,DA—K(T)(fa,b)(i'/) = Z d}al cl( y + k)wag,m (Z + l)was c3 (SC =+ m) a4,r4( '+ n)

ke, lm,mn,g ¢ 101]7

hores G =Y Y+ h+1— )0 o (—y+4)
1
/ e27rix5 (y—y/+i+i/+2(k—q+m—n))de
0
1
/ e*2ﬂiz6(i+i'+2(mfn))dx6
0
1
/ (2miwn (v —y+2(a—h)) gy
0

. , - .~ -~/
eZTrzz((y k)+( y+q))e27mmq627mx k

. ! . _ S 12 s ! gy
6271'1(1/(y +m—k l)e 2miy eQTrzy (2k+l—q—n)
ab + 2a°% —a? >

9

€2ﬂiyifa,b(25~8) .0 <y _

e 2 didydzdy .

211 21

We do the following substitution in order move the summation variables to the integrals i.e.

tochange ), fol flz+m)dzintoy [~ ™1 f(2)dx. The substitutions look like: 4/ — 3/ +k,
Z 27l,i’r—mzfmandyHerqWehavetheexpression

D)) = 3 / o | o / o / T e

k =—m

( ) aq, 04( T’ +n>wa5 C5(Z_y +?J)¢a6,56( y)

/ 2mizs (y—y' +(k—q)+3+&"+m—2n) dl‘5
/ 2mize(Z+3 +m— 2n)d$

e2mizr (v —y+k— Q)dx7

S~ Py
eZTrZ(z D(y —y)eQﬂ'z(a:—m)quTrwc k

e2mi(y+a)(y' +m—1)

e—27ri(y'+k:)2e27ri(y/+k)(2k+l—q—n)eZTri(y-i—q)(;i—m)e—ZﬂiEx/)(y'—l-k)

b+ 2a2(F —m) —a?
fap(2(Z —m)) -0 <y +q-— Ha—w, a> dzdydzdy’
’ 27 2m
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Reducing the phase we get

oAk (T)(fas) (&) / o | o / o / )

k,l,m,n,q =—m
W ea EV g e (8 + 1)l (=Y + 9) g 0o (=)

2mizs (y—y'+(k—q)+&+3 +m—2n) dxs

e

1
oy
e27r7,ave,(:c+:1: +m72n)dz6

1
. ’
e2mier(y —y+k—q)dﬂ;7

c\c\c\H

N - s .12
eQTrz(z)(y 7y)e47rzmqe27m:v )k6727my

eQTriyy'e—QTriy’neZTriyie—Qﬂ'ii/y'e—27ri;fc'k
. ab+2a*(& —m) —a? .
wb(2(T — -0 - 7 | dZdydzdy’
o2 —m) 0 (g - L ZOY driyazay
Hence
y'=k+1 Z=—I1+1 T=—m-+1 y=q+1 _ B
~ / ~
pAK(T) (fus) () = / [ / ANETTINE
Im =—m

s,

k

%3, (56) D (= ) (E =Y+ )V o (—Y)
1

/
1

/
1

/

e27r7,'

. ’ =~ ~!
62ﬂ1w5(y—y +(k—q)+z+2 +m—2n)dl,5
. ~ | =
2mixg (T+T +m72n)d$6

(&

. ’
eQTrww(y —y+k—q) dLL'?
(

~ ’_ .~ _ .12
Z)(y y)eéhmcq6 27iy
.y . Lo ot
eQTrzyy e—27rzy n627rzya:6—27ma; Yy
ab+2ad*(& —m) —a

2
) dzdydzdy’.

fap(2(Z —m)) -0 (y +aq- i "o

Integration over the variable z can now be carried out:

=41 -
Z/ ,(/):12702 (2) as,C5 (Z — y + y) 2miz(y' —y) dx
ez /1

/ Bty ea BVt s (i — y) — 2)em GV TN =272 =) g,

B /]Remz Vi ea (3 Wbs e (¥ — ) = 2) dz ™0 HV D) em2m'y

ot 22
= (ga27cz * 7%5@5)(?/ —y)-e 2miy'y grily”+y )7

where ¢4,.0,(2) = emiE N;%cz (2). The first equality follows from the properties of the

charged tetrahedral operators.
We now have the expression
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k) = Y [ o [ T T

km,n,q” Y=k =—m y=q
/0,4,C4(_fi./)wl/lﬁ,66(_y)(ga2702 * ¢b5765)(y/ - y)

1
. ’ =~ =~/
/ eQ?rzxs(yfy +(k—q)+z+T +m7n)dx5
0
1 ) o,
/ eszaﬁg(m+x +m—n)d$6
0

1
. ’
/ 627rza:7(y 7y+k7q)dx7
0

4m:§:qe—m'y’2 em’gﬁ

e
6727riy’n627riyi’6727ri£'y'
- ab +2a%(Z —m) —a? -
fon(@@ —m)) -6 (y+q- DT2ETM 20N ey
211 211

Using the property of the Theta function we can write down the expression

)@= Y [ o [ / N e @

k,m,n,q y'=k =-m =4
~(/14,C4 (_53/)7%16,% (—y) (ga2702 * ¢b5,cs)(y/ )
1
/ e27rix5 (y—y/-i-(k—q)-i-i-&-i/—i-m—n)dxf)
0

1
. ~ o~/
/ eZﬂzzg(erm +m7n)d1,6
0

1
. ’
/ e2mx7(y _y+k_Q)dl‘7
0

.~ . ~ i 2 22
e47rzzqe47r7,yme miy'" omiy

e—27riy'ne2ﬂ'iy;ie—27rii/y/
b 2 27 2
Fan(28) -0 (y— D20 TN Grdydy .
’ 271, 2,

10.5.0.2 Representation of S

The operator pax(S) = W' o [ op(S)on* oW, where again [}, is integration over the
fibre and p(S) acts in the following way:

p(S)(s)(z), x4, 25) = o1 Ks(z), b, x4, 21, T2, 23)s(x1, T2, T3) dr1dwadrs. (10.7)
0,1
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Recall that the expression for the kernel is given by

~ . ’
KS((Ell,.’Elz,iEg,iEl,{EQ, (Eg) _ / ,(/)/ (.’E7 + k)eﬂz(—wl—w1+2w7+2w4+2x5)(w7+2k)

4 ai,Cy
011" k.1,m,n.p.q
T / /
as,ca (x3 -z +1)
e~ iz — w5204 —2ws+ar) (v —a) +21)
O — a4+ m)eT (Fa et 2 ter) (r—aat2m)
3,C3
O (—wg +n)em 2ramra—z2)(—ertn)
a4,Cq

7
as,Cs (fL‘g - x2 +p)
677Ti($37x1+2Z472136+:E7)(137124*2}7)

7! i(z3—w2—2x5—27)(T3—21+2
¢a6,ce(x3 — 2 +q)e7rz(z3 xo—2xs5—x7)(x3—x1+2q)

drsdrsdredry.
We shift x¢ — x¢ + x4 Which gives the expression

/WA > o0
Ks(xl,xQ,xg,xl,xQ,xg) :/ w/ ($7+k‘)€7”( T k2w k2w ) (erh2k)

4 ai,c1
O & tmon,p.g
! 4 —mi(zh—zy—2zetw7)(zh—) +21
a2 92(‘1:3_3714'[)6 ( 3 2 )( 3 1 )
! / mi(zy—x]+2w5+a7) (T —xH+2m
a3 c3 (x3 $2 + m)e ( 3 1 5 7)( 3 5 )
mi(2ws —zh—x2)(—z7+2n
a4 04( £E7+n)e ( 2 )
—mi(zr3—21—2 -
a5,05(333 o + p)e mi(z3—21—2z6+27) (T3 —22+2p)
= mi(rs—xo—2x5—x7) (T3 —21+2
’(/}ag cg (.’L’g — T+ q)e (wg—22 5—x7)(x3—x1+29)
dxsdxsdredry.
5 6 7

We can now do the integration

1
/ sz = §(k + n),
0

which also removes one of the summations.

roo ’ i(—x) — 2 2 2k
KS((ED gj27x37x173327$3) = wal o (1'7 =+ k)eﬂz( x]—x1+2x7+225) (v7+2k)
0,18 1 im P.q ’

—mi(zh—xh—2zxg+4x7)(vh—z" +21
a2c2(x 7m1+l) (g —x3 6tz7) (w5 —x] )

mi(zh—a) +2x5+x7) (xh—xh+2m
a3 C3(x 1'2 +m) (w3—x] sta7)(z3—T3 )
wi(xh+xo)(x7+2k

Tl oy (g — k)it ea) @2

Ul oo (T3 — @3 + p)e T Es T T 2Te ) (w5 2p)
-, o o
wae c6 (333 —x1+ Q)e‘m(x?’ r2—2x5 —z7) (T3 —T1+29)

drsdredxy.
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We collect the terms where x5, 27 appears.

K (), a, x, 21, T2, 23) = / > e (@7 R, L (—17 — k)
[0,1]2 k,l,m,p,q

627fi967(967+565 +xo—x3+2k—l+m—p—q) dz7

e2mizs (@ —zhy+xz—x1+2(m+k+q)) dzxs

1
/ e2mizTe (zy—a)+x3—22 +2(P+l))da«;6
0

" / / —2mil(xh —a)
az,cz(xf_’) 7$1 +l)e ( 3 2)

7 / / 2mim(zh—x))
¢a3,03 (‘7’.3 — Ty + m)e &

e—27rik(m'1 +x1) eQﬂik(m’Q+z2)

7 —2mip(z3—x
H.5,C5(‘r3_x2+p)e (x3—m1)

,(/;(’16706 (.rg — 3+ q)eQﬂ'ifI(%—m).

We wish to find an expression for the operator pa_x(5) : S(R) = S(R), where

pak(S) =W o [ op(s)ontow.

F,

where p(S) is the operator

p(S)(S)(SCll,I’/Q,Ié) = [0 1]3 Ks(l‘/hl’é,mé, 5131,%2,1‘3) . S(IEhIQ,Ig) dﬂ:‘ldl’gdl’g.

Again we change coordinates according to section|10.4.1

p(S)(r,T*(Wfa’b))(x/a y/’ ZI) — / / Z 1)]);1,01 (1’7 + k)wz/z4,C4(71'7 - k?)
(013 J[01]2 g

627”17 (z74+z5—y+2k—Il+m—p—q) d1'7

o
e2miws (v + 3 m+2(m+k+¢1))dx5

1
/ e27rix5(7%x'+y+2(p+l))dx6
0

b (—}x’ + l)e_%”(y/)

az,c2 2
1;;3 o (y/ + m)ef27rim(%m/)

e~ 2mik( (&' +y +a' +zty—x))

eQﬂ'ik(%(z/—2y’—%x/+z—2y+%w))

- 1 _ in( L
oes (Y + p)e 2P
1

Tl + )2

e‘n’ixyfa’b(x) .0 (y _

)

ab + 2a%% —a2>

211 2mi

1
5 dxdydz

We see that this expression is independent of both z and 2’. Integration over the fiber F”,
becomes trivial. We obtain the following expression for the operator pa-x(S) on a wavelet
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fa,b S S(R)

paxk(S)(fap) (@) =

k,l,m,p,q

Rewriting this we get the expression:

/ / 11[}a1,C1 (l"? + k)wm; C4( :E7 - k)
[0,1)2 J{0,1]3 J[0,1)2

6271117 (z74+25—y+2k—Il+m—p—q) d$7

eZTri:c;,(y +5:+2(m+k+q))dx5
1 !
/ e2mize (— % +y+2(p+l))d$6
0

7 (7‘%/ + 1)6727Tily’

a2,C2

7 —2mwima’
Vag ey (Y +m)e
6727rzk(3 (z +y’ +2& +24+y—27))

e27rik(% (2" —2y' —3'+2—2y+7))

s (y + p)e 2P

Ut e (& + )€™

e27riiyf ( ~)

0 (y— ab + 2a*% —a?
211 2w

—27rii'y'dy/

) dzdydzdz’

e

y_l
(8 far) @) = Y / /[01 FRCELIANEEN

k,l,m,p,q

62ﬂ1w7 (z74x5—y+2k—Il+m—p—q) dZIZ7

e2wiws(y’+i+2(m+k+q))dx5

1
. ~7
/ e2mize(—7 +y+2(p+l))dx6
0

mw% oy +m)
ao,c\, (y + p)quao c6 (I + Q)

6727rzly 6727mm:v

. ’ " ~l_ ~ _ s~ .
e—27rzk(y +y+z x)e 27r1px627rzqy
Py 7
eZﬂzzye 2miz’y

fap(22) -0 (y

ab + 2a%% —a?

dxdyd
271 ,Zﬁ)xyy

Unfortunately we have not yet been able to arrive at nice expressions for the represen-

tation. This is still work in progress.






Chapter 11

Appendix

11.1 Appendix A

11.1.1 Quantum dilogarithm

Since the quantum dilogarithm plays an important role in this thesis we here take time
to discuss some of its properties. There are more than one function that carries the name
quantum dilogarithm. They are not equal but nevertheless connected.

(i) The quantum dilogarithm function Lis(z;¢), studied by Fadeev-Kashaev [12] and
other authors, is the function of two variables defined by the series

TL

Lis(z;q) (11.1)

HM8

n(l—q")

where z, q € C, with |z|, |q| < 1. It is connected to the classical Euler dilogarithm Li,
given by Liy(x) = >°° | L3 in the sense that it is a ¢-deformation of the classical one
in the following manner

lim (eLig(z,e ) = Lig(z), |z] < 1. (11.2)
e—0

Indeed using the expansion ;L = 1 + 1 4 £ — L.+ . we obtain a complete

1
asymptotic expansion

1 1 xr € r+a?
Li €y — 1, -14 2 — — o Tt 11.3
ig(x,e™ ) ia(z)e +2 0g<1_x>+1—3312 (1—2)3 720+ (113)

as e — 0 with fixed z € C, |z| < 1.

(ii) The second quantum dilogarithm (z; )., defined for |¢| < 1 and all z € C is given as
the function

o0

(@)oo = [T — 2. (11.4)

=0

This second quantum dilogarithm is related to the first by the formula
(%3 @)oo = exp(—Liz(z; 9)). (11.5)

This is easily proven by a direct calculation

—log (%5 9) 0o Zlog 1—xzq") :ZZ% ”7”—Zn(lxijqn):Lig(x;q). (11.6)
n=1



114

(iii)
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Proposition 11.1. The function (z; ¢) and its reciprocal have the Taylor expansions

e —1 T (a1 1 e 1
=3 GEa T S (12)

n=0 n=0

around z = 0, where

(@ = o = =0 =) (10"

The proofs of these formulas follows easily from the recursion formula (z;¢)s =

(1 — z)(gz; )00, which together with initial value (0;¢)s = 1 determines the power

series for (z; ¢) oo uniquely.

Yet another famous result for the function (;¢), which can be proven by use of
mn 1

the Taylor expansion and the identity 3., _, "5~ = 57 is the Jacobi triple
product formula

(6 @)oo (@3 Do (az 5 ) = S (~1)Fq 7 2k, (11.8)
kEZ

which relates the quantum dilogarithm function to the classical Jacobi theta-function.

The quantum dilogarithm functions introduced are related to yet another quantum
dilogarithm function named after Faddeev.

Definition 11.2. Faddeev’s quantum dilogarithm Faddeev’s quantum dilogarithm
function is a function in two complex arguments z and b defined by the formula

By (2) = / e ¢ (11.9)
EAAC P 4sinh(wb) sinh(w/b)w / ’ '
where the contour C' runs along the real axis, deviating into the upper half plane in

the vicinity of the origin.

Proposition 11.3. Faddeev’s quantum dilogarithm function ®,(z) is related to the
function (z;¢)e := [[ioo(1 — zq"), where |g| < 1, in the following sense. When
Im(b?) > 0, the integral can be calculated explicitly

27 (z+cp)b. 2
(c ) o (11.10)

Py (2) = (e27z=cv)b; g2)

. 2 - -2
where g =¢™® and G=e ™" .

6—21’zw

Proof. We collect a residue of the integrand I(z,b) = § [, san(w by s e dw- The

integrand has poles at w = winb and w = win b~!. The residue at c of a fraction i.e.

f(z) = ,38 can be calculated as Res f(c) = f,(—(cc)) when c is a simple pole. Therefore
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we get by the residue theorem

2wzbn 2nzb ln

T e e
I(z,b) = = +
(2,b) 2 Z minb(—1)"sinh(minb?)  winb(—1)" sinh(min b~ ?)

min  2wzbn min, 2rzb "t n

o > & & e (&
- Z n(eﬂinbz _ e*ﬂinbz) + n(ewinb’z _ e—ﬂ'inbfz)

. o2\ —1 - 2\
(eZﬂzb+7rz+7rzb) (eQTrzb —7mi—7ib )

= — - + -
Z n(l _ eZTrszn) TL(]. _ 6727rzb*2n)

27 (z+cp) bn e27r(z—cb)b’1n

= e
- Z _n(l — e2mib?n) T n(1 — e—2mib=?n)
— log (627r(z+cb)b, q2) _ IOg (eQﬂ'(z—cb)b, 62) )
' o ' (o9}
The result follows by taking the exponential of both sides. O

Lemma 11.4. Faddeev’s quantum dilogarithm function satisfies the two functional

equations:

1 1 .
TG~ ey L) (11.11)

By, (2)Dy(—z) = eim(1H260)/6¢im=" (11.12)

Proof. Let us first prove (11.11). We have

dw

Oy, (2 — ib/2) e—2i(z—ib/2)w _ ,—2i(z+ib/2)w

- 4 sinh(wb) sinh(w/b)w

B / e—2izw (e—bw _ ebw) p
- ¢ 4sinh(wb) sinh(w/b)w v

1 —2izw
—ep (5 | s ) 4
P ( 2 Jo sinh(w/b)w

Leta > 0. Lete = 1if Im(—2iz) > 0 and ¢ = —1 otherwise. Put , = [—a,ica] and

8, = liea, a]. The integrals || 5,1 %fﬁ% dw converge to zero as a — oo. Therefore

672izw > 672izw
NN R d = €2mi € w=eimbn N2 )
/C sinh(w/b)w e (C * Z Res b {smh(w/b)w })

n=1

eZizw

where ¢; = 0and ¢_; = Resy,—g {m} = —2izb. For n € Z\ {0} we have

ef2izw (_1)ne2z7rben
Resw=rinbe = Tin

sinh(w/b)w
S0

e—2izw 2amh
——  dw = (e — 1)2wzb — 21og(1 zmhe
/C sinh(w/b)w w=(e—1)2mz og(1+e )

giving the first result.

To prove equation (I1.12) let us choose the path C' = (—o0, —¢] U eexp([mi, 0]) U [e, 00)
and let € — 0. The rest is just calculations:

1 cos(2wz)
log ®1,(2)®y,(—2) = 5/0 sinh(w b) sinh(w/ b)wdw
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Note that

1/ cos(2wz) do — }/ cos(2wz) 4
2 J(~oo,—¢ sinh(wb) sinh(w/b)w YTy fe,00) Sinh(w b) sinh(w/ b)w v

i.e. it is enough to collect the half residue around w = 0 of the remaining intergral.

1 cos(2wz) ) cos(2wz)
= s - dw = — 1:{eswzo . s
2 Je(imi,0p) sinh(w b) sinh(w/b)w 2 sinh(w b) sinh(w/ b)w
i (b2 + b2 9
=5 (a +22 )
_ eﬂ'i(1+2012))/6€7ri22.

O

The functional equation (11.11) shows that ®1,(z), which in its initial domain of defi-
nition has no zeroes and poles, extends (for fixed b with Tm b > 0) to a meromorphic
function of z with zeroes and poles:

(®(2))* =0 < 2z =F(cp + mib+nib). (11.13)

11.1.2 Five term relation

The quantum dilogarithm function satisfy various five term relations, of which the five
term relation for the dilogarithm function Lis(x) is a limiting case, when the arguments are
non-commuting variables. The far simplest relation is the following

(Y§ q)oo(X; q)oo = (Xa Q)oo(_YX; Q)oo(Y§ Q)ooa

where the operators X and Y satisfy the equation XY = ¢Y X.
From this equation one deduces the famous quantum pentagon identity

Py ()P (q) = Pu(§)Pu(p + ) Pu(p), (11.14)
where p, ¢ € L?(R) are selfadjoint operators satisfying
[p,d] = (2mi)~".
11.1.3 Asymptotic expansion
Proposition 11.5. For fixed  and b — 0 we have the following asymptotic expansion

R - - \2ne1 B2n(1/2) 9*" Lig(—e”)
log @1, (277 b) - ;::O(m b) o o (11.15)

where By, (1/2) are the Bernoulli polynomials evaluated at 1/2.

Proof. From (11.11) we have that

The left hand side yields

x — imb? x4 i b? s L. 19 x
log @y, (2771)) —log @y, (27Tb> = —2sinh(inb°0/0x) log ®}, (%>
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where we have used the fact that

fla+y)=ev (f(2)),

which is just the Taylor expansion of f around . While the right hand side can be written
in the following manner

log(1+€") = C%/ log(1 + €%) dz = _é% Lig(—e€®).

Using the expansion

blnh Z Ban

gives exactly (11.8). O
Corollary 11.6. For fixed 2 and b — 0 one has

@b(igg)::ex <2]52Lu( ))(1+«9@%). (11.16)

11.1.4 Asymptotic expansion at a N'th root of unity

An open and very interesting question for the TQFT studied in this thesis is, what happens
when b? approaches a negative rational. Only a little progress was made in this direction.
Nevertheless we write down what is examined about the quantum dilogarithm (z; )
We recall that Faddeev’s quantum dilogarithm can be writen as a fraction of the dilogaritm
function (11.10).

In the results for the partition function of the Andersen-Kashaev TQFT Faddeev’s quan-
tum dilogarithm is evident and therefore it would be nice to be able to evaluate these re-
sults when b? approaches a negative rational. Unfortunately this leads to integration over
a function with infinitely many zeroes and poles, which the author was not able to handle.

Let b = ¢ — 1/N, where Im(b?) > 0. Note that ¢ = e>™e=2™/N = wp, where p is a
primitive root of unity. i.e. ¢ = (wp)¥ = w". We write n = o + kN, then

oo co N—1

(@ 0)e = [[0=q o) =] TT 0 - """
0

k=0 a=0

Zﬁ

N-1

= H(l — "N o) = H ((wp)"‘x;wN)oo .
0 k=0

« a=0

We want to make an expansion of each of the N factors (z(wp)®; w
Let us here recall the Euler-Maclaurin formula [37]].

Proposition 11.7. The Euler-Maclaurin formula reads:

m—1

]Z:;lf(j) = /a" f(z) dz + %f(a) — %f(n) + Z (l;;; {f(zg D(n) — f(2$—1)(a)} + Ron(n)

s=1

where a, m and n are arbitrary integers such that a < nand m > 0., and

b m m—1)(n m— B m - m
Ron() = g { om0 — pen b} [ oS om0

Proposition 11.8. The quantum dilogarithm (z; ¢)  has the following expansion for ¢ — 1

_r 1_. T T
(a:;e )m:(l—x)l/Qexp<—TL12( )+E p—

>O+Ohﬂ% 7= 0.
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Proof. We apply the Euler-Maclaurin formula to the logarithm of (z;¢)

log (x;q) logH 1—xq :ZIOg(l—xqj)

x
— e Y _ -
/0 log (1 —ze ™) dy + = log(l x) + 19 71 + Ry (o0)
~ [Lig(zem™)]™ 1 x
= [log(e‘T) }0 +3 log(1 — ) + E pow (c0)
1. T
——;ng( x) + flog(l—ac)—&—ﬁ 1:—1+R1(oo)’

Therefore we get the expansion

T €T

(i) = (10 e (L Lia(o) + 1 ) (1+0(%).

O
Proposition 11.9. Let b* = ¢ — +, where $b? > 0 and assume that |z| < 1. For k =
0,1,...,N — 1 the function (z(wé)*; w™) _ has the following expansion.
1 ) 2mieN  x(wé)F
k., NY _ _ k.. k 3
(el ™), = 1= (weremp ( G Linta(wg)) + 2 ) (14 0()).
_ (11.17)
where w = €2™€ and £ = e~ ¥
Proof. This is an immediate consequence of proposition 0

Proposition 11.10. When |z| < 1, ¢ = wp = ¢~ 7/N’¢ where £ = ¢ 2™~ is a primitive root
of unity, then for 7 — 0 we have the asymptotic form

1 oA k
(23¢) 0 = V1—2aN - g(z) - exp (—T Lig(z™) + ToN kzzo m;f_ 1) (1+ 0(7'3)) , (11.18)

where g(x) = [T, (1 — z€*)k/N.

Proof. As above we write
N-
H zq*; ¢V

Now use proposition to each factor in the product and expand this product in a series
in 7 this yields the following

1

N-1 L NNt ;s Nl P
(59) o = H (1—2F)* ~exp (—T Z Lig(z€") + ToN kzzo P 1) (14+0(%)).

k=0 k=0

Note that [Th_ e (1 —x&%) = (1 — 2V) since ¢ is a primitive root of unity. We show below in
lemma|11.11 have the identity

Liy(z™) =N Z Lig( x{

which gives the result. O
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Lemma 11.11. When £ is a primitive Nth root of unity we have the identity

N-1
Lig(a™) = N ) Lip(z¢").
k=0

Proof. The proof is shown by direct computation.

Lip(a™) = N? f: @) _ Ni i(SN)’“" Cal M i Nﬁlgmﬂ = NNiLi (")
2 a n2N2 n2N2 m2 £ 2 ’
n=1 n=1k=0 m=1 k=0 =0

because
N-1
ghm _ 0 when N {m,
1 when N |m.

O

Remark 11.12. The function g has the following property. Again here { is a primitive root of
unity.

N-1 N-1 N-1 .
g(@e) = JJ (@ -2 HP/N = TT (1 — ae" PN = T (1 - 2™ 5
k=0 k=1 7=0
_ ﬁ (1= agh)PN [T o(t— 2PN (1 — o™ [T (1 — o)
P (1 _ xfk)l/N HkN:1(1 . xfk)l/N (1 _ xN)l/N
(1—2)g(2)
(1 IN)I/N

In other words
g9(zf) l-—z

g(z) — (L—aN)I/A

From here it follows, that

g(z€") _ g(@€") g(xz&" ") g(x§) _ (x:)n

g(z) — g(@g1) g(xén=2)  glx) (1 —aN)UN’

Hopefully future studies will lead to an answer of what happens for the partition func-
tion Zj, from the Andersen-Kashaev TQFT when b* — —+, and thereby maybe connect
the theory to Liouville theory.

11.2 Appendix B

11.3 Line bundles on a complex torus

As mentioned above the Boltzmann weights are given by sections of a certain line bundle.
Therefore, we will look at line bundles on a complex torus.

Let us construct line bundles on a manifold M given by a quotient M = V/A by complex
functions on the universal cover satisfying some functional equations. We will also discuss
the space of holomorphic sections of a line bundle over a torus and see that a basis of this
space is given by theta functions. This section is based on [19] and [3].

Before dealing with the concrete case of a torus let us recall the Riemann conditions.
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11.3.1 Riemann condition

Let V be a complex vector space of dimension n, A C V a discrete lattice of maximal rank,
The complex torus M = V/A is called an abelian variety if it is a projective algebraic variety
i.e. can be embedded into projective space.

We will recall the necessary and sufficient conditions for embedding M into projective
space. Kodaira’s embedding theorem gives such a condition, and we will use this and
rewrite it for our purpose. The result we get to is the Riemann conditions.

We will start by looking at the cohomology of M. By an argument using harmonic
forms one can show that

H*(M,C) = A"V @ A*V. (11.19)

Let us give a basis for H* (M, C) expressing the complex structure and a basis for A*V@A*V
expressing A and the rational structure of H'(M,Z). V has euclidian coordinates z =
(#1,...,2pn) given by a complex basis (es,...,e,) and dz1,...,dz,,dz1,. .., dZ, are global
1-forms on M. H*(M,C) = spanc{dza A dZp}a,p, where A, B are multi-indices. Let
be a loop in H; (M, Z) with base point [0] € M. ~ lifts to a path 4 € V which starts at 0
and ends at A € A. V is the universal cover of M and hence A is the deck transformations
so H1(M,Z) = A. Let {\1,..., 2, } be a basis for A. It follows since A was of maximal
rank that {\;} is a real basis of V. Let {x1,...,22,} be the dual coordinates on V and
let {dz1,...,dxa2,} be one forms on M. By definition of the coordinates, integrating dz;
around the loop \; gives §;; and therefore we can write H'(M,Z) = spang{dz1,...,dzs,},
and generally H* (M, Z) = spang{dx 1} 1=-

This gives us two different bases for the cohomology on M. {dz.,dZ.} which reflects
the complex structure on H*(M, C) and {dz; } reflecting the rational structure. Now Kodaira
embedding theorem says that M is algebraic if and only if there exists a Hodge form on M. Le.
a closed, positive form of type (1, 1) representing a rational cohomology class.

For the remaining part of this chapter we let greek indices run from 1 to n and latin
indices run from 1 to 2n. Let IT = (m;,) be the 21 x n-matrix such that IT = (II, TT) changes
basis from {dz,,dZ, } to {dz;}. Let Q = (wq;) be the period matrix of Aie. \; =  wqi€q.
Finally w = 137, ; ¢ijdz; A dzj a two-form with @ = (g;;) an integral skew-symmetric
2n X 2n-matrix.

Proposition 11.13 (Riemann Conditions). M is an abelian variety if and only if one of the
following equivalent conditions are satisfied.

(i) There exists an integral skew-symmetric matrix ¢} such that

OQI =0 and —II7QI=0
(ii) There exists an integral skew-symmetric matrix ) such that
Q00T =0 and —iQQ7'Q =0

(iii) There exists an integral basis {\1,..., A2, } for A and a complex basis ey, ..., e, for
V such that 2 = As, Z with As diagonal with integer entries and Z symmetric and
Im(Z) > 0.

Lemma 11.14. If ) is an integral skew-hermitian quadratic form on A ~ Z2", then there
exists a basis A1, ..., A, for A in terms of which @ is given by the matrix

A 01 0
_( 0 5 _
Q_<—A5 0), where Ajs = .
0 On
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With this lemma, the symmetry of Z follows from QQ~' which is a necessary condition

for w to be of type (1,1). Im(Z) > 0 follow from —iQQflﬁT = 0, which is necessary for w
to be positive. The cohomology class |w] is called a polarization of M, and if all §; are 1, M
is called principal polarized.

If (Mz,w) is a principal polarized abelian variety, Z reflects the complex structure on V.
Since w is both non-degenerate and positive symplectic form, the metric g(-,-) = w(-,Iz-) is
positive definite, where I is the complex structure defined by Z, hence (M2, w) is actually
Kéhler.

11.3.2 Line bundles

Let L — M be a complex line bundle. If we pull back £ to V by the projection map
7 : V — M, the line bundle * L is trivial since V is contractible. This is an easy consequence
of parallel transport.

Proposition 11.15. If Fy, Fy : N — M are smoothly homotopic maps and F is a vector
bundle over M, then Fj N and F}*N are isomorphic vector bundles over V.

Proof. Let Jy, J1 : N — N x [0, 1] be the smooth maps defined by

Jo(p) = (p,0), Ji(p) = (1)
If F} is smoothly homotopic to Fj, there exists a smooth map H : N x [0,1] — M such that
I{OJOZFWO7 HOJ1:F1.

Thus is suffices to show that if E is a vector bundle over N x [0, 1], then J§ E is isomorphic
to J{ E. Give E a connection and let 7, : E(,, o) — E(;,1) denote parallel transport along the
curve t — (p, t). We can then define a vector bundle isomorphism 7 : J§ E — J{ E by

7(p,v) = (p, 7p(v)), for wve Eyo =J5E.

Corollary 11.16. Every vector bundle over a contractible manifold is trivial.

Proof. 1f M is contractible then the identity map on M is homotopic to the constant map,
and hence any vector bundle over M is isomorphic to the pullback bundle over a point via
the constant map. O

Pick a global trivialization ¢ : #*£ — V x C. In each fiber (7*L), we have an iso-
morphism ¢, : (7*L£), — C. From the definition of the pullback and the periodicity of
our lattice we have that (7°L). = Lr(z) = Lrz42) = (7°L).4», for A € A. If we compose
trivializations ¢, o ¢! : C — C we get an automorphism of C. Composition of trivial-
izations are thus multiplication by complex numbers depending on z and A. Let us denote
this number by e, (z). Varying z gives a family of functions {ey € O*(V)}rea which we call
multipliers. These must satisfy the relations

ex(z)ex(z +A) = ex(2)ex(z + X) = ex1a(2), (11.20)
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which follow from the commutativity of the diagram below.

(m*L), —2~C

ex(z)

(o
(F*ﬂ)er,\ L C extar (%)

ey (z4+) ey (2)
[

(T°L)z4a4x —=C

ex (z+)\/)

ISV
(7 L)z x = -c

Assume given such family of non-vanishing holomorphic functions {ey} xca satisfying the
above equations. Let £ — M be the quotient of V' x C by identifying (z,£) ~ (z+ A, ex(2)§).
Then £ is a line bundle over M with the given functions as multipliers. By the compatibility
relation we can give such a collection by specifying e, for some basis {\,} for A so long
as the functions ey , satisfy the relation

ex. (2 + Agex, (2) = exy (24 Aa)en, (2).

We want to show that any line bundle L — M can be given by multipliers of a simple
character. First we construct a line bundle having arbitrary positive Chern class, using
elementary functions e. Then we show that any positive line bundle L — M is determined
by its Chern class.

If {\1,..., Ao, } is a basis for A over Z with {\1,..., A, } linearly independent over C,
we have

V “\n
Z{Al,...,An}:(C)

and we can factor our projection map 7 : V' — M by

Vv

Vo 2on o

— M.

By Poincaré’s 0-lemma
HY((C)™,0) = H*((C*)",0) = 0.

Combining this result with a long exact sequence on sheaf cohomology it turns out that
e HY((CH™,0%) — H*((C)™,Z)

is an isomorphism. Le. any line bundle on (C*)" is determined by its first Chern class.
For any line bundle £ — M we can choose our basis A1, .. ., A, for A such that in terms
of the dual coordinates z1, ..., z2, on V the first Chern class is given by

(L) = Z 00dxo N dToyn.

i=1

The functions z ., are well-defined global functions on V/Z{ 1, ..., A, }, so wehave [dzo1r,] =
0 € Hyp(V/Z{\1,...,\n}). This means that ¢; (77 L) = 7} (c1(£)) = 0 and 7} (L) is trivial.
Let ¢ : 77 £ — (C*)" x C be a trivialization and choose our trivialization ¢ of 7* £ to extend

o, thatis ¢, = ém(z) and ¢.4, = @Q(HAO) foreverya=1,...,n.



11.3. LINE BUNDLES ON A COMPLEX TORUS 123

b= . " Fra(e)
C~—"——— (L), =————= ("1 L)y (24rs) ———>C
ex () Faa (2)
$=ira . %
C = (1L ar, = (1" L)y (s42r0) ——>C

Since gzgm(z) = ng(w Aa)r [ro is forced to be constantly 1. Commutativity and the fact
that ¢ extends ¢ implies that ey, = 1 for @« = 1,...,n. l.e. we only need to consider
multipliers with the first n being equal to 1.

Now assume w is any invariant integral form, positive of type (1,1) on V. Choose a
basis {A1, ..., A2, } for A over Z such that in terms of the dual coordinates z1, ..., z2, on V
the form w can be written as

w = Z 0adro NdToyn, 04 €7Z.

a=1

Further we require that the first n of the A\ s are linearly independent over C. Because

w is non-degenerate each §, # 0 and we can define e, = 0\, @ = 1,--- ,n. We let
€1
z1,- -+, zn be the corresponding coordinates on V. We can write (Aq,...,A2,) = i R
en
le
ie. : = OT(dx,...,dxs,), where Q = (A.,Z) and the third Riemann condition
dzp

implies that Z = Z7 and Im Z > 0.

Lemma 11.17. The line bundle £ — M defined by multipliers e), = 1 and ey, (2) =
e~ 2miza=miZaa o =1, ...,n has Chern class ¢;(£) = [w].

Proof. Let us first check that these multipliers satisfies the line bundle condition (11.20). We
have to show that

exa (2 Ag)eny (2) = ex, (2 + Aa)en, (2) = x4 (2)-
This is clearly satisfied for a or § < n and writing Z = (Z,z)
— 627r72(2[.;+2ﬁa)6777iZ[356727ri(za) i o

ernis (2 + Anta)en, . (2) €
+8 +

— e27ri(za+Z,,5)e—7riZg5e—27ri(z;3)€—7riZaa
= €xpia (Z + )‘n+ﬁ)€>\n+g (Z)

as required. Now let ¢ : 7*£ — V x C be a trivialization of 7*£ inducing the given
multipliers. Then for any section 6 of £ over U C M, 6 = ¢*(7*6) is an analytic function on
7~ 1(U) satisfying

0(z+ o) =0(2), and 0(z+ A\ypq) = e ZFiZa"TiZaag (), (11.21)

for a = 1,...,n and conversely any such function defines a section of £. If || - || is any
metric on £ then ||0(2)||? = h(2)|0(2)|? for every section § of £ where || is the usual inner
product on C. h will be a positive smooth function of z and satisfies the equation:

h(2)[0(2)” = 110(2)]1* = h(z + A)[8(z + M) (11.22)
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for any A € A. It follows that

h(z+ o) = h(z)
h(z + An—&-a) _ |62m’zaﬂ'i2aa |2h(z)
Conversely, any h satisfying the above equations will be a metric on L.
Now let Z € H = {Z € Mat,«,(C) | ZT = Z, ImZ > 0}. Write Z = X + iY, where
X;Y are real n x n matrices. Clearly Y is invertible and we define W = (W,3) = Y ~!. The

function
h(Z) — 6% ZWaB(Za_Ea)(zﬁ_zﬁ) — e—27‘ry~Yy’ (1123)

where of course z = x + Zy, satisfies the equations above. This is straight forward verifica-
tion see e.g. [19].
Now one can compute the curvature form O, associated to the metric given by h.

= 1
Or = 00log 5 = T Wapdza Adzg
a,p

In terms of the basis {dz,,, dz,+.} we have
dzgy = 0pdre + Z 20pdTn i
B

dZo = 0adTa + Y ZapdTnip

B
Hence
Or = —2mi Y Sadra Adrn o
and finally
)
a(L) = [%94 = [w]. (11.24)
O

For further details the detailed proofs are written out in [19].

11.3.3 Theta functions

In the previous section we introduced a Hermitian structure h(:,-)., where (-,-). is the
standard inner product on C. Since

hz+A) = mh(z),

we see that this Hermitian structure is A—invariant and induces a Hermitian structure on
the line bundle L.

If we let C denote the space of complex structures on V, which are compatible with the
metric, that is C consists of the symplectomorphisms / : V' — V such that the symmet-
ric form w(-,I-) is a positive definite inner product on V. If all 6, are 1 then the triple
M; = (M,w,I) is a principal polarized abelian variety. Using the basis {\,..., A2y}
one can identify the space C with the Siegel generalized upper half space H = {Z ¢
Mat,xn(C) | ZT = Z, ImZ > 0} For any I € C {\1,...,\,} is a basis for V over C with
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respect to I. We let z = (z1,...,2,) be the dual coordinates on V relative to the basis
{A1,..., An}. The complex structure determines a unique Z € H such that
z=x+ 2y (11.25)

Since any Z € H gives a positive complex structure, say I(Z), compatible with the sym-
plectic form, we have a bijective map / : H — C, given by sending Z € H to I(Z).

If multipliers are chosen with respect to the complex structure we get a line bundle £;
over M;. The space of holomorphic sections of £, H(M, £¥), has dimension k" and they

give abundle H® over C by letting H\*) = HO(M;, £¥). The L? inner product on the latter
is given by

(51,32):/ 51(2)s2(2)e ™2™ YV dady, (11.26)
M

for S1,82 € HO(M[, EI;)
This space has an explicit basis given in terms of Theta functions of level k:

Ouar(2,2) = Z emik(l+a) Z(I+a) 2mik(l+a) 2
lezn
For further details one should consult [3] and [19].

Remark 11.18. If ¢1(L) is a principal polarization of M, H°(M, L) is one dimensional and
generated by the section ¢ with corresponding

9(2) _ Z eiTrl-ZleQTril-z

ez

satisfying the functional equation (I1.2I). These functions are called Riemann theta func-
tions of the principal polarized abelian variety (M, w). Since these functions depends on
both z, Z one often writes #(z, Z). These functions appear when the Weil-Gel’fand-Zak
transform is used on a wavelet as we will se later.

Further we note that we have actually constructed a pre-quantum line bundle over a
torus.

Example 11.19 (Complex line bundle over the Torus). A complex line bundle over the torus
T™ = R™/Z™ can as above be described by a cocycle

Z™ — C®(R™, S : XA — ey
which satisfies

extx (2) = ex(z + Aea(z),
for z € R™ and A, X € Z™. The associated complex line bundle is

~ R™xC

L: T

[2,&] = [z + Aex(2)€], YAeZ™.

A Hermitian connection in L has the form
V=d+A, A=) Ax)da’
i=1
where the function A : R2 — R satisfy the condition

36)\
1
i (z).

Az + A) — A(z) = —ex(z)
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If we specify our multipliers to be e(; o) (u},uh) = e~™"2 and e(1)(u;,u;) = €™ Our
connection is determined by

/ / 1 0 )
An((uh ) + (1,0)) = A((u, uh) = —equ.0p(uh,us) ™ ey 0 (uh, ) = iy
1

and
/ / / / / r\—1 a / ’ .
Az ((uy,us) +(0,1)) — A((u, ug)) = —e(o,1)(u, up) WG(OJ)(UD%) = T
1

And we have
V = d + mi(u)duy — uydul).
11.3.3.1 Pull back of line bundles

In the following we want to consider the necessities for a line bundle to be a pull back
of some other line bundle. In the following lemma we consider the restrictions on the
multipliers for the pull back bundle.

Lemma 11.20. Let T* = R"/A; and T™ = R™/As. Let f : T™ — T" beamap. If Lisa

line bundle over T" determined by multipliers ef\l/), A" € A, then the pullback bundle f*£
is determined by multipliers satisfying the formula

D (@) = ey (F(@))
where F' is the map covering f and A € As.

o |

T ——T™

Proof. Note that f o po = p; o . We look at the following diagram

PE(fL) —> oL I it
R™ P2 ™ f Tn <P Rn

Since R™ and R™ both are contractible we can choose global trivializations ¢ : p;£ — R"xC
and ¢ : p5(f*L) — R™ x C for the pull back bundles. Furthermore we note that for A € A
F(\) € Ay. This follows since

piL(F(N) = f(p2(N)) = f([O](2)) = [0](1)7
Hence F'(\) € ker(py) i.e. F(\) € A;.
For F(z) € R, F(\) € A; we have equalities of fibers by definition of pull back bundle
(P1L)P(2) = Lpi(F() = Lpi(F)+F0) = PIL)F(2)+F (-

DF(2)+F(N) oq&;(lz) is thus multiplication by a complex number which we denote e%l() N (F(2)).
Multipliers for the pull back bundle p3(f*£) is given in the same way as above. Now it

is enough to note that for z € R™ we have the following equalities of fibers.

(3(f"L))z = (f*L)ps(z) = Liopa(z) = Lpror(z) = P1L)F(2)-
It follows that ) )
e (2) = ey (F(2)).
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Because the multipliers for a given line bundle depends on the global trivialization
x : L — V x C we see that multiplication by a nowhere vanishing holomorphic function
g : V. — C* the set of original multipliers {ex}ca is replaced by a new set of multipliers
{€} } re satisfying the relation

18 o4 (2)

ey =ex(2).

Hence we assume that £ — 7" is a line bundle isomorphic to the line bundle f*£ —
T™. Since these line bundles are bundles over the same base space it follows that an iso-
morphism ® : E — f*£ locally has the form ®(z,¢) = (z,9(z) - £). Where g : R™ — C*is a
holomorphic function.

Proposition 11.21. Let £ — T™ be a line bundle and let f : 7™ — T" be a map having
F :R™ — R" as a covering map. There exists a line bundle £ — T" such that &' = f* L.

Proof. We need to define multipliers for the line bundle £ over T" such that the pull back
bundle f*£ has the multipliers of E. By the lemma above, and the observation that holo-
morphic line bundles differ by a cocycle we see that the restriction of multipliers must be

g(z+)\)‘

e (11.27)

e (2) = ey (F(2)

In other words we need to choose a holomorphic function g : R™ — C* such that equation

(11.27) is satisfied. For every A ¢ ker F' we set % = 1. Now let A € ker F' be a basis

vector in the lattice Z". Since F'(\) = 0 the multiplier eg,l()/\)(F(z)) = eél)(F(z)) = 1sowe
rewrite (11.27) and solve the equation

g(z)eg\s)(z) =g(z+ A). (11.28)
solving this equation is equivalent to solving the equation
g™V () gmian(s) — omiv(z+X)
hence we look for a solution to the problem
ax(z) =7(z +A) =7(2).
Writing ax(z) = >~ a;2; a solution to this problem is given by the function

7 P

where A is chosen to be the symmetric matrix with entries

A=A = % for N =1,5€{1,...,n}.
! ’ 0  for all other entries

and

,,
&
ML_

— C— 1
B, — g )
0 otherwise

and C is just a constant. O
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