
14

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

On spectral distribution
of high dimensional covariation matrices

Claudio Heinrich and Mark Podolskij
www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade 118, Bldg. 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 02 December 2014





On spectral distribution of high dimensional
covariation matrices

Claudio Heinrich and Mark Podolskij

Department of Mathematics, Aarhus University
claudio.heinrich@math.au.dk, mpodolskij@math.au.dk

Abstract

In this paper we present the asymptotic theory for spectral distributions of
high dimensional covariation matrices of Brownian diffusions. More specifi-
cally, we consider N -dimensional Itô integrals with time varying matrix-valued
integrands. We observe n equidistant high frequency data points of the under-
lying Brownian diffusion and we assume that N/n→ c ∈ (0,∞). We show that
under a certain mixed spectral moment condition the spectral distribution of
the empirical covariation matrix converges in distribution almost surely. Our
proof relies on method of moments and applications of graph theory.

Keywords: diffusion processes, graphs, high frequency data, random matrices.

AMS 2010 Subject Classification: 62M07, 60F05, 62E20, 60F17.

1 Introduction

Last decades have witnessed an immense progress in the theory of random matrices
and their applications to probability, statistical physics and number theory. Since
the seminal work [16], and increasingly so since [9], the asymptotic behaviour of
the spectrum of random matrices received a great deal of attention. We refer to the
monographs [1, 4, 10] for a detailed exposition of recent results and techniques.

This paper is devoted to the study of spectral distribution of empirical covariation
matrices of Brownian integrals. On a filtered probability space (Ω,F , (Ft)t∈[0,1],P)
we consider a diffusion process (Xt)t∈[0,1] that is defined as

Xt = X0 +

∫ t

0

fsdWs, (1.1)

where W denotes an N -dimensional Brownian motion and f is a RN×N -valued step
function given as

ft =
m∑

l=1

Tl1[tl−1,tl)(t) (1.2)
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where 0 = t0 < · · · < tm = 1 is a fixed partition of the interval [0, 1] and the
matrices Tj, 1 ≤ j ≤ m, are either deterministic or independent of the driving
Brownian motion W . In mathematical finance one of the most central objects is the
empirical covariation of X, which is defined via

[X]Nn :=
n∑

i=1

(
X i

n
−X i−1

n

)(
X i

n
−X i−1

n

)∗
. (1.3)

Here and throughout the paper A∗ denotes the transpose of a matrix A. For a
fixed dimension N it is well known that [X]Nn converges to the covariation matrix
[X]N =

∫ 1

0
fsf

∗
s ds as n → ∞ whenever the Itô integral at (1.1) is well defined.

When N converges to infinity at the same rate as n the situation becomes much more
delicate. In the following we briefly review some recent work on spectral distribution
of large covariance/covariation matrices. Recall that for a given matrix A ∈ RN×N

with real eigenvalues λ1, . . . , λN the spectral distribution of A is defined via

FA(x) :=
1

N

N∑

j=1

1{λj≤x}.

In [8] the author studies the spectral distribution of the empirical high dimensional
covariance matrix based on i.i.d. data, which corresponds to our model (1.1) with
f being constant. In this framework the spectral distribution of the empirical co-
variance matrix converges and, more importantly, there is a one-to-one connection
between the limit of the Stieltjes transform of F [X]Nn and the limit of F [X]N (given
the latter exists). It is exactly this relationship, called Marčenko-Pastur equation,
which makes the estimation of the spectral distribution of the covariation matrix
[X]N possible. In another paper [18] the authors consider the model (1.1), where the
time variation of f comes solely from a scalar function. In other words, they study
processes of the type fs = asT , where a : R→ R is a scalar function and T ∈ RN×N .
In this situation the methods of [8] can not be directly applied to infer F [X]N , but
a certain modification of the functional [X]Nn , which separates the scalar function a
and the matrix T , still leads to a feasible procedure.

Unfortunately, both methods do not work when the function f has the form (1.2).
More precisely, the Stieltjes transform method is hardly applicable in our setting
unless all matrices T1, . . . , Tm have the same eigenspaces for all N . In this work
we follow the route of method of moments, which has been originally proposed by
[17] in the context of random matrices. The basic idea is to show the almost sure
convergence of all moments of the random probability measure F [X]Nn . Then, under
Carleman’s condition, the limiting distribution is uniquely determined by the limits
of moments. The idea of the proof is heavily based on combinatorics of colored
graphs. The main result of the paper is the following theorem.

Theorem 1.1. Assume that N/n→ c ∈ (0,∞) and the following conditions hold:

(i) There exists a constant τ0 > 0 such that ‖Tl‖op ≤ τ0 for all 1 ≤ l ≤ m and
uniformly in N .
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(ii) For any k ≥ 1 and any multi-index l ∈ {1, . . . ,m}k the mixed spectral moment
condition holds:

Mk
l := lim

N→∞

1

N
tr
( k∏

i=1

TliT
∗
li

)
(1.4)

exists in the almost sure sense and is non-random.

Then F [X]Nn converges in distribution to a non-random probability measure F almost
surely. The k-th moment mk of F is given via

mk =
k∑

r=1

cr−1
∑

ν1+···+νr=k

∑

l′∈{1,...,m}k
cr,ν,l′

r∏

a=1

Mνa
l(a)

m∏

l=1

(tl − tl−1)sl,ν,l′ , (1.5)

where l(a) = (l
(a)
1 , . . . , l

(a)
νa ) ∈ {1, . . . ,m}νa are such that l′ = (l(1), . . . , l(r)). The power

sl,ν,l′ is defined as sl,ν,l′ =
∑r

a=1 n
(a)
l where

n
(a)
l =

{
#{j : l

(1)
j = l}, if a = 1,

#{j 6= 1 : l
(a)
j = l}, else.

The definition of cr,ν,l′ is given in section 2.4.

The paper is structured as follows. In section 2 we present an overview about
related problems and give some remarks on the conditions of Theorem 1.1. At the
end of this section we also give the definition of the constant cr,ν,l′ . Section 3 is
devoted to the proof of Theorem 1.1.

2 Related problems and remarks

In this section we review some related studies and comment on conditions of Theo-
rem 1.1.

2.1 Limit theory for a fixed dimension N

As we mentioned in the introduction, the definition of a covariation matrix implies
the convergence in probability

[X]Nn
P−→ [X]N as n→∞

when the dimension N is fixed. Furthermore, the asymptotic results of [5, Theo-
rem 2.5] imply the following theorem.

Theorem 2.1. Assume that the process f is càdlàg (not necessarily of the form
(1.2)). Then we obtain the stable convergence

√
n
(
[X]Nn − [X]N

) dst−→
∫ 1

0

A1/2
s dW ′

s, (2.1)

where W ′ is a N2-dimensional Brownian motion independent of the σ-algebra F and
the N2 ×N2-dimensional matrix As is given as

Ajk,j
′k′

s = Cjj′
s Ckk′

s + Cjk′
s Ckj′

s with Cs = fsf
∗
s .
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Quite surprisingly, Theorem 2.1 holds for general càdlàg stochastic processes f .
We remark that Theorem 2.1 can be transformed into a feasible standard central
limit theorem (cf. [11, Example 3.5]), thus making statistical inference for compo-
nents of [X]N possible. Such general results do not hold anymore when N →∞ and
one requires much stronger conditions on the process f .

2.2 Limit theory in the setting N/n→ c ∈ (0,∞)

In this subsection we shortly review the results of [8, 18]. In [8] the author considers
empirical covariance matrices of i.i.d. vectors. In the setting of our model (1.1) it
means that the function f is deterministic and constant over the interval [0, 1]. In
order to state the main result we introduce the Stieltjes transform, which is defined
via

mµ(z) =

∫

R

1

x− zµ(dx), z ∈ C+, (2.2)

where µ is a measure on R and C+ := {z ∈ C : Im z > 0}. Since the matrix f is
constant, we can write (in distribution)

Xt = X0 + Σ1/2Wt with Σ = [X]N .

The following path breaking result, called Marčenko-Pastur equation, has been
shown in [9] for the case of a diagonal matrix Σ and extended later to general
covariance matrices Σ in [12].

Theorem 2.2. Assume that the spectral distribution FΣ of Σ converges in distribu-
tion to F as N →∞. When N/n→ c ∈ (0,∞) the following results hold:

(i) Define the function v[X]Nn
(z) := −z−1(1 − N/n) + Nm

F [X]Nn
(z)/n for z ∈ C+.

Then there exists a deterministic function v such that

v[X]Nn
(z)→ v(z) almost surely.

(ii) The function v from (i) satisfies the Marčenko-Pastur equation

− 1

v(z)
= z − c

∫ ∞

0

x

1 + xv(z)
F (dz). (2.3)

(iii) The equation (2.3) has a unique solution, which is the Stieltjes transform of a
measure.

In practice it is of course impossible to check whether the spectral distribution
FΣ converges as N →∞. A pragmatic solution to this problem is to assume that N
is large enough, so that FΣ can be identified with its theoretical limit F . In the next
step, as proposed in [8], discretization and convex optimization can be applied to
construct a numerical algorithm to compute the function F from Marčenko-Pastur
equation (2.3). At this step the approximation v[X]Nn

(z) ≈ v(z) can be used. Finally,
since we have identified FΣ with F , the spectral density of the covariance matrix Σ
can be recovered from F . This procedure shows the importance of Marčenko-Pastur
equation for statistical inference.
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In the work [18] the authors propose an extension of this procedure to time-
varying matrices fs, where the time variation is described by a scalar function.
More precisely, they consider models of the type (1.1) with

fs = asΣ
1/2,

where a : [0, 1] → R is a scalar function and Σ is a positive definite matrix with
tr(Σ) = N (possibly random, but independent of W ). In this setting the Marčenko-
Pastur law for [X]Nn can not be expected to hold in general as it has been demon-
strated in [18, Proposition 3]. The functional [X]Nn requires a modification to satisfy
the Marčenko-Pastur equation (2.3). Such a modification is given as

[̂X]Nn :=
tr([X]Nn )

n

n∑

i=1

(
X i

n
−X i−1

n

)(
X i

n
−X i−1

n

)∗

|X i
n
−X i−1

n
|2

, (2.4)

where | · | denotes the Euclidean norm. Intuitively speaking, the proposed trans-
formation of the original statistic [X]Nn eliminates the scalar variation as and the
methods of [8] become applicable. Indeed, under certain conditions, the spectral
distribution F [̂X]Nn is connected to FΣ through the Marčenko-Pastur equation (2.3).
We refer to [18, Theorem 2] for a detailed exposition of the asymptotic theory.

2.3 Remarks on conditions of Theorem 1.1

In this subsection we provide a discussion of conditions of Theorem 1.1.
First of all, we remark that the mixed spectral moment condition at (1.4) is

a rather strong condition, which however seems to be necessary according to our
proofs. Nevertheless, in some special cases this assumption can be replaced by an
easier condition. For instance, in the setting of a constant function f , i.e. T1 = · · · =
Tm = T , a necessary condition for Theorem 1.1 to hold becomes

F TT ∗ −→ F, (2.5)

where F TT ∗ is the spectral distribution of TT ∗ and the convergence is in distribution
almost surely towards a non-random distribution function F . This assumption is
used in classical works [13, 17]. In this framework the boundedness of the operator
norm at (i) of Theorem 1.1 is not required as this condition can be overcome by
a truncation argument. More precisely, defining F TT ∗

τ (x) := N−1
∑N

i=1 1{λi≤x∧τ},
assumption (2.5) implies the convergence

F TT ∗
τ −→ Fτ ,

where Fτ is a non-random distribution function, for all τ > 0. The convergence of
moments result similar to (1.5) is then proved by showing the corresponding assertion
for a fixed τ and letting τ →∞. We refer to e.g. [4] for a detailed exposition. Also
the condition (1.4) of Theorem 1.1 follows directly from (2.5) and boundedness of
‖TT ∗‖op due to the obvious relation

1

N
tr(TT ∗)k =

∫
xkF TT ∗(dx).
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However, in the general framework of (1.2) the convergence of, say, joint spectral
distribution of matrices T1T

∗
1 , . . . , TmT

∗
m is not sufficient to conclude convergence of

mixed spectral moments at (1.4). The reason is that the behaviour of the expression
at (1.4) is not solely determined by the eigenvalues of the involved matrices, but
crucially depends on their eigenspaces. For the very same reason the truncation ar-
gument of [17] does not work, and spectral boundedness at (i) of Theorem 1.1 has to
be assumed explicitly. Therefore it seems hard to avoid imposing condition ’(1.4). Let
us remark however that when matrices T1T

∗
1 , . . . , TmT

∗
m have the same eigenspaces

for all N , i.e. there exist eigenvectors v1, . . . vN such that TlT ∗l vi = λ
(l)
i vi, then condi-

tions (i) and (ii) of Theorem 1.1 can be replaced by assuming the almost sure weak
convergence of the joint spectral distribution

F (T1,...,Tm)(x1, . . . , xm) =
1

N

N∑

i=1

1{λ(1)i ≤x1,...,λ
(m)
i ≤xm}

towards a non-random distribution function F .
It is worth noticing that in the framework of free probability the mixed moment

condition is referred to as the convergence of the joint distribution of the noncommu-
tative random variables T1T

∗
1 , . . . , TmT

∗
m, as N →∞. See [3, 15] for an overview of

this theory and its applications to random matrix theory. In particular, asymptotic
freeness of T1T

∗
1 , . . . , TmT

∗
m allows to weaken the mixed moment condition. Denoting

for N × N random matrices τN(A) = 1
N
E[tr(A)], the matrices T1T

∗
1 , . . . , TmT

∗
m are

asymptotically free if for all i1 6= i2 6= · · · 6= ik and all p1, . . . , pk > 0

lim
N→∞

τN
[(

(Ti1T
∗
i1

)p1 − τN((Ti1T
∗
i1

)p1)
)
· · ·
(
(TikT

∗
ik

)pk − τN((Ti1T
∗
i1

)p1)
)]

= 0.

By linearity of τN it is then obvious that all mixed limiting moments exist if and
only if the spectral distributions F TiT

∗
i converge to nonrandom limiting distributions

Fi with finite moments of all orders for i = 1, . . . ,m, almost surely.

2.4 Definition of cr,ν,l′

In this subsection we give the definition of the constant cr,ν,l′ that appears in Theo-
rem 1.1.

Given l′ ∈ {1, . . . ,m}k and ν1, . . . , νr with ν1 + · · · + νr = k, we let l(a) =

(l
(a)
1 , . . . , l

(a)
νa ) ∈ {1, . . . ,m}νa such that l′ = (l(1), . . . , l(r)). We recall the definition

n
(a)
l =

{
#{j : l

(1)
j = l}, if a = 1,

#{j 6= 1 : l
(a)
j = l}, else.

Given a tree, i.e. a connected graph without cycles, G with r vertices H1, . . . , Hr,
we define for l ∈ {1, . . . ,m} and a ∈ {1, . . . , r} numbers n(a),G

l in the following way:
Let Ha1 , . . . , Hap be the vertices adjacent to Ha in G (i.e. the vertices connected to
Ha by a path of length 1), where we leave out the vertex that lies on the path from
Ha to H1, if a > 1. We set

n
(a),G
l = #{j ∈ {1, . . . , p} : l

(aj)
1 = l}.
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Then, we have

cr,ν,l′ =
∑

G

1

|Sl′,G|
m∏

l=1

r∏

a=1

n
(a)
l !

(n
(a)
l − n

(a),G
l )!

1{n(a),G
l ≤n(a)

l }
,

where the summation runs for all trees G on {H1, . . . , Hr}. Here, Sl′,G is the set of
all permutations π on the {2, . . . , r} for which at least one of the following holds:

(i) l(π(p)) 6= l(p) for some p ∈ {2, . . . , r}
(ii) Gπ 6= G, where Gπ is the graph obtained from G by permuting the vertices

H2, . . . , Hr according to π.

3 Proof

For the proof of Theorem 1.1 we rely on the well known moment convergence theo-
rem.

Theorem 3.1. Let (Fn) be a sequence of p.d.f.s with finite moments of all orders
mk,n =

∫
xkdFn(x). Assume mk,n → mk for n→∞ for k = 1, . . . where

(a) mk <∞ for all k and

(b)
∑∞

k=1[m2k(F )]−
1
2k =∞.

Then, Fn converges weakly to the uniquely determined probability distribution func-
tion F with moment sequence (mk).

Condition (b) is known as Carleman’s condition. For the proof we refer to [7,
Theorem 3.3.11].

The strategy for proving Theorem 1.1 is the following: In the next subsection we
introduce colored Q+-graphs. In the two subsections thereafter, these graphs take a
key role in showing that

E[mk(F
[X]Nn )]→ mk (3.1)

holds for all k, where mk is defined as in Theorem 1.1.
Then, in subsection 3.4 we argue that

E
[(
mk(F

[X]Nn )− E[mk(F
[X]Nn )]

)4]
= O(N−2), (3.2)

which yieldsmk(F
[X]Nn )→ mk, almost surely, by virtue of the Borel-Cantelli Lemma.

Finally, verifying that the sequence (mk) satisfies Carleman’s condition and applying
Theorem 3.1 completes the proof.

Our proof extends the proof given in [17] (see also [4] and [2]) for the case of
constant function f . In order to deal with our more general setting we introduce
colored graphs and use new combinatorical arguments.

Throughout the proof, we denote the entries of the matrices Tl by (Tl)ij = t
(l)
ij ,

and likewise for other matrices, in order to maintain readability.
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i

j(1)

j(2)

i1 = i19

i2 = i18

i3 = i17

i4 i5 = i15

i16

i6 = i14

i7

i8 = i9

i10

i11 = i12

i13

j1 = j6

j2 = j5 j3

j4

Figure 1: A colored Q+-graph for k = 6 and m = 2. Here, l = (1, 2, 2, 1, 2, 1) where 1 =
green and 2 = red.

3.1 Colored Q+-graphs

For l = 1, . . . ,m let Yl be N × [n(tl − tl−1)] matrices containing i.i.d. standard
normal variables independent of Tl, where [n(tl − tl−1)] denotes the integer part of
n(tl − tl−1). Set

[̃X]Nn :=
1

n

m∑

l=1

TlYlY
∗
l T
∗
l .

By virtue of the well known fact

‖FA − FB‖∞ ≤
1

N
rank(A−B)

for N ×N symmetric matrices A and B, it is easy to see that

‖F [X]Nn − F [̃X]Nn ‖∞ → 0, (3.3)

as n,N →∞. Therefore, we can replace [X]Nn by [̃X]Nn for the proof of Theorem 1.1.
Conditioning on all Tl as given allows us, moreover, to restrict ourselves to nonran-
dom Tl for the proof.

In order to show the convergence of the expected k-th spectral moment E[mk(F
[̃X]Nn )]

we are faced with the equation

E[mk(F
[̃X]Nn )] =

1

N

1

nk
E
[
tr
( m∑

l=1

TlYlY
∗
l T
∗
l

)k]

= N−1n−kE
[∑

l,i,j

t
(l1)
i1i2
y

(l1)
i2j1
y
∗(l1)
j1i3

t
∗(l1)
i3i4
· · · t(lk)

i3k−2i3k−1
y

(lk)
i3k−1jk

y
∗(lk)
jki3k

t
∗(lk)
i3ki1

]
,

(3.4)

Here, the summation runs over all l = (l1, . . . , lk) ∈ {1, . . . ,m}k and i = (i1, . . . , i3k) ∈
{1, . . . , N}3k. For all a, the index ja varies over {1, . . . , [n(tla − tla−1)]}.

In order to carry out the summation we introduce colored Q+-graphs which
correspond to the summands in the above equation. These graphs are related to
Q-graphs as used by the authors of [17].
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i

j(1)

j(2)

i1 = i13

i2 = i12

i3 = i11

i4 i5 = i6 i7

i8 = i9 = i10

j1 = j4

j2 = j3

•

•

•

•

Figure 2: A colored Q+-graph in C3 and its pillar.

Definition 3.2. Let k > 0. Given multi-indices l ∈ {1, . . . ,m}k, i ∈ {1, . . . , N}3k,
and j = (j1, . . . , jk) where ja ∈ {1, . . . , [n(tla − tla−1)]}, we define the colored Q+-
graph Ql,i,j in the following way. Choose m arbitrary colors c1, . . . , cm. For brevity
we will usually not distinguish between l ∈ {1, . . . ,m} and its associated color cl.
Draw m+1 horizontal lines, the i-, j(1)-, . . . , j(m)-line. Mark the numbers {1, . . . , N}
on the i-line and, for all l, the numbers {1, . . . , [n(tl − tl−1)]} on the j(l)-line. For
s = 1, . . . , k, draw horizontal edges colored in ls from i3s−2 to i3s−1 and from i3s to
i3s+1 with the convention that i3k+1 = i1. For s = 1, . . . , k, draw a vertical (down)
edge from i3s−1 to js on the j(ls)-line and a vertical (up) edge from js to i3s, both
edges also colored in ls. The result is a connected directed graph forming a cycle. It
consists of 4k edges and always 4 subsequent edges are of the same color. Figure 1
provides an example of a colored Q+-graph.

There is a one to one correspondence between colored Q+-graphs and the sum-
mands of (3.4). Highlighting this correspondence we introduce the notation

(ty)Ql,i,j
= E

[
t
(l1)
i1i2
y

(l1)
i2j1
y
∗(l1)
j1i3

t
∗(l1)
i3i4
· · · t(lk)

i3k−2i3k−1
y

(lk)
i3k−1jk

y
∗(lk)
jki3k

t
∗(lk)
i3ki1

]
. (3.5)

We will organize the colored Q+-graphs in three categories and then derive the
limit for (3.4) if the summation runs only for graphs from one of these categories.
To this end, the following definitions are required.

Definition 3.3. The head H(Ql,i,j) of a colored Q+-graph Ql,i,j is the subgraph of
all vertices on the i-line and all horizontal edges.

Definition 3.4. The pillar of a colored Q+-graph Ql,i,j is the Graph obtained from
Ql,i,j by first gluing together coincident vertical edges, then gluing all vertices on the
i-line that are connected in the head of Ql,i,j, and then deleting all horizontal edges.
The pillar is undirected and colorless. See Figure 2 for an example.

We divide the colored Q+-graphs in the following three categories. Category C1

contains all graphs Ql,i,j such that every down edge of Ql,i,j coincides with exactly
one up edge, and such that the pillar of Ql,i,j is a tree. An example of a colored Q+-
graph in this category is the graph in Figure 1. Note that coincident vertical edges
are always of the same color. Category C2 contains all colored Q+-graphs that have
at least one single vertical edge. Category C3 contains all other colored Q+-graphs.
The graph in Figure 2 is in this category since its pillar contains a cycle.
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Now we can split the sum (3.4) into

E[mk(F
[̃X]Nn )] = N−1n−k

[∑

Q∈C1
(ty)Q +

∑

Q∈C2
(ty)Q +

∑

Q∈C3
(ty)Q

]
. (3.6)

The second sum vanishes since a vertical edge in Q which is single corresponds
to a factor y(l)

ij in (3.5) that occurs only once. Hence, the expectation is 0 due to
independence.

In the following section we argue that the third sum is negligible for n,N →∞.
In the section thereafter, the limit for the first sum is derived.

3.2 The limit for the sum of C3 graphs
We make the following conventions on notation: For a Q+-graph Q we denote by
r the number of connected components of the head. By s1, . . . , sm we denote the
numbers of noncoincident j(1), . . . , j(m)-vertices, respectively, and s = s1 + · · ·+ sm.
Denote further by p the number of noncoincident vertical edges of Q.

Lemma 3.5. For a category C3 colored Q+-graph Ql,i,j it holds that p + s− 1 < k.
Furthermore, the degree of each vertex of H(Ql,i,j) is at least 2.

Proof. The pillar of Ql,i,j has r+ s vertices and p edges and is connected. Therefore,
r + s − 1 ≤ p where equality implies that the pillar is a tree. We distinguish two
different cases.

Case 1. If every vertical edge of Ql,i,j has coincidence multiplicity 2, it holds that
p = k, since Ql,i,j contains 2k vertical edges. If, in this case, the pillar would be a
tree, Ql,i,j would be in C1. Therefore, we have r + s− 1 < p = k.

Case 2. One vertical edge of Ql,i,j has coincidence multiplicity larger 2. We have
p < k and thus r + s− 1 ≤ p < k.

Every i-vertex of Ql,i,j connects either with at least two horizontal edges or with
one horizontal and one vertical edge, which is then single. Therefore, if some vertex
of H(Ql,i,j) has degree one, we have Ql,i,j ∈ C2.

In order to show that the sum corresponding to C3 in (3.6) is negligible for
N →∞, we introduce the concept of isomorphic Q+-graphs.

Definition 3.6. Two colored Q+-graphs Ql,i,j and Ql′,i′,j′ are isomorphic, or Ql,i,j ∼
Ql′,i′,j′ , if we can obtain Ql,i,j from Ql′,i′,j′ by permuting the numbers on the lines
i, j(1), . . . , j(m). In particular, Ql,i,j ∼ Ql′,i′,j′ implies l = l′.

Lemma 3.7. It holds that

E3 := N−1n−k
∑

Q∈C3
(ty)Q → 0 (3.7)

for N, n→∞ with N/n→ c ∈ (0,∞).
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Proof. Observe the identity

E3 = N−1n−k
∑

Q3

∑

Q∈[Q3]

(ty)Q, (3.8)

where the first summation is taken for a representative system of pairwise not isomor-
phic graphs in category C3 and the second summation for all Q+-graphs isomorphic
to Q3. It is sufficient to show that for arbitrary Q3 ∈ C3 we have

N−1n−k
∑

Q∈[Q3]

(ty)Q → 0. (3.9)

Glue coincident vertical edges of Q3 into colorless down edges. Let every vertical
edge that connects with the j(l)-line correspond to the matrix

Y (µ) = {(µ− 1)!!}N×[n(tl−tl−1)],

where µ denotes the coincidence multiplicity of the edge.
Applying Theorem A 35. of [4] and Lemma 3.5 yields that there is a constant Ck

such that
N−1n−k

∑

Q∈[Q3]

(ty)Q ≤ CkN
−1n−kN r+s = O(N−1), (3.10)

and the proof is complete.

3.3 Limit of the Expected k-th Spectral Moment

In this subsection we derive the limit of the first sum in (3.6). For a colored Q+-
graph Q ∈ C1, the expectation factor E[y

(l1)
i2j1
y

(l1)
i3j1
· · · y(lk)

i3k−1jk
y

(lk)
i3kjk

] of (ty)Q equals 1.
Therefore,

N−1n−k
∑

Q∈C1
(ty)Q = N−1n−k

∑

Q∈C1
(t)H(Q)

depends on the heads of the graphs only. Using the notations introduced in the last
subsection, there are

m∏

l=1

[n(tl − tl−1)]!

/ m∏

l=1

([n(tl − tl−1)]− sl)!

colored Q+-graphs with the same head as Q. Every graph Q1 ∈ C1 has k noncoin-
cident vertical edges and its pillar is a tree with r + s vertices and k edges where
s = s1 + · · ·+ sm. Consequently, we have k = r + s− 1. Therefore, it holds that

N−1n−k
∑

Q∈C1
(t)H(Q) = N−1

∑

H(Q)∈H(C1)

n−r+1(t)H(Q)

m∏

l=1

(tl − tl−1)sl + o(1) (3.11)

where H(C1) denotes the set of colored heads for graphs in C1. We first derive the
limit for this term if the summation runs for a class of similar heads.
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Definition 3.8. A Q+-graph Q induces a partition of the set {1, . . . , 3k}, where a
and b are in the same partition set if and only if ia and ib are connected in H(Q).
Let Q and Q′ be colored Q+-graphs with the same coloring vector. The heads H(Q)
and H(Q′) are similar (sometimes we also say Q and Q′ are similar) if they induce
the same partition. The equivalence class of heads similar to H(Q) will be denoted
by [[H(Q)]]. See Figure 3 for an example.

At this point it is convenient to introduce the notion of component coloring
multi-indices (CCMIs). For a head of a colored Q+-graph we denote the connected
components by H1, . . . , Hr and their sizes (i.e. the number of edges they contain) by
2ν1, . . . , 2νr. For some component Ha of the head, the CCMI l(a) = (l

(a)
1 , . . . , l

(a)
νa ) ∈

{1, . . . ,m}νa is defined in the following way. We obtain a natural order for the edges
of the Q+-graph by the order of indices in (3.5), i.e. the first edge connects i1 and
i2, the second i2 and j1 and so on. We set l(a)

b = l where l is the color of the b-th up
edge that connects to Ha.

Remark. Note that for a given Q+-graph Q the multi-index (l(1), . . . , l(r)) is not
uniquely determined since it depends on the labeling of the head componentsH1, . . . , Hr.
We follow the convention that H1 contains the index i1. The labeling of the com-
ponents H2, . . . , Hr, however, remains arbitrary, for reasons that will be explained
later.

Let us now analyze the summation of (t)H(Q) for a similarity class [[H(Q)]].

Lemma 3.9. Introducing the notation

(TT ∗)l =

q∏

i=1

TliT
∗
li

for l = (l1, . . . , lq) ∈ {1, . . . ,m}q, we have for a colored Q+ graphs Q1 ∈ C1 with
CCMIs l(1), . . . , l(r)

∑

H(Q)∈[[H(Q1)]]

(t)H(Q) =
r∏

a=1

(tr(TT ∗)l(a) +O(1)).

Proof. We write ∑

H(Q)∈[[H(Q1)]]

(t)H(Q) =
∑′

(t)H1 · · · (t)Hr , (3.12)

where (t)H1 , . . . , (t)Hr are products of entries of T1, . . . , Tm, T
∗
1 , . . . , T

∗
m associated

with the distinct cycles H1, . . . , Hr of the head in the same manner as colored Q+-
graphs are associated to products of the form (3.5). The summation Σ′ runs for all

i
i1 = i10 i7 i3 = i5 i4

i
i1 = i10 i2 = i6 i7 i8 = i9 i3 = i4 = i5

Figure 3: Two similar heads.
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indices of these entries over {1, . . . , N}, with the restriction that entries of different
cycles have distinct indices.

Consider first
∑

(t)Ha for some a ∈ {1, . . . , r}. By the definition of the CCMI
l(a) and recalling that the pillar of Q is a tree it is not difficult to verify that

∑
(t)Ha =

∑

i∈{1,...,N}2νa
t
∗(l(a)1 )
i1i2

t
(l
(a)
2 )

i2i3
t
∗(l(a)2 )
i3i4

. . . t
∗(l(a)νa )
i2νa−1i2νa

t
(l
(a)
1 )

i2νa i1
= tr(TT ∗)l(a) .

Then, applying the inclusion-exclusion principle, and recalling ‖Tl‖op ≤ τ0 for all l,
yields ∑

i∈{1,...,N}2νa
{i1,...,i2νa}∩M=∅

t
∗(l(a)1 )
i1i2

t
(l
(a)
2 )

i2i3
. . . t

(l
(a)
1 )

i2νa i1
= tr(TT ∗)l(a) +O(1),

for any finite set M ⊂ Z+. The statement follows now by induction over the distinct
cycles of the head.

Applying this Lemma we find

N−1
∑

H(Q)∈[[H(Q1)]]

n−r+1(t)H(Q)

m∏

l=1

(tl − tl−1)si

−→ cr−1

m∏

l=1

(tl − tl−1)si
r∏

a=1

Mνa
l(a)
. (3.13)

Now, in order to derive the limit of E[mk(F
[X]Nn )], it is sufficient to determine, for

given r, ν1, . . . , νr, s1, . . . , sm and l(1), . . . , l(r), the number of similarity classes with
this specific parameters.

Definition 3.10. Two components Ha and Hb of the head of a colored Q+-graph
in C1 are vertically connected if there is a down edge starting at some vertex in Ha,
which is followed by an up edge that ends at some vertex in Hb. Note that if Ha and
Hb are vertically connected, then there is exactly one down edge leaving Ha that
is followed by an up edge connecting to Hb and exactly one down edge leaving Hb

that is followed by an up edge connecting to Ha. These four edges form two pairs
of coincident edges and are of the same color. Therefore, we may understand the
vertical connections as colored as well.

Definition 3.11. For a colored Q+-graph Q ∈ C1 with components H1, . . . , Hr we
define the connectivity tree GQ to be the graph with vertex set {H1, . . . , Hr} where
(Ha, Hb) is an edge in GQ if and only if Ha and Hb are vertically connected in Q.

Note that due to the arbitrary labeling of H2, . . . , Hr most Q+-graphs have more
than one possible connectivity tree.

Lemma 3.12. It holds that

E[mk(F
[̃X]Nn )] −→ mk
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where

mk =
k∑

r=1

cr−1
∑

ν1+···+νr=k

∑

l′∈{1,...,m}k
cr,ν,l′

r∏

a=1

Mνa
l(a)

m∏

l=1

(tl − tl−1)sl,ν,l′ .

Here, l′ = (l(1), . . . , l(r)) where l(a) has length νa. For the definition of sl,ν,l′ see
Theorem 1.1, for the definition of cr,ν,l′ see section 2.4.

Proof. Recalling (3.6) and Lemma 3.7 it is sufficient to derive that

N−1n−k
∑

Q∈C1
(ty)Q −→ mk.

Thus, by virtue of (3.11) and (3.13) there are two things left to show:

(1) For a Q+-graph Q with CCMIs l(1), . . . , l(r), the number of noncoincident ver-
tices on the j(l)-line is sl =

∑r
a=1 n

(a)
l .

(2) There are cr,ν,l′ similarity classes of Q+-graphs with CCMIs l(1), . . . , l(r).

For (1) note that every vertex on the j(l)-line has either degree 2 or 4 and its degree
is 4 if and only if it lies on a vertical connection of color l. Therefore, sl is the number
of up edges colored in l minus the number of vertical connections of color l.

The number of up edges colored in l is the number of l-s in the CCMIs l(1), . . . , l(m).
Let Ha and Hb be two vertically connected components where in the connectivity
tree GQ Ha lies on the path from Hb to H1. Then, the color of the vertical connec-
tion (Ha, Hb) is l

(b)
1 . Therefore, the entries l(b)1 for b > 1 correspond one to one to the

colors of the vertical connections of Q. This proves claim (1).
For (2) we first show that there are

m∏

l=1

r∏

a=1

n
(a)
l !

(n
(a)
l − n

(a),G
l )!

1{n(a),G
l ≤n(a)

l }

similarity classes of Q+-graphs with connectivity tree G and CCMIs l(1), . . . , l(r).
Within a component Ha a vertical connection (Ha, Hb) is at a certain position p ∈
{1, . . . , νa}, meaning that the p-th down edge leaving Ha is followed by an up edge
connecting to Hb. It is straightforward to verify that two Q+-graphs with the same
connectivity tree G and the same CCMIs l(1), . . . , l(r) are similar if and only if within
all components all vertical connections are at the same positions.

Consider component H1, and let Ha1 , . . . , Hap be the components adjacent to it
in G. A Q+-graph Q with connectivity tree G contains the corresponding vertical
connections (H1, Ha1), . . . , (H1, Hap), n

(1),G
l of which are colored in l. Since H1 has

n
(1)
l leaving down edges of color l we have

m∏

l=1

n
(1)
l !

(n
(1)
l − n

(1),G
l )!

1{n(1),G
l ≤n(1)

l }

possibilities of positioning the vertical connections among the vertical edges leav-
ing H1. Now turn to some component Ha 6= H1. There is one component Ha0 verti-
cally connected to Ha that lies on the path from Ha to H1 in G. By construction, the
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vertical connection (Ha, Ha0) is at position νa within Ha and it is colored in l(a)
1 . For

distributing all other vertical connections at Ha on their possible positions within
Ha, we are left with

m∏

l=1

n
(a)
l !

(n
(a)
l − n

(a),G
l )!

1{n(a),G
l ≤n(a)

l }

possibilities. This leaves us, overall, with
m∏

l=1

r∏

a=1

n
(a)
l !

(n
(a)
l − n

(a),G
l )!

1{n(a),G
l ≤n(a)

l }

possibilities for distributing all vertical connections of all components on their pos-
sible positions.

Most similarity classes have more than one possible connectivity tree and CCMIs
since the componentsH2, . . . , Hr are arbitrarily labeled. By definition of the set Sl′,G,
introduced in section 2.4, a Q+-graph Q has |Sl′,G| possible connectivity trees and
CCMIs where G is one possible connectivity tree for Q. This proves (2).

Remark. The arbitrary labeling of the components H2, . . . , Hr is necessary in order
to apply the combinatorical arguments of the proof above. If we, for example, label
the components in order of appearance with respect to the natural order of edges,
we impose subtle restrictions on the CCMIs, leading to more involved expressions.

In the next subsection we complete the proof of Theorem 1.1.

3.4 Convergence of mk(F
[X]Nn )

The following Lemma ensures the a.s. convergence of mk(F
[̃X]Nn ). The proof relies on

corresponding results for constant f . For more details we refer to [4, Theorem 4.1].

Lemma 3.13. It holds that

E[mk(F
[̃X]Nn )− Emk(F

[̃X]Nn )]4 = O(N−2).

Proof. For a = 1, . . . , 4, given multi-indices la = (l
(a)
1 , . . . , l

(a)
k ) ∈ {1, . . . ,m}k, ia ∈

{1, . . . , N}3k and ja = (j
(a)
1 , . . . , j

(a)
k ) with j(a)

p ∈ {1, . . . , [n(t
l
(a)
p
−t

l
(a)
p −1

)]}, we denote
by Qa the corresponding colored Q+-graph Qla,ia,ja . Then, we have

E[mk(F
[̃X]Nn )− Emk(F

[̃X]Nn )]4 = E
[

1

Nnk

∑

l,i,j

(ty)Ql,i,j
− E

[ 1

Nnk

∑

l,i,j

(ty)Ql,i,j

]]4

= N−4n−4k
∑

l1,...,j4

E
[ 4∏

a=1

((ty)Qa − E[(ty)Qa ])
]
. (3.14)

If, for some a, all vertical edges of Qa do not coincide with vertical edges of one of
the other graphs, we obtain

E
[ 4∏

a=1

(
(ty)Qa − E[(ty)Qa ]

)]
= 0,
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from independence. Thus, Q = ∪Qa consists of either one or two connected compo-
nents. By expanding (3.14) we have

E[mk(F
[̃X]Nn )− Emk(F

[̃X]Nn )]4

= N−4n−4k
∑

i1,...,l4

(
E
[ 4∏

a=1

(ty)Qa

]
± · · ·+

4∏

a=1

E[(ty)Qa ]
)

Applying Theorem 1A.35. of [4], in a similar way as in the proof of Lemma 3.7,
for each of the 16 summands within the brackets separately, shows that this sum is
O(N−2).

Now, combining Lemma 3.12 and Lemma 3.13 we have, by virtue of the Borel-
Cantelli Lemma and (3.3),

mk(F
[X]Nn )

a.s.−→ mk,

for all k, where mk is defined as in Theorem 1.1. Therefore, if the sequence (mk)
satisfies Carleman’s condition, applying Theorem 3.1 completes the proof of Theo-
rem 1.1.

Lemma 3.14. The sequence of limiting spectral moments mk satisfies

∞∑

k=0

(m2k)
− 1

2k =∞.

Proof. Consider the matrices Sl = 1
n
TlYlY

∗
l T
∗
l for l = 1, . . . ,m. The spectral distri-

bution of 1
n(tl−tl−1)

YlY
∗
l is known to converge to the Marčenko-Pastur law pyl(x) with

support [(1−√yl)2, (1 +
√
yl)

2] for l = 1, . . . ,m, where yl = c(tl − tl−1)−1. Thus, we
have

lim
N→∞

1

N
tr(Skl ) ≤ lim

N→∞
(tl − tl−1)k‖Tl‖2k

op

∥∥∥∥
1

n(tl − tl−1)
Y ∗l Yl

∥∥∥∥
k

op

≤ τ 2k
0

(
1 +

√
maxl(yl)

)2k

,

for l = 1, . . . ,m. Therefore, the result follows from

mk(F
[X]Nn ) ≤ 1

N
mk−1

(
tr(Sk1 ) + · · ·+ tr(Skm)

)
,

which holds due to the convexity of the function A 7→ tr(A)k, see for example [6,
Theorem 2.10].
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