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Abstract

In this paper we present some new asymptotic results for high frequency statis-
tics of Brownian semi-stationary (BSS) processes. More precisely, we will show
that singularities in the weight function, which is one of the ingredients of a
BSS process, may lead to non-standard limits of the realised quadratic vari-
ation. In this case the limiting process is a convex combination of shifted
integrals of the intermittency function. Furthermore, we will demonstrate the
corresponding stable central limit theorem. Finally, we apply the probabilistic
theory to study the asymptotic properties of the realised ratio statistics, which
estimates the smoothness parameter of a BSS process.
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1 Introduction

In the last years Brownian semi-stationary processes and their tempo-spatial exten-
sions, ambit fields, have been widely studied in the literature. This class of models
has been originally proposed by Barndorff-Nielsen and Schmiegel [8] in the context
of turbulence modeling. In their general form, Brownian semi-stationary processes
without drift are defined as

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds), t ∈ R

where µ is a constant, W is a Brownian measure on R, g : R→ R is a deterministic
weight function with g(t) = 0 for t ≤ 0, and σ is a càdlàg processes. If σ is stationary
and independent ofW , then (Xt)t∈R is stationary, which explains the name Brownian
semi-stationary process. In the framework of turbulence modeling, (Xt)t∈R denotes
the velocity of a turbulent flow in the direction of the mean field measured at a
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fixed point in space. The stochastic process (σt)t∈R embodies the intermittency of
the dynamics of X. We refer to [8, 9, 10, 11] for application of Brownian semi-
stationary processes and ambit fields to turbulence modeling, and to [2, 6] for further
applications in mathematical finance and biology.

Recently, probabilistic properties of high frequency statistics of BSS processes
have been investigated in several papers. We refer to a series of articles [4, 5, 13],
which studies the asymptotic behaviour of (multi)power variation of BSS models.
Typically, the weight function g considered in the aforementioned work has the form

g(x) = xαf(x), α ∈ (−1/2, 0) ∪ (0, 1/2),

where f is a sufficiently smooth function slowly varying at 0 and with rapid decay
at infinity. This type of weight functions satisfies g ∈ L2(R), but g′ 6∈ L2(R) since
g′ is not square integrable near 0; in other words, the latter property means that 0
is the only singularity point of the weight function g. As a consequence, the process
X is not a semimartingale. Moreover, its local behaviour corresponds to the one of
a fractional Brownian motion with Hurst parameter H = α + 1/2.

Understanding the limit theory for BSS processes requires an analysis of the
following probability measure. For any A ∈ B(R), we define

πn(A) :=

∫
A
{g(x+ ∆n)− g(x)}2dx∫

R{g(x+ ∆n)− g(x)}2dx
. (1.1)

In the setting of weight functions as above, we deduce that πn
d−→ δ0 as ∆n → 0,

where δ0 denotes the Dirac measure at 0 (cf. [4]). In this case the limit of the power
variation of a BSS process is given as

∆nτ
−p
n

[t/∆n]∑

i=1

|Xi∆n −X(i−1)∆n|p
u.c.p.

===⇒ mp

∫ t

0

|σs|pds, as ∆n → 0, (1.2)

where mp = E[|N (0, 1)|p], τn is a certain normalizing sequence and u.c.p.
===⇒ stands

for convergence in probability uniformly on compact sets. In [4, 5] the asymptotic
mixed normality of (multi)power variation is proved and the paper [13] studies the
application of the limit theory to estimation of the smoothness parameter α. We
remark that the asymptotic results are quite similar to the theory of power variations
of continuous Itô semimartingales (cf. [7, 15] among many others), although the
methodologies of proofs are completely different.

The aim of this paper is to demonstrate that other type of limits for power
variations may appear when the weight function g exhibits further singularity points.
More precisely, we will prove that

∆nτ
−2
n

[t/∆n]∑

i=1

(Xi∆n −X(i−1)∆n)2 u.c.p.
===⇒

∫ ∞

0

(∫ t−θ

−θ
σ2
sds

)
π(dθ), as ∆n → 0,

(1.3)

where π is a finite probability measure on [0,∞) whose support is a subset of all
singularity points of g. Consequently, the limit theory for BSS processes is richer
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than the corresponding theory for continuous Itô semimartingales. Furthermore, we
will show the associated stable central limit theorem including the setting of higher
order differences. We remark that this type of limits has already appeared in [8].
The authors proved convergence in probability for the realised quadratic variation
under the independence assumption between σ andW , and under further conditions
on certain measures associated with g, which identify π. However, it remained quite
unclear when a given weight function g satisfies the proposed set of conditions. The
main goal of our paper is to show that singularity points of g, i.e. all points around
which g′ is not square integrable, determine the support and the weights of π. We
remark that in physics multiple singularity points of g lead to non-homogeneous tur-
bulent flows. Moreover, we will study the effect of this new class of weight functions g
on smoothness parameter estimation. More precisely, we will present the asymptotic
behaviour of a realised ratio statistic that compares the realised quadratic variation
at two different frequencies. Applying the limit theory on a short enough time in-
terval, we will derive the central limit theorem for the smoothness parameter of the
model, which turns out to be the minimal power associated with singularity points
of g. This shows some robustness of the realised ratio statistics investigated in [4, 5]
with respect to misspecification of the kernel g.

The paper is organised as follows. Section 2 presents the main framework and
a set of assumptions. In Section 3 we demonstrate the complete asymptotic theory
for the realised quadratic variation of BSS processes, including the law of large
numbers and the associated stable central limit theorem. In Section 4 we apply
the probabilistic results to determine the asymptotic behaviour of a realised ratio
statistic, which is an estimator of the smoothness parameter of X. Finally, all proofs
are collected in Section 5.

2 The setting

2.1 Model

We start with a given filtered probability space (Ω,F , (Ft)t∈R,P) on which our pro-
cesses are defined. We consider a BSS process (Xt)t∈R (without drift) given as

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds), t ∈ R, (2.1)

whereW is an (Ft)t∈R-adapted white noise on R, g : R→ R is a deterministic weight
function satisfying g(t) = 0 for t ≤ 0 and g ∈ L2(R). The intermittency process σ
is assumed to be an (Ft)t∈R-adapted càdlàg process. We recall that (Ft)-adapted
white noise W is zero-mean Gaussian random measure on {A ∈ B(R) : λ(A) <∞},
where λ denotes the Lebesgue measure, whose covariance kernel is given by

E[W (A)W (B)] = λ(A ∩B).

The finiteness of the process X is guaranteed by the condition
∫ t

−∞
g2(t− s)σ2

sds <∞ almost surely, (2.2)
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for any t ∈ R, which we assume from now on. The underlying observations of the
BSS process X are

X0, X∆n , X2∆n , . . . , X∆n[t/∆n]

with ∆n → 0 and t fixed. In other words, we are in the framework of infill asymp-
totics. Our realised quadratic variation statistics will be based upon higher order
increments of X computed at different frequencies. For any k ∈ N and v = 1, 2, the
k-th order difference ∆n,v

i,kX at frequency v∆n and at stage i ≥ vk is defined by

∆n,v
i,kX :=

k∑

j=0

(−1)j
(
k

j

)
X(i−vj)∆n . (2.3)

The quantity ∆n,v
i,kX is a particular example of a k-th order filter applied to the

process X. When v = 1 we usually write ∆n
i,kX instead of ∆n,1

i,kX. For instance,

∆n
i,1X = Xi∆n −X(i−1)∆n and ∆n

i,2X = Xi∆n − 2X(i−1)∆n +X(i−2)∆n .

The realised quadratic variation statistic based upon ∆n,v
i,kX is defined as

QV (X, k, v∆n)t :=

[t/∆n]∑

i=vk

(∆n,v
i,kX)2 (2.4)

As in [4, 5], the Gaussian core G is crucial for understanding the fine structure of
X. The process G = (Gt)t∈R is a zero-mean stationary Gaussian process given by

Gt :=

∫ t

−∞
g(t− s)W (ds), t ∈ R. (2.5)

We remark that |Gt| < ∞ since g ∈ L2(R). A straightforward computation shows
that the correlation kernel r of G has the form

r(t) =

∫∞
0
g(u)g(u+ t)du

‖g‖2
L2(R)

, t ≥ 0.

Another important quantity for the asymptotic theory is the variogram R, i.e.

R(t) := E[(Gt+s −Gs)
2] = 2‖g‖2

L2(R)(1− r(t)), τk(v∆n) :=
√
E[(∆n,v

i,kG)2]. (2.6)

The quantity τk(v∆n) will appear as a proper scaling in the law of large numbers
for the statistic QV (X, k, v∆n).

2.2 Main assumptions

As we mentioned in the introduction, understanding the asymptotic behaviour of
the probability measure

πn(A) =

∫
A
{g(x+ ∆n)− g(x)}2dx∫

R{g(x+ ∆n)− g(x)}2dx
, A ∈ B(R),
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is absolutely crucial for determining the limit theory for the realised quadratic varia-
tion QV (X, 1, v∆n) (for QV (X, k, v∆n), k ≥ 2, there exists an analogous probability
measure). Indeed, the condition

πn
d−→ π,

where π is a certain probability measure on R, is necessary (but not sufficient) to
obtain a non-standard law of large numbers at (1.3). In [4, 5, 13] it has been dealt
with the case π = δ0, and hence we obtained a rather standard convergence as in
(1.2). However, due to a moving average structure of the process X, even trivial
weight functions g may lead to π 6= δ0 as the next simple example shows.

Example 2.1. Let us consider the function g(x) = 1[0,1](x). A simple computation
shows that

πn(A) =
{λ(A ∩ [−∆n, 0]) + λ(A ∩ [1−∆n, 1])}

2∆n

,

and consequently πn
d−→ π = 1

2
(δ0 + δ1). Indeed, the convergence in (1.3) with

τ 2
n = τ1(∆n)2 = 2∆n can be shown in a straightforward manner. For our weight
function g, we deduce that

Xt = Yt − Yt−1 with Yt =

∫ t

−1

σsW (ds),

for t ≥ −1. Noticing that Y is a martingale, we easily conclude

∆nτ
−2
n

[t/∆n]∑

i=1

(Xi∆n −X(i−1)∆n)2 u.c.p.
===⇒ 1

2

(∫ t

0

σ2
sds+

∫ t−1

−1

σ2
sds

)
, as ∆n → 0,

which confirms (1.3). This example demonstrates that if g(x) =
∑l

i=1 ai1[θ
(1)
i ,θ

(2)
i ]

with 0 ≤ θ
(1)
1 < θ

(2)
1 < θ

(1)
2 < θ

(2)
2 < · · · < θ

(2)
l <∞ then

supp(π) = {θ(1)
1 , θ

(2)
1 , . . . , θ

(1)
l , θ

(2)
l } and π({θ(1)

i }) = π({θ(2)
i }) =

a2
i

2
∑l

i=1 a
2
i

,

and (1.3) holds.

Barndorff-Nielsen and Schmiegel [8] provide conditions on certain rather complex
measures associated with g (including πn

d−→ π), which are sufficient for proving law
of large numbers of the type (1.3) under the independence assumption between σ
andW . However, it is not a priori clear when a given weight function g satisfies those
conditions. Furthermore, conditions ensuring the associated central limit theorem
are expected to be even more complex.

In this paper we follow a different route. We present an explicit large class of
weight functions g, which leads to the law of large numbers of (1.3), such that the
limiting probability measure π is easily identified. Moreover, the associated central
limit theorems are obtained (the limit theory does not require independence of σ
and W ). The crucial message of this paper is that singularity points of g defined
below determine the support and the weights of π.

Let 0 = θ0 < θ1 < · · · < θl < ∞ be a set of given points and α0, . . . , αl ∈
(−1/2, 0) ∪ (0, 1/2). For any function h ∈ Cm(R), h(m) denotes the m-th derivative
of h. Recall that k ≥ 1 stands for the order of the filter defined in (2.3). We introduce
the following set of assumptions.
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(A) For δ < 1
2

min1≤i≤l(θi − θi−1) it holds that

(i) g(x) = xα0f0(x) for x ∈ (0, δ).
(ii) g(x) = |x− θi|αifi(x) for x ∈ (θi − δ, θi) ∪ (θi, θi + δ), i = 1, . . . , l.
(iii) g(θi) = 0, fi ∈ Ck ((θi − δ, θi + δ)) and fi(θi) 6= 0 for i = 0, . . . , l.
(iv) g ∈ Ck(R \ {θ0, . . . , θl}) and g(k) ∈ L2

(
R \ ∪li=0(θi − δ, θi + δ)

)
.

(v) For any t > 0

Ft =

∫ ∞

θl+1

g(k)(s)2σ2
t−sds <∞. (2.7)

We also set

α := min{α0, . . . , αl}, A := {0 ≤ i ≤ l : αi = α}. (2.8)

Let us give some remarks on this set of conditions.

Remark 2.2. The points θ0, . . . , θl are singularities of g in the sense that g(k) is not
square integrable around these points, because α0, . . . , αl ∈ (−1/2, 0)∪ (0, 1/2) and
conditions (A)(i)–(iii) hold. Condition (A)(iv) indicates that g exhibits no further
singularities. The papers [4, 5, 13] deal with the framework of a single singularity
at 0.

Remark 2.3. The parameter α ∈ (−1/2, 0) ∪ (0, 1/2) defined at (2.8) determines
the smoothness coefficient of the BSS process X. In some sense, the coefficients
αi with i ∈ A will dominate when proving the limit theory for QV (X, k, v∆n)t. In
particular, we will prove that supp(π) = {θi}i∈A.

Remark 2.4. The weight function considered in Example 2.1 obviously does not
satisfy the assumption (A). Indeed, in the framework of Example 2.1 the limit theory
for QV (X, k, v∆n)t relies on semimartingale methods (cf. [7]) as X is a difference of
two martingales (althoughX is not a semimartingale). In the case of Assumption (A)
we are in the framework of fractional processes. More precisely, the small scale
behaviour of the Gaussian core G of X is close to the small scale bahaviour of a
fractional Brownian motion with Hurst parameter H = α+1/2. In this situation the
limit theory for QV (X, k, v∆n)t relies on Malliavin calculus and Bernstein’s blocking
technique.

Remark 2.5. In papers [4, 5, 13], where l = 0 holds, the function f0 is assumed
to be slowly varying at θ0 = 0. In this setting more assumptions are required to
establish the limit theory than mere Condition (A). In our paper we impose a bit
stronger assumptions on functions fj, j = 0, . . . , l, in order to avoid a longer set of
further conditions.

Note that condition (A)(ii) implies a symmetric behaviour of the function g
around the points θj, j = 1, . . . , l. Instead we could have assumed different power
behaviour left and right from θj. Although certain constants in the limit theorems
would change in this case, the asymptotic theory remains essentially the same.
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3 Limit theorems

3.1 Law of large numbers

For any number k ≥ 1 and v = 1, 2, we introduce a k-th order filter associated with
g via

∆n,v
k g(x) :=

k∑

j=0

(−1)j
(
k

j

)
g(x− vj∆n), x ∈ R. (3.1)

There is a straightforward relationship between the scaling quantity τk(v∆n) defined
at (2.6) and the function ∆n,v

k g, namely

τk(v∆n)2 = ‖∆n,v
k g‖2

L2(R).

Now, we define the corresponding measures associated with ∆n,v
k g:

πvn,k(A) :=

∫
A

(∆n,v
k g(x))2dx

‖∆n,v
k g‖2

L2(R)

, A ∈ B(R). (3.2)

In order to identify the limit of πvn,k, we define the following functions

h0(x) := f0(θ0)
k∑

j=0

(−1)j
(
k

j

)
(x− j)α0

+ , (3.3)

hi(x) := fi(θi)
k∑

j=0

(−1)j
(
k

j

)
|x− j|αi , i = 1, . . . , l,

where x+ := max{x, 0}. At this stage we suppress the dependence of functions hi
on the index k. Our first result presents the limiting measure πk, which will appear
in the law of large numbers.

Proposition 3.1. Assume that Condition (A) holds. Then we deduce that

πvn,k
d−→ πk,

for any k ≥ 1 and v = 1, 2, where the probability measure πk is given as

supp(πk) = {θi}i∈A, πk(θi) =
‖hi‖2

L2(R)1i∈A∑l
j=0‖hj‖

2
L2(R)1j∈A

. (3.4)

Recalling the definition of the set A at (2.8), Proposition 3.1 says that only
singularities corresponding to the minimal indexes αi (i.e. indexes with αi = α)
contribute to the limit. We remark that the norms ‖hi‖L2(R) are indeed finite, since
for |x| large enough

|hi(x)|2 ≤ C|x|2(αi−k) and 2(αi − k) < −1,

for any k ≥ 1 and αi ∈ (−1/2, 0)∪ (0, 1/2) due to Taylor expansion. Our next result
is the law of large numbers for the statistic QV (X, k, v∆n).

7



Theorem 3.2. Assume that condition (A) holds. Then

∆n

τk(v∆n)2
QV (X, k, v∆n)t

u.c.p.
===⇒ QV (X, k)t :=

∫ ∞

0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ), (3.5)

where the probability measure πk is introduced in (3.4).

3.2 Central limit theorem

Now, we will present a stable central limit theorem associated with convergence
in (3.5). Let us shortly recall the notion of stable convergence, which is originally
due to Rényi [20]. We say that a sequence of processes Y n converges stably in law
to a process Y , where Y is defined on an extension (Ω′,F ′,P′) of the original prob-
ability space (Ω,F ,P), in the space D([0, T ]) equipped with the uniform topology
(Y n dst−−→ Y ) if and only if

lim
n→∞

E[f(Y n)Z] = E′[f(Y )Z]

for any bounded and continuous function f : D([0, T ]) → R and any bounded F -
measurable random variable Z. We refer to [1, 20] for a detailed study of stable
convergence. Note that stable convergence is a stronger mode of convergence than
weak convergence, but it is weaker than u.c.p. convergence.

The stable central limit theorem associated with convergence in (3.5) is dif-
ferent compared to the corresponding result in the case of a single singularity
(cf. [4, 5]). In particular, as we will see below, the limiting process is not an F -
conditional martingale on every interval [0, T ], but just for small enough T . For the
purpose of statistical inference we present a joint central limit theorem for the pair
(QV (X, k,∆n), QV (X, k, 2∆n)).

Theorem 3.3. Assume that condition (A) holds and the intermittency process σ is
Hölder continuous of order γ > 1/2. If k = 1 we further assume that αj ∈ (−1

2
, 0)

for all 0 ≤ j ≤ l. Then, under condition

αi − α > 1/4 for all i 6∈ A, (3.6)

we obtain the stable convergence

∆−1/2
n

(
∆n

τk(∆n)2
QV (X, k,∆n)t −QV (X, k)t,

∆n

τk(2∆n)2
QV (X, k, 2∆n)t −QV (X, k)t

)?
dst−−→ Lt =

∫ t

0

V1/2
s dBs (3.7)

on D2([0,min1≤j≤l(θj−θj−1)]) equipped with the uniform topology, where B is a two-
dimensional Brownian motion, independent of F , defined on an extension of the
original probability space (Ω,F ,P) and x? denotes the transpose of x. The matrix Vs
is given by

Vs =

(∫ ∞

0

σ2
s−θπk(dθ)

)2

Λk, (3.8)
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where the 2× 2 matrix Λk = (λkij)1≤i,j≤2 is defined by

λk11 = lim
n→∞

∆−1
n var

(
∆n

τ̂k(∆n)2
QV (BH , k,∆n)1

)
,

λk22 = lim
n→∞

∆−1
n var

(
∆n

τ̂k(2∆n)2
QV (BH , k, 2∆n)1

)
(3.9)

λk12 = lim
n→∞

∆−1
n cov

(
∆n

τ̂k(∆n)2
QV (BH , k,∆n)1,

∆n

τ̂k(2∆n)2
QV (BH , k, 2∆n)1

)

with BH being a fractional Brownian motion with Hurst parameter H = α+1/2 and
τ̂k(v∆n)2 := E[(∆n,v

i,k B
H)2].

The Hölder condition is a standard requirement for the validity of the blocking
technique applied in the proofs (cf. [4, 5]). As we remarked earlier, the singularity
points θi with i 6∈ A do not affect the law of large numbers in (3.5). However, they
are responsible for a certain bias, which might explode in the central limit theorem.
Assumption (3.6) guarantees that it does not happen.

The appearance of the fractional Brownian motion in the definition of the matrix
Λk is explained by the fact that the local behaviour of the Gaussian core G is close
to the local behaviour of BH with H = α + 1/2. In the terminology of the theory
of Gaussian fields it means that BH is a tangent process of G. In particular, the
correlation structure of increments of G converges to the correlation structure of
increments of BH .

Remark 3.4. The limiting process L is an F -conditional Gaussian martingale on the
interval [0,min1≤j≤l(θj−θj−1)]. Outside of this interval the F -conditional martingale
property gets lost. One may still show a stable central limit theorem with an F -
conditional Gaussian process as the limit, but only when θj − θj−1 ∈ N for all j,
since otherwise the covariance structure of the original statistic does not converge.
We dispense with the exact presentation of this case.

Remark 3.5. The limits in (3.9) are indeed finite and can be computed explicitly.
To see this, let us define the fractional Brownian noise of order k and scale v = 1, 2
via

∆v
i,kB

H :=
k∑

j=0

(−1)j
(
k

i

)
BH
i−vj, (3.10)

and set

ρv1,v2k (j) := corr(∆v1
i,kB

H ,∆v2
i+j,kB

H) (3.11)

(Recall that BH has stationary increments.) Using the covariance kernel of the frac-
tional Brownian motion one can compute the quantity ρv1,v2k (j) explicitly. For in-
stance,

ρ1,1
1 (j) = 1

2

(
|j + 1|2H − 2|j|2H + |j − 1|2H

)
, j ≥ 1.

A straightforward computation shows that |ρv1,v2k (j)| = O(|j|2(H−k)) as |j| → ∞.
Hence, using H-self similarity of BH and the formula E[(Y 2

1 −1)(Y 2
2 −1)] = 2E[Y1Y2]2
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for jointly normal vector (Y1, Y2) with standard normal marginal distribution, we
conclude that

λkv1,v2 = 2
(

1 +
∑

j∈Z\{0}
ρv1,v2k (j)2

)
,

where the latter series is finite for all k ≥ 2 and also for k = 1 if H = α+ 1/2 < 3/4
holds. The condition H < 3/4 is well known in the framework of Breuer-Major
central limit theorems for quadratic functionals (see [12]). This condition directly
translates to α < 1/4. However, we require an additional restriction α < 0 when
k = 1 in Theorem 3.3 due to a certain bias, which might affect the central limit
theorem.

Remark 3.6. Theorem 3.3 deals with realised quadratic variation only, since it is
sufficient for the estimation of the smoothness parameter α as we will see below.
However, we do think that the asymptotic theory can be extended to functionals of
the type

V (X, h, k, v∆n)t :=

[t/∆n]∑

i=vk

h

(
∆n,v
i,kX

τk(v∆n)

)
,

where h ∈ C1(R) is an even function. The main step of the proof is the approximation

∆n,v
i,kX ≈

l∑

j=0

σi∆n−θj∆
n,v
i,kG

(j),

where ∆n,v
i,kG

(j), j = 0, . . . , l, are certain Gaussian random variables. Using Bern-
stein’s blocking technique, which amounts in freezing the intermittency process σ in
the beginning of sub-blocks, the asymptotic behaviour of the statistic V (X, h, k, v∆n)
is determined by the functional

Q(z, h̃, k, v∆n)t :=

[t/∆n]∑

i=vk

h̃

(
z0

∆n,v
i,kG

(0)

τk(v∆n)
, . . . , zl

∆n,v
i,kG

(l)

τk(v∆n)

)
, z ∈ Rl+1,

where h̃ ∈ C1(Rl+1). The central limit theorem for a standardized version of Q(·, h̃,
k, v∆n) relies on the stable convergence of finite dimensional distributions and tight-
ness. The convergence of finite dimensional distributions is a classical setting of
Breuer-Major central limit theorem. It can be shown via method of moments or
using more modern methods of Malliavin calculus (see [18, 19] among others). We
remark that in the case h(x) = xp, where p is an even number, we do not need to
consider the process Q(·, h̃, k, v∆n) and the proof becomes simpler due to binomial
formula.

4 The ratio statistic

The smoothness parameter α defined at (2.8) describes the Hölder continuity in-
dex of X, i.e. X is Hölder continuous of any order smaller than H = α + 1/2. In
the context of turbulence modeling the parameter α is connected to the so called
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Kolmogorov’s 2/3-law (see [17]). It predicts that α ≈ −1/6 (or, in other words,
2(α + 1/2) ≈ 2/3). From this perspective it is important to construct a consistent
estimator of α to check if BSS models adequately describe the physical laws.

The next lemma is crucial for estimating α.

Lemma 4.1. Assume that conditions (A) and (3.6) hold. When k = 1 we further
assume that αj ∈ (−1/2, 0) for all 0 ≤ j ≤ l. Then we obtain

τk(v∆n)2 = (v∆n)2α+1

l∑

j=1

‖hj‖2
L2(R)1j∈A + o(∆2α+3/2

n ), (4.1)

where the functions hj were defined in (3.3).

Now, Lemma 4.1 and Theorem 3.2 provide a direct way of estimating the scaling
parameter α. Indeed, we observe that

Sn :=
QV (X, k, 2∆n)t
QV (X, k,∆n)t

P−→ 22α+1,

for any fixed t > 0. Thus, a consistent estimator of α is given via

α̂n =
1

2

(
log2

(
QV (X, k, 2∆n)t
QV (X, k,∆n)t

)
− 1

)
P−→ α, (4.2)

where log2 denotes the logarithm at basis 2. We remark that this is exactly the
same estimator as proposed in [4, 5] for BSS processes with a single singularity
at 0. A feasible central limit theorem for α̂n is obtained as follows. Note that the
applicability of the result below relies on an a priori knowledge of the lower bound
of min1≤j≤l(θj − θj−1).

Theorem 4.2. Assume that the conditions of Theorem 3.3 hold and choose t <
min1≤j≤l(θj − θj−1).

(i) Define

QQ(X, k, v∆n)t :=

[t/∆n]∑

i=vk

(∆n,v
i,kX)4. (4.3)

Then we obtain that

∆n

τk(v∆n)4
QQ(X, k, v∆n)t

u.c.p.
===⇒ 3

∫ t

0

(∫ ∞

0

σ2
s−θ πk(dθ)

)2

ds

(ii) Furthermore, we have for any fixed t > 0

2 log(2)QV (X, k,∆n)t(α̂n − α)√
1
3
QQ(X, k,∆n)t(−1, 1)Λn

k(−1, 1)?

d−→ N (0, 1), (4.4)

where log denotes the logarithm at basis e and the matrix Λn
k is defined as Λk

in (3.9), where the unknown parameter α is replaced by α̂n (recall that due to
Remark 3.5 the matrix Λk is a function of α).
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Proof. Here we demonstrate the proof of part (ii), while part (i) will be proved in
Section 5. First of all, we remark that under the condition t < min1≤j≤l(θj − θj−1)
we may apply the result of Theorem 3.3. Define the functions r(x, y) = 22α+1 y

x
and

h(x) = 1
2
(log2(x)− 1). Lemma 4.1 implies that

τk(2∆n)2

τk(∆n)2
= 22α+1 + o(∆1/2

n ).

Hence,

Sn = r

(
∆n

τk(∆n)2
QV (X, k,∆n)t,

∆n

τk(2∆n)2
QV (X, k, 2∆n)t

)
+ oP(∆1/2

n ).

Putting things together we conclude that

∆−1/2
n (α̂n − α)

= h ◦ r
(

∆n

τk(∆n)2
QV (X, k,∆n)t,

∆n

τk(2∆n)2
QV (X, k, 2∆n)t

)
+ oP(1).

Applying Theorem 3.3 and delta method for stable convergence we deduce that

∆−1/2
n (α̂n − α)

dst−−→MN (0, V 2),

where MN (0, V 2) denotes a mixed normal variable with mean 0 and conditional
variance V 2 defined by

V 2 :=
(−1, 1)Λk(−1, 1)?

∫ t
0

(∫∞
0
σ2
s−θ πk(dθ)

)2
ds

(
2 log(2)QV (X, k)t

)2 ,

where the matrix Λk is defined by (3.9). Notice that Λk is a continuous function of
α due to Remark 3.5. Hence,

Λn
k

P−→ Λk.

The two other random quantities involved in the definition of V 2 can be directly
estimated via part (i) of Theorem 4.2 and Theorem 3.2. Consequently, the properties
of stable convergence imply part (ii) of Theorem 4.2.

Note that the standardized statistic in (4.4) is feasible as it does not require the
knowledge of the weight function g. We remark that (4.4) coincides with the statistic
presented in [13, Proposition 4.2] in the framework of a single singularity at 0. This
demonstrates that the test statistic in (4.4) is robust to model misspecification within
the setting of Assumption (A) and condition (3.6). In the context of turbulence
modeling this is a very important property.

5 Proofs

5.1 Proof of Proposition 3.1 and Lemma 4.1

We first prove Lemma 4.1 as its proof essentially implies Proposition 3.1. Throughout
this section all positive constants are denoted by C, or Cp if they depend on an
external parameter p, although they may change from line to line.
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Proof of Lemma 4.1. We assume without loss of generality that l = 2, α0 = α1 = α
and α2 − α > 1/4 (since condition (3.6) was assumed). Moreover, let v = 1. Recall
the identity

τk(∆n)2 = ‖∆n,1
k g‖2

L2(R)

(cf. Section 3.1). We consider the decomposition

‖∆n,1
k g‖2

L2(R) =
2∑

j=0

∫ θj+δ

θj−δ
∆n,1
k g(x)2dx+

∫ θ1−δ

δ

∆n,1
k g(x)2dx+

∫ θ2−δ

θ1+δ

∆n,1
k g(x)2dx

+

∫ ∞

θ2+δ

∆n,1
k g(x)2dx. (5.1)

We will now show that
∫ θj+δ

θj−δ
∆n,1
k g(x)2dx = ∆2α+1

n ‖hj‖L2(R) + o(∆2α+3/2
n ), j = 0, 1, (5.2)

and all other terms in the decomposition are o(∆2α+3/2
n ) under the assumptions of

Lemma 4.1. We start with the negligibility of the three last terms in (5.1). Using
Taylor expansion of order k and integrability condition (A)(iv), we immediately
conclude that

∫ θ1−δ

δ

∆n,1
k g(x)2dx = O(∆2k

n ),

∫ θ2−δ

θ1+δ

∆n,1
k g(x)2dx = O(∆2k

n ),

∫ ∞

θ2+δ

∆n,1
k g(x)2dx = O(∆2k

n ),

so all these terms are o(∆2α+3/2
n ) under assumptions of Lemma 4.1. Now, we show

(5.2) for j = 0; the case j = 1 works similarly. Proving this statement for j = 0
essentially means that we can replace f0(x) involved in the integral by the constant
f0(0). Let ε > 0 be small enough with ε >> ∆n. Using again Taylor expansion of
order k and integrability condition (A)(iv), we conclude that (recall that g(x) = 0
for x ≤ 0) ∫ δ

−δ
∆n,1
k g(x)2dx =

∫ ε

0

∆n,1
k g(x)2dx+O(∆2k

n ε
2(α−k)+1).

When we replace the function f0 that appears in the latter integral by a constant
f0(0), we deduce by substitution x = ∆ny

f0(0)2

∫ ε

0

(∆n,1
k (xα))2dx = ∆2α+1

n

∫ ε/∆n

0

h0(y)2dy

= ∆2α+1
n

∫ ∞

0

h0(y)2dy +O(∆2k
n ε

2(α−k)+1),

since |h0(x)|2 ≤ C|x|2(α−k) for large x and 2(α− k) < −1. Note that the dominating
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term is exactly the one given in (5.2). Now, let us evaluate the difference
∫ ε

0

∆n,1
k g(x)2dx− f0(0)2

∫ ε

0

(∆n,1
k (xα))2dx

=

∫ k∆n

0

∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2dx

+

∫ ε

k∆n

∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2dx.

Using differentiability of f0 we immediately conclude that
∫ k∆n

0

|∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2|dx = O(∆2α+2
n ).

The other integral has to be treated differently. In the following we present the
computations only for k = 1, 2 (in fact, the case k ≥ 3 is easier to treat). We start
with k = 1. Using binomial rule, differentiability of f0 and substitution, we conclude
that

∣∣∣∣
∫ ε

∆n

∆n,1
1 g(x)2 − f0(0)2(∆n,1

1 (xα))2dx

∣∣∣∣ ≤ C∆2α+2
n

∫ ε/∆n

1

|h0(y)|yα+1dy

Using the inequality |h0(x)| ≤ C|x|α−1 for large x, we deduce that

∆2α+2
n

∫ ε/∆n

k

|h0(y)|yα+1dy ≤ C∆nε
2α+1

Setting ε = ∆
1/2
n , we deduce that all involved small order terms are o(∆2α+3/2

n ) when
α < 0. Now, we consider the case k = 2. Since f0 is twice continuously differentiable,
we may apply the Taylor expansion to

f0(x+m∆n) = f0(0) +mf ′0(0)∆n + 1
2
m2∆2

nf
′′
0 (xm),

where xm ∈ (0, x + m∆n) and m = 0, 1, 2. Using the above Taylor expansion and
the binomial formula, we deduce that

∣∣∣∣
∫ ε

k∆n

∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2dx

∣∣∣∣ ≤ C(q1(n, ε) + q2(n, ε) + q3(n, ε)),

where

q1(n, ε) =

∫ ε

k∆n

h0(x)2xdx,

q2(n, ε) = ∆n

∫ ε

k∆n

|h0(x)||(x+ 2∆n)α − (x+ ∆n)α|dx,

q3(n, ε) =

∫ ε

k∆n

|h0(x)|xα+2dx.

Applying the substitution x = ∆ny, we get

q1(n, ε) = O(∆2α+2
n ), q2(n, ε) = O(∆2α+2

n ), q3(n, ε) = O(∆2
nε

2α+1).
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Setting now ε = ∆
1/2
n , we conclude that all second order terms are o(∆2α+3/2

n ).
Finally, let us treat the case j = 2. Since

∫ θ2+δ

θ2−δ
∆n,1
k g(x)2dx = O(∆2α2+1

n )

as shown above and α2−α > 1/4, we see that this term is o(∆2α+3/2
n ). Consequently,

we obtain the assertion of Lemma 4.1.

Proof of Proposition 3.1. The assertion of Proposition 3.1 now easily follows from
the proof of Lemma 4.1. First of all, it implies that

‖∆n,v
k g‖2

L2(R) = (v∆n)2α+1

l∑

j=0

‖hj‖2
L2(R)1j∈A + o(∆2α+1

n ),

even without condition (3.6). On the other hand the proof of Lemma 4.1 also implies
that ∫ θj+ε

θj−ε
∆n,v
k g(x)2dx = (v∆n)2α+1‖hj‖2

L2(R) + o(∆2α+1
n ) if j ∈ A,

for any ε < min1≤i≤l(θi − θi−1), and
∫ b

a

∆n,v
k g(x)2dx = o(∆2α+1

n )

if the interval [a, b] does not contain any θj with j ∈ A. This completes the proof of
Proposition 3.1.

5.2 Some preliminaries

Before we prove the main results of the paper, we start with some preliminaries.
We remark that the intermittency process σ is cádlág, hence σ− is locally bounded.
Since our Theorems 3.2, 3.3 and 4.2 are stable under localization (cf. [7]), we may
and will assume that σ is bounded on compact intervals.

Recalling the notation of (3.1) we introduce the following Gaussian random vari-
ables

∆n,v
i,kG

(j) :=

∫ i∆n−θj+δ

i∆n−θj−δ
∆n,v
k g(i∆n − s)W (ds), j = 0, . . . , l, (5.3)

where the constant δ > 0 was defined in (A). Notice that the above Gaussian
variables are independent for different j’s when computed at the same stage i∆n.
One of the key steps of our proofs is to show the approximation

∆n,v
i,kX ≈

l∑

j=0

σ(i−vk)∆n−θj∆
n,v
i,kG

(j). (5.4)

(cf. Sections 5.3 and 5.4.) The ideas behind the proofs of Theorems 3.2, 3.3 and 4.2
follow a similar structure as presented in [4, 5], although the situation is more
complex due to multiple singularities of the weight function g. First of all, we will
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use a blocking technique, which amounts in considering a subdivision of the interval
[0, t] into equidistant sub-blocks and freezing the intermittency process σ within each
sub-block. In a second step, we will prove joint limit theorems over the sub-blocks
applying Malliavin calculus and properties of stable convergence.

We start with the limit theory for the Gaussian variables ∆n,v
i,kG

(j), which has
been essentially treated in [4]. Define

τk,j(v∆n)2 := E[(∆n,v
i,kG

(j))2], rv1,v2,j1,j2k,n (q) := corr
(
∆n,v1

1,k G
(j1),∆n,v2

1+q,kG
(j2)
)
. (5.5)

We consider the statistics

QV (k, v∆n)j1,j2t := ∆n

[t/∆n]∑

i=vk

∆n,v
i,kG

(j1)∆n,v
i,kG

(j2)

τk,j1(v∆n)τk,j2(v∆n)
, 0 ≤ j1, j2 ≤ l, (5.6)

and set
ρv1,v2,jk (q) := corr

(
∆v1

1,kB
Hj ,∆v2

1+q,kB
Hj
)
, (5.7)

where BHj is a fractional Brownian motion with Hurst parameter Hj = αj+1/2 and
the quantity ∆v

i,kB
Hj is defined in (3.10). The next result is essentially a combination

of [4, Theorems 1 and 2] and [5, Section 2].

Theorem 5.1. Assume that Condition (A) holds.

(i) We have the convergence

QV (k, v∆n)j1,j2t
u.c.p.

===⇒ QV (k)j1,j2t := δj1,j2t, j1, j2 ∈ A, (5.8)

where δj1,j2 = 1 when j1 = j2 and 0 otherwise.

(ii) When k = 1 we further assume that αj < 0 for all 0 ≤ j ≤ l. Then

∆−1/2
n

(
QV (k, v∆n)j1,j2 −QV (k)j1,j2

)v=1,2

j1,j2∈A,j1≤j2
dst−−→ V = (V j1,j2

k,v )v=1,2
j1,j2∈A,j1≤j2 ,

(5.9)
on D|A|(|A|+1)([0,min1≤j≤l(θj − θj−1)]), where V is a Gaussian martingale, de-
fined on an extension (Ω′,F ′,P′) of the original probability space and indepen-
dent of F . The covariance structure is given as

E′[V j1,j2
k,v (t)V

j′1,j
′
2

k,v′ (s)] = 0 when (j1, j2) 6= (j′1, j
′
2),

E′[V j,j
k,v (t)V j,j

k,v′(s)] = 2 min{t, s}
(

1 +
∑

q∈Z\{0}
ρv,v

′,j
k (q)2

)
,

E′[V j1,j2
k,v (t)V j1,j2

k,v′ (s)] = min{t, s}
(

1 +
∑

q∈Z\{0}
ρv,v

′,j1
k (q)ρv,v

′,j2
k (q)

)
for j1 6= j2.

We remark that for j, j1, j2 ∈ A we immediately conclude that

E′[V j,j
k,v (1)V j,j

k,v′(1)] = λkv,v′ , (5.10)

E′[V j1,j2
k,v (1)V j1,j2

k,v′ (1)] = 1
2
λkv,v′ for j1 6= j2,

where λkv,v′ is defined by (3.9).
We divide the proof into several steps.
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Step 1. We will not work with the random variables ∆n,v
i,kG

(j) directly, but with their
approximations. For any 0 ≤ j ≤ l, we define a new Gaussian process

G̃
(j)
t :=

∫

R
g̃(j)(t− s)W (ds),

where the function g̃(j) (j ≥ 1) is given via

g̃(j)(x) = f̃j(x)|x− θj|αj ,

with f̃j = fj on x ∈ (θj− δ/2, θj + δ/2), f̃j = 0 outside of the interval (θj− δ, θj + δ),
and f̃j ∈ Ck(R) (the function f̃0 is defined similarly). Then, if we consider the k-th
order increments ∆n,v

i,k G̃
(j) of G̃ at frequency v∆n, we readily deduce that

E[(∆n,v
i,k G̃

(j) −∆n,v
i,kG

(j))2] ≤ C∆2k
n (5.11)

due to assumption (A). Now, let us define the statistics

Q̃V (k, v∆n)j1,j2t := ∆n

[t/∆n]∑

i=vk

∆n,v
i,k G̃

(j1)∆n,v
i,k G̃

(j2)

τ̃k,j1(v∆n)τ̃k,j2(v∆n)
, τ̃k,j(v∆n)2 := E[(∆n,v

i,k G̃
(j))2],

(5.12)
for 0 ≤ j1, j2 ≤ l. Then, due to (5.11), τ̃k,j(v∆n)/τk,j(v∆n)→ 1 and

Q̃V (k, v∆n)j1,j2t −QV (k, v∆n)j1,j2t
u.c.p.

===⇒ 0, (5.13)

and also
∆−1/2
n

(
Q̃V (k, v∆n)j1,j2t −QV (k, v∆n)j1,j2t

)
u.c.p.

===⇒ 0 (5.14)

under the assumption of Theorem 5.1(ii), which is due to Cauchy-Schwarz inequality.
Thus, it suffices to prove the asymptotic theory for the statistics Q̃V (k, v∆n)j1,j2t .

Step 2. In this step we analyze the correlation structure of the increments ∆n,v
i,k G̃

(j).
We define

r̃v1,v2,j1,j2k,n (q) := corr
(
∆n,v1

1,k G̃
(j1),∆n,v2

1+q,kG̃
(j2)
)
. (5.15)

The next proposition describes the asymptotic behaviour of the correlation function
r̃v1,v2,j1,j2k,n (q).

Proposition 5.2. Assume that Condition (A) holds. Then we obtain that

r̃v1,v2,j,jk,n (q)→ ρv1,v2,jk (q), (5.16)

where ρv1,v2,jk (q) is defined at (5.7). Furthermore, for any ε > 0 there exists C > 0
such that

|r̃v1,v2,j,jk,n (q)| ≤ C|q|2Hj−2k−ε. (5.17)

Likewise, if j1, j2 ∈ A, j1 > j2 then for any ε > 0 there exists C > 0 such that

|r̃v1,v2,j1,j2k,n (q)| ≤ C|q + ∆−1
n (θj1 − θj2)|2α+1−2k−ε. (5.18)
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Proof. We start with the proof of (5.16) and (5.17). Without loss of generality we
prove it only for the case k = 1, v1 = v2 = 1 and j = 0; the rest follows by
similar arguments. For simplicity we set r̃n(q) := r̃1,1,0,0

1,n (q), ρ(q) := ρ1,1,0
1 (q) and

∆n
i G̃

(0) := ∆n,1
i,1 G̃

(0). Observe that

cov
(
∆n

1 G̃
(0),∆n

1+qG̃
(0)
)

=

∫ ∆n+δ

(1+q)∆n−δ
{g̃(0)(∆n − s)− g̃(0)(−s)}

× {g̃(0)((1 + q)∆n − s)− g̃(0)(q∆n − s)}ds.

Now, recalling that g̃(0)(x) = xα0f0(x) for x ∈ (0, δ/2), we conclude as in the proof
of Lemma 4.1

∆−(2α0+1)
n cov

(
∆n

1 G̃
(0),∆n

1+qG̃
(0)
)

→ f0(0)2

∫

R
{(1− s)α0

+ − (−s)α0
+ }{(q + 1− s)α0

+ − (q − s)α0
+ }ds. (5.19)

The latter limit is, up to a factor f0(0)2, the covariance function of a (non-standard)
fractional Brownian noise (B̃

α0+1/2
i − B̃α0+1/2

i−1 )i≥1, where B̃α0+1/2 is defined as

B̃
α0+1/2
t :=

∫

R
{(t− s)α0

+ − (−s)α0
+ }W (ds).

Thus, using again Lemma 4.1, we deduce that

r̃n(q)→ ρ(q) as n→∞,

which completes the proof of (5.16).
Now, we define the function

R̃u :=

∫ δ

−δ
(g̃(0)(−s)− g̃(0)(−u− s))2ds

and note that R̃∆n = τ̃1,0(∆n)2. According to [3, Lemma 1] and conditions (A1)–(A3)
therein, it is sufficient to show that

R̃u = u2α0+1Zu, u > 0,

where Z ∈ C2(0,∞) and limu→0 Zu 6= 0, to conclude (5.17). Observe that for u < δ

R̃u =

∫ u

0

s2α0 f̃ 2
0 (s)ds+

∫ δ

u

(sα0 f̃0(s)− (s− u)α0 f̃ 2
0 (s− u))2ds

= u2α0+1

(∫ 1

0

x2α0 f̃ 2
0 (ux)dx+

∫ δ/u

1

(xα0 f̃0(ux)− (x− 1)α0 f̃ 2
0 (ux− u))2dx

)

= u2α0+1Zu.

Now, Z ∈ C2(0,∞) since f̃0 ∈ C2(0, δ); see condition (A)(iii). Furthermore,

lim
u→0

Zu = f 2
0 (0)

(∫ 1

0

x2α0dx+

∫ ∞

1

(xα0 − (x− 1)α0)2dx

)
,
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where the limit is finite since α0 < 1/2 and strictly positive because f0(0) 6= 0 (see
again (A)(iii)). Thus, (5.17) follows.

Finally, we need to prove (5.18). We assume without loss of generality that
k = 1, v1 = v2 = 1 and θj1 > θj2 > 0. For q < 0 such that (1 + q)∆n − θj2 − δ ∈
[∆n − θj1 − δ,∆n − θj1 − δ), we obtain that

cov
(
∆n

1 G̃
(j1),∆n

1+qG̃
(j2)
)

=

∫ ∆n−θj1+δ

(1+q)∆n−θj2−δ
{g̃(j1)(∆n − s)− g̃(j1)(−s)}

× {g̃(j2)((1 + q)∆n − s)− g̃(j2)(q∆n − s)}ds

=

∫ ∆n−θj1+δ

(1+q)∆n−θj2−δ
{f̃j1(∆n − s)|∆n − s− θj1|α − f̃j1(−s)|s+ θj1|α}

× {f̃j2((1 + q)∆n − s)|(1 + q)∆n − s− θj2|α

− f̃j2(q∆n − s)|q∆n − s− θj2|α}ds,
where we recall that αj1 = αj2 = α. In the next step we compare this expression
with the following covariance

cov
(
∆n

1 G̃
(j1),∆n

1+q̄G̃
(j1)
)

=

∫ ∆n−θj1+δ

(1+q̄)∆n−θj1−δ
{f̃j1(∆n − s)|∆n − s− θj1|α − f̃j1(−s)|s+ θj1|α}

× {f̃j1((1 + q̄)∆n − s)|(1 + q̄)∆n − s− θj1|α

− f̃j1(q̄∆n − s)|q̄∆n − s− θj1|α}ds.

Now, by setting q̄ = [q + ∆−1
n (θj1 − θj2)] and recalling that all functions f̃j satisfy

the same assumption (A)(iii), and keeping in mind Lemma 4.1, we conclude that

|rj1,j2n (q)| ≤ C|rj1,j1n (q̄)|,
which implies (5.18) by applying (5.17).

Step 3. Due to Step 1 it suffices to prove Theorem 5.1 for the statistics Q̃V (k, v∆n)j1,j2t .
We start with part (i). Assertions (5.16) and (5.17) immediately imply the conver-
gence (5.8) by [4, Theorem 1] (or, more precisely, by its multivariate extension).

Part (ii) essentially follows from [4, Theorem 2]. First, we observe that our mul-
tivariate statistic is a functional of a Gaussian process. In this case it is sufficient
to prove asymptotic normality for each component and to identify the covariance
structure (this is due to the results of [19]). The asymptotic normality follows from
the square summability of the bound in (5.17), i.e.

∞∑

q=1

q2(2α+1−2k+ε) <∞

for ε > 0 small enough (if k = 1 we require that α < 1/4), which is a sufficient
condition for asymptotic normality of each component due to [4, Theorem 2]. Fur-
thermore, the convergence in (5.16) easily identifies the covariance structure of each
component (see again [4, Theorem 2]), hence the last two identities of Theorem 5.1.
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Now, let us prove the asymptotic independence of the involved components. As
before we assume without loss of generality that k = 1, v1 = v2 = 1. We define

Ṽ j
n (t) = ∆−1/2

n

(
Q̃V (1,∆n)j,jt −QV (1)j,jt

)

and show that E[Ṽ j1
n (t)Ṽ j2

n (s)] → 0 for j1, j2 ∈ A with j1 6= j2 (the asymptotic
independence of all other components is shown in exactly the same manner). Recall
that |t− s| < min1≤j≤l(θj − θj−1). We deduce that

E[Ṽ j1
n (t)Ṽ j2

n (s)] = 2∆n

[t/∆n]∑

i1=1

[s/∆n]∑

i2=1

|r̃j1,j2n (i2 − i1)|2

Now, for the sake of demonstration, we consider the case t = s = min1≤j≤l(θj −
θj−1) = θj1 − θj2 (so θj1 > θj2); in fact, the situation t, s < θj1 − θj2 is easier to treat.
Then the estimate (5.18) gives

∣∣E[Ṽ j1
n (t)Ṽ j2

n (s)]
∣∣ ≤ C∆n

[t/∆n]−1∑

i=−[t/∆n]+1

|i+ ∆−1
n (θj1 − θj2)|2(2α−1+ε)([t/∆n]− |i|)

Let w ∈ (0, 1). We conclude that

∆n

[t/∆n]−1∑

i=−w[t/∆n]+1

|i+ ∆−1
n (θj1 − θj2)|2(2α−1+ε)([t/∆n]− |i|) ≤ C(1− w)∆−4α+1−2ε

n .

On the other hand we have that

∆n

−w[t/∆n]∑

i=−[t/∆n]+1

|i+ ∆−1
n (θj1 − θj2)|2(2α−1+ε)([t/∆n]− |i|) ≤ C(1− w),

since t = θj1 − θj2 , α < 1/4 and ε > 0 can be chosen arbitrarily small. Hence, letting
first ∆n → 0 and then w → 1 we obtain the desired convergence E[Ṽ j1

n (t)Ṽ j2
n (s)]→ 0.

Finally, let us note that due to Theorem 5.1(i) we have that

∆nτk(∆n)−2

[t/∆n]∑

i=vk

(∆n,v
i,kG

(j))2 = oP(∆1/2
n ) for all j 6∈ A,

due to Lemma 4.1 and the condition αj−α > 1/4. On the other hand, when j1 6= j2

and either j1 6∈ A or j2 6∈ A, then we conclude that

var
(
QV (k, v∆n)j1,j2t

)
= OP(∆n)

under assumptions of Theorem 5.1 (the arguments are similar to the proof of The-
orem 5.1). Thus, using again Lemma 4.1, we conclude that

∆nτk(∆n)−2

[t/∆n]∑

i=vk

∆n,v
i,kG

(j1)∆n,v
i,kG

(j2) = oP(∆1/2
n ) (5.20)

whenever j1 6∈ A or j2 6∈ A, under conditions of Theorem 3.3.
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5.3 Proof of Theorem 3.2 and Theorem 4.2(i)

Proof of Theorem 3.2. Below we apply a blocking technique, which means that we
subdivide the interval [0, t] into sub-blocks and freeze the intermittency process
within each block. We remark that the statistic QV (X, k, v∆n)t is increasing in t
and the limiting process QV (X, k)t at (3.5) is continuous in t. For this reason it is
sufficient to prove pointwise convergence

∆n

τk(v∆n)2
QV (X, k, v∆n)t

P−→ QV (X, k)t =

∫ ∞

0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ)

for a fixed t > 0.
Now, we fix a natural number m and introduce the decomposition

∆n

τk(v∆n)2
QV (X, k, v∆n)t −QV (X, k)t = An +Bn,m + Cn,m +Dm, (5.21)

where

An :=
∆n

τk(v∆n)2

[t/∆n]∑

i=vk

(
(∆n,v

i,kX)2 −
( l∑

j=0

σ(i−vk)∆n−θj∆
n,v
i,kG

(j)
)2
)

Bn,m :=
∆n

τk(v∆n)2

( [t/∆n]∑

i=vk

( l∑

j=0

σ(i−vk)∆n−θj∆
n,v
i,kG

(j)
)2

−
[mt]∑

r=1

∑

i∈Im(r)

( l∑

j=0

σ(r−1)/m−θj∆
n,v
i,kG

(j)
)2
)

Cn,m :=
∆n

τk(v∆n)2

[mt]∑

r=1

∑

i∈Im(r)

( l∑

j=0

σ(r−1)/m−θj∆
n,v
i,kG

(j)
)2

− 1

m

[mt]∑

r=1

∫ ∞

0

σ2
(r−1)/m−θπk(dθ)

Dm :=
1

m

[mt]∑

r=1

∫ ∞

0

σ2
(r−1)/m−θπk(dθ)−

∫ ∞

0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ)

with
Im(r) :=

{
i : i∆n ∈

(r − 1

m
,
r

m

]}
.

Let us give an interpretation to the introduced decomposition. The term An is the
error associated with the crucial approximation introduced in (5.4). In a second step
we divide the interval [0, t] into [mt] sub-blocks and freeze the intermittency σ in the
beginning of each block; the associated error is represented by Bn,m. Within each
sub-block we apply the law of large numbers to the Gaussian part. The error of this
procedure is denoted by Cn,m. Finally, Dm represents the error of a Riemann sum
approximation. Next we will prove that

lim
m→∞

lim sup
n→∞

P(|An +Bn,m + Cn,m +Dm| > ε) = 0,

for any ε > 0. This will complete the proof of Theorem 3.2.
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The term An. The convergence An
P−→ 0 is shown exactly as in [4, Section 7.3].

Therein the proof is given for the case of a single singularity at 0. However, it
directly extends to the case of multiple singularities.

The term Bn,m. Observe that

|Bn,m| ≤
∆n

τk(v∆n)2

[mt]∑

r=1

l∑

j1,j2=0

sup
s∈( r−2

m
, r
m

]

|σ(r−1)/m−θj1σ(r−1)/m−θj2 − σs−θj1σs−θj2 |

×
∣∣∣
∑

i∈Im(r)

∆n,v
i,kG

(j1)∆n,v
i,kG

(j2)
∣∣∣+Rn,m

with limm→∞ lim supn→∞ P(|Rn,m| > ε) = 0. The dominating term converges in
probability to

Bm :=
1

m

[mt]∑

r=1

∑

j∈A
π(θj) sup

s∈( r−2
m
, r
m

]

|σ2
(r−1)/m−θj − σ2

s−θj |

as n → ∞ due to Theorem 5.1(ii) and convergence τk,j(v∆n)2/τk(v∆n)2 → π(θj).
Observing the estimation

|Bm| ≤
∑

j∈A
π(θj)

∫ t

0

sup
s∈(

[um]−1
m

,
[um]+1

m
]

|σ2
[um]
m
−θj
− σ2

s−θj |du,

we conclude that
Bm

P−→ 0 as m→∞,
by bounded convergence theorem, since σ is cádlág and bounded on compact inter-
vals. Thus, the proof of this part is completed.

The term Cn,m. According to Theorem 5.1(ii), we have

∆n

∑

i∈Im(r)

∆n,v
i,kG

(j1)∆n,v
i,kG

(j2)

τk,j1(v∆n)τk,j2(v∆n)

P−→ δj1,j2m
−1t

for any r. Furthermore, the proof of Proposition 3.1 shows that

τk,j(v∆n)2

τk(v∆n)2
→ π(θj).

Thus, for any fixed m, we conclude that

Cn,m
P−→ 0 as n→∞,

which completes the proof of this part.

The term Dm. Recall that the measure π is finite and the process σ is cádlág
bounded. Hence, the convergence Dm

P−→ 0 as m → ∞ follows by Lebesgue in-
tegrability. This completes the proof of Theorem 3.2.
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Proof of Theorem 4.2(i). The proof of this result follows along the same lines as the
previous one. For the treatment of the terms Bn,m and Cn,m we use the convergence
in probability

∆n

[t/∆n]∑

i=vk

(∆n,v
i,kG

(j1)∆n,v
i,kG

(j2))2

(τk,j1(v∆n)τk,j2(v∆n))2

u.c.p.
===⇒ t when j1 6= j2,

∆n

[t/∆n]∑

i=vk

(∆n,v
i,kG

(j))4

(τk,j(v∆n))4

u.c.p.
===⇒ 3t,

which follows from a general result of [4, Theorem 1]. The remaining proof of The-
orem 3.2 applies directly to Theorem 4.2(i).

5.4 Proof of Theorem 3.3

Here we use a slightly different decomposition than in the proof of Theorem 3.2.
Observe that

∆−1/2
n

(
∆n

τk(v∆n)2
QV (X, k, v∆n)t −QV (X, k)t

)
= Ãvn + B̃v

n,m + C̃v
n,m + D̃v

n,

(5.22)

where

Ãvn :=
∆

1/2
n

τk(v∆n)2

[t/∆n]∑

i=vk

(
(∆n,v

i,kX)2 −
( l∑

j=0

σ(i−vk)∆n−θj∆
n,v
i,kG

(j)
)2
)

B̃v
n,m := ∆1/2

n

(
1

τk(v∆n)2

[t/∆n]∑

i=vk

( l∑

j=0

σ(i−vk)∆n−θj∆
n,v
i,kG

(j)
)2

−
[t/∆n]∑

i=vk

∫ ∞

0

σ2
(i−vk)∆n−θπk(dθ)

)

−∆1/2
n

(
1

τk(v∆n)2

[mt]∑

r=1

∑

i∈Im(r)

( l∑

j=0

σ(r−1)/m−θj∆
n,v
i,kG

(j)
)2

− 1

m

[mt]∑

r=1

∫ ∞

0

σ2
(r−1)/m−θπk(dθ)

)

C̃v
n,m := ∆1/2

n

(
1

τk(v∆n)2

[mt]∑

r=1

∑

i∈Im(r)

( l∑

j=0

σ(r−1)/m−θj∆
n,v
i,kG

(j)
)2

− 1

m

[mt]∑

r=1

∫ ∞

0

σ2
(r−1)/m−θπk(dθ)

)

D̃v
n := ∆−1/2

n

(
∆n

[t/∆n]∑

i=vk

∫ ∞

0

σ2
(i−vk)∆n−θπk(dθ)−

∫ ∞

0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ)

)
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In the next step we will prove that

lim
m→∞

lim sup
n→∞

P(‖Ãvn + B̃v
n,m + D̃v

n‖∞ > ε) = 0,

for any ε > 0. The term C̃v
n,m will give us the central limit theorem. More precisely,

we will show that
(C̃1

n,m, C̃
2
n,m)

dst−−→ Cm as n→∞,

for some process Cm and Cm
dst−−→ L, where the process L is defined at (3.7). This

would complete the proof of Theorem 3.3.

Term Ãvn. The convergence Ãvn
u.c.p.

===⇒ 0 has been proved for k = 1 in [4, Section 7] and
for k = 2 in [5, Section 5.2] (the latter proof easily extends to any k ≥ 2). Although
both results are only valid for the case of single singularity at 0, they extend to the
case of multiple singularities exactly as in the proof of Theorem 3.2.

Term B̃v
n,m. The negligibility of the quantity B̃v

n,m is proven by means of fractional
calculus in a recent work [14, Section 4].

Term C̃v
n,m. We recall first that

τk,j(v∆n)2

τk(v∆n)2
= π(θj) + o(∆1/2

n ) j ∈ A, τk,j(v∆n)2

τk(v∆n)2
= o(∆1/2

n ) j 6∈ A,

which follows from the proof of Proposition 3.1 and condition (3.6). Define the
statistics

Sv,j1,j2n,m (r) := ∆1/2
n

(
1

τk(v∆n)2

∑

i∈Im(r)

∆n,v
i,kG

(j1)∆n,v
i,kG

(j2) − δj1,j2
π(θj1)

m

)
,

for j1, j2 ∈ A. Applying Theorem 5.1(ii) and the properties of stable convergence,
we conclude that
(
σ(r−1)/m−θj , S

v,j1,j2
n,m (r)

)r=1,...,m, v=1,2

j,j1,j2∈A

dst−−→
(
σ(r−1)/m−θj ,

√
π(θj1)π(θj2)

{
V j1,j2
k,v

( r
m

)
− V j1,j2

k,v

(
r − 1

m

)})r=1,...,m, v=1,2

j,j1,j2∈A
,

where the process V is defined at (5.9). Next, we observe that

∆1/2
n

1

τk(v∆n)2

∑

i∈Im(r)

∆n,v
i,kG

(j1)∆n,v
i,kG

(j2) = oP(1)

when j1 6∈ A or j2 6∈ A, which is due to (5.20). Hence, it holds that

C̃v
n,m =

[mt]∑

r=1

∑

j1,j2∈A
σ(r−1)/m−θj1σ(r−1)/m−θj2S

v,j1,j2
n,m (r) + oP(1).
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Now, applying the continuous mapping theorem for stable converge and recalling
the identity (5.10), we deduce that

(C̃1
n,m, C̃

2
n,m)

dst−−→
[mt]∑

r=1

(∫ ∞

0

σ2
r−1
m
−θ πk(dθ)

)
Λ

1/2
k (B r

m
−B r−1

m
) as n→∞,

where Λk and B are defined at (3.7). Finally,

[mt]∑

r=1

(∫ ∞

0

σ2
r−1
m
−θ πk(dθ)

)
Λ

1/2
k (B r

m
−B r−1

m
)

dst−−→ Lt as m→∞,

which completes this step.

Term D̃v
n. Since σ is Hölder continuous of order γ with γ > 1/2, we readily deduce

that D̃v
n

u.c.p.
===⇒ 0. This completes the proof of Theorem 3.3.
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