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Abstract

We discuss the appealing properties of determinantal point process (DPP)
models on the d-dimensional unit sphere Sd, considering both the isotropic
and the anisotropic case. DPPs are finite point processes exhibiting repulsive-
ness, but we also use them together with certain dependent thinnings when
constructing point process models on Sd with aggregation on the large scale
and regularity on the small scale. Moreover, for general point processes on Sd,
we present reduced Palm distributions and functional summary statistics, in-
cluding nearest neighbour functions, empty space functions, and Ripley’s and
inhomogeneous K-functions. We conclude with a discussion on future work on
statistics for spatial point processes on the sphere.

Keywords: aggregation; empty space function; inhomogeneousK-function; iso-
tropic covariance function; joint intensities; likelihood; nearest neighbour func-
tion; Palm distribution; repulsiveness; spectral representation.

1 Introduction

How do we construct spatial point process models on the d-dimensional unit sphere
Sd ⊂ Rd+1 exhibiting regularity/inhibition between the points? Here d = 1, 2 are
the practically most relevant cases and the regularity/inhibition may be caused by
repulsiveness between the points or by some thinning mechanism as specified in the
following list of models, usually defined on Rd but straightforwardly adapted to Sd:

• Matérn hard core processes of types I-III can be simulated by their construc-
tions as dependent thinnings of Poisson processes, see [8, 14, 15, 27]. However,
for the types I-II, the moments of the process will be tractable while the like-
lihood (density) will be intractable; and for type III, the opposite is the case.

• Simple sequential inhibition and other hard sphere packing models (as reviewed
in [3, 9]) can be simulated by their simple constructions of points added one
by one, but otherwise they are hard to analyse.
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• Gibbs point processes offer much more flexibility for modelling inhibition or re-
pulsiveness, but their simulation may be time-consuming and neither the mo-
ments nor the likelihood are tractable, see [18, 19] and the references therein.

• Determinantal point processes (DPPs) offer relatively flexible models for repul-
siveness (although less flexible than Gibbs point processes) and in particular
they possess a number of attractive properties, including that they can be eas-
ily simulated and the moments and the likelihood are tractable, cf. [7, 10, 11].
DPPs are of interest because of their applications in mathematical physics,
combinatorics, random-matrix theory, machine learning, and spatial statistics
(see [11] and the references therein).

The first part of the present paper concerns DPPs on the sphere. Simulated
examples of DPPs with various degrees of repulsiveness are shown in Figure 1. In
comparison with DPPs on Rd, DPPs on Sd are easier to handle, since they are de-
fined on a compact set and we can more easily deal with certain decompositions of
the kernel used in the definition of a DPP (given in Section 2). We restrict attention
to DPPs defined on S2, which apart from a scaling may be considered as an approx-
imation of planet Earth, however, our discussion can easily be extended to DPPs
on S1 and the general case of Sd may be covered as well. Moreover, partly follow-
ing [12], we use DPPs together with certain dependent thinnings when constructing
point process models with aggregation on the large scale and regularity on the small
scale.

The second part of this paper deals with functional summary statistics for first
general point processes and second DPPs on the sphere. In the isotropic case of
a point process on the sphere, [24] studied Ripley’s K-function without providing
the mathematical details for the reduced Palm distribution, which is needed in the
precise definition of the K-function. We provide this definition without assuming
isotropy, so that the inhomogeneousK-function, introduced in [1] for point processes
on Euclidean spaces, can be defined on the sphere as well. Moreover, in the isotropic
case, we introduce further useful functional summary functions, namely the nearest
neighbour function, the empty space function, and the related so-called J-function.

The paper is organized as follows. Section 2, as a supplement to the technical
exposition in [16], provides a survey on the attractive properties of DPPs on the
sphere, and Section 3 discusses DPP models, both in the isotropic/homogeneous case
and in the inhomogeneous case. Section 4 defines Palm distributions and functional
summary statistics for general point processes on S2, in particular nearest neighbour
and K-functions which we relate to DPPs, and Section 5 contains our concluding
remarks on future work on statistics for spatial point processes on the sphere.

In connection to this paper, the development of software for simulation of DPPs
on the sphere and calculation of non-parametric estimators for the functional sum-
mary statistics constitutes a substantial amount of work. The software is written in
the R language [21] and will be available as an extension of the spatstat package [2].
Section 4 shows examples of how to use the software and the type of plots it can
produce.
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Figure 1: Northern Hemisphere of three spherical point patterns projected to the unit
disc with an equal-area azimuthal projection. Each pattern is a simulated realization of a
determinantal point process on the sphere with mean number of points 225. Left: Com-
plete spatial randomness (Poisson process). Middle: Multiquadric model with τ = 10 and
δ = 0.68. Right: Most repulsive DPP.

2 DPPs on the sphere

Section 2.1 provides the definition of a DPP on S2, Section 2.2 discusses why it
produces regular point patterns, Section 2.3 specifies when it exists, and Section 2.4
deals with its density function with respect to a unit rate Poisson process.

2.1 Definition

Consider a simple finite point process X on S2, i.e., we can view X as a random
finite subset of S2. Let N be its corresponding counting measure, i.e., N(A) denotes
the number of points in X falling in a region A ⊆ S2. For a given complex function
C defined on the product space S2 × S2, we say that X is a DPP if the factorial
moment properties of N can be expressed in terms of certain determinants with
entries specified by C as detailed below. An alternative specification in terms of the
density for a DPP is given in Section 2.4.

First, we need some notation and a few assumptions. For

x = (x1, x2, x3) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ∈ S2 (2.1)

where ϑ ∈ [0, π] is the polar latitude and ϕ ∈ [0, 2π) is the polar longitude, let

dν(x) = sinϑ dϕ dϑ (2.2)

be the surface measure on S2. For n = 1, 2, . . ., suppose that X has nth order joint
intensity ρ(n) : (S2)n 7→ [0,∞) with respect to the n-fold product surface measure
ν(n) = ν × · · · × ν. That is, for any Borel function h : (S2)n 7→ [0,∞),

E

6=∑

x1,...,xn∈X
h(x1, . . . ,xn) =

∫
h(x1, . . . ,xn)ρ(n)(x1, . . . ,xn) dν(n)(x1, . . . ,xn)

(2.3)
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where the expectation is with respect to X and 6= over the summation sign means
that x1, . . . ,xn are pairwise distinct. In particular, ρ(x) = ρ(1)(x) is the intensity
function (with respect to surface measure) and for any region A ⊆ S2 the nth order
factorial moment of N(A) is

E [N(A)(N(A)− 1) · · · (N(A)− n+ 1)]

=

∫

A

· · ·
∫

A

ρ(n)(x1, . . . ,xn) dν(x1) · · · dν(xn).

Note that ρ(n) is uniquely determined except on a ν(n)-nullset.
Second, by definition X is a DPP with kernel C if for all n = 1, 2, . . . and all

x1, . . . ,xn ∈ S2,
ρ(n)(x1, . . . ,xn) = det (C(xi,xj)i,j=1,...,n) (2.4)

where det (C(xi,xj)i,j=1,...,n) is the determinant of the n × n matrix with (i, j)th
entry C(xi,xj). Then we writeX ∼ DPP(C) and notice the following. The intensity
function is the diagonal of the kernel:

ρ(x) = C(x,x), x ∈ S2.

The expected number of points is the trace of the kernel:

η := E
[
N
(
S2
)]

=

∫
C(x,x) dν(x). (2.5)

A Poisson process on S2 with intensity function ρ is the special case of a DPP where
C(x,x) = ρ(x) for x ∈ S2, and C(x,y) = 0 for x 6= y.

It follows from (2.4) and since ρ(n) is non-negative that C has to be positive
semi-definite. Henceforth, as in most other work on DPPs, we restrict attention to
the case where the kernel is Hermitian. In other words, C is a complex covariance
function. We allow the kernel to be complex, since this becomes convenient when
considering simulation of DPPs, cf. [16]. However, isotropy of C implies that it is
real, and all specific models for covariance functions considered in this paper will be
real. Moreover, we assume that C is of finite trace class or equivalently that η <∞.
Finally, we assume that C is square integrable with respect to ν(2).

2.2 Repulsiveness

A Poisson process is the case of no interaction, i.e., it is neither clustered nor repul-
sive/inhibitive. Comparing a non-Poissonian DPP with a Poisson process with the
same intensity function, the DPP is seen to be repulsive as explained below.

By (2.4) and since C is a covariance function, we have

ρ(n)(x1, . . . ,xn) ≤ ρ(x1) · · · ρ(xn)

with equality only if X is a Poisson process with intensity function ρ. Intuitively, if
x1, . . . ,xn are pairwise distinct points on Sd, then ρ(n)(x1, . . . ,xn) dν(n)(x1, . . . ,xn)
is the probability that X has a point in each of n infinitesimally small regions on S2
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around x1, . . . ,xn and of surface measure dν(x1), . . . , dν(xn), respectively, cf. (2.3).
Therefore, a DPP is repulsive unless it is a Poisson process.

The intensity function and the so-called pair correlation function g for X play a
particular role, since they determine the first and second order moment properties
of the counts. Letting

R(x,y) =
C(x,y)√

C(x,x)C(y,y)
, x,y ∈ S2,

be the correlation function corresponding to C when ρ(x)ρ(y) > 0, then

g(x,y) :=
ρ(2)(x,y)

ρ(x)ρ(y)
= 1− |R(x,y)|2 if ρ(x)ρ(y) > 0

and we set g(x,y) = 0 if ρ(x)ρ(y) = 0. Thus g ≤ 1, again showing that a DPP is
repulsive, since for a Poisson process with intensity function ρ, g(x,y) = 1 whenever
ρ(x)ρ(y) > 0.

2.3 Existence

By [7, Lemma 4.2.6 and Theorem 4.5.5] DPP(C) exists if and only if the spectrum
of C is bounded by 0 and 1, and then DPP(C) is unique. Below we explain what
this means.

Consider a complex covariance function K : Sd × Sd 7→ C which is of finite
trace class and is square integrable (e.g. the kernel C of the DPP considered above
satisfies these conditions, and other cases will be considered later). Then, by Mercer’s
theorem (e.g. [22, Section 98]) and [7, Lemma 4.2.2]), ignoring a ν(2)-nullset, K has
a spectral representation

K(x,y) =
∞∑

n=1

αnYn(x)Yn(y), x,y ∈ Sd (2.6)

where Y1, Y2, . . . are eigenfunctions which form an orthonormal basis for the space
of square integrable complex functions with respect to ν. We call (2.6) the Mercer
representation of K, the eigenvalues αi for the Mercer coefficients, and spec(K) =
{α1, α2, . . .} the spectrum of K.

When X ∼ DPP(C), we denote the Mercer coefficients of C by λ1, λ2, . . ., and
to ensure existence we require that spec(C) ⊂ [0, 1]. Then, by (2.5) and (2.6), the
mean number of points is η =

∑∞
n=1 λn.

2.4 Likelihood

When the spectrum of the kernel for a DPP is strictly bounded by one, we can work
with the likelihood/density as given below.

Suppose X ∼ DPP(C) where spec(C) ⊂ [0, 1). Let C̃ : S2 × S2 7→ C be the
complex covariance function with a Mercer representation sharing the same eigen-
functions as C but with Mercer coefficients

λ̃n =
λn

1− λn
, n = 1, 2, . . ..
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Define

D =
∞∑

n=1

log
(
1 + λ̃n

)
.

Then, by [26, Theorem 1.5], DPP(C) is absolutely continuous with respect to the
unit rate Poisson process (i.e., the Poisson process on S2 with intensity measure ν)
and has density

f({x1, . . . ,xn}) = exp(4π −D) det
(
C̃(xi,xj)i,j=1,...,n

)
, (2.7)

for any point configuration {x1, . . . ,xn} ⊂ S2, n = 0, 1, . . .
Note that we consider the empty point configuration ∅ if n = 0, so exp(−D) is

the probability that X = ∅ (since exp(−4π) is the probability that the unit rate
Poisson process is empty). Further, since

λn =
λ̃n

1 + λ̃n
, n = 1, 2, . . ., (2.8)

there is a one-to-one correspondence between C and C̃. Thus, in order to construct
a DPP we can start by specifying any complex covariance function C̃ which is of
finite trace class and is square integrable. Its density is then given by (2.7), and C is
determined by the Mercer representation of C̃ and by (2.8). Then spec(C) ⊂ [0, 1),
and so DPP(C) is well-defined.

3 DPP models on the sphere

Section 3.1 discusses the construction of isotropic DPPs on S2, i.e., DPPs those
kernels are invariant under rotations. Section 3.2 shows how independent and de-
pendent thinnings of such models can be used to construct anisotropic DPPs and
related point processes on the sphere.

3.1 Isotropic/homogeneous DPPs

3.1.1 Characterization of isotropic kernels

Assume that X ∼ DPP(C) where the kernel is isotropic, i.e.,

C(x,y) = C0(s), s = s(x,y) = arccos(x · y), x,y ∈ Sd.

Here s denotes geodesic (or orthodromic or great-circle) distance, and · is the usual
inner product on R3. Further, the assumption that C is a covariance function implies
that C0 is a real function defined on [0, π] such that C is positive semi-definite. We
follow [5] in calling C0 the radial part of C, and we slightly abuse notation and write
X ∼ DPP(C0). Denote O(3) the orthogonal group, i.e., the set of all 3× 3 matrices
O so that OO> = O>O = I, where O> is the transpose of O and I is the 3 × 3
identity matrix. Note that X is invariant in distribution under the action of O(3)
on S2, and we shall say that X is an isotropic/homogeneous DPP. In particular any
point in X is uniformly distributed on S2, the intensity ρ = C0(0) is constant and
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equal to the maximal value of C0, and η = 4πρ is the expected number of points
in X.

Assume that ρ > 0 (otherwise X = ∅). Then

R0(s) = C0(s)/ρ (3.1)

is the radial part of the correlation function R associated to C. The allowed range
of ρ in terms of R0 is the interval from 0 to

ρmax(R0) = 1/‖R‖ (3.2)

where ‖R‖ <∞ denotes the largest eigenvalue of R. Furthermore, the pair correla-
tion function is isotropic and given by

g(x,y) = g0(s) = 1−R0(s)
2. (3.3)

This implies that g0(0) = 0 (however, in case of a Poisson process, it is custom to
set g0(0) = 1, since ρ(2)(x,y) = ρ2 for ν(2) almost all (x,y) ∈ S2 × S2).

Before characterizing the radial part of an isotropic covariance function we need
to recall the following:

P`(x) =
1

2``!

d`

dx`
{(x2 − 1)`}, −1 < x < 1,

is the Legendre polynomial of degree ` = 0, 1, . . ., and for k = 0, . . . , `, the associated
Legendre functions P (k)

` and P (−k)
` are given by

P
(k)
` (x) = (−1)k

(
1− x2

)k/2 dk

dxk
P`(x), −1 ≤ x ≤ 1,

and
P

(−k)
` = (−1)k

(`− k)!

(`+ k)!
P

(k)
` .

Moreover, the surface spherical harmonic functions are given by

Y`,k(x) = Y`,k(ϑ, ϕ) =

√
2`+ 1

4π

(`− k)!

(`+ k)!
P

(k)
` (cosϑ) eikϕ, (ϑ, ϕ) ∈ [0, π]× [0, 2π),

for k = −`, . . . , `, where x ∈ S2 is identified by its polar latitude and longitude
(ϑ, ϕ), cf. (2.1), and where i2 = −1. In fact the surface spherical harmonic functions
constitute an orthonormal basis for the space of square integrable complex functions
with respect to ν.

Now, by a classical result of [25], C0 being the radial part of a continuous isotropic
covariance function C is equivalent to assume that

C0(s) =
∞∑

`=0

2`+ 1

4π
α`P`(cos s), s ∈ [0, π], (3.4)
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where each α` ≥ 0 and
∑∞

`=0(2`+ 1)α` <∞. Equivalently, by the addition formula
for spherical harmonics (see [16]), the Mercer representation becomes

C(x1,x2) =
∞∑

`=0

α`
∑̀

k=−`
Y`,k(x1)Y`,k(x2), x1,x2 ∈ S2, (3.5)

i.e., the Mercer coefficients are λ`,k = α`, with ` = 0, 1, . . . and k = −`, . . . , `.
Therefore, to ensure that DPP(C0) is well-defined, we require that the spectrum
{α0, α1, . . .} is included in [0, 1] and that

η =
∞∑

`=0

(2`+ 1)α`

is finite.
Some remarks are in order.

• Similarly, if we use the alternative approach of Section 2.4 where we start by
specifying C̃: Assuming that C̃ is a continuous isotropic covariance function is
equivalent to that

C̃(x1,x2) =
∞∑

`=0

α̃`Y`,k(x1)Y`,k(x2), x1,x2 ∈ S2, (3.6)

where all α̃` are non-negative and
∑∞

`=0(2`+ 1)α̃` <∞.

• By (3.1) and (3.4),

R0(s) =
1

4π

∞∑

`=0

β`P`(cos s), s ∈ [0, π],

where
β` = (2`+ 1)α`/η, ` = 0, 1, . . . ,

is a discrete probability distribution. Conversely, given a continuous correlation
function R0, i.e., given the sequence β0, β1, . . ., (3.2) gives the upper bound on
the expected number of points:

ηmax(R0) = inf{(2`+ 1)/β` : ` = 0, 1, . . .}.
• In [16] we quantify global respective local repulsiveness in terms of the pair

correlation function when the intenity is fixed, and we point out that there is
a trade-off between intensity and the degree of repulsiveness. Loosely speaking
the degree of repulsiveness increases as the spectrum of the kernel C tends to
a step function which for small indices ` is one and for larger indices ` is zero.
Therefore, for any integer m ≥ 0, we refer to a DPP with kernel (3.5) such
that α` = 1 for ` ≤ m and α` = 0 for ` > m as the most repulsive (isotropic)
DPP with η = (m + 1)2 (since in this case η =

∑m
`=0(2` + 1) = (m + 1)2;

see [16] for a definition when η is any positive number). The Poisson process
is another extreme obtained when the spectrum tends to zero (but ρ is still
fixed). The right panel of Figure 1 shows a realization of the most repulsive
DPP when η = 152 = 225.
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3.1.2 Examples

Consider the multiquadric family [6] given by

C0 = ρR0, R0(s) =
(1− δ)2τ

(1 + δ2 − 2δ cos s)τ
, 0 < ρ ≤ ρmax(R0), τ > 0, 0 < δ < 1.

As detailed in [16], the eigenvalues α` can easily be calculated numerically, which
makes it possible to simulate realizations from this model. In Section 4.3 below we
furthermore derive a closed form expression for the K-function for the model, which
we will use for statistical tests, and in future work it can also be used for parameter
estimation (as discussed later in Section 5). In [16] we show that the model is quite
flexible and covers the range from no to intermediate repulsiveness, but in general it
does not cover the most repulsive DPP (only when the expected number of points
is very low). The middle panel of Figure 1 shows a realization of a multiquadric
model where first we fixed η = 225 and τ = 10, and then δ = 0.68 was chosen as
the smallest value such that the model is well-defined. For practical purposes this
corresponds to the most repulsive multiquadric model (the degree of repulsiveness
grows as τ grows and δ decreases). For comparison a realization of a Poisson process
with η = 225 is shown in the left panel, and it is easy to visually confirm that the
multiquadric model has a higher degree of repulsiveness than the Poisson process.

In the special case of τ = 1/2 we obtain the inverse multiquadric family where
β` = δ`(1− δ) specifies a geometric distribution and

α` = ηδ`(1− δ)/(2`+ 1), ηmax(R0) = 1/(1− δ).
To notice the trade-off between the intensity and the degree of repulsiveness, observe
that ηmax(R0) is a strictly increasing function of δ with range (1,∞), while since
R0(s) with s 6= 0 is a strictly decreasing function of δ, the DPP becomes less repulsive
as δ increases. In the limit as δ → 1 we obtain R0(s) = 0 corresponding to a Poisson
process; notice that α` → 0 for ` = 0, 1, . . . On the other hand, as δ → 0 and if
η = ηmax(R0) we obtain the most repulsive DPP but with the mean number of points
only equal to 1. As demonstrated in [16], even for η = 10 the DPP is rather far away
from the most repulsive DPP, and for η = 100 it is rather close to a Poisson process.
So the inverse multiquadric family may be of limited interest except for theoretical
considerations.

For the inverse multiquadric model both the kernel and the Mercer coefficients
are expressible on closed form, while in the general multiquadric model the Mercer
coefficients lend themselves to relatively simple numerical evaluation. This is a rather
unique case, and in [16] we consider a number of other models and conclude that
the most useful approach for obtaining flexible parametric models that cover the full
range of possible repulsiveness for DPPs is a direct modelling of the spectrum (i.e.,
the Mercer coefficients). One example of a flexible model is the case

α` =
1

1 + β exp ((`/α)κ)
, ` = 0, 1, . . . ,

where α > 0, β > 0, and κ > 0 are parameters. Since all α` ∈ (0, 1), the DPP is well
defined and has a density specified by (2.7), while η may be evaluated by numerical
methods. As demonstrated in [16], the model covers a wide range of repulsive DPPs,
including any homogeneous Poisson process and any most repulsive DPP.
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Figure 2: Pair correlation functions for Π-thinnings of a most repulsive DPP with 400
points (see Figure 3 for a realization). In all panels the covariance function for the under-
lying Gaussian process is multiquadric with variance κ = 8, while τ = 0.25, 1, 10 from left
to right panel, and δ = 0.5, 0.7, 0.8, 0.85 from top to bottom curve within each panel.

3.2 Anisotropic models

This section focuses on anisotropic/inhomogeneous DPP X constructed by indepen-
dent thinning of an isotropic/homogeneous DPP Y on S2 with kernel CY and nth
order product intensity ρ(n)Y . We also follow [12] in considering a doubly stochastic
construction where X is obtained by a dependent thinning of Y . Thereby we can
model regularity on the small scale and clustering on the large scale.

Suppose
X = {x ∈ Y : Π(x) ≥ U(x)}

where Π = {Π(x) : x ∈ S2} is a random process of ‘selection probabilities’ Π(x),
U = {U(x) : x ∈ S2} is a process of mutually independent random variables U(x)
which are uniformly distributed on [0, 1], and Y ,Π,U are mutually independent.
If Π is deterministic, then X is an independent thinning of Y , having nth order
product intensity

ρ
(n)
X (x1, . . . ,xn) = Π(x1) · · ·Π(xn)ρ

(n)
Y (x1, . . . ,xn)

and so X is seen to be a DPP with kernel

CX(x,y) = Π(x)Π(y)CY (x,y).

If Π is random, then X is in general a dependent thinning of Y , with

ρ
(n)
X (x1, . . . ,xn) = E [Π(x1) · · ·Π(xn)] ρ

(n)
Y (x1, . . . ,xn).

In the latter case, X is not a DPP unless the selection probabilities are independent.
In particular assume that Y is homogeneous with intensity ρY and pair correla-

tion function g0,Y (s), and the distribution of Π is invariant under the action of O(3)
on S2. Then X is homogeneous, with intensity and pair correlation function

ρX = qρY , gX,0(s) = M0(s)gY,0(s), s ∈ [0, π],
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where q = E[Π(x)] is the mean selection probability and, setting 0/0 = 0,

M0(s) = M(x,y) =
E[Π(x)Π(y)]

E[Π(x)]E[Π(y)]
, x,y ∈ S2,

depends only on s = s(x,y). For instance, assume that − log Π is the χ2-process
given by

Π(x) = exp
(
−Z(x)2/2

)
, x ∈ S2, (3.7)

where Z is a zero-mean Gaussian process with isotropic covariance function K.
Denoting K0 the radial part of K0 and assuming the variance κ = K0(0) is positive,
we have

q = (1 + κ)−1/2, M0(s) =

[
1− R0(s)

2

(1 + 1/κ)2

]−1/2
,

where R0 = K0/κ is the (radial part of the) correlation function of Z. Note that
gY,0 ≤ 1 while M0(s) ≥ 1 is typically a decreasing function of s. In fact it is possible
to obtain that gX,0(s) ≤ 1 for small values of s and gX,0(s) ≥ 1 for large values of s,
reflecting regularity on the small scale and clustering on the large scale.

This is illustrated in Figure 2, where the original process Y is a most repulsive
DPP with 400 points and the underlying Gaussian process Z has a multiquadric
covariance function with variance κ = 8 such that the mean selection probability is
q = 1/3. Thus the expected number of points of the thinned process X is 400/3.
As can be seen from the figure, both τ and δ influence the range of the positive
association between points on the longer scale: For both parameters smaller values
yield long range dependence while the dependence dies out quicker for larger values.
Similar figures (not shown here) show that changing the original DPP to a multi-
quadric model effectively shifts the curves such that the value of s where gX,0(s)
crosses the Poisson reference value 1 shifts to the left, which is to be expected since
the original DPP is less repulsive in this case. Note that the geodesic distance in this
and subsequent figures is given in terms of the angle between points on the sphere
measured in degrees from 0 to 180 (as we expect the reader to relate more easily to
these than distances which are effectively in radians).

Note that simulation of Z is easy, if we assume thatK has a Mercer representation
as in (3.5), with eigenvalues αZ` . Then we generate independent standard normally
distributed random variables W (1)

`,k and W (2)
`,k for ` = 0, 1, . . . and k = −`, . . . , `, and

observe that
∞∑

`=0

√
αZ`
∑̀

k=−`

{
W

(1)
`,k Re [Y`,k(x)] +W

(2)
`,k Im [Y`,k(x)]

}
, x ∈ S2, (3.8)

is a zero-mean Gaussian process with covariance function K (this follows from a
straightforward calculation, using (3.5) and the fact that K is real). In practice
a truncation of the infinite series in (3.8) has to be used. From (3.4) we have κ =
K0(0) =

∑∞
0 αZ` (2`+1)/(4π), and we choose the truncation such that the truncated

series equals 99% of the given value of κ. Figure 3 shows a realization of the original
unthinned DPP Y while Figure 4 shows the result after Π-thinning.

Finally, we notice another construction, namely by applying a one-to-one smooth
transformation S2 7→ S2 on Y to obtain X. This result again in that X is a DPP
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Figure 3: Northern and Southern Hemispheres of a most repulsive DPP with 400 points
used as the original process Y before Π-thinning (see text). The hemispheres are projected
to unit discs with an equal-area azimuthal projection.

Figure 4: Northern and Southern Hemispheres of a Π-thinning of the most repulsive DPP
with 400 points shown in Figure 3. The Gaussian process underlying the Π-thinning has
multiquadric covariance function with κ = 8, τ = 1, and δ = 0.5. The hemispheres are
projected to unit discs with an equal-area azimuthal projection and the pattern contains
148 points in total.
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those kernel can be specified in terms of CY and the derivative of the transformation.
We skip the details here, but see [10, 11] for the result in the case of transformed
DPPs on Rd.

4 Palm distributions and functional summary
statistics

The most popular functional summary statistic for a stationary point process on
Rd with intensity ρ is Ripley’s K-function [23], where ρK(t) is interpreted as the
mean number of further points within distance t of a typical point in the process.
The formal definition of K requires Palm measure theory, and its definition can
be extended to the inhomogeneous K-function for so-called second order intensity
reweighted stationary point processes [1, 4]. The adaption of Ripley’s K-function to
a general isotropic point process on the sphere is given in [24], without explicitly
specifying the reduced Palm distribution which is needed in the precise definition.
Section 4.1 gives a definition of this distribution without assuming isotropy and Sec-
tion 4.2 provides the formal definition of Ripley’s and the inhomogeneousK-function
and the nearest-neighbour function on the sphere, together with various useful inter-
pretations and results for non-parametric estimation. Moreover, Section 4.3 relates
all this to DPPs.

4.1 Palm distribution for a general point process on the
sphere

Suppose X is a general point process on S2 with an integrable intensity function ρ.
The so-called Campbell-Mecke formula gives that for any x ∈ S2 there exists a finite
point process X !

x so that

E
∑

x∈X
h(x,X \ {x}) =

∫
Eh(x,X !

x)ρ(x) dν(x) (4.1)

for any non-negative Borel function h. Moreover, the distribution of X !
x is unique

for ν almost all x with ρ(x) > 0, and it is called the reduced Palm distribution at
the point x. If ρ(x) = 0, this distribution can be chosen to be arbitrary, since this
case will play no role in this paper.

Intuitively, X !
x follows the conditional distribution of X \{x} given that x ∈X.

This interpretation follows from (4.1) or perhaps more easily by assuming that X
has a density f (with respect to the unit rate Poisson process on S2) since, for
ρ(x) > 0, X !

x has density fx({x1, . . . ,xn}) = f({x,x1, . . . ,xn})/ρ(x).
The situation simplifies if the distribution of X is isotropic. Then ρ(x) = ρ

is constant. Denote SO(3) the 3D rotation group, i.e., O ∈ SO(3) if and only if
O ∈ O(3) and detO = 1. Let e = (0, 0, 1) be the North Pole (for the following
considerations, any other fixed point on the sphere can be used instead). For x ∈
S2 \ {e}, there is a unique Rx ∈ SO(3) so that Rxe = x and its axis of rotation is
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orthogonal to the circle on S2 which contains x and e. Define Re = I. Assume ρ > 0
and let Y !

e be a point process on S2 with distribution

P
(
Y !

e ∈ F
)

=
1

4πρ
E
∑

x∈X
1
[
R>x (X \ {x}) ∈ F

]
, (4.2)

where 1[·] denotes the indicator function. Thus

Ek
(
Y !

e

)
=

1

4πρ
E
∑

x∈X
k
(
R>x (X \ {x})

)

for non-negative measurable functions k. Suppose h is a non-negative measurable
function such that for any O ∈ SO(3), with probability one,

h(x,X \ {x}) = h(Ox, OX \ {Ox}) for all x ∈X (4.3)

and µ(S2) <∞, where

µ(A) := E
∑

x∈X∩A
h(x,X \ {x}), A ⊆ S2.

Then it is straightforwardly verified that µ is a rotation invariant measure, and hence

E
∑

x∈X∩A
h(x,X \ {x}) =

ν(A)

4π
E
∑

x∈X
h(x,X \ {x}). (4.4)

In particular, suppose k is a non-negative measurable function such that for any
O ∈ SO(3), with probability one,

k
(
R>x (X \ {x})

)
= k

(
R>Ox (OX \ {Ox})

)
for all x ∈X. (4.5)

Then h(x,X \ {x}) = k(R>x (X \ {x})) satisfies (4.3), and so it follows from (4.2)
and (4.4) that

ρν(A)Ek
(
Y !

e

)
= E

∑

x∈X∩A
k
(
R>x (X \ {x})

)
. (4.6)

Finally, combining (4.1) and (4.6), we see that for ν almost all x ∈ S2,

Ek
(
R>xX

!
x

)
= Ek

(
Y !

e

)
. (4.7)

Therefore, when restricting attention to the case (4.5), we can let X !
e be distributed

as Y !
e and let X !

x be distributed as RxX
!
e.

In light of the conditions and results (4.3)-(4.7) it is natural to ask if the definition
(4.2) could be replaced by

P
(
Y !

e ∈ F
)

=
1

ν(A)ρ
E
∑

x∈X∩A
1
[
R>x (X \ {x}) ∈ F

]
(4.8)

for an arbitrary set A ⊆ S2 with ν(A) > 0. Clearly, this is not the case: Let e.g.
F = {{x1, . . . ,xn} ⊂ S2 : s(x, e) ≤ 1, n ≥ 0} and A = {x ∈ S2 : s(x, e) > 1}. Then
in (4.8) the left hand side may be positive while the right hand side is 0. Similarly,
in general, we cannot let X !

e be distributed as Y !
e and let X !

x be distributed as
RxX

!
e, since (4.1) with h(x,X \ {x}) = 1[x ∈ A,X\ ∈ F ] would then lead to a

contradiction.
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4.2 Functional summary statistics for isotropic and second
order intensity reweighted isotropic point processes on
the sphere

4.2.1 The homogeneous case

Assume X is an isotropic point process on S2 with finite intensity ρ > 0. Let
s(A,B) = infx∈A,y∈B s(x,y) be the shortest geodesic distance between A,B ⊂ S2

and define the nearest neighbour function by

G(t) = P
(
s(Y !

e , e) ≤ t
)
, 0 ≤ t ≤ π.

Since

k
(
R>x (X \ {x})

)
= 1

[
s
(
R>x (X \ {x}), e

)
≤ t
]

= 1 [s(X \ {x},x) ≤ t]

satisfies (4.5), (4.7) gives

G(t) = P
(
s(X !

x,x) ≤ t
)
,

i.e., G is the distribution function for the distance from a typical point to the nearest
other point in X. Furthermore, for an arbitrary point x ∈ S2, we define the empty
space function by

F (t) = P (s(X,x) ≤ t) , 0 ≤ t ≤ π,

and following [13], we define the J-function by

J(t) =
1−G(t)

1− F (t)
for F (t) < 1.

Since X is isotropic, F does not depend on the choice of x. If X is a homogeneous
Poisson process, then FPois(t) = GPois(t) = exp(−2πρ(1− cos t)) and JPois = 1.

Note that (4.6) yields

ρν(A)G(t) = E
∑

x∈X∩A
1 [s(X \ {x},x) ≤ t] .

Thinking of A as an observation window, this is a useful result when deriving non-
parametric estimates: Let G ⊂ S2 be a finite grid of m > 0 points. If X is fully
observed on S2, i.e., A = S2, then natural estimates are

F̂ (t) =
1

m

∑

x∈G
1 [s(X,x) ≤ t]

and
Ĝ(t) =

1

n

∑

x∈X
1 [s(X \ {x},x) ≤ t]

provided N(S2) = n > 0. In case the observation window A is a proper subset of S2,
minus sampling may be used: Let A	t = {x ∈ A : s(S2 \ A,x) > t} be the set of
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those points in A with geodesic distance at least t to any point outside A. Then
minus sampling gives the estimate

Ĝ(t) =
1

N(A	t)

∑

x∈X∩A	t

1[s(X,x) ≤ t]

provided N(A	t) > 0. Moreover, for F̂ we choose the grid so that G ⊂ A	t.
Now, we define the K-function by

K(t) =
1

ρ
E
∑

x∈Y !
e

1 [s(e,x) ≤ t] , 0 ≤ t ≤ π. (4.9)

Since

k
(
R>x (X \ {x})

)
=

∑

y∈R>x (X\{x})
1[s(e,y) ≤ t] =

∑

y∈X\{x}
1[s(x,y) ≤ t]

satisfies (4.5), (4.7) implies that

ρK(t) = E
∑

y∈X!
x

1[s(x,y) ≤ t] (4.10)

is the mean number of further points within geodetic distance t of a typical point
in the process. Furthermore, by (4.6) and (4.9), we obtain

ρ2ν(A)K(t) = E
∑

x∈X∩A

∑

y∈X\{x}
1 [s(x,y) ≤ t] , (4.11)

which is another useful formula for deriving non-parametric estimates. For example,
if X is fully observed on S2,

K̂(t) =
4π

N(N − 1)

6=∑

x,y∈X
1 [s(x,y) ≤ t] (4.12)

is a natural estimate. If instead the observation window A is a proper subset of S2,
minus sampling gives

K̂(t) =
ν(A)

N(A)(N(A)− 1)

6=∑

x∈X∩A
y∈X∩A	t

1 [s(x,y) ≤ t]

provided N(A) > 1.
The estimate (4.12) was also suggested in [24], where plots for all values of

t ∈ [0, π] were considered. Apart from the case of Poisson models we warn against
such plots for the following reason. When X has pair correlation function g0, we
have

K(t) = 2π

∫ t

0

g0(s) sin s ds, 0 ≤ t ≤ π, (4.13)
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cf. (2.2)-(2.3), (3.3), and (4.11). For an isotropic/homogeneous Poisson process, the
pair correlation function is gPois = 1, so the K-function is KPois(t) = 2π(1 − cos t).
Thus using (4.12) gives K̂(π) = KPois(π) = 4π, but for non-Poissonian models
K̂(π) may be seriously biased, since K is an accumulative function of g0, cf. (4.13).
For example, if the pair correlation function for X is smaller than one (as in the
case of a DPP), we may have K̂(t) � K(t) for large values of t; we illustrate this
in Section 4.2.3 below. Therefore we recommend only interpreting plots of K̂(t)

for smaller values of t: If for smaller or modest values of t, K̂(t) is below (above)
KPois(t), then we interpret this as inhibition or repulsiveness (aggregation or clus-
tering) between nearby points in X. This interpretation is just like in the case of
planar point processes. Incidentally, a second order Taylor approximation around
t = 0 gives KPois(t) ≈ πt2, where πt2 is the K-function for a planar Poisson process.
Similar, when interpreting plots of non-parametric estimates of F (t), G(t), J(t), we
focus on the behavior for small and modest values of t. We refer to Section 4.3 for
examples of how to interpret plots of the functional summary statistics. In case of
the G-function as compared to GPois, the interpretation is similar to that of the
K-function.

4.2.2 The inhomogeneous case

Assume X is an inhomogeneous point process on S2 with finite intensity function
ρ(x) and an isotropic pair correlation function, i.e., it is of the form (3.3). Then, in
accordance with [1] we say that X is second order intensity reweighted isotropic (or
pseudo/correlation isotropic) and define the inhomogeneous K-function by (4.13).
So this definition of K is in accordance with the isotropic case. In particular, if X
is a Poisson process, then it is second order intensity reweighted isotropic and we
still have KPois(t) = 2π(1− cos t).

In analogy with (4.11), we have

ν(A)K(t) = E
∑

x∈X∩A

∑

y∈X\{x}

1 [s(x,y) ≤ t]

ρ(x)ρ(y)
. (4.14)

If the intensity function is known or estimated and X is fully observed on S2, this
suggests the non-parametric estimate

K̂(t) =

6=∑

x,y∈X

1 [s(x,y) ≤ t]

4πρ(x)ρ(y)
,

cf. [1]. If instead the observation window A is a proper subset of S2, minus sampling
gives

K̂(t) =

6=∑

x∈X∩A,y∈X∩A	t

1 [s(x,y) ≤ t]

ν(A)ρ(x)ρ(y)
.

Finally, by (4.1) and (4.14), for ν almost all x ∈ S2 with ρ(x) > 0,

K(t) = E
∑

y∈X!
x

1[s(x,y) ≤ t]

ρ(y)
.
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Figure 5: Each panel shows K̂(t)−KPois(t) for 500 simulated point patterns on S2 with
25 points on average together with the theoretical value of K(t) −KPois(t) for the model
(red line). Left: Poisson model and usual non-parametric estimator (4.12). Middle: Most
repulsive DPP and usual non-parametric estimator (4.12). Right: Most repulsive DPP and
modified non-parametric estimator (4.15).

Hence, if ρ(y) is close to ρ(x) for s(x,y) ≤ t,

ρ(x)K(t) ≈ E
∑

y∈X!
x

1[s(x,y) ≤ t],

which is a local version of the interpretation of K(t) in the isotropic case, cf. (4.10).

4.2.3 Normalization of K̂

The non-parametric estimate given in (4.12) effectively corresponds to estimating
ρ2 by N(N −1)/(4π)2. As previously mentioned, this implies K̂(π) = KPois(π) = 4π
making it the natural choice for Poisson models. In general it is easy to show that
K(π) ≥ 4π − 1/ρ, with equality for models with a fixed number of points such as a
most repulsive DPP. The lower bound value K(π) = 4π−1/ρ would be obtained by
the non-parametric estimator if ρ2 was estimated by (N/(4π))2 instead such that

K̂(t) =
4π

N2

6=∑

x,y∈X
1 [s(x,y) ≤ t] . (4.15)

Thus, in the special case of a model with a non-random number of points this
estimator may be better, but in general as the true model is unknown we prefer to
use (4.12).

Figure 5 illustrates the potential bias for a most repulsive DPP with 25 points
(the low number of points helps to emphasize the bias since the error in this case
is 1/ρ = 1/(25/(4π)) ≈ 0.5). Each panel shows the difference between a non-
parametric estimate of K and the theoretical value for a Poisson process KPois based
on 500 simulated point patterns on S2. For reference the left panel shows the per-
fectly unbiased result obtained when simulating a Poisson process with 25 points
on average and using (4.12) to estimate K. The middle panel shows the bias when
(4.12) is used in the case of a most repulsive DPP with 25 points. The right panel
shows how the bias is removed if (4.15) is used instead.
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In the case of a DPP the bias problem of the non-parametric estimator for large
distances is best illustrated in the somewhat special case of very low intensity, but we
believe the critique and bias problem remains valid for for many other model classes.
In particular we expect that models for clustering may attain values of K(π) much
larger than 4π and suffer from much larger bias, but it is left as an open problem to
investigate this further.

4.3 The case of DPPs on the sphere

Let X be an isotropic DPP with an explicit model for the kernel C0(s) = ρR0(s).
Then the pair correlation function is given by (3.3) and the K-function is given by
(4.13). In particular for the multiquadric model of Section 3.1.2 we can easily derive
a closed-form expression for the K-function using integration by substitution:

Kmq(s) = KPois(s)− 2π
(1 + δ)(1− δ)

2δ(1− 2τ)

(( 1 + δ2 − 2δ

1 + δ2 − 2δ cos(s)

)2τ−1
− 1
)
, τ 6= 1/2,

(4.16)
while for the inverse multiquadric family we get

Kimq(s) = KPois(s)− 2π
(1 + δ)(1− δ)

2δ
ln

(
1 + δ2 − 2δ cos(s)

1 + δ2 − 2δ

)
, τ = 1/2. (4.17)

The formulae (4.16)-(4.17) also hold for the inhomogeneous K-function when X is
a correlation isotropic DPP obtained by independent thinning of an isotropic DPP
with multiquadric kernel.

For DPP models where we have explicit expressions for the Mercer coefficients
but not for the kernel, we can use (3.3)-(3.4) to calculate g0 numerically, and then
use numerical integration to calculate the K-function, cf. (4.13). For instance, this
approach has to be used both for the flexible model mentioned in Section 3.1.2 and
for the most repulsive DPP, and it was used to produce the theoretical (red) curve
in the middle and right panels of Figure 5.

The three point patterns in Figure 1 are realizations of DPPs with different de-
grees of repulsiveness: From left to right, there is none (Poisson DPP), intermediate
(multiquadric DPP), and strong (most repulsive DPP) interaction. In the following
we will discuss the corresponding non-parametric estimates of K and G and to what
extend these can be used to discriminate between the three cases.

Figure 6 shows the non-parametric estimates of K and G for all three patterns
along with the theoretical curve for a Poisson process, and as expected the estimates
generally have smaller values for the more repulsive models. To produce this figure
with the developed software, e.g. for the multiquadric DPP, we simulate a realization
of the model and estimate K by using the following commands:

mqmodel <- dppMQ(lambda = 225/(4*pi), delta = 0.68, tau = 10)
Xmq <- simulate(mqmodel)
Kmq <- Kspp(Xmq, rmax = 10, angle = TRUE)
plot(Kmq)

A simple way to assess the difference between the summary statistics is to use
pointwise envelopes simulated under the null model, which is a technique with a
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Figure 6: Non-parametric estimates of K (left) and G (right) for the three point patterns
in Figure 1 and the theoretical curves for a Poisson process as reference. The abscissa is
the angle in degrees between pairs of points on the sphere.

long history for point patterns in Euclidean space (see e.g. [2] for an accessible
account). For example, in order to generate pointwise envelopes for the K-function,
with significance level 1% for the realization of a multiquadric DPP generated above
under a Poisson null model, and plot the results (not shown here), we use the
commands

envmq <- envelope(Xmq, Kspp, nsim = 199)
plot(envmq)

This means that if we fix a distance a priori and reject the null hypothesis if the non-
parametric estimate of the summary statistic for the data is outside the envelopes
at this distance, then this is a test with significance level 1%. However, the main
drawback is that in practice it is very hard to only do a pointwise test when the
envelopes show the test results at many scales at once. This problem has been well-
known for decades and a recent account can be found in Chapter 10 of [2]. As an
alternative to this approach so-called rank count envelopes were developed in [20]
which have an interpretation as a global test, while still providing a graphical output
that can be used to infer the spatial scales where the data significantly deviates
from the null model. An extra advantage of this approach is that several functional
summary statistics can be combined in one test to give an overall correct significance
level and thereby avoid any multiple testing problems. This test was performed on
the K- and G-function simultaneously for the multiquadric point pattern with a
Poisson null model which based on 2499 simulations yielded a highly significant p-
value of 0.0004, which is the lowest possible p-value based on 2500 summary functions
(2499 simulated and 1 data). The corresponding graphical test is shown in Figure 7,
where we have separated the values related to K and G into separate plots even
though the calculation of the envelopes are based on concatenating the values of K
and G into one long vector. Notice that more significant departures from the null
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Figure 7: Simultaneous rank count envelopes for K (left) and G (right) for the multi-
quadric point pattern in the middle panel of Figure 1 based on 2499 simulations from the
Poisson null model. Filled circles on the abscissa correspond to distances (in terms of angles
in degrees) where the data curve exits the envelopes indicating significant departure from
the Poisson null model.

model are detected by the K-function which appears to provide a more powerful
test in this case (and in our experience this also applies to the other examples in
this paper). While it is useful to know the spatial scales leading to rejection of the
null hypothesis, we should be very cautious when interpreting the K-function due
to the cumulative nature of the function, cf. Section 4.2.

If we use the same test against the most repulsive DPP as the null model based
on 999 simulations, the p-value is 0.001 (which is the lowest possible value based
on 1000 summary functions). Finally, if we test the most repulsive pattern (right
panel in Figure 1) against the multiquadric DPP model with η = 225, δ = 0.68, and
τ = 10, we get a p-value of 0.008. If instead we use K respective G only for the rank
count test, we obtain a p-value of 0.005 respective 0.106, which again indicates that
K is the more powerful of the two.

5 Future work

In this paper we have considered examples of simulated point patterns on the sphere
under various DPP models. Indeed it would be interesting to analyze real point pat-
tern data sets on the sphere using parametric DPP models. Here we expect that inho-
mogeneous/anisotropic DPPs will be of more relevance than homogeneous/isotropic
DPPs. As in [10, 11] parameter estimation may be done by either maximum likeli-
hood or a composite likelihood or minimum contrast method based on the intensity
and pair correlation functions. In [10, 11] we noticed that the latter methods work
quite well in comparison with maximum likelihood.

Other point process models than DPPs on the sphere may of course be of rel-
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evance for applications. For instance, the spectral representation (2.6) allows us to
construct and simulate Gaussian processes, cf. (3.8). Thus we can also deal with log
Gaussian Cox processes (LGCPs) on the sphere, where all the statistical methodol-
ogy for LGCPs on Euclidean spaces [17, 18, 19] can be easily adapted to the sphere.

In Section 4.2, for a second order intensity reweighted isotropic point process on
the sphere, we provided non-parametric estimates of the F , G and K-functions. In
the literature for point processes defined on Euclidean spaces there is considerable
discussion of edge correction factors, which account for the edge effects that arise
when estimating functional summary statistics near the boundaries of an observation
window. In Section 4.2, we exemplified this only in the case when the process is
fully observed or when minus sampling is used, while we leave it for another paper
to derive further edge correction factors. In the planar case [2] mentions that “So
long as some kind of edge correction is performed . . . , the particular choice of edge
correction technique is usually not critical.” We expect the situation to be similar
for point patterns on the sphere.

Finally, we notice that space-time point process models on the sphere, whether
being DPPs or LGCPs or of another type, might be worth studying, where of course
the direction of time should be taken into consideration.
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