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Summary

This thesis analysis the use of Brownian semi-stationary (BSS) processes to model the main statistical fea-

tures present in turbulent time series, and some asymptotic properties of certain classes of smooth pro-

cesses.

Turbulence is a complexphenomenagovernedby theNavier-Stokes equations. Theseequationsdonot

represent a fully functional model and, consequently, it has been necessary to develop phenomenological

models capturing main aspects of turbulent dynamics. The BSS processes were proposed as an option to

model turbulent time series. In this thesisweproved, through a simulation-based approach, thepotential of

BSS processes tomodel turbulent velocity time series. It turns out that this family of processes reproduces

accurately someof themain features present in turbulent time series, such as the distributionof the velocity

increments and the statistics of the Kolmogorov variable. We also studied the distributional properties

of the increments of BSS processes with the intent to better understand why the BSS processes seem to

accurately reproduce the temporal turbulent dynamics.

BSS processes in general are not semimartingales. However, there are conditions which make a BSS

process a bounded variation process with differentiable paths. It is natural to inquire if it is possible to

obtain an asymptotic theory for this class of BSS processes. This problem is investigated and some partial

results are presented. The asymptotic theory for BSS processes naturally leads to the study of the same

problem formultipleLebesgue integrals ofBrownianmotion. This thesis alsopresents some research about

the asymptotic problem in the context of integrals of Brownian motion.
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Dansk resumé

I denne afhandling analyseres anvendelsen af Brownske semi-stationære (BSS) processer til modellering af

de primære statistiske egenskaber i turbulente tidsrækker, derudover studeres de asymptotiske egenskaber

for bestemte klasser af glatte processer.

Turbulens er et komplekst fænomen beskrevet af Navier-Stokes ligningerne. Disse udgør dog ikke

en funktionsdygtig model, og, som konsekvens heraf, har det været nødvendigt at udvikle fænomenolo-

giske modeller til beskrivelse af de væsentlige aspekter i turbulent dynamik. BSS processerne er, af flere,

blevet foreslået som en mulighed til modellering af turbulente tidsrækker. I denne afhandling har vi, ved

en simuleringsbaseret tilgang, studeret potentialet ved at bruge BSS processer til modellering af turbu-

lente hastighedstidsrækker. Studiet har vist, at denne familie af processer, præcist gengiver nogle af de

primære statistiske egenskaber i turbulente tidsrækker, som eksempelvis fordelingen af hastighedstilvæk-

ster og de statiske egenskaber af Kolmogorov variablen. Derudover, har vi studeret de distributive egensk-

aber af tilvæksterne i BSS processer, med henblik på at opnå en større forståelse af hvorfor BSS processerne

præcist gengiver den temporale turbulens dynamik.

BSS processerne er generelt ikke semi-martingaler. Dog findes der betingelser, under hvilke en BSS

proces har begrænset variation og differentiable stier. Det er naturligt at spørge om det er muligt at udlede

en asymptotisk teori for denne klasse af BSS processer. Dette problem er undersøgt og delvise resultater

bliver præsenteret. Den asymptotiske teori for BSS processer leder naturligt til studiet af samme problem

for flere Lebesgue integraler af Brownsk bevægelse. Derudover præsenteres der også i denne afhandling

forskning i det asymptotiske problem i forbindelse med integraler af Brownsk bevægelse.
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1
Background on turbulence

In this Chapter we present some preliminaries about turbulence and its relation to BSS processes.

1.1 Basics about turbulence

Turbulent flows are characterized by low momentum diffusion, high moment convection, and rapid vari-
ation of pressure and velocity in space and time. Flow that is not turbulent is called laminar flow. The
non-dimensional Reynolds number Re characterizes whether flow conditions lead to laminar or turbulent
flow. Increasing the Reynolds number increases the turbulent character and the limit of infinite Reynolds
number is called the fully developed turbulent state.

Turbulence, as part of hydrodynamics, is governed by the Navier-Stokes equations which has been
known since 1823. In general there is no known unique solution for these equations, and it is not possible
to describe the wide range of turbulent phenomena from basic principles. Consequently, a great deal of
phenomenological models have emerged that are based on and designed for certain aspects of turbulent
dynamics.

In general, turbulence concerns the dynamics in a fluid flow of the three dimensional velocity vector
v⃗ (t, x) = (v1 (t, x) , v2 (t, x) , v3 (t, x)) as a function of position x = (x1, x2, x3) ∈ R3 and time t. A
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derived quantity is the energy dissipation, defined as

ε (t, x) =
ν
2

∑
i,j=1,2,3

(
∂xivj (t, x) + ∂xjvi (t, x)

)2
, (1.1)

describing the loss of kinetic energy due to friction forces characterized by the viscosity ν.

Insight into the process that transforms kinetic energy into heat can be gained through the Richardson
cascade ([31]). In this representation kinetic energy is injected into the flow at large scales through large
scale forcing. Non-linear effects redistribute the kinetic energy towards smaller scales. This cascade of
energy stops at small scales where dissipation transforms kinetic energy into heat. It is traditional to call
the large scale L of energy input the integral scale and the small scale η of dissipation the dissipation scale
or Kolmogorov scale. With increasing Reynolds number the fraction L/η increases, giving space for the so
called inertial range η ≪ l ≪ Lwhere turbulent statistics are expected to have some universal character.

The resolution of all dynamically active scales in experiments is at present not achievable for the full
three-dimensional velocity vector. Most high-resolution experiments measure a time-series of one com-
ponent v (in direction of the mean flow) of the velocity vector at a fixed single location x0. Based on this
restriction one defines the temporal energy dissipation

εt = εt (x0) =
15ν
v2

(
dv
dt

(t, x0)
)2

(1.2)

where v denotes the mean velocity. The temporal energy dissipation (1.2) is expected to have similar sta-
tistical properties as the true energy dissipation (1.1) for stationary, homogeneous and isotropic flows.
Discrepancies appear at small scales and are termed surrogacy effects. The derivation of (1.2) from (1.1)
is based on Taylor’s Frozen FlowHypothesis ([37]) which states that spatial structures of the flow are pre-
dominantly swept by the mean velocity v without relevant distortion. Under this hypothesis, widely used
in analyzing stationary turbulent time series, spatial increments along the direction of the mean flow (in
direction x1) are expressed in terms of temporal increments

v (t+ s, x1)− v (t, x1) = v (t, x1 − vs)− v (t, x1) .

1.2 The Kolmogorov-Obukhov statistical theory of turbulence

O. Reynolds, considered as the father of the scientific research in turbulence, had already realized that the
deterministic study of turbulence is impracticable and that its analysis should be in statistical terms [30].
There were some early efforts in this direction but it was Kolmogorov ([23, 24]) who, for the first time,
was able to introduce a statistical theory for turbulence with important implications.

Kolmogorov proposed a theoretical framework for turbulence, sometimes referred to as K41 theory,
which applies to homogeneous and isotropic turbulence. In this framework, Kolmogorov made two as-
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sumptions:

1. The energy dissipation rate has a finite non-vanishing limit as the viscosity tends to zero while keep-
ing the scale and velocity characteristic of the production of turbulence fixed.

2. In the limit of very large Reynolds numbers, there is a scaling exponent h ∈ R such that the velocity
increments u⃗ (l; t, x) ≡ v⃗ (t, x)− v⃗ (t, x+ l) satisfy

u⃗ (λl; t, x) d
= λhu⃗ (l; t, x) , ∀λ ∈ R+,

for all x and all increments λl and l small compared to the integral scale.

Since in a laminar flow the dissipation goes to zero with the viscosity, the first assumption is generally
called “the existence of a dissipative anomaly” and iswell supported by experimental and numerical results.
The second assumption, generally called the “self-similarity” hypothesis, holds only in an approximateway.

The K41 scaling hypothesis immediately implies scaling laws for the structure functions Sp,

Sp (l; t, x) = E
{(

u⃗ (l; t, x) · l
∥l∥2

)p}
, p ∈ N, (t, x) ∈ R+ × R3, l ∈ R3, (1.3)

namely,
Sp (l; t, x) ∝ ∥l∥hp2 . (1.4)

The case p = 3 is remarkable since Kolmogorov showed that the four-fifths relation

S3 (l;t, x) = −4
5
E {ε (t, x)} ∥l∥2 (1.5)

holds without any need to assume self-similarity ([23]). All these scaling relations are meant to apply
within the inertial range. Equation (1.5) is reasonably well supported by experimental and numerical data.

The four-fifths law (1.5) and the self-similarity hypothesis imply that h = 1/3. As the units of u⃗, ε and
∥l∥2 arem/s,m2/s3 andm, respectively, necessarily

Sp (l; t, x) = CpE {ε (t, x)}p/3 ∥l∥p/32 , (1.6)

where Cp are dimensionless constants. The constants Cp cannot depend on the Reynolds number, since
the limit of infinite Reynolds number is already taken.

Remark 1 Equation (1.6) implies that the energy spectrum of turbulence follows a k−5/3 law (where k is the
wavenumber). This is the so-called 5/3rd-Kolmogorov law.

Remark 2 If vt (x0) denotes the component of the velocity vector in direction of the mean flow at time t at the
fixed position x0, the Taylor Frozen Flow Hypothesis ([37]) implies that the structure functions for temporal
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increments

Sp (l; t, x0) = E
{
(vt+l (x0)− vt (x0))

p}
, p ∈ N, (t, x0) ∈ R+ × R3, l > 0, (1.7)

also satisfy
Sp (l; t, x0) = CpE {ε (t, x0)}p/3 lp/3 (1.8)

for some constants Cp, and l within the temporal counterpart of the inertial range η/ν ≪ l ≪ L/ν.

Remark 3 In 1945 the physicist L. Onsager made a profound observation ([28]): any fluid velocity v⃗ that sat-
isfies the Kolmogorov-Obukhov scaling can not have a gradient continuous in x (i.e. space). More precisely, in
mathematical terms, v⃗ is Hölder continuous in x with Hölder index 1/3. This implies, as pointed out by B. Birnir,
that the turbulent solutions of the Navier-Stokes equations are not smooth [13].

Careful experimental and numerical examinations of the scaling laws reveal small but measurable dis-
crepancies fromK41. Indeed, the structure functionsSp display apower-lawbehaviorSp (l) ∝ ∥l∥ζp2 within
the inertial range, but the scaling exponents ζp do not exhibit the exact linear behavior ζp = p/3 predicted
byK41. Hence the self-similarity assumed inK41may actually be broken. Nowadays the scaling exponents
ζp are known with great accuracy and they seem to be universal, that is independent of the mechanism by
which the turbulence is driven [19].

The K41 theory was criticized by Landau for not taking into account the influence of the large flow
structure on the constants Cp and for not including the influence of the intermittency in the velocity fluc-
tuations on the scaling exponents [26]. In 1962, in order to address these problems, Kolmogorov pub-
lished two hypotheses ([25]), usually referred to as K62, about a quantity V that combines velocity incre-
ments and the energy dissipation. In its original formulation, Kolmogorov considered spatial averaging
over spheres. In the presentation below, we reformulate the hypotheses using spatial averaging along the
mean flow direction xwhich allows to translate the spatial structure into the time domain using the Taylor
Frozen Flow Hypothesis. The hypotheses are:

(i) Let Δvx (r) = v (x+ r/2) − v (x− r/2), where v (x) denotes the x component of the velocity
vector v⃗(t, x, y, z) at fixed time t. Let rεr be the integrated energy dissipation over a domain of linear
size r, where

εr (t, x) =
1
r

∫ x+r/2

x−r/2
ε(t, σ, x2, x3)dσ. (1.9)

Then, for r ≪ L (where L is the integral scale), the pdf of the stochastic variable

Vr (t, x) =
Δvx (r)

(rεr (t, x))1/3
(1.10)
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only depends on the local Reynolds number

Rer = r(rεr (t, x))1/3/ν. (1.11)

(ii) For Rer ≫ 1, the pdf of Vr does not depend on Rer, either, and is therefore universal.

Although, for small r, an additional rdependence of the pdf ofVr has beenobserved ([36]), the validity
of several aspects of K62 has been verified experimentally and by numerical simulation of turbulence (see
e.g. [20]). In particular it has been shown that the conditional densities p(Vr|rεr) become independent
of rεr for scales r within the inertial range. However, the universality of the distribution of V has not been
verified in the literature. In this respect, it is important to note that the experimental verification of the
Kolmogorov hypotheses for high resolution data is restricted to temporal statistics and as such relies on
the use of the temporal energy dissipation (1.2) instead of the true energy dissipation (1.1). In the time
domain, the Kolmogorov variable V is defined as

Vs =
us(t− s/2)

(vsε(s, t))1/3
(1.12)

where us(t) = v (t, x0)−v (t− s, x0) denotes the temporal velocity increment at time scale s, v is themean
velocity and ε(s, t) is the coarse grained temporal energy dissipation

ε(s, t) =
1
s

∫ t+s/2

t−s/2
εrdr.

We have skipped reference to the spatial location in (1.12).

1.3 Scaling of the energy dissipation

Kolmogorov’s refined similarity hypothesis (i) implies that the coarse grained energy dissipation shows
the scaling behavior E

{
εl (t, x)

p} ∝ lτp . More precisely, Kolmogorov’s hypothesis (i) provides a relation
between the scaling exponents ζp of the structure functions Sp and the scaling exponents τp, namely

ζp =
p
3
+ τp/3.

In the time domain, under stationary flow conditions, the corresponding scaling of E {ε(s, t)2} is re-
lated to a scaling law for E {ε0εt}. Motivated by this fact, one considers the correlators of order (n,m) of
the (surrogate) temporal energy dissipation εt (1.2), denoted by cn,m (t), and defined as

cn,m (t) :=
E {εnt εm0 }

E {εnt } E {εm0 }
n,m ∈ N, t > 0. (1.13)
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In [32] it was reported that for time-scales t within the temporal counterpart of the inertial range, one
observes scaling

cn,m (t) ∝ tτ(n,m).

The length of the scaling range can be extended by plotting cn,m (t) as a function of cn,m (t). This improved
scaling for the correlators is called self-scaling.

1.4 Intermittency and the pdf of velocity increments

TheKolmogorov-Obukhov theoryhad amajor influence in the studyof turbulence. Numerous efforts have
been dedicated to the analysis of the structure functions Sp and Sp, and their scaling behavior. However, it
could be more meaningful and enlightening to understand the probability density functions (pdf) of the
velocity increments, rather than a set of moments.

Experimental and numerical studies have provided evidence that the densities of the velocity incre-
ments have heavy or semi-heavy tails at small scales, while they are almost Gaussian at large scale where
energy is fed into theflow([19]). This evolutionof thepdf across scales is traditionally referred to as “aggre-
gationalGaussianity” in turbulence studies. A typical scenario is characterized by an approximateGaussian
shape for the large scales, turning to exponential tails for the intermediate scales and stretched exponential
tails for dissipation scales. The deviation from Gaussianity at small scales is refered to as “intermittency”.

In [6], it is reported that the evolution of the pdf of temporal velocity increments, for all amplitudes
and all scales, can well be described within the class of normal inverse Gaussian (NIG) distributions (see
Appendix D).
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2
Ambit processes and Brownian semi-stationary

processes

In this Chapter, we include a brief review of some aspects of ambit processes and Brownian semi-
stationary (BSS) processes that are essential in Paper A for the modelling of turbulent velocity time se-
ries, and in Paper B for the analysis of the cumulants of increments of BSS processes. BSS processes are
fundamental in this thesis.

This Chapter is divided in two Sections. Section 2.1 discusses the definition of a very simple version of
an ambit process, relevant for the modelling of the turbulent energy dissipation. Section 2.2 presents the
most relevant elements of BSS processes.

2.1 Integration with respect to a Lévy basis

Ambit processes were introduced in [9] as a framework for tempo-spatial modelling. These processes are
defined in terms of integrals with respect to a Lévy basis. Here, we restrict our attention to those ambit
processes defined as the stochastic integral of a deterministic functionwith respect to a homogeneousLévy
basis defined onR2.
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Denote by Bb (R2) the set of bounded Borel subsets of R2. A Lévy basis Λ on R2 is an infinitely di-
visible, independently scattered random measure onR2, i.e. (Λ (A))A∈Bb(R2) is a stochastic process such
that: (i) Λ (A) is infinitely divisible; (ii) Λ (A) and Λ (B) are independent if A ∩ B = ∅; and, (iii) If
A1, . . . ,An ∈ Bb (R2) are disjoint and such that∪n

i=1Ai ∈ Bb (R2), then

Λ

(
n∪
i=1

Ai

)
a.s.
=

n∑
i=1

Λ (Ai) .

A Lévy basis Λ onR2 is called homogeneous if Λ (A) d
= Λ (A+ x0), for x0 ∈ R2.

The stochastic integral ∫ fdΛ of a deterministic measurable function f : R2 → R with respect to a
homogeneous Lévy basis Λ is defined in two steps: (a) If f =

∑n
i=1 ai1Ai is a real simple function on R2

with A1, . . . ,An disjoint, for A ∈ B (R2), we define

∫
A
fdΛ =

n∑
i=1

aiΛ (Ai ∩ A) .

(b) If f : R2 → R can be approximated almost everywhere (with respect to the Lebesgue measure) by a
sequence of simple functions {fn} as in (a), provided that the limit exist, we define∫

A
fdΛ = P− lim

∫
A
fndΛ, (2.1)

for A ∈ B (R2). We say that a measurable function f : R2 → R is Λ-integrable if the integral (2.1) exists.

LetK {z ‡ X} := log E {exp (zX)} andC {z ‡ X} := log E {exp (izX)} denote the log-moment gen-
erating function and the log-characteristic function, respectively, of the random variable X. The functions
K and C will be called the kumulant and cumulant function, respectively. For each homogeneous Lévy
basis Λ, we can associate a random variable Λ′ to Λ such that

K {z ‡ Λ (da)} = K {z ‡ Λ′} da,

and
C {z ‡ Λ (da)} = C {z ‡ Λ′} da.

The random variable Λ′ is called the Lévy seed of Λ.

The stochastic integral ∫ fdΛ and the Lévy seed Λ′ satisfy the next relation (see [29] for a proof).

Proposition 4 Let Λ be a Lévy basis onR2 and f : R2 → R a Λ-integrable function. Then

K
{
z ‡
∫
A
f (a) dΛ (a)

}
=

∫
A
K {zf (a) ‡ Λ′} da

8



and
C
{
z ‡
∫
A
f (a) dΛ (a)

}
=

∫
A
C {zf (a) ‡ Λ′} da.

For the purposes of this thesis, an ambit process is a stochastic process (Yt)t≥0 of the form

Yt =
∫
At

f ((0, t)− a) dΛ (a) ,

whereA ∈ Bb (R2) andAt = A+(0, t). For amore general definition of ambit processes and a discussion
of their mathematical properties, we refer to [5].

2.2 Brownian semi-stationary processes

Brownian semi-stationary (BSS) processes, introduced in [11] as potential models for turbulent velocity
time series, are stochastic processes of the form

Zt = μ +
∫ t

−∞
g (t− s) σsdBs +

∫ t

−∞
q (t− s) ςsds, (2.2)

where μ is a constant, (Bt)t∈R is standard Brownian motion, g and q are nonnegative deterministic func-
tions onR, with g (t) = q (t) = 0 for t ≤ 0, and (σt)t∈R and (ςt)t∈R are càdlàg processes. When (σ, ς)
is stationary and independent of B, then Z is stationary. In this thesis, only stationary BSS processes are
considered.

In general, BSS processes are not necessarily semimartingales. A sufficient condition for Z to be a
semimartingale is that σ and ς have second finite moments, g, q ∈ L1 (R+)

∩
L2 (R+), g′ ∈ L2 (R+) and

g (0+) < ∞ (see [16]).

It is well-known that for any semimartingale X the limit

[X]t = lim
n→0

n∑
j=1

(
Xj tn

− X(j−1) t
n

)2
(2.3)

exists as a limit in probability. The derived process [X] expresses the cumulative variation exhibited by X
and is called quadratic variation. For the case where (2.2) is a semimartingale, using the stochastic Fubini
theorem and Itô algebra, we get

(dZt)
2
= g2 (0+) σ2tdt

and

[Z]t =
∫ t

0
(dZs)

2
= g2 (0+)

∫ t

0
σ2sds. (2.4)

When X is not a semi-martingale, the limit in (2.3) might not exist. However, as has been proven in

9



[16], under certain assumptions on g it follows that

lim
n→0

1
n · R (1/n)

n∑
j=1

(
Zj tn

− Z(j−1) t
n

)2
=

∫ t

0
σ2sds, (2.5)

where
R(s) = E [(Gs − G0)

2
] , Gs =

∫ s

−∞
g (s− r) dBr.

Equation (2.5) is a particular case of the more general result established in [16].
The specification of the kernel g proportional to a gamma density,

g (x; a, ν, λ) = a · xν−1 exp (−λx) 1(0,∞) (x) , λ > 0, ν > 0, (2.6)

is of particular interest since, for this class of kernels, theBSSprocess (2.2) has somenicemathematical and
modelling properties. From the mathematical perspective, we have that, when g is a gamma kernel (2.6),
the semimartingale character of (2.2) is determined by the value of the exponent ν: Z is a semimartingale
if and only if ν > 3/2. Besides, this type of kernels form the most simple class of functions that fulfill the
assumptions necessary to satisfy (2.5). From themodelling point of view, we have that BSS processes with
a gamma kernel reproduce Kolmogorov’s 5/3rd law (see Remark 1).

Thepropertiesmentioned in the aboveparagraphmake theBSSprocesswith a gammakernel a relevant
object of study in this thesis.
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3
Modelling turbulent time series by BSS-processes

ThisChapter summarizes themain results of the application of BSS processes tomodel turbulent veloc-
ity time series (Paper A).

One of themain ingredients of BSS processes (2.2) is the volatility σ which, in the approach described
here constitutes the energy dissipation process ε = σ2, andwill bemodelled as the exponential of an ambit
process. Section 3.1 briefly describes the ambit model for the energy dissipation. Section 3.2 presents the
BSS model for turbulent velocity time series whose modelling performance will be illustrated in Section
3.4. Section 3.3 describes the algorithm used to estimate the model parameters.

3.1 A Lévy based model for the turbulent energy dissipation

Themodel for the stationary turbulent velocityfield takes as an input the temporal energydissipationwhich
ismodelled as the exponential of an ambit process. In [35] it is shown that this Lévy based approach is able
to reproduce the main stylized features of the energy dissipation observed for a wide range of data sets,
including the data analyzed in this thesis.

Specifically, we model the stationary temporal energy dissipation ε as the exponential of an integral

11



with respect to a homogeneous Lévy basis L onR2,

εt = exp

(∫
A(t)

L (dy, ds)

)
= exp (L (A (t))) (3.1)

where A (t) = A+ (0, t) for a bounded set A ⊂ R2. The ambit set A is given as

A = {(x, t) : 0 ≤ t ≤ T,−f (t) ≤ x ≤ f (t)}. (3.2)

For T > 0, k > 1, and θ > 0, the function f is defined as

f (t) =

(
1− (t/T)θ

1+ (k · t/T)θ

)1/θ

, 0 ≤ t ≤ T. (3.3)

This specification of the ambit set is adapted to reproduce the empirically observed scaling of correlators
(1.13).

In [35] it is shown that the density of the logarithm of the energy dissipation is well described by a
normal inverse Gaussian distribution, i.e. log εt ∼ NIG (α, β, μ, δ). For the correlators cp,q to exist it is
necessary to assume that εt has exponentialmoments of order p+q leading to the condition p+q < α−β.
The parameters of the underlying NIG-law of L and the corresponding ambit sets have been estimated in
[35] for a number of turbulent data sets including the one used in this thesis.

3.2 A stochastic model for turbulent velocity time series

Inspired by [10], stationary time series of the main component vt of the turbulent velocity field are mod-
elled as a BSS process of the specific form

vt = vt (g, σ, β, x0) =
∫ t

−∞
g (t− s+ x0) σsdBs + β

∫ t

−∞
g (t− s+ x0) σ2sds ≡ Rt + βQt (3.4)

where g is a convolution of gamma kernels (see (3.6)), σ2 = ε for ε given by (3.1), and β and x0 are positive
constants.

The introduction of a cut-off x0 ensures that [v] is positive. Equation (2.4) implies that σ2 can be iden-
tified, up to a factor, with the temporal energy dissipation.

In this set-up, the Kolmogorov variable V (1.12) is given as

Vs =
us (t− s/2)(
ν̄ [v]s

)1/3 . (3.5)

where us (t− s/2) = vt+s/2 − vt−s/2 and ν̄ = E {vt}. The conditional independence of Vs refers to

12



the independence of p
(
Vs| [v]s

)
on [v]s. Here [v]s denotes the quadratic variation over the time horizon

[t− s/2, t+ s/2].

The term β · Q in (3.4) determines the skewness of the density of velocity increments ut = vt − v0.
For this reason we refer to β as the skewness parameter.

The kernel g ≡ g (·, a1, ν1, λ1, a2, ν2, λ2) can be expressed as

g (x; a1, ν1, λ1, a2, ν2, λ2) = a1a2xν1+ν2−11R+(x)
∫ 1

0
e−x(λ1u+λ2(1−u))uν1−1(1−u)ν2−1du. (3.6)

The relevant parameters are (a, ν1, λ1, ν2, λ2) with a = a1a2. From (3.6) it follows that v (g, σ, β, x0) is
a semimartingale if ν1 + ν2 > 3/2. This choice for g in (3.4) reproduces accurately the spectral density
function (sdf) of turbulent velocity time series and provides physical interpretation of the parameters in-
volved. Consider themodel v (g, σ, β, x0) and assume that λ1 < λ2. For ν1 = 5/6, λ1 denotes the frequency
where the inertial range starts and λ2 denotes the frequencywhere the inertial range ends. Furthermore, 2ν1
and 2 (ν1 + ν2) give the slope in the sdf within the inertial and the dissipation ranges, respectively. Thus,
Kolmogorov’s 5/3rd law implies that ν1 ≈ 5/6.

3.3 Estimation procedure

The modelling framework (3.4) has three degrees of freedom: the energy dissipation σ2, the kernel g and
the skewness parameter β. The estimation of the parameters of σ2 from data has been performed in [35].
It remains to estimate g and β.

The third order structure function S3 (1.8) of (3.4) can be written as

S3 (l) = 3βE{(ΔlR)
2
(ΔlQ)}+ β3E{(ΔlQ)

3}, (3.7)

where R and Q are given as in (3.4), and ΔlR = Rl − R0, ΔlQ = Ql − Q0, for l > 0. Given paths of R
and Q, our estimator for β is the value that minimizes the distance, in the sense of least squares, between
the empirical third order structure function and (3.7) for a suitable range of scales l. Besides, given a value
of β, our estimated parameters of g are those that minimize the distance, also in the sense of least squares,
between the empirical sdf and the sdf of (3.4).

Thecomplete estimationprocedure canbedescribed as follows: 1)Weneglect the skewness parameter
β and we estimate the parameters of g from the sdf. 2)Having a simulation of the σ process, we perform a
simulation of (3.4). 3)Using the simulation of the BSS process produced in 2), we estimate β as described
above. 4)We re-estimate the kernel g using the empirical sdf and the current value of β. 5)With the same
simulation of σ, we repeat steps 2) and 3) until we observe stabilization.

Under certain assumptions, we can ensure that the estimation procedure gives reasonable values for
the skewness parameter β and the parameters of g. We refer to Paper A for a detailed presentation of these
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Figure 3.4.1: Comparison of the structure functions Sn, n = 4, 6 from the simulation of (3.4) (red)
and the structure functions estimated from the data (blue). The time lags s are measured in units of
the finest resolution of the empirical data.

conditions.

3.4 Model performance

In this Section, we present some exemplifying Figures illustrating the performance of (3.4) for modelling
turbulent time series.

Figure 3.4.1 presents the structure functions S4 and S6 for empirical data and a simulation of themodel
(3.4). Thedata aremeasuraments of time series of themain component of the turbulent velocity vector in a
hellium jet experiment. Themodel shows very good agreement. It is important to note that the parameters
of themodel are completely estimated from the energy dissipation statistics and the structure functions S2
and S3 with no adjustable parameter for tuning the behavior of S4 and S6. Besides, the model reproduces
excellently the structure order functions S2 and S3, as can be seen in Paper A.

Figure 3.4.2 shows the densities of velocity increments us for time lags s = 1, 64. In Paper A it is
shown in more detail that the model (3.4) accurately reproduces the evolution of the densities of velocity
increments across scales. NIG distributions fit these densities very well for different scales and amplitudes
in full agreement with the results reported in [6].

Figure3.4.3presents the conditional densitiesp
(
Vt| [v]t

)
of theKolmogorovvariableV for somevalues

of [v]t. This Figure shows that, for t within the temporal counterpart of the inertial range, p
(
Vt| [v]t

)
is

independent of [v]t for simulations and empirical data.
A similar excellent agreement between data and simulation is also obtained for energy dissipation cor-

relators (see Paper A).
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Figure 3.4.2: Comparison of the densities of velocity increments p (us), s = 1, 64 from data (blue
circles) and from the simulation of (3.4) (red crosses). The solid lines correspond to fitted NIG-
distributions based on maximum likelihood estimation.
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Figure 3.4.3: Comparison of the conditional densities p
(
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)
of the Kolmogorov variable from

the data and from the simulation of (3.4) for t = 128 (in units of the finest resolution of the empiri-
cal data) and values [v]t = 0.8, 0.9, 1, 1.1, 1.2.
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4
On the cumulants of increments for two classes of

Brownian semi-stationary processes

In this Chapter, we study the distribution of the increments of two classes of BSS processes via their
cumulants.

More specifically, we find formulae for the cumulants of the increments of (2.2) assuming that σ = ε,
ς = ε2 and where ε2 has two forms: 1) ε2 is a Lévy semi-stationary process (see, e.g., [40]); 2) ε2 is the
exponential of an ambit process driven by a homogeneous Lévy basis onR2. In the first case, the formulae
we find are given in terms of the Lévy seed of the Lévy process that drives ε2. In the second case, we obtain
a formula for the n-th moments of the increments of Z in terms of the Lévy seed of the Lévy basis that
drives log ε2. These formulae can be used to iteratively compute the cumulants of the increments ofZ. The
second case was used in Paper A and Chapter 3 to model turbulent velocity time series.

The increments of the process Z contain relevant information about Z itself, as well as of its elements.
For instance, the increments may indicate how much the process Z varies, e.g. if it has finite quadratic
variation (see [7]). The incrementsofZ alsoprovide away toestimate its parameters (see [16]; PaperA). In
addition, the increments of Z are relevant for the theory of turbulence since the increments of the velocity
field are the object of study in the Kolmogorov-Obukhov theory, which is probably the most important
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theory in turbulence.

This Chapter is organized as follows. In Section 4.1 we derive a formula for the cumulants of the incre-
ments of a BSS process assuming that ε2 is a Lévy semi-stationary process (LSS). In Section 4.2 we apply
the formula derived in Section 4.1 to some specific examples of Z. Section 4.3 presents a formula for the
n-thmoments of ε2 assuming that it is the exponential of an ambit process. We use this formula to compute
iteratively the cumulants of the increments ofZ. In Section 4.4 we apply the formula derived in Section 4.3
to some specific examples of Z.

4.1 Formula for the cumulants of the increments of a BSS-process for ε2

specified as a LSS process: theory

Consider the BSS process

Xt =

∫ t

−∞
g (t− s) εsdBs +

∫ t

−∞
q (t− s) ε2sds (4.1)

where g ∈ L2 (R) and q ∈ L1 (R), with g (x) = q (x) = 0 for x ≤ 0, and ε is a Lévy semi-stationary
process (LSS) independent of B given by

ε2t =

∫ t

−∞
h (t− s) dLs, (4.2)

where, under the truncation function τ ≡ 0, L is a subordinator with characteristic triplet (m, 0, ν) , and
h ∈ L1 (R) is non-negative satisfying h (x) = 0 for x ≤ 0 and∫ t

−∞

∫
R+

(1 ∧ h2 (t− s) x2) ν (dx) ds < ∞. (4.3)

Besides, we assume that L has finite first moment, i.e. that

E [L1] =
∫
R+

xν (dx) < ∞. (4.4)

Under these requirements, the process X is well-defined. Condition (4.3) ensures that the process ε2

is well-defined (see [12], Corollary 4.1). In the remaining part of this Section, we deduce a formula for the
cumulants of the increments of X in terms of the cumulants of L′ ≡ L1.
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Cumulants of ΔtX relative to the cumulants of L′

For t > 0, let ΔtX = Xt − X0 and

ϕt (s) = (g (t− s)− g (−s)) , and ψt (s) = (q (t− s)− q (−s)) . (4.5)

Thus, ΔtX can be expressed as

ΔtX =

∫
R
ϕt (s) εsdBs +

∫
R
ψt (s) ε

2
sds.

The cumulant function C {z ‡ ΔtX} := log E (exp {izΔtX}) of ΔtX is given as

C {z ‡ ΔtX}= log E
(
exp
{
− 1
2
z2
∫
R
ϕ2t (s) ε

2
sds+ iz

∫
R
ψt (s) ε

2
sds
})

= log E
(
exp
{
− 1
2
z2
∫
R

∫
R
ϕ2t (s) h (s− r) dLrds+ iz

∫
R

∫
R
ψt (s) h (s− r) dLrds

})
. (4.6)

The formula for the cumulants of ΔtX in terms of the cumulants of L′ that we obtain in this Section is
a consequence of the Fubini Theorem [3, Theorem 3.1] applied to the double integrals in (4.6).

Lemma 5 The elements of the process X satisfy:∫
R

∫
R
ϕ2t (s) h (s− r) dLrds =

∫
R

∫
R
ϕ2t (s) h (s− r) dsdLr, (4.7)

∫
R

∫
R
ψt (s) h (s− r) dLrds =

∫
R

∫
R
ψt (s) h (s− r) dsdLr. (4.8)

Proof . See Paper B.

For t > 0 and t > r, define C1 (t, r) and C2 (t, r) as

C1 (t, r) =
∫ t

r
ψt (s) h (s− r) ds, C2 (t, r) =

∫ t

r
ϕ2t (s) h (s− r) ds (4.9)

when the integrals exist, and set C1 (t, r) = C2 (t, r) = 0 otherwise. Furthermore, for (t, z) ∈ R+ × R
and t > r, define Ht,z ≡ izC1 (t, r) − 1

2z
2C2 (t, r). Using the functions C1 and C2, we shall express the

cumulant function of ΔtX in terms of the cumulants of L′.

Equation (4.6) and Lemma 5 imply

C {z ‡ ΔtX} = log E
(
exp
{∫ t

−∞
Ht,z (r) dLr

})
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Thus, assuming that all cumulants of the Lévy seed L′ exist,

C {z ‡ ΔtX} =

∫ t

−∞
C {Ht,z (r) ‡ L′} dr =

∫ t

−∞

∞∑
m=1

κm (L′)
m!

Hm
t,z (r) dr, (4.10)

where κm (V) denotes them-th cumulant of the random variable V. From this last equation we can obtain
a formula for the cumulant function of ΔtX in terms of the cumulants of L′.

Proposition 6 Let t > 0 and assume that all cumulants of L′ exist. Besides, let C1 (t, r) and C2 (t, r) be as in
(4.9) and, for z ∈ R, set Ht,z (r) = izC1 (t, r)− 1

2z
2C2 (t, r). If

∞∑
m=1

κm (L′)
m!

∫ t

−∞
|Ht,z (r)|m dr < ∞ (4.11)

for z ∈ D ⊆ R, then

C {z ‡ ΔtX} =
∞∑
j=1

(iz)j

j!

∫ t

−∞
j!

j∑
m=⌈j/2⌉

(
m

2m− j

)
C2m−j
1 (t, r)Cj−m

2 (t, r)
κm (L′)
2j−m · m!

dr

 , (4.12)

for z ∈ D.

Proof . See Paper B.
The next proposition provides a simple condition on the functions C1 and C2 to satisfy (4.11).

Proposition 7 Let t > 0 and assume that all cumulants of L′ exist. Besides, let C1 (t, r) and C2 (t, r) be as in
(4.9) and, for z ∈ R, set Ht,z (r) = izC1 (t, r)− 1

2z
2C2 (t, r). Assume there exist α ≥ 0, η > 0 andM (t) > 0

such that
max {|C1 (t, r)| , |C2 (t, r)|} ≤ M (t) |r|α eηr. (4.13)

ThenHt,z satisfies condition (4.11) for |z| sufficiently small.

Proof . See Paper B.

Remark 8 From the proof of Proposition 7, it is easy to see that the condition

max {|C1 (t, r)| , |C2 (t, r)|} ≤ M (t) (|r|α ∨ 1) eηr

also implies that Ht,z satisfies condition (4.11) for |z| sufficiently small.

As a consequence of Proposition 6, we have that the cumulants ofΔtX can be expressed in terms of the
cumulants of L′.
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Corollary 9 Assume that all cumulants of L′ exist. Let t > 0. If the conditions (4.11) or (4.13) are satisfied,
then we have the relation

κj (ΔtX) = j!
j∑

m=⌈j/2⌉

(
m

2m− j

)
κm (L′)
2j−m · m!

∫ t

−∞
C2m−j
1 (t, r)Cj−m

2 (t, r) dr j ∈ N. (4.14)

Remark 10 If we assume that q ≡ 0 in (4.1), then C1 (t, r) ≡ 0. Under the condition (4.11), this implies that

κj (ΔtX) =


j!

κj/2(L′)
2j/2·( j

2 )!

∫ t
−∞ Cj/2

2 (t, r) dr if j is even

0 if j is odd

, (4.15)

for j ∈ N.

In the derivation of the formulae (4.12) and (4.14), we have assumed that all cumulants of the Lévy
seed L′ exist. This is a very strong and restrictive condition. More generally, for the formulae (4.12) and
(4.14) to hold it is only necessary to have that E

{
(L′)j

}
< ∞ for some j ∈ N. Then, the cumulant

function of L′ can be written as

C {z ‡ L′} =

j∑
m=1

κm (L′)
m!

(iz)m + o
(
|z|j
)

as z → 0. (4.16)

Relation (4.16) can be used to reproduce the same arguments that led to the formulae (4.12) and (4.14).
In this case, condition (4.11) can be replaced by

j∑
m=1

κm (L′)
m!

∫ t

−∞
|Ht,z (r)|m dr < ∞.

4.2 Formula for the cumulants of the increments of a BSS-process for ε2

specified as a LSS process: examples

In this Section we study the cumulants of ΔtX for three examples of X given by (4.1), assuming that ε2 is a
LSS process given by (4.2). We assume that all cumulants of the Lévy seed L′ exist. For the first example,
q ≡ 0, g (x) = e−λx1R+ (x) , for λ > 0, and ε2 is an Ornstein-Uhlenbeck process. This specification of
X permits to obtain closed expressions for the cumulants of ΔtX in terms of hypergeometric functions. In
the second example, g and q are proportional to a gamma density and, again, ε2 is an Ornstein-Uhlenbeck.
In the last example, g, q and the kernel h of ε2 are proportional to a gamma density. In this last case, the
marginals of (4.1) are generalized hyperbolic distributions. The last three examples are relevant in the
context of turbulence modelling.
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Example 1: g (x) = eλx1R+ (x), Ornstein-Uhlenbeck process ε2

For λ, ρ > 0 and 2λ ̸= ρ, consider the model (4.1), (4.2) with g (x) = e−λx1R+ (x) , q ≡ 0, h (x) =

e−ρx1R+ (x) and L a subordinator. Then, for t > 0,

ϕ2t (s) = e2λs
(
1− e−λt)2 1R− (s) + e−2λ(t−s)1(0,t) (s)

and

C2 (t, r) =
e−2λt

2λ − ρ
eρr
(
e(2λ−ρ)t − e(2λ−ρ)r

)
1R+ (r)

+
eρr

2λ − ρ

((
1− e−λt)2 (1− e(2λ−ρ)r

)
+ e−2λt

(
e(2λ−ρ)t − 1

))
1R− (r) ,

where ϕ and C2 are the functions defined in (4.5) and (4.9), respectively. The function C2 satisfies the
condition (4.13) in Proposition 7. According to the formula (4.15), assuming that L′ has finite moments
of all orders, we have that κ2m−1 (ΔtX) = 0, form ∈ N, and

κ2m (ΔtX)=
κm (L′) (2m)!

2mm! (2λ − ρ)m ρm

{
dm1 (t) 2F1

(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
,

(
1− e−λt

)2
d1 (t)

)

+
Γ (1+ m) Γ

(
1+ ρm

2λ−ρ

)
Γ
(
1+ m+ ρm

2λ−ρ

) − e−ρtm
2F1
(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
, e−(2λ−ρ)t

)
form ∈ N, where

d1 (t) ≡
((

1− e−λt)2 + e−2λt
(
e(2λ−ρ)t − 1

))
and 2F1 is the Gaussian hypergeometric function. A detailed derivation of the formula for κ2m (ΔtX) can
be found in Paper B.

In the following, for m ∈ N and t ≥ 0, κm (ΔtX) denotes the normalized cumulant κm (ΔtX) ≡
κm (ΔtX) /κm (L′), where L′ is the Lévy seed of the process driving ε2.

The first two normalized cumulants of ΔtX are

κ2 (ΔtX) =
1− e−λt

λρ

and

κ4 (ΔtX) =
3e−(3λ+ρ)t

(
eλt − 2

) (
4e2λtλ − 2eρtρ− 2 (2λ − ρ) e(λ+ρ)t + e(2λ+ρ)t (2λ − ρ)

)
4λρ (4λ2 − ρ2)
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+
6 · Γ

(
2ρ

2λ−ρ

)
(2λ + ρ)3 Γ

(
6λ−ρ
2λ−ρ

) .
It is easy to check that

κ4 (ΔtX) −→
t→∞

3
4λρ (2λ + ρ)

+
6 · Γ

(
2ρ

2λ−ρ

)
(2λ + ρ)3 Γ

(
6λ−ρ
2λ−ρ

) .
The kurtosis κ4 (ΔtX) /κ22 (ΔtX) is decreasing as a function of t, and decreasing as a function of λ and

ρ. This suggests that the non-normality of Δ∞X escalates as the value of λ and ρ increase.
Even in this simple case, despite it was possible to find closed expressions for the cumulants of ΔtX, it

is not feasible to determine when the distribution of the increments of X belongs to a known class. This
exemplifies the complex dynamics exhibited by the increments of a BSS process (4.1).

Example 2: g (x) = xαe−λx1R+ (x), q (x) = xβe−μx1R+ (x), Ornstein-Uhlenbeck process ε2

For min {α, β/2} > −1/2 and λ, ρ, μ > 0 with 2λ ̸= ρ and μ ̸= ρ, consider the model (4.1), (4.2)
with g (x) = xαe−λx1R+ (x) , q (x) = xβe−μx1R+ (x) , h (x) = e−ρx1R+ (x) and L a subordinator. BSS
processes of this type have interesting mathematical properties and they are relevant as models for the
temporal turbulent velocity field. Among the most remarkable mathematical properties for this class of
BSS processes, we find multipower variation type limits (see, e.g., [16]). The parameter α controls the
smoothness ofX and determines whenX is a semimartingale: X is a semimartingale if and only if α > 1/2.

From the modelling perspective, it has been shown in [34] that the BSS process (4.1), under the as-
sumptions of the present example with α = −1/6, reproduces the scaling behaviour of second order tur-
bulent structure functions

E {(Xt − X0)
2} ∝ t2/3, (4.17)

for a certain range of scales t. Besides, the increments display non-vanishing odd cumulants. This is spe-
cially relevant in the context of turbulence.

For t > 0, we have

ψt (s) = eμs
(
(t− s)β e−μt − (−s)β

)
1R− (s) + e−μ(t−s) (t− s)β 1(0,t) (s)

which yields

C1 (t, r) =
e−ρ(t−r)

(μ − ρ)1+β (Γ (1+ β)− Γ (1+ β,− (t− r) (μ − ρ))) 1R+ (r)

− e−ρ(t−r)

(μ − ρ)1+β

{(
eρt − 1

)
Γ (1+ β)− Γ (1+ β, (t− r) (μ − ρ))
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−eρtΓ (1+ β,−r (μ − ρ))
}
1R− (r) .

The functions ϕt and C2 are given as in (4.5) and (4.9), respectively. The functions C1 and C2 satisfy the
condition (4.13) in Proposition 7. Therefore, assuming that L′ has finite moments of all orders, the cumu-
lants of ΔtX are given by the formula (4.14).

To our knowledge, it does not seem to be possible to expressHt,z in terms of simple functions. How-
ever, (4.14) can be evaluated numerically.

Example 3: generalized Hyperbolic marginals

For c, γ ∈ R, λ > 0 and−1/2 < α < 0, consider the model (4.1), (4.2) with

g (x) = c
λ
α+1/2

Γ (2α + 1)1/2
xαe−

λ
2 x1R+ (x) ,

q (x) = γ
λ
2α+1

Γ (2α + 1)
x2αe−λx1R+ (x) ,

h (x) =
λ
−2α−1

Γ (−2α)
x−2α−1e−λx1R+ (x) ,

and L a subordinator. Choosing L′ such that the OU process

ε2t =

∫ t

−∞
e−λ(t−u)dLu

has the generalized inverseGaussian lawGIG(λ, χ, θ) (see AppendixD), it was reported in [4] that the law
of (4.1) is the generalized hyperbolic GH(λ, χ, θ, 0, c2, γ) (see Appendix D). Notice that the distribution
of X does not depend on the parameters

(
λ, α
)
. However, the law of ΔtX depends of these parameter as

can be seen in the expression of Ci, i = 1, 2.

For the present example, for t > 0,

ψt (s) = γ
λ
2α+1

Γ (2α + 1)

{
eλs
(
(t− s)2α e−λt − (−s)2a

)
1R− (s) + eλs (t− s)2α e−λt1(0,t) (s)

}
and

ϕ2t (s) =
c2λ

2α+1

Γ (2α + 1)

{
eλs
(
(t− s)α e−λt/2 − (−s)α

)2
1R− (s) + eλs (t− s)2α e−λt1(0,t) (s)

}
.
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Consequently,

C1 (t, r)= γe−λ(t−r)1(0,t) (r) + γeλr
{
−1+

(−1)2α+1 sin (2απ) e−λt

π
Beta

( r
t
,−2α, 0

)
− sin (2απ) t2α+1e−λt (−r)−2α−1

π (2α + 1) 2F1
(
1, 2α + 1, 2α + 2,

t
r

)}
1R− (r)

and

C2 (t, r)= c2e−λ(t−r)1(0,t) (r) + c2eλr
{
1+

(−1)2α+1 sin (2απ) e−λt

π
Beta

( r
t
,−2α, 0

)
− 2Γ (α + 1) tαe−λt/2

Γ (2α + 1) Γ (1− α)
(−r)−α

2F1
(
−α, α + 1, 1− α,

r
t

)
− sin (2απ) t2α+1e−λt (−r)−2α−1

π (2α + 1) 2F1
(
1, 2α + 1, 2α + 2,

t
r

)}
1R− (r) ,

where Beta (·, ·, ·) : (−∞, 0)× (−∞, 0)× (−∞, 0] → C denotes to the incomplete Beta function

Beta (x, a, b) = −
∫ 0

x
wa−1 (1− w)b−1 dw.

The functionsC1 andC2 do not satisfy the condition (4.13) in Proposition 7. However, they fulfill the
condition in Remark 8. Thus, when E {(L′)n} < ∞ for all n ∈ N, the cumulants of ΔtX are given by
(4.14).

4.3 Formula for the cumulants of the increments of a BSS-process for ε2

specified as an exponential ambit process: theory

Consider the BSS process (4.1) with

ε2t = exp {Λ (A+ (0, t))} t ∈ R, (4.18)

where Λ is a homogeneous Lévy basis on R2 and A ∈ Bb (R2). In this Section, we deduce a formula for
the n-th moments of ε2 and the increments ofX. These formulae can be used to compute the cumulants of
the increments of X in terms of the cumulants of Lévy seed Λ′.

The formula for the cumulants

Throughout this Section, Lebwill denote the Lebesgue measure onR2 and K [z] ≡ K {z ‡ Λ′}.
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For (s1, . . . , sn) ∈ Rn,

E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
= exp

{∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr

}
. (4.19)

For a general ambit set A, the evaluation of (4.19) might be difficult. The main obstacle is to split ∪n
i=1Asi

into the sets
{
x :
∑n

i=1 1Asi
(x) = j

}
, j = 1, . . . , n. For the type of ambit sets we are interested in, it is

easier to compute the intersections of (Asi)
n
i=1 than the previous partition.

Lemma 11 For (s1, . . . , sn) ∈ Rn,

∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr=

n∑
m=1

n∑
l=m

∑
1≤i1<...<il≤n

(−1)l−m K [m]
(
l
m

)
Leb

(
Asi1 ∩ · · · ∩ Asil

)

=

n∑
l=1

∑
1≤i1<...<il≤n

l∑
m=1

(−1)l−m K [m]
(
l
m

)
Leb

(
Asi1 ∩ · · · ∩ Asil

)
. (4.20)

Proof . See Paper B.

Formula (4.20) is easily evaluated numerically for n not too large. Furthermore, it permits an explicit
computation of the cumulants of the increments ofXwhen Λ′ has a normal distribution and the ambit set
A has a specific form (see Section 4.4).

Lemma 12 Let n ∈ N. Under the convention
∏0

j=1 ϕ
2
t

(
sj
)
=
∏0

j=1 ψt

(
sj
)
= 1, we have that

E {(ΔtX)
n}=

⌊n/2⌋∑
i=0

(
n
2i

)
(2i− 1)!!

×
∫ t

−∞
ds1 · · ·

∫ t

−∞
dsi
∫ t

−∞
dr1 · · ·

∫ t

−∞
drn−2i

i∏
j=1

ϕ2t
(
sj
)n−2i∏
l=1

ψt (sl) E
{
ε2s1· · · ε

2
snε

2
r1· · · ε

2
rn−2i

}
,

where n!! represents the double factorial of n ∈ N∪{0,−1}, and ϕ and ψ are the functions defined in (4.5).

Proof . See Paper B.

In the turbulence modelling context, the n-th moments of increments of the temporal turbulent ve-
locity field are relevant as they constitute a basic element in the Kolmogorov-Obukhov theory. In par-
ticular, for X to be a relevant model for the temporal turbulent velocity field, it should reproduce the
2/3rd-Kolmogorov law (4.17) for a certain range of scales t. Lemma 12 implies that, to satisfy the 2/3rd-
Kolmogorov law, ϕ2t (s) ∝ t−1/6b (t) and ψt (s) ∝ t−1/3b (t) when t is in a neighborhood of 0, where
b (t) is a bounded function in such a neighborhood with b (0) ̸= 0. In particular, X with q = 0 and
g (x) = x−1/6e−λx1R+ (x), for λ > 0, satisfies (4.17). This example of the BSS process (4.1) was used

26



in [34] to model turbulent velocity time series. Lemma 12 can also be used to determine the behavior of
ϕ2t (s) and ψt (s) around 0 to satisfy other scaling laws, in addition to the 2/3rd-Kolmogorov law.

Lemmata 11 and 12 provide a way to compute the moments of the incrementsΔtX. Furthermore, it is
possible to compute the r-th cumulants κr (ΔtX) by the recursive formula (see [33])

κr (ΔtX) = μr −
r−1∑
j=1

(
r− 1
j

)
E
{
(ΔtX)

j} κr−j (ΔtX) r ≥ 2. (4.21)

The generality in the shape of the ambit set, the distribution of Λ′ and the form of the kernels g and
qmake it difficult to get closed expression for the n-th moments and the cumulants of ΔtX. However, the
formulae in Lemmata 11 and 12 provide a simple way to evaluate the moments numerically. This might
help to analyze the distribution of the increments of ΔtX.

4.4 Formula for the cumulants of the increments of a BSS-process for ε2

specified as an exponential ambit process: examples

In this Section we study the cumulants ofΔtX for some examples assuming that ε2 is the exponential of an
ambit process. In these examples the cumulants of Λ′ appear implicitly in the functionK [z] ≡ K {z ‡ Λ′}.

4.4.1 Normal Lévy basis example

We assume that q ≡ 0 and Λ′ ∼Normal(μ, δ) (i.e. K [z] = μz+ 1
2 δ

2z2), and we analyze the cumulants of
the increments of the model (4.1), (4.18) for a triangular ambit set.

The normality of Λ′ allows to simplify the formula (4.20), and we get

l∑
m=1

(
l
m

)
(−1)l−m K [m] =


μ + δ2

2 if l = 1
δ2 if l = 2
0 otherwise

.

This provides a way to compute the n-moments E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
that we will use to calculate cumulants

and n-moments of ΔtX.

Lemma 13 Let n ∈ N. Then,

log E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
= n

(
μ +

δ2

2

)
Leb (A) + δ2

∑
1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}.

Let a,T > 0. Assume that q ≡ 0, K [z] = μz+ 1
2 δ

2z2 and that A is the ambit set given by

A =
{
(x, t) ∈ R2 : 0 ≤ t ≤ T, |x| ≤ a

T
(T− t)

}
. (4.22)
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For s1 < s2 < s1 + T,
Leb (As1 ∩ As2) =

a
T
· (T− |s1 − s2|)2 .

Since Leb (As1 ∩ As2) has this simple expression, the present example also gives a simple expression for
(4.19). Namely,

∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr = n

(
μ +

δ2

2

)
Leb (A) +

aδ2

T

n−1∑
i=1

n∑
j=i+1

(T− |s1 − s2|)2 1{n>1}

which implies that

expC {z ‡ ΔtX} =

∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )
∥∥ϕt∥∥2n2 +

∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )an,

where ∥·∥2 = ∥·∥L2(R) and

an= −
∥∥ϕt∥∥2n2 +

∫
R
ds1 · · ·

∫
R
dsnϕ2t (s1) · · · ϕ

2
t (sn) exp

δ2 ∑
1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}

 .

In Paper B it is shown that, for z ≈ 0, a · T · δ2 ≈ 0,

C {z ‡ ΔtX} ≈ −z2

2
eTa(μ−

δ2
2 )
∥∥ϕt∥∥22 .

ThusΔtX behaves similar to a normal distribution. (The distribution of ΔtX is not exactly normal but gets
more and more normal as a · T · δ2 ↓ 0.)

4.4.2 Gamma Lévy basis example

Let 0 > α > −1/2 and β, γ, λ > 0. Consider themodel (4.1), (4.18) with q ≡ 0, g (x) = xαe−λx1R+ (x),
A given as in (3.2) and K [z] = log (1− z/β)−γ , z < β (i.e. Λ′ has a Gamma(γ, β) law). In general, it
is of interest to determine specific distributional properties of ΔXt. Of particular interest is the question
of infinite divisibility of ΔtX. The present example provides a case where the distribution of ΔtX is not
infinitely divisible.

Figure 4.4.1 shows κ4 (ΔtX) /κ22 (ΔtX) for (γ, β) = (1, 5), (θ, L,T) = (1, 10, 1), α = −1/3,−1/6 and
λ = 1, 2, 3. It is well-know that, when the distribution of X is infinitely divisible, the cumulants κn (X), for
n ≥ 3, are themoments of the Lévymeasure ofX. This implies that, when the distribution ofX is infinitely
divisible, κ4 (X) ≥ 0. Figure 4.4.1 shows that κ4 (ΔtX) < 0 for λ = 1, 2, 3. Therefore, the law of ΔtX
cannot be infinitely divisible.
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Figure 4.4.1: Standardized cumulant κ4 (ΔtX) /κ22 (ΔtX) for Example 4.4.2 with (θ, L,T) = (1, 10, 1),
Λ′ ∼Gamma(1, 5), and different values of α and λ. (a) Parameters α = −1/3 and λ = 1, 2, 3. (b)
Parameters α = −1/6 and λ = 1, 2, 3. We use blue for λ = 1, red for λ = 2 and green for λ = 3.
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5
An asymptotic problem for two classes of smooth

processes

This Chapter summarizes the main ideas and results from Paper C.

Let (Xt)t≥0 be a stochastic process. When X is a semimartingale, it is well-known that the limit

lim
n→∞

⌊nt⌋∑
i=1

(
Xi/n − X(i−1)/n

)2 (5.1)

exists in probability. In particular, when X is a bounded variation (BV) process the limit (5.1) is 0. It is
natural to ask how we can rescale (5.1) to recover a non-trivial limit for the case where X is a BV process.
We address this problem for two classes of smooth processes: the integrated Brownianmotion (IBM) and
the smoothBrownian semi-stationary (BSS)processwith a gammakernel. A smoothprocess is a stochastic
process that is differentiable.

The integrated Brownian motion is a stochastic process of the form

Jnt =
∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
Bsndsndsn−1 · · · ds2ds1 n ∈ N,
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where (Bt)t∈R is a standard Brownian motion. The index n indicates the number of iterated integrals and,
therefore, the number of derivatives J has. We will denote the class of these smooth processes by IBM.

Concerning BSS processes, we are interested in the asymptotics of (2.2) with q ≡ μ = 0, σ ≡ 1 and g
given by the gamma kernel

g (x) = xα exp (−λx) 1(0,∞) (x) , (5.2)

with α > 1/2, λ > 0. We will refer to this subclass of smooth BSS processes as SGKBSS .

5.1 Statement of the problem

Consider a stochastic process (Xt)t≥0 such thatX ∈ IBM∪ SGKBSS . TheprocessXhas differentiable
paths. From theMeanValueTheorem, it follows that the normalized realized quadratic variation (NRQV)
[Xn] of X, defined as

[Xn]t := n
⌊nt⌋∑
i=1

(
Xi/n − X(i−1)/n

)2
, (5.3)

satisfies

[Xn]t
a.s.→

n→∞

∫ t

0
(X′

r)
2 dr (5.4)

for t ≥ 0. Motivated by this limit, we are interested in the asymptotic behavior of

nβ
(
[Xn]t −

∫ t

0
(X′

r)
2 dr
)

(5.5)

when n → ∞, for some suitable β > 0. There are two immediate problems related to (5.5): 1) What is
the correct value of β > 0, if any, to have a non-trivial limit? 2) What is the limit distribution given the
correct β? This last question can be naturally extended to stronger concepts of convergence. For simplicity
we only consider the case t = 1.

Paper C contains some approaches that partially answer these questions.

5.2 The SGKBSS class

Consider a stochastic process (Xt)0≤t≤1 whose paths are in C3 [0, 1]. In this case, it is possible to find a
β where (5.5) has an almost sure non-trivial limit. The proof of this result is an application of Taylor’s
Theorem and Theorem 5 in [15].

Proposition 14 Let (Xt)0≤t≤1 be a stochastic process whose paths are almost surely in C
3 [0, 1] .Then,

n2
(
[Xn]1 −

∫ 1

0
(X′

r)
2 dr
)

a.s.→
n→∞

− 1
12

∫ 1

0
(X′′

r )
2 dr = − 1

12
∥X′′∥2L2(0,1) .
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Proof . See Paper C.
If X ∈ SGKBSS with α > 5/2, the paths of X are almost surely in C3 ([0,∞)). The distribution of

Y = 1
12 ∥X

′′∥2L2(0,1) depends on the value of α.

Remark 15 Since the index n represents the number of derivatives for the IBM Jn, J3 ∈ C3 ([0,∞)). Conse-
quently, Proposition 14 also applies to Jn, for n > 3.

It still remains open to determine the rate of convergence and the limit distribution of (5.5) for the
stochastic processes in SGKBSS with index 1/2 < α < 5/2, that is, for the BSS processes that are not in
C3[0, 1].

5.3 Integrated Brownian motion

In this Section, we summarize some investigations about the limit distribution of (5.5) for J1t .

5.3.1 Convergence of the variance

We have that

[Jmn ]t
a.s.→

n→∞

∫ t

0

(
d
dr
Jmr

∣∣∣∣
r=s

)2

ds,

where [Jmn ] denotes the NRQV of Jm.
Restricting to the casem = 1, we get

[J1n]t
a.s.→

n→∞

∫ t

0
B2
sds

for which we first analyze the variance

An,t := Var
(
[J1n]t −

∫ t

0
B2
sds
)

for t ≥ 0. Isserlis’ Theorem (see [21]) implies the next result.

Proposition 16 For t ≥ 0 and n ∈ N,

An,t =
45 ⌊nt⌋4 − 60nt ⌊nt⌋3 − 15 ⌊nt⌋2 + 15nt ⌊nt⌋+ ⌊nt⌋+ 15n4t4

45n4
.

Proof . See Paper C.
An immediate consequence of Proposition 16 is the next result.

Proposition 17 For t ≥ 0,

[J1n]t
L2→
∫ t

0
B2
sds.
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5.3.2 The limit distribution

We are interested in shedding light on the limit distribution of

An,t := A−1/2
n,t

(
[J1n]t −

∫ t

0
B2
sds
)
.

To clarify the main aspects, we only consider the case t = 1.
It turns out (see Subsection 5.3.4) that the limit law ofAn,1 seems to be a Rosenblatt distribution [27,

39]. UsingMaejima and Tudor’s parametrization of the Rosenblatt distribution [27], we propose the next
conjecture.

Conjecture 18 Let R (h) denote a Rosenblatt random variable with index h ∈ (1/2, 1). Then, we have

An,1
d→ R (h) ,

whith h ≈ 0.9.

Numerical simulations of An,1 and R (0.9) show strong evidence supporting the previous conjecture
(see Subsection 5.3.4).

5.3.3 An expression forAn,1

In relation to Conjecture 18, it is of interest to express

Xn := [J1n]t −
∫ t

0
B2sds = n

n∑
i=1

(∫ i
n

i−1
n

Bsds
)2

−
∫ 1

0
B2
sds,

in terms of a double Wiener integral with respect to B. .

Proposition 19 We can rewrite the random variableXn as

Xn =

∫ 1

0

∫ 1

0
Fn(r, s)dBrdBs −

5
6n

, (5.6)

where

Fn(r, s) = n
n∑
i=1

f(n)i (r)f(n)i (s)−
(
1−max(r, s)

)
and

f(n)i (s) =


1
n , s ∈

[
0, i−1

n

)
,

i
n − s, s ∈

[ i−1
n , i

n

)
,

0, s ∈
[ i
n , 1
]
.
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1

Figure 5.3.1: (a) Histograms in log-linear scale of the Rosenblatt sample (blue) and the A100000,1

sample (purple). (b) QQ plot of the A100000,1 sample and the Rosenblatt sample.

Proof . See Paper C.
Thedouble integral expression(5.6)mightprovide evidence supportingConjecture18 since theRosen-

blatt distribution can be expressed as a second order Wiener chaos (see, e.g. [38]). One possible way to
proveConjecture 18wouldbe to show thatFn(r, s) converges inL2 to the kernel that appears inProposition
1 of [38]. However, this has not yet been done and is not part of this thesis.

5.3.4 Numerical results

Figure 5.3.1 illustrates the conjecture for An,1. These figures were obtained by simulating 10000 samples
of Rosenblatt (0.9) and 10000 samples of An,1 for n = 105. Figure (a) shows two histograms in log-linear
scale: the histogram of the Rosenblatt sample (blue) and the histogram of the A100000,1 sample (purple).
They are very similar. Figure (b) corresponds to the QQ plot of the A100000,1 sample and the Rosenblatt
sample.
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6
Conclusion

The analysis performed in this thesis clearly demonstrates that Brownian semi-stationary processes
are well adapted to reproduce key characteristics of turbulent time series. The parameters of themodel are
solely estimated from the marginal distribution and the correlator c1,1 of the energy dissipation and from
second and third order structure functions of velocity increments. This has been done under the specific
model specification (3.4)with a shifted2-gammakernel g. Theuseof a shifted2-gammakernel ismotivated
by its ability to accurately reproduce the empirical sdf.

The data set analyzed here has a relatively high Reynolds number, with a visible inertial range. Inves-
tigations carried out for other data sets have shown that the BSS processes have the same potential for
modelling turbulent velocity time series even for smaller Reynolds numbers.

The present work also provides a way to compute the cumulants of the increments of BSS processes
for two specific classes of volatility processes. It is not possible to find closed expression for all the cases
and examples presented here. However, the formulae are simple enough to be evaluated numerically.

Of particular interest is the discussion in Subsection 4.4.2 since it provides an example where our anal-
ysis of the cumulants shows that the distribution of the increments of a specific BSS process is not infinitely
divisible. It remains open to determine conditions on the BSS processes such that their increments have
an infinitely divisible law.
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Our main purpose for studying the cumulants of increments of BSS processes was to establish a way
that sheds some light on thedistributionsof increments via cumulants. This is a first step tounderstandwhy
the BSS approach is able to model a great variety of stylized features in turbulence. The results discussed
here allow to directly compare themodelswith datawithout time consuming simulations of the underlying
processes.

We have not been able to solve the asymptotic problem for the smooth processes. The techniques used
here do not provide the full answer since they do not permit to determine the limit distributions and the
precise rate of convergence. For integratedBrownianmotion, we have provided strong numerical evidence
supporting a Rosenblatt limit for the asymptotic problem in the J1 case. It remains open to determine the
veracity of such a limit.
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Abstract

Brownian semi-stationary processes have been proposed as a class of stochastic models for time series of
the turbulent velocity field. We show, by detailed comparison, that these processes are able to reproduce
the main characteristics of turbulent data. Furthermore, we present an algorithm that allows to estimate
the model parameters from second and third order statistics. As an application we synthesise a turbulent
time series measured in a helium jet flow.

A.1 Introduction

Stochastic modelling of the turbulent velocity field, understood as an explicit stochastic approach (in con-
trast to an implicit set up in terms of governing equations and/or in terms of related quantities like velocity
increments or velocity derivatives) is generally speaking not well developed in the literature. Most of the
existing literature on stochastic turbulencemodelling deals withmodels for derived quantities like velocity
increments, energy dissipation and accelerations.

Early attempts tomodel the rapid variation of the turbulent velocity field include [4, 10, 11, 18, 23, 36]
(among many others). Such phenomenological approaches are sometimes called “synthetic turbulence”
and can be divided into two classes. The first direction starts from modelling the velocity field and derives
the model for the energy dissipation by taking squared small scale increments. The second line of inves-
tigation focuses on modelling the energy dissipation field and derives the velocity field by various, partly
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ad hoc, manipulations. The approach presented here conceives the energy dissipation as the fundamental
field, entering directly themodel for the velocity field and obeying the physical interpretation of the energy
dissipation as the squared small scale fluctuations.

In [36], an iterative, geometric multi-affine model for the one-dimensional velocity process is con-
structed and some of the basic, global statistical quantities of the energy dissipation field are derived. How-
ever, this discrete, dyadic approach does not allow to give explicit expressions for more specific statistical
quantities.

Another dyadic, iterative approach for the construction of the velocity field is discussed in [10]. Their
model is based on a wavelet decomposition of the velocity field combined with a multiplicative cascad-
ing structure for the wavelet coefficients. As discussed in [18], such wavelet approaches are superior over
discrete geometric approaches as they allow to model stationarity in a mathematical more rigorous way.
The approach discussed here does not suffer fromproblems related tomathematical rigour and no iterative
limit arguments are needed for the construction. A related and interesting wavelet-based approach is dis-
cussed in [11], which allows for a sequential construction of the field. A further wavelet-based approach
[4] builds on random functions and their orthogonal wavelet transform. The authors show that to each
such random function there is an associated cascade on a dyadic tree of wavelet coefficients.

The models [10, 36] fail to incorporate skewness for the velocity increments [23], a basic property
of turbulent fields. As an alternative approach, [23] proposes a combination of a multiplicative cascade
for the energy dissipation, the use of Kolmogorov’s refined similarity hypothesis [24] and an appropri-
ate summation rule for the increments to construct the velocity field. Here, again, only discrete iterative
procedures are employed which make analytical statistical statements very difficult.

The stochastic models discussed in the present paper, called Brownian semi-stationary processes, have
been proposed to be potentially suitable for turbulence modelling in [8, 9]. These processes define the
turbulent velocity field explicitly and as such allow for analytic calculations and identification of the pa-
rameters of the model with physical quantities.

In [8] it has been shown that Brownian semi-stationary processes are able to qualitatively reproduce
some aspects of turbulence statistics like the evolution of the densities of velocity increments across scales
and the conditional statistics of the so-called Kolmogorov variable. Here we will extend and quantify in
detail the comparison of the model with empirical data by including more stylized features of turbulent
data. Our goal is to estimate the parameters entering Brownian semi-stationary processes from a given
turbulent data set. Based on this estimation, a numerical simulation of the model is then compared in
great detail with the turbulent data set at hand, including statistical properties not used for the estimation
procedure.

The paper is organized as follows. In Section A.2 we list the main stylized features of turbulent time
series we use to validate the model. Brownian semi-stationary processes as models for the turbuent veloc-
ity field along with cascades processes as models for the energy dissipation are presented in Section A.3.
Section A.4 addresses the estimation procedure for the parameters of the model and briefly outlines the
numerics behind the simulations. Finally, Section A.5 concludes and summarises the results.

A.2 Stylized features of turbulent time series

Ingeneral, turbulence concerns thedynamics in afluidflowof the three-dimensional velocity vector v⃗(⃗r, t) =
(vx(⃗r, t), vy(⃗r, t), vz(⃗r, t)) as a function of position r⃗ = (x, y, z) and time t. A derived quantity is the energy
dissipation, defined as

ε(⃗r, t) ≡ ν
2

∑
i,j=x,y,z

(
∂ivj(⃗r, t) + ∂jvi(⃗r, t)

)2
. (A.1)
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The energy dissipation describes the loss of kinetic energy due to friction forces characterized by the vis-
cosity ν.

A pedagogical valuable illustration of a turbulent flow can be gained from the Kolmogorov cascade
[20]. In this representation kinetic energy is injected into the flowat large scales through large scale forcing.
Non-linear effects redistribute the kinetic energy towards smaller scales. This cascade of energy stops at
small scales where dissipation transforms kinetic energy into heat. It is traditional to call the large scale
I of energy input the integral scale and the small scale η of dominant dissipation the dissipation scale or
Kolmogorov scale. With increasing Reynolds number the fraction I/η increases, giving space for the so
called inertial range η ≪ l ≪ Iwhere turbulent statistics are expected to have some universal character. A
more precise definition defines the inertial range as the range of scales 1/k where the spectrum E(k) (the
Fourier transformof the correlation function of the velocity field) displays a power lawE(k) ∝ k−5/3 [20].

The resolution of all dynamically active scales in experiments is at present not achievable for the full
three-dimensional velocity vector. Most experiments measure a time series of one component v (in di-
rection of the mean flow) of the velocity vector at a fixed single location r⃗0. Based on this restriction one
defines the temporal (or surrogate) energy dissipation for stationary, homogeneous and isotropic flows

εt(r⃗0) ≡
15ν
v2

(
dv(r⃗0, t)

dt

)2

, (A.2)

where v denotes the mean velocity (in direction of the mean flow).
The temporal energy dissipation (A.2) is expected to approximate basic statistical properties of the

true energy dissipation (A.1) for stationary, homogeneous and isotropic flows. For other flow conditions,
the temporal energy dissipation still contains important statistical information about the turbulent velocity
field.

The transformation of the spatial derivatives in (A.1) to the temporal derivative in (A.2) is performed
under the assumption of a stationary, homogeneous and isotropic flow and the assumption of Taylor’s
Frozen Flow Hypothesis [35] which states that spatial structures of the flow are predominantly swept by
themean velocity vwithout relevant distortion. Under this hypothesis, widely used in analyzing turbulent
time series, spatial increments along the direction of the mean flow (in direction x) are expressed in terms
of temporal increments

v(x, y, z, t+ s)− v(x, y, z, t) = v(x− vs, y, z, t)− v(x, y, z, t). (A.3)

In the present paper, we only deal with homogeneous, isotropic and stationary turbulence. Furthermore,
we restrict to temporal statistics at a fixed position in space and refer to the inertial range as the temporal
counterpart of the spatial inertial range defined by time scales s where η/v ≪ s ≪ I/v. Time scales
s ≲ η/v are called dissipation time scales and time scales s ≳ I/v are called integral time scales.

In what follows, the notion energy dissipation refers to the temporal energy dissipation, unless other-
wise stated. We also skip reference to the spatial location r⃗0 in (A.2) and write εt for εt(r⃗0).

Themost striking feature of time series of the energy dissipation is the strong variability with localized
and clustered outbursts of different size andduration. This strongly fluctuating behaviour, which is far away
fromwhatmight be expected in aGaussian framework, is called the intermittency of the energy dissipation.

The traditional characterization of the intermittent behaviour of the energy dissipation refers to the
coarse grained field amplitude over a time horizon T

ε(T, t) =
1
T

∫ t+T/2

t−T/2
εsds. (A.4)
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It has been shown in numerous publications that the moments of the coarse grained energy dissipation
follow a scaling law in the inertial range for large Reynolds numbers

E {ε(T, t)n} ∝ T−ξ(n) (A.5)

where the positivemultifractal scaling exponents ξ(n) are expected to be universal in the limit of very large
Reynolds number (cf. e.g. [20, 31] and references therein). The term multifractality refers to the non-
linear dependence of the scaling exponents ξ(n) on the order n. The notion of a Reynolds number refers
to the time-wise defined Taylor micro-scale Reynolds number [20]

R =
Var{v}
ν
√

E{εt}
(A.6)

where Var denotes the variance.
An immediate consequence of the scaling relation (A.5) in second order n = 2 is scaling of correlators

cp,q of order (p, q) = (1, 1). These correlators are defined as

cp,q(s) ≡
E
{
ε
p
t ε

q
t+s
}

E
{
ε
p
t
}
E
{
ε
q
t+s
} . (A.7)

The empirical analysis of cp,q revealed the existence of a range of scales swhere

cp,q(s) ∝ s−τ(p,q) (A.8)

and τ(1, 1) = ξ(2) [2, 14, 15, 16, 21, 26, 27, 28, 32].
Intermittency of the velocity field refers to the fact that fluctuations around themean velocity occur in

clusters and are more violent than expected from Gaussian statistics. Furthermore, the frequency of large
fluctuations increases with increasing resolution. In terms of moments of temporal velocity increments

us(t) ≡ vs+t − vt, s > 0 (A.9)

intermittency is usually describedby (approximate)multifractal scalingof structure functions (e.g. [1, 25])

Sn(s) = E{us(t)n} ∝ sτ(n). (A.10)

Here, vt is one component of the velocity (usually along themean flow) at time t and at a fixed position and
the time scale s is within the inertial range. When appropriate, we write us instead of us (t) in (A.9) since
we are only dealing with stationary time series.

Multifractal scaling of structure functions is assumed to hold in the limit of infinite Reynolds number
[20]. However, experiments show that the scalingbehaviour (A.10)might bepoor, even for largeReynolds
numbers [3, 31]. Furthermore, even if the scaling relation (A.10) holds, the inertial range still covers only
part of the accessible scales where intermittency is observed.

From a probabilistic point of view, (A.10) expresses a scaling relation for themoments of the probabil-
ity density function (pdf) of velocity increments. A proper estimation of higher-order moments requires
an accurate estimation of the tails of the pdf. Thus it may be advantageous to directly work with the pdf. In
terms of the pdf, intermittency refers to the increase of the non-Gaussian behaviour of the pdf of velocity
increments with decreasing time scale.

A typical scenario is characterized by an approximate Gaussian shape for the large scales (larger than
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scales at the inertial range), turning to exponential tails within the inertial range and stretched exponential
tails for dissipation scales (below the inertial range). This change of shape across all scales clearly reveals
the inadequacy of a characterization of intermittency solely via multifractal scaling of structure functions
(which is observedonlywithin the inertial range). In [7, 6] it is shown thatNormal inverseGaussian (NIG)
distributions are well adapted to accurately describe the densities of velocity increments at all scales and
for a wide range of Reynolds numbers.

In 1962, Kolmogorov [24] published two hypotheses (usually refered to as K62) about a quantity V
that combines velocity increments, being a large scale quantity, and the energy dissipation, being a small
scale quantity. The first hypothesis states that the pdf of the stochastic variable

Vr =
Δvt(r)
(rεr)1/3

(A.11)

depends, for r ≪ L, only on the local Reynolds number

Rer = r(rεr)1/3/ν. (A.12)

Here,
Δvt(r) = vt(x+ r/2, y, z)− vt(x− r/2, y, z) (A.13)

denotes the increment of the component v of the velocity vector in direction of the mean flow (the x-
direction) at scale r and rεr is the integrated energy dissipation (A.1) over a domain of linear size r

εr =
1
r

∫ x+r/2

x−r/2
ε(σ, y, z, t)dσ. (A.14)

Thesecondhypothesis states that, forRer ≫ 1, thepdfofVr doesnotdependonRer, either, and is therefore
universal.

Although, for small r, an additional r dependence of the pdf of Vr has been observed [33], the validity
of several aspects of K62 has been verified experimentally and by numerical simulation of turbulence [22,
33, 34, 37]. In particular it has been shown that the conditional densities p(Vr|rεr) become independent
of rεr for a certain range of scales r within the inertial range. However, the universality of the distribution
of V has not been verified in the literature. In this respect, it is important to note that the experimental
verification of the Kolmogorov hypotheses is, with reasonable resolution of scales, restricted to temporal
statistics and as such relies on the use of the temporal energy dissipation (A.2) instead of the true energy
dissipation (A.1). In the time domain, the Kolmogorov variable V is defined as

Vt,s =
us(t− s/2)

(vsε(s, t))1/3
(A.15)

where us(t) denotes the temporal velocity increment (A.9) at time scale s, v is themean velocity and ε(s, t)
the coarse grained temporal energy dissipation (A.4).

A.3 Modelling framework

In this Section we present the stochastic framework for modelling turbulent time series. One of the main
ingredients of the model is the surrogate energy dissipation which, in our approach, will be modelled as
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data Ambit set NIG-law
R η I f̂ T k θ α β μ δ

985 0.21 443.9 367500 880 10 000 2.20 2.50 -2.00 2.42 3.06

Table A.3.1: Parameters for the data set analysed in this paper. R denotes the Taylor micro-scale
Reynolds number, η is the Kolmogorov scale (in units of the finest resolution), I denotes the integral
scale (in units of the finest resolution) and f̂ is the sampling frequency. The parameters T (in units
of the finest resolution), k and θ characterize the ambit set (A.17). The parameters α, β, μ and δ
specify the NIG-law of the Lévy seed of L in (A.16).

a continuous cascade process. We briefly discuss cascade models in Subsection A.3.1. Subsection A.3.2
presents the model for the temporal turbulent velocity field along with its most relevant properties.

A.3.1 The cascade model for the turbulent energy dissipation

Ourmodel for the turbulent velocity field takes as an input the temporal energy dissipation which is mod-
elled as a continuous cascade model [30]. In [30] it is shown that this Lévy based approach is able to
reproduce the main stylized features of the energy dissipation observed for a wide range of data sets, in-
cluding the data we analyze in the present paper.

Specifically, we model the temporal energy dissipation ε as the exponential of an integral with respect
to a homogeneous Lévy basis L onR2,

εt = exp

(∫
A(t)

L (dy, ds)

)
= exp (L (A (t))) (A.16)

where A (t) = A + (0, t) for a bounded set A ⊂ R2. The set A (t) is called the ambit set. From the
homogeneity of L it follows that (A.16) is a stationary stochastic process. For details about Lévy bases and
the derivation of some of the properties of (A.16), we refer to [30] and the references therein.

The ambit set A is given as

A = {(x, t) : 0 ≤ t ≤ T,−f (t) ≤ x ≤ f (t)}, (A.17)

where T > 0. For T > 0, k > 1, and θ > 0, the function f is defined as

f (t) =

(
1− (t/T)θ

1+ (k · t/T)θ

)1/θ

0 ≤ t ≤ T. (A.18)

This specification of the ambit set is adapted to reproduce the empirically observed scaling of correlators.
In [30] it is shown that the density of the logarithm of the energy dissipation is well described by a

normal inverse Gaussian distribution, i.e. log εt ∼ NIG (α, β, μ, δ). For the correlators cp,q (A.7) to exist
it is necessary to assume that εt has exponential moments of order p+ q leading to the condition p+ q <
α − β. As discussed in [30], for a realistic modelling, it is enough to require existence of cp,q up to order
p+ q = 4.5. Furthermore, we set E{ε} = 1 for convenience. Under these constraints, the parameters of
the underlying NIG-laws and the corresponding ambit sets have been estimated in [30] for a number of
turbulent data sets including the one we use in our analysis. Table A.3.1 lists these parameters.
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A.3.2 A stochastic model for turbulent velocity time series

Brownian semi-stationary (BSS) processes, introduced in [9] as potential models for turbulent velocity
time series, are stochastic processes of the form

Zt = μ +
∫ t

−∞
g (t− s) σsdWs +

∫ t

−∞
q (t− s) asds, (A.19)

where μ is a constant, (Wt)t∈R is standard Brownian motion, g and q are nonnegative deterministic func-
tions onR, with g (t) = q (t) = 0 for t ≤ 0, and (σ t)t∈R and (at)t∈R are càdlàg processes. When (σ, a) is
stationary and independent ofW, then Z is stationary.

In general, BSS processes are not necessarily semimartingales. However, in our modelling application,
the choice of the ingredients of the model (A.19) ensures the semimartingale property. For that reason,
we focus on the special case where (A.19) constitutes a semimartingale, keeping in mind that many of the
arguments in the sequel are equally true for the general case. A sufficient condition for Z to be a semi-
martingale is that σ and a have second finite moment, g, q ∈ L1 (R+)

∩
L2 (R+), g′ ∈ L2 (R+) and

g (0+) < ∞ (see [17]).
Following [8], we model time series of the main component vt of the turbulent velocity field as a BSS

process of the specific form

vt = vt (g, σ, β) =
∫ t

−∞
g (t− s) σsdWs + β

∫ t

−∞
g (t− s) σ2sds ≡ Rt + βSt (A.20)

where g ∈ L1 (R+)∩L2 (R+) is a non-negative function, σ is a stationary process independent ofWwith
E [σ6] < ∞, and β is a constant.

It is well-known that for any semimartingale X the limit

[X]t = lim
n→0

n∑
j=1

(
Xj tn

− X(j−1) t
n

)2
(A.21)

exists as a limit in probability. The derived process [X] expresses the cumulative variation exhibited by X
and is called quadratic variation. For the case where (A.20) is a semimartingale, using Itô algebra, we get

(dvt)
2
= g2 (0+) σ2tdt

and

[v]t =
∫ t

0
(dvs)

2
= g2 (0+)

∫ t

0
σ2sds. (A.22)

In this setting, the quantity (dvt)
2
/dt is the natural analogue of the squared first order derivative of vwhich

in the classical formulation is taken to express the temporal energy dissipation (A.2). Consequently, the
quadratic variation [v] is the stochastic analogue of the integrated energy dissipation and σ2 can be identi-
fied, up to a factor, with the temporal energy dissipation. We will therefore assume that σ2 = ε, where ε is
the process given by (A.16). Note that in this set-up the Kolmogorov variable V (A.15) is given as

Vt,s =
us (t− s/2)(
ν̄ [v]ts

)1/3 (A.23)
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and the conditional independence refers to the independenceof p
(
Vt,s| [v]ts

)
on [v]ts. Here [v]ts = [v]t+s/2−

[v]t−s/2 denotes the quadratic variation over the time horizon [t− s/2, t+ s/2].
The limit in (A.21) may not exist in the non-semimartingale case. However, even in the general case,

σ2 can still be identified, up to a normalisation, with the surrogate energy dissipation (see [17, Theorem
3.1]).

Note that [v] in (A.22) is independent of the second term in (A.20). This second term determines the
skewness of the density of velocity increments ut = vt − v0. For this reason we refer to β as the skewness
parameter.

For the specification of the kernel g we start the discussion following [29] where a convolution of
gamma kernels was proposed to model the second order statistics of turbulent velocity time series. The
gamma kernel is defined as

h (x; a, ν, λ) = a · xν−1 exp (−λx) 1(0,∞) (x) , (A.24)

with a > 0, ν > 0 and λ > 0.
The convolution of two gamma kernels, h1 (x; a1, ν1, λ1) and h2 (x; a2, ν2, λ2) , can be expressed as

g (x; a1, ν1, λ1, a2, ν2, λ2) = h1 (x; a1, ν1, λ1) ∗ h2 (x; a2, ν2, λ2)

= a1a2xν1+ν2−11R+(x)
∫ 1

0
e−x(λ1u+λ2(1−u))uν1−1(1−u)ν2−1du. (A.25)

The relevant parameters are (a, ν1, λ1, ν2, λ2) with a = a1a2. We say that a function is a 2-gamma kernel if
it can be written as the convolution of two gamma kernels.

In the following g will denote a 2-gamma kernel with parameters (a, ν1, λ1, ν2, λ2), λ1 < λ2. In [29] it
is shown that the sdf r̂v (ω; g, σ, β) of (A.20) is then given as

r̂v (ω; g, σ, β) = a2 (1+ β2̂rσ2 (ω))
(
1+
(
2πω
λ1

)2)−ν1(
1+
(
2πω
λ2

)2)−ν2

, (A.26)

where r̂σ2 is the sdf of theprocess σ2. Referring to theparametersof g, we alsowrite r̂v (ω; a, ν1, λ1, ν2, λ2, σ, β)
for r̂v (ω; g, σ, β).

Ignoring the skewness term in (A.20), i.e. β = 0, the sdf r̂v of the velocity field v behaves as

r̂v (ω; a, ν1, λ1, ν2, λ2, σ, 0) ∝


1 ω ≪ λ1/2π
ω−2ν1 λ1/2π ≪ ω ≪ λ2/2π
ω−2(ν1+ν2) ω ≫ λ2/2π.

(A.27)

Thus, for ν1 = 5/6, λ1 denotes the frequency where the inertial range starts and λ2 denotes the frequency
where the inertial range ends. The value ν1 = 5/6 reflects Kolmogorov’s 5/3rd law [20] and 2 (ν1 + ν2)
gives the slope within the dissipation range (large frequencies). For the general case, i.e. β ̸= 0, the
previous interpretation remains essentially true since, for the data set we analyzed, β2̂rσ2 (ω) ≪ 1 for
λ1/2π ≪ ω.

From (A.25) it follows that v (g, σ, β) is a semimartingale for ν1 + ν2 > 3/2. Kolmogorov’s 5/3rd law
implies that ν1 ≈ 5/6. Combining this with the estimated value of ν2 (by fitting the empirical sdf at large
frequencies) shows that ν1 + ν2 > 3/2 for the data set we analyzed (see Section A.4.2). It is for this reason
that our focus is on the semimartingale case.

In the semimartingale case, the convolution of gamma kernels does not allow to identify the process
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σ2 with the energy dissipation since g (0+) = 0. Therefore, we propose for the kernel g a shifted 2-gamma
kernel

g (x; x0, a1, a2, ν1, ν2, λ1, λ2) = (h1 (·; a1, ν1, λ1) ∗ h2 (·; a2, ν2, λ2)) (x+ x0) 1R+ (x) , (A.28)

where h1 (x; a1, ν1, λ1) and h2 (x; a2, ν2, λ2) are gamma kernels and x0 is a positive constant. We say that a
function is a (2, x0)-gamma kernel if it can be expressed as (A.28).

Figure A.4.1 shows, as an illustrating example, an excerpt of the empirical velocity time series and from
a simulation of the model (A.20) using a (2, 10−7)-gamma kernel for g, a cascade model for σ2 and the
estimated β (see SectionA.4.2). The sdf for the data and the sdf from the simulation are compared inFigure
A.4.1(c). We can identify three characteristic regimes in the empirical sdf: a flat part at small frequencies,
a scaling regime with approximate exponent−5/3 and a steeper part at the large frequencies. The central
part reflects Kolmogorov’s 5/3rd law [20], which is expected to hold in the inertial range. The influence
of the shift x0 on the sdf of vt can be expected to be negligible for frequencies ω ≪ x−1

0 . To confirm this
conjecture we include in Figure A.4.1(c) the sdf of the model with x0 = 0 and all the other parameters
unchanged. Differences only arise at frequencies around 105. This implies that for not too large frequencies
the interpretation of the parameters of the model according to (A.27) remains valid. The inclusion of the
shift x0 bends the sdf away from the scaling ω−2(ν1+ν2) at the very large frequencies.

A.4 Simulation results

In this Section we compare, in detail, the statistical properties of the model (A.20) to the stylized features
described in Section A.2. We also brieflymention some aspects of the numerics behind the simulation and
discuss how the skewness parameter β and the (2, x0)-gamma kernel g can be estimated from empirical
time series.

The data set we analysed consists of one-point time records of the longitudinal (along the mean flow)
velocity component in a gaseous helium jet flow. We refer to [13] for more information about the data set.
In Table A.3.1 we list the Taylor Reynolds number R, the Kolmogorov scale η, the integral scale I and the
sampling frequency f̂.

A.4.1 Model performance

Theperformance of the (A.20) formodelling turbulent time series is illustrated by comparing themarginal
distributions of velocity increments, the structure functions and the conditional independence of the Kol-
mogorov variable. The estimation of the model parameters is based on the analysis of the sdf and the third
order structure function and on the marginal distribution and the correlators of the derived energy dissi-
pation.

Figures A.4.1(a) and A.4.1(b) show examples of time series of the velocity from data and from the
simulation, respectively. The similarity between the characteristics of both time series is clearly present. A
first quantitative result is given in Figure A.4.1(c) displaying the corresponding sdf. Themodel reproduces
the empirical sdf for the whole range of observed frequencies.

The excellent agreement for the sdf translates directly to the corresponding second order structure
functions that are shown in Figure A.4.2(a). Note that the sdf (or equivalently the second order structure
function) is the basic observable that determines the parameters of the (2, x0)-gamma kernel g used for the
simulation. The excellent agreement for the sdf (and S2) strongly indicates that the parametric choice of a
(2, x0)-gamma kernel is appropriate.
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Figure A.4.1: (a) Excerpt of the empirical time series (in arbitrary units). (b) Excerpt of the sim-
ulated time series (in arbitrary units) using the model (A.20). (c) Comparision of the sdf from the
data (gray dots) and from the simulation of the model (A.20) (black dots). The solid line corre-
sponds to the sdf obtained from the simulation with x0 = 0 and all other parameters unchanged.
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Figure A.4.2: Comparison of the structure functions Sn (A.10), n = 2, 3, 4, 6 from the simulation
of (A.20) (black) and the structure functions estimated from the data (grey). The time lags s are
measured in units of the finest resolution of the empirical data.

Theestimation of the skewness parameter β is essentialy based on fitting the third order structure func-
tion S3 (see Figure A.4.2(b)). Taking into account the notorious uncertainty for the estimation of S3 from
turbulent data, the model captures well the details of S3 (t).

Examples of higher order structure functions are shown in Figures A.4.2(c) and A.4.2(d). Again the
model shows excellent agreement. Only for S6 some small systematic deviation is observed which is due
to an amplification of small errors not visible for S2 and slightly visible for S3. It is important to note that
the model is completely specified from the energy dissipation statistics and the structure functions S2 and
S3 with no adjustable parameter for tuning the behavior of S4 and S6.

Figure A.4.3 shows the densities of velocity increments us for various time lags s. The densities evolve
from semi-heavy tails at small time scales towards a Gaussian shape at the large time scales. NIG distribu-
tions fit these densities very well for all scales and all amplitudes in full agreement with the results reported
in [7, 6]. The corresponding steepness and skewness parameters are shown in the NIG shape triangle in
Figure A.4.4. Again, simulation and data show a good agreement.

Figure A.4.5 illustrates the performance of themodel concerning the conditional independence of the
densities of the Kolmogorov variable. For t within the inertial range, p

(
Vt,s| [v]ts

)
is independent of [v]ts.
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Figure A.4.3: Comparison of the densities of velocity increments p (us), s = 1, 64, 256, 1024 from data
(grey circles) and from the simulation of (A.20) (black crosses). The solid lines correspond to fitted
NIG-distributions based on maximum likelihood estimation.
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Figure A.4.4: NIG-shape triangle for the evolution of the pdf of velocity increments across lags for
the data (grey) and for the simulation of (A.20) (black). Each point corresponds to a different time
lag s = 1, 4, 16, 32, 64, 128, 256, 512, 1024, increasing from top to bottom.
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Figure A.4.6: Comparison of the conditional density p
(
Vt,s| [v]ts = 1

)
from the data (grey) and from

the simulation of (A.20) (black).

The values of [v]ts cover the core of the distribution of [v]ts for which a sufficient sample size is ensured.
Figure A.4.6 shows a direct comparison of p

(
Vt,s| [v]ts = 1

)
for the data and the simulation, showing the

strong similarity of the distributions.

Finally, Figure A.4.7 shows the correlators of order (1, 1) and (1, 2) of the energy dissipation estimated
from the empirical velocity time series and from the simulation of (A.20). Besides small scale scatter, data
and simulations show (nearly) perfect agreement.
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Figure A.4.7: Comparison of the correlators cp,q (t), (p, q) = (1, 1) , (1, 2), of the energy dissipation
estimated from the data (grey) and from the simulation of (A.20) (black). The time lags t are mea-
sured in units of the finest resolution of the data.

A.4.2 Simulation of BSS processes

In this Subsection we briefly describe howwe simulate theBSS-process (A.20) using time series of σ2. The
algorithm is based on

vt (g, σ, β) |σ ∼ N
(
β
∫ ∞

0
g (s) σ2t−sds,

∫ ∞

0
g2 (s) σ2t−sds

)
(A.29)

which provides the conditional distribution for vt (g, σ, β) |σ2. In principle, to reproduce vt (g, σ, β) |σ2 a
complete path for σ2 is required. However, using a sufficiently smallmesh, a linear interpolation on σ2 gives
the desired accuracy.

Let δ > 0 andN ∈ N. Assume that we know the values σ2i·δ for i = 0, . . . ,N. The linear interpolation
for σ2 is given by the formula

σ̃2s =
N−1∑
i=1

{(
σ2i+1 − σ2i

δ

)
(s− i · δ) + σ2i

}
1[i·δ,(i+1)δ] (s) .

Thus,

vt (g, σ̃, β) ∼ N
(
β
∫ ∞

0
g (s) σ̃2t−sds,

∫ ∞

0
g2 (s) σ̃2t−sds

)
.

Assuming that N is large enough, and since g ∈ L1 (R+) ∩ L2 (R+), we can, for ε > 0, choose q ≫ 0
such that ∣∣∣∣∫ ∞

0
g (s) σ̃2t−sds−

∫ q

0
g (s) σ̃2t−sds

∣∣∣∣ < ε.

Thus we replace the kernel g by the approximation g̃ = g · 1[0,q]. Let q = n · δ, for n ∈ N. Expanding and
applying a change of variable, we have that∫ ∞

0
g̃ (s) σ̃2t−sds = δ

n∑
k=0

∫ 1

0
g̃ (δ {y+ k}+ t)

(
σ2j−k+1 (1− y) + σ2j−ky

)
dy, (A.30)
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∫ ∞

0
g̃2 (s) σ̃2t−sds = δ

n∑
k=0

∫ 1

0
g̃2 (δ {y+ k}+ t)

(
σ2j−k+1 (1− y) + σ2j−ky

)
dy, (A.31)

for t ≥ δ · n. Therefore, vj·δ (̃g, σ̃, β) |σ̃, j = n, . . . ,N− 1, can be obtained by simulating a normal random
variable with mean (A.30) and variance (A.31). Thus, by interpolation, we obtain a path for vt (g, σ, β) |σ
on the interval [δ · n,N · δ] through the approximation vt (̃g, σ̃, β) |σ̃.

A.4.3 Estimation procedure

Our modelling framework (A.20) has three degrees of freedom, the energy dissipation σ2, the kernel g
and the skewness parameter β. The energy dissipation can be estimated from velocity increments at the
smallest time scale. This has been done in [30] for the data set in the present study. Following [30], we use
a NIG Lévy basis in (A.16) and the ambit set to be of the form (A.17). The relevant parameters are listed
in Table A.3.1.

It remains to estimate β and the kernel gwithin the class of (2, x0)-gamma kernels. Given a value of β,
our estimators for the parameters of g are those thatminimize the distance, in the sense of least squares, be-
tween the empirical sdf and the sdf of (A.20) using x0 = 0. As a consequence of the physical interpretation
derived from (A.27), the minimization is performed restricting λ1 to values around the initial frequencies
of the inertial range, and restricting λ2 to values near the end of the inertial range. These constraints have
proven to produce good approximations to the empirical sdf. The shift x0 is obtained by fitting the very
large frequency behaviour of the sdf. It is important to note that the scatter of the data at large frequencies
does not allow to estimate a precise value of x0. We choose x0 = 10−7 by visual inspection.

For the estimation of the skewness parameter β, we consider the third order structure function S3 of
(A.20) rewritten as

S3 (l) = 3βE{(ΔlR)
2
(ΔlS)}+ β3E{(ΔlS)

3}, (A.32)

where ΔlR = Rl − R0 and ΔlS = Sl − S0, for l > 0. Given paths of R and S, our estimator for β is the
value thatminimizes the distance, in the sense of least squares, between the empirical third order structure
function and (A.32) for a suitable range of scales l (between the smallest scale and the location of the peak,
see Figure A.4.2(b)).

The complete estimation procedure can be described as follows. We first neglect the skewness param-
eter β and we estimate the parameters of g under this restriction from the sdf. Then, having a simulation of
the σ process, we perform a simulation of (A.20). Using this simulation, we estimate β as described above.
Next, we re-estimate the kernel g using the empirical sdf and the current value of β. We perform this algo-
rithm until we observe stabilisation of β. This algorithm has proven to stabilise after 7 iterations. Figure
A.4.8 shows the parameters of g and β obtained after each iteration. The resulting g function is depicted in
Figure A.4.9.

The algorithm described above produces similar kernels in each iteration. Therefore it is reasonable to
assume that the L2-distance between these kernels is small.

The following Lemma provides some bound for the convergence of (A.20).

Lemma 20 Consider the model (A.20). Let β, β1 > 0 and g, g1 ∈ L2 (R). Assume that:

1. c ≡ E [σ4] < ∞.

2. max{∥g1 − g∥L2(R) , ∥g1 − g∥L1(R)} < ε
(1+c1/4β1)c1/4

, for ε > 0.
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Figure A.4.8: Estimated values of the parameters of the (2, x0)-gamma kernel g with x0 = 10−7 and
estimated value of the skewness parameters β for each of the iterations performed.
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Figure A.4.9: The (2, 10−7)-gamma kernel g corresponding to the estimated parameters in Figure
A.4.8 (iteration 7). Time t is measured in units of the finest resolution of the data.

Then, we have that∥∥vt (g1, σ, β1)− vt (g, σ, β)
∥∥
L2(Ω)

≤ c1/2|β1 − β| ∥g∥L1(R) + ε.

Proof . Let

Pt =

∫ t

−∞
{g1 (t− s)− g (t− s)} σsdBs,

Qt =

∫ t

−∞

{
β1g1 (t− s)− βg (t− s)

}
σ2sds

for t > 0. Observe that

Qt = β1

∫ t

−∞
{g1 (t− s)− g (t− s)} σ2sds+

(
β1 − β

) ∫ t

−∞
g (t− s) σ2sds.

Then ∥∥vt (g1, σ, β1)− vt (g, σ, β)
∥∥
L2(Ω)

≤ ∥Pt∥L2(Ω) +
∣∣β1 − β

∣∣ ∥∥∥∥∫ t

−∞
g (t− s) σ2sds

∥∥∥∥
L2(Ω)

+β1

∥∥∥∥∫ t

−∞
{g1 (t− s)− g (t− s)} σ2sds

∥∥∥∥
L2(Ω)

.

The Cauchy-Schwarz inequality implies that

E [σ2s σ
2
r ] ≤ E [σ4s ]

1/2 E [σ4r ]
1/2

= E [σ4] = c, (A.33)

for any (s, r) ∈ R2. Thus,∥∥∥∥∫ t

−∞
g (t− s) σ2sds

∥∥∥∥2
L2(Ω)

= E
[(∫ t

−∞
g (t− s) σ2sds

)2]
≤ c ∥g∥2L1(R)
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and ∥∥∥∥∫ t

−∞
{g1 (t− s)− g (t− s)} σ2sds

∥∥∥∥2
L2(Ω)

≤ c ∥g1 − g∥2L1(R) .

Itô isometry and (A.33) imply that

∥Pt∥2L2(Ω) ≤ c1/2 ∥g1 − g∥2L2(R) .

Thus, ∥∥vt (g1, σ, β1)− vt (g, σ, β)
∥∥
L2(Ω)

≤ c1/4 ∥g1 − g∥L2(R) + c1/2
∣∣β1 − β

∣∣ ∥g∥L1(R)
+c1/2β1 ∥g1 − g∥L1(R)

≤ ε + c1/2
∣∣β1 − β

∣∣ ∥g∥L1(R) ,
which concludes the proof.

Under certain assumptions, we can ensure that the estimation procedure gives reasonable estimators
for the skewness parameter β. Assume that vt (g, σ, β) is the idealmodelwith g in the class of (2, x0)-gamma
kernels. Let{gn}n∈N be a sequence of (2, x0)-gammakernels and{βn}n∈N a sequence of positive numbers,
and assume that E [σ6] < ∞, gn → g pointwise and gn bounded by an integrable and square-integrable
function.

Following the notation in (A.20), for each n ∈ N, we decompose vt
(
gn, σ, βn

)
= Rt (gn, σ) +

βnSt (gn, σ). For l > 0, let

anl = E [(ΔlR (gn, σ))
2
(ΔlS (gn, σ))] ,

al = E [(ΔlR (g, σ))
2
(ΔlS (gn, σ))] ,

bnl = E [(ΔlS (gn, σ))
3
] ,

bl = E [(ΔlS (gn, σ))
3
] ,

fn (l; β) = 3
(
βal − βna

n
l
)
+
(
β3bl − β3nb

n
l
)
,

where ΔlR (·, ·) = Rl (·, ·)− R0 (·, ·) and ΔlS (·, ·) = Sl (·, ·)− S0 (·, ·). Observe that f is the difference
of the third order structure functions of v

(
g, σ, βn

)
and v (gn, σ, β).

Lemma 21 anl → al and bnl → bl, for any l > 0.

Proof . Define

φnl (s) := gn (l− s)− gn (−s) 1(−∞,0] (s)
φl (s) := g (l− s)− g (−s) 1(−∞,0] (s) .

E [σ6] < ∞ implies that (s1, s2, s3) 7→ E
[
σ2s1σ

2
s2σ

2
s3

]
is a bounded function inR3. Thus, fromtheDominated

Convergence Theorem,

bnl = E [(ΔlS (gn, σ))
3
]

=

∫ l

−∞

∫ l

−∞

∫ l

−∞
φnl (s1) φ

n
l (s2) φ

n
l (s3) E

[
σ2s1σ

2
s2σ

2
s3

]
ds1ds2ds3
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→
∫ l

−∞

∫ l

−∞

∫ l

−∞
φl (s1) φl (s2) φl (s3) E

[
σ2s1σ

2
s2σ

2
s3

]
ds1ds2ds3 = bl.

On the other hand, from Itô isometry and the Dominated Convergence Theorem,

anl = E [(ΔlR (gn, σ))
2
(ΔlS (gn, σ))]

= E [ΔlS (gn, σ) E [(ΔlR (gn, σ))
2 |σ]]

= E

[∫ l

−∞
φnl (s) σ

2
sds · E

[(∫ l

−∞
φnl (r) σrdBr

)2

|σ

]]

=

∫ l

−∞

∫ l

−∞
φnl (s)

(
φnl (r)

)2 E [σ2s σ2r ] dsdr
→

∫ l

−∞

∫ l

−∞
φl (s)

(
φl (r)

)2 E [σ2s σ2r ] dsdr = al.

This finishes the proof.
The next Proposition ensures that a converging sequence βn converges to the right value.

Proposition 22 Assume there is some l0 > 0 such that fn (l0; β) = 0 and that βn converges. Then, βn → β.

Proof . Assume that l0 > 0 satisfies fn (l0; β) = 0. Then,

lim
n→∞

{3
(
βal0 − βna

n
l0

)
+
(
β3bl0 − β3nb

n
l0

)
} = 0.

This implies
3
(
β − β∗

)
al0 +

(
β3 − β3∗

)
bl0 = 0,

where β∗ = lim βn. Therefore,(
β − β∗

) (
3al0 +

(
β2 + ββ∗ + β2∗

)
bl0
)
= 0,

Thus, necessarily, β∗ = β.

A.5 Conclusion

Theanalysis performed in this paper clearly demonstrates that Brownian semi-stationary processes arewell
adapted to reproduce key characteristics of turbulent time series. The parameters of the model are solely
estimated from the marginal distribution and the correlator c1,1 of the energy dissipation [30] and from
second and third order structure functions of velocity increments. This has been done under the specific
model specification (A.20) with a (2, x0)-gamma kernel g. The use of a (2, x0)-gamma kernel is motivated
by its ability to reproduce the empirical sdf. The fact that, starting from second order and third order struc-
ture functions, higher order structure functions, the evolution of the densities of velocity increments across
scales and the essential statistics of the Kolmogorov variable are also reproduced clearly indicates the ap-
propriateness of the semi-parametric model (A.20).

In [12, 19] a similar approach for modelling turbulent velocity time series is suggested. They propose
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a causal continuous-time moving average of the form

Yt =
∫ t

−∞
g (t− s) dLs (A.34)

where L is a Lévy process with zero mean and finite second moment. A non-parametric estimation of the
kernel g from second order statistics of turbulent data shows the same qualitative behaviour as the kernel
estimated in the current study. The extraction of the driving noise L from velocity time series is addressed
in [19] showing that the autocorrelationof the energy dissipation resulting from themodel agreeswellwith
empirical findings. The performance of (A.34) for turbulencemodelling beyond second order statistics is,
however, not discussed. It would be interesting to compare the two approaches in more detail, including
more of the stylised features discussed in the present paper.

The data set analyzed here has a relatively high Reynolds number, with a visible inertial range. It is
important to investigate how themodel performs for lowerReynolds numbers, where inertial range scaling
is not observed. Concerning the model for the energy dissipation, this has been done in [30] where it was
shown that continuous cascades are equally suitable for awide rangeofReynolds numbers. For the velocity
field itself this is work in progress.
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Appendix

The normal inverse Gaussian (NIG) distribution is a four-parameter family of continuous probability dis-
tributions whose probability density function is given by

fNIG (x; α, β, μ, δ) =
αeδγ

π
eβ(x−μ)

K1

(
δαq
(

x−μ
δ

))
q
(

x−μ
δ

) , (A.35)

where γ = α2 − β2, q (x) =
√
1+ x2 and K1 denotes the modified Bessel function of the second kind

with index 1. The domain of variation of the parameters is given by μ ∈ R, δ ∈ R+, and 0 ≤ |β| < α.
The parameters α and β are shape parameters, μ determines the location, and δ determines the scale. The
distribution is denoted byNIG (α, β, μ, δ).

Thenormal inverseGaussiandistribution is a subclass of the generalisedhyperbolic distribution. These
distributions were introduced by Barndorff-Nielsen [5] to describe the law of the logarithm of the size of
sand particles.

The cumulant function K (z; α, β, μ, δ) = log E [exp {zX}] of a random variable X with distribution
NIG (α, β, μ, δ) is given by

K (z; α, β, μ, δ) = zμ + δ
(
γ −

√
α2 − (β + z)2

)
. (A.36)
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It follows immediately fromthis that thenormal inverseGaussiandistribution is infinitelydivisible. Namely,
ifXi ∼ NIG

(
α, β, μi, δi

)
, i = 1, 2, are independent random variables, then we haveX1+X2 ∼ NIG(α, β,

μ1 + μ2, δ1 + δ2).
It is often of interest to consider alternative parametrisations of the normal inverse Gaussian laws. In

particular, letting α = δα and β = δβ, we have that α and β are invariant under location-scale changes.
Sometimes it is useful to represent NIG distributions in the so-called shape triangle. Consider the

alternative asymmetry and steepness parameters χ and ξ defined by

ξ = (1+ γ)−1/2
, χ = ρξ,

where ρ = β/α and γ = δγ = δ
√

α2 − β2. These parameters are invariant under location-scale changes.
Their range defines the NIG shape triangle

{(χ, ξ) : 0 < ξ < 1,−ξ < χ < ξ} .

When χ = 0 the NIG distribution is symmetric. Values χ > 0 indicate a positively skewed distribution
and χ < 0 a negatively skewed law. The steepness parameter ξ measures the heaviness of the tails of the
NIG distribution. The limiting case ξ = 0 corresponds to a normal distribution.
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B
Paper B:On the cumulants of increments for two

classes of Brownian semi-stationary processes

José Ulises Márquez
Department of Mathematics, Aarhus University.

Abstract

In this article we obtain formulae for the cumulants of the increments of two classes of Brownian semi-
stationary (BSS) processes. The first class corresponds to BSS processes where the volatility is a Lévy
semi-stationary process and the second class consists in BSS processes where the volatility is given as the
exponential of an ambit process. We analyse and apply these formulae having in mind applications in the
context of turbulence. Specifically, we apply these formulae to some particular examples of BSS processes
that are relevant as models for turbulent velocity time series.

B.1 Introduction

In this note, we study the cumulants of the increments of Brownian semi-stationary processes (BSS). The
BSS processes, introduced in [9], are stochastic processes of the form

Zt = μ +
∫ t

−∞
g (t− s) εsdBs +

∫ t

−∞
q (t− s) ςsds (B.1)

where g and q are deterministic functions with g (t) = q (t) = 0 for t ≤ 0, ε and ς are adapted stochas-
tic processes, (B)t∈R is standard Brownian motion onR and μ is a constant. When the process (εt, ςt) is
stationary and independent of B, Z is stationary itself. In general, the BSS processes are not semimartin-
gales which make them a very interesting class of stochastic processes. For a more detailed and extensive
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discussion about the BSS processes and their use as modelling framework, we refer to [7, 9, 5, 14, 24, 27].
BSS processes have been used to model time series of the turbulent velocity field for stationary and

isotropic flows (see [24, 27]). In this paper we restrict our attention to the particular case where ς = ε2,
which arises in the context of turbulence. In this setting, the process ε2 is interpreted as the turbulent
energy dissipation, a process that measures the loss of kinetic energy in a turbulent flow due to friction
forces.

The increments of the process Z contain relevant information about the process Z and of its elements
(g, q, ε and ς). For instance, the increments may indicate howmuch the processZ varies, e.g. if it has finite
quadratic variation (see, e.g. [5]). The increments of Z also provide a way to estimate its parameters (see
[14, 24]). In addition, the increments of Z are relevant for the theory of turbulence since the increments
of the velocity field are the object of study in the Kolmogorov-Obukhov theory ([18]), which is probably
the most important theory in turbulence.

In this paper we find formulae for the cumulants of the increments of Z assuming that ς = ε2 and
where ε2 has two forms: 1) ε2 is a Lévy semi-stationary process (see, e.g., [29]); 2) ε2 is the exponential
of an ambit process driven by a homogeneous Lévy basis onR2. In the first case, the formulae we find are
given in terms of the Lévy seed of the Lévy process that drives ε2. In the second case, we obtain a formula
for the n-th moments of the increments of Z in terms of the Lévy seed of the Lévy basis that drives log ε2.
These formulae can be used to iteratively compute the cumulants of the increments of Z. The second case
is pertinent since it has been used to model the energy dissipation and turbulent velocity time series (see
[24, 27]).

This paper is organized as follows. Section 2 contains the necessary background to understand the role
of the increments and their importance in turbulence. In Section 3wederive a formula for the cumulants of
the increments of BSS processes assuming that ε2 is a Lévy semi-stationary process. In Section 4 we apply
the formulae derived in Section 3 to some specific examples of Z. Section 5 presents a formula for the n-th
moments of ε2 assuming that it is the exponential of an ambit process. We use this formula to compute
iteratively the cumulants of the increments of Z. In Section 6 we apply the formula derived in Section 5 to
some specific examples of Z. Section 7 concludes.

B.2 BSS processes and turbulence

BSS processes have been used as phenomenological models for the temporal velocity field in turbulence
([8, 24]). The strength of the BSS modelling framework lies in the fact that the volatility term ε2 = ς and
the functions g and q can, to a large extent, be chosen arbitrarily.

In these BSS models q = β · g, where β > 0. The parameter β controls the skewness of increments
of the velocity field and is called the skewness parameter (see [8, 24]). In [27] it is shown that, taking
g proportional to the convolution of gamma densities, BSS processes accurately reproduce the spectral
density function found for turbulent time series (including the 5/3rd-Kolmogorov law).

According to [8], ε2 = ς can be identified with the energy dissipation. The literature provides a num-
ber of different phenomenological models for the energy dissipation (see, e.g., [18, 20, 28], and the refer-
ences there). Of particular interest here are ambit models. Ambit models are a continuous generalization
of cascade models ([11, 13, 19, 21, 20, 22, 28]), which are an important and well-studied class of phe-
nomenological models for the energy dissipation. Ambit models are able to reproduce a very rich class of
probability laws and their ingredients can be chosen in a way such that the empirically observed scaling
and self-scaling of certain moments of the energy dissipation are reproduced. This potential to model the
energy dissipation has been illustrated in [28].

In [24], it is shown that the BSS models are able to reproduce the main stylized features of turbulent
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velocity time series. Assuming that ε2 is given by the ambitmodel estimated in [28] and that g and q = β ·g
are proportional to a shifted convolution of gamma densities, the parameters of the BSS model (B.1) are
estimated from data obtained in a helium jet experiment. The shift in the convolution of gamma kernels
was introduced to reproduce the behavior of the spectral density function at very small scales. The results
in [24] show that BSS processes are able to reproduce: 1) the probability law of the increments of the
velocity field; 2) the structure functions of order p = 2, 4, 6; 3) scaling and self-scaling observed for the
energy dissipation; 4) the conditional independence of the Kolmogorov variable; and 5) the skewness of
velocity increments. All these features are directly related to the increments of the velocity field. For this
reason, it is essential to better understand the increments of BSS processes and to have at hand formulae
that allow to compute cumulants without time-consuming simulations of the underlying process.

B.3 Formula for the cumulants of the increments of a BSS-process for ε2
specified as a LSS process: theory

Consider the BSS process

Xt =

∫ t

−∞
g (t− s) εsdBs +

∫ t

−∞
q (t− s) ε2sds (B.2)

where g ∈ L2 (R) and q ∈ L1 (R), with g (x) = q (x) = 0 for x ≤ 0, and ε is a Lévy semi-stationary
process (LSS) independent of B given by

ε2t =

∫ t

−∞
h (t− s) dLs, (B.3)

where, under the truncation function τ ≡ 0, L is a subordinator with characteristic triplet (m, 0, ν) , and
h ∈ L1 (R) is non-negative satisfying h (x) = 0 for x ≤ 0 and∫ t

−∞

∫
R+

(1 ∧ h2 (t− s) x2) ν (dx) ds < ∞. (B.4)

Besides, we also assume that L has finite first moment, i.e. that

E [L1] =
∫
R+

xν (dx) < ∞. (B.5)

Under these assumptions, the processX is well-defined. Condition (B.4) ensures that the process ε2 is
well-defined (see [10], Corollary 4.1). In the remaining part of this Section, we deduce a formula for the
cumulants of the increments of X in terms of the cumulants of L′ ≡ L1.

B.3.1 Preliminary calculations

Let ΔtX = Xt − X0 for t > 0. We have that

ΔtX =

∫
R
ϕt (s) εsdBs +

∫
R
ψt (s) ε

2
sds
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where, for t > 0,

ϕt (s) = (g (t− s)− g (−s)) , and ψt (s) = (q (t− s)− q (−s)) . (B.6)

Then, the cumulant function C {z ‡ ΔtX} := log E (exp {izΔtX}) of ΔtX is given as

C {z ‡ ΔtX}= log E
(
exp
{
− 1
2
z2
∫
R
ϕ2t (s) ε

2
sds+ iz

∫
R
ψt (s) ε

2
sds
})

= log E
(
exp
{
−z2

2

∫
R

∫
R
ϕ2t (s) h (s− r) dLrds+ iz

∫
R

∫
R
ψt (s) h (s− r) dLrds

})
. (B.7)

The formula for the cumulants of ΔtX in terms of the cumulants of L′ that we obtain in this Section is a
consequence of the Fubini Theorem [2, Theorem 3.1] applied to the double integrals in (B.7). In the next
lines we check that ϕ, ψ, h, and L satisfy the conditions stated there.

Remark 23 Since h, q ≥ 0, Tonelli’s Theorem implies that∫
R

∫
R
ψt (s) h (s− r) dsdr =

∫
R

∫
R
ψt (s) h (s− r) drds < ∞

and ∫
R

∫
R
ϕ2t (s) h (s− r) dsdr =

∫
R

∫
R
ϕ2t (s) h (s− r) drds < ∞.

TheFubiniTheorem [2,Theorem 3.1] applies to centered Lévy processes. Therefore, for themoment,
we will consider the process Yt = Ljt − tE[Lj1], where Lj is the pure jump part of L under the truncation
function τ ≡ 0 (i.e. the characteristic triplet of Lj under the truncation function τ ≡ 0 is (0, 0, ν)). Let
φ :R → R be given by

φ (y) =
∫
R+

(
(yu)2 1{|yu|≤1} + (2 |yu| − 1) 1{|yu|>1}

)
ν (du) ,

and for all measurable functions f :R → R define

∥f∥φ = inf
{
c > 0 :

∫
R
φ
(
c−1f (s) , s

)
ds ≤ 1

}
.

Moreover, let Lφ = Lφ (R,B (R)) denote the Musielak-Orlicz space of measurable functions fwith∫
R

∫
R+

|f (w) u|2 ∧ |f (w) u| ν (du) dw < ∞,

equipped with the Luxemburg norm ∥f∥φ (see e.g. [15]). For t > 0, define

fgt (x, s) = ϕ2t (x) h (x− s) and fqt (x, s) = ψt (x) h (x− s) ,

and
fgx,t = fgt (x, ·) and fqx,t = fqt (x, ·) .
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Wewant to change theorderof integration in I1=
∫
R
∫
R fgt (x, s) dLsdx and I2=

∫
R
∫
R fqt (x, s) dLsdx. Thanks

toRemark 23, we donot need toworry about the drift termofY and thework is done if we change the order
of integration in I1 =

∫
R
∫
R fgt (x, s) dYsdx and I2 =

∫
R
∫
R fqt (x, s) dYsdx. We apply the Fubini Theorem

to I1 and I2. There are only two conditions to check in the Fubini Theorem [2, Theorem 3.1]: 1)fgx,t ,
fqx,t ∈ Lφ for x ∈ R; and, 2)

∫
R

∥∥fgx,t∥∥φ dx < ∞ and
∫
R

∥∥fqx,t∥∥φ dx < ∞. Since h ∈ L1 (R), from (B.5)
follows that fgx,t and f

q
x,t belong to the Musielak-Orlicz space Lφ, i.e. fgx,t , f

q
x,t ∈ Lφ (condition 1). Besides,

E
(∣∣∣∣∫

R
fgx,t (s) dYs

∣∣∣∣) ≤ 2ϕ2t (x)
∫
R

∫
R+

h (x− s) uν (du) ds

= 2ϕ2t (x)
∫
R

∫
R+

h (w) uν (du) dw

≡ 2cϕ2t (x) < ∞,

and, similarly,

E
(∣∣∣∣∫

R
fqx,t (s) dYs

∣∣∣∣) ≤ 2
∣∣ψt (x)

∣∣ ∫
R

∫
R+

h (w) uν (du) dw

= 2c
∣∣ψt (x)

∣∣ < ∞.

Since fgx,t and f
q
x,t are in Lφ, Theorem 2.1 in [23] shows that

∥∥fgx,t∥∥φ ≤ 8E
(∣∣∣∣∫

R
fgx,t (s) dYs

∣∣∣∣) and
∥∥fqx,t∥∥φ ≤ 8E

(∣∣∣∣∫
R
fqx,t (s) dYs

∣∣∣∣) .

Therefore, ∥∥fgx,t∥∥φ ≤ 16cϕ2t (x) and
∥∥fqx,t∥∥φ ≤ 16c

∣∣ψt (x)
∣∣ .

Since g ∈ L2 (R) and q ∈ L1 (R), this implies that∫
R

∥∥fgx,t∥∥φ dx < ∞ and
∫
R

∥∥fqx,t∥∥φ dx < ∞.

This proves the second condition in the stochastic Fubini Theorem. The Fubini Theorem implies that∫
R

∫
R
ϕ2t (s) h (s− r) dYrds =

∫
R

∫
R
ϕ2t (s) h (s− r) dsdYr =

∫ t

−∞

∫ t

r
ϕ2t (s) h (s− r) dsdYr

and ∫
R

∫
R
ψt (s) h (s− r) dYrds =

∫
R

∫
R
ψt (s) h (s− r) dsdYr =

∫ t

−∞

∫ t

r
ψt (s) h (s− r) dsdYr.

It follows that

∫
R

∫
R
ϕ2t (s) h (s− r) dLrds =

∫ t

−∞

∫ t

r
ϕ2t (s) h (s− r) dsdLr
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and ∫
R

∫
R
ψt (s) h (s− r) dLrds =

∫ t

−∞

∫ t

r
ψt (s) h (s− r) dsdLr.

Remark 24 Fubini Theorem 3.1 in [2] also states that fgt (·, s) , f
q
t (·, s) ∈ L1 (R), for almost all s ∈ R (with

respect to the Lebesgue measure); i.e.∫ t

r
ψt (s) h (s− r) ds < ∞ and

∫ t

r
ϕ2t (s) h (s− r) ds < ∞,

for almost all r ∈ R. However, in our case, this is also a consequence of Remark 23.

B.3.2 Cumulants of ΔtX relative to the cumulants of L′

Now we can proceed to find a formula for the cumulants of ΔtX. For (t, z) ∈ R+ × R, let Ht,z :
(−∞, t)→ C be the function given by

Ht,z (r) =
∫ t

r

{
izψt (s) h (s− r)− 1

2
z2ϕ2t (s) h (s− r)

}
ds, (B.8)

when the integral exists, and 0 otherwise. Then, from (B.7),

C {z ‡ ΔtX}= log E
(
exp
{∫ t

−∞
Ht,z (r) dLr

})
=

∫ t

−∞
C {Ht,z (r) ‡ L′} dr

=

∫ t

−∞

∞∑
m=1

κm (L′)
m!

Hm
t,z (r) dr, (B.9)

where κm (X) denotes the cumulant of orderm of the random variable X.

Proposition 25 Let t > 0 and assume that all cumulants of L′ exist. Define

C1 (t, r) =
∫ t

r
ψt (s) h (s− r) ds and C2 (t, r) =

∫ t

r
ϕ2t (s) h (s− r) ds, (B.10)

when the integrals exist, and C1 (t, r) = C2 (t, r) = 0 otherwise. If Ht,z (r) = izC1 (t, r)− 1
2z

2C2 (t, r) and

∞∑
m=1

κm (L′)
m!

∫ t

−∞
|Ht,z (r)|m dr < ∞ (B.11)

for z ∈ D ⊆ R, then

C {z ‡ ΔtX} =

∞∑
j=1

(iz)j

j!

∫ t

−∞
j!

j∑
m=⌈j/2⌉

(
m

2m− j

)
C2m−j
1 (t, r)Cj−m

2 (t, r)
κm (L′)
2j−m · m!

dr

 , (B.12)

for z ∈ D. In particular, if there exist η > 0 and M (t) > 0 such that

max {|C1 (t, r)| , |C2 (t, r)|} ≤ M (t) eηr, (B.13)
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then (B.12) is true for |z| sufficiently small.

Proof . Changing variables and using the regular Fubini Theorem, for z ∈ D, we can rewrite (B.9) as

C {z ‡ ΔtX}=
∫ t

−∞

∞∑
m=1

κm (L′)
m!

m∑
l=0

(
m
l

)
(iz)l Cl

1 (t, r) (−1)m−l 1
2m−l (z

2)
m−l Cm−l

2 (t, r) dr

=

∫ t

−∞

∞∑
m=1

m∑
l=0

(
m
l

)
Cl
1 (t, r)C

m−l
2 (t, r)

κm (L′)
2m−l · m!

(iz)2m−l dr

=

∫ t

−∞

∞∑
m=1

2m∑
j=m

(
m

2m− j

)
C2m−j
1 (t, r)Cj−m

2 (t, r)
κm (L′)
2j−m · m!

(iz)j dr

=

∫ t

−∞

∞∑
j=1

j∑
m=⌈j/2⌉

(
m

2m− j

)
C2m−j
1 (t, r)Cj−m

2 (t, r)
κm (L′)
2j−m · m!

(iz)j dr

=
∞∑
j=1

(iz)j

j!

∫ t

−∞
j!

j∑
m=⌈j/2⌉

(
m

2m− j

)
C2m−j
1 (t, r)Cj−m

2 (t, r)
κm (L′)
2j−m · m!

dr

 .

Thisproves thefirst part of theproposition. Now, assume that the functionsC1 andC2 (B.10) satisfy (B.13).
Then, there is a constant K > 0 such that

∞∑
m=1

κm (L′)
m!

∫ t

−∞
|Ht,z (r)|m dr≤

∞∑
m=1

κm (L′)
m!

|z|m
∫ t

−∞

(
|C1 (t, r)|+

1
2
z |C2 (t, r)|

)m
dr

≤
∞∑
m=1

K · |z|m
∫ t

−∞

(
|C1 (t, r)|+

1
2
|z| |C2 (t, r)|

)m
dr

≤K
∞∑
m=1

|z|m
∫ t

−∞

(
2m−1 |C1 (t, r)|m +

1
2
|z|m |C2 (t, r)|m

)
dr

≤K
∞∑
m=1

|z|m
(
2m−1 +

1
2
|z|m
)
M (t)m

∫ t

−∞
emηrdr

≤K
∞∑
m=1

|z|m
(
2m−1 +

1
2
|z|m
)
M (t)m

emηt

mη

≤ K
2η

∞∑
m=1

(2 |z|M (t) eηt)m

m
+

K
2η

∞∑
m=1

(z2M (t)m eηt)m

m
< ∞,

for small |z|. This finishes the proof.
As a consequence of Proposition 25, we have that the cumulants of ΔtX can be expressed in terms of

the cumulants of L′.

Corollary 26 Assume that all cumulants of L′ exist. Let t > 0. If the conditions (B.11) or (B.13) are satisfied,
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then we have the relation

κj (ΔtX) = j!
j∑

m=⌈j/2⌉

(
m

2m− j

)
κm (L′)
2j−m · m!

∫ t

−∞
C2m−j
1 (t, r)Cj−m

2 (t, r) dr j ∈ N. (B.14)

Remark 27 If we assume that q ≡ 0 in (B.2), then C1 (t, r) ≡ 0. Under the condition (B.11), this implies that

κj (ΔtX) =


j!

κj/2(L′)
2j/2·( j

2 )!

∫ t
−∞ Cj/2

2 (t, r) dr if j is even

0 if j is odd

, (B.15)

for j ∈ N.

In the derivation of the formulae (B.12) and (B.14), we have assumed that all cumulants of the Lévy
seed L′ exist. This is a very strong and restrictive condition. More generally, for the formulae (B.12) and
(B.14) to hold it is only necessary to have that E

{
(L′)j

}
< ∞ for some j ∈ N. In this way, the cumulant

function of L′ can be written as

C {z ‡ L′} =

j∑
m=1

κm (L′)
m!

(iz)m + o
(
|z|j
)

as z → 0. (B.16)

Relation (B.16) can be used to reproduce the same arguments that led to the formulae (B.12) and (B.14).
In this case, condition (B.11) can be replaced by

j∑
m=1

κm (L′)
m!

∫ t

−∞
|Ht,z (r)|m dr < ∞.

B.4 Formula for the cumulants of the increments of a BSS-process for ε2
specified as a LSS process: examples

In this Sectionwe study the cumulants ofΔtX for four examples ofX given by (B.2) and assuming that ε2 is
a LSS process given by (B.3). We assume that all cumulants of the Lévy seedL′ exist. For the first example,
q ≡ 0, g (x) = e−λx1R+ (x) , for λ > 0, and ε2 is an Ornstein-Uhlenbeck process. This specification
of X permits to obtain closed expressions for the cumulants of ΔtX in terms of hypergeometric functions.
In the second example, q ≡ 0, g is proportional to a gamma density and ε2 is an Ornstein-Uhlenbeck
process. For the third example, g and q are proportional to a gamma density and, again, ε2 is an Ornstein-
Uhlenbeck. In the last example, g, q and the kernel h of ε2 are proportional to a gamma density. In this last
case, the marginals of (B.2) are generalized hyperbolic distributions. The last three examples are relevant
in the context of turbulence modelling.
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B.4.1 Example 1: g (x) = eλx1R+ (x), Ornstein-Uhlenbeck process ε2

For λ, ρ > 0 and 2λ ̸= ρ, consider the model (B.2), (B.3) with g (x) = e−λx1R+ (x) , q ≡ 0, h (x) =
e−ρx1R+ (x) and L a subordinator. Then, for t > 0,

ϕ2t (s) = e2λs
(
1− e−λt)2 1R− (s) + e−2λ(t−s)1(0,t) (s)

and

C2 (t, r) =
e−2λt

2λ − ρ
eρr
(
e(2λ−ρ)t − e(2λ−ρ)r

)
1R+ (r)

+
eρr

2λ − ρ

((
1− e−λt)2 (1− e(2λ−ρ)r

)
+ e−2λt

(
e(2λ−ρ)t − 1

))
1R− (r) ,

where ϕ and C2 are the functions defined in (B.6) and (B.10), respectively. Form ∈ N, we define

Cm
2 (t, r)=

e−2mλtemρr

(2λ − ρ)m
(
e(2λ−ρ)t − e(2λ−ρ)r

)m
1R+ (r)

+
emρr

(2λ − ρ)m
((

1− e−λt)2 (1− e(2λ−ρ)r
)
+ e−2λt

(
e(2λ−ρ)t − 1

))m
1R− (r) ,

≡ 1
(2λ − ρ)m

(D1 (m, t, r) + D2 (m, t, r)) .

We expandD1 andD2 as

D1 (m, t, r) = e−2mλtemρr
(
e(2λ−ρ)t − e(2λ−ρ)r

)m
1R+

(r)

= e−2mλt
m∑
i=0

(
m
i

)
(−1)i e((2λ−ρ)i+mρ)re(2λ−ρ)t(m−i)1R+ (r)

and

D2 (m, t, r)= emρr
((

1− e−λt)2 (1− e(2λ−ρ)r
)
+ e−2λt

(
e(2λ−ρ)t − 1

))m
1R− (r)

= emρr
m∑
i=0

(
m
i

)(
1− e−λt)2i (1− e(2λ−ρ)r

)i( e(2λ−ρ)t − 1
e−2λt

)m−i

1R− (r)

=
m∑
i=0

(
m
i

)(
1− e−λt)2i( e(2λ−ρ)t − 1

e−2λt

)m−i i∑
n=0

(
i
n

)
(−1)n e((2λ−ρ)n+mρ)r1R− (r) .

We get

ID1 (m, t) ≡
∫ t

−∞
D1 (m, t, r) dr

= e−2mλt
m∑
i=0

(
m
i

)
(−1)i e(2λ−ρ)t(m−i)

∫ t

0
e((2λ−ρ)i+mρ)r
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= e−2mλt
m∑
i=0

(
m
i

)
(−1)i e(2λ−ρ)t(m−i) e((2λ−ρ)i+mρ)t − 1

(2λ − ρ) i+ mρ

and

ID2 (m, t)≡
∫ t

−∞
D2 (m, t, r) dr

=

m∑
i=0

(
m
i

)(
1− e−2λt)2i( e(2λ−ρ)t − 1

e−2λt

)m−i i∑
n=0

(
i
n

)
(−1)n

(2λ − ρ) n+ mρ

=
m∑
i=0

i∑
n=0

(
m
i

)(
i
n

)
(−1)n

(
1− e−λt

)2i e−2λt(m−i)
(
e(2λ−ρ)t − 1

)(m−i)

(2λ − ρ) n+ mρ

=
m∑

n=0

m∑
i=n

(
m
i

)(
i
n

)
(−1)n

(
1− e−λt

)2i e−2λt(m−i)
(
e(2λ−ρ)t − 1

)(m−i)

(2λ − ρ) n+ mρ

=
m∑

n=0

m−n∑
j=0

(
m

j+ n

)(
j+ n
n

)
(−1)n

[(
1− e−λt

)2]j+n [
e−2λt

(
e(2λ−ρ)t − 1

)]m−j−n

(2λ − ρ) n+ mρ
.

The expressions for ID1 and ID2 can be rewritten in terms of hypergeometric functions. For this, we
need the next lemma.

Lemma 28 Let a, b ∈ R, c, d > 0 and m ∈ N. Then,

m−n∑
j=0

(
m

j+ n

)(
j+ n
n

)
aj+nbm−j−n =

(
m
n

)
an (a+ b)m−n , n ∈ N∪{0}

and
m∑

n=0

(
m
n

)
anbm−n

cn+ dm
=

bm

dm 2F1
(
−m,

dm
c
, 1+

dm
c
,−a

b

)
, if |a/b| < 1.

In particular,

m∑
n=0

m−n∑
j=0

(
m

j+ n

)(
j+ n
n

)
(−1)n aj+nbm−j−n

cn+ dm
=

bm (a+ b)m

dm 2F1
(
−m,

dm
c
, 1+

dm
c
,

a
a+ b

)
.

Lemma 28 implies that

ID1 (m, t)= e−2mλt

{
m∑
i=0

(
m
i

)
(−1)i e(2λ−ρ)t(m−i) e((2λ−ρ)i+mρ)t

(2λ − ρ) i+ mρ

−
m∑
i=0

(
m
i

)
(−1)i e(2λ−ρ)t(m−i)

(2λ − ρ) i+ mρ

}

=
1
ρm 2F1

(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
, 1
)
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− e−ρtm

ρm 2F1
(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
, e−(2λ−ρ)t

)

=
1
ρm

Γ (1+ m) Γ
(
1+ ρm

2λ−ρ

)
Γ
(
1+ m+ ρm

2λ−ρ

) − e−ρtm

ρm 2F1
(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
, e−(2λ−ρ)t

)

and

ID2 (m, t) =
dm1 (t)
ρm 2F1

(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
,

(
1− e−λt

)2
d1 (t)

)
where

d1 (t) ≡
((

1− e−λt)2 + e−2λt
(
e(2λ−ρ)t − 1

))
.

Therefore, ∫ t

−∞
Cm
2 (t, r) dr=

1
(2λ − ρ)m

∫ t

−∞
(D1 (m, t, r) + D2 (m, t, r)) dr

=
1

(2λ − ρ)m ρm

Γ (1+ m) Γ
(
1+ ρm

2λ−ρ

)
Γ
(
1+ m+ ρm

2λ−ρ

)
−e−ρtm

2F1
(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
, e−(2λ−ρ)t

)
+dm1 (t) 2F1

(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
,

(
1− e−λt

)2
d1 (t)

)}
.

The function C2 satisfies the condition (B.13) in Proposition 25. According to (B.15), assuming that L′
has finite moments of all orders, we have that

κ2m (ΔtX)=
κm (L′) (2m)!

2mm! (2λ − ρ)m ρm

{
dm1 (t) 2F1

(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
,

(
1− e−λt

)2
d1 (t)

)

+
Γ (1+ m) Γ

(
1+ ρm

2λ−ρ

)
Γ
(
1+ m+ ρm

2λ−ρ

) − e−ρtm
2F1
(
−m,

ρm
2λ − ρ

, 1+
ρm

2λ − ρ
, e−(2λ−ρ)t

)
and κ2m−1 (ΔtX) = 0, form ∈ N.

In the following, for m ∈ N and t ≥ 0, κm (ΔtX) denotes the normalized cumulant κm (ΔtX) ≡
κm (ΔtX) /κm (L′), where L′ is the Lévy seed of the process driving ε2. We reserve the term normalized cu-
mulant only for the cumulants κ and standardized cumulant for the cumulants
κm (ΔtX) /κ

m/2
2 (ΔtX) or κm (ΔtX) /κ

m/2
2 (ΔtX).

We have that

κ2 (ΔtX) =
1− e−λt

λρ
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and

κ4 (ΔtX) =
3e−(3λ+ρ)t

(
eλt − 2

) (
4e2λtλ − 2eρtρ− 2 (2λ − ρ) e(λ+ρ)t + e(2λ+ρ)t (2λ − ρ)

)
4λρ (4λ2 − ρ2)

+
6 · Γ

(
2ρ

2λ−ρ

)
(2λ + ρ)3 Γ

(
6λ−ρ
2λ−ρ

) .
It is easy to check that

κ4 (ΔtX) −→
t→∞

3
4λρ (2λ + ρ)

+
6 · Γ

(
2ρ

2λ−ρ

)
(2λ + ρ)3 Γ

(
6λ−ρ
2λ−ρ

) .
The kurtosis κ4 (ΔtX) /κ22 (ΔtX) is decreasing as a function of t, and decreasing as a function of λ and

ρ. This suggests that the non-normality of Δ∞X escalates as the value of λ and ρ increase.
Even in this simple case, despite it was possible to find closed expressions for the cumulants of ΔtX, it

is not feasible to determine when the distribution of the increments of X belongs to a known class. This
exemplifies the complex dynamics exhibited by the increments of a BSS process (B.2).

B.4.2 Example 2: g (x) = xαe−λx1R+ (x), Ornstein-Uhlenbeck process ε2

For α > −1/2, λ, ρ > 0 and 2λ ̸= ρ, consider the model (B.2), (B.3) with g (x) = xαe−λx1R+ (x) , q ≡ 0,
h (x) = e−ρx1R+

(x) and L a subordinator. BSS processes of this type have interestingmathematical prop-
erties and they are relevant asmodels for the temporal turbulent velocity field. Among themost remarkable
mathematical properties for this class of BSS processes, we find multipower variation type limits and that,
in general, X is not a semimartingale (see, e.g., [14]). The parameter α controls the smoothness of X and
determines when X is a semimartingale: X is a semimartingale if and only if α > 1/2.

From the modelling perspective, it has been shown in [27] that the BSS process (B.2), under the as-
sumptions of Example B.4.2 with α = −1/6, reproduces the so-called 2/3rd-Kolmogorov law, according
to which turbulent velocity increments obey

E {(Xt − X0)
2} ∝ t2/3, (B.17)

for a certain range of scales t.
For t > 0,

ϕ2t (s) = e2λs
(
(t− s)α e−λt − (−s)α

)2
1R− (s) + e2λs (t− s)2α e−2λt1(0,t) (s) (B.18)

and

C2 (t, r) =
eρ(r−t)

(2λ − ρ)2α+1 (Γ (1+ 2α)− Γ (1+ 2α, (t− r) (2λ − ρ))) 1R+ (r)

+
eρ(r−t)

(2λ − ρ)2α+1

{
−2e−λteρtR (r) +

(
1+ eρt

)
Γ (1+ 2α)

−eρtΓ (1+ 2α,−r (2λ − ρ))− Γ (1+ 2α, (t− r) (2λ − ρ))
}
1R− (r) , (B.19)
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where the function R : R− → R is defined as

R (r) =
∫ 0

r
(t− s)α (−s)α e(2λ−ρ)sds.

It is difficult to get a general expression for the cumulant of arbitrary order. Form = 2, we have that∫ t

−∞
Cm/2
2 (t, r) dr = I1 + I2 + I3 + I4,

where

I1 =
∫ t

0

eρ(r−t)

(2λ − ρ)2α+1 (Γ (1+ 2α)− Γ (1+ 2α, (t− r) (2λ − ρ))) dr

=
1
2ρ
(
4−αλ−2α−1 (Γ (1+ 2α)− Γ (1+ 2α, 2tλ))

+2e−ρt (2λ − ρ)−2α−1
(Γ (1+ 2α)− Γ (1+ 2α, (2λ − ρ) t))

)
I2 =−

∫ 0

−∞

eρ(r−t)

(2λ − ρ)2α+1 2e
−λteρtR (r) dr =

2
1
2−α√πtα+

1
2 λ−

1
2−α csc (πα)

ρΓ (−α) (2λ − ρ)2α+1 K 1
2+α (tλ)

I3 =
∫ 0

−∞

eρ(r−t)

(2λ − ρ)2α+1 e
ρt (Γ (1+ 2α)− Γ (1+ 2α,−r (2λ − ρ))) dr = −4−αα

ρ
λ−1−2αΓ (2α)

I4 =
∫ 0

−∞

eρ(r−t)

(2λ − ρ)2α+1 (Γ (1+ 2α)− Γ (1+ 2α, (t− r) (2λ − ρ))) dr

=
2−1−2αλ−1−2α

ρ
Γ (1+ 2α, 2λt) +

e−ρt (2λ − ρ)−1−2α

ρ
(Γ (1+ 2α)− Γ (1+ 2α, t (2λ − ρ))) .

It seems not possible to express the sum of the Ij’s in a simple nice expression. However, the results pre-
sented here permit to numerically compute the cumulants.

B.4.3 Example 3: g (x) = xαe−λx1R+ (x),q (x) = xβe−μx1R+ (x), Ornstein-Uhlenbeck process ε2

Formin {α, β/2} > −1/2 and λ, ρ, μ > 0 with 2λ ̸= ρ and μ ̸= ρ, consider the model (B.2), (B.3) with
g (x) = xαe−λx1R+ (x) , q (x) = xβe−μx1R+ (x) , h (x) = e−ρx1R+ (x) and L a subordinator. This class
of BSS processes is a generalization of the class described in Section B.4.2. The main difference between
Example B.4.2 and Example B.4.3 is that the increments display non-vanishing odd cumulants (which is of
particular interest for turbulence modelling).

For t > 0, we have

ψt (s) = eμs
(
(t− s)β e−μt − (−s)β

)
1R− (s) + e−μ(t−s) (t− s)β 1(0,t) (s)

which yields

C1 (t, r) =
e−ρ(t−r)

(μ − ρ)1+β (Γ (1+ β)− Γ (1+ β,− (t− r) (μ − ρ))) 1R+ (r)
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− e−ρ(t−r)

(μ − ρ)1+β

{(
eρt − 1

)
Γ (1+ β)− Γ (1+ β, (t− r) (μ − ρ))

−eρtΓ (1+ β,−r (μ − ρ))
}
1R− (r) .

The functions ϕt and C2 are given as in (B.18) and (B.19), respectively. The functions C1 and C2 satisfy
the condition (B.13) in Proposition 25. Therefore, assuming that L′ has finite moments of all orders, the
cumulants of ΔtX satisfy (B.14) and the cumulants of ΔtX are given by the formula (B.14).

To our knowledge, it does not seem to be possible to expressHt,z in terms of simple functions. How-
ever, (B.14) can be evaluated numerically.

B.4.4 Example 4: generalized hyperbolic marginals

For c, γ ∈ R, λ > 0 and−1/2 < α < 0, consider the model (B.2), (B.3) with

g (x) = c
λ
α+1/2

Γ (2α + 1)1/2
xαe−

λ
2 x1R+ (x) ,

q (x) = γ
λ
2α+1

Γ (2α + 1)
x2αe−λx1R+ (x) ,

h (x) =
λ
−2α−1

Γ (−2α)
x−2α−1e−λx1R+ (x) ,

and L a subordinator. Choosing L′ such that the OU process

zt =
∫ t

−∞
e−λ(t−u)dLu

has thegeneralized inverseGaussian lawGIG(λ, χ, θ), the lawof (B.2) is generalizedhyperbolicGH(λ, χ, θ, 0, c2, γ)
(see [3], Section 5.4). The density of the GIG(λ, χ, θ) distribution is given by

fGIG(λ,χ,θ) (x) =
(
θ
λ

)λ/2 xλ−1

2Kλ
(√

χθ
) exp{− 1

2

( χ
x
+ θx

)}
, x ∈ R

whereKλ denotes themodifiedBessel function of the third kind and the parameters (λ, χ, θ)have to satisfy
one of the following three restrictions

χ > 0, θ ≥ 0, λ < 0 or χ > 0, θ > 0, λ = 0 or χ ≥ 0, θ > 0, λ > 0.

The density of the GH(λ, χ, θ, μ, Σ, γ) law is

fGH(λ,χ,θ,μ,Σ,γ) (x) =

(√
θ/χ
)λ (

θ + Σ−1γ2
) 1

2−γ

(2π)
1
2 Σ1/2Kλ

(√
θγ
)

80



×
Kλ− 1

2

(√(
χ + Σ−1 (x− μ)2

) (
θ + Σ−1γ2

))
eΣ

−1γ(x−μ)√(
χ + Σ−1 (x− μ)2

) (
θ + Σ−1γ2

)
for (λ, χ, θ, μ, Σ, γ) ∈ R× R2

+×R3 and x ∈ R.
The above parametrization for the GH law is the so-called (λ, χ, ψ, μ, Σ, γ)-parametrization (in order

to avoid confusion with the increment functions (B.6), we replaced ψ by θ). We refer to [12] for more
information about the different parameterizations of the GH distribution and their generalizations to the
Rd case.

Notice that the distribution of X does not depend on the parameters
(
λ, α
)
. However, the law of ΔtX

depends of these parameter as can be seen in the expression of Ci, i = 1, 2.
TheGHclass is a very rich and flexible family of distributions that nests several other distributions and

has found applications in different areas. Formore information about this distribution and its applications,
we refer, for instance, to [1, 17, 16] and the papers cited in [12].

For the present example, for t > 0,

ψt (s) = γ
λ
2α+1

Γ (2α + 1)

{
eλs
(
(t− s)2α e−λt − (−s)2a

)
1R− (s) + eλs (t− s)2α e−λt1(0,t) (s)

}
and

ϕ2t (s) =
c2λ

2α+1

Γ (2α + 1)

{
eλs
(
(t− s)α e−λt/2 − (−s)α

)2
1R− (s) + eλs (t− s)2α e−λt1(0,t) (s)

}
.

Consequently,

C1 (t, r)= γe−λ(t−r)1(0,t) (r) + γeλr
{
−1+

(−1)2α+1 sin (2απ) e−λt

π
Beta

( r
t
,−2α, 0

)
− sin (2απ) t2α+1e−λt (−r)−2α−1

π (2α + 1) 2F1
(
1, 2α + 1, 2α + 2,

t
r

)}
1R− (r)

and

C2 (t, r)= c2e−λ(t−r)1(0,t) (r) + c2eλr
{
1+

(−1)2α+1 sin (2απ) e−λt

π
Beta

( r
t
,−2α, 0

)
− 2Γ (α + 1) tαe−λt/2

Γ (2α + 1) Γ (1− α)
(−r)−α

2F1
(
−α, α + 1, 1− α,

r
t

)
− sin (2απ) t2α+1e−λt (−r)−2α−1

π (2α + 1) 2F1
(
1, 2α + 1, 2α + 2,

t
r

)}
1R− (r) ,

where Beta (·, ·, ·) : (−∞, 0)× (−∞, 0)× (−∞, 0] → C denotes to the incomplete Beta function

Beta (x, a, b) = −
∫ 0

x
wa−1 (1− w)b−1 dw.
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In general, Beta produces complex values; however, (−1)−a+1 Beta (x, a, 0) is always real.
The functionsC1 andC2 do not satisfy the condition (B.13) in Proposition 25 but they satisfy a similar

inequality. Since−1/2 < α < 0, the functions (−1)2α+1 Beta
( r
t ,−2α, 0

)
, 2F1

(
1, 2α + 1, 2α + 2, t

r

)
and

2F1
(
−α, α + 1, 1− α, r

t

)
are bounded. Therefore, there existsM (α, t) > 0 such that

max {|C1 (t, r)| , |C2 (t, r)|} ≤ M (α, t) eλr
(
|r|−2α−1 ∨ |r|−α ∨ 1

)
.

Similarly to condition (B.13), since −1/2 < α < 0, the previous inequality implies that Ht,z satisfies
condition (B.11). Thus, when E {(L′)n} < ∞ for all n ∈ N, the cumulants of ΔtX are given by (B.14).

Formula (B.14) implies

κ3 (ΔtX) = γ4c2κ2 (L′)K3,1
(
t, α, λ

)
+ γ3κ3 (L′)K3,2

(
t, α, λ

)
,

κ4 (ΔtX) = c4κ2 (L′)K4,1
(
t, α, λ

)
+ γ4c2κ3 (L′)K4,2

(
t, α, λ

)
+ γ4κ4 (L′)K4,3

(
t, α, λ

)
,

for some functions Kj,i, j = 3, 4, i = ⌈j/2⌉ , . . . , j. The parameter γ determines the magnitude and the
sign of the skewness κ3 (ΔtX) /κ

3/2
2 (ΔtX), and the kurtosis κ4 (ΔtX) /κ22 (ΔtX) is controlled by c and γ.

B.5 Formula for the cumulants of the increments of a BSS-process for ε2
specified as an exponential ambit process: theory

This Section provides a formula for the n-th moment of the increments of a BSS process of the type (B.2)
assuming thatε2 is an exponential ambit process. In order tohave a self-containedpresentation, Subsection
5.1 introduces some basic preliminaries about ambit stochastics. Subsection 5.2 presents the formula we
have derived.

B.5.1 Ambit stochastics: a short review

Ambit processes were introduced in [6] as a framework for tempo-spatial modeling. These processes are
defined in terms of integrals with respect to a Lévy basis. In the present paper, we restrict our attention
to those ambit processes defined as the stochastic integral of a deterministic function with respect to a
homogeneous Lévy basis defined inR2.

We denote by Bb (R2) the set of bounded Borel subsets of R2. A Lévy basis Λ on R2 is an infinitely
divisible, independently scattered randommeasure onR2, i.e. (Λ (A))A∈Bb(R2) is a stochastic process such
that: (i) Λ (A) is infinitely divisible; (ii) Λ (A) and Λ (B) are independent if A ∩ B = ∅; and, (iii) If
A1, . . . ,An ∈ Bb (R2) are disjoint and such that∪n

i=1Ai ∈ Bb (R2), then

Λ

(
n∪
i=1

Ai

)
a.s.
=

n∑
i=1

Λ (Ai) .

A Lévy basis Λ onR2 is called homogeneous if Λ (A) d
= Λ (A+ x0), for x0 ∈ R2, A ∈ Bb (R2).

The stochastic integral ∫ fdΛ of a deterministic measurable function f : R2 → R with respect to a
homogeneous Lévy basis Λ is defined in two steps: (a) If f =

∑n
i=1 ai1Ai is a real simple function on R2
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with A1, . . . ,An disjoint, for A ∈ B (R2), we define∫
A
fdΛ =

n∑
i=1

aiΛ (Ai ∩ A) .

(b) If f : R2 → R can be approximated almost everywhere (with respect to the Lebesgue measure) by a
sequence of simple functions {fn} as in (a), provided that the limit exist, we define∫

A
fdΛ = P− lim

∫
A
fndΛ, (B.20)

forA ∈ B (R2). We say that ameasurable function f : R2 → R is Λ-integrable if the integral (B.20) exists.
LetK {z ‡ X} = log E {exp (sX)} denote the log-moment generating function of the random variable

X. As before,C {z ‡ X} := log E {exp (isX)} denotes the cumulant function of the random variableX. To
each homogeneous Lévy basis Λ, we can associate a random variable Λ′ such that

K {z ‡ Λ (da)} = K {z ‡ Λ′} da,

and
C {z ‡ Λ (da)} = C {z ‡ Λ′} da.

The random variable Λ′ is called the Lévy seed of Λ. Notice that this concept is analogous to the concept
of Lévy seed that we have used for Lévy processes.

The stochastic integral ∫ fdΛ and the Lévy seed Λ′ satisfy the next relation.

Proposition 29 Let Λ be a Lévy basis onR2 and f : R2 → R a Λ-integrable function. Then

K
{
z ‡
∫
A
f (a) dΛ (a)

}
=

∫
A
K {zf (a) ‡ Λ′} da

and

C
{
z ‡
∫
A
f (a) dΛ (a)

}
=

∫
A
C {zf (a) ‡ Λ′} da.

It follows fromProposition 29 that the distribution of the stochastic integral is determined by the func-
tion f and the cumulant function of the Lévy seed Λ′. We use Proposition 29 to obtain a formula for the
cumulants of the BSS process when ε2 is an ambit process.

For our purposes, an ambit process is a stochastic process (Yt)t≥0 of the form

Yt =
∫
At

f ((0, t)− a) dΛ (a) ,

whereA ∈ Bb (R2) andAt = A+(0, t). For amore general definition of ambit processes and a discussion
of their mathematical properties, we refer to [4].

B.5.2 The formula for the cumulants

Consider the BSS process (B.2) with

ε2t = exp {Λ (A+ (0, t))} t ∈ R, (B.21)
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where Λ is a homogeneous Lévy basis on R2 and A ∈ Bb (R2). In this Section, we deduce a formula for
the n-th moments of ε2 and the increments ofX. These formulae can be used to compute the cumulants of
the increments of X in terms of the cumulants of Λ′.

Throughout this Section, Leb will denote the Lebesgue measure on R2 and K [z] ≡ K {z ‡ Λ′}. We
start by finding an explicit formula for the n-th moments of ε2. The next result, taken from [25], is the
starting point to deduce such a formula.

Lemma 30 For (s1, . . . , sn) ∈ Rn,

E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
= exp

{∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr

}
. (B.22)

Since the form of the ambit setA (see e.g. [28]) can be very general, the evaluation of (B.22)might be
difficult. The main obstacle is to split ∪n

i=1Asi into the sets
{
x :
∑n

i=1 1Asi
(x) = j

}
, j = 1, . . . , n. For the

type of ambit sets we are interested in, it is easier to compute the intersections of (Asi)
n
i=1 than the previous

partition. To proceed, we need the next well-known result.

Lemma 31 Let (Ω,G,Q) be a probability space. If A1, . . . ,An are events, define

Sm (A1, . . . ,An) =
∑

1≤i1<...<im≤n

Q (Ai1 ∩ · · · ∩ Aim) .

Then, for m = 1, . . . , n,

Q

(
n∑
i=1

1Ai = m

)
=

n∑
i=m

(−1)i−m
(
m+ (i− m)

m

)
Si (A1, . . . ,An) .

Applying Lemma 31 to the formula in Lemma 30 gives the following result for log E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
.

Lemma 32 For (s1, . . . , sn) ∈ Rn,∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr=

n∑
m=1

n∑
l=m

∑
1≤i1<...<il≤n

(−1)l−m K [m]
(
l
m

)
Leb

(
Asi1 ∩ · · · ∩ Asil

)

=

n∑
l=1

∑
1≤i1<...<il≤n

l∑
m=1

(−1)l−m K [m]
(
l
m

)
Leb

(
Asi1 ∩ · · · ∩ Asil

)
.(B.23)

Proof . Define

V =
n∪
i=1

Asi .

Form = 1, . . . , n, let (Bm)
n
m=1 be the sequence of sets given by

Bm =

{
r ∈ R2 :

n∑
i=1

1Asi
(r) = m

}
.
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Since K [0] = 0, we have that∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr =

n∑
m=1

∫
Bm

K [m] dr =
n∑

m=1

K [m] Leb (Bm) . (B.24)

Define
Q (A) :=

Leb (A)
Leb (V)

.

The measureQ defines a probability measure onB (V). Thus, from Lemma 31, it follows that

Q (Bm) = Q

({
r :

n∑
i=1

1Asi
(r) = m

})
=

n∑
l=m

(−1)l−m
(
m+ (l− m)

m

)
Sl (As1 , . . . ,Asn) , (B.25)

where

Sl (A1, . . . ,An) =
∑

1≤i1<...<il≤n

Leb
(
Asi1 ∩ · · · ∩ Asil

)
Leb (V)

.

The first equality on the right hand side of (B.23) follows from (B.24) and (B.25). The second equality is
a consequence of Fubini’s Theorem applied to the first equality.

Formula (B.23) is easily evaluated numerically for n not too large. Furthermore, it permits an explicit
computation of the cumulants of the increments ofXwhen Λ′ has a normal distribution and the ambit set
A has a specific form (see Section B.6).

Lemma 33 Let n ∈ N. Under the convention
∏0

j=1 ϕ
2
t

(
sj
)
=
∏0

j=1 ψt

(
sj
)
= 1, we have that

E {(ΔtX)
n}=

⌊n/2⌋∑
i=0

(
n
2i

)
(2i− 1)!!

×
∫ t

−∞
ds1 · · ·

∫ t

−∞
dsi
∫ t

−∞
dr1 · · ·

∫ t

−∞
drn−2i

i∏
j=1

ϕ2t
(
sj
)n−2i∏
l=1

ψt (sl) E
{
ε2s1· · · ε

2
snε

2
r1· · · ε

2
rn−2i

}
,

where n!! represents the double factorial of n ∈ N∪{0,−1}, and ϕ and ψ are the functions defined in (B.6).

Proof . For t ≥ 0, define

X1
t =

∫ t

−∞
g (t− s) εsdBs, X2

t =

∫ t

−∞
q (t− s) ε2sds,

and ΔtXi = Xi
t − Xi

0, for i = 1, 2. Since

(ΔtX1)
i |ε ∼ N

(
0,
∫ t

−∞
ϕ2t (s) ε

2
sds
)
,
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we have

E
{
(ΔtX1)

i |ε
}
=


(i− 1)!!

(∫ t
−∞ ϕ2t (s) ε

2
sds
)i/2

if i is even

0 if i is odd.

Thus,

E {(ΔtX)
n} = E {(ΔtX1 + ΔtX2)

n} =

n∑
i=0

(
n
i

)
E
{
E
{
(ΔtX1)

i |ε
}
(ΔtX2)

n−i
}

=

⌊n/2⌋∑
i=0

(
n
2i

)
(2i− 1)!!E

{(∫ t

−∞
ϕ2t (s) ε

2
sds
)i(∫ t

−∞
ψt (s) ε

2
sds
)n−2i

}
.

The desired result is a consequence of the Fubini Theorem applied to the last term in the above equation.

In the turbulence modelling context, the n-moments of increments of the temporal turbulent veloc-
ity field are relevant as they constitute a basic element in the so-called Kolmogorov-Obukhov theory. In
particular, for X to be a relevant model for the temporal turbulent velocity field, it should reproduce the
so-called 2/3rd-Kolmogorov law (B.17) for a certain range of scales t. Lemma 33 implies that, to satisfy
the 2/3rd-Kolmogorov law, ϕ2t (s) ∝ t−1/6b (t) and ψt (s) ∝ t−1/3b (t) when t is in a neighborhood of 0,
where b (t) is a bounded function in such a neighborhood with b (0) ̸= 0. In particular,Xwith q = 0 and
g (x) = x−1/6e−λx1R+ (x), for λ > 0, satisfies (B.17). This example of the BSS process (B.2) was used
in [27] to model turbulent velocity time series. Lemma 33 can also be used to determine the behavior of
ϕ2t (s) and ψt (s) around 0 to satisfy other scaling rules, in addition to the 2/3rd-Kolmogorov law.

Lemmata 32 and 33 provide a way to compute the moments of the incrementsΔtX. Furthermore, it is
possible to compute the r-cumulants κr (ΔtX) by the recursive formula (see [26])

κr (ΔtX) = μr −
r−1∑
j=1

(
r− 1
j

)
E
{
(ΔtX)

j} κr−j (ΔtX) r ≥ 2. (B.26)

The generality in the shape of the ambit set, the distribution of Λ′ and the form of the kernels g and
qmake it difficult to get closed expression for the n-th moments and the cumulants of ΔtX. However, the
formulae in Lemmata 32 and 33 provide a simple way to evaluate the moments numerically. This might
help to analyze the distribution of the increments of ΔtX.

B.6 Formula for the cumulants of the increments of a BSS-process for ε2
specified as an exponential ambit process: examples

In this Section we study the cumulants of ΔtX for some examples of X assuming that ε2 is the exponential
of an ambit process. In these examples the cumulants of Λ′ appear implicitly in the function K [z] ≡
K {z ‡ Λ′}. It is possible to rewrite the formulaewe found in termsof the cumulantsofΛ′, but for simplicity
of presentation we avoid to do so.
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B.6.1 Normal Lévy basis example

In this Subsection, assuming that q ≡ 0 and Λ′ ∼Normal(μ, δ) (i.e. K [z] = μz+ 1
2 δ

2z2), we analyze the
cumulants of the increments of the model (B.2), (B.21) for two different types of ambit sets. In the first
example, we assume that A has a triangular form. The second example deals with the case where A is an
ambit set coming from a modelling framework for the turbulent energy dissipation ([28]).

The normality of Λ′ allows to simplify the formula (B.23). For this, we need the next result.

Lemma 34 Let m, r ∈ N. Then,

l∑
m=0

(−1)m
(
l
m

)(
m
r

)
=

 (−1)l if l = r

0 if l ̸= r
.

Lemma 34 implies that

l∑
m=1

(
l
m

)
(−1)l−m K [m] = (−1)l

l∑
m=1

(
l
m

)
(−1)m

(
μm+

1
2
δ2m2

)
= (−1)l

l∑
m=1

(
l
m

)
(−1)m

(
μ
(
m
1

)
+ δ2

[(
m
2

)
+

1
2

(
m
1

)])

=

 μ + δ2
2 if l = 1

δ2 if l = 2
0 otherwise

.

Therefore, when Λ′ ∼Normal(μ, δ),

log E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
=

∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr

=
n∑
l=1

∑
1≤i1<...<il≤n

l∑
m=1

(−1)l−m K [m]
(
l
m

)
Leb

(
Asi1 ∩ · · · ∩ Asil

)
=

(
μ +

δ2

2

) ∑
1≤i≤n

Leb (Asi) + δ2
∑

1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}

= n
(
μ +

δ2

2

)
Leb (A) + δ2

∑
1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}.

This provides a way to compute the n-moments E
{
ε2s1ε

2
s2 · · · ε

2
sn

}
that we will use to calculate cumulants

and n-moments of ΔtX.

Normal Lévy basis example with a triangular ambit set

Let a,T > 0. Assume that q ≡ 0, K [z] = μz+ 1
2 δ

2z2 and that A (see Figure B.6.1) is the ambit set given
by

A =
{
(x, t) ∈ R2 : 0 ≤ t ≤ T, |x| ≤ a

T
(T− t)

}
. (B.27)
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Figure B.6.1: Examples of ambit sets. (a) Ambit set (4.22) with parameters (a,T) = (1, 1). (b)
Ambit set (3.2) with parameters (θ, L,T) = (2, 10, 1).

For s1 < s2 < s1 + T,
Leb (As1 ∩ As2) =

a
T
· (T− |s1 − s2|)2 .

Since Leb (As1 ∩ As2) has this simple expression, the present example also produces a simple expression
for (B.22). Namely,

∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr=
(
μ +

δ2

2

) ∑
1≤i≤n

Leb (Asi) + δ2
∑

1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}

=n
(
μ +

δ2

2

)
Leb (A) +

aδ2

T

n−1∑
i=1

n∑
j=i+1

(T− |s1 − s2|)2 1{n>1}

which implies that

expC {z ‡ ΔtX}=E
(
exp
{
− 1
2
z2
∫
R
ϕ2t (s) ε

2
sds
})

=
∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )

×
∫
R
ds1 · · ·

∫
R
dsnϕ2t (s1) · · · ϕ

2
t (sn) exp

δ2
∑

1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}


=

∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )
∥∥ϕt∥∥2n2 +

∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )an,
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where ∥·∥2 = ∥·∥L2(R) and

an= −
∥∥ϕt∥∥2n2 +

∫
R
ds1 · · ·

∫
R
dsnϕ2t (s1) · · · ϕ

2
t (sn) exp

δ2 ∑
1≤i1<i2≤n

Leb
(
Asi1 ∩ Asi2

)
1{n>1}

 .

Since ϕ2t (s) = 0 for s > t and by counting the intersections of Asi , we get that

an =
n∑

k=2

∥∥ϕt∥∥2(n−k)
2

(
n
k

)∫ t

−∞
ds1
∫ s1+T

s1−T
ds2 · · ·

∫ s1+T

s1−T
dsk

k∏
i=1

ϕ2t (sk)

e

k∑
j=1

δ2Leb
(
Asj+1∩Asj

)
− 1


≤

n∑
k=2

∥∥ϕt∥∥2(n−k)
2

(
n
k

)∫ t

−∞
ds1
∫ s1+T

s1−T
ds2 · · ·

∫ s1+T

s1−T
dskϕ2t (s1) · · · ϕ

2
t (sn)

(
eδ

2aTk − 1
)

≤
∥∥ϕt∥∥2n2 n∑

k=2

(
n
k

)(
eδ

2aTk − 1
)
.

Therefore,

∞∑
n=1

(−1)n

2nn!
z2nenTa(μ−

δ2
2 )
∥∥ϕt∥∥2n2 ≤ expC {z ‡ ΔtX}

≤
∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )
∥∥ϕt∥∥2n2

(
1+

n∑
k=2

(
n
k

)(
eδ

2aTk − 1
))

.

The series on the right hand side converges, namely

s ≡
∞∑
n=0

(−1)n

2nn!
z2nenTa(μ+

δ2
2 )

(
1+

n∑
k=2

(
n
k

)(
eδ

2aTk − 1
))

=
1
2
e−∥ϕt∥

2

2
eaT(δ

2/2+μ)z2
(
−2+ 2e

∥ϕt∥2
2

2 eaT(δ
2/2+μ)z2 + 2e

∥ϕt∥2
2

2 eaT(δ
2/2+μ)(1−eaTδ

2
)z2

−
∥∥ϕt∥∥22 e∥ϕt∥2

2
2 eaT(δ

2/2+μ)z2+aT(δ2/2+μ)z2 +
∥∥ϕt∥∥22 e∥ϕt∥2

2
2 eaT(δ

2/2+μ)z2+aT(3δ2/2+μ)z2
)
.

For z ≈ 0 and a · T · δ2 ≈ 0, we have that

s ≈ exp

{
−
∥∥ϕt∥∥22 z2

2
exp
{
aT
(
μ +

δ2

2

)}}
.

Thus, for z ≈ 0 and a · T · δ2 ≈ 0, the previous inequality implies that

C {z ‡ ΔtX} ≈ −z2

2
eTa(μ−

δ2
2 )
∥∥ϕt∥∥22 .

This means that, in this case, ΔtX behaves similar to a normal distribution. (The distribution of ΔtX is not
exactly normal but gets more and more normal as a · T · δ2 ↓ 0.)

89



Normal Lévy basis example with an ambit set from a model for the energy dissipation

For T > 0, L > 1 and θ > 0, define

h (t) =

(
1− (t/T)θ

1+ (t/ (T/L))θ

)1/θ

0 ≤ t ≤ T. (B.28)

Consider themodel (B.2), (B.21) assuming thatK [z] = μz+ 1
2 δ

2z2, q ≡ 0 and thatA is the ambit set (see
Figure B.6.1) given by

A = {(x, t) ∈ R2 : 0 ≤ t ≤ T, |x| ≤ h (t)} . (B.29)

The exponential ambit process (B.21) with an ambit set of the form (B.29) has been used to model
the energy dissipation in a turbulent flow (see [28]). The process (B.21) withA given by (B.29) accurately
approximates the distribution of the empirical energy dissipation εt and is able to reproduce the scaling
and self-scaling behavior observed in the empirical correlators cn,m (t) defined as

cn,m (t) :=
E {εnt εm0 }

E {εnt } E {εm0 }
n,m ∈ N, t > 0.

For s1 < s2 < s1 + T,

Leb (As1 ∩ As2) = 2
∫ T

s2−s1
h (t) dt.

In general, it is difficult to find simple expressions for Leb (As1 ∩ As2). However, for some special cases, it
is possible to deduce some expressions. For instance, assuming that θ = 1, we have that

Leb (As1 ∩ As2) =
2
L
(|s2 − s1| − T)− 2T (1+ L)

L2
log
(
L |s2 − s1|+ T
(1+ L)T

)
.

This implies that, for θ = 1,∫
R2
K

[
n∑
i=1

1Asi
(r)

]
dr=n

(
μ +

δ2

2

)
Leb (A)− δ2

2L

n∑
i=1

n∑
j=1

∣∣si − sj
∣∣+ n (n− 1)Tδ2

L

+
2δ2T (1+ L)

L2

n∑
i=1

n∑
j=1

log (L |s2 − s1|+ T) 1{n>1}

−n (n− 1) log ((1+ L)T)T (1+ L) δ2

L2
.

The case (θ, L,T) = (1.96, 104, 583) is pertinent for the modelling of turbulence since these are the
parameters estimated in [28] from empirical data. We have not been able to find a closed expression for
Leb (As1 ∩ As2) in this case, but we have the approximation

Leb (As1 ∩ As2) ≈ e559483.79·10
−6

(
1

|s2 − s1|1/23
− 0.195

)
.
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Figure B.6.2: Standardized cumulant κ4 (ΔtX) /κ22 (ΔtX) for Example 4.4.2 with (θ, L,T) = (1, 10, 1),
Λ′ ∼Gamma(1, 5), and different values of α and λ. (a) Parameters α = −1/3 and λ = 1, 2, 3. (b)
Parameters α = −1/6 and λ = 1, 2, 3. We use blue for λ = 1, red for λ = 2 and green for λ = 3.

B.6.2 Gamma Lévy basis example

Let 0 > α > −1/2 and β, γ, λ > 0. Consider themodel (B.2), (B.21)with q ≡ 0, g (x) = xαe−λx1R+ (x),
A given as in (B.29) and K [z] = log (1− z/β)−γ , z < β (i.e. Λ′ has a Gamma(γ, β) law). In general, it
is of interest to determine specific distributional properties of ΔXt. Of particular interest is the question
of infinite divisibility of ΔtX. The present example provides a case where the distribution of ΔtX is not
infinitely divisible.

Figure B.6.2 shows κ4 (ΔtX) /κ22 (ΔtX) for (γ, β) = (1, 5), (θ, L,T) = (1, 10, 1), α = −1/3,−1/6 and
λ = 1, 2, 3. The small peaks are due to numerical effects.

It is well-know that, when the distribution of X is infinitely divisible, the cumulants κn (X), for n ≥ 3,
are themoments of the Lévymeasure ofX. This implies that, when the distribution ofX is infinitely divisi-
ble, κ4 (X) ≥ 0. Forq ≡ 0, g (x) = xαe−λx1R+ (x), α = −1/3,A given as in (B.29) andΛ′ ∼Gamma(1, 5),
Figure B.6.2 shows that κ4 (ΔtX) < 0 for λ = 1, 2, 3. Therefore, the law of ΔtX cannot be infinitely divisi-
ble.

B.7 Conclusion

The present work provides a way to compute the cumulants of the increments of BSS processes for two
specific classes of ε2 processes. It is not possible to find closed expression for all the cases and examples
presented here. However, the formulae are simple enough to be evaluated numerically.

Of particular interest is thediscussion inSubsectionB.6.2 since it provides an examplewhereour analy-
sis of the cumulants shows that the distribution of the increments of a BSSprocess is not infinitely divisible.
It remains open to determine conditions on the BSS processes such that their increments have an infinitely
divisible law.

Our main purpose to study the cumulants of increments of BSS processes was to establish a way that
sheds some light on the distributions of increments via cumulants. This is a first step to understand why
the BSS approach is able to model a great variety of stylized features in turbulence. The results discussed
here allow to directly compare themodelswith datawithout time consuming simulations of the underlying
processes.
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Paper C: An asymptotic problem for two classes of
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Abstract

In this note we study an asymptotic problem for two classes of bounded variation processes: the smooth
Brownian semi-stationary process and the integrated Brownian motion.

C.1 Introduction

Let (Xt)t≥0 be a stochastic process. When X is a semimartingale, it is well-known that the limit

lim
n→∞

⌊nt⌋∑
i=1

(
Xi/n − X(i−1)/n

)2 (C.1)

exists in probability. In particular, when X is a bounded variation (BV) process the limit (C.1) is 0. It is
natural to askhowwecan rescale (C.1) to recover anon-trivial limit for the casewhereX is aBVprocess. We
address this problem for two classes of smooth processes: the integrated Brownianmotion (IBM) and the
smooth Brownian semi-stationary (BSS) process with a gamma kernel. A smooth process is a stochastic
process that is differentiable.
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The integrated Brownian motion is a stochastic process of the form

Jnt =
∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
Bsndsndsn−1 · · · ds2ds1 n ∈ N, (C.2)

where (Bt)t∈R is a standard Brownian motion. The index n indicates the number of iterated integrals and,
therefore, the number of derivatives J has. We will denote by IBM the class of these smooth processes.

TheBSS processes, which were introduced in [1], are stochastic processes of the form

Zt = μ +
∫ t

−∞
g (t− s) σsdWs +

∫ t

−∞
q (t− s) asds, (C.3)

where μ is a constant, (Wt)t∈R is a standard Brownianmotion, g and q are nonnegative deterministic func-
tions onR, with g (t) = q (t) = 0 for t ≤ 0, and (σ t)t∈R and (at)t∈R are càdlàg processes. When (σ, a) is
stationary and independent ofW, then Z is stationary. This motivates the name Brownian semi-stationary.
The specification of g in the gamma form

g (x) = xα exp (−λx) 1(0,∞) (x) , (C.4)

with α > −1 and λ > 0, is of someparticular interest, because of its simplicity andbecause it allows explicit
analytic calculations. When α ∈ (−1/2, 1/2) \ {0} the process Z is not a semimartingale (see [1]). For
α > 1/2, the process Z has differentiable paths and, therefore, is a bounded variation process (see [1]).
We are interested in the asymptotics of the class of smooth BSS processes with q ≡ μ = 0, σ ≡ 1 and g
given by (C.4) with α > 1/2. We will refer to this subclass of smoothBSS processes as SGKBSS .

Originally, we expected to obtain some standard central limit theorems for this problem. Soon we
realized that for the considered processes the standard techniques do not work. Therefore, it is necessary
to develop new techniques to obtain a satisfactory and full theory. This note contains some approaches
that partially answer the questions we were interested in.

C.2 Statement of the problem

Consider a stochastic process (Xt)t≥0 such thatX ∈ IBM∪ SGKBSS . TheprocessXhas differentiable
paths. From theMeanValueTheorem, it follows that the normalized realized quadratic variation (NRQV)
[Xn] of X, defined as

[Xn]t := n
⌊nt⌋∑
i=1

(
Xi/n − X(i−1)/n

)2
, (C.5)

satisfies

[Xn]t
a.s.→

n→∞

∫ t

0
(X′

r)
2 dr (C.6)

for t ≥ 0. Partly motivated by this limit, we are interested in the asymptotic behavior of

nβ
(
[Xn]t −

∫ t

0
(X′

r)
2 dr
)

(C.7)

when n → ∞, for some suitable β > 0. There are two immediate problems related to (C.7): 1) What is
the correct value of β > 0, if any, to have a non-trivial limit? 2) What is the limit distribution given the
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correct β? This last question can be naturally extended to stronger concepts of convergence. For simplicity
we only consider the case t = 1.

C.3 The SGKBSS class

In this Section we analyse the problem stated in Section C.2 for the SGKBSS class.
Consider a stochastic process (Xt)0≤t≤1 whose paths are in C3 [0, 1]. In this case, it is possible to find

a β where (C.7) has an almost sure non-trivial limit. The proof of this result is an application of Taylor’s
Theorem and Theorem 5 in [2].

The next theorem was taken from [2], Theorem 5. The original formulation in [2] has a typo mistake,
corrected below.

Theorem 35 If f is twice differentiable and f′′ is bounded and almost everywhere continuous on [0, 1], then

lim
n→∞

n2
(∫ 1

0
f (x) dx−

n∑
i=1

f
(
k− 1

2
n

)
1
n

)
=

1
24

∫ 1

0
f′′ (x) dx =

f′ (1)− f′ (0)
24

.

Using Theorem 35 we can prove the next result.

Proposition 36 Let f ∈ C3 ([0, 1]). Then,

lim
n→∞

n2
(
n

n∑
i=1

(Δn
i f)

2 −
∫ 1

0
(f′ (x))2 dx

)
= − 1

12

∫ 1

0
(f′′ (x))2 dx,

where Δn
i f = f (i/n)− f ((i− 1) /n), i = 1, . . . , n, n ∈ N.

Proof . Using Taylor’s Theorem, we have that

Δn
i f = f

(
i
n

)
− f
(
i− 1
n

)
= f′

(
i− 1
n

)
1
n
+

1
2
f′′
(
i− 1
n

)
1
n2

+
1
6
f′′′
(
ξi,n
) 1
n3
,

for (i− 1) /n ≤ ξi,n ≤ i/n, i = 1, . . . , n, n ∈ N. This implies

(Δn
i f)

2
=

(
f′
(
i− 1
n

))2 1
n2

+
1
4

(
f′′
(
i− 1
n

))2 1
n4

+
1
36
(
f′′′
(
ξi,n
))2 1

n6

+f′
(
i− 1
n

)
f′′
(
i− 1
n

)
1
n3

+
1
3
f′
(
i− 1
n

)
f′′′
(
ξi,n
) 1
n4

+
1
6
f′′
(
i− 1
n

)
f′′′
(
ξi,n
) 1
n5
.

From the last equation we get

Sn ≡ n2
(
n

n∑
i=1

(Δn
i f)

2 −
∫ 1

0
(f′ (x))2 dx

)

= n2
(

n∑
i=1

(
f′
(
i− 1
n

))2 1
n
−
∫ 1

0
(f′ (x))2 dx

)
+

1
4

n∑
i=1

(
f′′
(
i− 1
n

))2 1
n
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+

n∑
i=1

f′
(
i− 1
n

)
f′′
(
i− 1
n

)
+

1
3

n∑
i=1

f′
(
i− 1
n

)
f′′′
(
ξi,n
) 1
n

+
1
6

n∑
i=1

f′′
(
i− 1
n

)
f′′′
(
ξi,n
) 1
n2

+
1
36

n∑
i=1

(
f′′′
(
ξi,n
))2 1

n3

≡An +
1
4
Bn + Cn +

1
3
Dn +

1
6
En +

1
36
Fn.

We rewrite

An = n2
(

n∑
i=1

(
f′
(
i− 1
n

))2 1
n
−

n∑
i=1

(
f′
(
i− 1/2

n

))2 1
n

)

+n2
(

n∑
i=1

(
f′
(
i− 1/2

n

))2 1
n
−
∫ 1

0
(f′ (x))2 dx

)
≡A1

n + A2
n.

Taylor’s Theorem applied to (f′)2 implies(
f′
(
i− 1/2

n

))2

−
(
f′
(
i− 1
n

))2

=
d
dx

(f′ (x))2
∣∣∣∣
x= i−1

n

1
2n

+
1
8n2

d2

dx2
(f′ (x))2

∣∣∣∣
x=ηi,n

= f′
(
i− 1
n

)
f′′
(
i− 1
n

)
1
n
+
(
f′′
(
ηi,n
))2 1

(2n)2

+f′
(
ηi,n
)
f′′′
(
ηi,n
) 1
(2n)2

for (i− 1) /n ≤ ηi,n ≤ i/n, i = 1, . . . , n, n ∈ N. Thus,

A1
n = n

n∑
i=1

{(
f′
(
i− 1
n

))2

−
(
f′
(
i− 1/2

n

))2}

=−
n∑
i=1

f′
(
i− 1
n

)
f′′
(
i− 1
n

)
− 1

4

n∑
i=1

{(
f′′
(
ηi,n
))2

+ f′
(
ηi,n
)
f′′′
(
ηi,n
)} 1

n
.

Since f(j)f(k) and f(j) are integrable for j, k = 1, 2, 3, we have that

Sn − A2
n =A1

n +
1
4
Bn + Cn +

1
3
Dn +

1
6
En +

1
36
Fn

=−
n∑
i=1

f′
(
i− 1
n

)
f′′
(
i− 1
n

)
− 1

4

n∑
i=1

{(
f′′
(
ηi,n
))2

+ f′
(
ηi,n
)
f′′′
(
ηi,n
)} 1

n

+
1
4

n∑
i=1

(
f′′
(
i− 1
n

))2 1
n
+

n∑
i=1

f′
(
i− 1
n

){
f′′
(
i− 1
n

)
+

1
3
f′′′
(
ξi,n
) 1
n

}

+
1
6

n∑
i=1

f′′
(
i− 1
n

)
f′′′
(
ξi,n
) 1
n2

+
1
36

n∑
i=1

(
f′′′
(
ξi,n
))2 1

n3
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=

n∑
i=1

{
1
3
f′
(
i− 1
n

)
f′′′
(
ξi,n
)
− 1

4
f′
(
ηi,n
)
f′′′
(
ηi,n
)} 1

n

+
1
4

n∑
i=1

{(
f′′
(
i− 1
n

))2

−
(
f′′
(
ηi,n
))2} 1

n
+

1
6

n∑
i=1

f′′
(
i− 1
n

)
f′′′
(
ξi,n
) 1
n2

+
1
36

n∑
i=1

(
f′′′
(
ξi,n
))2 1

n3

→
n→∞

∫ 1

0

(
1
3
f′ (x) f′′′ (x)− 1

4
f′ (x) f′′′ (x)

)
dx =

1
12

∫ 1

0
f′ (x) f′′′ (x) dx. (C.8)

On the other hand, Theorem 35 implies

A2
n = n2

(
n∑
i=1

(
f′
(
i− 1/2

n

))2 1
n
−
∫ 1

0
(f′ (x))2 dx

)

→
n→∞

− 1
24

∫ 1

0

d2

dx2
(f′ (x))2 dx =

f′ (0) f′′ (0)− f′ (1) f′′ (1)
12

. (C.9)

Combining equations (C.8) and (C.9) gives

lim
n→∞

Sn =
1
12

∫ 1

0
f′ (x) f′′′ (x) dx− 1

24

∫ 1

0

d2

dx2
(f′ (x))2 dx

=
1
12

(∫ 1

0
f′ (x) f′′′ (x) dx−

∫ 1

0

(
(f′′ (x))2 + f′ (x) f′′′ (x)

)
dx
)

=− 1
12

∫ 1

0
(f′′ (x))2 dx,

which concludes the proof.
Proposition 36 implies the main result of this Section.

Corollary 37 Let (Xt)0≤t≤1 be a stochastic process whose paths are almost surely in C
3 [0, 1] .Then,

n2
(
[Xn]1 −

∫ 1

0
(X′

r)
2 dr
)

a.s.→
n→∞

− 1
12

∫ 1

0
(X′′

r )
2 dr = − 1

12
∥X′′∥2L2(0,1) .

If X ∈ SGKBSS with α > 5/2, the paths of X are almost surely in C3 ([0,∞)). The distribution
of Y = 1

12 ∥X
′′∥2L2(0,1) depends on the value of α. It might possible to find the characteristic function of Y

reproducing the arguments used in [5] to obtain the characteristic function of the Rosenblatt distribution.

Remark 38 Since the index n represents the number of derivatives for the IBM Jn, J3 ∈ C3 ([0,∞)). Conse-
quently, Corollary 37 also applies to Jn, for n > 3. Integrating by parts we get

d2

ds2
J3s = J1s =

∫ s

0
Bs1ds1 =

1
2

∫ 1

0
(s− 1) dBs.

The technique used to determine the limit in Proposition 36 requires f ∈ C3[0, 1]. Thismethod cannot
be extended to functions in C2[0, 1] \ C3[0, 1] or C1[0, 1] \ C3[0, 1]. It is necessary a new technique to
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determine the rate of convergence for functions in these sets. When f = X is a stochastic process, a broadly
used technique consists in usingmoments to estimate the rate of convergence of quantities similar to (C.7).
Since the terms in (C.7) display a complicated dependence, the use of moments did not help us to find the
rate.

It remains open todetermine the rate of convergence and the limit distributionof (C.7) for the stochas-
tic processes inSGKBSS with index 1/2 < α < 5/2, that is, for the BSS processes that are not inC3[0, 1].
There is evidence suggesting that nα−1/2 might be the correct rate of convergence.

C.4 Integrated Brownian motion

In this Section, we perform some investigations about the limit distribution of (C.7) for J1t . In Subsection
C.4.1 we establish a L2 convergence together with its respective rate of convergence. Subsection C.4.2
discusses a conjecture about the limit distribution for J1t . SubsectionC.4.3 presents a useful decomposition
that partially motivates the conjectured limit distribution for J1t . Subsection C.4.4 contains the numerical
validation of the conjecture of Subsection C.4.2.

C.4.1 Convergence of the variance

We have that

[Jmn ]t
a.s.→

n→∞

∫ t

0

(
d
dr
Jmr

∣∣∣∣
r=s

)2

ds,

where [Jmn ] denotes the NRQV of Jm as defined in Subsection C.2.
Restricting to the casem = 1, we get

[J1n]t
a.s.→

n→∞

∫ t

0
B2
sds

for which we first analyze the variance

An,t := Var
(
[J1n]t −

∫ t

0
B2
sds
)

for t ≥ 0. Isserlis’ Theorem (see [3]) implies the next result.

Proposition 39 For t ≥ 0 and n ∈ N,

An,t =
45 ⌊nt⌋4 − 60nt ⌊nt⌋3 − 15 ⌊nt⌋2 + 15nt ⌊nt⌋+ ⌊nt⌋+ 15n4t4

45n4
.

Proof . We will compute An,t using

Var
(
[J1n]t −

∫ t

0
B2
sds
)

= E
{(

[J1n]t −
∫ t

0
B2
sds
)2}

− E
{
[J1n]t −

∫ t

0
B2
sds
}2

.
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We have that

E


⌊nt⌋∑

i=1

(Δn
i J
1)
2

2 =

⌊nt⌋∑
i=1

⌊nt⌋∑
j=i+1

{
(Δn

i J
1)
2
(
Δn
j J
1
)2}

+

⌊nt⌋∑
i=1

E {(Δn
i J
1)
4}

≡ A1 + A2.

Fubini’s Theorem implies that

A1 = 2
⌊nt⌋∑
i=1

⌊nt⌋∑
j=i+1

∫ i
n

i−1
n

∫ i
n

i−1
n

∫ j
n

j−1
n

∫ j
n

j−1
n

E {Bs1Bs2Br1Br2} dr2dr1ds2ds1,

A2 =

⌊nt⌋∑
i=1

∫ i
n

i−1
n

∫ i
n

i−1
n

∫ i
n

i−1
n

∫ i
n

i−1
n

E
{
Br1Br2Br3Br4

}
dr4dr3dr2dr1.

From Isserlis’ Theorem (see [3]) it follows that

E
{
Br1Br2Br3Br4

}
= (r1 ∧ r2) (r3 ∧ r4) + (r1 ∧ r3) (r2 ∧ r4) + (r1 ∧ r4) (r2 ∧ r3) .

Then, we have that

A1 = 2
⌊nt⌋∑
i=1

⌊nt⌋∑
j=i+1

∫ i
n

i−1
n

∫ i
n

i−1
n

∫ j
n

j−1
n

∫ j
n

j−1
n

[(s1 ∧ s2) (r1 ∧ r2) + 2s1s2] dr2dr1ds2ds1

= 2
⌊nt⌋∑
i=1

⌊nt⌋∑
j=i+1

[
(3i− 2) (3j− 2)

9n6
+

(1− 2i)2

2n6

]
,

A2 = 3
⌊nt⌋∑
i=1

(∫ i
n

i−1
n

∫ i
n

i−1
n

(r1 ∧ r2) dr2dr1

)2

=

⌊nt⌋∑
i=1

(3i− 2)2

3n6
.

Therefore,

E


⌊nt⌋∑

i=1

(Δn
i J
1)
2

2 = 2
⌊nt⌋∑
i=1

⌊nt⌋∑
j=i+1

[
(3i− 2) (3j− 2)

9n6
+

(1− 2i)2

2n6

]
+

⌊nt⌋∑
i=1

(3i− 2)2

3n6
.

On the other hand, we have that

E


⌊nt⌋∑
i=1

(Δn
i J
1)
2
∫ t

0
B2
sds

 =

⌊nt⌋∑
i=1

∫ t

0
E {(Δn

i J
1)
2 B2

s} ds

=

⌊nt⌋∑
i=1

∫ t

0

∫ i
n

i−1
n

∫ i
n

i−1
n

E {Br1Br2B2
s} dr2dr1ds.
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Isserlis’ Theorem implies that

E {Br1Br2B2s} = s (r1 ∧ r2) + 2 (s ∧ r1) (s ∧ r2) ,

and, therefore,

E


⌊nt⌋∑
i=1

(Δn
i J
1)
2
∫ t

0
B2
sds

=

⌊nt⌋∑
i=1

(∫ t

0
sds
)(∫ i

n

i−1
n

∫ i
n

i−1
n

(r1 ∧ r2) dr2dr1

)

+2
⌊nt⌋∑
i=1

∫ t

0

(∫ i
n

i−1
n

∫ i
n

i−1
n

(s ∧ r1) (s ∧ r2) dr2dr1ds

)

=

⌊nt⌋∑
i=1

(60i2nt− 60int+ 15nt− 40i3 + 60i2 − 35i+ 8)
30n5

+

⌊nt⌋∑
i=1

(3i− 2) t2

6n3
.

Then, combining the previous expectations, we get

E
{(

[J1n]t −
∫ t

0
B2
sds
)2}

= E


n

⌊nt⌋∑
i=1

(Δn
i J
1)
2 −
∫ t

0
B2
sds

2
= 2

⌊nt⌋∑
i=1

⌊nt⌋∑
j=i+1

[
(3i− 2) (3j− 2)

9n5
+

(1− 2i)2

2n5

]

+

⌊nt⌋∑
i=1

(3i− 2)2

3n5
+

7
12
t4 −

⌊nt⌋∑
i=1

(3i− 2) t2

3n3

−
⌊nt⌋∑
i=1

(60i2nt− 60int+ 15nt− 40i3 + 60i2 − 35i+ 8)
15n5

=
105n4t4 + 30n2t2 (1− 3 ⌊nt⌋) ⌊nt⌋ − 60nt ⌊nt⌋ (4 ⌊nt⌋2 − 1)

180n4

+
⌊nt⌋ (4− 55 ⌊nt⌋ − 30 ⌊nt⌋2 + 225 ⌊nt⌋3)

180n4
.

Furthermore, we have that

E


⌊nt⌋∑
i=1

(Δn
i J
1)
2

 =

(∫ i
n

i−1
n

∫ i
n

i−1
n

E {Br1Br2} dr2dr1

)
=

⌊nt⌋
6n3

(3 ⌊nt⌋ − 1) .

Thus,

E
{
[J1n]t −

∫ t

0
B2
sds
}2

=
⌊nt⌋2

36n4
(3 ⌊nt⌋ − 1)2 − t2 ⌊nt⌋

6n3
(3 ⌊nt⌋ − 1) +

t4

4
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and

Var
(
[J1n]t −

∫ t

0
B2
sds
)

=
45 ⌊nt⌋4 − 60nt ⌊nt⌋3 − 15 ⌊nt⌋2 + 15nt ⌊nt⌋+ ⌊nt⌋+ 15n4t4

45n4
.

This finishes the proof.
An interesting observation aboutAn,t is thatwe donot have the sameorder of convergence for different

t’s. To exemplify this, consider two different values t1 = 1 and t2 = 1/3.Notice that, for n, k ∈ N,

An,t1 =
1

45n3
, A3k,t2 =

1
45k3

, A3k+1,t2 =
270k2 + 222k+ 5
1215 (1+ 3k)4

.

Clearly, Ank,t1 tends to 0with the same order for any subsequence {nk}. However, the last equations show
that An,t2 has different rates of convergence for different subsequences.

An immediate consequence of Proposition 39 is the next result.

Proposition 40 For t ≥ 0,

[J1n]t
L2→
∫ t

0
B2
sds.

C.4.2 The limit distribution

We are interested in shedding light on the limit distribution of

An,t := A−1/2
n,t

(
[J1n]t −

∫ t

0
B2
sds
)
.

To clarify the main aspects, we only consider the case t = 1.
It turns out (see Subsection C.4.4) that the limit law of An,1 seems to be a Rosenblatt distribution

[4, 7]. Using Maejima and Tudor’s parametrization of the Rosenblatt distribution [4], we have the next
conjecture.

Conjecture 41 Let R (h) denote a Rosenblatt random variable with index h ∈ (1/2, 1). Then, we have

An,1
d→ R (h) ,

where h ≈ 0.9.

Numerical simulations of An,1 and R (0.9) show strong evidence supporting the previous conjecture
(see Subsection 5.4).

C.4.3 An expression forAn,1

In this Subsection we derive an expression for the random variable

Xn := [J1n]t −
∫ t

0
B2sds = n

n∑
i=1

(∫ i
n

i−1
n

Bsds
)2

−
∫ 1

0
B2
sds,

in terms of a doubleWiener integral with respect to B. This partly allows to heuristically justify the Rosen-
blatt distribution forAn,1.
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Proposition 42 We can rewrite the random variableXn as

Xn =

∫ 1

0

∫ 1

0
Fn(r, s)dBrdBs −

5
6n

, (C.10)

where

Fn(r, s) = n
n∑
i=1

f(n)i (r)f(n)i (s)−
(
1−max(r, s)

)
and

f(n)i (s) =


1
n , s ∈

[
0, i−1

n

)
,

i
n − s, s ∈

[ i−1
n , i

n

)
,

0, s ∈
[ i
n , 1
]
.

(C.11)

Proof . Using integration by parts (twice), we obtain∫ 1

0
B2sds=B2

1 −
∫ 1

0
sdB2

s = 2
∫ 1

0
BsdBs + 1− 2

∫ 1

0
sBsdBs −

∫ 1

0
sds

= 2
∫ 1

0
(1− s)BsdBs +

1
2
= 2

∫ 1

0
(1− s)

∫ s

0
dBrdBs +

1
2

= 2
∫ 1

0

∫ s

0

(
1−max(r, s)

)
dBrdBs +

1
2
=

∫ 1

0

∫ 1

0

(
1−max(r, s)

)
dBrdBs +

1
2
, (C.12)

where the last equality follows because (r, s) 7→ 1−max(r, s) is a symmetric function.

Suppose that 0 ≤ a < b ≤ 1. Integration by parts yields∫ b

a
Bsds = bBb − aBa −

∫ b

a
sdBs =

∫ 1

0

(
b1(0,b)(s)− a1(0,a)(s)− s1(a,b)(s)

)
dBs

=

∫ 1

0
max

(
b−max(a, s), 0

)
dBs.

We can thus write ∫ i
n

i−1
n

Bsds =
∫ 1

0
f(n)i (s)dBs,

where f(n)i (s) is as defined in (C.11). A straightforward calculation yields∫ 1

0
f(n)i (s)2ds =

∫ i−1
n

0

ds
n2

+

∫ i
n

i−1
n

(
i
n
− s
)2

ds =
i− 1
n3

+

∫ 1
n

0
s2ds =

i− 1
n3

− 1
3n3

=
i− 4

3

n3
.

Using the multiplication formula for Wiener integrals, we find that(∫ i
n

i−1
n

Bsds
)2

=

(∫ 1

0
f(n)i (s)dBs

)2

=

∫ 1

0

∫ 1

0
f(n)i (r)f(n)i (s)dBrdBs +

∫ 1

0
f(n)i (s)2ds.
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Thus,

n
n∑
i=1

(∫ i
n

i−1
n

Bsds
)2

=

∫ 1

0

∫ 1

0

(
n

n∑
i=1

f(n)i (r)f(n)i (s)
)
dBrdBs +

1
2
− 5

6n
. (C.13)

Combining C.12 and C.13, we obtain

Xn =

∫ 1

0

∫ 1

0
Fn(r, s)dBrdBs −

5
6n

,

where

Fn(r, s) = n
n∑
i=1

f(n)i (r)f(n)i (s)−
(
1−max(r, s)

)
.

This concludes the proof.
The double integral expression (C.10) might provide evidence supporting Conjecture 41 since the

Rosenblatt distribution can be expressed as a second order Wiener chaos (see, e.g. [6]). One possible
way to prove Conjecture 41 would be to show that Fn(r, s) converges in L2 to the kernel that appears in
Proposition 1 of [6]. However, this is work in progress.

C.4.4 Numerical results

In this subsection we present some numerical results that motivate Conjecture 41.
To test our conjecture aboutAn,1, weneed to simulate theRosenblattdistribution. Thenext asymptotic

result provides a way to do so.

Proposition 43 Let ξi, i = 1, 2, ..., be a stationary Gaussian process with E [ξi] = 0, E [ξ2i ] = 1, and

E
[
ξiξj
]
=

1
2

(
(j+ 1)2H − 2j2H + (j− 1)2H

)
, j = 1, 2, ...,

where H ∈ (0, 1). If H ∈ (3/4, 1) then

1
n2H−1

n∑
i=1

(ξ2i − 1) d→ lim
n→∞

Rosenblatt (2H− 1) .

Remark 44 Therandomvariables ξi have the samedistribution as the normalized increments of fractionalBrow-
nian motion with Hurst parameter H.

Also, in order to test the conjecture aboutAn,1, it is necessary to simulate such a random variable. This
means that we need to simulate the increments of J1 and the integral

∫ 1
0 B

2
sds. We simulate the increments

of J1 by approximatingRiemann sums. Beingmore precise, we partition the interval [0, 1] in k ≫ n equidis-
tant points, i.e. we use the partition {0, 1/k, . . . , (k− 1)/k, 1}. Then, we approximate the increments

Δn
mJ

1 := J1m/n − J1(m−1)/n =

∫ m/n

(m−1)/n
Bsds, form = 1, . . . , n,

through the Riemann sum
∑⌊k/n⌋

i=0 B(i+m)/k/k. Besides, we approximate the value of
∫ 1
0 B

2
sds by the Rie-

mann sum
∑k

i=0 B
2
i/k/k, where we consider the previous partition of [0, 1]. Here, it is important to note
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1

Figure C.4.1: (a) Histograms in log-linear scale of the Rosenblatt sample (dashed) and the A100000,1

sample (solid). (b) QQ plot of the A100000,1 sample and the Rosenblatt sample.

that [J1n]1 and
∫ 1
0 B

2
sds are not independent.

Figure 1 illustrates the conjecture for An,1. These figures were obtained by simulating 10000 samples
of Rosenblatt (0.9) and 10000 samples of An,1 with a discretization of k = 107 and an increment size of
n−1 = 10−5. We standardized the samples by subtracting the sample mean and dividing by the sample
variance. Figure (a) shows two histograms in log-linear scale: the histogram of the Rosenblatt sample
(blue) and the histogram of the A100000,1 sample (purple). They are very similar. Figure (b) corresponds
to the QQ plot of theA100000,1 sample and the Rosenblatt sample.

C.5 Conclusion

In this note, we have partially solved the problem stated in Section C.2 for the class SGKBSS . The tech-
niques used here do not provide the full answer since they do not permit to determine the limit distribu-
tions. We have also provided strong evidence supporting a Rosenblatt limit for the asymptotic problem in
the J1 case. It remains open to determine the veracity of such a limit.
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D
Some relevant probability distributions

This Appendix briefly discusses some probability distributions that are used in this thesis.

D.1 Generalized inverse Gaussian distribution

Thegeneralized inverseGaussian (GIG) distribution is a three-parameter family of continuous probability
distributions whose probability density function is given by

fGIG(λ,χ,θ) (x) =
(
θ
λ

)λ/2 xλ−1

2Kλ
(√

χθ
) exp{− 1

2

( χ
x
+ θx

)}
, x ∈ R

whereKλ denotes the modified Bessel function of the third kind with index λ and the parameters (λ, χ, θ)
have to satisfy one of the following three restrictions

χ > 0, θ ≥ 0, λ < 0 or χ > 0, θ > 0, λ = 0 or χ ≥ 0, θ > 0, λ > 0. (D.1)

The distribution is denoted by GIG(λ, χ, θ).
TheGIG lawnests the inverseGaussian (IG)distribution (λ = −1/2) and containsmany special cases

as limits, among others the Gamma and Inverse Gamma distributions.
The GIG distribution is infinitely divisible. Besides, the moment generating function of a random

variable V ∼GIG(λ, χ, θ) is determined by

E [exp zV] =
(

ψ
ψ − 2z

)λ/2 Kλ

(√
χ (ψ − 2z)

)
Kλ (

√
χψ)

.

For a more extensive discussion of the GIG law, we refer to [22].
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D.2 Generalized hyperbolic distribution

The generalized hyperbolic (GH) distribution was introduced in [1] to describe the law of the logarithm
of the size of sand particles. TheGHclass is a very rich and flexible family of distributions. For an extensive
discussion of this distribution and its applications, we refer, for instance, to [1, 17, 18] and the papers cited
in [14].

Different parameterizations are known for the GH law. A summary of the most used parameteriza-
tions, and the relation between them, can be found in [14]. Here, we focus our attention to the so-called
(λ, χ, ψ, μ, Σ, γ)-parametrization. The density of the GH(λ, χ, ψ, μ, Σ, γ) law is

fGH(λ,χ,ψ,μ,Σ,γ) (x) =

(√
ψ/χ
)λ (

ψ + Σ−1γ2
) 1

2−γ

(2π)
1
2 Σ1/2Kλ (

√
ψγ)

×
Kλ− 1

2

(√(
χ + Σ−1 (x− μ)2

) (
ψ + Σ−1γ2

))
eΣ

−1γ(x−μ)√(
χ + Σ−1 (x− μ)2

) (
ψ + Σ−1γ2

)
whereKλ denotes themodifiedBessel functionof the thirdkindwith index λ, (λ, χ, ψ, μ, Σ, γ) ∈ R× R2

+×R3

and x ∈ R. The parameters (λ, χ, ψ) satisfy one of the restrictions (D.1).
The parameters λ, χ, and ψ are shape parameters that determine the weight in the tails. In general, the

larger those parameters the closer the distribution is to the normal distribution. The parameter μ deter-
mines the location, Σ partially regulates the variance, and γ regulates the skewness. If γ = 0, then the
distribution is symmetric around μ.

The (λ, χ, ψ, μ, Σ, γ)-parametrization is obtainedas anormalmean-variancemixturedistributionwhere
the mixing distribution is the generalized inverse Gaussian distribution GIG(λ, χ, ψ).

The GH distribution is infinitely divisible. Besides, there are closed expression for their characteristic
and moment generating functions (see [14, 18] for more details).

D.3 Normal inverse Gaussian distribution

The normal inverse Gaussian (NIG) distribution is a four-parameter family of continuous probability dis-
tributions whose probability density function is given by

fNIG(α,β,μ,δ) (x) =
αeδγ

π
eβ(x−μ)

K1

(
δαq
(

x−μ
δ

))
q
(

x−μ
δ

) , (D.2)

where γ = α2 − β2, q (x) =
√
1+ x2 and K1 denotes the modified Bessel function of the second kind

with index 1. The domain of variation of the parameters is given by μ ∈ R, δ ∈ R+, and 0 ≤ |β| < α.
The parameters α and β are shape parameters, μ determines the location, and δ determines the scale. The
distribution is denoted byNIG (α, β, μ, δ).

The NIG distribution is a particular case of the GH law that arises when λ = 1/2 in fGH(λ,χ,θ,μ,Σ,γ).
However, the (λ, χ, ψ, μ, Σ, γ)-parametrization of the GH law produces a parametrization for the NIG
distribution which differs from the above parametrization fNIG(α,β,μ,δ). The relation between these two
parameterizations can be found in [14].
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The cumulant function K (z; α, β, μ, δ) = log E [exp {zV}] of a random variable V with distribution
NIG (α, β, μ, δ) is given by

K (z; α, β, μ, δ) = zμ + δ
(
γ −

√
α2 − (β + z)2

)
. (D.3)

It follows immediately fromthis that thenormal inverseGaussiandistribution is infinitelydivisible. Namely,
ifXi ∼ NIG

(
α, β, μi, δi

)
, i = 1, 2, are independent random variables, then we haveX1+X2 ∼ NIG(α, β,

μ1 + μ2, δ1 + δ2).
It is often of interest to consider alternative parameterizations of the normal inverse Gaussian laws. In

particular, letting α = δα and β = δβ, we have that α and β are invariant under location-scale changes.
Sometimes it is useful to represent NIG distributions in the so-called shape triangle. Consider the

alternative asymmetry and steepness parameters χ and ξ defined by

ξ = (1+ γ)−1/2
, χ = ρξ,

where ρ = β/α and γ = δγ = δ
√

α2 − β2. These parameters are invariant under location-scale changes.
Their range defines the NIG shape triangle

{(χ, ξ) : 0 < ξ < 1,−ξ < χ < ξ} .

When χ = 0 the NIG distribution is symmetric. Values χ > 0 indicate a positively skewed distribution
and χ < 0 a negatively skewed law. The steepness parameter ξ measures the heaviness of the tails of the
NIG distribution. The limiting case ξ = 0 corresponds to a normal distribution.

TheNIG law has a wide range of applications. For more details about this distribution and their appli-
cations, we refer to [1, 2, 6, 8].
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