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Abstract

We investigate how much information about a convex body can be retrieved
from a finite number of its geometric moments. We give a sufficient condition
for a convex body to be uniquely determined by a finite number of its geo-
metric moments, and we show that among all convex bodies, those which are
uniquely determined by a finite number of moments form a dense set. Further,
we derive a stability result for convex bodies based on geometric moments. It
turns out that the stability result is improved considerably by using another
set of moments, namely Legendre moments. We present a reconstruction algo-
rithm that approximates a convex body using a finite number of its Legendre
moments. The consistency of the algorithm is established using the stabil-
ity result for Legendre moments. When only noisy measurements of Legendre
moments are available, the consistency of the algorithm is established under
certain assumptions on the variance of the noise variables.

Keywords: Convex body, geometric moment, Legendre moment, reconstruc-
tion, uniqueness, stability.

1 Introduction

Important characteristics of a compact set K ⊂ Rn are its geometric moments
(sometimes only referred to as moments) where

µα(K) =

∫

K

xαdx

is the geometric moment of order |α| for a multi-index α ∈ Nn
0 , xα := xα1

1 · · ·xαnn and
|α| := α1 + · · · + αn. In the last two decades, the reconstruction of a geometric ob-
ject from its moments has received considerable attention. Milanfar et al. developed
in [17] an inversion algorithm for 2-dimensional polygons and presented a refined
numerically stable version in [7]. Restricting to convex polygons they proved that
every m-gon is uniquely determined by its complex moments up to order 2m − 3.
Recently, Gravin et al. showed in [8] that an n-dimensional convex polygon P with
m vertices is uniquely determined by its moments up to order 2m− 1. Apart from
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polytopes, an exact reconstruction from finitely many moments is known to be pos-
sible for so called quadrature domains in the complex plane, see [9]. In continuation
of the work in this area, we investigate how much information can be retrieved from
finitely many geometric moments of an arbitrary convex body in Rn. Recently, a
similar investigation of another set of moments, namely moments of surface area
measures of convex bodies, was carried out in [11].

Using uniqueness results for functionals, see [13] and [20], applied to indicator
functions, we show that if a convex body K is of the form C ∩ {p ≥ 0}, where C
is a compact subset of Rn and p is a polynomial of degree N , then K is uniquely
determined by its geometric moments up to degree N among all convex bodies in C.
Further, any convex body in C can be approximated arbitrarily well in the Hausdorff
distance by a convex body of the form C∩{p ≥ 0}. This result and the fact that the
geometric moments up to order 2 of a convex body K determine an upper bound
on the circumradius of K imply that among all convex bodies, those which are
uniquely determined by finitely many geometric moments form a dense subset, see
Theorem 3.8.

Restricting to convex bodies in the two-dimensional unit square, we derive an
upper bound on the Nikodym distance between two convex bodies given finitely
many of their geometric moments, see Theorem 4.2. The upper bound is derived
using a stability result for absolutely continuous functions on the unit interval,
see [23]. This result is extended to twice continuously differentiable functions on
the two-dimensional unit square and applied to differences of indicator functions via
an approximation argument. The upper bound depends on the number of moments
used and also on the Euclidean distance between the moments of the two convex
bodies. The upper bound decreases when the distance between the moments de-
creases, however, it increases exponentially in the number of moments. The method
used to derive the upper bound of the Nikodym distance suggests that the geomet-
ric moments should be replaced by another set of moments, namely the Legendre
moments, in order to remove the effect of the exponential factor. The Legendre
moments of a convex body are defined like the usual geometric moments, but with
the monomials replaced by products of Legendre polynomials, see Section 2. Using
that these products of Legendre polynomials constitute an orthonormal basis of the
square integrable functions on [0, 1]2 and that the Legendre polynomials satisfy a
certain differential equation, we derive an upper bound of the Nikodym distance
that becomes arbitrarily small when the distance between the Legendre moments
decreases and the number of moments used increases, see Theorem 4.3.

In Section 5, we assume that the first (N+1)2 Legendre moments of an unknown
convex body K are available for some N ∈ N. A polygon with at most m ∈ N ver-
tices is called a least squares estimator of K if the Legendre moments of P fit the
available Legendre moments ofK in a least squares sense. We derive an upper bound
of the Euclidean distance between the Legendre moments of K and the Legendre
moments of an arbitrary least squares estimator P of K. In combination with the
previously described stability result, this yields an upper bound of the Nikodym dis-
tance between K and P (Theorem 5.1). This upper bound of the Nikodym distance
becomes arbitrarily small when N and m increase. For completeness, we further
derive an upper bound for the Nikodym distance between K and a least squares
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estimator based on geometric moments. Due to the structure of the stability results,
this upper bound increases exponentially when the number of available geometric
moments increases.

In Section 6, we derive a reconstruction algorithm for convex bodies. The input
of the algorithm is a finite number of Legendre moments of a convex body K, and
the output of the algorithm is a polygon P with Legendre moments that fit the
available Legendre moments of K in a least squares sense. The output polygon P
has prescribed outer normals, which ensures that P can be found as the solution
to a polynomial optimization problem. The consistency of the reconstruction algo-
rithm is established in Corollary 6.5. In Section 6.3, the reconstruction algorithm is
extended such that it allows for Legendre moments disrupted by noise. To ensure
consistency of the algorithm in this case, the variances of the noise terms should de-
crease appropriately when the number of input moments increases, see Theorem 6.6.

The paper is organized as follows: Preliminaries and notations are introduced
in Section 2. The uniqueness results are presented in Section 3, and the stability
results are derived in Section 4. In Section 5, the least squares estimators based on
geometric moments and Legendre moments are treated. Finally, the reconstruction
algorithm is described and discussed in Section 6.

2 Notation and preliminaries

A convex body is a compact, convex subset of Rn with nonempty interior. The
space of convex bodies contained in Rn is denoted by Kn and is equipped with the
Hausdorff metric δH. On the set {K ∈ K2 | K ⊂ [0, 1]2}, we use the Nikodym metric
δN in addition to the Hausdorff metric. The Nikodym distance of two convex bodies
K,L ⊂ [0, 1]2 is the area of the symmetric difference of K and L, that is

δN(K,L) = V2((K \ L) ∪ (L \K)) = |1K − 1L|2L2([0,1]2),

where |·|L2([0,1]2) is the usual norm on the set L2([0, 1]2) of square integrable functions
on [0, 1]2. On the set {K ∈ K2 | K ⊂ [0, 1]2}, the Hausdorff metric and the Nikodym
metric induce the same topology, see [22]. The support function of a convex body K
is denoted hK , and for K ∈ K2 and θ ∈ [0, 2π), we write hK(θ) := hK((cos θ, sin θ)).

In Section 4, we derive stability results for convex bodies in the unit square. In
this context, it turns out to be natural and useful to introduce Legendre moments in
addition to geometric moments. The shifted and normalized Legendre polynomials
Li : [0, 1]→ R, i ∈ N0, are obtained by applying the Gram-Schmidt orthonormaliza-
tion to 1, x, x2, . . ., and the products of Legendre polynomials

(x1, x2)→ Li(x1)Lj(x2), i, j ∈ N0

form an orthonormal basis of L2([0, 1]2). For a convex body K ⊂ [0, 1]2, we define
the Legendre moments of K as

λij(K) =

∫

K

Li(x1)Lj(x2)d(x1, x2)

for i, j ∈ N0.
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The uniqueness and stability results we establish in Sections 3 and 4 are derived
using uniqueness and stability results [13, 20, 23] for functionals. In the following,
we introduce notation in relation to these results. For a compact set C ⊂ Rn with
nonempty interior, we let L∞(C) denote the space of essentially bounded measurable
functions Φ : C → R. The essential supremum for Φ ∈ L∞(C) in C is denoted by
‖Φ‖∞,C and we define ‖Φ‖1,C :=

∫
C
|Φ(x)|dx. Further, we let

sign(Φ)(x) =

{
1, Φ(x) ≥ 0,

−1, otherwise

for x ∈ Rn.
The signed distance function dC of C is defined as in, e.g., [5, Section 5] or with

opposite signs in [12, Chapter 4.4]. That is

dC(x) :=

{
− infy∈∂C‖x− y‖, x ∈ C,
infy∈∂C‖x− y‖, x ∈ Rn \ C,

where ‖ · ‖ is the Euclidean norm on Rn. Then the ε-parallel set of C is defined as
Cε := {x : dC(x) ≤ ε} for ε ∈ R.

The geometric moments of a function Φ ∈ L∞(C) are given as

µα(Φ) =

∫

C

Φ(x)xαdx

for α ∈ Nn
0 , and the Legendre moments of Ψ ∈ L∞([0, 1]2) are defined as

λij(Ψ) =

∫

[0,1]2

Ψ(x)Li(x1)Lj(x2)d(x1, x2)

for i, j ∈ N0. Notice that µα(K) = µα(1K) for a convex body K ⊂ C, and λij(L) =
λij(1L) for a convex body L ⊂ [0, 1]2.

3 Uniqueness results

In this section, we present uniqueness results for convex bodies based on a finite
number of geometric moments. We show that the convex bodies that are uniquely
determined in Kn by a finite number of geometric moments form a dense subset
of Kn. This result is established using uniqueness results from [13] and [20] for
functionals. The results from [13] and [20] are summarized in Section 3.1 and applied
in Section 3.2 to derive uniqueness results for convex bodies.

3.1 Summary of results from [13] and [20]

Let N ∈ N0, L > 0 and C ⊂ Rn be compact. Further, let m := (mα)|α|≤N , where
mα ∈ R, α ∈ Nn

0 with |α| ≤ N and
∑
|α|≤N m

2
α > 0. A function Φ ∈ L∞(C) with

‖Φ‖∞,C ≤ L is called a solution of the L-moment problem of order N if

µα(Φ) = mα, α ∈ Nn
0 with |α| ≤ N. (3.1)
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In [13], it is shown that the supremum

l(m) := sup
{∥∥∥
∑

|α|≤N
aαx

α
∥∥∥
−1

1,C
: aα ∈ R, α ∈ Nn

0 , |α| ≤ N,
∑

|α|≤N
aαmα = 1

}

is attained. Thus, there exists an ã = (ãα)|α|≤N with
∑
|α|≤N ãαmα = 1 and

l(m) =
∥∥∥
∑

|α|≤N
ãαx

α
∥∥∥
−1

1,C
.

It follows from [13] that the L-moment problem (3.1) has a solution if and only
if L ≥ l(m). Furthermore, (3.1) has a unique solution if and only if L = l(m). If
L = l(m), then the unique solution is Φ = L sign(pm), where pm =

∑
|α|≤N ãαx

α.
For more details and proofs, we refer to [13, Section IX.1-2] and [20]. The one-

dimensional case is proved in [13, Section IX.2, Thm. 2.2] by applying more general
results from [13, Section IX.1] which are obtained in normed linear spaces with
moments defined with respect to arbitrary linear independent functionals instead of
monomials. The specialization of [13, Section IX.1] to the situation considered above
is contained in [20, Section 2]. In particular, Putinar [20] formulates the following
uniqueness result.

Lemma 3.1 ([20, Cor.2.3]). A function Φ ∈ L∞(C) is uniquely determined in {Ψ ∈
L∞(C) : ‖Ψ‖∞,C ≤ ‖Φ‖∞,C} by its geometric moments µα(Φ), α ∈ Nn

0 with |α| ≤ N
if and only if

Φ = ‖Φ‖∞,C sign(p),

where p 6= 0 is a polynomial of degree at most N .

3.2 Consequences for convex bodies

Due to the relation between geometric moments of convex bodies and geometric
moments of indicator functions, we conclude the following from Lemma 3.1.

Corollary 3.2. A convex body K ⊂ C is uniquely determined in {L ∈ Kn : L ⊂ C}
by its geometric moments µα(K), α ∈ Nn

0 with |α| ≤ N if

K = C ∩ {p ≥ 0},

where p 6= 0 is a polynomial of degree at most N .

Proof. If K = C ∩ {p ≥ 0}, then

21K(x)− 1 = sign(p)(x), x ∈ C.

Thus, we obtain from Lemma 3.1 that 21K − 1 is uniquely determined in

{21L − 1 : L ∈ K, L ⊂ C} ⊂ {Ψ ∈ L∞(C) : ‖Ψ‖∞,C ≤ 1}

by its geometric moments µα (21K − 1) = 2µα(K) − µα(C), α ∈ Nn
0 with |α| ≤ N .

This yields the assertion.
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Example 1. An ellipsoid E is determined among all convex bodies by its geometric
moments up to order 2 since E = {x ∈ Rn : p(x) ≥ 0}, where p(x) := R − ‖Tx‖2,
x ∈ Rn with some invertible linear transformation T and some R > 0.

Remark 3.3. Corollary 3.2 gives a sufficient condition for a convex body to be
uniquely determined among convex bodies in a prescribed set by a finite number of
moments. It is not clear if the condition is also necessary.

Remark 3.4. Let m := (mα)|α|≤N be a finite number of geometric moments of
some unknown convex body K ⊂ C. Let m̃α := 2mα − µα(C) and define l(m̃) and
pm̃ as in the previous section. Then it holds that l(m̃) ≤ 1, and if l(m̃) = 1, then
K = C ∩ {pm̃ ≥ 0}.

In Theorems 3.6 and 3.8, we show that the convex bodies which are uniquely
determined among all convex bodies by finitely many geometric moments form a
dense subset of Kn with respect to the Hausdorff metric δH. The ideas of the proofs
are shortly summarized in the following. For a convex body K ⊂ C, a function
f : Rn → R with K = C ∩ {f ≥ 0} is constructed. The function f is approximated
by a polynomial pm of degree m in such a way that Km := C ∩ {pm ≥ 0} is
convex and δH(K,Km) is small. Then, it follows from Corollary 3.2 that Km is
uniquely determined by its geometric moments up to order m among all convex
bodies contained in C. The circumradius of Km admits an upper bound which can
be expressed in terms of the geometric moments µα(Km), |α| ≤ 2 of Km. Therefore,
Km is uniquely determined by its geometric moments up to order m among all
convex bodies if C is large enough.

At first observe that we can assume that K is of class C∞+ , see [21, Thm. 3.4.1]
and the subsequent discussion. Hence, the boundary of K is a regular submanifold
of Rn of class Ck for all k ∈ N0. Further, the principal curvatures of K are strictly
positive. By κi(K, x), 1 ≤ i ≤ n − 1 we denote the principal curvatures of K in
x ∈ ∂K. Since K ∈ C∞+ there exist mK ,MK > 0 such that

κi(K, x) ∈ (mK ,MK), x ∈ ∂K, 1 ≤ i ≤ n− 1.

For ε < M−1
K it follows from the inverse function theorem applied as in [6, Lemma

14.16] that the signed distance function dK of K is a C∞-function in Rn \K−ε. As
in [6, Sec. 14.6] we define for y ∈ ∂K the principal coordinate system at y as the
coordinate system with coordinate axes x1(y), . . . , xn(y), where x1(y), . . . , xn−1(y)
are the principal directions and xn(y) is the inner unit normal vector of K at y.
Then the following lemma is obtained by adapting [6, Lemma 14.17].

Lemma 3.5. Let K ∈ C∞+ , ε < M−1
K , x0 ∈ Rn \K−ε and y0 := argminy∈∂K‖x0−y‖.

Then, with respect to the principal coordinate system at y0, we have

∇dK(x0) = (0, . . . , 0,−1)>

and
(
∂2

∂i∂j
dK(x0)

)n

i,j=1

= diag

(
κ1(K, y0)

1 + κ1(K, y0)dK(x0)
, . . . ,

κn−1(K, y0)

1 + κn−1(K, y0)dK(x0)
, 0

)
.
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By the described approximation argument and Lemma 3.5, we obtain the fol-
lowing result.

Theorem 3.6. Let K,C be convex bodies with K ⊂ intC. For ε > 0 there exists an
m ∈ N and a convex body Km ⊂ C which is uniquely determined by its geometric
moments up to order m among all convex bodies contained in C and fulfils

δH(K,Km) ≤ ε.

Proof. We may assume K ∈ C∞+ , 2ε < M−1
K and Kε ⊂ C. We have K = {f ≥ 0}

for the function f : Rn → R defined by

f(x) :=

{
1, x ∈ K−2ε,
− (dK(x)+2ε)4

16ε4
+ 1, x ∈ Rn \K−2ε.

Observe that f is of class C3(Rn) and

f(x) ∈ [−65/16, 15/16] ⇐⇒ x ∈ (∂K)ε. (3.2)

The Hessian matrix ( ∂2

∂i∂j
f(x))1≤i,j≤n is negative definite for x ∈ (∂K)ε. Namely, let

x0 ∈ (∂K)ε and y0 := argminy∈∂K‖x0 − y‖. Then it follows from Lemma 3.5 that,
with respect to the principal coordinate system at y0,

∂2

∂i∂j
f(x0) =





− (dK(x0)+2ε)3

4ε4
κi(K,y0)

1+κi(K,y0)dK(x0)
, i = j < n,

−3(dK(x0)+2ε)2

4ε4
, i = j = n,

0 i 6= j.

Therefore, the eigenvalues of the Hessian matrix
(
∂2

∂i∂j
f(x)

)
for x ∈ (∂K)ε are all

negative and their absolute values are uniformly bounded from below by

min

{
mK

4ε(1 +MKε)
,

3

4ε2

}
. (3.3)

From [2, Thm. 2], we obtain that for every m ≥ 2 there exists a polynomial pm
of degree m such that

∥∥∥∥
∂|α|

∂α1
1 · · · ∂αnn

(f − pm)

∥∥∥∥
∞,C
≤ c(n,C, f)

1

m3−|α| , α ∈ Nn
0 with |α| ≤ 2, (3.4)

where c(n,C, f) > 0 depends on n, C and max|α|≤3‖ ∂|α|

∂
α1
1 ···∂

αn
n
f‖∞,C .

As the function that maps a symmetric matrix to its eigenvalues is Lipschitz
continuous ([3, Thm. VI.2.1]), equation (3.3) and (3.4) imply that the Hessian matrix
( ∂2

∂i∂j
pm)1≤i,j≤n of pm is negative definite on (∂K)ε if we choose m ≥ 2 sufficiently

large. Thus, by the well-known convexity criterion [21, Thm. 1.5.13], the polynomial
pm is concave on every convex subset of (∂K)ε, and in particular,
(
pm(x), pm(y) ≥ 0 for x, y ∈ (∂K)ε with [x, y] ⊂ (∂K)ε

)
⇒ [x, y] ⊂ Km, (3.5)
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where we define
Km := C ∩ {pm ≥ 0}.

Due to (3.4), we can furthermore assume that

‖f − pm‖C,∞ < 15/16.

Then it follows from (3.2) that pm ≥ 0 on K−ε and pm < 0 on C \ Kε. In other
words, we have K−ε ⊂ Km ⊂ Kε. This implies that δH(K,Km) ≤ ε since ε < M−1

K .
Furthermore, we can show that Km is convex. Let x, y ∈ Km. If x, y ∈ K−ε, then

[x, y] ⊂ K−ε since K−ε is convex and thus [x, y] ⊂ Km. If x ∈ K−ε and y ∈ (∂K)ε,
there is a z ∈ [x, y] such that [x, z] ⊂ K−ε and [z, y] ⊂ (∂K)ε. Hence, it follows
from (3.5) that [x, y] ⊂ Km. If x, y ∈ (∂K)ε and [x, y] ⊂ (∂K)ε, then [x, y] ⊂ Km

because of (3.5). If x, y ∈ (∂K)ε and [x, y] ∩K−ε 6= ∅, there are z1, z2 ∈ [x, y] such
that [x, z1] ⊂ (∂K)ε, [z1, z2] ⊂ K−ε and [z2, y] ⊂ (∂K)ε. Then, it follows again from
the convexity of K−ε and by (3.5) that [x, y] ⊂ Km.

For a convex body K, let s(K) denote the center of mass, Vn(K) the volume,
and R(K) the circumradius of K. Then, we define

K̃ :=
(
Vn(K)

)−1/n(
K − s(K)

)
.

As Vn(K̃) = 1 and s(K̃) = 0, a special case of [18, Lem. 4.1] yields that
(∫

K̃

|〈x, u〉|2dx
)1/2

≥
(

Γ(3)Γ(n)

2eΓ(n+ 3)

)1/2

max{hK̃(u), hK̃(−u)}

for u ∈ Sn−1. Then Cauchy-Schwarz’s inequality implies that

K̃ ⊂ I2(K̃)

(
Γ(3)Γ(n)

2eΓ(n+ 3)

)−1/2
Bn,

where

I2(L) :=

(∫

L

‖x‖2dx
) 1

2

for a convex body L. Since R(K) =
(
Vn(K)

)1/n
R(K̃), we obtain an upper bound

R(K) ≤
(

2eΓ(n+ 3)

Γ(3)Γ(n)

)1/2

Vn(K)1/nI2(K̃) (3.6)

of the circumradius of K.

Remark 3.7. Observe that I2(K̃) can be expressed in terms of the geometric mo-
ments of K up to order 2. More precisely,

I2(K̃) = µ0(K)−
1+n
n

( n∑

i=1

µ0(K)µ2ej(K)− µej(K)2
)1/2

,

where {e1, . . . , en} is the standard basis in Rn.
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The previous considerations allow us to formulate a strengthened version of The-
orem 3.6 for the whole class of convex bodies and not only those contained in a
prescribed compact set.

Theorem 3.8. Let K be a convex body. For ε > 0 there exists an m ∈ N and a
convex body Km which is uniquely determined by its geometric moments up to order
m among all convex bodies and fulfils

δH(K,Km) ≤ ε.

Proof. Without loss of generality we may assume that K ∈ C∞+ and Vn(K−ε) > 0.
Let

c(K, ε) :=

(
eΓ(n+ 3)

Γ(3)Γ(n)

2n+3 ωn
n+ 2

Vn(K−ε)
−1R(Kε)

n+2

)1/2

,

and choose
R > c(K, ε) (3.7)

such that K ⊂ RBn. By Theorem 3.6 there exists an m ∈ N and a convex body
Km ⊂ (3R + ε)Bn which is uniquely determined by its geometric moments up to
order m among all convex bodies contained in (3R + ε)Bn and fulfils

δH(K,Km) ≤ ε. (3.8)

Due to the proof of Theorem 3.6, we can assume that m ≥ 2 and K−ε ⊂ Km ⊂ Kε.
Then, condition (3.7) ensures that Km is uniquely determined among all convex
bodies. Namely, let L be a convex body with

µα(L) = µα(Km), α ∈ Nn
0 , with |α| ≤ m. (3.9)

Then, it follows by Remark 3.7 and a simple calculation that

I2(L̃) = I2(K̃m) ≤ I2(2Vn(Km)−1/nR(Km)Bn)

=

(
2n+2 ωn
n+ 2

Vn(Km)−(2+n)/nR(Km)n+2

)1/2

,

where we have used that K̃m ⊂ 2R(K̃m)Bn as s(K̃m) = 0. Thus, we obtain by (3.6)
that

R(L) ≤
(
eΓ(n+ 3)

Γ(3)Γ(n)

2n+3 ωn
n+ 2

Vn(Km)−1R(Km)n+2

)1/2

≤ c(K, ε).

Assumption (3.9) implies that s(L) = s(Km), so

sup
x∈L
‖x‖ ≤ sup

x∈L
‖x− s(L)‖+ ‖s(Km)‖ ≤ 3R + ε

as Km ⊂ (R+ ε)Bn by (3.8). Thus, L ⊂ (3R+ ε)Bn, so Km = L, and we obtain the
assertion.

Remark 3.9. Due to the one-to-one correspondence between the geometric mo-
ments up to order m and the Legendre moments up to order m of a convex body,
the uniqueness results stated in this section hold if the geometric moments are re-
placed by Legendre moments in the two-dimensional case.
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4 Stability results

In this section, we derive stability results for two-dimensional convex bodies con-
tained in the unit square. We derive an upper bound for the Nikodym distance of
convex bodies where the first (N + 1)2 moments are close in the Euclidean dis-
tance. The stability results are based on more general results for twice continuously
differentiable functions on the unit square.

4.1 Stability results for functions on the unit square

The study in this section uses ideas from [23] (see also [1]), which considers the
problem of recovering a real-valued function u defined on the interval (0, 1) from its
first N + 1 moments µ0(u), . . . , µN(u). In [23], it is shown that if u, v : (0, 1) → R
are absolutely continuous functions satisfying

N∑

k=0

|µk(u)− µk(v)|2 ≤ ε2

and
|u′(x)− v′(x)|2L2(0,1) ≤ E2

for some ε, E > 0, then

|u− v|2L2(0,1) ≤ min{ε2e3.5(n+1) + 1
4
(n+ 1)−2 : n = 0, . . . , N}.

Using the same ideas as [23], we deduce the following corresponding theorem in two
dimensions.

Theorem 4.1. If v, w ∈ C2([0, 1]2) are twice continuously differentiable functions
satisfying

N∑

i,j=0

|µij(v)− µij(w)|2 ≤ ε2

and
1

4

∣∣∣∣
d

dx1
(v − w)

∣∣∣∣
2

L2([0,1]2)

+
1

4

∣∣∣∣
d

dx2
(v − w)

∣∣∣∣
2

L2([0,1]2)

≤ E2

for some ε, E > 0, then

|v − w|2L2([0,1]2) ≤ min{a0(n+ 1)2e7(n+1)ε2 + (n+ 1)−2E2 : n = 0, . . . , N}

where a0 > 0.

Proof. Let hN be the orthogonal projection of u := v−w on the linear hull lin{xi1xj2 :
i, j = 0, . . . , N} with respect to the usual scalar product on L2([0, 1]2). Furthermore,
let

tN := u− hN

10



be the projection of u on the orthogonal complement of lin{xi1xj2 : i, j = 0, . . . , N}.
Then

hN(x1, x2) =
N∑

i,j=0

λij(u)Li(x1)Lj(x2)

and

tN(x1, x2) =
∞∑

i,j=0
i∨j>N

λij(u)Li(x1)Lj(x2),

where λij(u), i, j ∈ N0 are the Legendre moments of u. For i ∈ N0, the coefficients
of the polynomial Li are denoted by Cij, j = 0, . . . , i, that is

Li(x) =
i∑

j=0

Cijx
j, x ∈ [0, 1].

Then it follows for i, j = 0, . . . , N that

λij(u) =
i∑

k=0

j∑

l=0

CikCjl

∫

[0,1]2

u(x1, x2)x
k
1x

l
2d(x1, x2)

=
i∑

k=0

j∑

l=0

CikCjlµkl(u)

= (CMC>)ij, (4.1)

with

C :=




C00

C10 C11
... . . .

CN0 CN1 . . . CNN


 , and M := (µij(u))i,j=0,...,N .

The Frobenius norm of a square matrix A is defined as |A|F :=
√

tr(A>A), and
since this norm is submultiplicative, see [10, (3.3.4)], we obtain that

|hN |L2([0,1]2) =

√√√√
N∑

i,j=0

λij(u)2 =
√

tr(L>L)

= |L|F = |CMC>|F ≤ |C|F |M |F |C>|F
= |C|2F |M |F (4.2)

where L := (λij(u))i,j=0,...,N . The matrix C>C has N + 1 non-negative eigenvalues,
0 ≤ l0 ≤ l1 ≤ · · · ≤ lN , and C>C = H−1N , where HN is the Hilbert matrix

HN :=

(
1

i+ j + 1

)

i,j=0,...,N

,

11



see [23, (22)]. Since ‖HNe1‖ > 1, the Hilbert matrix HN has an eigenvalue larger
than 1, so the smallest eigenvalue l0 of H−1N is smaller than 1. This implies that

|C|2F = tr(C>C) =
N∑

i=0

li ≤ (N + 1)lN ≤ (N + 1)
lN
l0
≈ a0(N + 1)e3.5(N+1) (4.3)

with a constant a0 > 0, where we have used the approximation [23, (8)], see also
[24, p. 111]. From equation (4.2) and (4.3), we obtain that

|hN |L2([0,1]2) ≤ a0(N + 1)e3.5(N+1)

√√√√
N∑

i,j=0

µij(u)2. (4.4)

The shifted Legendre polynomials satisfy the differential equation

− d

dx1
[x1(1− x1)L′i(x1)] = i(i+ 1)Li(x1), x1 ∈ [0, 1], i ∈ N0,

see [23, (25)]. From this differential equation, we obtain by multiplication with
u(x1, x2), integration over [0, 1] with respect to x1 and twofold partial integration
for all x2 ∈ (0, 1) that

−
∫

[0,1]

Li(x1)
d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

]
dx1

= i(i+ 1)

∫

[0,1]

Li(x1)u(x1, x2)dx1.

(4.5)

By multiplication with Lj(x2) and integration with respect to x2, it follows from
(4.5) that

−
∫

[0,1]2
Li(x1)Lj(x2)

d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

]
dx1dx2

= i(i+ 1)

∫

[0,1]2
Li(x1)Lj(x2)u(x1, x2)dx1dx2.

This implies that the Legendre moments of the function

(x1, x2) 7→
d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

]

are equal to −i(i + 1)λij(u), i, j ∈ N0. Thus, we obtain from the theory of Hilbert
spaces and by partial integration that

∞∑

i,j=0

i(i+ 1)λij(u)2 =

∫

[0,1]2

d

dx1

[
x1(1− x1)

d

dx1
u(x1, x2)

](
−u(x1, x2)

)
d(x1, x2)

=

∫

[0,1]2
x1(1− x1)

(
d

dx1
u(x1, x2)

)2

d(x1, x2)

≤ 1

4

∣∣∣∣
d

dx1
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

. (4.6)
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In the same way, we conclude that
∞∑

i,j=0

j(j + 1)λij(u)2 ≤ 1

4

∣∣∣∣
d

dx2
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

. (4.7)

The inequalities (4.6) and (4.7) imply that

|tN |2L2([0,1]2) =
∞∑

i,j=0
i∨j>N

λij(u)2 ≤
∞∑

i=N+1

∞∑

j=0

λij(u)2 +
∞∑

i=0

∞∑

j=N+1

λij(u)2

≤
∞∑

i,j=0

i(i+ 1)

(N + 1)2
λij(u)2 +

∞∑

i,j=0

j(j + 1)

(N + 1)2
λij(u)2

≤ 1

(N + 1)2

(
1

4

∣∣∣∣
d

dx1
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

+
1

4

∣∣∣∣
d

dx2
u(x1, x2)

∣∣∣∣
2

L2([0,1]2)

)
, (4.8)

and as a consequence we obtain that

|v − w|2L2([0,1]2) = |hN |2L2([0,1]2) + |tN |2L2([0,1]2) ≤ a0(N + 1)2e7(N+1)ε2 +
1

(N + 1)2
E2.

4.2 Application to Convex Bodies

In this section, we approximate the indicator function 1K of a convex body K by
a smooth function and apply the result from the previous section. In this way, we
obtain an estimate for the Nikodym distance of two convex bodies in terms of the
Euclidean distance of their first (N + 1)2 geometric moments.

Theorem 4.2. If K,L ⊂ [0, 1]2 are convex bodies satisfying

N∑

i,j=0

|µij(K)− µij(L)|2 ≤ ε2,

for some ε ≥ 0, then

δN(K,L) ≤ min
{
a0(n+ 1)2e7(n+1)ε2 +

a1
(n+ 1)

: n = 0, . . . , N
}
,

with constants a0, a1 > 0.

Proof. Let u := 1K − 1L. As in the proof of Theorem 4.1, we let hN denote the
orthogonal projection of u on lin{xi1xj2 : i, j = 0, . . . , N} and let tN denote the
projection on the orthogonal complement of lin{xi1xj2 : i, j = 0, . . . , N}. In the proof
of Theorem 4.1, the smoothness of u is not used when the estimate (4.4) is derived.
Therefore, we obtain in the same way that

|hN |L2([0,1]2) ≤ a0(N + 1)e3.5(N+1)

√√√√
N∑

i,j=0

µij(u)2. (4.9)
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Using a mollification, see [16, p. 110], we obtain for every ρ > 0 a differentiable
function u(ρ) : [0, 1]2 → R approximating u in the L1-norm. More precisely, we
choose

u(ρ)(x) := (Jρ ∗ u)(x) =

∫

[0,1]2

Jρ(x− y)u(y)dy, x ∈ [0, 1]2,

where

Jρ =

{
c0ρ
−2e
− ρ2

ρ2−‖x‖2 , for ‖x‖ < ρ

0, for ‖x‖ ≥ ρ

with a constant c0 > 0 chosen such that |Jρ|L1(R2) = 1. Notice that c0 is independent
of ρ and that Jρ ∈ C∞(R2). From the definition of the mollification, we obtain that

‖u− u(ρ)‖∞ ≤ ‖u‖∞ + |Jρ|L1(R2)‖u‖∞ ≤ 2

and

(u− u(ρ))(x) = 0, x ∈ [K−ρ ∪ ([0, 1]2 \Kρ)] ∩ [L−ρ ∪ ([0, 1]2 \ Lρ)],

so

|u− u(ρ)|2L2([0,1]2) ≤ ‖u− u(ρ)‖
2
∞ V2([(Kρ \K) ∪ (K \K−ρ)] ∪ [(Lρ \ L) ∪ (L \ L−ρ)])

≤ 4 [V2(Kρ \K) + V2(K \K−ρ) + V2(Lρ \ L) + V2(L \ L−ρ)]

for ρ ∈ (0, 1). Then, the fact that

V2(K \K−ρ) ≤ V2(Kρ \K),

the Steiner formula, and the monotonicity of the intrinsic volumes imply that

|u− u(ρ)|2L2([0,1]2) ≤ 8[V2(Kρ \K) + V2(Lρ \ L)]

≤ 8[2ρ2π + 2ρ(V1(K) + V1(L))]

≤ (16π + 64)ρ ≤ 112ρ,

where V1 is the intrinsic volume of order 1, so V1(M) is half the boundary length
of a convex body M . For ρ ∈ (0, 1), let t(ρ)N be the orthogonal projection of u(ρ)
on the orthogonal complement of lin{xi1xj2 : i, j = 0, . . . , N}. Then it follows from
Pythagoras’ theorem and (4.8) that

|tN |L2([0,1]2) ≤ |tN − t
(ρ)
N |L2([0,1]2) + |t(ρ)N |L2([0,1]2)

≤ |u− u(ρ)|L2([0,1]2) +
1

N + 1
Eρ

≤ 11
√
ρ+

1

N + 1
Eρ,

where Eρ > 0 is some constant satisfying

1

4

∣∣∣∣
d

dx2
u(ρ)
∣∣∣∣
2

L2([0,1]2)

+
1

4

∣∣∣∣
d

dx1
u(ρ)
∣∣∣∣
2

L2([0,1]2)

≤ E2
ρ . (4.10)
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In order to obtain an expression for a constant Eρ that satisfies (4.10), we at first
observe that

d

dx2
u(ρ)(y) =

d

dx1
u(ρ)(y) = 0, y ∈ [K−ρ ∪ ((0, 1)2 \Kρ)] ∩ [L−ρ ∪ ((0, 1)2 \ Lρ)].

Furthermore,

d

dx1
u(ρ)(x) =

([
d

dx1
Jρ

]
∗ u
)

(x) =

∫

[0,1]2

[
d

dx1
Jρ

]
(x− y)u(y)dy

≤
∫

R2

∣∣∣∣
d

dx1
Jρ(y)

∣∣∣∣dy = ρ−3
∫

R2

∣∣∣∣
[
d

dx1
J1

](
y

ρ

)∣∣∣∣dy

= ρ−1
∫

R2

∣∣∣∣
[
d

dx1
J1

]
(y)

∣∣∣∣dy ≤ c1ρ
−1

for x ∈ R2 and a constant c1 > 0 independent of ρ. It follows that
∣∣∣∣
d

dx1
u(ρ)
∣∣∣∣
2

L2([0,1]2)

≤ c21ρ
−2[V2(Kρ \K) + V2(K \K−ρ) + V2(Lρ \ L) + V2(L \ L−ρ)

]

≤ c21112

4ρ
.

In the same way, we obtain
∣∣∣∣
d

dx2
u(ρ)
∣∣∣∣
2

L2([0,1]2)

≤ c22112

4ρ

for a suitable c2 > 0 independent of ρ. Therefore, we can choose

E2
ρ := c3ρ

−1

for ρ ∈ (0, 1) and some constant c3 > 0 independent of ρ. Letting ρ = (N + 1)−1, we
obtain that

|tN |2L2([0,1]2) ≤
(

11
√
ρ+

1

N + 1

√
c3ρ
−1/2

)2

= 112ρ+ 22
√
c3

1

N + 1
+

c3
(N + 1)2ρ

= (112 + 22
√
c3 + c3)

1

N + 1
,

which leads to the assertion.

The matrix C defined in the proof of Theorem 4.1 is ill-conditioned and intro-
duces an exponential factor in the upper bound for the Nikodym distance derived
in Theorem 4.2. If the geometric moments are replaced by Legendre moments, the
use of the matrix C is avoided and the upper bound can be improved.
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Theorem 4.3. If K,L ⊂ [0, 1]2 are convex bodies satisfying
N∑

i,j=1

|λij(K)− λij(L)|2 ≤ ε2 (4.11)

for some ε ≥ 0, then
δN(K,L) ≤ ε2 +

a1
N + 1

(4.12)

with a constant a1 > 0.

The proof of Theorem 4.3 follows the lines of the proof of Theorem 4.2. Due to
inequality (4.11), the upper bound on the L2-norm of hN in (4.9) can be replaced
by ε. This yields the upper bound (4.12) of the Nikodym distance.

Remark 4.4. If the first (N + 1)2 geometric moments of two convex bodies K,L ⊂
[0, 1]2 are identical, then the first (N + 1)2 Legendre moments of K and L are
identical. In this case, Theorem 4.2 (or Theorem 4.3) implies that δN(K,L) ≤ a1

N+1
.

Remark 4.5. The Nikodym metric δN is extended in the natural way to the set of
convex, compact subsets of the unit square. It then defines a pseudo metric, which we
also denote by δN . As the proofs of Theorems 4.2 and 4.3 do not use that the interior
of the convex bodies are nonempty, the stability results hold for convex, compact
subsets of the unit square and the pseudo metric δN . In the following sections, we
repeatedly consider the distance δN(K,Pk) for a convex body K ⊂ [0, 1]2 and a
sequence of polygons (Pk)k∈N contained in [0, 1]2, see Theorems 5.1, 6.3 and 6.6. If
δN(K,Pk)→ 0 for k →∞, then intPk 6= ∅ for k sufficiently large. This implies that
δN in the expression δN(K,Pk) is a proper metric for k sufficiently large.

5 Least Squares Estimators based on Moments

Let K ⊂ [0, 1]2 be a convex body and assume that its geometric moments µij(K) for
i, j ∈ N0 are given. For m ≥ 3, let P(m) denote the set of convex polygons contained
in [0, 1]2 with at most m vertices. Any polygon P̂m ∈ P(m) satisfying

P̂m = argmin
{ N∑

i,j=0

(µij(K)− µij(P ))2 : P ∈ P(m)
}

is called a least squares estimator of K with respect to the first (N + 1)2 geometric
moments on the space P(m), where N ∈ N0. Likewise, we define a least squares
estimator based on the Legendre moments. Assume that the Legendre moments
λij(K), i, j ∈ N0 of K are given. Then, any polygon Q̂m ∈ P(m) satisfying

Q̂m = argmin
{ N∑

i,j=0

(λij(K)− λij(P ))2 : P ∈ P(m)
}

is called a least squares estimator of K with respect to the first (N + 1)2 Legendre
moments on the space P(m). Since the polygons in P(m) are uniformly bounded,
Blaschke’s selection theorem ensures the existence of least squares estimators P̂m
and Q̂m.
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Theorem 5.1. Let P̂m and Q̂m be least squares estimators of K on the space P(m)

with respect to the first (N + 1)2 geometric moments and the first (N + 1)2 Legendre
moments. Then

δN(P̂m, K) ≤
(
a0(n+ 1)2e7(n+1)

(
1 + 1

2
ln(2n+ 1)

)2 8π3 + 16π

m2
+

a1
(n+ 1)

)

for n = 0, . . . , N and

δN(Q̂m, K) ≤ 8π3 + 16π

m2
+

a1
(N + 1)

.

Proof. Let P ∈ P(m) and define u := 1P − 1K . Using the notation hN , C, L,M and
HN from the proof of Theorem 4.1, we obtain that

√√√√
N∑

i,j=0

(µij(P )− µij(K))2

= |M |F = |C−1L(C−1)>|F ≤ |C−1|
2
F |L|F

≤
(
1 + 1

2
ln(2N + 1)

)
|hN |L2([0,1]2) ≤

(
1 + 1

2
ln(2N + 1)

)
|u|L2([0,1]2)

=
(
1 + 1

2
ln(2N + 1)

)√
δN(K,P ),

where we have used that

|C−1|2F = tr(C−1(C−1)>) = tr(HN)

=
N∑

i=0

1

2i+ 1
≤ 1 +

N∫

0

1

2x+ 1
dx = 1 + 1

2
ln(2N + 1)

by the definition of the Hilbert matrix HN . From [4, p. 730], the monotonicity of
the intrinsic volumes, and the fact that sin(x) ≤ x for x ≥ 0, we obtain that

min
P∈P(m)

δH(K,P ) ≤ V1(K) sin( π
m

)

m(1 + cos( π
m

))
≤ 2π

m2
.

Further, the definition of the Hausdorff distance and the Steiner formula yield that

δN(K,P ) ≤ V2((K + δH(K,P )B2) \K) + V2((P + δH(K,P )B2) \ P )

≤ 8 δH(K,P ) + 2π δH(K,P )2

for P ∈ P(m), so

min
P∈P(m)

δN(K,P ) ≤ 8π3 + 16π

m2
. (5.1)

Therefore,

min
P∈P(m)

N∑

i,j=0

(µij(P )− µij(K))2 ≤
(
1 + 1

2
ln(2N + 1)

)2
min

P∈P(m)
δN(K,P )

≤
(
1 + 1

2
ln(2N + 1)

)2 8π3 + 16π

m2
.
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Then, Theorem 4.2 and Remark 4.5 yields that

δN(P̂m, K) ≤ a0(n+ 1)2e7(n+1)
(
1 + 1

2
ln(2n+ 1)

)2 8π3 + 16π

m2
+

a1
(n+ 1)

for n = 0, . . . , N . For P ∈ P(m), Parseval’s identity yields that

N∑

i,j=0

(λij(K)− λij(P ))2 ≤ |1K − 1P |2L2([0,1]2) = δN(K,P ),

so we obtain from (5.1), Theorem 4.3 and Remark 4.5 that

δN(Q̂m, K) ≤ 8π3 + 16π

m2
+

a1
N + 1

for P ∈ P(m)

In Theorem 5.1, the upper bound on the distance between the convex body K
and the least squares estimator P̂m based on geometric moments decreases polyno-
mially in the number of vertices m, but increases exponentially in the number of
moments N . However, for the least squares estimator Q̂m based on Legendre mo-
ments, the upper bound decreases polynomially in both N and m. Therefore, we
concentrate on reconstruction from Legendre moments in Section 6.

6 Reconstruction based on Legendre moments

In this section, we develop a reconstruction algorithm for a convex body K ⊂ [0, 1]2

based on Legendre moments. To simplify an optimization problem, we approximate
K by a polygon with prescribed outer normals. Thus, the input of the algorithm
is the first (N + 1)2 Legendre moments of K for some N ∈ N0, and the output is
a polygon P ⊂ [0, 1]2 with prescribed outer normals satisfying that the Euclidean
distance between the first (N + 1)2 Legendre moments of P and K is minimal.

6.1 Reconstruction algorithm

Let 0 ≤ θ1 < · · · < θn < 2π, and let ci := cos(θi), si := sin(θi) and ui := [ci, si]
> for

1 ≤ i ≤ n. We assume that

{ n∑

i=1

λiui : λi ≥ 0, 1 ≤ i ≤ n
}

= R2. (6.1)

For h1, . . . , hn ∈ (−∞,∞), let

P (h1, . . . , hn) :=
n⋂

i=1

{x ∈ R2 : 〈x, ui〉 ≤ hi}.
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A vector (h1, . . . , hn) ∈ (−∞,∞)n is called consistent with respect to (θ1, . . . , θn)
if the polygon P (h1, . . . , hn) has support function value hi in the direction ui for
1 ≤ i ≤ n. In [15, p. 1696], it is shown that (h1, . . . , hn) is consistent if and only if

hi−1(si+1ci − ci+1si)− hi(si+1ci−1 − ci+1si−1) + hi+1(sici−1 − cisi−1) ≥ 0

for 1 ≤ i ≤ n, where we define h0 := hn and hn+1 := h1. We let P(θ1, . . . , θn)
denote the set of polygons P (h1, . . . , hn) ⊂ [0, 1]2 where (h1, . . . , hn) ∈ (−∞,∞)n is
consistent with respect to (θ1, . . . , θn).

Now let K ⊂ [0, 1]2 be a convex body. Any polygon P̂N,n ∈ P(θ1, . . . , θn) satis-
fying

P̂N,n = argmin
{ N∑

k,l=0

(λkl(K)− λkl(P ))2 : P ∈ P(θ1, . . . , θn)
}

is called a least squares estimator of K with respect to the first (N+1)2 moments on
the space P(θ1, . . . , θn). As P(θ1, . . . , θn) is closed in the Hausdorff metric, Blaschke’s
selection theorem ensures the existence of a least squares estimator.

In the following, we let the directions 0 ≤ θ1 < · · · < θn < 2π be fixed. We use
the notation si, ci and ui as introduced above and assume that condition (6.1) is
satisfied. When (h1, . . . , hn) ∈ (−∞,∞)n is consistent with respect to (θ1, . . . , θn),
we write

vi := H(ui, hi) ∩H(ui+1, hi+1), 1 ≤ i ≤ n

for the vertices of P (h1, . . . , hn), see Figure 1.

↑

↑↑

↑ ↑

↑
↑

u1

u2

v1
v2

Figure 1: Polygons with normals u1, . . . , un.

In Lemma 6.1, the geometric moments and the Legendre moments of polygons
of the form P (h1, . . . , hn) are expressed by means of (h1, . . . , hn).

Lemma 6.1. Let (h1, . . . , hn) ∈ (−∞,∞)n be consistent with respect to (θ1, . . . , θn).
Then the geometric moments and the Legendre moments of P (h1, . . . , hn) are poly-
nomials in (h1, . . . , hn). More precisely,

µkl(P (h1, . . . , hn)) =
n∑

i=1

k+l+1∑

q1=0

k+l+2−q1∑

q2=0

Mkl(i, q1, q2)h
q1
i h

q2
i+1h

k+l+2−q1−q2
i+2 (6.2)
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↑

↑↑

↑ ↑

↑

↑

u1

u2

v1
v2

0

↑

↑↑

↑ ↑

↑

↑

u1

u2

v1
v2

0

Figure 2: Representation of polygons P (h1, . . . , hn) as difference of the sets A (red and
green) and B (red).

and

λkl(P (h1, . . . , hn)) =
n∑

i=1

k+l∑

s=0

s+1∑

q1=0

s+2−q1∑

q2=0

Lkl(i, s, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2 ,

for k, l ∈ N0 and known real constants Mkl(i, q1, q2) and Lkl(i, s, q1, q2).

Proof. Observe that
P (h1, . . . , hn) = cl(A \B),

where
A :=

⋃

1≤i≤n
hi+1≥0

conv{0, vi, vi+1} and B :=
⋃

1≤i≤n
hi+1<0

conv{0, vi, vi+1}

and v1, . . . , vn are the vertices of P (h1, . . . , hn), see Figure 2. In particular, we have
B ⊂ A, so the moments of P (h1, . . . , hn) are equal to the sum

µkl(P (h1, . . . , hn)) =
n∑

i=1

sign(hi+1)µkl(conv{0, vi, vi+1}). (6.3)

For i = 1, . . . , n, let ui := (−si, ci)>. Then there exist unique ti, ti ∈ R with

vi = hiui + tiui = hi+1ui+1 − tiui+1. (6.4)

This implies that
(
ui, ui+1

)(ti
ti

)
= hi+1ui+1 − hiui,

and thus
(
ti
ti

)
=

1

−sici+1 + cisi+1

(
ci+1 si+1

−ci −si

)(
hi+1ci+1 − hici
hi+1si+1 − hisi

)

=
1

−sici+1 + cisi+1

(
hi+1 − hi(cici+1 + sisi+1)
hi − hi+1(cici+1 + sisi+1)

)
.
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Substituting this expression of (ti, ti)
> into (6.4), the vertex vi can be expressed by

(hi, hi+1) and (ui, ui+1). We obtain that

vi =
1

cisi+1 − sici+1

(
hisi+1 − hi+1si
hi+1ci − hici+1

)
. (6.5)

Now define Ti(x1, x2) :=
(
vi, vi+1

)(x1
x2

)
=

(
vi,1x1 + vi+1,1x2
vi,2x1 + vi+1,2x2

)
. Integration by sub-

stitution then yields that

µkl(conv{0, vi, vi+1})

=

∫

conv{0,vi,vi+1}
xk1x

l
2 d(x1, x2)

=

∫

conv{0,e1,e2}
(vi,1x1 + vi+1,1x2)

k(vi,2x1 + vi+1,2x2)
l

× |vi,1vi+1,2 − vi,2vi+1,1| d(x1, x2).

Using (6.4), the Jacobian determinant of Ti can be expressed as hi+1(ti + ti+1), and
since ti + ti+1 is the length of the facet of P (h1, . . . , hn) bounded by vi and vi+1, it
follows that

sign(vi,1vi+1,2 − vi,2vi+1,1) = sign(hi+1).

This implies that

sign(hi+1)µkl(conv{0, vi, vi+1})

=

∫ 1

0

∫ x2

0

(vi,1x1 + vi+1,1x2)
k(vi,2x1 + vi+1,2x2)

l(vi,1vi+1,2 − vi,2vi+1,1)dx1dx2

=

∫ 1

0

∫ x2

0

k∑

p=0

l∑

q=0

(
k

p

)(
l

q

)
vpi,1v

k−p
i+1,1v

q
i,2v

l−q
i+1,2x

p+q
1 xk+l−p−q2

× (vi,1vi+1,2 − vi,2vi+1,1)dx1dx2

=
k∑

p=0

l∑

q=0

(
k

p

)(
l

q

)
vpi,1v

k−p
i+1,1v

q
i,2v

l−q
i+1,2

× 1

(p+ q + 1)(k + l + 2)
(vi,1vi+1,2 − vi,2vi+1,1)

=
k∑

p=0

l∑

q=0

p+q+1∑

q1=0

k+l+2−q1∑

q2=p+q+1−q1
M̃kl(i, q1, q2)h

q1
i h

q2
i+1h

k+l+2−q1−q2
i+2

=
k+l+1∑

q1=0

k+l+2−q1∑

q2=0

Mkl(i, q1, q2)h
q1
i h

q2
i+1h

k+l+2−q1−q2
i+2 ,

where the constants M̃kl(i, q1, q2) and Mkl(i, q1, q2) can be derived using (6.5). In
combination with (6.3), this yields (6.2). Furthermore, we obtain from formula (4.1)
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for the Legendre moments that

λkl(P (h1, . . . , hn)) =
k∑

p=0

l∑

q=0

CkpClqµpq(P (h1, . . . , hn))

=
k+l∑

s=0

s∧l∑

q=s−k∨0
Ck,s−qClq

n∑

i=1

s+1∑

q1=0

s+2−q1∑

q2=0

Ms−q,q(i, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2

=
n∑

i=1

k+l∑

s=0

s+1∑

q1=0

s+2−q1∑

q2=0

Lkl(i, s, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2 ,

where

Lkl(i, s, q1, q2) :=
s∧l∑

q=s−k∨0
Ck,s−qClqMi,s−q,q(q1, q2).

The structure of P(θ1, . . . , θn) ensures that a least squares estimator can be
reconstructed using polynomial optimization. This follows as Lemma 6.1 yields that
P̂N,n = P (ĥ1, . . . , ĥn) is a least squares estimator of K, where (ĥ1, . . . , ĥn) is the
solution of the polynomial optimization problem

(ĥ1, . . . , ĥn) = argmin{f(h1, . . . , hn) : (h1, . . . , hn) ∈ An} (6.6)

where the objective function f : (−∞,∞)n → [0,∞) is defined by

f(h1, . . . , hn) =
N∑

k,l=0

(
λkl(K)−

n∑

i=1

k+l∑

s=0

s+1∑

q1=0

s+2−q1∑

q2=0

Lkl(i, s, q1, q2)h
q1
i h

q2
i+1h

s+2−q1−q2
i+2

)2

and the feasible set An is the set of vectors (h1, . . . , hn) ∈ (−∞,∞)n which fulfil the
inequalities

0 ≤ hi−1(si+1ci − ci+1si)− hi(si+1ci−1 − ci+1si−1) + hi+1(sici−1 − cisi−1),

0 ≤ 1

cisi+1 − sici+1

(hisi+1 − hi+1si) ≤ 1,

0 ≤ 1

cisi+1 − sici+1

(hi+1ci − hici+1) ≤ 1

for 1 ≤ i ≤ n. Algorithms for solving polynomial optimization problems like (6.6)
have been developed only recently. We mention the software GloptiPoly, see [14],
which is recommended for small-scale problems. Another possible choice for solving
a problem like (6.6) seems to be the software SparsePop, see [25], which is designed
for problems with a special sparse structure.

6.2 Convergence of the reconstruction algorithm

In this section, we use the stability result Theorem 4.3 to show that the output
polygon of the reconstruction algorithm described in the previous section converges
to K in the Nikodym distance when the number n of outer normals of the polygon
and the number N of moments increase.
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Lemma 6.2. Let K ⊂ [0, 1]2 be a convex body, 0 ≤ θ1 < · · · < θn < 2π and
θn+1 = θ1. Assume that condition (6.1) is satisfied. Then

δN
(
P (hK(θ1), . . . , hK(θn)), K

)
≤ 1√

2
V1(K) max

1≤i≤n
tan

(
θi+1 − θi

2

)

≤
√

2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
.

Proof. Choose x1, . . . , xn ∈ ∂K such that (cos(θi), sin(θi))
> is an outer normal of K

in xi. Let
Pin := conv{x1, . . . , xn}.

Note that Pin ⊂ K. Recall that the vertices of P (hK(θ1), . . . , hK(θn)) are denoted by
v1, . . . , vn and let Ti := conv{xi, xi+1, vi}, ci := ‖xi+1− xi‖ and γi := π− (θi+1− θi).
Then, it holds obviously

P (hK(θ1), . . . , hK(θn)) \ intPin =
n⋃

i=1

Ti, (6.7)

see Figure 3. Observe that the area of a triangle where one angle and the length of

↑

↑↑

↑

↑

↑ ↑

ui

ui+1

K

↑

↑↑

↑

↑

↑ ↑

ui

ui+1ci

i

Figure 3: On the left, K and the polytope P (hK(u1), . . . , hK(un)). On the right,
P (hK(u1), . . . , hK(un)) \ Pin coloured in red.

the side opposite to the angle are prescribed is maximal if the remaining angles are
equal. Thus,

V2(Ti) ≤ 1
4
c2i cot(γi/2) = 1

4
c2i tan

(
θi+1 − θi

2

)
. (6.8)

Equations (6.7) and (6.8) imply that

δN
(
P (hK(θ1), . . . , hK(θn)), K

)
≤ V2(P (hK(θ1), . . . , hK(θn)) \ Pin)

≤ 1
4

max
1≤i≤n

tan

(
θi+1 − θi

2

) n∑

i=1

c2i ,

and since c2i /2 ≤ ci/
√

2 and
∑n

i=1 ci = 2V1(Pin), we arrive at

δN
(
P (hK(θ1), . . . , hK(θn)), K

)
≤ 1√

2
V1(Pin) max

1≤i≤n
tan

(
θi+1 − θi

2

)
.
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The monotonicity of intrinsic volumes with respect to set inclusion then yields the
assertion.

Theorem 6.3. Let K ⊂ [0, 1]2 be a convex body, 0 ≤ θ1 < · · · < θn < 2π, θn+1 = θ1
and assume that 0, π

2
, π, 3π

2
∈ {θ1, . . . , θn}. Any least squares estimator P̂N,n of K on

P(θ1, . . . , θn) satisfies that

δN(P̂N,n, K) ≤
√

2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
+

a1
N + 1

,

where a1 > 0 is a constant.

Proof. Since 0, π
2
, π, 3π

2
∈ {θ1, . . . , θn} and K ⊂ [0, 1]2 it follows that

P (hK(θ1), . . . , hK(θn)) ⊂ [0, 1]2

and thus P (hK(θ1), . . . , hK(θn)) ∈ P(θ1, . . . , θn). Then the definition of P̂N,n and
Parseval’s identity yield that

N∑

i,j=0

(λij(K)− λij(P̂N,n))2 ≤
N∑

i,j=0

[λij(K)− λij(P (hK(θ1), . . . , hK(θn)))]2

≤ δN(P (hK(θ1), . . . , hK(θn)), K).

Thus, an application of Lemma 6.2 implies that

N∑

i,j=0

(λij(K)− λij(P̂N,n))2 ≤
√

2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
. (6.9)

Then the result follows from Theorem 4.3 and Remark 4.5.

Remark 6.4. If we choose n = 4m for some m ∈ N and equidistant angles θi :=
2π
(
i−1
n

)
for 1 ≤ i ≤ n, then 0, π

2
, π, 3π

2
∈ {θ1, . . . , θn} and we obtain

√
2 max
1≤i≤n

tan

(
θi+1 − θi

2

)
≈
√

2π

n
≈





0.05, n = 100,

0.005, n = 1000,

0.0025, n = 2000.

In the following, we write θ(1), . . . , θ(n) for a permutation of θi ∈ [0, 2π), 1 ≤ i ≤ n
satisfying θ(1) ≤ · · · ≤ θ(n). From Theorem 6.3, we then obtain Corollary 6.5.

Corollary 6.5. Let K ⊂ [0, 1]2 be a convex body and let (θi)i∈N be a dense sequence
in [0, 2π) such that θi 6= θj for i 6= j and (θ1, θ2, θ3, θ4) = (0, π

2
, π, 3π

2
). For n,N ∈ N,

let P̂N,n be a least squares estimator of K with respect to the (N + 1)2 first Legendre
moments on the space P(θ(1), . . . , θ(n)). Then

δN(K, P̂N,n)→ 0 for n,N →∞.
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6.3 Reconstruction from noisy measurements

The reconstruction algorithm described in Section 6.1 requires knowledge of exact
Legendre moments of a convex body. The reconstruction algorithm can be modified
such that it allows for noisy measurements of Legendre moments. Let N ∈ N0, and
assume that K ⊂ [0, 1]2 is a convex body where measurements of the first (N + 1)2

Legendre moments are known. To include noise, we assume that the measurements
are of the form

λ̃kl(K) = λkl(K) + εNkl (6.10)

for k, l = 0, . . . , N , where εNkl, k, l = 0, . . . , N are random variables with zero means
and finite variances bounded by a constant σ2

N . Let 0 ≤ θ1 < · · · < θn < 2π satisfy
condition (6.1). Any polygon P̃N,n ∈ P(θ1, . . . , θn) satisfying

P̃N,n = argmin
{ N∑

k,l=0

(λ̃kl(K)− λkl(P ))2 : P ∈ P(θ1, . . . , θn)
}

is called a least squares estimator of K with respect to the measurements (6.10) on
the space P(θ1, . . . , θn). As the set P(θ1, . . . , θn) is closed in the Hausdorff metric,
Blaschke’s selection theorem ensures the existence of a least squares estimator.

As in Section 6.1, a least squares estimator can be found using polynomial opti-
mization. Let (h̃1, . . . , h̃n) be a solution to the polynomial optimization problem (6.6)
with the Legendre moments λkl(K) ofK replaced by the measurements λ̃kl(K) of the
Legendre moments in the objective function f . Then P (h̃1, . . . , h̃n) ∈ P(θ1, . . . , θn)
is a least squares estimator of K with respect to the measurements (6.10).

Now, let PN,n(ε) denote the random set of least squares estimators of K with
respect to the measurements (6.10) on the space P(θ1, . . . , θn). When the noise vari-
ables are defined on a complete probability space (Ω,F ,P), it follows by arguments
as in [11, p. 27] (see also [19, App. C]) that supP∈PN,n(ε) δN(K,P ) is (F ,B(R))-
measurable. We can then formulate the following theorem, which ensures consis-
tency of the reconstruction algorithm under certain assumptions on the variances of
the noise variables.

Theorem 6.6. Let (θi)i∈N be a dense sequence in [0, 2π) such that θi 6= θj for i 6= j
and (θ1, θ2, θ3, θ4) = (0, π

2
, π, 3π

2
).

(i) If σ2
N = O( 1

N2+ε ) for some ε > 0, then supP∈PN,n(ε) δN(K,P )→ 0 in mean and
in probability for n,N →∞.

(ii) If σ2
N = O( 1

N3+ε ) for some ε > 0, then supP∈PN,n(ε) δN(K,P )→ 0 almost surely
for n,N →∞.

Proof. Let P ∈ PN,n(ε) and let P̂N,n ∈ P(θ(1), . . . , θ(n)) denote a least squares esti-
mator of K with respect to the exact Legendre moments. By using the inequality
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(x+ y)2 ≤ 2(x2 + y2) for x, y ∈ R and properties of P and P̂N,n, we obtain that

N∑

k,l=0

(λkl(K)− λkl(P ))2 ≤ 2
N∑

k,l=0

(
(λ̃kl(K)− λkl(P ))2 + ε2Nkl

)

≤ 2
N∑

k,l=0

(λ̃kl(K)− λkl(P̂N,n))2 + 2
N∑

k,l=0

ε2Nkl

≤ 4
N∑

k,l=0

(λkl(K)− λkl(P̂N,n))2 + 6
N∑

k,l=0

ε2Nkl.

Using the upper bound (6.9) on
∑N

k,l=0(λkl(K)− λkl(P̂N,n))2 derived in the proof of
Theorem 6.3, we arrive at

N∑

k,l=0

(λkl(K)− λkl(P ))2 ≤ 4
√

2 max
1≤i≤n

∣∣∣∣tan

(
θ(i) − θ(i+1)

2

)∣∣∣∣+ 6
N∑

k,l=0

ε2Nkl,

where θ(1) < · · · < θ(n) is an ordering of θ1, . . . , θn and θ(n+1) := θ1. In the notation,
we suppress that the ordering depends on n. Then it follows from Theorem 4.3 and
Remark 4.5 that

sup
P∈PN,n(ε)

δN(K,P ) ≤ 4
√

2 max
1≤i≤n

∣∣∣∣tan

(
θ(i) − θ(i+1)

2

)∣∣∣∣+ 6
N∑

k,l=0

ε2Nkl +
a1

N + 1
.

The mean of the sum of the squared error terms are bounded by (N + 1)2σ2
N , and

the assumption that σ2
N = O( 1

N2+ε ) ensures that (N + 1)2σ2
N → 0 for N → ∞. As

the sequence (θi)i∈N is dense in [0, 2π), we further have that

max
1≤i≤n

∣∣∣∣tan

(
θ(i) − θ(i+1)

2

)∣∣∣∣→ 0

for n → ∞. Hence, supP∈PN,n(ε) δN(K,P ) → 0 in mean and in probability for
n,N →∞.

If σ2
N = O( 1

N3+ε ), then
∑∞

N=0(N+1)2σ2
N <∞, which ensures that

∑N
k,l=0 ε

2
Nkl → 0

almost surely for N → ∞. Then, supP∈PN,n(ε) δN(K,P ) → 0 almost surely for
N, n→∞.
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