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Part I: Theoretical Results

1 Introduction

Diffusion processes defined by stochastic differential equations are important in
many sciences from a modeling point of view. In some applications, e.g. in mathe-
matical finance, the stochastic differential equation emerges directly from theoretical
modeling considerations, and in other cases it is derived as a stochastic analogue of
a deterministic model given by an ordinary differential equation. The latter type
of applications is particularly important in many natural sciences where ordinary
differential equations are widely used as theoretical deterministic models for physi-
cal phenomena, see e.g. Erlandsen & Thyssen (1983), Guttorp & Kulperger (1984),
Thyssen et al (1990), Madsen & Holst (1991), Madsen & Melgaard (1991), Pedersen
(1994c¢) and Jensen et al (1994). In stochastic modeling of continuous-time phenom-
ena it is very natural and desirable to apply continuous-time stochastic processes
such as diffusion processes, but the statistical analysis of a diffusion process must
of course be based on discrete-time observations of the process. For some special
diffusion processes this can be done by means of classical likelihood methods, see e.g.
Pedersen (1993b,1994c) for a treatment of Gaussian diffusion processes, but for the
vast majority of diffusion processes this is impossible since the transition densities
are usually unknown, see section 2.

In this paper we consider general methods for the statistical analysis of discretely
observed diffusion processes. Various methods for the estimation of unknown param-
eters in stochastic differential equations are presented, and corresponding asymp-
totic results to be used for hypothesis testing and for the calculation of confidence
regions for the unknown parameters are also discussed. Finally some general tools
for the validation of parametric statistical models given by discretely observed dif-
fusion processes are presented. Section 2 contains a brief historical sketch of the
development of statistical methods for the analysis of discretely observed diffusion
processes. In section 3 we consider the approximate likelihood inference approach
for discretely observed diffusion processes that was developed in Pedersen (1993a,c).
The quasi-likelihood methods for discretely observed diffusion processes studied in
Pedersen (1994b) are reviewed in section 4, and the general methods proposed in
Pedersen (1994a) for the validation of parametric statistical models given by dis-
cretely observed diffusion processes are reviewed in section 5.



2 Historical sketch

Statistical inference about the parameter § € © C RP in the stochastic differential
equation
dXt = b(t, Xt, O)dt + O'(t, Xt, H)th, X() = Xy, t Z O, (1)

where W is an r-dimensional Wiener process, b : [0,00) x R* = R% and o : [0, 00) x
R — M (the set of d x r matrices), based on discrete observations of X at
time-points 0 = t; < t; < --- < t, should ideally be based on the log-likelihood
function for 6

En (9) = logp(ti_l, Xti—l R tz', Xti; 0),

since the corresponding maximum likelihood estimator 6, for @ is known in many
cases to have the usual good properties, see Billingsley (1961) and Dacunha-Castelle
& Florens-Zmirou (1986). Here p(s,z,t,y;6) denote the transition densities of X.
Classical likelihood inference about € based on £,() can for instance be performed
for Gaussian diffusion processes, see Pedersen (1993b,1994c), but in general this is
impossible since the transition densities of X are usually unknown.

When the transition densities of X are unknown the first approach was to per-
form the inference about 6 by means of a discretization of the likelihood function
for # based on continuous observation of X. To understand the developments and
drawbacks of this approach it is instructive first to review the theory for continuous
observation of X, see also Basawa & Prakasa Rao (1980), Kutoyants (1984) and
Prakasa Rao (1985). It is characteristic for the statistical analysis of continuous
observation of X that maximum likelihood estimation of unknown parameters in
o is impossible, since the distributions of a continuous path (X;)cjo,r for different
values of # are non-equivalent when o depends on #. This means that ¢ must be
considered known, i.e. o(t,z;0) = o(t,x). However, in some cases o can be calcu-
lated in advance by means of the quadratic variation of X, see Le Breton (1974),
Brown & Hewitt (1975) and Le Breton & Musiela (1984). This is for instance the
case when o is a constant matrix, in which case
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Here [X|] denotes the quadratic variation of X, and 7 denotes matrix transposition.
Assuming that o is a known function, the log-likelihood function for # based on a
continuous observation of X in the time-interval [0,7'] is under certain conditions,
see Liptser & Shiryayev (1977), given by

T 1 (T
.(0) = /O b(t, Xi50)"alt, X)) HdX, — 5 /O bt, Xs: 0)Talt, X:) " b(t, Xy 0)dL.



The corresponding maximum likelihood estimator for # is denoted by ér_cp Liptser
& Shiryayev (1977) calculated in a special case the bias and mean square error
of é%, but in general there are no exact results about é% for fixed T. Kutoyants
(1977,1984) studied the asymptotic behaviour of 65 on a fixed time-interval [0, 7]
for one-dimensional diffusion processes as o(t,z;0) = o (a scalar) tends to zero,
and proved in this sense the consistency and asymptotic normality of é%. The ma-
jority of asymptotic studies of é% has however been for 7' tending to infinity and
for a fixed known diffusion coefficient o(¢,x). In these studies, 65 is in particular
shown to be consistent and asymptotically normally distributed as 7' tends to in-
finity. The case where b depends linearly on 6 was studied by Le Breton (1974),
Taraskin (1974), Brown & Hewitt (1975) and Le Breton & Musiela (1984), whereas
Lanska (1979) considered a general dependency of b on §. The methods used by
Lanska (1979) are however essentially only applicable for one-dimensional diffusion
processes, since they rely on the fact that £5.(f) can be written entirely in terms of
stochastic Lebesgue integrals for one-dimensional diffusion processes. In these pa-
pers the asymptotic distribution of é% is obtained via a non-random normalization
proportional to v/T. Barndorff-Nielsen & Sgrensen (1991,1994) discuss in a general
context several alternative non-random and random measures of information about
6 derived from martingale limit theory, see also Feigin (1976). These martingale
tools and results have been applied by Kloeden et al (1992) in the study of expo-
nential families of stochastic processes of diffusion type, which in particular covers
continuously observed diffusion processes with b depending linearly on #, since the
distributions of (X¢)scp,7 for all § € © in such cases constitute an exponential
family of probability measures for every fixed T. A general treatment of so-called
exponential families of stochastic processes is given in Kuchler & Sgrensen. In the
preceding discussion we have assumed that o can be considered a known function
o(t,z). This condition is not satisfied if o depends on unknown parameters that can
not be identified in advance, i.e. o depends on #, and in such cases it is clear from
the non-equivalency of the distributions of (X);c[,r] for different values of § that 6
must be estimated by some alternative method. Hutton & Nelson (1986) suggested
in such cases to use a quasi-score function for . When ¢ does not depend on 6 the
score function for # is under certain regularity conditions given by

. T, T .
i.(0) = /0 b(t, X3 0)Talt, X;) 1 dX, — /0 b(t, Xi;0) a(t, X,) " b(t, X, 0)dt,

where a dot denotes differentiation with respect to #. The quasi-score function for
6 proposed by Hutton & Nelson (1986) when o depends on # is then obtained by
replacing a(t, X;) in this expression by a(t, X;;0) = o(t, X3;60)o(t, X3;6)T. Hutton
& Nelson (1986) then showed that the corresponding maximum quasi-likelihood es-
timator for # enjoys the optimality properties defined by Godambe & Heyde (1987).
For continuous semimartingales, e.g. diffusion processes, the approach in Hutton &



Nelson (1986) coincides with that of Sgrensen (1990). Various measures of infor-
mation about # attached to such maximum quasi-likelihood estimators for 6 can be
found in Godambe & Heyde (1987) and Barndorff-Nielsen & Sgrensen (1991,1994).
The historical development of the theory for discrete observations of X based
on the theory for continuous observation of X is basically an imitation of the de-
velopments outlined above, see Prakasa Rao (1985,1988) and Yoshida (1992). The
obtained results essentially state that any result that can be proven for continuous
observation of X has by proper discretization an analogous version for discrete ob-
servations of X as long as the discrete observation time-points become dense in some
sense when the number of discrete observation time-points tends to infinity. It may
however have diastrous consequences to apply these results in practice if the discrete
observation time-points are not sufficiently closely spaced. In particular, the esti-
mators can be strongly biased. Moreover, the developments to be presented inherit
some unnatural difficulties regarding the diffusion coefficient o from the fact that o
must be considered known in likelihood inference based on continuous observation
of X. We return to these points at the end of the section. Suppose for a while that
o is known, i.e. o(t,z;0) = o(t,z). Then the log-likelihood function for # based on
continuous observation of X in the time-interval [0, ¢,] can be approximated by

b( i—1 Xti—l; G)Ta(ti—lﬂ Xti—l)_l(Xti - Xti—l)
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The estimator for # obtained by maximizing £, (f) is denoted by 6,,. If the discrete
observation time-points {t;}? , become dense in some fixed time-interval [0,7] as
n tends to infinity, it is quite generally true that /,(f) converges in probability
to £5.(0) for every 6 as n tends to infinity. In some cases it can furthermore be
proven that 6, converges to 9 in probability as n tends to infinity, see Le Breton
@976 Genon-Catalot (1990) proved that the small-noise asymptotic results for
< on a fixed time-interval [0, 7] proved by Kutoyants (1977,1984) also hold for 6,
provided o(t,z;6) = o (a scalar) and the distance A = T'/n between equidistant
discrete observation time-points tend to zero at a certain rate as n tends to infinity.
The asymptotic results for éCT as T' tends to infinity have also been translated into
asymptotic results for 6, as the length ¢, of the observation period tends to infinity
and the discrete observation time-points become dense, simultaneously, as n tends
to infinity. Hence, we assume from now on that the discrete observation time-points
for each n are given by
tZ:’LAn, i=0,1,...,n

where {A,} is a sequence of positive real numbers. The asymptotic results that
have been proven for 6,, are then in the limit where n tends to infinity, A, tends to
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zero and nA,, tends to infinity, simultaneously. The circumstances for these studies
of 6,, are however more complicated than the corresponding studies of éCT, because o
can no longer be identified in advance. For one-dimensional diffusion proceses with
constant diffusion coefficient ¢ one may simply consider ¢ as being fixed, since En(e)
in that case is given by

b(ti1, Xp,_y30)%(t — i 1),

NN

n n
O-QETL(G) = Z b(ti—b Xti—l; 0)(Xt¢ - Xti—l) -

i=1 i=1
and 6, is thus independent of the fixed (but unknown) value of o. This convenient
property does however not hold for multi-dimensional diffusion processes, and sev-
eral authors have assumed that o (¢, z;0) = I; (the d x d identity matrix). Under this
assumption, Dorogovcev (1976) proved for one-dimensional diffusion processes and
parameter 0 that 6, is consistent as n tends to infinity, A, tends to zero and nA,
tends to infinity. Assuming this consistency of 6,, Prakasa Rao (1983) furthermore
proved the asymptotic normality and efficiency of 6, under the additional condition
that \/nA, tends to zero. This condition is usually refered to as the condition of
“rapidly increasing experimental design”. The results of Prakasa Rao (1983) were
extended to multi-dimensional diffusion processes by Penev (1985), see also Prakasa
Rao (1988), and Kasonga (1988) proved the consistency of 6, for multi-dimensional
diffusion processes and parameter 6, also under the assumption of rapidly increas-
ing experimental design. Penev (1985) attacked the problem of estimating o from
discrete observations. Assuming that ¢ is a constant matrix, an obvious estimator
for the diffusion matrix a = oo7 is the (discretized quadratic variation) quadratic
variation like estimator

1 n

p = Xy — Xp (X, — X )T
a nAn Z:ZI( t’L tz—l)( tv, tz—l)

Under the assumption of rapidly increasing experimental design, Penev (1985) then
proved that a, is a consistent and asymptotically normally distributed estimator of
a, see also Prakasa Rao (1988). For one-dimensional diffusion processes, Florens-
Zmirou (1989) proved this under the weaker assumption that nA3 tends to zero.
Having studied, marginally, the estimator 8, for a fixed known diffusion coefficient
and estimators of @ = oo, the next step is then, generally speaking, to insert an
estimator of @ in /,, and then to estimate unknown parameters in b by maximizing
the obtained approximation of l,. As previously noted this does not alter the
estimator 6,, in case of one-dimensional diffusion processes with constant diffusion
coefficient, see Florens-Zmirou (1989), but for multi-dimensional diffusion processes
it may affect the estimation of unknown parameters in b. Yoshida (1992) considered
this problem in the following general situation, where 6 can be divided into a vector
1 of unknown parameters in the drift

b(t, z;0) = b(z; 1),
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and a ¢ X r matrix n entering the diffusion coefficient in the following way

o(t,x;0) = o(x)n.

Here o(z) is a known d x ¢ matrix function, e.g. ¢ = d and o(z) = I;. For a given
matrix 1 we may estimate ¢ by maximizing

En(@ba 77) = Z b(Xti—l; ¢)T [U(Xtifl)ﬂﬂTU(Xufl)] - (Xti - Xti—l)
i=1
Y b ) oK ()] B 5 — ti)
=1

with respect to 1. Notice that l, (4;m) only depends on n through I' = nnT. We may
therefore denote £, (1;n) by ,(1;T'). Yoshida (1992) then suggested to estimate v
and I by the following four-step procedure. First [ is estimated by the generalized
quadratic variation like estimator

o= Losser

nA”z 1

—1 )
5i = I:G(Xti—l) G(Xti—l)] G(Xti—l)T(Xti - Xti—l)’ 1= 1’ AL

Then 1 is estimated by maximizing £,(t; T°) with respect to 1, and the obtained
estimator 12 of v is then used to improve the estimator I'Y. First by the “corrected
sum of squares”

T, = ZD (13) Di (13)"
Di(y) = [o(xti_n a(Xti_J]‘ (X )"
(Xti - Xti—l - (tl - ti—l)b(Xti_1; d)))’ 1= 1: <N,

and then by combining 42, T and F in a complicated way that involves the esti-
mated generator of the d1ffus1on process, see Yoshida (1992). We denote this final
estimator of I' by T’ and the final estimator for ¢ obtained by maximizing £, (¢; T'})
with respect to 9 is denoted by ). Yoshida (1992) then first proved that 12 and
I'? are consistent estimators when n tends to infinity, A, tends to zero and nA,
tends to infinity. Moreover he proved that 1. and T’} are consistent and jointly
asymptotically normally distributed under the additional condition that nA3 tends
to zero, thus avoiding the assumption of rapidly increasing experimental design.
Even though the results by Yoshida (1992) at the present stage seem to be the most
well-developed in this line of contributions to the theory for discrete observations
of X, the proposed estimation procedure is still rather restrictive with respect to
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the parameter dependence of the diffusion coefficient. In particular the diffusion
coefficient is required to depend linearly on unknown parameters and the drift and
the diffusion coefficient must not have any unknown parameters in common. An
estimation method that is less restrictive with respect to the parameter dependence
of b and o can be obtained by discretization of the quasi-score function proposed by
Hutton & Nelson (1986), that is

Hoy(0) = > b(ti1, Xopy30)Taltior, Xop 130)7H( Xy — Xoi_,)
i—1
- Z b(ti—la Xt 13 ) a(ti_1, Xt 13 0)~'b(t;1, Xt 130)(ti — tiz1).

=1

The expectation of H, () is, however, in general not zero and the estimating function
H(8) = {H,(0)}°, is not a martingale, so strongly biased estimators are likely to
be obtained by using this approximate quasi-score function, see Bibby & Sdgrensen
(1994), Pedersen (1994b) and section 4. The estimation of unknown parameters
in the diffusion coefficient is particularly important in mathematical finance where
the diffusion coefficient (also called the volatility) is of major interest. In some
diffusion models in mathematical finance, e.g. within the context of Black-Scholes
option pricing, the drift is in in fact unspecified. This means that the estimation
problem (estimation of the volatility) is in fact a non- or semi-parametric estimation
problem. This problem has been examined by Flores-Zmirou (1993) who defined a
non-parametric estimator of the diffusion coefficient that does not depend on the
unspecified drift function. Genon-Catalot & Jacod (1993,1994) treated the same
problem in a semi-parametric setting by assuming a parametric form of the diffusion
coefficient, and introduced furthermore the concept of random sampling in this
context. Both in Florens-Zmirou (1993) and Genon-Catalot & Jacod (1993,1994)
the behaviour of the proposed estimator is studied in the limit where an infinite
number of discrete observations is made on a fixed finite time-interval.

In addition to the difficulties regarding the diffusion coefficient a major drawback
of the estimation methods reviewed in this section is that the performance of the
estimators is highly sensitive with respect to the observation frequency. For any of
the presented estimators to be reliable it is required that the discrete observation
time-points are sufficiently closely spaced. However, simulations clearly show that
this condition is not satisfied for the observation frequencies usually encountered
in practice, see Pedersen (1993a) and Bibby & Sgrensen (1994). Most often the
estimators are severely biased. Bearing in mind the origin of these estimators and
the asymptotic results that can be proven for them this deficiency might be expected,
but obviously it is extremely difficult to formulate it in any rigorous mathematical
way, e.g. an expression for the finite sample bias. Furthermore it is impossible to give
any general criterion for how close the discrete observations should be made for these



estimators to be reliable in practice. Any such critical level would depend on the
given estimation problem and various characteristics of the diffusion process. Finally,
it is very likely that any such level can not be met in practice, since there is usually
a lower limit to how frequent the discrete observations can be made, e.g. in biology
where the acquisition of each observation may be a complicated and time consuming
task. The number of observations can however often be quite large, see Erlandsen &
Thyssen (1983), Madsen & Holst (1991) and Pedersen (1994c). Anyway, it is only
natural that the number of observations must be large for any estimator to be close
to the true parameter value, and for any given observation frequency it should be
the case that the estimators improve as the number of observations increase. Ideally,
an estimator should be consistent as the number of discrete observations tends to
infinity irrespective of the observation frequency. From these considerations one
might argue that the relevant asymptotics from a practical point of view is for a
fixed observation frequency (or observation scheme) and an increasing number of
observations. For concreteness assume that the discrete observation time-points are
given by

t; =1A,1=0,1,... (2)
for some fixed A > 0. For this sampling scheme Florens-Zmirou (1989) showed that
the quadratic variation like estimator @, of the squared (constant) diffusion coeffi-
cient and the estimator 6, are inconsistent as n tends to infinity. This means that
the estimators become worse as the sampling with frequency A is continued. Simu-
lations furthermore indicate that both @, and 6, have quite small variances, that is
they may for large values of n be highly concentrated and severely biased. Consider
for instance the one-dimensional ergodic Ornstein-Uhlenbeck process defined by the
stochastic differential equation

dXt = aXtdt + O'th, X() = Xy, t Z 0,

where o < 0,0 > 0 and the discrete observation time-points are given by (2). In
this case the estimator for o obtained by maximizing ¢,(«) is given by

- [ X-naXia
Op = — - 5 -1,
A i=1 X(i-1)A

whereas 02 might be estimated by the quadratic variation like estimator
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in probability as n tends to infinity. Here ag and o2 denote the true parameter
values. Furthermore it is easily seen that

1— eZaOA

Vn(Gn — —x—) — N0, —x53—)

in distribution as n tends to infinity. Hence, since

aoA_l
R =0
1_62a0A
A2 T 0

for large values of A we see that &, may be highly concentrated and severely biased
for large values of A. There is however an explicit estimator for = (, 0?) in this
case which is consistent as n tends to infinity irrespective of the value of A, namely
the maximum likelihood estimator 6,, = (G, 52) given by
1 n n
oy, = K IOg(Z X(i—l)AXiA/ Z X(2i—1)A)

i=1 i=1

—2dy,

) . dn A 2
= — Xia — =X ;
On n(1 — e2and) ;( a—E€ ( 1)A)

Furthermore, 0, is asymptotically normally distributed with asymptotic covariance
given by the inverse of the Fisher-information matrix, see Pedersen (1993c).

3 Approximate likelihood inference

In this section we review the approximate likelihood inference methods developed
in Pedersen (1993a,c). The essential difference between the approach in Pedersen
(1993a,c) and the earlier approaches considered in section 2 is that the present ap-
proach is based on approximations of the likelihood function for discrete observation
of the diffusion process whereas the earlier approaches were based on approximations
of the likelihood function for continuous observation of the diffusion process. This
fundamental difference has two important consequences. First of all we avoid by the
present approach the difficulties regarding the diffusion coefficient which the other
approaches inherit from the theory for continuous observation, but more impor-
tantly, we also avoid the high sensitivity with respect to the observation frequency
which the methods considered in section 2 possess, since classical likelihood infer-
ence methods based on the true log-likelihood function for discrete observations
work effectively for all observation schemes, see Billingsley (1961) and Dacunha-
Castelle & Florens-Zmirou (1986). The approximate likelihood inference methods
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developed in Pedersen (1993a.c) are based on a sequence {£*)(#)}%_, of approxi-
mations to the log-likelihood function £,(f), cf. section 2, for discrete observations
at time-points 0 = ¢y < t; < --- < t, of the diffusion process X defined by the
stochastic differential equation (1). In these approximations the letter N denotes
an integer that determines the precision of the approximation and which is chosen
by the statistician. The first approximation £ (f) is a generalization of Z,(f), cf.
section 2, that is defined without restrictions on the parameter dependence of o,
and the approximations £0V)(9) for N > 1 are improvements of £1)(6) that converge
in probability under the true model to £,(f) for all § as N tends to infinity, see
Pedersen (1993c). This convergence implies that £V)(#) for large values of N can
be used as an substitute for £,(f) in all aspects of classical likelihood inference,
see Pedersen (1993c). In particular the approximate maximum likelihood estimator
ON) obtained by maximizing £(V)(#) with respect to # often converges to the true
maximum likelihood estimator 6, in probability as N tends to infinity, but even if
this convergence does not hold it may still be possible to prove that @(LN ) is con-
sistent and asymptotically normally distributed as n and N tend to infinity with
the same asymptotic distribution as én, see Pedersen (1993c). The approximate
log-likelihood functions can be defined under very natural and weak assumptions,
see Pedersen (1993a), which makes the proposed methods quite generally applica-
ble. In practice one simply calculates 0A7(1N ) for an increasing sequence of values of
N until the estimates have converged. The value of HEN ) at termination may then
be taken as an approximation of #,,. In all considered simulations and applications
this method have proven to work quite efficiently, see Pedersen (1993a,1994c). The
actual calculation of 0A§LN ) must usually be performed by numerical maximization of
N (), see e.g. Fielding (1970). The calculation of £(*)(#) can be done by means of
the general method described in Pedersen (1993a). This method involves no more
than the data and the functions b and o themselves, which makes it easy to imple-
ment. In the remainder of this section we give more details about the approximate
likelihood inference methods developed in Pedersen (1993a,1993c).

Even though the transition densities of X are usually unknown they do in fact
exist quite generally, see Friedman (1975) and Stroock & Varadhan (1979), and so
it makes sense to approximate them when they are unknown. Indeed a sequence
{p™ (s, z,t,y;0)}3_, of approximations of the transition densities of X is the basis
of the definition of the approximate log-likelihood functions {£(V)(9)}%_,, in that

69(6) =3 logp™ (-1, X, 1. X,.20)
=1

for each N € N. The approximate transition densities p(™) (s, z,t,y;60) can be de-
fined under the following very natural conditions. The stochastic differential equa-
tion (1) must of course have a (weak) solution for all zo € R* and 6 € ©, and for
statistical inference to be meaningful the solutions must be unique in law, see Stroock
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& Varadhan (1979), Rogers & Williams (1987), Karatzas & Shreve (1988) and Re-
vuz & Yor (1991). Furthermore, the diffusion matrix a(t, z;0) = o(t, z;0)o(t, z; 0)T
must be positive definite for all £ > 0,2 € R and § € ©. Recall that p(s,z,t,-;6)
is the density with respect to A4 (the d-dimensional Lebesgue measure) of the con-
ditional distribution of X; given X; = x for the given parameter value 6. Given
X, the random vector X; can be approximated by the Euler-Maruyama approxi-
mation Y, obtained by dividing the time-interval [s,t] into N subintervals, that
is Y,V = YV where

t—s
T, = S+ k N
YS(N) = X,
t—s
Y:r(kN) = YvT(k]Y)I + N b(kala Yvr(kji)la 9) + U(kala Y;-(kli)la 9) (WTk - WTk—l)

for k=1,..., N, see Kloeden & Platen (1992) and Pedersen (1993a,c). In fact v
converges to X; in L' as N tends to infinity, see Kloeden & Platen (1992). Thus
we may approximate p(s, z,t, - ;0) by the density p¥) (s, z,t, - ; #) with respect to A%
of the conditional distribution of Y;(N) given X; = z. Indeed it follows from the
L!-convergence of Yt(N) to X; as N tends to infinity that

/Ap(N)(s’x’t’y; 0)dy — /Ap(S,:L‘,t,y;@)dy

as N tends to infinity, e.g. for all open sets A in R%. The continuous version of
p( (s, 2,t,-;0) is given by

pO(s,2,t,y;0) = [2m(t — 5)] 77 - |a(s, x;6)| 7

- exp (—ﬁ[y —z— (t—9)b(s,z;0)]"a(s,z;0) [y —z — (t — s)b(s, 7 9)]) ,

where |a(s, z;6)| denotes the determinant of a(s, z; 6). Moreover, for any version of
pM (s, z,t,-;0) a version of pM (s, z,t,-;0) for N > 1 is given by

p(N) (8, z, ta Y; 0) = Eﬂ,s,w (p(l) (TN—la }/;(1\]/\?1 ’ ta Y; 9)) ’ (3)

where Ej ; , denotes conditional expectation given X; = x for the given parameter
value 6, see Pedersen (1993a,c). From the closed expression for p™ (s, z,t,y;0) it
immediately follows that £(") () is a generalization of Z,(f), cf. section 2. Indeed, if
o does not depend on # we have that

(D(0) = K, + £,(6),
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where K, is a random variable that does not depend on #. A notable difference
between £ (#) and £,,(6) is however that £{1) () is defined with no restrictions on the
parameter dependence of . For the one-dimensional ergodic Ornstein-Uhlenbeck
process considered in section 2 the £{!)(f)-estimators are &) = &, and

n

62 = Z ia — X-na — AV AXG1a)”.

Notice that the estimator 62(!) in fact is one of the improvements of the quadratic
variation like estimator 62 suggested by Yoshida (1992). The £(¥)(0)-estimator O(N)
of # must usually be calculated in practice by numerical maximization of £V ()
with respect to #. This means that it is required to calculate £{V)(9) for a finite
number of values of #, which readily can be done by means of expression (3), see
Pedersen (1993a). In fact p™)(s,z,t,4;0) can be calculated for each fixed value
of N € N,0<s < t,z,y € R and § € © as the average of a large number
of independent replicates of p(ry_1, YV ,¢,y;6), cf. formula (3). Independent
replicates of YT(]f]V_)l are easily simulated by means of the Euler-Maruyama scheme for
Y;(N), see above. An important quality of this calculation method is that it involves
no more than the functions b and o themselves, which makes it generally applicable
and easy to implement. In some cases, EgN ) (0) is even known explicitly. This is
for instance the case for multi-dimensional Gaussian diffusion processes defined by
stochastic differential equations of the form

dX; = (A Xy + a;)dt + BidW,, X =z, t > 0,

where A : [0,00) = M®? a:[0,00) = R%and B : [0,00) — M%" are determinis-
tic continuous functions. Even though the transition densities of Gaussian diffusion
processes in principle are known explicitly they can very often not be calculated
explicitly in practice, see Pedersen (1993b,1994c). Applying £V)(#) in such cases
then correspond to making approximations of certain non-random vectors and ma-
trices that defines the Gaussian Markov chain for the discrete observations { Xy, }7 .
Besides this convenient property, Gaussian diffusion proceses have several other nice
statistical properties, and a general treatment of parametric statistical inference for
Gaussian diffusion processes is given in Pedersen (1993b,1994c). In these papers the
application of £V (6) is introduced in a completely different manner, but it is easily
checked that the approaches are equivalent for large values of N.

As a first step in the theoretical study of £V (6) and §") and as a first justifica-
tion of the suggestion to use £V () and V) for large values of N as substitutes for
?,(0) and 0,, when these are unknown, the behaviour of p@¥) (s,z,t,y;6)as N tends to
infinity was studied in Pedersen (1993a). From the very definition of p¥) (s, z, ¢, - ; §)
and p(s,z,t, - ;0) as densities with respect to A? it is clear that proving the pointwise
convergence of p™ (s, z,t,v; ) to p(s,z,t,y;0) as N tends to infinity is a non-trivial
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task, since it involves choosing definitive versions of the respective densities. This
is possible in some special cases where closed expressions for concrete versions of
pM (s, x,t,-;0) and p(s,z,t,-;0) are available, but in general it is a delicate matter.
The L'(A%)-convergence of p)(s,z,t,-;6) to p(s,z,t,-;0) as N tends to infinity
was however established in Pedersen (1993a), thus avoiding the problem of having
to choose definitive versions. Moreover, this convergence is sufficient for statistical
purposes. An immediate consequence is that

£ () — £a(6)

in probability under the true model for all # and n as NV tends to infinity, see Pedersen
(1993c). The L'(A\%)-convergence of p™) (s, x,t,-;6) to p(s,z,t,-:0) as N tends to
infinity was proven in Pedersen (1993a) in two general cases. In the first case o was
assumed to be a constant matrix (allowed to depend on #) and the convergence could
be proved under weak assumptions on b by means of ordinary stochastic calculus.
However, when o is allowed to depend on ¢ or x, more advanced techniques are
needed. This can easily be understood by heuristic arguments. Consider for a
moment the time-homogeneous case, that is b(t,z;0) = b(z;0) and o(t,z;0) =
o(z;0). Then

p™M(t,2,y:0) = Epu (0 (t/N, YR 1 4:9))

and p™M(¢t/N,u,-;0) is the density with respect to A\? of the d-dimensional normal
distribution with mean u + £b(u; #) and covariance £a(u;6). Loosely speaking this
means that

PV (/Nyu,y;0) — 6,(u)

(V)
YinZnyy — X

as N tends to infinity, where J, denotes the Dirac delta function, and so
PN (b2, y;0) — By (8,(X0))

as N tends to infinity, where the expectation of ¢,(X;) has to be understood prop-
erly. Tkeda & Watanabe (1989) actually prove existence theorems for p(t, z,y;6) by
showing that it is the generalized expectation of the generalized Wiener functional
0y (X¢). Generalized expectations and generalized Wiener functionals are fundamen-
tal concepts in Malliavin calculus. In order to enter the framework of Malliavin
calculus there are two essential conditions that must be satisfied. Firstly, it is re-
quired that the solution to the stochastic differential equation can be realized on
the Wiener space in the strong sense of Ikeda & Watanabe (1989), and secondly,
the Malliavin covariance matrix must be sufficiently regular. These conditions are
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satisfied under standard but rather restrictive assumptions on b and o, see Bell
(1987) and Ikeda & Watanabe (1989). The conditions are that b and ¢ must be
bounded with bounded derivatives with respect to z of any order, and that a = oo”
must be strongly positive definite. Under these conditions the L'(\?)-convergence
of pM)(s,x,t,-;0) to p(s,x,t,-;0) as N tends to infinity was proven in Pedersen
(1993a) by means of Malliavin calculus for non-constant diffusion coefﬁcients

The derivation of the approximate maximum likelihood estimator 9 ) is strongly
motivated by the good properties of thg maxnnum likelihood estimator 0 The gen-
eral idea in the asymptotic study of A in Pedersen (1993c) is therefore to show
that O(N inherits for large values of N whatever good properties 0,, is assumed to
possess. Accordmgly, the results in Pedersen (1993c) are derived under the general
assumption that 0, is consistent and asymptotlcally normally distributed as n tends
to infinity. In some cases one can then prove that 9 ) converges to 0, in probability
as IV tends to infinity, and the consistency and asymptotic normality of QnN ) as N and
n tend to infinity is then an immediate consequence of the consistency and asymp-
totic normality of 0, as n tends to infinity. Moreover, H;(LN ) and 6,, have the same
asymptotic distribution. In other cases, when this convergence can not be proved,
it may still be possible to prove that HASLN ) is consistent and asymptotically normally
distributed as N and n tend to infinity with the same asymptotic distribution as 0,
In such cases the proofs are based on general results on consistency and asymptotic
normality, see Billingsley (1961), Sweeting (1980), Dacunha-Castelle & Duflo (1983),
Dacunha-Castelle & Florens-Zmirou (1986), Jensen (1986) and Barndorff-Nielsen &
Sgrensen (1994), in that it is proved that these apply for é,gN ) provided they apply
for 6,. The results in Pedersen (1993c¢) are first proven in a very general context
and then applied to a class of one-dimensional diffusion processes. Furthermore it is
indicated how the results can be applied to far more general diffusion processes. By
a completely similar approach one may also prove that assumed good properties of
£,(0) are inherited by £(V)(#) for large values of N. In particular one may prove that
the usual asymptotic y2-distribution of the likelihood ratio test statistic for point
or composite hypothesis about € also hold for the approximate likelihood ratio test
statistic based on £{*)(#) as N and n tend to infinity. For the purpose of hypothesis
testing about 6, e.g. for the calculation of confidence regions for 6, it is advisable to
use this result in practice if V) (6) is calculated by means of the general simulation
method described in Pedersen (1993a). The reason for this is that the asymptotic
Wald test statistic based on the asymptotic distribution of ") (or 6,,) usually de-
pends on the (approximate observed information) matrix of second derivatives of
K%N )(#) with respect to § which it may not be possible to calculate with sufficient
accuracy by secant approximation of £V)(#) and the method described in Pedersen
(1993a), see also Pedersen (1994b) or section 4.

In order to avoid unnecessary technicalities, and since we have already given the
essence of the results in Pedersen (1993c), we shall not repeat any of them here.
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Instead we shall illustrate the results by reconsidering the one-dimensional ergodic
Ornstein-Uhlenbeck process which also was considered in section 2 and previosly in
this section. In this way we also illuminate some points concerning the simultaneous
convergence of N and n to infinity that has not been discussed earlier. For the
one-dimensional ergodic Ornstein-Uhlenbeck process with equidistant observation
time-points t; = 1A, 1 = 0,1, ... for some fixed A > 0, the approximate maximum
likelihood estimator ") = (a(M,62M) is for sufficiently large values of n, see

n

Pedersen (1993c), given by

N
AN — LUV g
o = T -1)
g — Nplovn
n A™1—927
where
Un = Y Xa—paXia/ D XGpa
i=1 i=1
1o (L3, Xy paXia)
2 2 n 2ui=1 M (i—1)A A
M = = Xif - n :
n=3 (=04 % i:lX(Qz'—l)A

Since —N(1 — 2'/N) — logz as N tends to infinity for all z > 0, we have for
sufficiently large values of n that

~

o) — 4,

in probability as NV tends to infinity. Now it is well-known, see e.g. Pedersen (1993c),
that 6, is consistent and asymptotically normally distributed as n tends to infinity.
In fact

V0, — 0) — No(0,i(6y, A)™H)

in distribution as n tends to infinity, where 6y denotes the true value of 6 and
(6, A)~! is the inverse of the Fisher-information matrix. This means, see Pedersen
(1993c¢), that there exists a subsequence N(n) — oo such that

éﬁlN ™) 5 9,
in probability as n — oo, and such that
V(N ™) —0) — Ny(0,i(6p, A)7")

in distribution as n — oo. Moreover, if N'(n) — oc is a faster subsequence, i.e.
N'(n) > N(n) for all n, then the same results hold for this subsequence. This is the
kind of asymptotic results that are proven for V) in general in Pedersen (1993c). It
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is proved that there exists a subsequence N(n) — oo such that 0A£N (M) is consistent
and asymptotically normally distributed as n — oo with the same asymptotic
distribution as 6,. Furthermore, if N’ (n) — oo is a faster subsequence then the
same results hold for this subsequence. In practice this means that we do not have to
worry about choosing the right value of NV for a given number n of observations. The
message is simply to increase N until the estimates converge. Simulations and actual
applications, see Pedersen (1994c), show that moderate values of N are sufficient in
practice. Hence, it is inessential from a practical point of view to study the rate at
which N and n must converge to infinity, but obviously it would still be interesting
to gain more insinght into this simultaneous convergence.

4 Quasi-likelihood inference

In this section we review the quasi-likelihood inference methods studied in Pedersen
(1994b). The topic is again parametric statistical inference about the unknown
parameter 6 in the stochastic differential equation (1) based on discrete observations
of X at time-points 0 =ty < t; < --- < t,, but the methods can immediately be
extended to general Markov processes.

The fact that the transition densities of X are usually unknown is just one aspect
of the more general fact that the transition distributions of X are usually unknown.
Partial information about the transition distributions of X is however provided by
the conditional moments of X given the past, and the general idea in Pedersen
(1994b) is to base the inference about # on these conditional moments. Some or all
of the conditional moments of X are in some cases known explicitly even though
the transition distributions of X are unknown, see Bibby & Sgrensen (1994), but in
any case, they, and their derivatives with respect to # can be calculated in practice
by means of the general method introduced in Pedersen (1994b). In rare cases, e.g.
for Gaussian diffusion processes, the true log-likelihood function ¢, (6) for 6 can be
written in terms of a finite number of conditional moments of X, but in general
this is obviously not the case. Hence, the conditional moments are employed in
the definition of various quasi-likelihood functions for #. The quasi-likelihood func-
tions are derived in accordance with the general principles in Godambe & Heyde
(1987), see also Heyde (1987,1988), Kulkarni & Heyde (1987) and Barndorff-Nielsen
& Serensen (1991,1994). Stated in the present context, the general idea in Godambe
& Heyde (1987) is to base the inference about # on zero-mean square integrable
martingale estimating functions for 6, of which the true unknown score martingale
0(0) = {£,(0)}2, is the optimal example. A zero-mean square integrable martin-
gale estimating function for € is a sequence {G,(0)}2, of functions G, (f) of 6 and
the data {X;,}", for which G(f) = {G,(0)}52, is a zero-mean square integrable
martingale with respect to the natural filtration generated by the observations and

16



under the probability measure corresponding to the given parameter value . The
corresponding estimator for 4 is defined for each n as the solution (provided it exists)
of the equation G,(f) = 0. Such estimators are under standard regularity condi-
tions consistent and asymptotically normally distributed as n tends to infinity, see
Godambe & Heyde (1987), Wefelmeyer (1992) and Bibby & Sgrensen (1994). For a
given class of such estimating functions one may attach to the elements of the class a
general measure of information about €, and the optimal estimating function within
the class is then defined as the one that carries the highest amount of information
about #. The optimal estimating function may not be unique, but any estimating
function that satisfies this criterion is called a quasi-score function of the class, and
the corresponding estimator for 6 is called a maximum quasi-likelihood estimator of
the class. This optimality criterion is the so-called asymptotic optimality criterion
defined by Godambe & Heyde (1987), but all quasi-score functions that are defined
by this criterion in Pedersen (1994b) are furthermore optimal in the fixed sample
sense of Godambe & Heyde (1987). The fixed sample optimality criterion defines
the quasi-score function of a class as the estimating function that in a certain sense
is closest to the true unknown score function. Equivalent criteria for optimality in
both the fixed sample and the asymptotic sense can be found in Heyde (1988). In
Pedersen (1994b), an increasing sequence of classes of estimating functions is de-
fined, and the corresponding quasi-score functions with respect to the martingale
information, see Heyde (1987), Godambe & Heyde (1987) and Barndorff-Nielsen &
Sgrensen (1991,1994), are found. Each class of estimating functions is an extension
of the previous one that includes more conditional moments of X in the estimat-
ing functions. Interrelations between the derived quasi-score functions, the score
function and other quasi-score functions are studied in detail. Finally it is shown
that the quasi-score functions introduced in Pedersen (1994b) extend and improve
well-known quasi-score functions for ergodic diffusion processes. We now review the
developments in Pedersen (1994b) in more detail.

In the following we restrict attention to one-dimensional diffusion processes. This
restriction is in no way essential, and is made entirely in order to simplify the
exposition. The k’th conditional moment and the £’th conditional centered moment
of X; given X; = x are denoted by vi(s,z,t;0) and (s, z,t;6), respectively, for
k=0,1,...and all0 < s <t z € Rand # € O. If X is time-homogeneous these
conditional moments are denoted by vi(t — s,z;6) and ug(t — s, x; 6), respectively,
and if the discrete observation time-points furthermore are equidistant, i.e. t; =
iA, 1 =0,1,...for some fixed A > 0, we denote the conditional moments v (A, z; 0)
and pg (A, z;0) by vi(z;6) and py(z;0), respectively. Before considering the classes
of estimating functions introduced in Pedersen (1994b) we shall first consider some
motivating examples. Estimating functions can for instance be obtained by applying
the ideas in Bibby & Sgrensen (1994). Suppose g,(f) is a function of # and the data
{Xy, }7, for which an estimator for # may be obtained by maximizing/minimizing
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gn(0) with respect to 6, or in particular, by solving the equation g,(f) = 0. A zero-
mean square integrable martingale estimating function for # can then under certain
regularity conditions be derived from g, (6) by subtracting the compensator of g, (6)
from §,(#). If o does not depend on @ this operation can be applied to £,(0), cf.
section 2, leading to the estimating function

A _ . b(ti—17Xti—1;0)T
Gn(e) - Z U(ti—ngti_l)Q 51(0)7

=1

where §;(0) = Xy, — vi(tio1, Xt,_,,ti;0), i@ = 1,...,n. Bibby & Sgrensen (1994)
proposed also to use G when o depends on 6, since C:'(G) in that case remains a
martingale. Applying the same operation to the generalization () (6) of Z,(6), cf.
section 3, leads to the estimating function

b X 0T
GV — Z0((ti_11,)gt._1;9))25i(0) + 3 (ao(ti 1, Xe,_,, 1:36)

=1 =1

+a/1 (ti—la Xti_la tla 0)52(0) + G/Z(ti—la Xti_l 3 tl; 0)52 (0)2) )

where
. _M?(S’x;t; H)J(S’x,g)T
im0 (t—s)o(s,z;0)3
o~ 2An(s e t0) —x — (£ = 5)b(s, 2;0)]6(s, 73 6)"
(J/l(saxataae) - (t_ 8)0(8,$;0)3
.
ax(s,z,t;0) = (s, ;)

(t —s)o(s,z;0)3

The variables §;(9)%, i = 1,2, ... for some integer k are called the k’th order incre-
ments. Notice that G = GM if ¢ does not depend on #. The essential difference
between G and G is that G includes both first and second order increments
whereas G includes only first order increments, which as a consequence of the com-
pensation operation implies that G(V uses both first and second order conditional
moments of X whereas G uses only first order conditional moments of X. The
difference between G and GO is particularly apparent in estimation of unknown
parameters in o. If for instance b does not depend on € then the estimator corre-
sponding to G does not exist whereas the estimator corresponding to G() still exists.
Similar conclusions hold if ¢ depends on parameters that do not enter the drift b.
Such models are particularly of interest in mathematical finance, where parameters
appearing only in o (the volatility) are of major interest, see also the examples in
Bibby & Sgrensen (1994) and Pedersen (1994b). The differences between G and
G can furthermore be quantified in terms of the information about # that they
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carry, or alternatively, in terms of the information about 6 that is carried by the
quasi-score functions of the two classes of estimating functions which G and G
naturally belong to. The estimating function G(!) naturally belongs to the class of
estimating functions of the form

n

Gn(ﬁ) = Z (CI,() (ti—la Xti_l ; tZ’ 0)

i=1
+a1 (tifli Xt¢_1 ) tza 0)51 (0) + as (tz'fla Xti_l ) t’LJ 0)52 (0)2) (4)
with ag = —asps to ensure the martingale property of G(6), whereas G naturally

belongs to the subclass defined by the restriction ag = a; = 0. These two classes
of estimating functions were studied by Wefelmeyer (1992) for time-homogeneous
ergodic diffusion processes and time-equidistant observations, for which one may
attach the expected information as a measure of information about # to the elements
of the classes. Doing so, Wefelmeyer (1992) found that the respective quasi-score
functions are given by

n Dl(x,G)T
G () = 5; (0
a(?) ;é; pa(; 0) )
no 2
G (O) = X3 ail(Xi i 0)5i(6)"
i=1 k=0
where (aj = —aju2)
o= (g — p3) 0] — psfig
: (pa — p3) 2 — 113
. —psti + piofiy
ay =

(4 — p3) o — i3

Moreover, he showed that the expected information for G(U* is strictly larger than
the expected information for G* unless pofis = p3i1. This means that even if o does
not depend on 6 then there is still a loss in information in using G* compared to using
GM* see the examples in Pedersen (1994b). Again the essential difference between
G* and GW* is that GW* uses more conditional moments of X as a consequence
of being defined in terms of more increments 6;(6)¥ and the martingale property.
Exactly the same results hold for far more general diffusion processes, including
non-ergodic and time-inhomogeneous diffusion processes for which the expected in-
formation may not be well-defined, provided one uses the martingale information
proposed by Heyde (1987) as a measure of information about 6, see Pedersen (1994b).
This indicates that the martingale information may be an appropriate choice of a
general measure of information about # for martingale estimating functions. Indeed
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such a general measure is needed outside the class of diffusion processes for which
the expected information can be used. In addition, the martingale information can
in general be calculated in practice whereas the expected information is usually not
known, see Pedersen (1994b).

Two conclusions may be drawn from the considerations above. Firstly, more
information about 6 is evidently carried by estimating functions that use more con-
ditional moments of X. Moreover, conditional moments of X appear in a natural
way in an estimating function given as a sum of affine combinations of increments
5;(9)* when the estimating function is required to be a martingale. Secondly, the
martingale information seems to be an appropriate choice of a general measure of
information about f for martingale estimating functions. Further justification for
using the martingale information is given below. With this motivation the following
increasing sequence of classes of zero-mean square integrable martingale estimating
functions was defined in Pedersen (1994b). A zero-mean square integrable martin-
gale estimating function G, satisfying certain regularity conditions, belongs to the
class Cy, where N € N, if it can be written on the form

n N

Gn(0) =3 ar(tior, Xi,_y, ti:0)0:(0)F. (5)

1=1 k=0

Elements of Cy are denoted by Gy and their coefficients are denoted by {anx}r_o-
Notice that the martingale property of Gy € Cxn implies that

N
ano = — Z AN,k Mk,
k=1

that is the presence of conditional moments of X up to and including order N is
implicit for Gy € Cx. Other regularity conditions are also implicit in the definition of
Cn, see Pedersen (1994b). The form (5) of the elements in Cy can also be motivated
by a formal truncated Taylor-expansion of the score function, see Pedersen (1994b).
By viewing the class Cy in that way it furthermore becomes apparent how the
definition of Cy should be extended to multi-dimensional diffusion processes, see
Pedersen (1994b).

For a zero-mean square integrable martingale estimating function G, satisfying
certain regularity conditions, the martingale information is defined as

L,(0) = G.(0)F <G0) >," G,(0),
where G(0) = {G,,(0)}22, is the compensator of G(0) = {G,(0)}22, and < G(#) >=

{< G(0) >,}52, is the quadratic characteristic of G(#). By attaching this martingale
information to the elements of the classes {Cn}%_; the corresponding quasi-score
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functions were found in Pedersen (1994b). Under certain regularity conditions the
estimating function G € Cy with coefficients

N

ayy =Y AN& k=1,...,N,

=1

where & = 4F + k¥ gy for k=1,..., N and AKX denotes the kI’th element of the
inverse of the positive definite N x N matrix Ay = {1 — pirfir}1 =1, is optimal
within Cx in both the fixed sample and the asymptotic sense of Godambe & Heyde
(1987). The (optimal) martingale information corresponding to G% can be written
in the four equivalent forms

Iva(0) = Gua(0)" <Gy (0) >," Gyna(9)
= <Gy(0) >,
n N N
= ZZZkal i— lath 17 zae)a
i=1k=11=1

where
Unpy = AREED Kk 1=1,...,N.

The quasi-score function G of Cy is not necessarily unique for multi-dimensional
parameters 6, but for one-dimensional parameters it was proven in Pedersen (1994b)
to be unique up to a constant non-zero multiple. The four equivalent forms of the
optimal martingale information within Cp further justify the use of the martin-
gale information, since the two information measures —G% () and < G%(6) > are
well-accepted measures of information, see Barndorff-Nielsen (1991,1994) for a dis-
cuusion of various general measures of information. From the closed expressions for
the coefficients of G’ and the fourth equivalent form of I%; it is evident that quasi-
likelihood inference about 6 can easily be performed in practice by means of G} and
I}, provided the conditional moments of X and their derivatives with respect to 6
can be calculated in practice. This can be done by means of the general method
derived in Pedersen (1994b), see also later in this section. However, first one must
decide which quasi-score function to use, and in this respect it is important to be
able to assess whether further information about # can be obtained by including
increments of one higher order in the quasi-score function. In Pedersen (1994b),
three theorems are given that characterizes when this is the case. Firstly, a result
is proven for general classes of zero-mean square integrable martingale estimating
functions that characterizes the difference between the optimal martingale informa-
tion within a given class and the optimal martingale information within a subclass
in terms of the quadratic characteristics of the respective quasi-score functions and
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their mutual quadratic characteristic. A more practicable result that is specific for
the classes {Cy}%—, states that if one finds that a}y y = 0 then

'l]tl,n(e) = 'l;l—l,n(g)

almost surely for all n and . Finally it is proven that if the true score function
belongs to Cy then it is equivalent to G in the sense that they are both optimal
within Cy in both the fixed sample and the asymptotic sense of Godambe & Heyde
(1987), and no further information about € can be obtained by including higher
order increments in the quasi-score function. In fact

Ey(—£n(0)) = Eg(In(0))

for all n and 6 if £ € Cy.

In practice it is most often the case that the conditional moments of X and their
derivatives with respect to # are unknown. In such cases they can be calculated
by means of the general method derived in Pedersen (1994b). According to the
binomial formula it is sufficient to be able to calculate v, and 7y for £k = 0,1,....
The calculation of v4(s,z,t;0) can for given values of 0 < s < t,z € Rand 0 € ©
be done by means of simulation, in that

vi(s,z,t;0) = Eg(Xf|Xs = 1)

can be calculated as the average of a large number of independent replicates of X,
given X; = z, see Kloeden & Platen (1992). This approach works very efficiently
in practice, but the calculation of (s, z,t;6) for given values of 0 < s < ¢,z € R
and # € © is more problematic, since the usual secant approximation of (s, z, t; 9)
may be very poor if v is calculated by means of simulations as above, see Pedersen
(1994b). Instead one can calculate vg(s,z,t;0) and vg(s, z,t;0) simultaneously by
means of simulations by exploiting some analytical properties of strong solutions
to stochastic differential equation in the sense of Friedman (1975). Assume for
simplicity that 6 is one-dimensional, and suppose (Xf **)>s I8 a strong solution
(on some probability space) to (1) with initial condition Xy = z. Then the two-

dimensional process
p XG,S,z
Yt ST tg , t>s

is also a strong solution to a stochastic differential equation, and under some ad-
ditional conditions, Yto’s’w is furthermore differentiable in the L2-sense with respect
to its initial values (z,6)”. This implies that Xf *? is differentiable in the L2-sense
with respect to 6, and that
. 0 0,s,z\k
vr(s,2,40) = E(55((X:)%))
= (),
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where X/** denotes the derivative in the L2-sense of X/ with respect to 6. Hence,

Uk(s,z,t;6) can be calculated as the average of a large number of independent repli-

cates of ‘
k(Xf’s’z)k_le’s’z.

The simulations of X" and X{"** needed for the calculation of v(s,z,t; ) and
Ug(s,z,t;6) can be obtained simultaneously, since the two-dimensional process

0,s,x
X:7
Ztg’s’x = (Xte,s,w ) , t>s
t

satisfies the two-dimensional stochastic differential equation

dZ, = B(t, Z,;0)dt + S(t, Z,;0)dW,, Z,= | © |, t>s, (6)
0

where W is a one-dimensional Wiener process, and

o b(t, x;0)
B(t,20) = ( b (t, z;0)y + b(t, z; 0) )

o o(t, z;6)
Ntz 0) = (a'(t,x;e)y+d(t,$§9)>

for z = (z,y)7, see Pedersen(1994b). Independent replicates of Z*" can thus easily
be simulated by means of any stochastic It6-Taylor scheme for (6), see Kloeden &
Platen (1992). This calculation method was applied in a numerical example in
Pedersen (1994b), where independent replicates of Z/*** were simulated by means
the Milstein scheme for (6).

5 Model validation

In this section we review the model validation techniques introduced in Pedersen
(1994a). The methods apply for general discrete-time stochastic processes, but
special attention is given to discretely observed diffusion processes.

In parametric statistical inference it is essential to have a tool for validating the
parametric model. Classical concepts in this respect are test for goodness of fit,
the Kolmogorov-Smirnov test and analysis of residuals, but several other specialzed
techniques are available in concrete models. Outside the class of Gaussian diffusion
processes, see Pedersen (1993b,1994c), such a tool has however been missing for
discretely observed diffusion processes. In Pedersen (1994a) some uniform residuals
for discretely observed diffusion processes are defined, that is a sequence of func-
tions of the data that are stochastically independent and uniformly distributed if the

23



parametric model given by the stochastic differential equation defining the diffusion
process is valid. These uniform residuals can be calculated in practice by means of
simulations as described in Pedersen (1994a), and the validation is then performed
by analyzing them by standard techniques (goodness of fit, Kolmogorov-Smirnov,
histogram, quantile plot etc.). The uniform residuals are closely related to clas-
sical standard normal residuals when these apply. Moreover, the general method
described in Pedersen (1994a) for calculating the uniform residuals for discretely
observed diffusion processes also enables us to calculate some forecasts, forecast er-
ror covariances and standardized forecast errors which generalize similar concepts
for Gaussian diffusion processes, see Pedersen (1994c).

Suppose we observe the R%valued random vectors Xg, X1, ..., X,, and that
we want to validate the parametric model given by the parametrized family {Fp :

6 € O} of probability measures. Let Xi(k) denote the k’th coordinate of X; and
let ﬂ(k)(- |zo, 1, ..., 2;_1;0) denote the conditional distribution function under P,
of Xi(k) given Xy = 29, X; = z1,...,X; 1 = x; 1. Then the validation can be
based on the following simple observation, see Pedersen (1994a). Suppose that the
conditional distribution function F;(k)(- |zo, X1, ..., 1;0) is absolutely continuous
for all {z;}:Z},k € {1,...,d} and i € {1,...,n}. Then we have for each k €
{1,...,d} that
UP(0) = F¥(XP X0, X1,..., X; 130), i=1,....n

2

is a sequence of stochastically independent and uniformly distributed random vari-
ables under P,. This result can be extended in several directions, see Pedersen
(1994a), but the present formulation suits the purpose of discretely observed diffu-
sion processes. Usually the parameter # is unknown, and so the validation must be
based on the estimated uniform residuals {U,-(k) (0)Yr_, for k =1,...,d, where § is
some estimator for 6, e.g. the maximum likelihood estimator for € in the parametric
model.

Suppose that Xy, Xy,..., X, in the general setting is a sample from a d-dimen-
sional discrete-time Markov process with absolutely continuous marginal transition
distribution functions Fi(k)(- |zi—1;0), i=1,...,n, k=1,...,d under Py. Then the
uniform residuals are given by

v @) = FP(XW|X,_1;0),i=1,...,n, k=1,...,d.

2 2

As a particular case we have discrete observations at time-points 0 = t; < t; <

- < t, of the diffusion process X defined by (1). Let F®*)(s ,2,t,-:60) denote
the conditional distribution function of Xt(k) given X; = =z, which is absolutely
continuous provided the transition densities of X exist. The uniform residuals are

then given by
UP0) = F®(ti, Xy 4, X010), i=1,....n, k=1,....d.

2
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As a supplement to the validation of the parametric model given by (1) based on
the uniform residuals one may also examine the standardized forecast erros

Rti (0) = V(tifla Xti_1 ) tza 0)_1/2 (Xt, - E(tifla Xti_pti; 0)) ) 1= 1, RN (T
where

E(S,.’L‘,t;@) = EH(Xt‘Xs:x)
V(S,.Z‘,t;g) = Eg([Xt—E(S,.Z‘,t,H)][Xt—E(8,$,t,0)]T|Xs:.T)

Notice that the standardized forecast errors are stochastically independent and stan-
dard d-dimensional normally distributed if X is Gaussian, see Pedersen (1993b,
1994c). For non-Gaussian diffusion processes the usefulness of the standardized
forecast errors is however severely limited by the fact that their distributional prop-
erties are unknown. Alternatively, one might compare the data with the [-step-ahead
forecasts F(t; 1, Xy, ,,t; 141;0), see Jazwinski (1970) and Astrém (1970), and with
the [-step-ahead forecast 95%-variation bounds given by the limits

E(ti1, Xy s tii;0)e T1L96V (1, Xoy st 10 er, 1=1,...,m =1 +1

for k=1,...,d, see Pedersen (1994c). The uniform residuals, the [-step-ahead fore-
casts, the [-step-ahead forecast error covariances and the standardized forecast errors
can all be calculated in practice if one can calculate F¥) (s, x,t,vy;6), E(s,x,t;60)
and V(s,z,t;0) for k=1,...,dand all 0 < s < t,z,y € R? and # € ©. This can
straightforwardly be done by means of simulations as described in Pedersen (1994a).
The proposed method is also applied in a numerical example in Pedersen (1994a).
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Part II: Statistical Applications of (GGaus-
sian Diffusion Processes in Freshwater

Ecology

1 Introduction

Many Danish lakes have very high concentrations of nitrogen and phosphorus mainly
due to large loadings of poorly treated waste water in the past and leackage from
agricultivated soil. During the seventies and eighties various actions were under-
taken to improve and intensify the efforts at the Danish sewage plants, and in 1989
the Monitoring Program of the Danish Action Plan for the Aquatic Environment
was effectuated, see Jensen et al (1994). In particular a standard data acquisition
procedure for 37 representative Danish lakes was initiated. The data are reported to
the National Environmental Research Institute, Department of Freshwater Ecology.
One of the purposes of this data acquisition is to employ the collected data in the
development of dynamic statistical models that can predict the effects of reducing
the external loading of nitrogen and phosphorus to a lake, see Jensen et al (1994),
Pedersen (1994c) and section 2 and 3. Such prognosis models can be very helpful
in the strategic planning of future actions of sewage plants and other environmental
efforts. Historically, the environmental efforts in Danish lakes have primarily been
concerned with the reduction of the external loading of nitrogen and phosphorus.
However, a reduced external loading of nitrogen or phosphorus to a lake often im-
plies an increased internal loading of the same nutrient due to an increased release
of the nutrient from the large amount in the sediment that has accumulated in the
past, see Jensen et al (1992), Sgndergaard et al (1993) and Jensen et al (1994). This
means that the effect of such environmental efforts on the water quality of the lake
can be seriously delayed. Accordingly, one of the important topics in present applied
lake research is to study the possibilities for reducing the internal loading of nitrogen
and phosphorus. For this purpose there is a need for detailed dynamic statistical
models that describe the dynamics and interactions of nitrogen, phosphorus and
other biological and chemical processes in a lake, see Pedersen (1994c) and section 2
and 3. More generally, such research models can be very useful in the development
of alternative means of environmental control.

Ordinary differential equations are widely used in biology as theoretical models
for the evolution and interaction of biological and chemical processes, see e.g. Odum
(1956), Erlandsen & Thyssen (1983) and Thyssen et al (1990), and provide an ex-
cellent foundation for the development of dynamic models of the types discussed
above. One of the advantages of models that are derived in this way is that they to
a very high degree can be based directly on biological theory and prior knowledge.

31



In particular they can be used for evaluating theoretical models and hypothesis.
Once a deterministic model given by a multi-dimensional differential equation has
been established the first step in the statistical analysis is to make some stochas-
tic interpretation of the deterministic model in order to describe the system noise
which is inevitably present in idealized models for physical phenomena. The sys-
tem noise represents the discrepancy between the deterministic model and the true
physical processes, and accounts in particular for the accumulated influence of fac-
tors not included in the model and for inaccuracies of exogeneous variables in the
deterministic model. This system noise can readily be modeled by converting the
multi-dimensional differential equation into a multi-dimensional stochastic differen-
tial equation, see section 2, 3 and 4. The physical phenomena under consideration is
then modeled by a multi-dimensional diffusion process, and the statistical analysis
should ideally be based on discrete-time observations of the diffusion process, see
Pedersen (1993a,c), Bibby & Sgrensen (1994) and Pedersen (1994a,b). However,
a common characteristic of such models is that they very often contain dynamic
variables that can not be observed, that is the discrete observations of the diffu-
sion process are incomplete. In fact the possibility for extracting information about
unobservable processes from observable processes and a model that relates them
is often a major motivation for considering such models. In addition the partial
observations may contain measurement errors. This incompleteness of the discrete
observations of the diffusion process complicates the statistical analysis consider-
ably, but for Gaussian diffusion processes it is still possibly to perform maximum
likelihood estimation of unknown parameters, model validation, forecasting, predic-
tion etc., see Madsen & Holst (1991), Madsen & Melgaard (1991), Melgaard et al
(1992), Pedersen (1993b,1994¢) and section 5. Furthermore, it is possible to recon-
struct the unobserved diffusion variables in an optimal way, see Jazwinski (1970),
Astrom (1970), Pedersen (1994c) and section 5. Gaussian diffusion processes are for
instance derived from linear differential equations by the method described above,
that is by adding a system noise to the differential equation in such a way that a
stochastic differential equation is obtained.

The statistical interpretation of the multi-dimensional differential equation out-
lined above assumes that the differential equation may be regarded as an idealized
model for each path of a diffusion process. This means that the differential equa-
tion to a very high degree must be causal and specified in detail. Such models are
usually intended to be used for scientific purposes. However, in some cases the dif-
ferential equation is rather to be interpreted as a model for the average evolution
of some system. Such models are often relevant for prognosis purposes, see Jensen
et al (1994) and section 2 and 3. In the latter case the differential equation should
be interpreted as a model for the evolution of the expectation of a stochastic pro-
cess, and again the interpretation may readily be performed within the framework
of diffusion processes, see section 4. The relevant statistical interpretation of the
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differential equation is thus highly dependent on the scientific nature of the model,
and it may affect the statistical possibilities considerably, see section 4. However,
for linear differential equations the pathwise interpretation of the differential equa-
tion outlined in the previous paragraph implies in addition that the expectations
of the derived diffusion process solves the differential equation. The pathwise in-
terpretation of linear differential equations also possesses other desirable properties,
see section 4. Hence, Gaussian diffusion processes derived from linear differential
equations seem attractive both from a modeling point of view and from a statistical
point of view.

In the present paper we review a number of applications of Gaussian diffusion
processes in freshwater ecology. The Gaussian diffusion process is in all cases derived
from a multi-dimensional linear differential equation, and the observations are in all
cases incomplete in the sense that one of the coordinates of the diffusion process
is unobservable. In section 2 we consider two Gaussian diffusion models for the
dynamics and interactions of phosphorus processes in a lake. The first model is
quite detailed and is based on four related differential equations for the evolution of
four phosphorus processes in a lake. It is intended to be used for scientific purposes
as discussed in this section. The second model is an application of the first model.
It is a simple prognosis model that is designed for making predictions about the
effects of reducing the external loading of phosphorus to a lake. Both models are
developed by means of an extensive data set from Lake Sgbygaard, and the latter
model is furthermore applied to some of the lakes in the monitoring program. A
detailed account of these models can be found in Jensen et al (1994) and Pedersen
(1994c). In section 3 we consider two Gaussian diffusion models for the interactions
and dynamics of nitrogen processes in a lake. From a statistical point of view
these models are very similar to the phosphorus models in section 2. Section 4
contains a discussion of the two statistical interpretations mentioned above. In
particular it is illustrated how the statistical interpretation may affect the statistical
possibilities considerably when the differential equation is non-linear and the discrete
data are incomplete. Finally, a brief review of the available statistical methods for
the analysis of incompletely discretely observed Gaussian diffusion processes is given
in section 5, see also Madsen & Holst (1991), Madsen & Melgaard (1991), Melgaard
et al (1992) and Pedersen (1993b,1994c).

2 Phosphorus models

Basically the amount of phosphorus in a lake can be divided into four parts. In
the water, the amount of phosphorus is the sum of phosphorus in a dissolved form
(P;) and in an organic form (P,). In the sediment, the amount of phosphorus can

be divided into a relatively small but biologically very active part (P;) located in
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the upper layers of the sediment and a relatively large but biologically less active
part (P,) located in the lower layers of the sediment. Under certain biological
constraints the dynamics and interactions of Py, P,, P, and P, can be described by
a four-dimensional differential equation, see Pedersen (1994c). However, since the
available data for P, and P, are very scarce it is impossible to treat them both
as dynamic variables in the model, see Pedersen (1994c). Treating instead P, as
an exogeneous variabel the following three-dimensional differential equation for the
dynamics and interactions of P;, P, and P, was derived in Pedersen (1994c)

APat) QU (p, (1) - Paft) = P() + R(t) + F(t) + F(t) — 5(t)

dt v
dR(t) _ Q) B
_dt - % (Po,in(t) - Po(t)) + P(t) - R(t) - S(t)
Pyt) o
=2 = S - F(),

where Pg;, is the amount of dissolved phosphorus at the inlet, P, ;, is the amount
of organic phosphorus at the inlet, ) is the water flow at the inlet, V' is the water
volume of the lake (a known constant), P is the rate of organic phosphorus produc-
tion, R is the rate of organic phosphorus respiration, F is the rate of phosphorus
release from the upper sediment, F' is the rate of phosphorus release from the lower
sediment, S is the rate of dissolved phosphorus sedimentation to the lower sediment
and S is the rate of organic phosphorus sedimentation to the upper sediment. From
the available data set for the statistical analysis of this model one may derive, see
Pedersen (1994c), daily measurements from Lake Sgbygaard from the 1st of Jan-
uary 1985 until the 16th of December 1991 of the dynamic variables P; and P,, the
exogeneous variables Py, P, i, and @, the rate P, the water temperature (7)), the
zooplankton biomass (Z) in the water, the pH value (pH) in the water, the amount
of nitrate (Ni) in the water and the amount of iron (Fe) at the inlet. The observed
rate P is treated as an exogeneous variable in the model whereas the remaning
unobserved rates are related to observed exogeneous variables by

R(t) ag - 1.087wM=20 . p (1) (1)
F(t) ap - 1.087 =20 (1) . K(t) (2)
F(t) = ap-1.087O"2.p (). K(t) (3)
S@t) = ag-(P(t) - Z(1)) (4)
st) = s (W reqyyr - pi) 5)

where

K(t) = exp(Bpu - pH(t) — Bni - Ni(t))
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and ag, oF, arp, 0g, s, Bre, Bpp and [y; are unknown parameters. We shall not
discuss the biological justifications of these relations in any detail, but merely em-
phasize that they are all to a high degree in accordance with biological theory, prior
knowledge and experience. Hence the model should be interpreted as an idealized
model for the pathwise evolution of some three-dimensional stochastic process, cf.
the discussion about statistical interpretations in section 1. Since all rates in the de-
terministic model obtained by inserting the relations (1)—(5) in the three-dimensional
differential equation above are linear in Py, P, and P, we can write the model as
% = AtCCt + ay, (6)
where z; = (Py(t), P,(t), P(t))", Ais a 3x 3 matrix function of exogeneous variables
and unknown parameters and a is a 3 x 1 vector function of exogeneous variables
and unknown parameters, see Pedersen (1994c) for details. Here © denotes matrix
transposition. Adding to this deterministic model a simple one-parameter system
noise, see Pedersen (1994c), we obtain the following stochastic differential equation

dXt = (AtXt + at)dt + O'Igth, (7)

where ¢ is a positive constant, /3 is the three-dimensional identity matrix and W is a
three-dimensional Wiener process. In this way the processes P,, P, and P, are mod-
eled by a three-dimensional Gaussian diffusion process X; = (Py(t), P,(t), P,(t))”
with short-term pathwise evolution given by (6) and with expectations (E(X}))i>0
satisfying the differential equation (6), see section 4. Notice that the discrete obser-
vations of X given by the measurements of P; and P, are incomplete in the sense
that the third coordinate of X is unobserved. This three-dimensional Gaussian dif-
fusion model with incomplete discrete observations given by the daily data from
Lake Sgbygaard of P; and P, has been analyzed in Pedersen (1994c) by means of
the statistical methods described in Pedersen (1993b,1994c), see also section 5 for
a brief review. Two important qualities of these statistical methods are that they
do not rely on any restrictions on A or the dimension of the Gaussian diffusion pro-
cess, see e.g. Arnold (1974), Madsen & Holst (1991), Madsen & Melgaard (1991),
Melgaard et al (1992) and Pedersen (1993b,1994c), and that they do not require the
calculation of the exponential of matrices, see e.g. Madsen & Holst (1991), Madsen
& Melgaard (1991) and Melgaard et al (1992). In particular this means that the
same statistical methods can be applied to all Gaussian diffusion proceses satisfying
the regularity conditions in section 5. As emphasized in Pedersen (1993b,1994c¢) the
inital value of P, is treated as an unknown parameter. On a daily basis the esti-
mated model for the expectations of P; and P, has difficulties in capturing the high
values and fast fluctuations of P; and P, in the summer time, see Pedersen (1994c).
Some of the explanation for this deficiency of the model may be that the observa-
tion frequency of one day is too low in the summer time to capture the fluctuations
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of P; and P, more accurately than accomplished by the present model, since most
biological processes are highly active in the summer time and may vary considerably
during a single day. Future developments of the model will clarify the significance
of this point, since there are still several biologically justifiable ways of altering the
present model. Both the estimated values of the unknown parameters and the re-
constructed values of the unobserved phosphorus process P, in the sediment, see
Pedersen (1994c), are in accordance with prior biological expectations. The most
important quality of the model for the present purposes, see Jensen et al (1994), is
however that the model for the expectations of P; and P, essentially captures the
seasonal variations of P; and P, over a long period of time, which to a certain extend
qualifies the model for making predictions, see Pedersen (1994c). As an example
where predictions are relevant, assume that the model is basically correct and that
the exogeneous variable pH to a certain degree can be controlled. Then the model
claims that a reduced value of pH in the water ceteris paribus reduces the internal
loading F' + F of phosphorus to the lake, cf. relation (2) and (3). As discussed in
section 1 it would certainly be of interest to be able to predict the effects of such
and intervention. However, predictions in the presented model requires that reliable
future values of the exogeneous variables Py, Py in, Q, Ty, P, Z,pH, Ni, Fe and P,
can be obtained. Concerning () and T, this is no problem, since they exhibit more
or less the same seasonal variations every year and are independent of all other bi-
ological processes in the model. Also the exogeneous variables Py, and F,;, are
independent of all biological processes in the lake, and the total external loading
Pyin + P, n of phosphorus to the lake can to a certain degree be controlled at the
sewage plants and by other environmental efforts. Hence, the exogeneous variable
P n + P, ;n can to some extend be regarded as a future environmental control vari-
able. The future evolution of the remaining exogeneous variables in the model is
however closely related to the evolution of the processes P;, P, and P, and should
therefore, ideally, be included in a simultaneous model, see also section 3.

In the remainder of this section we shall consider a simple Gaussian diffusion
model that is designed for making predictions about the effects of reducing the
external loading of phosphorus to a lake. The model was derived in Pedersen (1994c)
as an application of the model presented above, and it is intended to describe the
average evolution of the amount of phosphorus in the water and in the sediment. To
ensure the possibility for making predictions it uses only the exogeneous variables
Q, T, and Py, + P, ;y,, cf. the discussion preceeding this paragraph. Hence, the
model is based on rather crude approximations of the rates (1)-(5), and it does
not distinguish between the two forms of phosphorus in the water nor between the
two phosphorus processes in the sediment. The model should not be considered
as a model for the pathwise evolution of the involved processes, but rather as a
biologically interpretable model that roughly captures the trend or average evolution

36



of the processes. Put

P, = P+ P,
P, = P,+ P
Pyin = Pain+ Poin
S = S+8
F = F+F.

Then the following two-dimensional deterministic model for the dynamics and in-
teractions of the phosphorus processes P, and P; was derived in Pedersen (1994c)

dP,(t)  Q(t)
dt - % (Pw,in(t) - Pw(t)) + F(t) — S(t) (8)
dl;*t(t) = S(t) - F(), o)

where the sedimentation rate S and the release rate F' are approximated by

S = OAS'Pw (10)
F = ap-072.P, (11)

for some unknown constants ag, ar and 6. By inserting the relations (10) and (11)
in the equations (8) and (9) we see that the dynamics and interactions of P, and
P, in this deterministic model are described by a two-dimensional linear differential
equation of the form (6), where A is a 2 X 2 matrix function of @, T, and unknown
parameters and a is a 2 x 1 vector function of @, P, ;, and unknown parameters,
see Pedersen (1994c) for details. Taking into account that the relation (11) is by far
the most noisy of the relations (10) and (11), the following stochastic differential
equation for X = (P,, Ps)T was derived in Pedersen (1994c)

dXt = (AtXt + at)dt + Bttha (12)
where W is a two-dimensional Wiener process and B satisfies the matrix equation

r_ | ?+ () —f(Tu(t)? T,-20
BtBt = —f(Tw(t))2 . +f( (t)) f(T ) =O0F " ¢

for all ¢ > 0. Here 0,0r and % are unknown positive constants. The discrete
observations of the Gaussian diffusion process X are incomplete, since the second
coordinate (P;) of X is unobserved. This model was also analyzed in Pedersen
(1994c) by means of the data from Lake Sgbygaard and the statistical methods de-
scribed in Pedersen (1993b,1994c) and section 5. The performance of the model was
found to be quite satisfactory for the purpose of making predictions. For illustration
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the predicted future evolutions of P, and P; in response to different proportional
future reductions of the external loading P, ;, to the lake was calculated in Peder-
sen (1994c). These predictions basically show that the evolution of P, and P; will
continue as in the observation period, that is an extremely slow decrease in P,, due
to a large releasement of phosphorus from the sediment, and a steady decrease in
P, due to the reduction of P, ;,. These conclusions are completely in accordance
with biological knowledge and expectations, saying that no dramatic positive short-
term effect on the amount of phosphorus in the water can be obtained by further
reduction of the external loading of phosphorus to the lake, due to the high internal
loading of phosphorus from the large amount of phosphorus in the sediment that
has accumulated in the past. Accordingly, one of the important topics in present
applied lake research is to study the possibilities for reducing the internal loading
of phoshorus in a lake.

One of the motivations for developing simple prognosis models as the one just
considered is the possibility for applying them to the lakes in the Monitoring Pro-
gram of the Danish Action Plan for the Aquatic Environment, cf. section 1. In
this monitoring program, monthly measurements of several quantities including
Py, Py in, @ and T, (but not P;) are made in 37 Danish lakes, and in the following
we shall briefly discuss some of the problems encountered when diffusion models
are applied to these lakes and data. For illustration we apply the prognosis model
above to four lakes in the monitoring program which resemble Lake Sgbygaard with
respect to a number of characteristics, see also Jensen et al (1994). The most serious
problem in applying diffusion models to the lakes in the monitoring program is that
the data are very crude (monthly measurements, P; unobserved). In particular this
implies that only very few unknown parameters can be estimated for each lake. As
a first step in reducing the number of unknown parameters in the prognosis model
above we simplify it by fixing the noise parameters 0% = ¢ = 0. Reestimating the
remaining parameters except for g and Ps(0), see Pedersen (1994c), on the data set
from Lake Sgbygaard implies no dramatic changes, and for the purpose of predic-
tion the model is essentially unaltered. The estimates of the unknown parameters
are shown in table 1. For the lakes in the monitoring program we should ideally
estimate the unknown parameters P;(0), as, ar, 0r and o2, but unfortunately this
is only possible for a very small number of lakes. Instead we fix the values of ag, ap
and @7 at the estimated values from Lake Sgbygaard shown in table 1, and estimate
only P,(0) and o2 for each lake. Obviously this constrains the application of the
model to lakes which are similar to Lake Sgbygaard with respect to a number of
characteristics, see Jensen et al (1994). The results for the four lakes in the moni-
toring program considered here are shown in table 1. In this table, N denotes the
value of the iterated Euler-approximation parameter used in the estimation proce-
dure, see Pedersen (1993b,1994c) or section 5. The value of N for the four lakes
in the monitoring program is 30 times the value of N for Lake Sgbygaard, which
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seems reasonable since the observation frequency for the lakes in the monitoring
program is 30 times the observation frequency for Lake Sgbygaard. Plots of the
observed values of P, and the estimated expectations of P, are shown in figure 1
for each of the four lakes in the monitoring program, and corresponding plots of
the reconstructed values of P; and the estimated expectations of P, are shown in
figure 2. Quantile plots of the standardized residuals for each of the four lakes in
the monitoring program are shown in figure 3. Even though the performance of the
estimated expectations in figure 1 and the behaviour of the standardized residuals
in figure 3 is quite satisfactory, considering the crudeness of the model and the data,
it is disturbing that there is a dramatic difference between the reconstructed values
of P; and the estimated expectations of P; shown in figure 2. Theoretically, P, and
the reconstruction of P; have the same expectation, see Pedersen (1994c) or section
5. The explanation for this deficiency may very well be that the values of ag, ap
and fr taken from Lake Sgbygaard are inappropriate, since the problem in figure
2 disappears when all parameters are estimated for the few lakes in the monitoring
program for which all parameters can be estimated, even though the dramatic dif-
ferences in figure 2 also appear for these lakes when the model is applied as above.
Compare for instance the plots in figure 1-3 for the lakes entitled Borup and Kilen
with the corresponding plots in figure 4, wherein the values of all unknown parame-
ters are estimated seperately for each lake. The reconstructed values of P, in figure
4 are however rather unrealistic from a biological point of view.

Lake N | PJ0) | ag- 102 | ap-10* | 05 | o2- 104
Sebygaard | 25 | 151 | 9.00 6.46 |1.11| 6.87

Borup 750 | 35 - - - 2.41
Fugle - 140 - - - 96.8

Jels - 107 - - - 15.5
Kilen - 171 - - - 62.3

Table 1: Estimates of the unknown parameters in the statistical model given by
incomplete discrete observations of the Gaussian diffusion process defined by (12)
with the values of 0% and v fixed at zero.

3 Nitrogen models

In analogy with the development of the phosphorus models in the previous section,
incompletely discretely observed Gaussian diffusion processes also appear in a natu-
ral way in the development of statistical models for the interactions and dynamics of
nitrogen processes in a lake. In fact such models can be based on multi-dimensional
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Figure 1: The observed values (O) of P, from four of the lakes in the monitoring
program, and the corresponding estimated expectations (solid line) of P, for the
statistical model given by incomplete discrete observations of the Gaussian diffusion
process defined by (12) with the respective estimates in table 1.
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Figure 2: The reconstructed values (R) of Py in four of the lakes in the monitoring
program, and the corresponding estimated expectations (solid line) of P; for the
statistical model given by incomplete discrete observations of the Gaussian diffusion
process defined by (12) with the respective estimates in table 1.
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Figure 3: Quantile plots for four of the lakes in the monitoring program of the stan-
dardized residuals in the statistical model given by incomplete discrete observations
of the Gaussian diffusion process defined by (12) with the respective estimates in
table 1.
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Figure 4: Plots as in figure 1-3 for two lakes in the monitoring program for which
lake specific estimates can be obtained for all unknown parameters in the statistical
model given by incomplete discrete observations of the Gaussian diffusion process
defined by (12).
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ordinary differential equations that are very similar to those considered in section
2, and from a statistical point of view the derived Gaussian diffusion models are
therefore “identical” to those derived in section 2. Hence, in this section we shall
be very brief and confine ourselves to modeling aspects, thus presenting no data
analysis.

The amount of nitrogen in a lake can be divided into three parts. In the water,
the amount of nitrogen is divided into nitrogen in a dissolved form (N4) and in an
organic form (V,), wheras the amount of nitrogen in the sediment (V;) is undivided.
Under certain biological constraints the interactions and dynamics of these three
nitrogen processes can be described by

dNa(t) _ Q) (Nain(t) — Na(t)) — P(t) + R(t) — Dg(t) + F(2)

dt 4
DD QO (N, (1)~ Nolt)) + P0) ~ BlE) ~ S(0)
dN,(t)

= S(t) — Ds(t) — F(),

where Ng;, is the amount of dissolved nitrogen at the inlet, N, ;, is the amount
of organic nitrogen at the inlet, ) is the water flow at the inlet, V is the water
volume of the lake (a known constant), P is the rate of organic nitrogen production,
R is the rate of organic nitrogen respiration, D, is the rate of dissolved nitrogen
denitrification, F' is the rate of nitrogen release from the sediment, S is the rate
of organic nitrogen sedimentation and D, is the rate of denitrification of nitrogen
from the sediment. The statistical analysis of this model has been based on a data
set from Lake Sgbygaard which contains measurements of the rate P. This rate
has therefore been treated as an exogeneous variable in the model, whereas the
remaining rates are modeled by

Y,

t) = ag-1.087O-20. N (1) (13)
t) = ap-1.08T7®=20 N (1) (14)
S(t) = as-(No(t) = Z(2)) (15)
(16)
(17)

!

(
(
(
Dy(t) = 64-1.0870"20. Ny(3)
Dy(t) = 6,-1.087O=20. N (1),

where the exogeneous variables 7T, and Z are the water temperature and the zoo-
plankton biomass in the water, respectively. The unknown parameters of interest
are ag, ap, g, 0g and d;. The structure of this deterministic model is quite similar
to that of the three-dimensional model considered in section 2. Another similar-
ity between these two models is that the data are incomplete, since N, can not
be observed. However, the multi-dimensional differential equation obtained by com-
bining the relations (13)—(17) with the three-dimensional differential equation above
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is linear in the dynamic variables Ny, N, and N, and the statistical analysis can
thus be performed as in section 2 by means of the methods described in Pedersen
(1993b,1994c) and section 5.

The development of the presented nitrogen model is still at a preliminary stage,
exactly as the development of the three-dimensional phosphorus model in section 2.
The two models are however close related. In fact the exogeneous variable Ni in
the phosphorus model is equal to the dynamic variable N, in the nitrogen model.
Also some of the rates in the two models are biologically related. Therefore the two
models should ideally be embedded in a simultaneous model. It is however necessary
first to understand the presented marginal models in more detail.

As in section 2 it is also of interest to develop simple prognosis models for the
interactions and dynamics of the amount of nitrogen N,, = Ny+ N, in the water and
the amount of nitrogen in the sediment. Such a model can be obtained by adding
the differential equations for N; and N, above. In this way the following model is
obtained

dNy (1) Q(t)

=y Wwin(t) = Nu(t)) = Da(t) + F(2) = S(1)

aNy(t)
=5 = 5() - D) - F(t)

with Ny in = Ngin + Ny in. For the purposes of predictions, the rates in this model
must be specified exclusively in terms of the dynamic variables N,, and N, and
the exogeneous variables (0,7, and N, ;,, analogously to the prognosis model in
section 2.

4 Statistical interpretations of ordinary differen-
tial equations

The first step in the statistical analysis of a deterministic model given by a multi-
dimensional differential equation is to make a statistical interpretation of the model.
This interpretation depends on the scientific nature of the model. If the deterministic
model is highly causal and carefully specified in detail the appropriate interpretation
seems to be that the differential equation is an idealized model for the pathwise evo-
lution of some stochastic process. Such models are particularly relevant for scientific
purposes, cf. the three-dimensional models in section 2 and 3. However, for other
purposes the differential equation should rather be regarded as a specification of a
function that roughly captures the trend or average evolution of some processes, but
still in a scientifically interpretable way. This is particularly relevant for prognosis
purposes where the models can not be specified in detail for the reasons discussed in
section 2, cf. the two-dimensional prognosis models in section 2 and 3. In such cases
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the appropriate interpretation is that the differential equation is an idealized model
for the evolution of the expectation of some stochastic process. In this section we
discuss the implications with respect to modeling aspects and statistical possibilities
of this distinction between statistical interpretations.

Consider a deterministic model given by the d-dimensional differential equation

d.Tt

dt
where v is a vector of unknown parameters. For the present purposes we assume
that (18) can be solved either explicitly or by means of some numerical procedure for
each fixed value of ¢, see e.g. Zwillinger (1992). The statistical interpretation of this
deterministic model then amounts to defining some d-dimensional stochastic process
X with some relation to (18) that depends on the scientific nature of (18). From
the scientific problem under study it is usually clear that X should have continuous
paths, cf. section 2 and 3, and we shall furthermore assume that X possesses the
Markov property. In the pathwise interpretation one might argue that the Markov
property is an appropriate stochastic interpretation of the fact that an ordinary
differential equation is a model for first order reactions. Thus X is a diffusion
process and can accordingly be defined by specifying some stochastic differential
equation. Formally, a stochastic differential equation corresponding to a pathwise
interpretation of (18) can be derived by adding a weighted “continuous-time white
noise process” to (18), that is

= b(t, zy; 1), (18)

4,
dt

aw
= b{t, Xis ) + o (t, X3 0,m) =

where W is an r-dimensional Wiener process, o is a d X r matrix function depending
on Y and some vector 1 of noise parameters. The precise interpretation of this
stochastic equation is the stochastic differential equation

Essential properties of (19) from a modeling point of view are that
Eyy(Xe| X5 = 2) = x4 (¢ — 5)b(s, 25 ) (20)

for ¢ close to s and that

dEy ,(X¢| X5 = )
dt

=Ey 00 X;Y)|Xs=12), t>s (21)
for all s > 0 and z € R®. The property (20) says that (18) describes the short-term
average evolution of X starting from any point at any time, which is the essential

property of X in a pathwise interpretation. As a special case of property (21) we
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see that the expectations (E(X;));>o of X do not satisfy (18) unless b is linear in
the state variable. As discussed earlier, cf. also section 1, this may in some cases be
the essential requirement for X. Insisting on that the expectations (E(X}))>o of X
should satisfy (18) one may instead consider the stochastic differential equation

dX; = b(t, p(t;v); 0)dt + o(t, Xi; 1) dWy, (22)
where W, o and 7 are as before, and pu is a deterministic function defined by

W = b(t, u(t; ¥); ).

In this interpretation the expectations (E(X;)):>o satisfy (18) by construction even
if b is non-linear in the state variable, since

Ey (X)) = p(t; ).

Thus if b is non-linear in the state variable, and the scientific nature of (18) implies
that (18) should be satisfied by (E(X})):>0, then (22) seems to be an appropriate
interpretation of (18). However, this interpretation does not possess the property
that X evolves on the average according to the same pattern, defined by b, whenever
it is reinitialized at some time s. Indeed

dEy,(Xi| Xs =z
v ;L ) _ b(t, Eyn(Xe); 1)

for all 0 < s < t and 2 € R®. Notice also that X defined by (22) does not satisfy
(19) if b is linear in the state variable. In conclusion, when b is linear in the state
variable the pathwise interpretation (19) seems in any case most attractive from
a modeling point of view. However, when the differential equation (18) is to be
interpreted as a specification of the average evolution of a stochastic process and b
is non-linear in the state variable then the interpretation given by (22) seems more
appropriate. From now on we denote by X? and X*¢ the diffusion processes defined
by (19) and (22), respectively.

As an example of an application where the interpretation given by X°¢ is most
appropriate recall the prognosis model in section 2 given by the two-dimensional
differential equation

db,(t) _ Q) (Pwin(t) — Py(t)) + F(t) — S(t)

dt V
dP,(t)
= S(t)—-F(t
- () - F(t),
where the sedimentation rate S and the release rate F' are approximated by
S = ag - Pw
F = ap -072.p,
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The appropriate interpretation of this deterministic model is that it is a model for
the evolution of the expectation of some two-dimensional stochastic process. As
noted in section 2 this approximate relation for the release rate F' is rather crude.
However, in order to preserve the possibility for making predictions it is important
not to include additional exogeneous variables in the specification of F. Instead one
might try to improve the specifcation of F' by allowing it to depend non-linearly on
P;. In Jensen et al (1994) the following improved relation was proposed

F=ap- 057 P g(P),
where g is some function that within a certain range of values of P; is given by

9(Ps) = exp(—\/P)

for some known/unknown lake specific parameter A. This modification of the model
implies that the obtained differential equation is non-linear in the state variable
(Pu, P,

Concerning the choice of the diffusion coefficient o it is instructive to see how
a given choice of o implies quite different probabilistic properties of X? and X*.
Consider the one-dimensional homogeneous case where b is linear in the state variable
and o is constant, that is

b(t,z;9,m) = Az+a
o(t,z;9,m) = 0>0

for some constants A,a and 0. We assume that A < 0. In this case it is possible
to see how the two interpretations imply different evolutions of the variance of the
diffusion processes. Indeed

€2At -1 2

Py _ 2. o
V(X?)=o0 52 —)—QA

as t — oo whereas
V(X§) = 0’t — 00

as t —» o0o. The influence of b on the variance of X? thus ensures in this case that
the variance does not explode as time tends to infinity, whereas this must be ensured
for X entirely by the specification of o, e.g. by putting

at

o(t,z;,m) =o€

for some positive constant o. On the other hand it is in the general case very often
impossible to deduce the implications on the variance of X? of a given choice of o,
since the variance is usually unknown and depends in all cases in a complicated way
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on b. For X¢ the implications on the variance of a given choice of o are usually
easier to determine. Assume for instance in the general case that ¢ has been chosen
independent of the state variable, that is o(¢, z;v,n) = o(t;¢,n). Then the variance
of X? is usually unknown when b is non-linear in the state variable, whereas the
variance of X is given by

VX9 = [ ol v molsi,m)"ds

for “all” drift functions b.

The possibilities for the statistical analysis of incomplete discrete observations of
X? and X°€ are also quite different. From now on we assume that o is independent
of the state variable and that the incomplete discrete observations are given by the
linear observation equations considered in Pedersen (1993b,1994c), see also section
5. If b is linear in the state variable then the statistical analysis of incomplete
discrete observations of X? can be performed by means of the methods described in
Pedersen (1993b,1994c¢) and section 5, but if b is non-linear in the state variable then
the statistical analysis of incomplete discrete observations of X? becomes extremely
difficult. The usual approach is to perform an approximate analysis based on the
theory for approximate non-linear filtering, see Jazwinski (1970) and Astrom (1970),
or alternatively by approximating b by some linear function as in Melgaard et al
(1992). In contrast, the statistical analysis of incomplete discrete observations of
X¢ can be performed by means of the methods described in Pedersen (1993b,1994c)
and section 5 irrespective of whether b is linear or non-linear in the state variable,
since X¢ is in any case Gaussian. In fact X¢ is for “all” drift functions b a Gaussian
diffusion process with independent increments.

As an alternative to X°¢ it may in some cases be sufficient or desirable to consider
discrete-time models such as

Xti /L(tzaw)+€tn 7;:0:1’""77’ (23)

Xti = /'L(tlaw) “ €t 1= 0,1,...,”,
where 0 =ty < t; < --- < t, are the discrete observation time-points and {4, }? ,
are some d X 1 random vectors with zero or unit expectation. Apart from being less
satisfactory from a modeling point of view such models are of course entirely specific
for the given set of discrete observation time-points, and they can usually not in any
natural way be seen as discretized versions of continuous-time models. The fact that
a discrete-time model is specific for the given discrete observation time-points also
restricts the applications of the model. Prediction errors can for instance only be
calculated with the same time-steps as in the data set. However, in a preliminary
analysis or if no satisfactory continuous-time model can be found such discrete-time
models may be an appropriate alternative. As an example, consider the case where
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the errors in the discrete-time model given by (23) are stochastically independent
with marginal distributions

e, ~ Ng(0,%), i=0,1,...,n (24)

for some positive definite d x d matrix 3. It is of course intrinsic in dynamic models
that the random vectors {X; }” , can not be stochastically independent, but if
the distance between the discrete observation time-points is large it may still be a
reasonable approximation. In addition, if ¥ is assumed not to depend on v then the
maximum likelihood estimator of ¢ minimizes the Euclidian distance between the
incomplete discrete data and the corresponding model for the expectations, which
may be regarded as a justifying quality of the model. This discrete-time model
has been applied to the non-linear modification of the two-dimensional prognosis
model in section 2 that was made earlier in this section. In this case the distance
between the discrete observation time-points is thirty days, and it seems a reasonable
approximation to assume that the corresponding two-dimensional random vectors
are stochastically independent. The model was applied in Jensen et al (1994) with

2
o 0
and the second coordinate of the estimated two-dimensional expectation function
1 was accordingly regarded as a curve for the average evolution of the unobserved

phosphorus process P;. The results were found to be quite satisfactory from a
biological point of view, see Jensen et al (1994).

5 Statistical analysis of Gaussian diffusion pro-
cesses based on incomplete discrete observa-
tions

In this section we consider statistical analysis of incomplete discrete observations of
the Gaussian diffusion proces X defined by the stochastic differential equation

dXy = (A Xy + ap)dt + BidW;, Xo =&, t >0,

where & € R? is a non-random vector, W is an r-dimensional Wiener process (d <
r), A is a continuous d x d deterministic matrix function, a is a d x 1 deterministic
vector function and B is a d X r deterministic matrix function which satisfies that
BBl is positive definite for all ¢ > 0. The incomplete discrete observations of X
are assumed to be given by

}/;51' :EiXti—i_Uti-l_eti) 7;:0,1,...,77/,
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where 0 = ¢y < t; < --- < t,, are the discrete observation time-points, {1}, }7_, are
non-random m x d matrices (m < d) specifying the observable linear combinations
of the coordinates of { Xy} ,, {Us, }I, are non-random m X 1 vectors representing
additional inputs and {e;, }?, are stochastically independent random m x 1 vectors
that account for measurement errors. The measurement errors are assumed to be
stochastically independent of X and to have the marginal distributions

€, ™ Nm(oaMti)a 1= 0, 1, o, N

All unknown parameters in the functions A, ¢ and B and in the non-random matrices
and vectors &y, {73}, {Us }, and {M;,}I , are collected in the p-dimensional
parameter 6, and all assumptions about these functions, matrices and vectors are
assumed to hold for all values of 6 in a set © C RP. We shall however omit 6 in
the notation for convenience. The statistical model for the random vectors {X;, }7
and {Y;,}" , may equivalently be represented by the stochastic dynamical system

Xt' DtiXti—l + Sti + €t Xto = 50, 1= 1, ) (25)

Y;. ,I’tiXti'i_Uti'i_eti; ’1:20,1,...,’]?,, (26)

2

where {e;,}7, are stochastically independent random d x 1 vectors with marginal
distributions

t;
Et; ™ Nd(07 Vh)’ V;% = / ((I)ticI)s_l)BsBsT(q)tiq)s_l)Tds'
ti—1
Here ® denotes the d x d deterministic matrix function that solves the differential
equation
d(pt = At@tdt, cD() = ]d, t Z 0

The solution to this matrix differential equation exists uniquely, and under certain
conditions on A, see e.g. Pedersen (1994c), the solution is known explicitly. How-
ever, these conditions on A are often not satisfied in practice, cf. the examples in
section 2 and 3. Instead we apply the approximation method proposed in Pedersen
(1993b,1994c). In this approximation method an iterated Euler-approximation of
® is used to approximate the non-random matrices and vectors {Dy, }*,, { S},
and {V;,}"_, in the stochastic dynamical system (25). The approximations depend
on an integer N that is chosen by the statistician, and they converge for N tending
to infinity to the true matrices and vectors. By replacing the unknown matrices
and vectors in the stochastic dynamical system (25) by these approximations the
obtained approximate dynamical system is for large values of N a special case of
the following more general stochastic dynamical system

X’i - DZ'XZ',1+SZ‘+€Z',’L.:]_,...,’I'L
Y; = EXi+Ui+eiai:071a"'ana

where
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o Xg ~ Ny(&, Vo)
o 5~ Ny0,Vp),i=1,...,n
e ¢; ~ N,(0,M;), i=0,1,...,n
and
(A1) Xo,e1,...,En,€0,€1,...,6€, are stochastically independent
(A2) Ty,...,T, are of full rank m
(A3) Vi,...,V, are positive definite.
In some cases we also assume either of the following two conditions.
(A4) Ty is of full rank m and Vj is positive definite
(A4’) M, is positive definite.

The statistical analysis of incomplete discrete observations of the Gaussian diffusion
process X is then performed within this framework for an increasing sequence of
values of N. In particular the (approximate) maximum likelihood estimator of @ is
calculated for each value of N, and the calculations are continued until this sequence
of estimators has converged. The approximate maximum likelihood estimator of
at termination is then a close approximation to the true maximum likelihood esti-
mator of 6, see Pedersen (1993b), and the value of N at termination determines the
approximation of the matrices and vectors { Dy, }7_, {S:, }*_, and {V,,}?, which is to
be used in the further calculations of residuals, expectations, covariances, forecast,
reconstructions and predictions, see Pedersen (1994c) and later in this section.

The maximum likelihood estimator of # or the conditional maximum likelihood
estimator of # based on observations of {Y;}" , in the general stochastic dynamical
system above is the maximum point of

5(0) = lOgPO(YE); 0) + Z]ogpi|i_1(y;‘yi—1; 0)

=1
or

2Y(0) = Z logpz'|i—1(Y;|Yiil§ 9),

i=1

resepctively, where Y* = (Y[, Y",...,Y.)T, 4 =0,1,...,n and p, is the density

(2
with respect to A™ (the m-dimensional Lebesgue measure) of the distribution of

Yo ~ N (To&o + Uo, ToVo T + M),

52



whereas p;;_1 is the density with respect to A™ of the conditional distribution of Y;
given Y™ for i = 1,...,n. These conditional densities can for a given set {y;}"_, of
observations of {Y;}I , be calculated iteratively for each fixed value of § by means
of the Kalman filter { F(X;|Y?), V(X;|Y?)}™,. From the joint normality of {X;}%,
and {Y;}",, see Pedersen (1994c), we have that X;|Y* = y* is normally distributed
fori=0,1,...,n, and we can introduce the notation

2

The following iterative formulas then show how the Kalman filter {u:(y*), 2¢}" , and
the values {p;;_1(vi|y"~"; 0)}7_; of the conditional densities can be calculated for each
fixed value of §. The assumptions are (A1)—(A3), see Pedersen (1993b,1994c). For
1 =1,...,n we have that
piy) = Dipi(y' ) + S+ 50 THGY T + M)
(i — T(Dipi 1 (y' ™) + 8i) — Uy)
o= S o SIS 4 M) T

VIV =y~ Np(G(Dipi=i (v + Si) + U, TSI + M),

where X7 = DZE;::%DZ-T-H/; is positive definite for 2 = 1,...,n, and the calculations
are initiated by

(@) = &+ Wy (ToVoTy + Mo) ™ (yo — To&o — Uo)
Yo = Vo — VT (ToVoTy + My) T V.

Hence, the maximum likelihood estimator of @ or the conditional maximum likeli-
hood estimator of 6 can be calculated by means of some iterative procedure, and
likelihood ratio confidence regions for # can be calculated as usual.

Once an estimate of # has been calculated, the estimated statistical model can
be evaluated by calculating the stochastically independent standardized residuals

R = (TX'TF + M) ~Y2(Y; — Ty(Dip=1 (Y1) + S) — Us) ~ Ny (0, 1,,)

for i = 1,...,n. Here C~'/2 denotes the inverse of any square root of the positive
definite matrix C, e.g. the lower triangular matrix in the Cholesky decomposition
of C. Notice that these standardized residuals also can be calculated by means of
the Kalman filter. As another means of evaluating the estimated statistical model
one might calculate the estimated expectations and covariances

E(X;) = DE(X;,_1)+Si,i=1,...,n, E(Xo) =&
V(Xi) = DiV(Xz'—1)DiT +Vi,i=1,...,n, V(X)) =V
EY;)) = T,E(X)+U;, i=0,1,...,n

V(Y3) Tz'V(Xi)ﬂ-T-i-Mi, 1=0,1,...,n
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and the corresponding estimated 95%-variation bounds given by the limits
E(Y;); £1.96V(Y)jj, j=1,...,m,i=1,...,n.
For the purpose of forecasting we introduce the notation
ii+k|Yi = NNd(uéM(yi), §+k), 1=0,1,...,n—k, k=0,1,...,n.

The k-step ahead forecasts {ut, ,(y*) }+=f for the unobservable vectors { X, ;7= and
the corresponding forecast error covariances {3 +k}?:_0’“ can be calculated iteratively
by
,U::Jrj(yi) = Di+j/ié+j—1(yi) +Siyj J=1,..,k
St o= DX DI+ Vi, j=1,...,k

fori =0,1,...n— k, and the corresponding quantities for the observable quantities
{Yi1}=F are then eventually calculated by

E(Yz+k|Yz = yz) = E+ku;+k(yz) + Ui-HCa 1= 07 ]-a s k

Vv(Y;-f—kn/Z = ZUZ) = zji-f-kzg-}-k]—’i]-;-k + Mi-{—ka 1= 07 ]-: sy k.
The corresponding 95%-variation bounds are given by the limits

EYi|Y' =9"); £1.96V(Yik|Y' =Y, 5=1,...,m, i=0,1,...,n — k.

Again we see that the Kalman filter plays a key role in the calculations. The Kalman
filter is also the intial value in the calculation of the prediction p7. . (y™) of the future
value of X, and the corresponding prediction error covariance matrix X7 ,. These
quantities can be calculated inductively by

(") = Dnijbini; 1(Y") + Snijs J=1,...k

Zzﬂ' = Dnﬂ'EZH—lDZﬂ' + Vo, J=1,...,k,

and the corresponding 95%-variation bounds are given by the limits

Par(y"); £ L96(E0 )5, 7= 1, d.
Finally, the optimal reconstructions {u?(y")}", of the unobservable vectors { X;}7
and the corresponding reconstruction error covariances {X'}? ; can be calculated
recursively as modifications of the Kalman filter reconstructions and reconstruction
error covariances. The recursive formulas are valid under the assumptions (Al)-
(A3) and either (A4) or (A4’), see Pedersen (1994c). Fori=n—1,n—2,...,0 we
have that
p") = )+ E§D£1(Zé+1)_l(ﬂ?+1(yn) - Dz+1#§(yz) — Sit1)
X=X+ EzDZi—l(Zhl)il(EzZ—l - E§+1)(22D£¢1(Z§+1)71)T-

The corresponding 95%-variation bounds are given by the limits

[ (y™); £1.96(50),5, j=1,...,d, i=0,1...,n.
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