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Abstract

Förster resonance energy transfer (FRET) is a quantum-physical phenomenon
where energy may be transferred from one molecule to a neighbour molecule
if the molecules are close enough. Using fluorophore molecule marking of pro-
teins in a cell it is possible to measure in microscopic images to what extent
FRET takes place between the fluorophores. This provides indirect informa-
tion of the spatial distribution of the proteins. Questions of particular interest
are whether (and if so to which extent) proteins of possibly different types
interact or whether they appear independently of each other. In this paper we
propose a new likelihood-based approach to statistical inference for FRET mi-
croscopic data. The likelihood function is obtained from a detailed modeling of
the FRET data generating mechanism conditional on a protein configuration.
We next follow a Bayesian approach and introduce a spatial point process prior
model for the protein configurations depending on hyper parameters quanti-
fying the intensity of the point process. Posterior distributions are evaluated
using Markov chain Monte Carlo. We propose to infer microscope related pa-
rameters in an initial step from reference data without interaction between the
proteins. The new methodology is applied to simulated and real data sets.

Keywords: Bayesian inference, Markov chain Monte Carlo, Förster resonance
energy transfer, spatial point process, spatial distribution, proteins, fluoro-
phores.
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1 Introduction

In the biology community there is a vast interest in studying the biomolecular
structure and dynamics of macromolecular assemblies in order to understand their
functions (Alber et al., 2017; Polo and Jackson, 2011; Krissinel and Henrick, 2007;
Puglisi, 2005). Because the interactions between proteins and the typical size of
proteins (1 nm to 100 nm) is at the nanoscale level (Erickson, 2009), no information
can be obtained from conventional optical microscopic techniques, which at best
can resolve distances down to ∼200 nm (van Putten et al., 2011). Instead, Förster
resonance energy transfer – also referred to as fluorescence resonance energy transfer
– microscopy is widely used to obtain such information. Förster resonance energy
transfer (FRET) provides information about distances of the order of 2 nm to 10 nm

within or between molecular structures and is the preferred tool for investigating
spatial relationships in biochemistry (Wu and Brand, 1994; Gryczynski et al., 2005;
Clegg, 1995, 2006).

FRET is the nonradiative transfer of the surplus of energy from an excited donor
fluorophore (fluorescent molecule) to a sufficiently nearby acceptor fluorophore by
dipole-dipole interaction (Heitler, 1954; Rohatgi-Mukherjee, 1978). The widespread
use of FRET in biological research is based on the possibility to label, in vivo or in
vitro, proteins with fluorophores that are spectrally matched (Miyawaki et al., 2003;
Bunt and Wouters, 2004). The energy transfer due to the FRET mechanism is a
stochastic process and the probability that energy transfer occurs between a donor
and an acceptor fluorophore is heavily dependent on the distance between them. The
probability that energy transfer occurs is commonly referred to as the efficiency of
the energy transfer. The usefulness of FRET lies in the fact that various techniques
exist by which the fraction of donor excitations that result in energy transfer – i.e.
the efficiency – can be quantified.

Two main methods for determining the FRET efficiency are: fluorescence lifetime
measurements (Wallrabe and Periasamy, 2005; Lakowicz, 2009; Chen et al., 2013)
and spectral methods (Sun et al., 2011; Zimmermann et al., 2003). We focus in
this paper on the most commonly applied spectral method called three-cube FRET.
Due to the FRET mechanism a certain fraction of the de-excitations of a donor
result in energy transfer to an acceptor, instead of donor photon emission. Thereby,
the rate by which photons are emitted from the donors decreases – a phenomenon
referred to as quenching of the donor – while instead, photons are emitted by the
acceptors. Spectral methods now rely on determining the decrease in the donor
emission due to FRET. For three-cube FRET, intensity measurements are carried
out using three different filter sets – often referred to as cubes – each comprising:
an excitation filter, a dichroic mirror, and an emission filter. This results in three
digital intensity images (Zal and Gascoigne, 2004; Wallrabe et al., 2006; Periasamy
et al., 2008; Periasamy and Day, 2011). Two images are obtained by exposing the
sample to light in the donor absorption spectrum and recording emitted intensities
both in the donor and the acceptor excitation spectrum. The third image is obtained
by exposing the sample to light in the acceptor spectrum and also recording light in
the acceptor spectrum.
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Given FRET image data, the task is to obtain information concerning the spatial
configuration of the donors and acceptors in the sample. For example, Wallrabe et al.
(2003) study the clustering of ligand-receptor complexes in endocytic membranes
using confocal FRET microscopy. They differentiate between a clustered or a random
distribution of proteins by considering the dependence of the FRET efficiency on
donor and acceptor concentrations. In particular, independence of the efficiency
on acceptor concentration, or a decrease in the efficiency for higher unquenched
donor signal for a fixed acceptor concentration, are both indicators for clustering
(Kenworthy and Edidin, 1998; Kenworthy, 2001). Goswami et al. (2008) instead
compare observed distributions of fluorescence intensity and fluorescence anisotropy
with values expected from a Poisson distribution of nanoclusters.

Other, computational, approaches mainly rely on the construction of a configu-
ration of donors and acceptors and computing the FRET efficiency related to this
configuration by numerical computation of the energy transfer probabilities for each
of the donors (Wolber and Hudson, 1979; Corry et al., 2005). This simple approach
has been extended by various authors by simulating FRET events explicitly using
Monte-Carlo techniques. The extended approach gives the possibility to include ad-
ditional physical complexity into the model to account for possible photobleaching
of donors and acceptors during a FRET measurement or the effect that temporarily
unavailable acceptors can have on the FRET efficiency (Frederix et al., 2002; Berney
and Danuser, 2003; Corry et al., 2005). Corry et al. (2005) further carefully studied
the FRET efficiency in relation to various fixed donor and acceptor configurations
(e.g. pentamers) and gives a concise overview of the development of the numerical
Monte Carlo approaches.

Loura and Prieto (2011), Loura et al. (2010) and Lakowicz (2009) give excellent
reviews of methods to extract spatial information in membrane biophysics from
FRET data. Methods determining the complex structures of a protein or the spatial
distribution of protein complexes in living cells are given in e.g. Raicu et al. (2009)
and Bonomi et al. (2014).

The previous mentioned contributions are based on a detailed understanding of
the FRET data generating mechanism. This knowledge, however, so far has not
been applied to obtain a complete statistical model of FRET data allowing for a
principled statistical analysis. In this paper we present a first attempt to conduct a
full likelihood-based Bayesian analysis of three-cube FRET image data. The poten-
tial advantages of such an approach is that the posterior distribution gives detailed
quantitative information regarding model parameters and donor-acceptor interac-
tions as well as measures of uncertainty regarding this information. To obtain the
likelihood function we derive, based on physical considerations, an accurate statisti-
cal model for the distribution of the image intensities, conditional on a point pattern
consisting of donors and acceptors. We further impose a spatial point process prior
(Møller and Waagepetersen, 2003) for the unknown configuration of donors and
acceptors. Since our resulting posterior distribution is of a complicated form we
use Markov chain Monte Carlo (MCMC) to sample from the posterior distribution
(Gamerman and Lopes, 2006; Gilks et al., 1995). It is difficult to infer simultane-
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ously microscope related parameters and possible interactions between donors and
acceptors. We therefore propose to infer microscope related parameters in an initial
step based on reference data without interactions between donors and acceptors.
We asses the Bayesian inference procedure by a simulation study and by applying
it to an empirical in-vitro reference dataset.

2 Observation model for three-cube FRET image
data

A three-cube FRET data set consists of three images each corresponding to a rect-
angular region W which is a union of rectangular pixels, W =

⋃
i∈G Ci, indexed by a

grid G. Each pixel Ci records a light intensity due to emission from donors or accep-
tors. The images are created by (1) excitation of donors and measurement of donor
emission, (2) excitation of acceptors and measurement of acceptor emission or (3)
excitation of donors and measurement of acceptor emission (due to FRET). We rep-
resent the images by vectors YDD = (Y i

DD)i∈G, YAA = (Y i
AA)i∈G and YDA = (Y i

DA)i∈G.
The first letter in the subscripts denotes whether donors (D) or acceptors (A) were
excited and the second letter denotes in which channel emission was measured. We
assume that a pixel value Y i

k , k = DD,AA,DA, i ∈ G, is subject to additive normal
noise. That is,

Y i
k = I ik + εi (2.1)

where I ik denotes light intensity due to emission and the noise terms εi are indepen-
dent and N(0, σ2) distributed.

We now specify models for the I ik given configurations of donor and acceptor
proteins in W whose positions form point patterns respectively XD and XA.

2.1 Some Fluorescence Resonance Energy Transfer Theory

An excited donor d ∈ XD surrounded by a configuration XA of acceptors can de-
excite in three ways: either by emission with a rate kDE, by non-radiative decay
(e.g. internal heat conversion) with a rate kDN , or by FRET to an acceptor a ∈ XA

with a rate kF,da. We will refer to the sum of the first two mechanisms as the intrinsic
de-excitation rate kD, i.e. kD = kDE + kDN . According to Förster (1948), kF,da is
given by

kF,da = kD

(
R0

‖d− a‖

)6

where R0 is the so-called Förster distance, defined as the distance between the donor
and acceptor at which the de-excitation rate due to FRET equals the intrinsic de-
excitation rate. That is, kF,da = kD if ‖d−a‖ = R0. The probability that d de-excites
due to FRET to a specific donor a in XA thus becomes

Pda =
kF,da

kD +
∑

ã∈XA
kF,dã

=
(R0/‖d− a‖)6

1 +
∑

ã∈XA
(R0/‖d− ã‖)6

.
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2

R0

2R0

R0

Emission

(a)

(
R0

‖d−a‖

)6
Pda

a1 1 1/(1 + Sd)

a2 64 64/(1 + Sd)

a3 1/64 (1/64)/(1 + Sd)

Sd =
∑

ã∈XA
(R0/‖d− ã‖)6

= 1 + 64 + 1/64

(b)

Figure 1: (a) Donor fluorophore surrounded by three acceptors at distances R0, 1
2R0

and 2R0. (b) The table shows the de-excitation “path widths” (R0/||d − a||)6 for energy
transfer from the donor to each of the acceptors and the corresponding energy transfer
probabilities Pda.

Figure 1 shows an example of the computation of Pda for a specific configuration
of acceptors a around a donor d. The total probability that d de-excitates due to
FRET is PdA =

∑
a∈XA

Pda. The probability that d de-excites by emission or by
non-radiative decay is PdD = 1− PdA.

2.2 Model for intensities given protein configurations

Our model for the intensities given the configurations XD and XA is inspired by
the model for simulation of FRET data in Corry et al. (2005). However, in contrast
to Corry et al. (2005) we introduce the simplifying assumption that a donor or
acceptor is always available for excitation (see also Wolber and Hudson, 1979; Berney
and Danuser, 2003). This is a reasonable assumption if the intensity of the laser is
moderate so that the inter arrival times of photons at a donor are large compared
with the de-excitation times. We can then regard the times of excitations of donors
and acceptors as Poisson processes and use standard results for Poisson processes
to obtain closed form distributional results for the I ik.

In the Appendix (page 25) we show that I iDD = GDN
i
DD and I iDA = GAN

i
DA

where N i
DD and N i

DA are the number of photons detected by the detector in, respec-
tively, the DD-channel and the DA-channel, and N i

DD and N i
DA are both Poisson

distributed. Further, GD and GA are unknown positive parameters related to the
sensitivity of the detector in, respectively, the donor and acceptor emission spectrum.
The means of I iDD and I iDA are

µiDD = MD

∑

d∈XD∩Ci

(1− PdA)
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and
µiDA = GMD

∑

a∈XA∩Ci

∑

d∈XD

Pda,

where MD and G are unknown positive parameters. We assume that the means
µiDD/GD and µiDA/GA of, respectively, N i

DD and N i
DA are sufficiently large so the

Poisson distributions of N i
DD and N i

DA can be well approximated by normal distri-
butions. Then

I iDD ∼ N(µiDD, GDµ
i
DD) and I iDA ∼ N(µiDA, GAµ

i
DA). (2.2)

By a similar line of arguments we also obtain

I iAA ∼ N(µiAA, GAµ
i
AA) (2.3)

where
µiAA = (MD/K) n(XA ∩ Ci),

K is an unknown positive parameter and n(XA∩Ci) denotes the number of acceptors
within pixel Ci. In cases of intensity data with a large proportion of zeros we instead
use truncated normal distributions with point masses at zero for I iDD, I iDA and I iAA,
see Section B.2 of Supplement B.

The equations (2.1), (2.2) and (2.3) specify the distribution of the FRET data
conditional on the protein configurationsXD andXA. The distribution is parameter-
ized by ψ = (MD, G,K,GD, GA, σ

2). We refer to the components of ψ as microscope
related parameters. The parameters G and K are known as the so-called G- and
K-factors (Zal et al., 2002; Chen et al., 2007). The parameterMD can be interpreted
as the mean donor emission detector read-out intensity due to one donor excitation.

3 Bayesian inference of spatial characteristics of
protein configurations

We adopt a Bayesian approach to infer the microscope related parameters ψ and
spatial characteristics of the configurations XD and XA of proteins. A spatial point
process prior (specified in Section 3.1) is used for X = (XD,XA) where this prior
again depends on a parameter vector θ. We also assign a prior to θ thus includ-
ing also this parameter in the posterior inference. As detailed later in Sections 4.4
and 5 we recommend to infer the microscope related parameters in an initial step
using reference data without interactions between donors and acceptors. In a second
step, investigating interactions in a data set of biological scientific interest, ψ can
then be fixed at estimates obtained from the first step. Letting y denote an obser-
vation of Y = (YDD, YDA, YAA) and (xD,xA) a realization of X, the joint posterior
distribution is

p(xD,xA, θ|y, ψ) ∝ p(y|xD,xA, ψ)p(xD,xA|θ)p(θ). (3.1)

Here p(z) and p(z|u) is generic notation for a probability density of a random quan-
tity Z and the conditional density of Z given another random quantity U .
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3.1 Priors

We model a priori XD and XA as independent Poisson processes on W with inten-
sities θD and θA. That is, the prior density of (XA,XD) with respect to independent
unit rate Poisson processes is

p(xD,xA|θ) = θ
n(xA)
A θ

n(xD)
D exp[−|W |(θA + θD − 2)] (3.2)

where |W | denotes the area of W and n(x) denotes the number of points in a point
configuration x (see for instance equation 6.2 in Møller and Waagepetersen, 2003).
We further impose independent conjugate Gamma hyper priors for θD and θA. The
Poisson prior can be viewed as a null model for the case of no interaction between
donors and acceptors or within donors respectively acceptors. Compared with other
more complex point process models like Markov point processes (like the Strauss
hard core model considered in Section 4), the Poisson prior is advantageous in having
a known density function. A potential problem is that the Poisson prior is in some
sense a strong prior which assigns little probability to point configurations with
strong clustering or regularity. This can lead to biased results as demonstrated in
Section 4. Densities for more flexible Markov point process prior models on the
other hand contain intractable normalizing constants that depend on the unknown
parameters in the point process model. This then precludes the use of standard
Markov chain Monte Carlo algorithms (Section 3.2) for evaluation of the posterior
distribution.

The gamma distributions for θD and θA are defined through shape parameters
α and rate parameters β. As the mean of the Gamma distribution is α/β and its
variance α/β2, the signal-to-noise ratio related to the distribution is defined by the
square root of the shape parameter, i.e

S

N
=

α/β√
α/β2

=
√
α.

In a typical FRET experiment there is quite some uncertainty concerning the true
values of the numbers of proteins within the sample so we have defined not too
confined priors for the intensities θD and θA. We have chosen to set the signal-to-
noise ratio always equal to 2, resulting in the value of 4 for the shape parameter. In
our applications we further specify the prior mean m of each of the parameters so
that the rate parameter β follows from β = α/m = 4/m. We also use gamma priors
for the components of ψ, see the discussion of prior elicitation for ψ in Section 6.

3.2 Markov chain Monte Carlo

To evaluate the posterior distribution we use a Markov chain Monte Carlo algorithm
(Gamerman and Lopes, 2006) where the components (XD,XA), θD, θA and (if appli-
cable) the components of ψ are updated in turn. Gibbs updates are used for the full
conditional Gamma distributions of θD and θA while random walk Metropolis up-
dates on the log scale are used for the components of ψ. For the point configurations
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(XA,XD) we first randomly choose to either update XA or XD (with probability 1/2
for each choice). We then use birth-death updates as outlined in Sections 7.1.2–7.1.3
in Møller and Waagepetersen (2003). If e.g. XA is chosen to be updated then with
probability 1/2 it is proposed to remove a point chosen from the uniform distribu-
tion on XA. Otherwise it is proposed to insert a new acceptor point at a location
chosen from the uniform distribution on W . In case it is proposed to remove a point
u ∈ XA, the Metropolis-Hastings ratio becomes

p(xD,xA\{u}, θ|y, ψ)n(xA)

p(xD,xA, θ|y, ψ)|W | =
p(y|xD,xA\{u}, ψ)n(xA)

p(y|xD,xA, ψ)θA|W |
.

If it is proposed to insert a new acceptor point v ∈ W the Metropolis-Hastings ratio
is

p(y|xD,xA ∪ {v}, ψ)θA|W |
p(y|xD,xA, ψ)(n(xA) + 1)

.

The expressions for updating XD are similar. The described birth-death updates are
repeated a large fixed number of times between the updates of the parameters θD,
θA and ψ.

To keep the MCMC updates for donor and acceptor points numerically feasible,
only those acceptors that reside within 4R0 of a donor are taken into account as a
possible path for energy transfer for the donor. This important simplification will
not lead to any significant difference in posterior results as the transfer probability
Pda for a donor d and an acceptor a is very small when ‖d − a‖ > 4R0. Thereby
adding or removing a point in pixel i can only affect the values of likelihood factors
p(ylDD, y

l
DA, y

l
AA|xD,xA, ψ) for pixels l in a neighbourhood of i (note that the likeli-

hood factors as
∏

i∈G p(y
i
DD, y

i
DA, y

i
AA|xD,xA, ψ)). Exploiting this simplification, we

have implemented an ingenious algorithm that recomputes the transfer probabilities
Pda only for donors and acceptors which are influenced by the adding/removing of
a point. A detailed description of the MCMC sampler is provided in Supplement B
on page 37.

3.3 Inferring spatial characteristics

In statistics for spatial point processes, theK-function is a common tool for inferring
interactions from a spatial point pattern. We adapt this approach and use the cross
K function (e.g. Møller and Waagepetersen, 2003) to measure interactions between
donors and acceptors given point configurations xA and xD. In general, for point
processes X1 and X2 of intensities ρ1 and ρ2, ρ2K12(t) is the expected number of
X2 points within distance t from a typical point of X1. In case of no interaction
between X1 and X2, K12(t) = πt2. Values of K12(t) greater (smaller) than πt2

signifies positive (negative) interaction betweenX1 andX2. It is common to consider
the cross L-function L12(t) =

√
K12(t)/π which is equal to t in case of no cross

interaction while L12(t) > t (L12(t) < t) means positive (negative) cross interactions.
For ease of presentation we refer to L12(t)− t as the ‘centered’ cross L-function.
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Given configurations xD and xA of donors and acceptors we estimate the cross
K function by

K̂x(t) =
∑

u∈xA,v∈xD

1[‖u− v‖ ≤ t]

n(xA)n(xD)|W ∩Wu−v||W |−2

whereWu−v isW translated by u−v (e.g. Section 4.4.3 in Møller and Waagepetersen,
2003). The cross L-function is estimated by L̂x(t) =

√
Kx(t)/π. To infer cross

spatial interactions between donors and acceptors given FRET data we consider the
posterior distribution of

L̂X(t) =

√
K̂X(t)/π

or its centered version. We also considered so-called cross G- and J-functions (e.g.
Møller and Waagepetersen, 2003) but in our simulation studies the cross L-function
gave a more clear impression of the nature of donor-acceptor interactions.

4 Simulation studies

Our primary target of inference is the cross L-function, L̂X for the configurationX =

(XA,XD) of donors and acceptors which is unknown in practice. However, we also
need to infer the microscope related parameters ψ. From a Bayesian perspective, if
the right prior distribution is chosen, the posterior distribution by definition provides
the correct inference given the data Y and prior information. However, in our case,
the Poisson prior (3.2) is partly chosen for convenience in order to yield tractable
MCMC computations and is not necessarily the best possible representation of prior
information. Thus from a pragmatic point of view it makes sense to assess possible
bias of our Bayesian inference procedure.

In particular we focus in Section 4.3.1 on the posterior mean L|Y of L̂X as a
predictor of L̂X. The posterior mean L|Y is further an estimate of LE = E[L̂X]

which is the expected value of L̂X over replicated data X. Note in this connection
that had we used the true distribution of X as the prior then EL|Y and LE would
be exactly equal – i.e. L|Y would be an unbiased predictor/estimate both of L̂X

and LE. In Section 4.3.3 we assess the performance of the full posterior distribution
of L̂X given Y for inference regarding L̂X. In Section 4.3 we consider ψ to be a fixed
known parameter. Section 4.4 is concerned with inference regarding ψ.

4.1 Simulation of synthetic data

To generate synthetic data for the simulation study, the point configuration X =

(XA,XD) is generated on a 1000 nm by 1000 nm square region as a realization of a
bivariate Strauss hard core process. This point process has density (with respect to
a bivariate process of independent unit rate Poisson processes) of the form

f(xA,xD) ∝ β
n(xD)
D β

n(xA)
A γsR(xA,xD)HC(xA,xD,<A,<D,<DA) (4.1)
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where sR(xA,xD) is the number of unordered pairs of points {u, v} with u ∈ xA,
v ∈ xD, and interpoint distance ‖u− v‖ less than R. Values of γ less than one lead
to repulsion between donors and acceptors while values of γ greater than one lead
to attraction. The term HC(xA,xD,<A,<D,<DA) is one if the following hard core
condition is satisfied: all donors have an interpoint distance greater than <D, all ac-
ceptors have an interpoint distance greater than <A and all pairs of points where one
is a donor and the other an acceptor have an interpoint distance greater than <DA.
Otherwise the hard core term is zero whereby it serves to model that donors and
acceptors have a physical extent that prevents them from getting arbitrarily close to
each other. Different settings of the Strauss hard core process parameters are used
to create different point pattern types described in Section 4.2 below.

Next, conditional on the configuration X and the various microscope related
parameters ψ, the intensity data Y is generated from the model specified in Section 2.
Regarding the observation model we fix the measurement variance σ2 at 25, let
each of G,K,GD, GA equal to 1, and consider values 1, 5, 20 of MD in order to
generate data of varying signal to noise ratios defined by E[µiDD/(GDµ

i
DD + σ2)1/2]

and E[µik/(GAµ
i
k + σ2)1/2], k = DA,AA. For each point pattern type we generate

100 independent synthetic point patterns Xsynth,i and associated synthetic image
data Y synth,i, i = 1, . . . , 100.

4.2 Point pattern types

The basic point pattern types considered are dimer, clustered, Poisson hard core and
repulsive. For all types, <D, <A and <DA are at least 2 nm. The parameters βD and
βA are further adjusted to have on average 1000 donors and 1000 acceptors.

In case of dimer, we specify large values of <D = <A which essentially means
that only proteins of different types can appear close to each other. Thus the only
clusters possible are mini-clusters consisting of one donor and one acceptor, i.e dimer
clusters. For the clustered case, <D = <A are reduced which enables formation of
a wider range of clusters containing several donors and acceptors. In case of dimer
and clustered, values of γDA = 2, 8 correspond to respectively moderate and strong
interaction. For Poisson hard core, γDA = 1 while all hard core distances are 2. In
case of repulsive, varying values of <DA, r and γDA < 1 generate different strengths
of repulsive interaction between donors and acceptors. Table 1 gives an overview of
the different parameter settings considered.

4.3 Inference regarding spatial characteristics

We estimate LE by the empirical average of L-functions L̂Xsynth,i obtained from the
Xsynth,i. From each synthetic data set Y synth,i we further obtain an MCMC estimate
L̄|Y synth,i of the posterior mean L|Y synth,i of L̂X given Y synth,i. The mean posterior
L-function EL|Y is estimated by the mean of the L̄|Y synth,i . The sampling variability
of L|Y is further represented by the variation of the L̄|Y synth,i . When considering
inference for the cross L-function in the following Sections 4.3.1–4.3.3, ψ is fixed at
the value used for generating the synthetic data sets.
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Table 1: Parameter settings used in the Strauss hard core model (4.1) to create the various
point pattern types. The values for the homo (<DD, <AA) and hetero (<DA) hard core
distances and the hetero interaction radius (R) presented in the table follow from the
considerations stated in the text and by the choice of the Förster distance R0 = 6.

Type number <DD = <AA <DA R γDA Short name

1 18 2 6 2 Dim.12
2 18 2 6 8 Dim.18

3 12 2 6 2 Dim.22
4 12 2 6 8 Dim.28

5 6 2 6 2 Clu.12
6 6 2 6 8 Clu.18

7 2 2 6 2 Clu.22
8 2 2 6 8 Clu.28

9 2 2 0 1.0 Poi.HC

10 2 6 0 1.0 Rep.h1
11 2 12 0 1.0 Rep.h2

12 2 2 10 0.5 Rep.s1
13 2 2 10 0.1 Rep.s2
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Figure 2: In each plot the solid line is the centered LE function. The other lines show the
centered EL|Y for varying MD: dashed line: MD = 1, dotted line: MD = 5, dashed-dotted
line: MD = 20. The plots are for the dimer and clustered point pattern types.
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4.3.1 Bias of posterior mean

We assess the bias of L|Y by considering the mean (over replicated data X, Y ) of
L̂X and its prediction L|Y . Thereby we also assess how L|Y performs as an estimate
of LE (the expected cross L-function for X).

In Figures 2 and 3 the estimates of LE(t)− t and EL|Y (t)− t are shown for each
of the point pattern types in Table 1 for the three values ofMD (1,5,20). In Figure 2
(a) for example, LE for dimer-type 1.2 shows that the underlying point patterns are
clustered for distances r < 16 (as LE > 0) and are slightly repulsive for distances
16 < r < 24. Further, for distances 24 < r < 40 there seems to be some slight
clustering again while for r > 40, the pattern displays complete spatial randomness.
The negative values that occur for r < 5 is due to the minimum imposed hardcore
distance of 2. The negative part for small r is also visible in the plots (b)–(h) where
LE otherwise indicates clustering among donors and acceptors and in plot (i) where
LE(t)− t is close to zero otherwise.

The general impression from the plots is that L|Y is biased downwards when the
true point patterns are of dimer or clustered types (a)–(h) and biased upwards in
the cases of the repulsive types (i)–(m) (including the Poisson hard core case). For
MD = 1, where the signal to noise ratio is very low, the mean of L|Y is very close to
zero, and it does not seem possible to infer in this case cross interactions between
donors and acceptors. However, for MD = 5, 20, there is always a pronounced peak
(positive or negative) of the mean L|Y function where the peak is of the right sign
and located in the right place of the peak of the LE function. Moreover the bias
consistently decreases whenMD and hence the signal to noise ratio increases. Despite
of the bias the results suggest that qualitatively correct statements can be made
regarding independence, clustering or repulsion between donors and acceptors.

4.3.2 Variability of posterior mean L-function

In addition to bias the extent to which valid qualitative conclusions can be made
from the posterior L|Y function of course also depend on its variability. Figure 4
shows for each basic point pattern type and MD either 5 or 20, 98% envelopes for
L|Y (t) based for each t on the minimal and maximal values of L|Y (t) over the 100
replications. These envelopes are fairly narrow for distances up to 100 and shows
that, in the setting of the simulation study, qualitative conclusions regarding the
nature of interaction between donors and acceptors will be consistently correct over
replicates.

4.3.3 Inference based on full posterior distribution

The results in Section 4.3.1 showed that the posterior mean L-function L|Y can
exhibit substantial bias as an estimate of LE and hence also as a predictor of L̂X. This
can invalidate the use of the full posterior distribution for inferring the uncertainty
regarding the estimation of LE or the prediction of L̂X. As an example Figure 5
shows L|Y synth,1(t) − t and the 98% central posterior interval for L̂X(t) − t given
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Figure 4: Distribution of the centered L̄|Y function for the various point pattern types,
summarized by 98% envelopes based on L̄|Y synth,i , i = 1, . . . , 100, together with the mean
value ÊL|Y (middle solid line). The value of MD is 5 or 20. In each plot twenty of the
L̄|Y synth,i ’s are shown with solid gray curves, the dashed line is the centered L̂E function.

Y = Ysynth,1 for the same point pattern types as in Figure 4 and MD = 5, 20. Also
the true L̂Xsynth,1(t)− t are shown in each plot.

For the lower signal-to-noise ratio withMD = 5, L̂Xsynth,1(t) falls outside the 98%
posterior interval for several point pattern types. Thus, the posterior intervals do
not always give a useful quantification of the uncertainty regarding the knowledge
of LX. However, for the higher signal-to-noise ratio with MD = 20, the envelopes do
include or almost include the L̂Xsynth,1 function.

4.4 Simulation studies for microscope parameters

So far the vector ψ of microscope related parameters has been assumed to be known
which is rarely the case. We have investigated Bayesian inference for ψ in a simulation
study for which the full details are given in Supplement C on page 48. We here
just comment on results obtained for simulations with GD = GA = K = G = 1,
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Figure 5: Posterior distribution of L̂X given the first synthetic data set Y synth,1 for each
point pattern type. Dashed: posterior mean L|Y synth,1 , dashed-dotted: 98% envelopes and
solid gray: twenty posterior realizations of L̂X. Solid black shows the true L̂Xsynth,1 .

MD = 20 and σ2 = 25. Figure 6 shows boxplots of the posterior mean of each
microscope parameter over 40 replicated data sets for each point pattern type. The
main features are as follows.

1. for the Poisson hard core patterns the posterior means of all the parameters
coincide with or are very close to their respective synthetic values (see plots
(a)–(f) for type number 9).

2. for all the clustered patterns (type number 1–8) inference for MD, G and K is
biased. The posterior means M̄D are significantly below their synthetic value,
while Ḡ and K̄ are above their target values. Further the bias increases for
the patterns generated with γDA = 8 (type number 2,4,6,8) compared to the
corresponding patterns generated with γDA = 2 (type number 1,3,5,7).

3. for repulsive patterns (type number 11–13) M̄D and K̄ are on or close to target,
while Ḡ is negatively biased.
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4. the posterior means of σ, GA and GD are on target for almost all point pattern
types (plots (d)–(f)).

As explained in detail in Supplement C, the biased results are due to the mismatch
between the Poisson point process prior and the actual point processes used for the
simulations. The microscope related parameters thus, a posteriori take on values
to “soothe” this mismatch resulting in biased results. Further, in this setting with
joint inference of ψ and spatial characteristics, the posterior mean L-functions are
strongly biased as well, being close to zero for all distances for all point patterns
types (not shown).

5 Two-step approach to likelihood-based inference

In the previous Section 4.4 we observed that applying the Bayesian inference method-
ology using the Poisson process prior on Poisson hard core patterns gave reliable es-
timates for all microscope parameters. This suggests an approach where microscope
related parameters are inferred from reference data sets constructed with absence
of donor-acceptor interactions. Therefore we propose a two-step approach where the
microscope related parameters are inferred in a first step using reference data. In
the second step the values of the microscope parameters are fixed at the posterior
estimates from the first step in order to make inference on the spatial configuration
of donors and acceptors of a three-cube FRET sample of biological scientific interest.
To illustrate the approach we have carried out the first step on empirical reference
three-cube FRET data, as dicussed in the following section.

6 Data example

In this section we apply our Bayesian methodology to empirical in vitro three-cube
FRET data obtained from donor or acceptor fluorophore labeled transferrin proteins
(Welch, 1992) attached to polylysine slides (Shima and Sakai, 1977). Transferrin
bound to polylysine is known to be approximately randomly (i.e. Poisson hardcore)
distributed (Wallrabe et al., 2007). The objective is to infer the microscope param-
eters related to the experimental set-up.

We initially conducted an exploratory analysis (described in Supplement A on
page 27) where we quantified the amount of photobleaching and compared empirical
mean-variance relationships of the image data with the ones implied by our model.
From these mean-variance relationships, as well as other non-Bayesian methods dis-
cussed in Supplement A, we obtained rough estimates for the microscope parameters
that were used to set the prior means in the Bayesian analysis. We thus use a prag-
matic Bayesian approach where the rough non-Bayesian estimates entering in the
priors are refined by introducing information obtained through the likelihood derived
from our observation model.

Due to certain computational issues discussed in Section 6.2 and Section 6.3.1
we are at this stage only able to use a small subset of the full data in the Bayesian

18



inference. Improving the computational methodology is an important topic of further
research.

6.1 The image data set

Three cube FRET measurements have been carried out on three samples, to which
we refer as samples 1, 2 and 3. Sample 1 is prepared to consist of twice as many
donors (D) as acceptors (A), that is D:A ≈ 1 : 1

2
, while samples 2 and 3 are prepared

such that, respectively, D:A ≈ 1 : 1 and D:A ≈ 1
2

: 1. Three-cube FRET data is
obtained on each sample on a square grid containing 512× 512 square pixels. The
pixel side length is 0.279 µm and the focal volume depth is approximately 5 pixels
(1.4 µm) (Wallrabe et al., 2007). The image data are shown in Figure 7.

The emission in the DD-channel (YDD) and AA-channel (YAA) are corrected for
background emission, while the DA-channel data (YDA) is also corrected for spectral
bleedthrough, by the methods described in Elangovan et al. (2003).

We noticed that around the edges of the 512× 512 images, often very low or zero
intensity regions occurred due to improper sample preparation. Therefore, the ex-
ploratory statistical analysis has been based solely on the central rectangular section
of the images consisting of 100× 100 pixels (see also Supplement A, Section A.1).

In order to obtain sufficient photon count statistics – that is sufficiently high
signal-to-noise ratio for each pixel – each sample has been remeasured ten times.
We then create an aggregated dataset by summing pixel wise over the ten measured
intensities for each channel. We note that by remeasuring the sample instead of
increasing the measurement time, we obtain information concerning: the amount
of photobleaching occurring for remeasurements (Supplement A, Section A.3), and
the pixel intensity variance in the three channels. The latter information gives the
possibility to deduce the empirical mean-variance relationship of the image data and
to obtain estimates for GD and GA (Supplement A, Section A.6).

6.2 Inference procedure set-up

The prior distributions for the microscope and Poisson point process parameters
were specified as gamma distributions. For each parameter the shape parameter is
set to 4 based on the reasoning in Section 3.1 and we use a pragmatic Bayesian
approach where the prior means of five of the microscope parameters are set by
aid of the rough estimates MD ≈ 2.6, G ≈ 0.7, K ≈ 0.7, GD ≈ 7.4 and GA ≈ 5.5

obtained from the preliminary statistical analysis in Supplement A, Sections A.3–A.6
and A.8. The prior mean of the measurement noise σ2 we have set, rather ad-hoc,
to 50.

By the statistical analysis in Section A.8 of Supplement A, it was further found
that the point process intensities θA and θD of the samples can be roughly related to
the donor and acceptor solution concentrations applied for the sample preparation.
Thereby, we found that for sample 1, θD ≈ 2× 103/µm2 and θA ≈ 103/µm2; while for
sample 2, θD ≈ 2× 103/µm2 and θA ≈ 2× 103/µm2; and for sample 3, θD ≈ 103/µm2
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Figure 7: Channel intensity images of the aggregated channel dataset of sample 2. (a) DD-
channel, (b) AA-channel, (c) DA-channel. Plots (a)–(c) consist each of 512× 512 pixels.
Plots (d)–(f) show enlargements of the square subregions of the plots (a)–(c), each con-
sisting of 100× 100 pixels. Above each plot is stated the mean (me), maximum (ma) and
minimum (mi) pixel intensity value in the image. In each image the gray levels are con-
structed by using ten equally spaced intervals between zero and the maximum value of the
image. Black/white refers to the lowest/highest intensity interval.

Table 2: Prior means for the microscope parameters and the Poisson point process inten-
sities, as well as the values of the tuning parameter τ applied to generate proposals for the
microscope parameters.

Samples 1,2 and 3 Sample 1 Sample 2 Sample 3

MD G K GD GA σ2 θD θA θD θA θD θA

Prior mean 2.5 1.0 1.0 5.0 5.0 50.0 2e3 1e3 2e3 2e3 1e3 2e3
τ 0.05 0.1 0.1 0.5 0.5 1.0 — — — — — —

and θA ≈ 2× 103/µm2. We use these values as prior means for θA and θD for
each of the samples. The applied prior means as used in the Bayesian analyses are
summarized in Table 2.

In the MCMC computations we used random walk Metropolis-Hastings updates
for the log microscope related parameters. The values of the random walk update
standard deviations τ are also shown in Table 2. We tuned the τ values to get an
approximately 30% proposal acceptance rate for each of the microscope parameters.
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The total number of MCMC updates is 5× 109 for each run. Metropolis-Hastings
updates for the microscope parameters and Gibbs updates for the point process
parameters are made after every 104 birth/death updates of donor or acceptor points.

The MCMC chains converge slowly due to bad mixing as discussed in Section 6.3.
This means that we need many rounds of birth-death updates for the donor/acceptor
points followed by updates of microscope and point process parameters. In each
round we need to update a large fraction of the donors and acceptors. Thus, for a
fixed fraction, each round takes more computing time the higher posterior expected
number of donors and acceptors. The a posteriori expected number of donors and
acceptors in each pixel is fairly high (of the order 300). To keep the computation time
at an acceptable level, we therefore perform the inference on a small 10× 10 subset
of pixels which contain a posteriori of the order of 3× 104 donors and acceptors.

6.3 Results of the inference

6.3.1 Assessment of MCMC samples

In Figure 8 the traceplots of the microscope parameters and the Poisson point pro-
cess intensities for sample 1 are shown. Posterior mean values are displayed in the
upper left corner of each of the plots. The traceplots indicate poor mixing of the
MCMC samples except for GA, GD, and σ.

The poor mixing is due to high posterior correlation between certain parameters
as visualized by the scatterplots in Figure 9 in which the posterior realizations of
MD, G,K, θD, θA are plotted against each other. Especially MD and θD and G and
θA are highly correlated but fairly strong correlations are also evident between MD

and K and between K and θD. Similar scatterplots of GD, GA and σ2 versus each
of the other parameters (not shown), do not show any clear correlation with any of
the parameters.

6.3.2 Posterior results

In Table 3 the 95% posterior intervals and posterior means for each of the microscope
parameters and Poisson intensities are stated for each of the three samples. The
microscope parameters MD, G, GA, GD, and σ should be equal for all samples and
this may seem contradicted by their posterior means that vary across samples. There
is on the other hand considerable overlap between almost all 95% posterior intervals
so the Bayesian inference does not contradict that the microscope parameters are
equal across samples.

Figure 10 shows the posterior distributions of the centered L-function for the
three samples. As expected, there is no indication of clustering nor repulsion since
the centered posterior L-functions are close to zero and the posterior means are
approximately zero.
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Figure 8: Traceplots of the microscope and the Poisson point process parameters for
sample 1. Posterior mean values are displayed in the upper left corner of each of the plots.
For plotting a subsampling of 10 has been applied.
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Table 3: Posterior results for each of the three samples: 95% posterior intervals and
posterior means (in brackets) for each of the parameters. Prior means of the parameters
are given in Table 2.

Sample

1 2 3

MD 2.3–7.0 (4.2) 3.1–8.6 (5.5) 2.8–6.8 (4.7)
G 0.46–1.21 (0.78) 0.50–1.36 (0.89) 0.19–0.52 (0.32)
K 0.61–1.93 (1.08) 0.31–0.98 (0.60) 0.51–1.49 (0.92)
GA 1.9–6.2 (4.0) 5.3–12.7 (8.9) 8.0–13.4 (10.6)
GD 1.2–5.7 (3.3) 3.0–10.0 (6.3) 1.7–6.5 (3.9)
σ 4.4–12.0 (8.3) 3.8–10.7 (7.2) 4.2–11.6 (7.9)
θD 6.1e2–19.3e2 (11.1e2) 7.8e2–2282 (13.4e2) 9.0e2–23.5e2 (14.7e2)
θA 6.1e2–15.0e2 (9.7e2) 8.3e2–20.4e2 (12.8e2) 15.0e2–34.1e2 (23.5e2)
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Figure 10: Posterior distribution of the L-function for samples 1–3. For each sample the
posterior distribution is summarized by the posterior mean (solid line) of the L-function and
95% envelopes based on minimal (lower dashed-dotted line) and maximal (upper dashed-
dotted line) values of 39 posterior realizations of the L-function.

7 Discussion

This paper presents a first attempt to implement likelihood based inference for
FRET data. We thus, based on physical considerations, developed a realistic obser-
vational model for FRET data given the underlying configurations of donors and
acceptors. Based on this model we proposed to implement Bayesian inference using
MCMC.

We quantify spatial dependence by considering the posterior mean of the cross L-
function for the donors and acceptors. Our simulation results show that the posterior
mean of the L-function can be used to distinguish between clustering, absence of
interaction and repulsion between donors and acceptors. Due to bias one needs to be
careful when making quantitative statements regarding strength of interaction based
on the posterior means of the L-functions. However, we believe that it is meaningful
to make relative comparisons of strength of interactions between samples observed
under the same experimental conditions and thus with same signal to noise ratios.

Partly due to poor mixing of the proposed MCMC procedure we were forced to
consider only a small subset of the full data. A key objective for further research
is therefore to obtain a more efficient MCMC scheme so that efficient use of the
full data becomes feasible. Haario et al. (2001) suggest to use joint updates but
they consider posterior distributions of fixed dimensional random vectors. However,
preliminary experiments with this approach indicate that we need joint updates
involving both the microscope parameters and the donor-acceptor point patterns. It
is not clear how to do this. Our data example illustrated the use of reference data
with no donor-acceptor interactions to infer the microscope related parameters. In
future work it would interesting to apply an improved MCMC algorithm to conduct
Bayesian inference for an experimental sample with possible interactions.

The Poisson point process prior for protein configurations was chosen partly for
computational reasons. To implement Bayesian inference with more flexible Markov
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point process priors allowing for both repulsive and attractive interactions requires
more advanced Markov chain Monte Carlo methods developed in Møller et al. (2006)
and Murray et al. (2006). However, these methods are highly computationally de-
manding since they involve so-called perfect simulation from the point process prior
which can lead to unacceptable computing times in case of protein configurations of
high cardinality which are frequently encountered for FRET data.
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Appendix: Derivation of observation model

In this section we refer to notation introduced in Section 2. Let Ld denote the set
of times in the observation time span [0, T ] where a donor d in XD is excited by
a photon from the laser. We assume that Ld is a homogeneous Poisson process on
[0, T ] with intensity λD > 0. The process Ld can be decomposed as

Ld = LdE ∪ LdN
⋃

a∈XA

Lda

where LdE denotes the times of excitations of d which resulted in emission in the D
channel, LdN is the times of excitations resulting in non-radiative de-excitation and
Lda denotes the times of excitations that resulted in FRET to acceptor a and subse-
quent emission in the A channel. The so-called quantum yield 0 < qD < 1 is the prob-
ability of emission for donors conditional on that de-excitation is by emission or non-
radiatively, i.e. qD = kDE/kD. Similarly, qA denotes the quantum yield for acceptors.
Invoking the random labelling theorem for Poisson processes (e.g. Proposition 3.7 in
Møller and Waagepetersen, 2003), LdE, Lda, and LdN , are independent Poisson pro-
cesses with intensities λDqDPdD, λDqAPda, and λD[(1−qD)PdD+

∑
a∈XA

(1−qA)Pda].
For each i ∈ G we let

LiDD =
⋃

d∈XD∩Ci

LdE

and
LiDA =

⋃

d∈XD,a∈XA∩Ci

Lda

be the Poisson processes of donor excitation times which result in photon emissions
for respectively donors and acceptors in the pixel Ci.

The emitted photons fall on the detector independently of each other with a
probability 0 < h < 1 of detection. In the point process literature the detected
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photons is called an independent thinning with retention probability h. Further,
of the detected photons only independent thinnings with retention probabilities
0 < QD < 1 (0 < QA < 1) are registrated in the donor (acceptor) channel of
the detector. The probabilities QD and QA are respectively the detector quantum
yields in the donor and acceptor channel (Pawley, 2006a). The detected photon
counts N i

DD and N i
DA of emissions in the pixel Ci are thus Poisson distributed

with means QDhqDλDT
∑

d∈XD∩Ci
PdD and QDhqAλDT

∑
d∈XD,a∈XA∩Ci

Pda. Finally,
I iDD = GDN

i
DD and I iDA = GAN

i
DA where GD and GA are amplification fac-

tors depending on the detector and channel. Defining MD = GDQDhqDλDT and
G = (GAQAqA)/(GDQDqD) we arrive at the specified means of I iDD and I iDA.

The mean of I iAA is found in a similar fashion. In the AA-channel acceptors are
directly excited by the laser which is now broadcasting in the acceptor excitation
spectrum with an intensity λA > 0. An excited acceptor can only de-excite due
to emission or non-radiatively and the detected photon counts N i

AA of emissions in
the pixel Ci are Poisson distributed with means QAhqAλAT

∑
a∈XA∩Ci

1 and I iAA =

GAN
i
AA. Defining MA = GAQAhqAλAT and K = MD/MA we arrive at the specified

mean of I iAA.
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Supplement A

In this supplementary material we present a preliminary statistical analysis of the in
vitro transferrin attached to polylysine slides three cube FRET data set. We start
by describing the experimental set-up and sample preparation in Section A.1 and
discuss the channel data set extracted from these samples in Section A.2. Then we
study the influence that photobleaching of the donors and acceptors has on the
intensity signal for the remeasurements in the three channels in Section A.3, and
we present simple non-Bayesian methods for estimating the K and G factors in
Section A.4 and A.5, respectively. Methods for estimating the GA and GD factors
are presented in Section A.6 and an estimate of the ratio of the quantum efficiencies
in the detector D- and A-channel is given in Section A.7. We conclude by obtaining
an estimate of MD in Section A.8.

A.1 The experimental set-up

Fourteen glass cover slips coated with polylysine have been prepared to contain
various abundances of donor and acceptor fluorophores attached to it. Briefly, the
procedure is as follows. Transferrin is labeled solely with donor fluorophores or solely
with acceptor fluorophores, leading to Tfn-D and Tfn-A molecules. As donor the
Alexa-488 fluorophore (qD = 0.92) is used and as acceptor the Alexa-555 fluorophore
(qA = 0.10) is used. The Förster distance of the Alexa-488 and Alexa-555 fluorophore
pair is 7 nm (Johnson, 2010). Solutions containing concentrations of approximately
2 µg/ml, 4 µg/ml or 8 µg/ml of solely Tfn-D or solely Tfn-A are prepared, and glass
cover slips coated with polylysine are incubated for a certain period with Tfn-D
and/or Tfn-A solution. The procedure followed to bind transferrin to polylysine
plates is described in more detail in Wallrabe et al. (2006).

In Table A.1 the sample preparation set-up is shown. The samples 1–3 contain
only donor fluorophores, while samples 4–6 consist of only acceptor fluorophores. The
samples 7–14 consist of mixtures of donor and acceptor fluorophores. We note that
the samples denoted as sample 1, 2 and 3 in the article correspond to, respectively,
the samples 7, 9 and 11 in Table A.1.

Table A.1: Sample preparation set-up for transferrin attached to polylysine slides. The
solution concentrations of Tfn-A ([A]sol) and Tfn-D ([D]sol) applied are stated for each
sample in units of µg/ml.

Sample number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[A]sol – – – 2 4 8 2 4 4 8 4 8 6 8
[D]sol 2 4 8 – – – 4 8 4 8 2 4 2 2
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A.2 The channel data set

Each sample (see Table A.1) has been measured at three sites. At each site three-
cube FRET channel data is obtained on a square grid containing 512× 512 square
pixels. The pixel side length is 0.279 µm and the focal volume depth is approximately
5 pixels (1.4 µm) (Wallrabe et al., 2007).

In order to obtain sufficient photon count statistics – that is sufficiently high
signal-to-noise ratio to apply our Bayesian inference method – each sample has
been remeasured ten times.1 We then create an aggregated dataset – the aggregated
channel dataset – by summing pixel wise over the ten measured intensities for each
channel. By remeasuring the sample instead of increasing the measurement time, we
obtain information concerning: the amount of photobleaching occurring for remea-
surements (see Section A.3) and the pixel intensity variance in the three channels.
The latter information gives the possibility to compare the empirical pixel intensity
mean-variance relationship with the one implied by our statistical model, as well as
to obtain estimates for GD and GA (see Section A.6).

All three channels are corrected for background emission and the DA-channel is
also corrected for spectral bleedthrough by the methods described in Elangovan et al.
(2003). In the following, DA-channel data (YDA) refers to the intensities corrected
for bleedthrough and background emission and the DD- and AA-channel data (YDD
and YAA, respectively) to the intensities corrected for background emission. We will
refer to a sample by its sample number (see Table A.1).

In Figure A.1 the channel intensity images of the aggregated channel dataset
of sample 9 are shown in terms of gray levels. In plot (a) and (b) there are some
very low intensity regions (black spots) and in the upper left corner of plot (c)
most of the DA-channel intensities are zero. These artefacts are due to improper
sample preparation. Therefore the statistical analysis as presented in the following
sections are based on the channel data of the central square section consisting of
100× 100 pixels (the white squares in plots (a)–(c).

In the following we will occasionally for any site and sample make use of the
following generic notation. We denote the pixel intensity of pixel i measured in
channel k = DD,DA,AA and for measurement number m = 1, . . . , 10 by Y i,m

k .
The sample mean intensity – taken over the 100× 100 pixels – for channel k and
measurement number m is denoted by Ȳ ·mk , that is Ȳ ·mk = 1

104

∑104

i=1 Y
i,m
k . The pixel

mean intensity for pixel i for the 10 remeasurements m for channel k will be denoted
by Ȳ i·

k , that is Ȳ i· = 1
10

∑10
m=1 Y

i,m
k . The sample grand mean intensity taken over the

100× 100 pixels and the 10 remeasurements will be denoted by ¯̄Yk = 1
10

∑10
m=1 Ȳ

·m.

1For a typical three-cube FRET experiment less than 10 photons counts per pixel are registered
by the detector in the DA-channel (Pawley, 2006b, Chapter 2; Clegg, 1996, Chapter 1).
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Figure A.1: Channel intensity images of the aggregated channel dataset of sample 9, site 2.
(a) DD-channel, (b) AA-channel, (c) DA-channel. Plots (a)–(c) consist each of 512×512
pixels: Figures (d)–(f) show enlargements of the square subregions of the figures (a)–(c),
each consisting of 100×100 pixels. Above each plot is stated the mean (me), maximum
(ma) and minimum (mi) pixel intensity value in the image. In each image the gray levels
are constructed by using ten equally spaced intervals between zero and the maximum value
of the image. Black/white refers to the lowest/highest intensity interval.
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Figure A.2: Sample mean intensity versus measurement number shown for site 2 for
the D+A samples: (left) DD-channel, (right) DA-channel. Solid-circle: sample 7 ; dashed-
circle: sample 8; dotted-circle: sample 9; dashed-dotted-circle: sample 10; solid-triangle:
sample 11; dashed-triangle: sample 12; dotted-triangle: sample 13; dashed-dotted-triangle:
sample 14.
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A.3 Photobleaching due to remeasuring

In Figure A.2 the sample mean intensity is shown as a function of the remeasurement
number for the DD- and DA-channel, for site 2 of the D+A samples. Clearly, the
sample mean pixel intensity has a slightly decreasing trend as a function of the
measurement number. The decrease in intensity between measurement one and ten
is roughly between 10 % to 30 % for all samples and for both channels. The same
amount of decrease in intensity occurs for the AA-channel (not shown). The same
analysis applied to the sites 1 and 3 of the D+A samples showed similar results as
just discussed for site 2.

We note that the intensity remeasurements could be incorporated in our inference
procedure by using the product of likelihoods for each measurement i.e. in equation
(3.1) in the article we could replace each of the likelihood terms p(yk|ψ,x), k =

DD,DA,AA by
∏M

m=1 p(y
m
k |ψ,x) with M = 10 the total number of measurements

and ymk the observed intensity for channel k and measurement m. Thereby, a pos-
sible way to account for the decreasing linear trend in the pixel intensities due to
bleaching is the following. Define µi,1k – as in (2.2) and (2.3) in the article – to be
the channel mean pixel intensity for measurement number 1 for pixel i and channel
k = DD,DA,AA, and relate the mean pixel intensity µi,mk for the remeasurements
m = 2, . . . , 10 to µi,1k by

µi,mk = µi,1k − a(m− 1)

and include a as a parameter in the model. For simplicity, however, we have chosen
instead to create the aggregated photon count data set, to view it as resulting from
one measurement and to apply our Bayesian inference procedure to this aggregated
data set.

A.4 Estimate of the K-factor

The K-factor can be obtained experimentally by the preparation of a sample which
contains equimolar concentrations of donor and acceptor fluorophores (Chen et al.,
2006). Then by measuring the sample mean intensities in the three channels ( ¯̄YDD,
¯̄YDA,

¯̄YAA) an estimate for K is obtained by

K =
¯̄YDD + ¯̄YDA/G

¯̄YAA
.

For a sample with unequimolar donor and acceptor concentrations [A] and [D] this
relations becomes

K =
[A]

[D]

¯̄YDD + ¯̄YDA/G
¯̄YAA

,

(Chen et al., 2006). The ratio bA = ¯̄YAA/[A] can be found as the slope of a regression
line for pairs ([A], ¯̄YAA) for samples with varying concentration [A] and arbitrary
donor concentration. Similarly, bD = ( ¯̄YDD + ¯̄YDA/G)/[D] can in principle be found
as the slope of a regression line for pairs ([D], ¯̄YDD + ¯̄YDA/G). This, however, would

30



a) Donor only samples

0 2 4 6 8

0

20

40

60

80

100

Sample [D]sol

Y
D

D

slope= 10.4

[A]sol

0.0

●
●
●

●

●

●

●

●

●

b) All acceptor samples

Sample [A]sol

Y
A

A

0 2 4 6 8

0

40

80

120

160

slope= 15.4

●

[D]sol

0.0
2.0
4.0
8.0

Figure A.3: Sample grand mean pixel intensity versus applied solution concentration.
(a) DD-intensity vs donor solution concentration for each of the three sites of the donor
only samples (samples 1–3), (b) AA-intensity vs acceptor sample concentration for for each
of the three sites of the acceptor only (samples 4–6) and the D+A samples (samples 7–14).

require knowledge of G. In our data set, on the other hand, we have access to donor
only samples and we can thus replace ¯̄YDD + ¯̄YDA/G for a sample with both donors
and acceptors of concentrations [D] and [A] with ¯̄YDD for a sample only containing
donors of concentration [D].

In Figure A.3 (a) ¯̄YDD is plotted against [D]sol for the donor only samples 1–3.2

The resulting slope of the regression line (of intercept 0) is bD = 10.6.
Further, in Figure A.3 (b), ¯̄YAA is plotted versus the sample acceptor concentra-

tion [A]sol for acceptor only as well as D+A samples, and the slope bA of the least
squares line – found for a fixed intercept of zero – is 15.4. Thereby, we find as an
estimate for the K-factor rounded to one decimal: K̂ = bD/bA ≈ 0.7.

A.5 Estimate of the G-factor

The sample mean unquenched donor intensities for the D+A samples (samples 7–14)
should scale with the applied sample donor solution concentration [D] by the same
slope bD as determined in the previous section. This observation provides a method
to obtain a rough estimate for the G-factor.

Figure A.4 shows a similar plot as in Figure A.3 (a) where ¯̄YDD + ¯̄YDA is plotted
versus the applied donor solution concentration [D] for the D+A samples. For this
plot the slope of the least square estimate is 9.3, which is close to but slightly lower
than the previous found estimate of bD = 10.4. Since we have ¯̄YDD+ ¯̄YDA/G = bD[D],
this suggests a value of G less than one. We now simply tune G so that the regression
for ¯̄YDD + ¯̄YDA/G versus [D] has the slope bD = 10.4. This happens for G = 0.66,

2Because the true donor [D] and acceptor [A] concentrations in the samples are unknown, we
use, respectively, the donor and acceptor concentrations [D]sol and [A]sol applied to prepare the
samples, to find estimates for bD and bA.
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Figure A.4: Sample grand mean intensity of unquenched donor ¯̄YDD + ¯̄YDA/G versus
sample donor concentration for each of the three sites of the D+A samples (samples 7–14):
(a) G = 1, (b) G = 0.66. In plot (b) the value of G has been tuned in order to obtain a
least square line with a slope of 10.4. The least square lines are fitted in both plots with a
fixed intercept of zero.

see Figure A.4 (b). We round this value to one decimal and find as an estimate for
the G-factor, Ĝ = 0.7.

A.6 Assessment of mean-variance relation for
polylysine data

As each sample has been remeasured ten times, for pixel i we have observations Y i,m
k

where m = 1, . . . , 10 is the index of the replicates. Apart from a slight decrease in
intensity due to bleaching (see Section A.3), we can view the Y i,m as independent
and identically distributed. If we further ignore for the moment the additive noise,
then the statistical model – equations (2.2)–(2.3) in the article – predicts a log-log
linear relationship between the pixel mean µik and the pixel variance σ2,i

k of Y i,m
k .

E.g. for the DD-channel,

log σ2,i
DD = logGD + log µiDD,

with GD the amplification factor of the detector in the D-channel. Now, for each
pixel we compute empirical means Ȳ i·

k =
∑M

m=1 Y
i,m
k and empirical variances

s2,ik =
1

M − 1

M∑

m=1

(
Y i,m
k − Ȳ i·

k

)2
, k = DD,AA

with M = 10 the total number of measurements. Figure A.5 shows for the two
channels k = DD,AA the empirical log variances log s2,ik against the log empirical
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Figure A.5: Smoothed log-log scatterplot of the empirical pixel intensity variances s2,ik
versus the corresponding empirical pixel intensity means Ȳ i·

k . In both plots the least squares
line is fitted for a fixed slope of one. For plot (a) the DD-channel intensity data is used for
each of the three sites of the donor only samples (samples 1–3) and D+A samples (samples
7–14). For plot (b) the AA-channel intensity data is used for for each of the three sites of
the acceptor only (samples 4–6) and D+A samples (samples 7–14). For further details we
refer to the text.

means log Ȳ i·
k . By fitting a regression line with a slope of 1 through the points, the

intercept provides a rough estimate of respectively logGD and logGA. The intercept
is 2.0 for the DD-channel (plot (a)) and 1.7 for the AA-channel (plot (b)). Thereby
we find, rounded to one decimal, the estimates ĜD = exp(2.0) ≈ 7.4 and ĜA =

exp(1.7) ≈ 5.5.3

A.7 Estimate of the ratio of the detector quantum
efficiencies

By the definition of the G-factor, as stated in the Appendix of the article (page 25),

QD

QA

=
GAqA
GGDqD

.

Inserting the estimates for the parameters on the right-hand side (Ĝ = 0.7, ĜA = 5.5,
ĜD = 7.4) as well as the values for the quantum yield of the Alexa-488 donor
fluorophore (qD = 0.92) and of the Alexa-555 acceptor fluorophore (qA = 0.10)
gives that QD/QA ≈ 0.1. So, the quantum efficiency of the applied detector in the
A-channel is approximately 10 times larger than in the D-channel.

3We note that least square estimates for the slopes of the regression lines in Figure A.5 are
1.1± 0.2 for the DD- as well as the AA-channel, which is indeed close to one as predicted by the
statistical model.
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Figure A.6: Sample efficiency (A.1) for randomly distributed donors and acceptors in the
plane as a function of cA – i.e. the number of acceptors per area R2

0 – for various ratios of
R/R0, with R0 the Förster distance of the donor-acceptor pair and R the distance of closest
approach between a donor and an acceptor. Adapted from Wolber and Hudson (1979).

A.8 Estimate of MD

For randomly distributed donors and acceptors in the plane Wolber and Hudson
(1979) provide an analytical expression for the sample mean FRET efficiency E

as a function of: (1) the Förster distance R0, (2) the acceptor concentration, and
(3) the distance R of closest approach between a donor and an acceptor. Some of
the limiting assumptions made in the derivation are: (a) donors do not compete
with each other for transfer to an acceptor, (b) all donor-acceptor pairs have the
same Förster distance and (c) the area contributed by the donors and acceptors is
negligible i.e. there are no excluded area effects. The general solution is stated as
an integral expression which should be solved numerically, but Wolber and Hudson
(1979) also provide the following convenient and accurate approximation:

E = 1− (A1e
−k1cA + A2e

−k2cA), (A.1)

with A1, A2, k1, k2 constants depending on the ratio of R/R0 (see Table I in Wolber
and Hudson, 1979) and cA is the acceptor concentration in units of the number of
acceptors per area R2

0. In Figure A.6 the efficiency as a function of the acceptor
concentration is plotted for various R/R0 ratios.

In the following we obtain an estimate for MD by:

(i) applying (A.1) to find an estimate of cA – and thereby of the mean number
of acceptor points within a pixel – for the samples prepared with the highest
acceptor solution concentration of [A]sol = 8,

(ii) applying the equation for µiAA in Section 2.2 of the article, to find an estimate
of MD
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Regarding (i): The samples prepared with a solution concentration of [A]sol = 8

are the samples 10, 12 and 14 (Table A.1). The sample mean efficiencies of sample
10, 12 and 14, averaged over the three sites are 0.32, 0.45 and 0.59. We believe
that due to the high concentrations of donors in sample 10 (applied donor solution
concentration is 8), the donors in this sample compete with each other for energy
transfer to surrounding acceptors, which leads to a much lower value of the efficiency
than for samples 10 and 12. We therefore here exclude sample 10 from the analysis.4

The average sample mean efficiency of sample 12 and 14 for the three sites is 0.52.
Assuming the value of closest approach R to be zero then by aid of Figure A.6 we
find that to E = 0.55 corresponds cA ≈ 0.2 [acceptors/R2

0]. As for the Alexa-488 and
Alexa-555 donor-acceptor pair R0 = 7 nm, the average number of acceptors residing
within a pixel of area 279 nm× 279 nm for the samples 10 and 12 is approximately:
(0.2/(72)) · 2792 = 317.7 ≈ 320.

Regarding (ii): Summing the equation for µiAA as stated in Section 2.2 of the
article on the left and right hand-side over all pixels i = 1, . . . N on which our
analysis is performed, i.e. the square subregion as displayed in Figure A.1 to which
will we refer here as W , results in

N∑

i=1

µiAA =
MD

K

∑

a∈xA∩W
1,

where N = 104. Rewriting yields

MD =
K

n(xA ∩W )

N∑

i=1

µiAA, (A.2)

with n(xA ∩ W ) denoting the total number of acceptor points in W . We find an
estimate of MD by finding estimates for

∑N
i=1 µ

i
AA and n(xA ∩W ) in (A.2) for the

samples 12 and 14.
In Section A.4 it was determined that the sample grand mean acceptor intensity

¯̄YAA scales with the sample acceptor concentration [A]sol by the slope bA = 15.4.
Thus for samples 12 and 14 we find that ¯̄YAA ≈ 15.4 · 8 = 123.2.

Because the Bayesian inference method applied in the article makes use of the
aggregated data set summed over the ten measurements m = 1, . . . , 10, the sample
mean of the aggregated AA-intensity for the samples 12 and 14 is – ignoring the
photobleaching effect – approximately 10 ·123.2 = 1232, which provides an estimate
of 1

N

∑N
i=1 µ

i
AA for the aggregated data set. Further, the in this section found estimate

for the the mean number of acceptors per pixel of 320 for the samples 12 and 14
is an estimate of 1

N
n(xA ∩W ). Applying the not rounded estimate of K̂ ≈ 0.675

previously found in Section A.4, we find as an estimate for MD, rounded to one
decimal,

M̂D ≈ 0.675 · 1232

320
= 2.6.

4For a random distribution of donors and acceptors and under the assumption that donors do
not compete for energy transfer to an acceptor the sample efficiency is independent of the donor
concentration for a fixed acceptor concentration (Kenworthy and Edidin, 1998)

35



We note that the estimate of a mean number of 320 acceptors per pixel for the
samples prepared with an acceptor solution concentration of 8 µg/ml is equally valid
for donor fluorophores, i.e samples prepared with a donor solution concentration of
[D]sol = 8 µg/ml will contain approximately 320 donors per pixel. Further, the two
results can be extrapolated, i.e. the average numbers of acceptors and donors within
a pixel are, respectively 40 · [A]sol and 40 · [D]sol. We use the latter relations to specify
the prior means of the Poisson point process intensities in Section 6.2 in the article.
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Supplement B

In this supplementary material we give a detailed description of the Markov chain
Monte Carlo sampler used to draw samples from the posterior distribution (equation
(3.1) in the article) in the first section. In the second section we briefly discuss the
likelihood expressions we apply in the case the three-cube FRET channel intensities
can not consist of negative values (i.e. empirical data).

B.1 Steps in the MCMC sampler

The steps involved in the sampler are illustrated in Figure B.1 and are described in
detail below.

Step 1: Generate initial configuration for the posterior point pattern. An
initial point pattern X0 = (X0

D,X
0
A) from which the chain starts is generated from

the prior distribution by using the R-software (R Core Team, 2014) and the package
spatstat (Baddeley and Turner, 2005). The initial point pattern is simulated on a
square W corresponding to the area covered by the three-cube FRET channel data.
The generated point pattern is stored by writing the coordinates x, y of the points
as well as the marks of each point – 1 for a donor, 2 for an acceptor – to disk.

Step 2: Generate channel data from the initial posterior point pattern.
Channel data conditional on the point pattern X0 is computed based on equations
(2.1)–(2.3) in the article. To employ these equations the square area W is defined
as a union of square pixels Ci, i.e. W =

⋃
i∈G Ci, with the Ci equal to the pixels in

the three-cube FRET channel dataset indexed by G.
To compute the µiDD and µiDA (defined in Section 2.2 of the article) the key com-

ponent is to specify Pda for donor and acceptor pairs in X. To keep the computation
of transfer probabilities feasible, only those acceptors that reside within 4R0 of a
donor are taking into account as a possible path for energy transfer for the donor.
This important simplification will not lead to any significant difference in posterior
results. By replacing PdA in the equation for µiDD by its definition PdA =

∑
a∈XA

Pda,
and taking into account the cut-off radius of 4R0, the equations for µiDD and µiDA
become

µiDD = MD

∑

d∈XD∩Ci

(
1−

∑

a∈XA
rda<4R0

Pda
)
, (B.1)

µiDA = MDG
∑

a∈XA∩Ci

∑

d∈XD
rda<4R0

Pda, (B.2)

with rda the distance between a donor d and an acceptor a and (as previously defined
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in Section 2.1 of the article)

Pda =
(R0/rda)

6

1 + Sd
with Sd =

∑

ã∈XA
rdã<4R0

(R0/rdã)
6.

For clarity and later use we further restate here the equation for µiAA as previously
defined in Section 2.2 of the article

µiAA = MD/K
∑

a∈XA∩Ci

1. (B.3)

To benefit from the approach of excluding transfer probabilities Pda for donor and
acceptors pairs which are further than 4R0 from each other, it is necessary to store
donors and acceptors pixel wise. We have used so called linked lists to implement
this. A linked list can be viewed as a list containing boxes and each box stores the
values of some variables as well as a pointer to the next box. In our program for
each pixel there are two linked-lists available, one storing the information concerning
the donor points within the pixel and the other storing the information concerning
the acceptor points within the pixel. To each point (donor or acceptor) corresponds
precisely one box in the corresponding linked list. For an acceptor point a the box
contains the x, y coordinates of a. For a donor point d also the value of Sd is stored.
Storing of Sd gives the possibility to compute the channel data very efficiently when
a proposal update for the acceptor point pattern is made. This is further discussed
under step 6.

In our program the sums on the right of the factors MD, MDG and MD/K in,
respectively, equations (B.1), (B.2) and (B.3) are available and stored at every step
in the three matrices XNDD, XNDA and XNA containing the elements

XNDDi =
∑

d∈XD∩Ci

(1−
∑

a∈XA
rda<4R0

Pda)

=
∑

d∈XD∩Ci

(1 + Sd)
−1,

XNDAi =
∑

a∈XA∩Ci

∑

d∈XD
rda<4R0

(R0/rda)
6

1 + Sd
,

XNAi =
∑

a∈XA∩Ci

1,

for i = 1, . . . , n and n the total number of pixels. The X in these names refers to the
posterior pattern X and the N in XNDD and XNDA stands for normalized as the
values of XNDDi and XNDAi correspond to the situation where every donor within
pixel i is excited exactly one time. For XNA it is appropriate to think of the N in its
name to refer to number – and we have used only a single A at the end of the name
– as XNA is the matrix that stores the number of acceptors within each pixel of the
pattern XA. Equivalent to the latter matrix, also a matrix XND is available within
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Figure B.1: Flow chart of the steps involved in the MCMC sampler.

the program which stores the number of donors within each pixel in the pattern XD.
The values of µiDD, µiDA and µiAA are now available at each step by multiplication
of XNDDi, XNDAi and XNAi by, respectively, the factors: MD, MDG and MD/K,
as specified in (B.1), (B.2) and (B.3).
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For the initial posterior point pattern X0 the value of each XNDDi, XNDAi and
XNAi is now computed as follows:

1. The initial point pattern is read from disk and depending on the mark (1 or 2)
and the coordinates x, y a point is added to the corresponding donor or ac-
ceptor linked lists. For each donor point the value of Sd is set to zero. Within
the process the total number of acceptors as well as donors that reside within
a pixel i is counted and these values are stored, respectively, in the matrix
elements XNAi and XNDi.

2. An element XNDDi (initially set to zero) is computed by looping over all
donors d within pixel i. For each donors d the distance rda to acceptors a
which reside in the same pixel or directly neighboring pixels is calculated.5 If
the distance rda is within 4R0, then the corresponding value of (R0/rda)

6 is
added to Sd (which initially is set to zero). After looping over all acceptors
residing in the same or directly neighboring pixels the value Sd is stored and
the value of (1 + Sd)

−1 is added to XNDDi.

3. An element XNDAi (initially set to zero) is computed by looping over all ac-
ceptors a within pixel i and for each acceptor a the distance rda to donors d
which reside in the same pixel or directly neighboring pixels is calculated.
If the distance rda is within 4R0, then the corresponding value of Pda =

(R0/rda)
6/(1 + Sd) is added to XNDAi.

Step 3: Start MCMC. By the initialization procedure, steps 1–2, and specifying
initial values for the microscope parameters the following information is available
within the program:

1. the point pattern X0 is stored as two sets of linked lists containing the coor-
dinates of the donor and acceptor points.

2. the mean channel intensities µiDD, µiDA, µiAA related to the initial point pattern
X0 are available in the form of the three matrices XNDD, XNDA and XNA

and the initial values of MD, G and K.

Further, by specifying the prior distributions of the microscope and point process
parameters and making a three-cube FRET data set available in the form of three
matrices YDD, YDA and YAA containing the intensity values of respectively the
DD-, DA- and AA-channel, the sampling procedure can start.

Step 4: Propose update pattern. A proposal is made to update the point
pattern. With probability 1/2 the donor pattern is updated, otherwise the accep-
tor pattern is updated. Then it is proposed to add or remove a point, each with
probability 1/2.

5For square pixels the approach of including only points residing within nearest neighbor pixels
in the computation is valid for pixels with a side length ≥ 4R0. A condition always satisfied for
empirical FRET datasets.
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Figure B.2: Adding a donor d0 (small gray circle) to the point pattern. The larger circle
represents the radius of 4R0 around the donor. The figure is drawn on a scale with R0 = 6

and the side length of the square pixels equal to 100. The small figure on the right shows
how the quadrants within pixel 5 are labeled as used in the text.

– In the case a point is added, random coordinates for x and y are generated
from the uniform distribution on W .

– In the case a donor (acceptor) point is removed from the pattern, a random
integer is drawn between 1 and the total number of donor (acceptor) points
in the current pattern. It is then proposed to remove the donor (acceptor)
point that is labeled by this number. The latter method is implemented by
implicitly labeling each donor and acceptor point. As an example, consider for
instance a donor point which is stored in linked list number 4 box 8. This point
is implicitely labelled by the integer value resulting from adding 8 (of box 8)
to the total number of donors in linked lists 1 to 3.

Step 5: Calculate channel data for a proposal update of the point pattern.
In order to gain computational speed, we have implemented a rather sophisticated
procedure to compute the channel data for a proposal update of the point pattern.
The implemented procedure distinguishes between computation of the channel data
when an update for the donor pattern XD or the acceptor pattern XA is proposed.
First, we discuss the algorithm for the donor case in terms of proposing to add a
donor (proposing to remove a donor is similar). Secondly, we discuss the algorithm
for the acceptor case in terms of proposing to add an acceptor (proposing to remove
an acceptor is similar).

Compute proposal channel data: Adding a donor. In Figure B.2 a schematic
representation of adding a donor d0 (small gray circle) to the current pattern is
shown. From the figure it is clear that if the new donor is placed in the second
quadrant of a pixel only acceptors that reside within this same pixel, or in the pixels
2, 3 and 6 can be affected by the newly placed donor.6 Thereby, the only values of

6For square pixels the approach of only including acceptors within pixels which are nearest
neighbors of the quadrant where the donor is added is valid for pixels with a side length ≥ 8R0. A
condition always satisfied for empirical FRET datasets.

41



XNDAi that need to be recomputed are for i ∈ {2, 3, 5, 6}. The new value XNDAi
p for

each of the possibly affected XNDAi is derived by computing the change ∆XNDAi

that arises due to adding d0, and adding it to the current value XNDAi
c, i.e.

XNDAi
p = XNDAi

c + ∆XNDAi.

The value of each ∆XNDAi for i ∈ {2, 3, 5, 6} is defined by

∆XNDAi =
∑

a∈XA∩Ci
rd0a<4R0

Pd0a,

and easily obtained by: (i) computing Sd0 for donor d0 by looping over the acceptors
in the pixels i ∈ {2, 3, 5, 6}, while storing rd0a for those a’s for which rd0a < 4R0 and
(ii) adding Pd0a for each stored a to ∆XNDAi (which initially was set to zero) when
a is located in pixel i.

The sole element of XNDD that is affected by the new donor is the element
corresponding to the pixel where the donor is added, that is i = 5. The new proposed
value for XNDD5 is available as

XNDD5
p = XNDD5 + ∆XNDD5,

with
∆XNDD5 = 1−

∑

i∈{2,3,5,6}
∆XNDAi.

Compute proposal channel data: Adding an acceptor. Computing the chan-
nel data when an acceptor is added to the current pattern is rather more involved
than for the donor case. We explain the procedure by example and in direct relation
to the situation depicted in Figure B.3 in which an acceptor a0 is added to a current
pattern. The new acceptor point is placed in the second quadrant of pixel 5 and
only donors that reside within the pixels 2, 3, 5 and 6 can be affected by the new
acceptor. Donors that reside within the solid circle are affected by the presence of
the acceptor as they get an extra path for de-excitation by energy transfer to the
newly placed acceptor. Now assume that the donor d1 (small solid circle in pixel 3)
which resides within the radius of 4R0 to a0, has currently the possibility of energy
transfer to a number of acceptors a (rda < 4R0) and denote one of these acceptors
by a1. Then in the current situation (a0 not added) the probability of energy transfer
from donor d1 to acceptor a1 is defined by

P current
d1a1

=
(R0/rd1a1)

6

1 + Sd1
,

while in the proposed situation (acceptor a0 added) this becomes

P proposed
d1a1

=
(R0/rd1a1)

6

1 + Sd1 + (R0/rd1a0)
6
.

So, by placing a0 within 4R0 of d1, the probability Pd1a1 for energy transfer from
donor d1 to acceptor a1 decreases. Clearly, also for other acceptors residing within
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Figure B.3: Adding an acceptor a0(small gray circle) to the point pattern. The larger
circles around a0 and d1 (small solid circle) have a radius of 4R0. The figure is drawn on
a scale with R0 = 6 and the side length of the square pixels equal to 100. The small figure
on the right shows how the quadrants within pixel 5 are labeled as used in the text

4R0 of d1 (other than a0 and a1), their respective probabilities to receive energy
transfer from donor d1 will decrease when acceptor a0 is added. The algorithm for
updating the possibly affected elements of XNDA is now as follows:

1. Compute for donors residing within possibly affected pixels, i.e. d ∈ XD ∩ Ci,
i ∈ {2, 3, 5, 6}, the distance rda0 to a0. If rda0 < 4R0, then store for each of
these donors its coordinates as well as the value of (R0/rda0)

6 in a list.

2. Loop pixel wise over the acceptors residing in the possibly affected pixels, i.e.
a ∈ XA ∩ Ci, i ∈ {2, 3, 5, 6}.7 Determine for each acceptor a the distance rda
to any of the donors in the list made in 1. If the distance rda < 4R0, then the
value of XNDAi

c will decrease due to a and d by

(R0/rda)
6

1 + Sd + (R0/rda0)
6
− (R0/rda)

6

1 + Sd
.

Taking into account all the donors and acceptors of which the transfer proba-
bilities change due to adding a0, the algorithm computes ∆XNDAi as

∆XNDAi =
∑

a∈XA∩Ci

∑

j=
2,3,5,6

∑

d∈XD∩Cj

rda0<4R0

rda<4R0

( (R0/rda)
6

1 + Sd + (R0/rda0)
6
− (R0/rda)

6

1 + Sd

)
,

for i ∈ {2, 3, 5, 6}. The values for ∆XNDAi obtained by this equation are
negative or zero as they compute the total decrease in the probability of energy
transfer from donors d to acceptors a ∈ XA ∩ Ci, due to adding a0 to the
current pattern. However, in the pixel where a0 is added (pixel 5), there will

7For square pixels the approach of only including acceptors within pixels which are nearest
neighbors of the quadrant where the proposed acceptor is placed, is valid for pixels with a side
length ≥ 16R0. A condition in general satisfied for empirical three-cube FRET datasets.
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be a possible increase in ∆XNDA, as a0 can receive transfers from donors d
possibly residing within 4R0 of it, which has to be added to ∆XNDA5, i.e.

∆XNDA5 = ∆XNDA5(previous equation) +
∑

j=
2,3,5,6

∑

d∈XD∩Cj

rda0<4R0

(
R0

rda0

)6

.

Computation of the difference ∆XNDDi between the current values XNDDi and
proposed values XNDDi

p for the possibly affected elements i ∈ {2, 3, 5, 6} is much
simpler than for ∆XNDAi. Because the current value of Sd is stored for each donor d,
no looping over the acceptors within the current pattern has to be carried out and

∆XNDDi =
∑

d∈XD∩Ci
rda0<R0

1

1 + Sd + (rda0/R
6
0)
− 1

1 + Sd
; i ∈ {2, 3, 5, 6}.

We note that when an acceptor is added (removed) to (from) the current pattern
this leads to to a redistribution of normalized pixel intensities between the DD- and
DA-channel. Therefore the following equality holds

∑

i∈{2,3,5,6}
∆XNDDi +

∑

i∈{2,3,5,6}
∆XNDAi = 0. (B.4)

This observation provides a convenient way to check the proper implementation of
the algorithms used to compute ∆XNDAi and ∆XNDDi. Computing both sums on
the left-hand side of (B.4) and adding them should give the value of zero within
numerical precision.

Step 6: Calculate Metropolis-Hastings ratio. We present here the steps in-
volved to calculate (the logarithm of) the MH-ratio (Section 3.2 of the article)
in terms of removing an accepter. The computation when adding an acceptor or
adding/removing a donor is similar.

In case it is proposed to remove a point u ∈ XA, the Metropolis-Hastings ratio
becomes

p(y|xD,xA\{u}, ψ)

p(y|xD,xA, ψ)

p(xA\{u}|θA)

p(xA|θA)

n(xA)

θA|W |
,

with the logarithm of first two ratios specified below:

1. the likelihood ratio term

ln

[
p(y|xD,xA\{u}, ψ)

p(y|xD,xA, ψ)

]

=
1

2

∑

i∈Nc

(
ln

[
GDµ

ic
DD + σ2

GDµ
ip
DD + σ2

]
+

(yiDD − µicDD)2

GDµicDD + σ2
− (yiDD − µipDD)2

GDµ
ip
DD + σ2

+ ln

[
GAµ

ic
DA + σ2

GAµ
ip
DA + σ2

]
+

(yiDA − µicDA)2

GAµicDA + σ2
− (yiDA − µipDA)2

GAµ
ip
DA + σ2

+ ln
[GAµ

ic
AA + σ2

GAµ
ip
AA + σ2

]
+

(yiAA − µicAA)2

GAµicAA + σ2
− (yiAA − µipAA)2

GAµ
ip
AA + σ2

)
.

(B.5)
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Here the summation is over the pixels that are direct neighbors of the pixel c
where a point was added of removed, and defined as the neighborhood Nc.8

2. The Poisson process ratio term

ln[
p(xA \ {u}|θA)

p(xA|θA)
] = − ln[θA].

Step 7: Accept proposal? With the logarithm of the MH-ratio available as
MHR, we draw a uniform random number u between 0 and 1. If u < exp(MHR)

then the proposal is accepted and otherwise it is declined. If the proposal is accepted:

1. the current point pattern X is updated such as proposed, i.e. adding or re-
moving a donor or acceptor point to or from the appropriate linked list.

2. XNAi or XNDi are updated according to the accepted proposal.

3. The channel data matrices are updated by adding ∆XNDDi and ∆XNDAi to
the values currently stored in XNDDi and XNDAi.

Step 8: mod(step,Mstep=0?). In order to draw approximately independent
realizations for the point process and microscope parameters, a large number Mstep
of sequential updates of the point pattern are made between every parameter pro-
posal update step.

Step 9: Propose update microscope parameter(s). We discuss this step as-
summing that all six microscope parameters and both the Poisson point process
parameters are included in the Bayesian inference. At every Mstep’th step a pro-
posal update is made for each of the parameters in a random order. As the support
of the microscope parameters is on R+ we use as proposal distribution for a micro-
scope parameter ωj the lognormal distribution, effectively ensuring that a proposal
value ωp

j is always strictly positive. Within the MCMC procedure a proposal ωp
j is

now generated by drawing a random normal number ε ∼ N(0, τ 2j ) and setting

ωp
j = ωc

j exp(ε),

with τ 2j a tuning parameter, tuned such that for each of the microscope parameters
the acceptance probability is around 30%.

For the Poisson point process parameters θD and θA independent updates are
generated by a Gibbs step. If we wish to draw samples for θD conditional on the
current state we need to specify p(θD|xD) where

p(θD|xD) ∝ p(xD|θD)p(θD)

∝ θ
n(xD)
D exp(−|W |θD) θ

(αD−1)
D exp(−βDθD)

∝ θ
(n(xD)+αD−1)
D exp(−(|W |+ βD)θD)

= Γ(n(xD) + αD, βD + |W |),
8In the case that the channel data set can not consist of negative values (i.e. empirical data),

and yik = 0 is observed, then the three terms in (B.5) related to channel k should be replaced by
a so called truncated likelihood expression as discussed in Section B.2.
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where in the second step for p(xD|θD) the density of an independent Poisson pro-
cess on W with intensity θD (equation 6.2 in Møller and Waagepetersen, 2003) was
inserted, as well as the density of the gamma distribution for p(θD). So, samples for
θD are drawn by sampling from the gamma distribution Γ(n(xD) + αD, βD + |W |)
with αD, βD the shape and rate (hyper) parameters defining the prior gamma distri-
bution of θD. Equivalent, samples for θA are drawn by sampling from Γ(n(xA) +αA,

βA + |W |) with αA, βA the shape and rate (hyper) parameters defining the prior
gamma distribution of θA. When updating θD or θA the steps 10 and 11 are skipped
and the program continues to make an update for the next parameter in line.

Step 10: Calculate MH ratio. The MH-ratio related to a proposal ωp
j ∼ qj(·|ωc

j )

for the j-th microscopic parameter is
(
p(y|ψp,xc)

p(y|ψc,xc)

)(
p(ψp

j )

p(ψc
j )

)(
q(ψc

j |ψp
j )

q(ψp
j |ψc

j )

)
,

where ψc = (ωc
1 , . . . , ω

c
6) contains the current values for the microscope parameters

and ψp contains the elements

ψp
k =

{
ωc
k k 6= j,

ωp
j k = j.

The logarithm of each of the terms in the MH-ratio are now specified by the

1. Likelihood ratio term9

ln

[
p(y|ψp,xc)

p(y|ψc,xc)

]
(B.6)

=
1

2

n∑

i=1

(
ln

[
Gc
Dµ

ic
DD + σ2,c

Gp
Dµ

ip
DD + σ2,p

]
+

(yiDD − µicDD)2

Gc
Dµ

ic
DD + σ2,c

− (yiDD − µipDD)2

Gp
Dµ

ip
DD + σ2,p

+ ln

[
Gc
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ic
DA + σ2,c

Gp
Aµ

ip
DA + σ2,p

]
+

(yiDA − µicDA)2

Gc
Aµ

ic
DA + σ2,c

− (yiDA − µipDA)2

Gp
Aµ

ip
DA + σ2,p

+ ln

[
Gc
Aµ

ic
AA + σ2,c

Gp
Aµ

ip
AA + σ2,p

]
+

(yiAA − µicAA)2

Gc
Aµ

ic
AA + σ2,c

− (yiAA − µipAA)2

Gp
Aµ

ip
AA + σ2,p

)
.

2. Prior ratio term

ln

[
p(ψp)

p(ψc)

]
= (α− 1) ln

[
ωp
j

ωc
j

]
+ β(ωc

j − ωp
j ),

with α and β the hyper parameters specifying the (prior) gamma distribution
of parameter ωj.

3. Proposal ratio term

ln

[
q(ψc

j |ψp
j )

q(ψp
j |ψc

j )

]
= ln

[
ωp
j

ωc
j

]
.

9The previous footnote on page 10 also applies to this likelihood expression.
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Step 11: Accept proposal? With the value of the logarithm of the appropriate
MH-ratio available as MHR, we draw a uniform random number u between 0 and 1.
If u < exp(MHR) then the proposal is accepted and otherwise it is declined. If the
proposal is accepted, the current value of the microscope parameter is changed to
the proposed value.

Step 12: mod(step, Tstep=0?). If the current step number is equal to the
total number of MCMC steps to be made (Tstep) the program stops, otherwise it
continues.

B.2 Truncated likelihood expressions

For the typical case that the channel data does not allow for negative intensity values
(i.e. non-synthetic data) we have defined the probability that a zero channel intensity
value occurs as the probability mass in the left tail of the normal distribution over
the negative intensity values. Therefore, in the case empirical three-cube FRET
pixel intensities yik = 0 are observed for pixel i and channel k = DD,DA or AA,
a truncated likelihood expression has to be used. In that case the three terms related
to an observation yik = 0, k = DD in, for instance, (B.6) have to be replaced by

ln

[
p(yiDD = 0|ψp,xc)

p(yiDD = 0|ψc,xc)

]
= ln

[∫ 0

−∞ ϕ(z|µipDD, Gp
Dµ

ip
DD + σ2,p)dz

∫ 0

−∞ ϕ(z|µicDD, Gc
Dµ

ic
DD + σ2,c)dz

]
,

and when k = DA or k = AA by

ln

[
p(yik = 0|ψp,xc)

p(yik = 0|ψc,xc)

]
= ln

[∫ 0

−∞ ϕ(z|µipk , Gp
Aµ

ip
k + σ2,p)dz

∫ 0

−∞ ϕ(z|µipk , Gc
Aµ

ic
k + σ2,c)dz

]
,

where ϕ(·|µ, σ2) is the density of the normal distribution with mean µ and vari-
ance σ2. The likelihood equations (B.5) are also updated accordingly to the strategy
as described here above, in case the channel can not consist of negative intensity
values.
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Supplement C

In this supplementary material we present a detailed account of the results we have
obtained concerning inference of the microscope parameters, when each parame-
ter is singly introduced as a free parameter in the model. In Section C.1 we state
the approach and applied settings and subsequently we discuss inference of σ2 in
Section C.2, GD and GA in Section C.3, MD in Section C.4 and of G and K in
Section C.5.

In order to explain many of the results, we often will refer to the equations for
µiDD, µ

i
DA and µiAA as defined previously in the article. Therefore these relations

are restated here with an equation number for easy referencing throughout this
supplementary material:

µiDD = MD

∑

d∈XD∩Ci

(1− PdA), (C.1)

µiDA = GMD

∑

a∈XA∩Ci

∑

d∈XD

Pda, (C.2)

µiAA = MD/K n(XA ∩ Ci). (C.3)

Throughout this supplementary material we refer to a point pattern type by its point
pattern name or number as defined in Table 1 in the article.

C.1 Approach and settings

By including the microscope parameters in the Bayesian inference the joint posterior
distribution – equation (3.1) in the article – reads as

p(xD,xA, θ, ψ|y) ∝ p(y|xD,xA, ψ)p(xD,xA|θ)p(θ)p(ψ), (C.4)

with p(ψ) the prior density of the miscroscope parameters. The support of the
microscope parameters is on R+ and therefore a natural choice for the proposal
distribution for a microscope parameter ωj is the lognormal distribution, which
ensures that a proposal value ωp

j is strictly positive. Denoting by ϕ(z, µ, σ2) the
density function of a normally distributed variable z with mean µ and standard
deviation σ, the proposal density function for ωp

j conditionally under its current
value ωc

j is

q(ωp
j |ωc

j ) =
1

ωp
j

ϕ(ln[ωp
j ] | ln[ωc

j ], τ
2
j ),

with τ 2j a tuning parameter, controlling the percentage of accepted proposals within
a MCMC run. A proposal ωp

j is now generated by drawing a random normal number
ε ∼ N(0, τ 2j ) and setting ωp

j = ωc
j exp(ε). We note that as ϕ(·) is symmetric around

its mean it follows that
q(ωc

j |ωp
j )

q(ωp
j |ωc

j )
=
ωp
j

ωc
j

.
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Applying (C.4), the Metropolis-Hastings ratio related to a proposal u ∼ qj(·|ωc
j ) for

the j-th microscopic parameter is
(
p(y|ψp,xc)

p(y|ψc,xc)

) (
p(ψp

j )

p(ψc
j )

)(
q(ψc

j |ψp
j )

q(ψp
j |ψc

j )

)
, (C.5)

with ψc = (ωc
1 , . . . , ω

c
6) containing the current values for the microscope parameters

and ψp containing the elements

ψp
k =

{
ωc
j k 6= j,

u k = j.

The expressions for the first two terms in (C.5) are specified under step 10 in Sec-
tion B.1 of Supplement B while the third term equals ωp

j /ω
c
j . Supplement B provides

a detailed description of the MCMC sampler used for sampling from the posterior
distribution (C.4).

C.1.1 Set up of the various simulation experiments

Below we give a short description of each of the simulations that have been carried
out and state the settings that have been used. In order to study the effect a relatively
low or high signal-to-noise ratio has on the inference, each simulation has been
performed for three synthetic values of MD (1, 5, 20). In the next we denote the
prior mean of a parameter by adding the superscript “pm” to the parameter.

A All microscope parameters are fixed in the inference procedure (the MCMC
run) and set to the values of their synthetic counterparts applied to create the
synthetic channel data. The synthetic value of the parameters G,K,GD, GA

is set to 1 and the synthetic value of σ2 is set to 25. Synthetic channel data
is generated for a grid G which divides the window W = 1 µm× 1 µm in
10 × 10 equally sized square pixels. Accordingly the dimension of a pixel is
0.1 µm× 0.1 µm. The Poisson point process intensities θD and θA are free pa-
rameters and their prior means are set approximately equal to the intensities
of the synthetic patterns, i.e. θpm

D = θpm
A = 1000/µm2. In this simulation, infer-

ence is made on the spatial configuration of donors and acceptors and on the
Poisson point process intensities θD and θA. Interest is in assessing how the
accuracy of the posterior L-function depends on the underlying point pattern
type. The outcomes of Simulation A are disussed in the article in Section 4.3
and its subsections.

B Settings as in Simulation A, but σ2 is a free parameter. The prior mean value of
σ2 is set equal to the synthetic value of 25. Interest is in studying the inference
for the parameter σ2. Results are discussed in Section C.2.

C–G Settings as in Simulation A, but GA, GD,MD, G,K are respectively (each sep-
arately) a free parameter in the model. Prior mean of the free parameter is
always set equal to the synthetic value of 1. Results for GA and GD are dis-
cussed in Section C.3, for MD in Section C.4 and for G and K in Section C.5.
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H Settings as in Simulation A, butMD, G,K,GD, GA, σ
2 are free parameters with

their prior means set equal to the corresponding synthetic values. Interest is
in studying the inference of all the microscope parameters in the setting that
they are all free. Results are discussed in Section 4.4 in the article.

In Table C.1 the settings of each of the simulations are summarized.

Table C.1: Parameter settings as defined for the various simulations. All simulations are
performed on a window W = 1 µm× 1 µm and a grid dividing W in 10× 10 square pixels
with a width of 0.1 µm. In each simulation the Poisson intensities are free parameters with
a prior mean value of 1000/µm2. For Simulations C–G we have set the synthetic value of σ2

(almost) equal to zero, in order to get the most accurate inference regarding GA, GD,K,G
and MD as possible.

Within the MCMC run Synthetic value

Simulation MD G K GD GA σ2 MD G K GD GA σ2

A ? ? ? ? ? ? 1,5,20 1 1 1 1 25
B ? ? ? ? ? F 1,5,20 1 1 1 1 25
C ? ? ? ? F ? 1,5,20 1 1 1 1 0.1
D ? ? ? F ? ? 1,5,20 1 1 1 1 0.1
E ? ? F ? ? ? 1,5,20 1 1 1 1 0.1
F ? F ? ? ? ? 1,5,20 1 1 1 1 0.1
G F ? ? ? ? ? 1,5,20 1 1 1 1 0.1
H F F F F F F 1,5,20 1 1 1 1 25

?: fixed parameter set equal to the synthetic value.
F : free parameter with its prior mean equal to the synthetic value.

C.1.2 Hyper parameters of the priors

The Gamma distribution is used as the prior density for the microscope parameters.
Following the reasoning as outlined for setting the Poisson priors in Section 3.1 in
the article, we also set the shape parameter of the microscope parameters equal to 4.
In our simulations we specify the prior mean of each of the microscope parameters
(see Table C.1). Then, if the value of the mean is denoted m the scale parameter β
follows from β = m/α = m/4.

C.1.3 Markov chain Monte Carlo settings

The total number of steps in each MCMC run is set to 107. A proposal update is
made in each step to remove/add a donor or acceptor point to/from the current
point pattern. A posterior point pattern is written to disk after every 105 steps.
A proposal update for the microscope parameters (in case free) and for the Poisson
point process intensities is made every 2.5× 103 steps. We store the parameter
and intensities values to disk every 104 steps. So, for each complete MCMC run,
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one thousand values of the microscope parameters and Poisson intensities, and one
hundred point patterns are stored to disk. The initial values of the point process
intensities and the free microscope parameters are always set equal to their respective
prior means.

C.1.4 Tuning parameters of the proposal distributions.

To generate proposals for the microscope parameters we have used the following val-
ues for the tuning parameter τ in the lognormal distribution, To generate proposals:
for MD we have used τ = 0.04; for G and K we used τ = 0.05; and for σ2, GA and
GD we used τ = 0.1. In all cases the applied setting result in acceptance probabilities
between 0.1–0.6 depending on the value ofMD. Higher values ofMD – corresponding
to a higher signal-to-noise ratio – result in lower acceptance rates.

C.2 Inference of the measurement noise

In Figure C.1 the posterior means of the measurement noise standard deviation (σ̄)
for the replicated runs (from Simulation B) are summarized for each of the point
pattern types by a boxplot. Results are shown for MD equal to 1, 5 and 20. Clearly,
the dimer and clustered point pattern types generated with γDA = 8 (type number:
2, 4, 6 and 8) show values for σ̄ larger than the synthetic value of 5 for all three
values ofMD. Further, saliently, the bias grows significantly for larger values ofMD.
For all other point pattern types, σ̄ is consistently close to five for all three values
ofMD. We conclude that for modestly clustered point patterns (dimer and clustered
types generated with γDA = 2) as well as for the Poisson and repulsive types, the
inference of σ performs well. The results found for the dimer and clustered point
patterns generated with γDA = 8 are surprising. We investigate this issue in the next
section.

C.2.1 Persistent bias in posterior DA-channel intensity

To understand the cause of the offset between the posterior mean measurement
noise standard deviation and its synthetic value we will study the posterior mean
pixel deviance – as defined below – over replicated runs for each point pattern
type, for the case that all microscope parameters are fixed to their synthetic value
(that is settings as in Simulation A). We start by defining the deviance as used
in this supplementary material. For a random variable Z, distributed with mean
µ and variance σ2 and for which n observations have been made, we refer to the
quantity DEV(Z) = (1/n)

∑n
i=1((Zi − µ)/σ)2 as the deviance. By the definition of

the variance: σ2 = E[(Z − E[Z])2], the expected value of the deviance is one, that
is E[DEV(Z)] = 1. Applying the deviance definition to the pixel intensities in the
three channels (equations (2.1)–(2.3) in the article), and defining n to be the number
of pixels in a channel image, we define the deviance for each of the three channels
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Figure C.1: Boxplot of the posterior mean measurement noise standard deviation of the
forty replicated runs, for each of the point pattern types (referred to by their type number
as denoted in Table 1 in the rticle), for MD = 1 (upper), MD = 5 (middle) and MD = 20

(lower). Results are from Simulation B; σ2 is a free parameter. The horizontal lines are
drawn at the synthetic value of σ which is 5.

as

DEVDD ≡ DEV(YDD|µDD) =
1

n

n∑

i=1

(Y i
DD − µiDD)2

GDµiDD + σ2
, (C.6)

DEVk ≡ DEV(Yk|µk) =
1

n

n∑

i=1

(Y i
k − µik)2

GAµik + σ2
; k = DA,AA. (C.7)

In Figure C.2 the posterior mean of the channel deviance for the replicated runs
(results from Simulation A) are summarized by aid of a boxplot for each of the
point pattern types and each of the three channels. For MD = 1 the posterior mean
deviance in the DA-channel, plot (a), is clearly above one for the point patterns with
type number: 2, 4, 6, 8 (that is the patterns generated with a γDA = 8), while it is
on the target value of one for all other types. Also for MD = 20 the posterior mean
deviances in the DA-channel, plot (b), are persistently above one for the strongly
clustered types (type number: 2, 4, 6, 8), while now also the deviance related to the
strongly repulsive patterns (Rep.h2 and Rep.s2, type number 11 and 13) are slightly
above target. In contrast, in the DD-channel, plot (c) and (d), and AA-channel,
plot (e) and (f), the posterior mean deviance for all point pattern types are close
to one for MD = 1 as well as for MD = 20. In short, our main observation from
the various deviance plots is that for the strongly clustered and strongly repulsive
point patterns, the inference procedure has – also for a high signal-to-noise ratio
(high MD) – significant problems to get on target in the DA-channel.
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DD-channel and lower plots: AA-channel, for MD = 1 (left figures) and MD = 20 (right
figures). Results are from Simulation A.

To study this offset in the DA-channel further Figure C.3 shows the posterior
mean pixel intensities µ̄ik, k = DD,DA,AA, versus the corresponding synthetic pixel
intensities Y i

k,synth for the three values of MD, and where Yk,synth is generated from
a Clu.28 point pattern type. The results are from Simulation A; σ2 is fixed and
set equal to the synthetic value of 25. Clearly, the µ̄iDD’s and µ̄iAA’s get properly
on target for higher values of MD (from left to right in respectively the upper and
lower plots). Also the µ̄iDA’s are closer to target for higher values ofMD, although for
MD = 20 still a persistent negative bias compared to the synthetic DA-channel pixel
intensity is observed (right middle plot). Similar scatter plots for point pattern types
Dim.18, Dim.28 and Clu.28, display a similar bias in the DA-channel (not shown).
Scatter plots for point pattern types Rep.h2 and Rep.s2, show a positive bias in the
DA-channel, that is µ̄iDA is mostly larger than Y i

DA (not shown). We conclude that
a persistent negative (positive) bias in the posterior DA-channel pixel intensities is
present when making inference on synthetic channel data constructed from strongly
clustered (repulsive) point patterns.

By the previous analyses we can now explain the large offset observed in Fig-
ure C.1 between the posterior means of the measurement noise standard deviation
and the synthetic value. Due to the bias in the DA-intensity channel – values of
DEVDA larger than one – the inference procedure with σ2 a free parameter in the
model (Simulation B), will increase σ2 in order to get DEVDA on target. However,
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Figure C.3: Scatter plots of the posterior mean pixel intensities: µ̄ik, versus the cor-
responding synthetic pixel channel intensities Y i

k,synth k = DD, DA, AA, i = 1, . . . , n;
n = 100. With Yk,synth generated from a point pattern Xsynth of Clu.28 type. From left to
right: MD = 1, 5, 20; from above to below: DD-, DA- and AA-channel. For higher values
of MD, the posterior mean DD- and AA-channel pixel intensities get on target, while the
posterior mean DA-channel pixel intensities remain below target. Black line is reference
line with slope 1.

the increase in σ2 results in a further increase in the bias of the posterior DA-pixel
intensities, resulting again in a further increase of σ2. This explanation is supported
by Figure C.4 in which the posterior mean values of σ are plotted versus the corre-
sponding synthetic pixel intensities for the same Clu.28 point pattern as the results
in Figure C.3 are based on, but now σ2 is a free parameter in the model (posterior
means are from Simulation B). Clearly, with σ2 a free parameter in the model, the
offset between posterior mean DA-intensity and synthetic DA-channel intensity in-
creases (compare Figure C.4 middle plots, with corresponding plots in Figure C.3).
Further, due to the increase in σ2 now also the posterior mean intensities in the DD-
and AA-channel have difficulty to get on target (compare Figure C.4, upper and
lower plots, with corresponding plots in Figure C.3).

In summary, due to a relative large offset between the Poisson point process
prior model and the strongly clustered and repulsive patterns, a persistent bias
exist between the posterior pixel mean intensities and the synthetic pixel intensities
in the DA-channel. This results in biased inference for σ.
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Figure C.4: As Figure C.3 but results are from Simulation B; σ2 is a free parameter. Due
to the bias of the posterior mean intensity in the DA-channel – see in Figure C.3 – with σ2

a free parameter the inference procedure will start to increase σ2, which leads to a further
increase in the bias in the DA-channel. Because σ2 defines the measurement noise in all
the three channels also in the DD- and AA-channel the posterior pixel intensities now have
difficulties to get on target (upper and lower plots).

C.3 Inference of the amplification factors

The results concerning inference ofGA are in accordance with the results as discussed
in the previous section for the measurement noise. Due to the persistent bias in the
posterior DA-channel intensities for strongly clustered patterns, for such patterns
GA is excessively increased in the inference procedure in order to get DEVDA (C.7)
on its target value of one. This is clearly seen in Figure C.5 (left plots), as for the
pattern types 2, 4, 6 and 8 the values of ḠA are clearly above the synthetic value of
one for all three values of MD, while on target or close to target for all other point
pattern types.

The parameter GD only effects DEVDD (C.6) and thereby GD can not be tuned
in the inference procedure to adjust DEVDA (C.7). Therefore, we would expect that
proper inference for this parameter should be possible for all point pattern types.
However, from Figure C.5 (right plots) we notice that for the strongly clustered
patterns (type 2, 4, 6, 8) also the value of ḠD is above the synthetic value of one,
which is most clearly seen for Clu.28 (type 8). The probable explanation is that for
the strongly clustered patterns also a small but significant persistent bias exists in
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Figure C.5: Boxplots of the posterior mean of: (left) GA and (right) GD, for the forty
replicated runs for each of the point pattern types (referred to by their type number as
denoted in Table 1 in the article), for MD = 1 (upper), MD = 5 (middle) and MD = 20

(lower). The horizontal lines are drawn at the synthetic values GA = 1 (left plots) and
GD = 1 (right plots).

the DD-channel intensities, leading to values of DEVDD slightly above the target
value of one. This is supported by Figure C.2, where especially for Clu.28 (type 8)
it is rather clearly seen that DEVDD is above one for MD = 20.

We conclude that, except for the strongly clustered point patterns, the inference
procedure provides good estimates for GA and GD.

C.4 Inference of MD

In Figure C.6 the posterior mean of MD for the forty replicated runs is summarized
by aid of a boxplot for each of the point pattern types and forMD = 1, 5, 20. Results
are of Simulation E. Inspection of the plots shows that there is a clear trend in the
observed posterior means.

1. for underlying clustered patterns (type 1–8), the values of M̄D are smaller than
the corresponding synthetic values. Further, the bias is larger for the strongly
clustered point patterns generated with γDA = 8 (type 2, 4, 6 and 8).10

2. for underlying repulsive patterns (type 10–13), the values of M̄D are larger
than the corresponding synthetic values and the bias increases for the strongly
repulsive point patterns (type 11 and 13, that is Rep.h2 and Rep.s2).

3. for underlying Poisson hard core patterns (type 9), the value of M̄D coincides
with the corresponding synthetic value.

10We ignore here for the moment the values of M̄D larger than their synthetic counterparts
occurring for type 8 and MD is 5 or 20. We comment on it at the end of this section.

56



●

●●

●

1 3 5 7 9 11 13

MD=1

0

1

2

3

4

M
D

●
●

●●
●

●

●●

● ●●

1 3 5 7 9 11 13

MD=5

0

5

10

15

20

M
D

●

●●●

●

●
●

●

●

●●

Type number
1 3 5 7 9 11 13

MD=20

0

15

30

45

M
D

Figure C.6: Boxplot of posterior mean of MD for the forty replicated runs for each of the
point pattern types (referred to by their type number as denoted in Table 1 in the article),
for MD = 1 (upper), MD = 5 (middle) and MD = 20 (lower). In each plot the horizontal
line is drawn at the synthetic values of MD. Results are from Simulation E.

Further, the observed bias for the dimer, clustered and repulsive patterns is
persistent in the sense that increasing the signal-to-noise ratio (by increasing MD)
does not result in a decrease of the bias.

The bias is an artifact of the use of the Poisson point process prior. The explana-
tion is as follows. When inference is made with all the microscope parameters fixed
to their synthetic values (Simulation A) on a strongly hetero pair clustered point
pattern, the inference procedure has difficulties to create such clusters, because the
Poisson point process prior will favor a more random distribution of the hetero
points. This results, as previously discussed in Section C.2, in a negative bias of the
posterior pixel mean DA-channel intensities, µiDA, and of values of DEVDA above
the target value of one (Figures C.2 and C.3). To reduce the bias, the inference pro-
cedure – withMD a free parameter (Simulation E) – favors to add more acceptors to
the posterior pattern than the corresponding synthetic pattern contains. By adding
extra acceptors, the average hetero pair inter distances decrease, resulting in an in-
crease of the double summation term in (C.2) – and so of µ̄iDA – thereby effectively
removing the bias. Increasing the number of acceptors will lead to a positive bias of
µiAA (C.3). However, this bias is removed by the inference procedure by decreasing
the value of MD and so getting µiAA on target again. As MD is also present in the
expression for µiDD (C.1), this leads to a bias in the DD-channel, which, however,
is removed by the inference procedure by adding more donors to the posterior pat-
terns than the underlying synthetic pattern contains, effectively getting µiDD back
on target. Further, by (C.2), µiDA is also proportional to MD and by lowering MD

also µiDA will be lower. However, the relative increase of the double summation term
in (C.2) due to the higher concentrations of acceptors is larger than the relative
decrease of MD, resulting in an increase of the DA-channel pixel intensities and so
bringing µiDA onto target.
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The same argument holds for underlying repulsive patterns but the other way
around. In this case the posterior µiDA’s – with all microscope parameters fixed to
their synthetic values – show a positive bias with respect to the synthetic channel
data. And the inference procedure – with MD a free parameter – favors posterior
patterns to contain less donors and acceptors than the synthetic pattern, thereby
increasing the average hetero pair inter distances and bringing the posterior pixel
intensities in the DA-channel onto target. This leads to a higher value of MD with
respect to the corresponding synthetic value.

We now will discuss the in the footnote on the previous page mentioned inference
results concerning the Clu.28 patterns (type 8), for which for MD = 5 some, and
for MD = 20 most of the posterior means M̄D are higher than these synthetic val-
ues. Clearly these results are not captured by the explanation stated above. They
can, however, be explained in relation to the large offset that exists between the
homogeneous Poisson point process prior and the very inhomogeneous way donors
and acceptors are distributed over the pixels in Clu.28 patterns. We will give a
qualitative description. For the clustered point patterns type 1–7, hetero clustering
occurs in such a way that the donors and acceptors are more or less homogeneously
distributed over the pixels. This is schematically depicted in Figure C.7 (a), as a
dimer pair residing in each of the pixels. For the point pattern types 1–7, to get
the DA-channel intensities on target the posterior patterns will contain more donors
and acceptors – as described in detail above – than the corresponding synthetic
patterns (see Figure C.7 (b)), resulting in posterior mean values of MD lower than
the corresponding synthetic value. For the Clu.28 type point patterns, however, the
hetero clustering is so strong that this results in large super clusters of donors and
acceptors, leading to a very inhomogeneous distribution of donors and acceptors
over the pixels. This is schematically depicted in Figure C.7 (c), in which all points
are concentrated in only one pixel. As such a distribution is extremely unlikely to
occur under the homogeneous Poisson point process prior, the inference procedure
favors to: place only a few points in an inhomogeneous way over the pixels – which
under the Poisson process prior and conditional under a fixed number of points, has
a higher probability than to place many point inhomogeneously (see Figure C.7 (d)),
while using a higher value of MD than the synthetic value, in order to get the the
posterior channel intensities onto target.

We conclude that the results of the inference of MD are highly dependent on the
synthetic point pattern type.

C.5 Inference of the G and K factor

In Figure C.8 (left) the results concerning inference of G (Simulation F) are shown.
Clearly, Ḡ is larger than the synthetic value of one for clustered point patterns (type
numbers 1–8) while smaller than one for the repulsive point patterns (type numbers
10–13). Further, the offset is larger for the more strongly clustered (types 2, 4, 6, 8)
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Figure C.7: Point patterns for which hetero cluster of points are distributed: (a) ho-
mogeneously, and (c) inhomogeneously, over the pixels. For hetero clusters distributed
homogeneously over the pixels, the inference procedure – with MD a free parameter –
favors the posterior patterns to contain more donors and acceptors than the synthetic one
(plot (b)) and to decrease the value of MD below the synthetic value. For hetero clusters
distributed inhomogeneously over the pixels, the inference procedure favors to decrease the
number of donors and acceptors (plot (d)) and to increase MD. See also the text.

and more strongly repulsive (types 11 and 13) point patterns. For underlying Poisson
hard core patterns (type 9), the value of Ḡ coincides with, or is close to, the synthetic
value of one. These results can again be explained by the relative offset between the
prior Poison process model and the pattern types. With G a free parameter in the
model, any existing consistent positive or negative bias of the posterior DA-channel
pixel mean intensities – µiDA (C.2) – and the corresponding synthetic data Y i

DA’s can
effectively be removed by the tuning of G in (C.2). For underlying clustered patterns,
the inference procedure favors to increase G in (C.2) – in order to match the µiDA’s
with the Y i

DA’s – instead of increasing the value of the double summation term in
(C.2) by placing donors and acceptors sufficiently close to each other. Similar, for
underlying repulsive patterns, the inference procedure favors to decrease G in (C.2)
– in order to match the µiDA’s with the Y i

DA’s – instead of decreasing the value of
the double summation term in (C.2) by placing donors and acceptors sufficiently far
from each other.

In Figure C.8 (right) the results concerning inference of K (Simulation G) are
shown. Clearly, K̄ is larger/smaller than the synthetic value of one for clustered/
repulsive underlying point patterns (type number 1–8 and 10–13, respectively). Fur-
ther, the offset is larger for the strongly clustered (type number 2,4,6,8) and strongly
repulsive (type number 11 and 13) point patterns. For underlying Poisson hard core
patterns (type 9), the value of K̄ coincides with, or is close to, the correct value
of one. With K a free parameter in the model, any existing consistent positive or
negative bias of the posterior DA-channel pixel intensities can be removed by tun-
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Figure C.8: Boxplot of posterior mean of: (left) G, and (right) K, for the forty replicated
runs for each of the point pattern types (referred to by their type number as denoted in
Table 1 in the article), for MD = 1 (upper plots), MD = 5 (middle plots) and MD = 20

(lower plots). In each plot the horizontal line is drawn at the synthetic value G = 1 (left
plots) and the synthetic valueK = 1 (right plots). Results of Ḡ and K̄ are from Simulations
F and G, respectively.

ing the number of acceptors within the posterior patterns. For underlying clustered
patterns, the inference procedure favors to increase the number of acceptors with
respect to the underlying synthetic pattern. Hereby, the value of the double sum-
mation term in (C.2) increases, effectively removing the negative bias between the
µiDA’s and Y i

DA’s. The increase in acceptors leads to an offset in the AA-channel
intensities (C.2), but this offset is removed by increasing the value of K in (C.2).
Similar, for underlying repulsive patterns, the inference procedure favors to remove
acceptors, resulting in a smaller value of K compared to the synthetic value of one.

We conclude that the results of the inference of G and K are highly dependent
on the point pattern type.
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