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Summary

Ambit fields are a class of tempo-spatial stochastic processes that have been intro-

duced for the purpose of modeling velocities in turbulent particle flows. The main

contribution of this thesis is establishing limit theorems in the high frequency frame-

work for a class of zero-spatial ambit processes called Lévy semi-stationary processes.

These processes are of moving average type, driven by a pure jump Lévy process

which is modulated by a stochastic volatility factor.

We establish the first order limit theory for power variations based on kth order

increments of Lévy semi-stationary processes. The limiting behavior turns out to

be heavily dependent on the interplay between the considered power, the order of

increments k, the Blumenthal–Getoor index β of the driving Lévy process and the

behaviour of the kernel function of the moving average at 0, which is specified by

the power α. Our results can be used for statistical inference, in particular, they can

be used to estimate the model parameters α and β. A natural generalisation of the

power variation functional is obtained by applying an arbitrary continuous function

f on kth order increments of the process. For this type of functionals the first order

limit theory is investigated, when applied to stationary increments moving average

processes, i.e. Lévy semi-stationary processes with constant volatility factor. In this

framework we also prove a second order limit theorem, when the function f is bounded

and the driving Lévy process is symmetric β-stable. Depending on the interplay of k,

β and α, we obtain either a central limit theorem or convergence to a (k−α)β-stable

random variable. From a mathematical point of view, this part of the thesis extends

the asymptotic theory investigated in the recent publication [20], where the first and

partial second order limit theory for power variations of stationary increments Lévy

driven moving averages have been studied.

In the last part of the thesis we develop and implement a simulation scheme for a

certain class of spatial ambit fields often referred to as volatility modulated moving

averages. Our technique of simulation is especially aimed at recovering the fine scale

properties of the field correctly, and we demonstrate that it outperforms several other

simulation schemes in that regard. The asymptotic behaviour of the mean square

error of the simulation scheme is derived. The scheme relies on approximating the

kernel function in the moving average representation partially by a step function

and partially by a power function. For this type of approach the authors of [24],

who considered a comparable model in one dimension, coined the expression hybrid

simulation scheme.





Dansk sammenfatning

Ambit processer er en klasse af tids- og rumafhængige stokastiske processer som er

blevet introduceret med form̊alet at modellere hastigheder af turbulente partikel-

strømninger. Hovedbidraget fra denne afhandling er resultater om store tals love

og stabile grænseværdisætninger i det højfrekvente tifælde, for en klasse af ambit

processer kaldet Lévy semistationære processer. Disse processer er af typen glidende

gennemsnit, som bliver drevet af en springfarlig Lévy process, hvor volatiliteten bliver

p̊avirket af en stokastisk process.

Vi etablerer resultater om første ordens grænsesætninger for potens variation

baseret p̊a k-ordens tilvæksterne af Lévy semistationære processer. Opførslen af græn-

sevariablen viser sig at været dybt p̊avirket af sammenspillet mellem den betragtede

potens, ordenen k af tilvæksterne, Blumenthal-Getoor indekset β for den drivende

Lévy process og opførslen af integranden af det glidende gennemsnit tæt ved 0, som er

specificeret ved potensen α. Vores resultater kan anvendes til statistisk inferens - mere

præcist kan de bruges til at modellere parametrene α og β. En naturlig generalisering

af potens variation funktionalet f̊as ved at anvendes en arbitrær funktion f p̊a k’te

ordens tilvæksterne af processen. For denne type af funktionaler viser vi resultater

om første ordens grænsesætninger for glidende gennemsnit med stationære tilvækster,

svarende til Lévy semistationære processer med konstant volatilitet. Indenfor denne

ramme beviser vi ogs̊a en anden-ordens grænseværdisætning, hvor funktionen f er be-

grænset og den drivende Lévy process har en symmetrisk β-stabil fordeling. Afhængig

af sammenspillet mellem k, β og α, opn̊ar vi enten en central grænseværdisætning eller

en konvergens til en (k−α)β-stabil stokastisk variabel. Fra et matematisk synspunkt

udvider denne del af afhandlingen de nyere resultaterne fra artiklen [20], hvor første-

og andens-ordens grænsesætninger for potens variation af glidende gennemsnit, med

stationære tilvækster drevet af en Lévy process, er blevet studeret.

I den sidste del af afhandlingen udvikles og implementeres en simulationsalgoritme

for en bestemt klasse af rumlige ambit processer - ofte refereret til som volatilitetsmod-

ulerede glidende gennemsnit. Algoritmen approksimerer kernefunktionen i glidende

gennemsnit’s repræsentationen med en kombination af en trappefunktion og en potens-

funktion. For denne type af approksimation har forfatterne i [24], som studerede en

sammenlignelig model i en dimension, navngivet metoden hydrid simulationsalgo-

ritme. Vores simulationsalgoritme sigter i særlig grad mod at reproducere opførslen

af processen p̊a mikroniveau, og vi demonstrerer at dette gør algoritmen bedre end

flere andre simulationsalgortimer. Vi udleder den asymptotiske opførsel af den gen-

nemsnitlige kvadratiske variation af simulationsalgoritmen.





Chapter 1

Introduction and preliminaries

A little over ten years ago, Ole E. Barndorff-Nielsen and Jürgen Schmiegel introduced

the model of ambit fields in a series of papers [15, 16]. Their ambitious goal was to

find a stochastic model that accurately captures characteristic features attributed to

the velocity in turbulent flows, based on physical laws and measurements. Among

these features are violent spontaneous changes in velocity and energy dissipation, i.e.

the amount of kinetic turbulence energy transformed into heat by viscosity on small

scales. Mathematically, an ambit field is a stochastic process, indexed by space and

time, defined by the formula

Xt(x) =

∫
At(x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ) +

∫
Dt(x)

q(t, s, x, ξ)as(ξ) ds dξ, (1.1)

where L is a Lévy basis, to be defined in Section 1.3. The random value Xt(x) models

the turbulent velocity vector field at time t ∈ R+ and location in space x ∈ Rd. The

sets At(x) and Dt(x) resemble the area of space-time governing the velocity at (t, x),

and are called ambit sets, giving the name to the model (the word ‘ambit’ comes from

Latin and means ‘sphere of influence’). The weight functions g and q are deterministic,

whereas σ and a are stochastic processes representing aspects of the intermittency of

the turbulence velocity field, which can be thought of as a measure for the local energy

dissipation.

Ever since its introduction, ambit stochastics has been a rapidly expanding re-

search field. The flexibility of the model quickly led to a range of applications beyond

turbulence such as bioimaging, finance or metereology, examples being [6, 56, 67].

Recent reviews focusing on different aspects of ambit fields are [7, 13] and [69]. Due

to the complexity of the model, much of the research so far focuses on one dimensional

analoga of (1.1). Examples for such ambit processes can be obtained by observing an

ambit field along a parametrised curve (t, x(t)) or by considering zero spatial ambit

fields such as Lévy semi-stationary (LSS ) processes. A Lévy semi-stationary process

is defined as

Xt =

∫ t

−∞
{g(t− s)− g0(−s)}σs− dLs, (1.2)

1



2 Chapter 1. Introduction and preliminaries

where g, g0 are deterministic functions, σ is stochastic and L is a Lévy process. Papers

I and II of this thesis investigate the limit theory for these processes in the high

frequency setting, when the driving Lévy process is a pure jump process. In Paper I

we consider the realised power variation of X based on kth order increments, defined

as

V (p; k)nt :=

[nt]∑
i=k

|∆n
i,kX|p, p > 0,

and derive its asymptotic behavior for n→∞. Here [x] denotes the integer part of x,

and the kth order increments ∆n
i,kX are defined as

∆n
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−j)/n, for i ≥ k.

In particular, ∆n
i,1X = X i

n
−X i−1

n
are the increments of the process, and ∆n

i,kX =

∆n
i,k−1X −∆n

i−1,k−1X for k > 1.

Over the last decade the limit theory of realised power variations has been an

active field of research for a variety of stochastic processes. We refer to [18, 12] for

the limit theory of Itô semimartingales, to [8, 10] for a class of Gaussian processes,

including fractional Brownian motion, and to [32, 33] for the Rosenblatt process. In [9]

the authors derive the limit theory for power variations of Brownian semi-stationary

processes, which is the model (1.2) driven by a Brownian motion. In Paper I we

present the first order limit theory for the power variation of LSS processes driven

by a pure jump Lévy process. From a mathematical point of view this extends the

asymptotic theory derived in [20], where the authors consider stationary increments

Lévy driven moving averages, which is the model (1.2) with constant volatility σ. It

turns out that the limiting behavior of V (p; k) is divided into three different regimes,

depending on the choice of p and k as well as on the Blumenthal-Getoor index β of

the driving Lévy process and the behavior at 0 of the kernel function g, specified by

the power α. We demonstrate that our results can be used to estimate α and β and

the relative intermittency, which for p = 2 describes the relative amplitude of the

velocity process on a fixed interval.

A natural generalisation of the realised power variation are functionals of the form

V (f ; k)nt := an

[nt]∑
i=k

f(bn∆n
i,kX), (1.3)

where f is a deterministic function, and (an)n∈N and (bn)n∈N are suitable normalising

sequences. In Paper II we present the first order limit theory for such functionals,

when X is a stationary increments Lévy driven moving average and the function f is

continuous. Also in this framework the limiting behavior depends on the Blumenthal-

Getoor index of the driving Lévy process L and the behavior of g at 0, as well as on

certain properties of the function f . Moreover, we derive the second order asymptotics

for one of the occurring cases, when the function f is bounded and has Appell rank

greater than one.
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Papers I and II of this thesis can be interpreted as a stepping stone on the road

to understanding the limit theory for ambit fields. However, the model (1.2) is not

only of high interest from an angle of ambit stochastics. The class of LSS processes

contains as an important example linear fractional stable motions. This is the model

(1.2) driven by a symmetric β-stable Lévy process, with σ ≡ 1 and g(t) = g0(t) =

max(t, 0)α for some α ∈ (−1/β, 1−1/β)\{0}. These processes are self-similar of index

H = α+1/β and are a natural generalisation of the fractional Brownian motion, which

is the linear fractional stable motion with β = 2. There is a wide range of literature on

linear fractional stable motions and recent research addresses various topics such as,

among others, semimartingale property [22], fine scale behavior [23, 40], simulation

techniques [35] and statistical inference [4].

In Paper III we present and implement a simulation technique for purely spatial

ambit fields of the form

X(x) =

∫
R2

g(x− ξ)σ(ξ)W (dξ), x ∈ R2,

where W is Gaussian white noise on R2. When the kernel g has a singularity at 0,

the order of the singularity governs the roughness of the sample paths. The challenge

in simulating X is to accurately recover the roughness while also capturing global

properties of the model X. This can be achieved by using a hybrid simulation scheme

that approximates the kernel g by a power function around 0, and by a step function

away from 0. This idea is motivated by [24] where the authors propose a hybrid scheme

for simulating Brownian semi-stationary processes, i.e. the model (1.2) driven by

Brownian motion. We derive the asymptotic mean square error of the hybrid scheme

and demonstrate in a simulation study that it outperforms other simulation methods

in recovering the roughness of the field X.

In the remainder of this chapter we give some mathematical prerequisites that are

essential for the results and proofs presented in this thesis. First we introduce our

probabilistic setting and recall the main results of [20], which are an essential funda-

ment for the theory and results presented in Papers I and II. Thereafter, in section

1.2, we give preliminaries for the proof of functional limit theorems and give some

details on the Skorokhod M1-topology. In section 1.3 we discuss the definition and

important estimates for stochastic integrals with respect to Lévy processes. Section

1.4 summarises the key ideas and the intuition behind the proofs presented in Papers

I and II.

1.1 Limit theory for Lévy driven moving average processes

In this section we introduce our basic assumptions and some notation. Thereafter we

recall the limit theory for the power variation of stationary increments Lévy driven

moving average processes presented in [20], which forms an essential prerequisite for

Paper I and II of this thesis.

Let (Ω,F , (Ft)t∈R,P) be a filtered probability space. A Lévy process on the real

line is an adapted process (Lt)t∈R with stationary independent increments and càdlàg

sample paths (the French acronym “càdlàg” stands for right continuous with left limits



4 Chapter 1. Introduction and preliminaries

– continue à droite, limite à gauche). We remark that the independence of increments

is to be understood with respect to the filtration (Ft)t∈R which might be larger than

the filtration generated by L, i.e. Lt − Ls is independent of Fs for all s < t. For

simplicity we assume L0 = 0.

The Blumenthal–Getoor index of L is defined as

β := inf
{
r ≥ 0 :

∫ 1

−1

|x|r ν(dx) <∞
}
∈ [0, 2],

where ν denotes the Lévy measure of L. Intuitively, this index measures the con-

centration of the small jumps of L. For example is β = 0 when L has only finitely

many jumps on bounded intervals. It is well-known that
∑
s∈[0,1] |∆Ls|p is finite when

p > β, while it is infinite for p < β. Here ∆Ls = Ls−Ls− where Ls− = limu↑s, u<s Lu.

For a stable Lévy process with index of stability β ∈ (0, 2), the Blumenthal-Getoor

index matches the index of stability and both will be denoted β.

Throughout this thesis, we will assume L to be a symmetric pure jump Lévy

process, i.e. L has zero drift and no Gaussian part and its Lévy measure satisfies

ν(−A) = ν(A) for all A ∈ B(R). The functions g and g0 in (1.2) are assumed to

satisfy the following conditions, introduced in [20].

Assumption (A): The function g : R→ R satisfies

g(t) ∼ c0tα as t ↓ 0 for some α > 0 and c0 6= 0,

where g(t) ∼ f(t) as t ↓ 0 means that limt↓0 g(t)/f(t) = 1. For some θ ∈ (0, 2],

lim supt→∞ ν(x : |x| ≥ t)tθ < ∞ and g − g0 is a bounded function in Lθ(R+). Fur-

thermore, g is k-times continuously differentiable on (0,∞) and there exists a δ > 0

such that |g(k)(t)| ≤ Ctα−k for all t ∈ (0, δ), and such that both |g′| and |g(k)| are in

Lθ((δ,∞)) and are decreasing on (δ,∞).

The volatility process σ (in the ambit framework usually called intermittency pro-

cess) is assumed to be càdlàg and adapted, making the process (σt−)t∈R predictable.

We recall that a stochastic process is called predictable if it is measurable with re-

spect to the predictable σ-algebra on Ω×R, which is generated by all left continuous

adapted processes.

Occasionally, it is necessary to strengthen the condition |g(k)| ∈ Lθ((δ,∞)) slightly

and assume the following.

Assumption (A-log): In addition to (A) suppose that∫ ∞
δ

|g(k)(s)|θ log(1/|g(k)(s)|) ds <∞.

Assumption (A) ensures, in particular, that the process X with σ = 1 is well-

defined, see Appendix A.3 for details. For θ as in the assumption, the Lévy process

has moments of all orders smaller θ, cf. [78, Theorem 25.3]. When L is a β-stable Lévy

process, we can and will always choose θ = β. Even though the driving Lévy process

is a pure jump process, it follows from the Kolmogorov moment criterion (see [59,
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Theorem 2.23]) that under the conditions above the process X admits a continuous

version. Intuitively speaking, the kernel g smooths out the incoming shocks of the

Lévy process, since it vanishes at 0. Indeed, the sample paths of X are smoother for

larger α, and it is therefore not surprising that the parameter α has major influence

on the limiting behaviour of the power variation. Visual evidence for this smoothing

effect is given in Figure 1.1, where we show examples of Lévy driven moving average

processes.

We now recall the first order limit theory for the power variation of stationary

increments Lévy driven moving averages that was derived in [20]. To this end we

introduce the following notation. Let hk : R→ R be given by

hk(x) =

k∑
j=0

(−1)j
(
k

j

)
(x− j)α+, x ∈ R,

where y+ = max{y, 0} for all y ∈ R. Let (Tm)m≥1 be a sequence of F-stopping times

that exhausts the jumps of (Lt)t≥0. That is, {Tm(ω) : m ≥ 1} ∩ [0,∞) = {t ≥ 0 :

∆Lt(ω) 6= 0} and Tm(ω) 6= Tn(ω) for all m 6= n with Tm(ω) <∞. Let (Um)m≥1 be a

sequence of independent and uniform [0, 1]-distributed random variables, defined on

an extension (Ω′,F ′,P′) of the original probability space, which are independent of

F . For random variables Z,Z1, Z2, ... defined on (Ω′,F ′,P′) we denote by Zn
L−s−→ Z

the F-stable convergence in law, see Section 1.2 for details.

Theorem 1.1.1 (Theorem 1.1, [20]). Suppose that X = (Xt)t≥0 is a stochastic

process defined by (1.2) with σ ≡ 1, and that Assumption (A) is satisfied. Moreover,

assume that the Blumenthal–Getoor index of L satisfies β < 2. Set V (p; k)n :=

V (p; k)n1 . We have the following three cases:

(i) Suppose that (A-log) holds if θ = 1. If α < k− 1/p and p > β then the F-stable

convergence holds as n→∞

nαpV (p; k)n
L−s−→ |c0|p

∑
m:Tm∈[0,1]

|∆LTm |pVm, (1.4)

where Vm =
∑∞
l=0 |hk(l + Um)|p.

(ii) Suppose that L is a symmetric β-stable Lévy process with scale parameter γ > 0.

If α < k − 1/β and p < β then it holds

n−1+p(α+1/β)V (p; k)n
P−→ mp,

where mp = |c0|pγp(
∫
R |hk(x)|β dx)p/βE[|Z|p] and Z is a symmetric β-stable

random variable with scale parameter 1.

(iii) Suppose that p ≥ 1. If p = θ suppose in addition that (A-log) holds. For all

α > k − 1/(β ∨ p) we have that

n−1+pkV (p; k)n
P−→
∫ 1

0

|Fu|p du,
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Figure 1.1: Realisations of the model (1.2) with constant volatility. The first row

shows the driving Lévy process, row two and three show a Lévy driven moving average

process X with α = 0.2 and α = 0.5, respectively. In the first column, the driving

Lévy process is symmetric β-stable with β = 1.2 and in the second it is symmetric

β-stable with β = 1.8. When the driving Lévy process has a jump that is much

larger than the jumps surrounding it, the shape of the kernel function g at 0 becomes

visible. The smoothing effect of the kernel, which becomes stronger as α increases, is

apparent.
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where (Fu)u∈R is a version with measurable sample paths of the process defined

by

Fu =

∫ u

−∞
g(k)(u− s) dLs a.s. for all u ∈ R,

which necessarily satisfies
∫ 1

0
|Fu|p du <∞, almost surely.

For a β-stable driving Lévy process and for p ≥ 1, these three cases cover all

possible configurations of α, β, p and k except the critical cases p = β and α =

k − 1/(β ∨ p). The limit theory for the latter is discussed in [21].

In Paper I we extend this result to include a nontrivial volatility factor σ. We

remark that, in contrast to the Brownian setting, the extension of Theorem 1.1.1 to

Lévy semi-stationary processes is a more complex issue. This is due to the fact that

it is harder to estimate various norms of X and related processes when the driving

process L is a Lévy process. Our estimates on X rely heavily on decoupling techniques

and isometries for stochastic integral mappings presented in the book of Kwapién and

Woyczyński [61], which we will recall in Section 1.3. Moreover, we show functional

convergence of the power variation – with respect to the Skorokhod M1-topology in

case (i) and uniform on compacts in probability in cases (ii) and (iii). See Section 1.2

for details.

In Paper II we consider more general variation functionals of the form (1.3) for

continuous functions f . In this situation also three cases occur that are related to

the three cases in Theorem 1.1.1. Which case applies depends not only on properties

of the function f but also on the chosen normalising sequences (an)n∈N and (bn)n∈N.

In particular, for a fixed function f the variation functional (1.3) can converge to

different limits for different normalising sequences. We also derive a second order

limit theorem related to case (ii) when the function f is bounded. When α < k−2/β,

a central limit theorem applies, and for α ∈ (k − 2/β, k − 1/β) we show convergence

towards a (k − α)β-stable random variable. This result relates to the second order

asymptotic for the power variation for Lévy driven moving average processes derived

in [20, Theorem 1.2].

1.2 Functional limit theorems and the Skorokhod

M1-topology

In this section we give preliminaries for the proof of functional convergence in Theorem

1.1.1 and its generalisations. In particular, we recall the notion of stable convergence

and the definition and basic properties of the Skorokhod M1-topology, which will be

used in the functional version of Theorem 1.1.1 (i).

Theorem 1.1.1 shows the convergence of the sequence of real random variables

V (p; k)nt , where t ≥ 0 is fixed, under proper normalisation. More precisely, it only

considers the case t = 1, but generalising it to arbitrary t > 0 is straightforward.

However, the functionals (V (p; k)nt )t≥0 and (V (f ; k)nt )t≥0 define stochastic processes

with càdlàg sample paths, and it is natural to ask whether they converge as processes

to a limiting process, i.e. whether the limit theorem holds functional. To this end
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we need to define notions of convergence for càdlàg processes, or equivalently, define

metrics on the space D = D(R+,R) of càdlàg functions from R+ into R.
One mode of convergence on D is uniform convergence on compacts in probability,

which will be denoted by
u.c.p.−−−→. For càdlàg stochastic processes Z,Z1, Z2, . . . we have

Zn
u.c.p.−−−→ Z if for all ε > 0 and all C > 0 it holds that

P
(
‖Zn − Z‖C,∞ > ε

)
→ 0, as n→∞,

where ‖ ·‖C,∞ denotes the supremum norm on [0, C]. Equivalently, u.c.p.-convergence

can be defined as convergence in probability of D-valued random variables if D is

equipped with a metric that metrises uniform convergence on compact sets, e.g.

duc(f, g) =
∑∞
n=1 2−n(1 ∧ ‖f − g‖[0,n],∞). The following proposition is well known

and the proof is straightforward, see [54, Equation (2.2.16)].

Proposition 1.2.1. Let Zn be a sequence of increasing processes in D(R+;R), such

that Znt
P−→ Zt for all t in a dense subset of R+. If the limiting process Z is contin-

uous, it follows that Zn
u.c.p.−−−→ Z.

This proposition indeed implies easily that the convergence in Theorem 1.1.1 (ii)

and (iii) holds uniformly on compacts in probability, as was already remarked in [20].

See Theorem I.1.1 for details.

The situation is much more complicated in the framework of Theorem 1.1.1 (i),

where the limit is not continuous and the convergence is stably in law. Let us briefly

recall the definition of stable convergence, which was originally introduced in [72]. For

a detailed treatment of the topic we refer to [49]. Consider a measurable space (Ω̃, F̃)

and a Markov kernelK : Ω×F → [0, 1], i.e. a mapping such thatK(·, B) : Ω→ [0, 1] is

measurable for all B ∈ F and K(ω, ·) is a probability measure on (Ω̃, F̃) for all ω ∈ Ω.

We obtain a probability measure P′ on the measure space (Ω′,F ′) = (Ω×Ω̃,F⊗F̃) by

setting P′(dω, dω̃) = K(ω, dω̃)P(dω). Random variables defined on (Ω,F ,P) extend to

(Ω′,F ′,P′) in the usual fashion, and we identify F with the sub σ-algebra F ⊗{∅, Ω̃}
of F ′. Let (E, E) be a Polish space, i.e. a separable complete metric space, equipped

with its Borel σ-algebra.

Definition 1.2.2. A sequence Zn of E-valued random variables defined on (Ω,F)

converges F-stably in law to Z defined on the extension (Ω′,F ′), denoted Zn
L−s−→ Z,

if it satisfies one of the following two equivalent conditions.

(S1) For all real valued F-measurable random variables Y ∈ L1(Ω) and all bounded

continuous functions g : E → R it holds that

E[g(Zn)Y ]→ E′[g(Z)Y ],

where E′ denotes the expectation on the probability space (Ω′,F ′,P′).

(S2) For all F-measurable random variables Y the joint convergence in law (Zn, Y )
L−→

(Z, Y ) holds.
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Clearly, stable convergence in law implies convergence in law. Conversely, it is

implied by convergence in probability, i.e. Zn
P′−→ Z implies Zn

L−s−→ Z, which follows

easily from (S2). When both Zn and Z are F-measurable Zn
L−s−→ Z, is equivalent to

Zn
P−→ Z. The main advantage of stable convergence over convergence in law is the

following desirable property, see [49, Theorems 3.17, 3.18]. For sequences (Zn)n∈N and

(Yn)n∈N of F-measurable random variables with Zn
L−s−→ Z and Yn

P−→ Y it holds that

(Zn, Yn)
L−→ (Z, Y ). This property is often useful for statistical applications, since in

many frameworks it holds that Zn
L−→ Z and the limiting distribution depends on an

unknown random quantity Y . The stable convergence Zn
L−s−→ Z then allows, roughly

speaking, to replace Y by a consistent estimator.

In order to show functional stable convergence in Theorem 1.1.1 (i), we now need to

choose a metric on D. The metric dUC of uniform convergence on compacts introduced

above is not a good candidate, since the limiting process Z is not continuous and the

approximating sequences V (p; k)n and V (f ; k)n do not jump at the same times as Z.

For characterising convergence of càdlàg functions to a discontinuous limit, Skorokhod

[79] introduced 4 different topologies on the linear space D(R+;R), which are typically

called the J1-, J2-,M1- and M2-topology, all of which can be given by a metric. The by

far most popular one is the J1-topology, which is also the strongest, i.e. convergence

with respect to J1 implies convergence with respect to the three other topologies.

However, it can be shown that the convergence in Theorem 1.1.1 (i) does not hold

functional with respect to the J1-topology, see Appendix A.1. We prove that it holds

with respect to the M1-topology, which we introduce next. Some details to the other

topologies are given in Appendix A.1.

In order to define theM1-metric, we first consider a finite time horizon 0 < t∞ <∞
and consider for a function f ∈ D([0, t∞];R) the completed graph, which is the subset

of R2 obtained by ‘filling in the jumps of f ’, i.e.

Γf = {(t, x) ∈ [0, t∞]× R : x = αf(t−) + (1− α)f(t), for some α ∈ [0, 1]}.

For a visualisation of the functioning of the M1-metric consider two functions f, g ∈
D([0, t∞];R), and imagine two ants positioned at the starting points of the completed

graphs Γf and Γg, i.e. at the points (0, f(0)) and (0, g(0)) in R2. We now let the ants

walk on the graphs, but forbid them to change directions, so they are only allowed

to walk forward. If the two ants can find a way to walk the graphs to the end, i.e.

to (t∞, f(t∞)) and (t∞, g(t∞)) respectively, without ever being further apart than ε

(in R2), then it holds that the M1-distance of f and g is smaller or equal ε (in D).

See Figure 1.2 for an example. More formally, a parametric representation of f is a

continuous bijection φ : [0, 1] → Γf with φ(0) = (0, f(0)). Denoting by Π(f) the set

of parametric representations of f , the M1-metric is defined as

dM1(f1, f2) = inf
φi∈Π(fi)
i=1,2

{
‖φ1 − φ2‖∞

}
,

where for a function φ : [0, 1]→ R2, φ(t) = (u(t), r(t)) we denote ‖φ‖∞ := supt∈[0,1]{|u(t)|∨
|r(t)|} (most ants prefer to measure distances in the maximum metric on R2). It is not
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bn 0.5 1

an

0.5

1− an

1

Convergence in J1

bn 0.5 cn 1

an

0.5

1− an

1

Convergence in M1, not J1

Figure 1.2: Examples for convergence in J1 and M1. The functions plotted in blue

converge to the function 1[1/2,1], plotted in green if the sequences (an), (bn) and (cn)

are chosen such that an → 0 and bn, cn → 1/2. The first plot shows J1-convergence

(which implies M1-convergence), in the second plot we have only M1-convergence.

The dashed lines show the completed graphs. See Appendix A.1 for definition and

examples of J2- and M2-convergence.

difficult to show that dM1 indeed defines a metric. The M1-topology is weaker than

J1, i.e. every sequence that converges in J1, converges in M1 as well. A typical exam-

ple for convergence in M1 but not in J1 is a monotonic staircase converging to a single

jump, see Figure 1.2. Convergence with respect to M1 can be generalised to D(R+;R)

by defining fn → f in (D(R+;R),M1) if and only if fn → f in (D([0, t];R),M1) for

all t ≥ 0 such that f is continuous at t.

Since it is given by a metric, the M1-topology can alternatively be defined by

characterising convergence of sequences. This characterisation is often more conve-

nient and will be used throughout our proofs. A sequence fn of functions in D(R+;R)

converges to f ∈ D(R+;R) with respect to the Skorokhod M1-topology if and only if

fn(t)→ f(t) for all t in a dense subset of [0,∞), and for all t∞ ∈ [0,∞) it holds that

lim
δ↓0

lim sup
n→∞

sup
0≤t≤t∞

w(fn, t, δ) = 0.

Here, the oscillation function w is defined as

w(f, t, δ) = sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧t∞

{|f(t2)− [f(t1), f(t3)]|},

where for b < a the interval [a, b] is defined to be [b, a], and |a−[b, c]| := infd∈[b,c] |a−d|.
We remark that stochastic process convergence with respect to M1, but not with

respect to J1, is a rare phenomenon in the literature, examples being [3, 60] and [86].

We conclude this subsection by sketching the typical approach to proving stable

convergence of a sequence of processes Zn in the M1-topology, which will be denoted

Zn
LM1

−s−−−−−→ Z. This technique is almost identically used to show convergence with

respect to the J1-topology and is discussed in detail in [27], see also [54, 87]. The

key idea is that Zn
LM1

−s−−−−−→ Z is equivalent to (Zn)n∈N satisfying the following two

conditions.
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(i) The sequence (Zn)n∈N is tight in (D(R+;R), dM1).

(ii) The finite dimensional distributions converge stably in law, i.e. for all t1, ..., td ≥
0 we have the joint stable convergence in distribution of Rd valued random

variables

(Znt1 , . . . , Z
n
td

)
L−s−→ (Zt1 , . . . , Ztd).

Recall that a sequence of random variables (Zn)n∈N with values in a metric space

(E, E) is called tight if for all ε > 0 there is a compact set K ⊂ E such that P(Zn ∈
K) > 1 − ε for all n. The justification that it is sufficient to show (i) and (ii) above

is the following corollary to Prokhorov’s theorem.

Corollary 1.2.3. ([27, Theorem 5.1]) Let (E, E) be a Polish space, and (Zn)n∈N be

a sequence of (E, E)-valued random variables. Then (Zn)n∈N is tight if and only if

every subsequence of (Zn)n∈N has a weakly convergent subsequence. If moreover the

limit of every weakly convergent subsequence of (Zn)n∈N must be Z, it follows already

that Zn converges in law to Z.

We remark that the space D equipped with the M1-topology is indeed Polish, see

[87, Section 12.8]. The convergence of the finite dimensional distributions (ii) implies

that the limit of every weakly convergent subsequence of (Zn)n∈N must be Z, see [27,

Theorem 13.1] and [87, Theorem 11.6.6]. This argument is easily generalised to stable

convergence in law by using (S2) of Definition 1.2.2.

1.3 Integration with respect to Lévy processes and

Musielak-Orlicz spaces

In this section we give an overview of stochastic integration with respect to Lévy pro-

cesses and infinitely divisible random measures, and present several estimates for Lévy

integrals. When proving limit theorems for a Lévy driven process Yt =
∫ t
−∞ Ft,sdLs,

it is essential to have sharp control on the order of magnitude of increments

Yt+∆ − Yt =

∫ t+∆

−∞
(Ft+∆,s − Ft,s1{s≤t})dLs, as ∆→ 0.

Typically, it is much easier to control the order of magnitude of the integrand Ft+∆,s−
Ft,s1{s≤t}. Therefore, a crucial ingredient to our proofs are several isometries for the

integral mapping F 7→
∫ t
−∞ Ft,sdLs that we present below. These estimates were

derived by Rajput and Rosiński [71] for deterministic integrands, and by Kwapién,

Rosiński and Woyczyński [61, 75] for predictable integrands. They play a similar

role for our proofs as Burkholder’s inequality plays for proofs of limit theorems for

processes driven by Brownian motion, e.g. continuous Itô semimartingales. In our

framework, however, an application of Burkholder’s inequality is not possible as the

Lévy process does not necessarily have sufficiently high moments.

Consider a σ-finite measure space (A,A, µ), for our purposes mostly (R,B(R), λ),

and letAb denote the sets inA of finite measure. An independently scattered infinitely
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divisible random measure on A is a collection of real valued random variables {Λ(A) :

A ∈ Ab} satisfying the following properties

1. For {An}n∈N ⊂ Ab with
⋃
nAn ∈ Ab it holds that Λ(

⋃
nAn) =

∑∞
n=1 Λ(An),

almost surely.

2. For disjoint sets {An}n∈N ⊂ Ab the random variables {Λ(An)}n∈N are indepen-

dent.

3. For all A ∈ Ab, the law of Λ(A) is infinitely divisible.

A Lévy basis on Rd, as used in the definition of ambit fields (1.1), is an independently

scattered infinitely divisible random measure that is stationary in the sense that

Λ(A)
d
= Λ(A + x) for all x ∈ Rd. A popular example of a Lévy basis is Gaussian

white noise on Rd, see Paper III. For simple functions f : A → R of the form

f =
∑n
i=1 αi1Ai where αi ∈ R and Ai ∈ Ab, the stochastic integral is then defined as∫

A0
fdΛ :=

∑n
i=1 αiΛ(Ai ∩A0) for any A0 ∈ A.

Taking limits in probability, the integral can be extended to the class Lnr(dΛ) of

all (nonrandom) functions f : A → R such that there exists a sequence of simple

functions (fn)n∈N with

(i) fn → f µ-almost everywhere and

(ii)
∫
A0
fndΛ converges in probability for all A0 ∈ A.

For f ∈ Lnr(dΛ), the integral
∫
A0
fdΛ is then defined as P- limn→∞

∫
A0
fndΛ, which

does not depend on the choice of the approximating sequence (fn), as was demon-

strated in [84]. In [71], the authors derived a more explicit equivalent definition for

the class of integrands Lnr(dΛ), see Theorem 1.3.2 below.

We are mostly interested in the case (A,A, µ) = (R,B(R), λ) where λ denotes

the Lebesgue measure and the independently scattered infinitely divisible random

measure is generated by a pure jump symmetric Lévy process. More precisely, given

a Lévy process L on the real line and letting Λ((a, b]) = Lb −La for a < b, Λ extends

uniquely to a random measure on (R,B(R), λ) by a standard argument, cf. [58,

Theorem 3.4]. In this framework, the discussed integration theory can be extended

to include predictable integrands. This extension relies on the use of decoupling

inequalities and a complete account can be found in the monograph [61].

In order to derive continuity and isometry properties of the integral mapping, the

space of integrands Lnr(dL) (and certain subspaces) need to be equipped with topolo-

gies induced by normlike functionals called modulars. We recall now the definition

and some basic properties of modulars. A detailed account can be found in [64].

Let us remark that in the literature there exist several slightly different definitions of

modulars. We follow mostly [61] and [64].

Definition 1.3.1. Let E be a linear space over R. A function Φ : E → [0,∞] is

called a modular on E if it satisfies the following conditions

(i) Φ(e) = 0 if and only if e = 0.
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(ii) For any e ∈ E the function R → [0,∞], t 7→ Φ(te) is continuous, even and

nondecreasing on R+.

A modular is of moderate growth if it additionally satisfies

(iii) There is a finite constant C such that Φ(e+f) ≤ C(Φ(e)+Φ(f)) for all e, f ∈ E.

It is 0-convex if it satisfies

(iv) For any e, f ∈ E and α, β ≥ 0 with α + β = 1 it holds that Φ(αe + βf) ≤
Φ(e) + Φ(f).

A 0-convex modular of moderate growth defines a topology on E, which is deter-

mined by the condition that en converges to e if Φ(en− e)→ 0. It is often convenient

to work instead with either of the two following regularized modulars, both of which

induce the same topology as Φ,

‖e‖Φ := inf{t > 0 : Φ(e/t) ≤ 1}, or |||e|||Φ := inf{t > 0 : Φ(e/t) ≤ t}.

The modular ‖·‖Φ is of moderate growth and is homogeneous, i.e. it satisfies ‖te‖Φ =

|t|‖e‖Φ for all t ∈ R and e ∈ E. It is not necessarily 0-convex and does not necessarily

obey the triangle inequality. However, if Φ is convex, then ‖ · ‖Φ is a norm, and

is called the Luxemburg norm, see [64, Theorem 1.5]. This is used in Proposition

1.3.4 below. The modular ||| · |||Φ, on the other hand, is an F -norm, i.e. it obeys

the triangle inequality and satisfies ||| − e|||Φ = |||e|||Φ, but is not homogeneous. In

particular, d(e, f) = |||e− f |||Φ defines a metric on E. It can be shown that for a 0-

convex modular Φ of moderate growth the conditions d(en, e)→ 0 and Φ(en− e)→ 0

are equivalent, cf. [64, Theorem 1.6]. Since in metric spaces the topology is completely

determined by characterising convergent sequences, this justifies our definition of the

topology induced by Φ. For further details about the modulars ‖ · ‖Φ and ||| · |||Φ we

refer to [63] and [61, Chapter 0.7].

Now let L be a pure jump symmetric Lévy process with Lévy measure ν. For

p ∈ [0,∞) and measurable f : R→ R define

Φp,L(f) :=

∫
R2

φp(f(s)u) ds ν(du), where φp(x) := |x|p1{|x|>1} + x21{|x|≤1}.(1.5)

Then, the functional Φp,L defines a modular on the space

Lpnr(dL) := {f : R→ R measurable : Φp,L(f) <∞}.

We show in Appendix A.2 that Φp,L is 0-convex and of moderate growth. The latter

implies in particular that Lpnr(dL) is a vector space. For p > 0, this type of modular

space is called Musielak-Orlicz space. It is complete with respect to the F -norm

||| · |||p,L := ||| · |||Φp,L and simple functions are dense in it, cf. [64]. We remark that

for p > 0 the Lévy process L needs to admit pth moment in order for Lpnr(dL) to be

nontrivial. The following theorem is a corollary to several results from [71, Section 2

& 3], the proof can be found in Appendix A.2.
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Theorem 1.3.2. (i) A function f is integrable with respect to the Lévy process L

if and only if f ∈ L0
nr(dL), i.e. L0

nr(dL) = Lnr(dL). Moreover, for any p > 0

the integral
∫
R f(s)dLs is in Lp(Ω) if and only if f ∈ Lpnr(dL).

(ii) Let p > 0 and equip Lpnr(dL) with the homogeneous modular ‖ · ‖p,L := ‖ · ‖Φp,L
introduced above. Then, the integral mapping Lpnr(dL)→ Lp(Ω), f 7→

∫
R f(s)dLs

is a quasi-isometry, i.e. there are constants c, C, depending only on p, such that

for all f ∈ Lpnr(dL)

c

∥∥∥∥∫
R
f(s)dLs

∥∥∥∥
p

≤ ‖f‖p,L ≤ C
∥∥∥∥∫

R
f(s)dLs

∥∥∥∥
p

.

Here and in the following we use for p > 0 and random variables Z the notation

‖Z‖p = E[|Z|p]
1
p , which defines a norm when p ≥ 1 and a homogeneous modular

when p < 1.

The following generalisation to predictable integrands is discussed in detail in

[61]. A modular Φ on a linear metric space E defines by composition a mapping Φ :

L0(E)→ L0([0,∞]), where L0(E) and L0([0,∞]) denote the spaces of E- and [0,∞]-

valued random variables, respectively. For p ≥ 0, we define the random Musielak-

Orlicz space

Lp(dL) := {F = (Ft)t∈R ∈ P : Φp,L(F ) <∞, almost surely},

where P denotes the class of predictable processes. The following result from [61]

generalises Theorem 1.3.2 and will play a key role for our proofs.

Theorem 1.3.3. A predictable process F is integrable with respect to L if and only

if F ∈ L0(dL). For all p ≥ 1 there are constants c, C, depending only on p, such that

for all F ∈ Lp(dL) it holds that

cE
[
‖F‖pp,L] ≤ E

[∣∣∣∣ ∫
R
Fs dLs

∣∣∣∣p] ≤ CE[‖F‖pp,L].
This result follows from [61, Theorem 9.1.1], [61, Equation (9.5.3)] and the com-

ments following it. The restriction p ≥ 1 is inherent to the decoupling inequality used

in [61]. In general the modulars ‖ · ‖p,L are much better behaved for p ≥ 1, as they

are equivalent to a norm in this case. This fact will also be essential for some of our

proofs.

Proposition 1.3.4. Assume p ≥ 1. There is a norm ‖ · ‖′p,L on Lpnr(dL), called the

Luxemburg norm, and constants c, C > 0 such that

c‖f‖′p,L ≤ ‖f‖p,L ≤ C‖f‖′p,L

for all f ∈ Lpnr(dL). The modular ‖ · ‖p,L has the following properties

(i) Homogeneity: For all λ ∈ R, f ∈ Lpnr(dL), ‖λf‖p,L = |λ|‖f‖p,L.
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(ii) Triangle inequality (up to a constant): There exists a constant C > 0 such that,

for all m ≥ 1 and f1, ..., fm ∈ Lpnr(dL) we have

‖f1 + · · ·+ fm‖p,L ≤ C
(
‖f1‖p,L + · · ·+ ‖fm‖p,L

)
.

(iii) Upper bound: For all f ∈ Lpnr(dL) it holds that

‖f‖p,L ≤ Φ
1/2
p,L(f) ∨ Φ

1/p
p,L(f).

The proof is given in Appendix A.2. Properties ((i))-((iii)) obviously continue to

hold, ω by ω, for processes in Lp(dL). Fortunately, the restriction p ≥ 1 becomes

unnecessary when the driving Lévy process L is symmetric β-stable, as we can rely

on an isometry derived in [75]. We use the notation ‖Z‖ββ,∞ = supλ>0 λ
βP[|Z| > λ]

for an arbitrary random variable Z. In the literature, ‖ · ‖β,∞ is often referred to

as the weak Lβ-norm, even though it satisfies the triangle inequality only up to a

constant. For p < β it holds that ‖Z‖p ≤ ‖Z‖β,∞ ≤ ( β
β−p )1/p‖Z‖β . In particular, we

can have ‖Z‖β,∞ < ∞ even though ‖Z‖β = ∞, which is for example the case when

Z is β-stable.

Theorem 1.3.5 ([75], Theorem 2.1). Let (Lt)t∈R be a symmetric β-stable Lévy pro-

cess. Then there are positive constants c, C > 0 such that for all F in L0(dL) it holds

that

cE
[ ∫

R
|Fs|β ds

]
≤
∥∥∥∥∫

R
Fs dLs

∥∥∥∥β
β,∞
≤ CE

[ ∫
R
|Fs|β ds

]
.

We remark that Theorem 1.3.3 and 1.3.5 consider in the original references only

integrals over a finite time interval, say
∫ t

0
Fs dLs. However, the definition of the

stochastic integral and the estimates of the integral extend to the case of
∫
R Fs dLs

in a natural way.

The theory of Lévy integration developed in [61] and [71] is not restricted to

symmetric Lévy processes. For non-symmetric Lévy processes, however, the corre-

sponding modulars become more involved and are much harder to control. As an

example, Assumption (A) is no longer sufficient to guarantee the existence of the

integral (1.2) with σ = 1 when the Lévy process is non-symmetric, which is easily

seen by considering a pure drift process L. In Section I.3 of Paper I we present an

estimate for integrals with respect to non-symmetric Lévy processes that we use in

the proof of Theorem I.1.1.

Finally, let us remark that a general approach to define stochastic space-time in-

tegrals with random integrand as in (1.1) dates back to Bichteler [26] and constructs

the stochastic integral by the Daniell procedure. In the recent publication [31] the

authors derive an explicit characterisation of the class of possible integrands for this

integration theory, which coincides with the class L(dL) when applied to the frame-

work discussed above. This general integration theory can in particular be used to

show the existence of general tempo-spatial ambit fields with stochastic integrand.
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1.4 Methodology of the proofs

The proofs of the generalisations of Theorem 1.1.1 in the articles below contain many

technical details, sometimes making it difficult to grasp the general idea behind them.

It adds to this effect that some of the essential steps of the proof of Theorem 1.1.1

given in [20] can be transferred to the generalisations presented in Paper I and II

in a straightforward manner, and are then referenced rather than repeated. In this

section we explain therefore the intuition and methodology of the proof of Theorem

1.1.1 and discuss some aspects of the generalisation to include nontrivial volatility and

to general variation functionals V (f ; k)nt . We motivate how the limits and convergence

rates emerge, prioritising simplicity over mathematical preciseness. Throughout this

section we denote by Xt the model (1.2), and by Yt the same model with σ ≡ 1. For

simplicity of exposition we only consider the case k = 1 and we set ∆n
i X := ∆n

i,1X

and h := h1. By V (p;X)nt and V (p;Y )nt we denote the realised power variation of the

processes X and Y , respectively, and similarly V (f ;Y )nt denotes the general variation

functional introduced in (1.3).

Theorem 1.1.1 (i)

Let us first remark that the limit in Theorem 1.1.1 (i) is indeed finite almost surely by

the following argument. By mean value theorem there is a constant C > 0 such that

|h(x)| ≤ C|x|α−1 for all x ∈ R, implying that |Vm| ≤ C
(
|Um|αp+

∑∞
l=1 |l+Um|(α−1)p

)
.

Since (α−1)p < −1 by assumption, the random variables Vm are uniformly bounded.

It follows that V (p;Y ) ≤ C
∑
m :Tm∈[0,1] |∆LTm |p, which is finite almost surely by the

assumption p > β.

Now, let us recall the basic intuition behind the proof of Theorem 1.1.1 (i). We

first discuss the asymptotic distribution of the increments

∆n
i Y =

∫ i/n

−∞
g

(
i

n
− s
)
− g
(
i− 1

n
− s
)
dLs.

In the situation of Theorem 1.1.1 (i) it holds that α < 1 − 1/p, implying that the

derivative g′ explodes at 0. This explosive behaviour dominates the asymptotics of

the increments, and justifies the approximation

∆n
i Y ≈

∫ i/n

i
n−1

g

(
i

n
− s
)
− g
(
i− 1

n
− s
)
dLs.

Although the process L typically has infinitely many jumps on finite intervals, we

assume for simplicity of exposition that T ∈ [(j − 1)/n, j/n) is the only jump time

of L within the interval [−1, t]. Recalling the assumption g(t) ∼ c0t
α for t → 0, we

consider the approximation

∆n
i Y ≈ Ani +Bni

:= c0

(∫ i
n

i−1
n

( i
n
− s
)α

dLs +

∫ i−1
n

i
n−1

{( i
n
− s
)α
−
( i− 1

n
− s
)α}

dLs

)
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Since T ∈ [(j − 1)/n, j/n) is the only jump time of L, we observe that Ani = 0 for all

i 6= j and Bni = 0 for all i < j. More precisely, we deduce that

∆n
j+lY ≈


c0∆LT

(
j
n − T

)α
l = 0

c0∆LT

((
j+l
n − T

)α
−
(
j+l−1
n − T

)α)
l ≥ 1

(1.6)

Now, we use the following result, which is essentially due to Tukey [83] (see also [38]

and [20, Lemma 4.1]): Let Z be a random variable with an absolutely continuous

distribution and let {x} := x− [x] ∈ [0, 1) denote the fractional part of x ∈ R. Then

it holds that

{nZ} L−s−→ U ∼ U([0, 1]),

where U is defined on an extension of the probability space (Ω,F ,P) and is indepen-

dent of F . Using j − nT = 1−{nT}, the approximation (1.6) now implies the stable

convergence of scaled increments

nα∆n
j+lY

L−s−→ c0∆LT
(
(l + U)α+ − (l − 1 + U)α+

)
, l ≥ 0. (1.7)

Thus, we obtain the result of (1.4) for one jump time:

[nt]∑
i=j

|nα∆n
i Y |p

L−s−→ cp0|∆LT |p
∞∑
l=0

∣∣(l + U)α+ − (l − 1 + U)α+
∣∣p. (1.8)

In Paper I, where we extend the model to contain a nontrivial volatility factor

σ, the formal proof becomes more complicated, but the intuition remains largely the

same. We can follow essentially the same argument as above, replacing dLs by σs−dLs
and ∆LT by σT−∆LT . This leads us to presume that the limit of the power variation

in the 1 jump scenario above is

V (p;X)nt
L−s−→ cp0|∆LTσT−|p

∞∑
l=0

∣∣(l + U)α+ − (l − 1 + U)α+
∣∣p.

This intuition proves to be correct, as we will show in Theorem I.1.1.

In Paper II we consider the more general variation functional introduced in (1.3)

assuming that σ is constant. The intuitive approximations (1.7) and (1.8) above

show that the appropriate choice for the normalising sequences (an)n∈N and (bn)n∈N
is an = 1 and bn = nα. Arguing as above, we then expect the stable convergence in

law

V (f ;Y )nt
L−s−→

∞∑
l=0

f
{
c0∆LT

(
(l + U)α+ − (l − 1 + U)α+

)}
.

The function f needs to satisfy a certain growth condition to ensure that the limit is

finite. See Theorem II.1.1 for details.

Theorem 1.1.1 (ii)

Here we present the intuition behind the proof of Theorem 1.1.1 (ii). We first turn

our attention to the small scale behaviour of the stationary increments Lévy driven
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moving averages Y . Under the conditions of Theorem 1.1.1 (ii), α < 1−1/β and thus

g′ explodes at 0. Hence, we intuitively deduce the following approximation for the

increments of Y for a small ∆ > 0:

Yt+∆ − Yt =

∫ t+∆

−∞
{g(t+ ∆− s)− g(t− s)} dLs

≈
∫ t+∆

t+∆−ε
{g(t+ ∆− s)− g(t− s)} dLs

≈ c0
∫ t+∆

t+∆−ε
{(t+ ∆− s)α+ − (t− s)α+} dLs

≈ c0
∫ t+∆

−∞
{(t+ ∆− s)α+ − (t− s)α+} dLs = Ỹt+∆ − Ỹt,

where

Ỹt := c0

∫
R
{(t− s)α+ − (−s)α+} dLs,

and ε > 0 is an arbitrary small real number with ε� ∆. In the classical terminology

Ỹ is called the tangent process of Y . In the framework of Theorem 1.1.1 (ii), the

process Ỹ is a symmetric fractional β-stable motion. We recall that (Ỹt)t≥0 has

stationary increments and is self-similar with index H = α+ 1/β ∈ (1/2, 1), i.e.

(Ỹat)t≥0
d
= aH(Ỹt)t≥0.

Furthermore, the symmetric fractional β-stable noise (Ỹt− Ỹt−1)t≥1 is mixing; see e.g.

[30]. Thus, using Birkhoff’s ergodic theorem we conclude that

V (p;Y )nt =
1

n

[nt]∑
i=1

∣∣nH∆n
i Y
∣∣p

≈ 1

n

[nt]∑
i=1

∣∣nH∆n
i Ỹ
∣∣p

d
=

1

n

[nt]∑
i=1

∣∣Ỹi − Ỹi−1

∣∣ P−→ tE[|Ỹ1 − Ỹ0|p] = tmp,

where mp is the constant defined in 1.1.1 (ii).

For the generalised variation functional (1.3) we expect by the same arguments

the convergence in probability

V (f ;Y )nt
P−→ tE[f(Ỹ1 − Ỹ0)],

with the scaling sequences an = n−1 and bn = nH , provided f is such that the

expectation exists.

In our first paper we derive the convergence of the realised power variation of the

process X with nontrivial volatility by the following blocking technique. In the first
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step of the proof we freeze σ over blocks of length 1/n and replace the power variation

by the functional

Ṽ (p;X)nt =

[nt]∑
i=1

|σ i−1
n

∆n
i Y |p.

This replacement is justified by the asymptotic equivalence∣∣np(α+1/β)−1(Ṽ (p;X)nt − V (p;X)nt )
∣∣ P−→ 0, (1.9)

which we derive in the proof. Thereafter, we introduce a new step size 1/l satisfying

1/n� 1/l� 1, and freeze the volatility at the beginning of each blocks of length 1/l.

More precisely, we consider the functional

Ṽ (p;X)n,lt =

[tl]∑
j=1

|σ j−1
l
|p
( ∑
i : in∈

[
j−1
l , jl

) |∆n
i Y |p

)
.

Thereafter , we establish asymptotic equivalence of Ṽ (p;X)n,lt and Ṽ (p;X)nt by show-

ing that

lim
l→∞

lim sup
n→∞

P(|np(α+1/β)−1(Ṽ (p;X)l,nt − Ṽ (p;X)nt )| > ε) = 0,

for all ε > 0. Then, applying the limit theorem for the process Y on each block of

size 1/l, we obtain

np(α+1/β)−1Ṽ (p;X)l,nt
P−→

n→∞

[lt]∑
j=1

|σ j−1
l
|pmp

l

a.s.−→
l→∞

mp

∫ t

0

|σt|pdt,

where the second step is convergence of Riemann sums. The integral on the right

hand side is indeed the limit in Theorem I.1.1 (ii).

Remark 1.4.1. The approach of freezing σ over blocks of different sizes is quite popular

for extending limit theorems to volatility modulated processes, and has for example

been used for Itô semimartingales [12] and Brownian semi-stationary processes [9],

i.e. the process X driven by a Brownian motion. It is therefore remarkable that this

technique is not applicable in the proofs of Theorem I.1.1 (i) and (iii) for the following

reason. The fundamental idea behind the blocking technique is the approximation

Xt+∆ −Xt =

∫ t+∆

−∞
{g(t+ ∆− s)− g(t− s)}σs−dLs

≈ σt−
∫ t+∆

−∞
g(t+ ∆− s)− g(t− s)dLs,

for ∆ > 0 small. This approximation is justified if the integrand gains asymptotically

most weight around t, which is the case when α is small and g′ explodes at 0. Con-

sequently, the blocking technique must fail in the framework of Theorem 1.1.1 (iii),

where we consider large α.
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In the framework of Theorem I.1.1 (i) we assume α < 1 − 1/p and it is therefore

somewhat surprising that the blocking technique is not applicable either. Consider-

ing the one jump scenario and the notation of the last subsection, (1.6) yields the

approximation

∆n
j+lX ≈ c0σT−∆LT

((j + l

n
− T

)α
−
(j + l − 1

n
− T

)α)
≈ σT−∆n

i Y,

for l ≥ 1. The first step of the blocking technique, however, approximates the in-

crement ∆n
j+lX by σ j+l−1

n
∆n
j+lY ≈ σT∆n

j+lY , leading to a different result if σ and

L jump at the same time. Consequently, the asymptotic equivalence (1.9), properly

scaled, does not hold.

Theorem 1.1.1 (iii)

In order to uncover the path properties of the process Y we perform a formal differ-

entiation with respect to time. Since g(0) = 0 we obtain a formal representation

dYt = g(0)dLt +

(∫ t

−∞
g′(t− s) dLs

)
dt = Ft dt. (1.10)

We remark that the random variable Ft is not necessarily finite under assumption

(A). However, under conditions of Theorem 1.1.1 (iii), the process Y is differentiable

almost everywhere and Y ′ = F ∈ Lp([0, 1]), although the process F explodes at

jump times of L when α < 1. Thus, under the conditions of Theorem 1.1.1 (iii), an

application of the mean value theorem gives an intuitive proof of (iii):

P-lim
n→∞

V (p;Y )nt = P-lim
n→∞

1

n

[nt]∑
i=1

|Fξni |
p =

∫ t

0

|Fu|p du,

where ξni ∈ ((i− 1)/n, i/n). This gives a sketch of the proof of the asymptotic result

in Theorem 1.1.1 (iii).

For extending the result to the process X the intuition remains largely the same,

with the process Ft replaced by Ut =
∫ t
−∞ g′(t − s)σsdLs. We do not show that the

sample paths of X are differentiable with derivative U but derive a stochastic Fubini

result for Lévy integrals to formalize the idea behind (1.10).

For the variation functional V (f ;Y )nt the arguments above show that with the

normalizing sequences an = n−1 and bn = n we can expect

V (f ;Y )nt
P−→
∫ t

0

f(Fu)du,

when the function f is such that the integral exists.
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[20] Basse-O’Connor, A., R. Lachiéze-Rey, and M. Podolskij (2016). Power varia-

tion for a class of stationary increments levy driven moving averages. Annals of

Probability . To appear.

[21] Basse-O’Connor, A. and M. Podolskij (2017). On critical cases in limit theory for
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[41] Gneiting, T., H. Ševč́ıková, and D. Percival (2012). Estimators of fractal dimen-

sion: assessing the roughness of time series and spatial data. Statist. Sci. 27 (2),

247–277.



24 Bibliography
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Abstract: In this paper we present some limit theorems for power variation of Lévy

semi-stationary processes in the setting of infill asymptotics. Lévy semi-stationary

processes, which are a one-dimensional analogue of ambit fields, are moving average

type processes with a multiplicative random component, which is usually referred

to as volatility or intermittency. From the mathematical point of view this work

extends the asymptotic theory investigated in [12], where the authors derived the

limit theory for kth order increments of stationary increments Lévy driven moving

averages. The asymptotic results turn out to heavily depend on the interplay between

the given order of the increments, the considered power p > 0, the Blumenthal–Getoor

index β ∈ (0, 2) of the driving pure jump Lévy process L and the behaviour of the

kernel function g at 0 determined by the power α. In this paper we will study

the first order asymptotic theory for Lévy semi-stationary processes with a random

volatility/intermittency component and present some statistical applications of the

probabilistic results.
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I.1 Introduction and main results

Over the last ten years there has been a growing interest in the theory of ambit fields.

Ambit fields is a class of spatio-temporal stochastic processes that has been originally

introduced by Barndorff-Nielsen and Schmiegel in a series of papers [9, 10, 11] in

the context of turbulence modelling, but which has found manifold applications in

mathematical finance and biology among other sciences; see e.g. [2, 25].

Ambit processes describe the dynamics in a stochastically developing field, for

instance a turbulent wind field, along curves embedded in such a field. A key char-

acteristic of the modelling framework is that beyond the most basic kind of random

noise it also specifically incorporates additional, often drastically changing, inputs

referred to as volatility or intermittency. In terms of mathematical formulae an ambit

field is specified via

Xt(x) = µ+

∫
At(x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ) +

∫
Dt(x)

q(t, s, x, ξ)as(ξ) ds dξ, (I.1.1)

where t denotes time while x gives the position in space. Further, At(x) and Dt(x)

are Borel measurable subsets of R × Rd, g and q are deterministic weight functions,

σ represents the intermittency field, a is a drift field and L denotes an independently

scattered infinitely divisible random measure on R×Rd (see e.g. [30] for details). In

the literature, the sets At(x) and Dt(x) are usually referred to as ambit sets. In the

framework of turbulence modelling the stochastic field (Xt(x))t≥0, x∈R3 describes the

velocity of a turbulent flow at time t and position x, while the ambit sets At(x), Dt(x)

are typically bounded.

In this paper we consider a purely temporal analogue of ambit fields (without drift)

(Xt)t∈R, defined on a filtered probability space (Ω,F , (Ft)t∈R,P), which is given as

Xt =

∫ t

−∞

{
g(t− s)− g0(−s)

}
σs− dLs, (I.1.2)

and is usually referred to as a Lévy semi-stationary (LSS) process. Here L = (Lt)t∈R
is a symmetric Lévy process on R with respect to (Ft)t∈R with L0 = 0 and without a

Gaussian component. That is, for all u ∈ R, the process (Lt+u−Lu)t≥0 is a symmetric

Lévy process on R+ with respect to (Ft+u)t≥0. The process (σt)t∈R is assumed to be

càdlàg and adapted to (Ft)t∈R, and g and g0 are deterministic continuous functions

vanishing on (−∞, 0). The name Lévy semi-stationary process refers to the fact

that the process (Xt)t∈R is stationary whenever g0 = 0 and (σt)t∈R is stationary

and independent of (Lt)t∈R. It is assumed throughout this paper that g, g0, σ and L

are such that the process (Xt) is well-defined, which is in particular satisfied under

the conditions stated in Remark I.3.3 below. We are interested in the asymptotic

behaviour of the power variation of the process X. More precisely, let us consider the

kth order increments ∆n
i,kX of X, k ∈ N, that are defined by

∆n
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−j)/n, where i ≥ k.
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For instance, we have that ∆n
i,1X = X i

n
−X i−1

n
and ∆n

i,2X = X i
n
− 2X i−1

n
+ X i−2

n
.

The main functional of interest is the power variation computed on the basis of kth

order increments:

V (p; k)nt :=

[nt]∑
i=k

|∆n
i,kX|p, p > 0. (I.1.3)

At this stage we remark that power variation of stochastic processes has been a very

active research area in the last decade. We refer e.g. to [7, 22, 23, 29] for limit theory

for power variations of Itô semimartingales, to [3, 5, 17, 21, 28] for the asymptotic

results in the framework of fractional Brownian motion and related processes, and to

[16, 34] for investigations of power variation of the Rosenblatt process. The power

variation of Brownian semi-stationary processes, which is the model (I.1.2) driven by

a Brownian motion, has been studied in [4, 6, 19]. Under proper normalisation the

authors have shown convergence in probability for the statistic V (p; k)nt and proved

its asymptotic mixed normality.

However, when the driving motion in (I.1.2) is a pure jump Lévy process, the

asymptotic theory is very different from the Brownian case. In the recent work [12] the

power variation of the model (I.1.2) with constant intermittency σ has been studied.

The authors showed that the asymptotic behavior of V (p; k)nt is greatly affected by

the Blumenthal–Getoor index β of the driving Lévy motion as well as the behavior

of the kernel function g at 0. The goal of this work is to extend the result of [12] to

LSS-processes with nontrivial intermittency process σ. Such extensions are important

in applications, say in the framework of turbulence, since the intermittency is often

the main object of interest. Moreover, we show that the convergence holds functional

with respect to the Skorokhod M1-topology in the setting of Theorem I.1.1 (i), and

with respect to the uniform norm in the settings of Theorem I.1.1 (ii) and (iii).

Throughout this article, β denotes the Blumenthal–Getoor index of the driving

Lévy process, which is defined as

β := inf
{
r ≥ 0 :

∫ 1

−1

|x|r ν(dx) <∞
}
∈ [0, 2],

where ν denotes the Lévy measure of L. It is well-known that
∑
s∈[0,1] |∆Ls|p is

finite when p > β, while it is infinite for p < β. Here ∆Ls = Ls − Ls− where

Ls− = limu↑s, u<s Lu. We recall that for a stable Lévy processes the Blumenthal–

Getoor index matches the index of stability. The authors of [12] impose the following

set of assumptions on g, g0 and ν, which we assume to hold throughout this paper.

Assumption (A): The function g : R → R satisfies limt↓0 g(t)t−α = c0 for some

α > 0 and c0 6= 0. There is a θ ∈ (0, 2], such that lim supt→∞ ν(x : |x| ≥ t)tθ < ∞
and g − g0 is a bounded function in Lθ(R+). Furthermore, g is k-times continuously

differentiable on (0,∞) and there exists a δ > 0 such that |g(k)(t)| ≤ Ctα−k for all

t ∈ (0, δ), and such that both |g′| and |g(k)| are in Lθ((δ,∞)) and are decreasing on

(δ,∞).

Assumption (A-log): In addition to (A) suppose that∫ ∞
δ

|g(k)(s)|θ log(1/|g(k)(s)|) ds <∞.
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Assumption (A) ensures, in particular, that the process X with σ = 1 is well-

defined, cf. [12]. When L is a β-stable Lévy process, we can and will always choose θ =

β in assumption (A). In addition to these assumptions we use in our main result the

following integrability conditions on the stochastic processHs := g(k)(−s)σs1(−∞,−δ](s),

s ∈ R, where δ is defined as in assumption (A).

Assumption (B1): There exists ρ > 0 with ρ ≤ 1 ∧ θ and β′ > β with β′ ≥ p such

that

E
[( ∫

R

(
|Hs|ρ ∨ |Hs|β

′)
ds
)1∨ p2 ]

<∞. (I.1.4)

For θ = 1 suppose in addition that we may choose ρ < 1 in (I.1.4).

Assumption (B2): It holds that

E
[ ∫

R
|Hs|β ds

]
<∞.

For p ≤ 2 it is not difficult to show that (B1) is at least satisfied when we can

choose θ < 1 in (A), and the intermittency satisfies sups∈(−∞,−δ] E[|σs|1∨β
′
] < ∞.

Assumption (B2) will only be used in the case where L is a β-stable Lévy motion

(see Theorem I.1.1 (ii) below), and is e.g. satisfied when sups∈(−∞,−δ] E[|σs|β ] < ∞.

These stronger assumptions are satisfied in many applications, as σ is often assumed

to be stationary.

Before we state our main theorem we introduce some more notation. Let hk : R→
R be given by

hk(x) =

k∑
j=0

(−1)j
(
k

j

)
(x− j)α+, x ∈ R, (I.1.5)

where y+ = max{y, 0} for all y ∈ R. Let F = (Ft)t≥0 and (Tm)m≥1 be a sequence

of F-stopping times that exhausts the jumps of (Lt)t≥0. That is, {Tm(ω) : m ≥
1} ∩ [0,∞) = {t ≥ 0 : ∆Lt(ω) 6= 0} and Tm(ω) 6= Tn(ω) for all m 6= n with

Tm(ω) < ∞. Let (Um)m≥1 be independent and uniform [0, 1]-distributed random

variables, defined on an extension (Ω′,F ′,P′) of the original probability space, which

are independent of F . By
(
D(R+;R),M1

)
we denote the Skorokhod space of càdlàg

functions from R+ into R, equipped with the Skorokhod M1-topology, making it a

Polish space. The M1-topology was originally introduced in [33]. We give a definition

in Section I.4, a detailed account and many properties can be found in [35]. For

stochastic processes Zn, Z with càdlàg sample paths that are defined on (Ω′,F ′), we

denote by Zn
LM1

−s−−−−−→ Z the functional F-stable convergence in law with respect

to the M1-topology. That is, Zn
LM1

−s−−−−−→ Z means that E′[φ(Zn)Y ] → E′[φ(Z)Y ]

for all bounded continuous functions φ : (D(R+;R),M1) → R, and all bounded F-

measurable Y , where E′ denotes the expectation on the extended space (Ω′,F ′,P′).
By

u.c.p.−−−→ we denote uniform convergence on compact sets in probability. That is,

(Znt )t≥0
u.c.p.−−−→ (Zt)t≥0 as n → ∞ means that P(supt∈[0,N ] |Znt − Zt| > ε) → 0 for all

N ∈ N and all ε > 0.

The following extension of [12, Theorem 1.1], to include a non-trivial σ process

and functional convergence, is the main result of this paper.
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Theorem I.1.1. Let X = (Xt)t≥0 be a stochastic process defined by (I.1.2). Let (A)

be satisfied and assume that the Blumenthal–Getoor index satisfies β < 2.

(i) Suppose that (B1) holds and if θ = 1 assume additionally that (A-log) is satisfied.

Let α < k − 1/p, p > β and p ≥ 1. Then, as n → ∞, the functional F-stable

convergence holds

nαpV (p; k)nt
LM1

−s−−−−−−→ |c0|p
∑

m:Tm∈[0,t]

|∆LTmσTm−|pVm

where Vm =
∑∞
l=0 |hk(l + Um)|p.

(ii) Suppose that L is a symmetric β-stable Lévy process with β ∈ (0, 2) and scale

parameter γ > 0. Suppose that (B2) holds and that α < k − 1/β and p < β.

Then as n→∞

n−1+p(α+1/β)V (p; k)nt
u.c.p.−−−→ mp

∫ t

0

|σs|pds,

where mp = |c0|pγp(
∫
R |hk(x)|β dx)p/βE[|Z|p], where Z is a symmetric β-stable

random variable with scale parameter 1.

(iii) Suppose that (B1) holds, θ > 1, α > k − 1/(β ∨ p) and p ≥ 1. If p = θ assume

additionally that (A-log) is satisfied. Then, as n→∞,

n−1+pkV (p; k)nt
u.c.p.−−−→

∫ t

0

|Fu|p du,

where (Fu)u∈R is a version with measurable sample paths of the process defined

by

Fu =

∫ u

−∞
g(k)(u− s)σs− dLs a.s. for all u ∈ R,

which necessarily satisfies
∫ t

0
|Fu|p du <∞, almost surely.

Under the integrability assumptions (B1) and (B2), Theorem I.1.1 covers all pos-

sible choices of α > 0, β ∈ [0, 2) and p ≥ 1 except the critical cases where p = β,

α = k − 1/p or α = k − 1/β. The two critical cases α = k − 1/p, p > β and

α = k − 1/β, p < β have been studied in [13] in the case σ ≡ 1. We conjecture that

analogous results hold for LSS processes with non-trivial intermittency component,

but will not pursue this theory in the paper.

First order asymptotic theory for Lévy semi-stationary processes can be used to

draw inference on the parameters α, β and on certain intermittency functionals in

the context of high frequency observations, see Section I.2. Furthermore, this type of

limit theory is an intermediate step towards asymptotic results for general ambit fields

of the form (I.1.1). We remark that, in contrast to the Brownian setting, extending

the first order limit theory presented in [12] to Lévy semi-stationary processes with

non-trivial σ is a more complex issue. This is due to the fact that it is harder to

estimate various norms of X and related processes when the driving process L is a
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Lévy process. To this end, we rely heavily on decoupling techniques and isometries for

stochastic integral mappings presented in the monograph [26] and [31], see Section I.3

for more details.

This paper is structured as follows. Section I.2 is devoted to various statistical

applications of our limit theory. In Section I.3 we discuss properties of Lévy integrals

of predictable processes and recall essential estimates from [26] for those integrals.

All proofs are demonstrated in Section I.4.

I.2 Some statistical applications

We start this section by giving an interpretation to the parameters α > 0 and β ∈
(0, 2). Let us consider the linear fractional stable motion defined by

Yt := c0

∫
R
{(t− s)α+ − (−s)α+} dLs,

where L is symmetric β-stable, and the constant c0 has been introduced in assumption

(A). It is well known that the process (Yt)t≥0 is well defined whenever H = α+1/β <

1. Furthermore, the process (Yt)t≥0 has stationary symmetric β-stable increments,

Hölder continuous paths of all orders smaller than α and self-similarity index H, i.e.

(Yat)t≥0
d
=
(
aHYt

)
t≥0

for any a ∈ R+.

We refer to e.g. [14] for more details. As it has been discussed in [12, 13] in the

setting σ = 1, the small scale behaviour of the process X is well approximated by

the corresponding behaviour of the linear fractional stable motion Y . In other words,

when the intermittency process σ is smooth, we have that

Xt+∆ −Xt ≈ σt(Yt+∆ − Yt)

for small ∆ > 0. Thus, intuitively speaking, the properties of Y (Hölder smoothness,

self-similarity) transfer to the process X on small scales.

Having understood the role of the parameters α > 0 and H = α + 1/β ∈ (1/2, 1)

from the modelling perspective, it is obviously important to investigate estimation

methods for these parameters. We note that the conditions α > 0 and H ∈ (1/2, 1)

imply the restrictions β ∈ (1, 2) and α < 1 − 1/max{p, β}. Hence, the regime of

Theorem I.1.1 (iii) is never applicable.

We start with a direct estimation procedure, which identifies the convergence rates

in Theorem I.1.1 (i)-(ii). We apply these convergence results only for t = 1 and k = 1.

For p ∈ [p, p] with p ∈ (0, 1) and p > 2, we introduce the statistic

S(n, p) := − log V (p)n

log n
with V (p)n = V (p; 1)n1 .

When the underlying Lévy motion L is symmetric β-stable and the assumptions of

Theorems I.1.1 (i)-(ii) are satisfied, we obtain that

S(n, p)
P−→ Sα,β(p) :=

{
αp : α < 1− 1/p and p > β

pH − 1 : α < 1− 1/β and p < β
, (I.2.1)
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if the parameter is (α, β). Indeed, the result of Theorem I.1.1 (i) shows that

αp log n+ log V (p)n

log n

L−s−→ 0 ⇒ αp log n+ log V (p)n

log n

P−→ 0.

This explains the first line in (I.2.1), and the second line follows similarly from The-

orem I.1.1 (ii). At this stage we remark that the limit Sα,β : [p, p] \ {β} → R is a

piecewise linear function with two different slopes. It can be continuously extended

to the function Sα,β : [p, p]→ R, whose definition can be further extended to include

all values

(α, β) ∈ J :=
{

(α, β) ∈ R2 : β ∈ [1, 2], α ∈ [0, 1− 1/β]
}
.

For estimation of (α, β), it is natural to minimise the L2-distance between the observed

scale function S(n, p) and the theoretical limit Sα,β(p):

(α̂n, β̂n) ∈ argmin(α,β)∈J‖S(n)− Sα,β‖L2([p,p]) (I.2.2)

with S(n) := S(n, ·). This approach is somewhat similar to the estimation method

proposed in [20]. For finite n, the minimum of the L2([p, p])-distance at (I.2.2) is not

necessarily obtained at a unique point, and we take an arbitrary measurable minimiser

(α̂n, β̂n). Our next result shows consistency of the estimator (α̂n, β̂n).

Corollary I.2.1. Let (α0, β0) ∈ J◦, where J◦ is the set of all inner points of J ,

denote the true parameter of the model (I.1.2), and let L be a symmetric β0-stable

Lévy motion. Assume that the conditions of Theorem I.1.1 (i) (resp. Theorem I.1.1

(ii)) hold when α0 ∈ (0, 1 − 1/p) and p > β0 (resp. α0 ∈ (0, 1 − 1/β0) and p < β0).

Then we obtain convergence in probability

(α̂n, β̂n)
P−→ (α0, β0).

Proof. Set r0 = (α0, β0) and r̂n = (α̂n, β̂n). We first show the convergence

‖S(n)− Sr0‖L2([p,p])
P−→ 0. (I.2.3)

From (I.2.1) we deduce that S(n, p)
P−→ Sr0(p) for all p ∈ [p, p] \ {β0}. Furthermore,

for any p ∈ [p, p], it holds that

(V (p)n)
1/p ≤ (V (p)n)

1/p ≤
(
V (p)n

)1/p
.

Hence, we deduce the inequality∣∣∣∣ log V (p)n

log n

∣∣∣∣ ≤ max

{
p

p
·
∣∣∣∣ log V (p)n

log n

∣∣∣∣ , pp ·
∣∣∣∣ log V (p)n

log n

∣∣∣∣} .
Since | log V (p)n/ log n| P−→ p(α0 + 1/β0)− 1 and | log V (p)n/ log n| P−→ α0p, because

p < 1 < β0 and p > 2 > β0, we readily deduce the convergence at (I.2.3) by dominated

convergence theorem.
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Now, we note that the mapping G : J → G(J) ⊂ L2([p, p]), r 7→ Sr, is a home-

omorphism. Thus, it suffices to prove that ‖Sr̂n − Sr0‖L2([p,p])
P−→ 0 to conclude

r̂n
P−→ r0. To show the former we observe that

‖Sr̂n − Sr0‖L2([p,p]) ≤ ‖S(n)− Sr0‖L2([p,p]) + ‖S(n)− Sr̂n‖L2([p,p])

= ‖S(n)− Sr0‖L2([p,p]) + min
r∈J
‖S(n)− Sr‖L2([p,p])

≤ 2‖S(n)− Sr0‖L2([p,p])
P−→ 0.

This completes the proof of Corollary I.2.1.

In practice the integral in (I.2.2) needs to be discretised. We further remark that

the estimator S(n, p) has the rate of convergence log n due to the bias V (p)/ log n,

where V (p) denotes the limit of V (p)n.

As for the estimation of the self-similarity parameter H = α + 1/β ∈ (1/2, 1),

there is an alternative estimator based on a ratio statistic. Recalling that β ∈ (1, 2),

we deduce for any p ∈ (0, 1]

R(n, p) :=

∑n
i=2 |X i

n
−X i−2

n
|p∑n

i=1 |X i
n
−X i−1

n
|p

P−→ 2pH

by a direct application of Theorem I.1.1 (ii). Thus, we immediately conclude that

Ĥn :=
logR(n, p)

p log 2

P−→ H.

This type of idea is rather standard in the framework of a fractional Brownian motion

with Hurst parameter H. It has been also applied to Brownian semi-stationary pro-

cesses in [4, 6]. Theorem 1.2 (i) in [12], which has been shown in the setting σ = 1,

suggests that the statistic Ĥn has convergence rate n1−1/(1−α)β whenever p ∈ (0, 1/2].

Furthermore, the rate of convergence can be improved to
√
n via using kth order in-

crements with k ≥ 2 (cf. [12, Theorem 1.2 (ii)]). However, we dispense with the

precise proof of these statements for non-constant intermittency process σ. In a re-

cent work [18] it was shown that for linear fractional stable motions the convergence

Ĥn
P−→ H continues to hold for powers p ∈ (−1, 0). This is particularly useful, since

choosing p negative ensures that the condition p < β of Theorem I.1.1 (ii) is always

satisfied. However, proving this result for a general Lévy semi-stationary process is a

much more delicate issue.

Another important object for applications in turbulence modelling is the inter-

mittency process σ. First of all, we remark that the process σ in the general model

(I.1.2) is statistically not identifiable. This is easily seen, because multiplication of σ

by a constant can not be distinguished from the multiplication of, say, Lévy process

L by the same constant. However, it is very well possible to estimate the relative

intermittency, which is defined as

RI(p) :=

∫ t
0
|σs|pds∫ 1

0
|σs|pds

, t ∈ (0, 1),
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for p ∈ (0, 1]. The relative intermittency, which has been introduced in [8] for p = 2 in

the context of Brownian semi-stationary processes, describes the relative amplitude of

the velocity process on an interval [0, 1]. Applying the convergence result of Theorem

I.1.1 (ii) for p ∈ (0, 1], the relative intermittency can be consistently estimated via

RI(n, p) :=
V (p)nt
V (p)n1

P−→ RI(p).

Again we suspect that the associated convergence rate is n1−1/(1−α)β whenever p ∈
(0, 1/2] as suggested by [12, Theorem 1.2 (i)].

I.3 Preliminaries: Estimates on Lévy integrals

To prove the various limit theorems we need very sharp estimates of the pth moments

of the increments of process X defined in (I.1.2). In fact, we need such estimates

for several different processes related to X obtained by different truncations. When

F : R+ → R is a deterministic function, the estimates for integrals
∫ t

0
Fs dLs go back

to Rajput and Rosiński [30, Theorem 3.3]. Their results imply the existence of a

constant C > 0 such that

E
[∣∣∣∣ ∫ t

0

Fs dLs

∣∣∣∣q] ≤ C‖F‖qL,q,
where ‖ · ‖L,q is a certain functional to be defined below (when L is symmetric and

without Gaussian component). The decoupling approach used in Kwapién and Woy-

czyński [26] provides an extension of the results to general predictable F , see Lem-

mas I.3.1 and I.3.2 below. Before stating the results precisely, we need the following

notation.

Let L = (Lt)t∈R be a symmetric Lévy process on the real line with L0 = 0, Lévy

measure ν and without a Gaussian component. For a predictable process (Ft)t∈R and

for q = 0 or q ≥ 1 we define

Φq,L(F ) :=

∫
R2

φq(Fsu) ds ν(du), where φq(x) := |x|q1{|x|>1} + x21{|x|≤1}.

A predictable process F = (Ft)t∈R is integrable with respect to (Lt)t∈R in the sense

of [26] if and only if Φ0,L(F ) <∞ almost surely (cf. [26, Theorem 9.1.1]). The linear

space of predictable processes satisfying Φq,L(F ) < ∞ will be denoted by Lq(dL)L.

In order to estimate the qth moments of stochastic integrals we introduce for all q ≥ 1

‖F‖q,L := inf{λ > 0 : Φq,L(F/λ) ≤ 1}, F ∈ Lq(dL)L. (I.3.1)

The following two results from [26] and [31] will play a key role for our proofs.

Lemma I.3.1 ([26], Equation (9.5.3)). For all q ≥ 1 there is a constant C, depending

only on q, such that we obtain for all F ∈ Lq(dL)L

E
[∣∣∣∣ ∫

R
Fs dLs

∣∣∣∣q] ≤ CE[‖F‖qq,L]. (I.3.2)
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The above lemma follows by [26, Equation (9.5.3)] and the comments following

it. Actually, [26, Equation (9.5.3)] only treats the case where the stochastic integral

in (I.3.2) is over a finite time interval, say
∫ t

0
Fs dLs. However, the definition of the

stochastic integral and the estimates of the integral in [26, Chapters 8–9] extend to

the case of
∫
R Fs dLs in a natural way.

For the next result, which is an immediate consequence of [31, Theorem 2.1], we

use the notation ‖Z‖ββ,∞ = supλ>0 λ
βP[|Z| > λ] for an arbitrary random variable Z.

For q < β it holds that E[|Z|q]1/q ≤ ‖Z‖β,∞ ≤ ( β
β−q )1/qE[|Z|β ]1/β . In the literature,

‖ · ‖β,∞ is often referred to as the weak Lβ-norm. However, ‖ · ‖β,∞ satisfies the

triangle inequality only up to a constant.

Lemma I.3.2 ([31], Theorem 2.1). Let (Lt)t∈R be a symmetric β-stable Lévy process.

Then there is a positive constant C > 0 such that for all (Ft)t∈R in L0(dL)L it holds

that ∥∥∥∥∫
R
Fs dLs

∥∥∥∥β
β,∞
≤ CE

[ ∫
R
|Fs|β ds

]
.

The next remark gives sufficient conditions for the process X introduced at (I.1.2)

to be well-defined.

Remark I.3.3. Suppose that (A) is satisfied and define the two processes F (1) and

F (2) by F
(1)
s = (g(−s)− g0(−s))σs and F

(2)
s = g′(−s)σs for s < 0. Then the process

X given by (I.1.2) is well-defined if there exists a β′ > β such that∫ −δ
−∞

(
|F (i)
s |θ1{|F (i)

s |≤1} + |F (i)
s |β

′
1{|F (i)

s |>1}

)
ds <∞ (I.3.3)

almost surely for i = 1, 2. To show the above we argue as follows: For any β′ ∈ (β, 2]

we deduce from (A) and simple calculations the estimate∫
R

(
|ux|2 ∧ 1

)
ν(dx) ≤ C(|u|θ1{|u|≤1} + |u|β

′
1{|u|>1}), u ∈ R. (I.3.4)

Then, an application of the mean value theorem combined with assumption (I.3.3)

yields that Φ0,L(H(t)) < ∞ almost surely for all t > 0, where H
(t)
s = (g(t − s) −

g0(−s))σs. This guarantees the existence of the process X due to [26, Theorem

9.1.1].

In our proofs we will need the following properties of the functional ‖ ·‖L,q defined

in (I.3.1).

i Homogeneity: For all λ ∈ R, F ∈ Lq(dL)L, ‖λF‖q,L = |λ|‖F‖q,L.

ii Triangle inequality (up to a constant): There exists a constant C > 0 such that

for all F 1, ..., Fm ∈ Lq(dL)L we have

‖F 1 + · · ·+ Fm‖q,L ≤ C
(
‖F 1‖q,L + · · ·+ ‖Fm‖q,L

)
, (I.3.5)

and the constant C does not depend on m or L.
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iii Upper bound: For all F ∈ Lq(dL)L we have

‖F‖q,L ≤ Φ
1/2
q,L(F ) ∨ Φ

1/q
q,L(F ). (I.3.6)

Property (i) follows directly from the definition of ‖ ·‖L,q in (I.3.1). To show property

(ii) it is sufficient to derive (I.3.5) for F 1, ..., Fm ∈ Lqnr(dL)L, where Lqnr(dL)L denotes

the subspace of nonrandom processes in Lq(dL)L. We will show that there is a norm

‖ · ‖′q,L on Lqnr(dL)L and c > 0 and C > 0 such that c‖F‖′q,L ≤ ‖F‖q,L ≤ C‖F‖′q,L,
for all F ∈ Lqnr(dL)L, which then implies (I.3.5). To this end, let

φ̃q(x) := (2/q|x|q + 1− 2/q)1{|x|>1} + x21{|x|≤1}.

Clearly, there exist c, C > 0 such that cφ̃q(x) ≤ φq(x) ≤ Cφ̃q(x) for all x ∈ R. Since

the function φ̃q is convex, the functional

‖F‖′q,L = inf

{
λ ≥ 0 :

∫
R2

φ̃q(Fsu/λ) ds ν(du) ≤ 1

}
is a norm on Lqnr(dL)L, called the Luxemburg norm (cf. [27, Chapter 1]). Using

convexity of φ̃q it follows by straightforward calculations that c‖F‖′q,L ≤ ‖F‖q,L ≤
C‖F‖′q,L for all F ∈ Lqnr(dL)L. This implies (I.3.5). Finally, property (iii) follows by

the fact that φq(λx) ≤ (λ2 ∨ λq)φq(x) for all λ ≥ 0.

We conclude this subsection with a remark on the situation when the integrator

is a non-symmetric Lévy process (L̃t)t∈R with L̃0 = 0, Lévy measure ν̃, shift pa-

rameter η, without a Gaussian part, and the truncation function τ : x 7→ 1{|x|<1} +

sign(x)1{|x|≥1}. That is, for all θ ∈ R,

E[eiθL̃1 ] = exp
(
iθη +

∫
R

(
eiθx − 1− iθτ(x)

)
ν̃(dx)

)
.

In this situation the modulars and norms defined above become much more involved

and harder to control, which is the main reason why we consider only symmetric

Lévy motions as driving processes. Moreover, assumptions (A), (B1) and (B2) are

not sufficient to guarantee the existence of the integral (I.1.2) if we consider non-

symmetric Lévy processes, e.g. if Lt = ηt with η 6= 0. For more details we refer to

[26, Chapter 9.1]. For our purposes, the following integrability criterion with respect

to non-symmetric Lévy processes will suffice. For a predictable process (Ft)t∈R define

Ψ0,L̃(F ) =

∫
R

∣∣∣ ∫
R
τ(uFs)− τ(u)Fsν̃(du) + ηFs

∣∣∣ ds.
Then, the condition

Φ0,L̃(F ) + Ψ0,L̃(F ) <∞ almost surely (I.3.7)

is sufficient for the integral
∫
R Fs dL̃s to exist, and we write F ∈ L0(dL)L̃. Indeed, this

is a consequence of [26, Theorem 9.1.1 and pp. 217–218] combined with the estimate

[30, Lemma 2.8].
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I.4 Proofs

In this section we present the proofs of our main results. The proof of (i) is divided

into two parts and is similar to the proof of the corresponding result in [12]. First

we show the theorem under the assumption that L is a compound Poisson process

with jumps bounded away from zero in absolute value by some a > 0. Thereafter,

we argue that the contribution of the jumps of L with absolute value ≤ a to the

power variation becomes negligible as a → 0. The proof of Theorem I.1.1 (ii) relies

on freezing the intermittency σ over small blocks and then deducing the result from

[12, Theorem 1.1]. A key step in the proof of Theorem I.1.1 (iii) is an application of

a suitable stochastic Fubini result that we introduce in Subsection I.4.

Throughout the proofs we denote all positive constants that do not depend on n

or ω by C, even though they may change from line to line. Similarly, we will denote

by K any positive random variable that does not depend on n, but may change from

line to line. For a random variable Y and q > 0 we denote ‖Y ‖q = E[|Y |q]1/q. We

frequently use the notation

gi,n(s) =

k∑
j=0

(−1)j
(
k

j

)
g((i− j)/n− s),

which allows us to express the kth order increments of X as

∆n
i,kX =

∫ i/n

−∞
gi,n(s)σs− dLs.

Recalling that |g(k)(s)| ≤ Ctα−k for all s ∈ (0, δ) and |g(k)| is decreasing on (δ,∞) by

assumption (A), Taylor expansion leads to the following important estimates.

Lemma I.4.1. Suppose that assumption (A) is satisfied. It holds that

|gi,n(s)| ≤ C(i/n− s)α for s ∈ [(i− k)/n, i/n],

|gi,n(s)| ≤ Cn−k((i− k)/n− s)α−k for s ∈ (i/n− δ, (i− k)/n), and

|gi,n(s)| ≤ Cn−k
(
1[(i−k)/n−δ,i/n−δ](s) + g(k)((i− k)/n− s)1(−∞,(i−k)/n−δ)(s)

)
,

for s ∈ (−∞, i/n− δ].

Applying a standard localisation argument (cf. [7, Section 3]) we can and will

assume throughout the proofs that the process σ is uniformly bounded by a constant

on [−δ,∞).

We conclude this subsection with a definition and some brief remarks on the

Skorokhod M1-topology. It was originally introduced by Skorokhod [33] by defining

a metric on the completed graphs of càdlàg functions, where the completed graph of

f is defined as

Γf = {(x, t) ∈ R× R+ : x = αf(t−) + (1− α)f(t), for some α ∈ [0, 1]}.

The M1-topology is weaker as the more commonly used J1-topology but still strong

enough to make many important functionals, such as sup and inf, continuous. It can
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be shown that the stable convergence in Theorem I.1.1 does not hold with respect to

the J1-topology. As M1 is metrisable, it is entirely defined by characerising conver-

gence of sequences, as we do in the following. A sequence fn of functions in D(R+,R)

converges to f ∈ D(R+,R) with respect to the Skorokhod M1-topology if and only if

fn(t)→ f(t) for all t in a dense subset of [0,∞), and for all t∞ ∈ [0,∞) it holds that

lim
δ↓0

lim sup
n→∞

sup
0≤t≤t∞

w(fn, t, δ) = 0.

Here, the oscillation function w is defined as

w(f, t, δ) = sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧t∞

{|f(t2)− [f(t1), f(t3)]|}, (I.4.1)

where for b < a the interval [a, b] is defined to be [b, a], and |a−[b, c]| := infd∈[b,c] |a−d|.

Proof of Theorem I.1.1 (i)

For the proof of Theorem I.1.1 (i) we follow the strategy from [12, Theorem 1.1 (i)].

We assume first that L is a compound Poisson process with jumps bounded in absolute

value away from zero by some a > 0. Later on, we argue that the small jumps of L

are asymptotically negligible. In order to show functional F-stable convergence on

D(R+;R) it is sufficient to show F-stable convergence on D([0, t∞];R), for arbitrary

but fixed t∞ > 0 (cf. [35, Chapter 3.3]). Throughout this subsection we therefore

fix a t∞ > 0, and denote by D the space D([0, t∞];R) equipped with the Skorokhod

M1-topology, and by
LM1

−s−−−−−→ the F-stable convergence of D-valued processes.

Compound Poisson Case

Suppose that (Lt)t∈R is a symmetric compound Poisson process with Lévy measure

ν, satisfying ν([−a, a]) = 0 for some a > 0. Let 0 ≤ T1 < T2 < ... denote the jump

times of (Lt)t≥0 in increasing order. For ε > 0 we define

Ωε =
{
ω ∈ Ω : for all m with Tm(ω) ∈ [0, t∞] we have |Tm(ω)− Tm−1(ω)| > ε

and ∆Ls(ω) = 0 for all s ∈ [−ε, 0]
}
.

We note that Ωε ↑ Ω, as ε ↓ 0. Letting

Mi,n,ε :=

∫ i/n

i/n−ε
gi,n(s)σs− dLs, and Ri,n,ε :=

∫ i/n−ε

−∞
gi,n(s)σs− dLs,

we have the decomposition ∆n
i,kX = Mi,n,ε + Ri,n,ε. It turns out that Mi,n,ε is the

asymptotically dominating term, whereas Ri,n,ε is negligible as n → ∞. We show

that, on Ωε,

nαp
[nt]∑
i=k

|Mi,n,ε|p
LM1

−s−−−−−→ Zt, where (I.4.2)

Zt := |c0|p
∑

m:Tm∈(0,t]

|∆LTmσTm−|pVm,
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where (Vm)m≥1 are defined in Theorem I.1.1 (i). Denote by im the random index

such that Tm ∈ ((im − 1)/n, im/n]. Then, we have on Ωε

nαp
[nt]∑
i=k

|Mi,n,ε|p = nαp
∑

m:Tm∈(0,[nt]/n]

|∆LTmσTm−|p
 vmt∑
l=0

|gim+l,n(Tm)|p


:= V n,εt , (I.4.3)

where the random index vmt is defined as

vmt = vmt (ε, n) =

{
[εn] ∧ ([nt]− im) if Tm − ([εn] + im)/n > −ε,
([εn]− 1) ∧ ([nt]− im) if Tm − ([εn] + im)/n ≤ −ε.

For the proof of (I.4.2) we first show stable convergence of the finite dimensional

distributions of V n,ε. Thereafter, we show that the sequence (V n,ε)n≥1 is tight and

deduce the functional convergence V n,ε
LM1

−s−−−−−→ Z.

Lemma I.4.2. For r ≥ 1 and 0 ≤ t1 < · · · < tr ≤ t∞ we obtain on Ωε the F-stable

convergence

(V n,εt1 , . . . , V n,εtr )
L−s−→ (Zt1 , . . . , Ztr ), as n→∞.

Proof. Let (Ui)i≥1 be i.i.d. U([0, 1])-distributed random variables, defined on an ex-

tension (Ω′,F ′,P′) of the original probability space, independent of F . By arguing as

in [12, Section 5.1], we deduce for any d ≥ 1 the F-stable convergence

{nαgim+l,n(Tm)}l,m≤d
L−s−→ {c0hk(l + Um)}l,m≤d

as n→∞, where hk is defined in (I.1.5). Defining

V n,ε,dt := nαp
∑

m≤d:Tm∈(0,[nt]/n]

|∆LTmσTm−|p
(

d∑
l=0

|gim+l,n(Tm)|p
)

Zdt := |c0|p
∑

m≤d:Tm∈(0,t]

|∆LTmσTm−|p
(

d∑
l=0

|hk(l + Um)|p
)
,

the continuous mapping theorem for stable convergence yields

(V n,ε,dt1 , . . . , V n,ε,dtr )
L−s−→ (Zdt1 , . . . , Z

d
tr ), for n→∞, (I.4.4)

for all d ≥ 1. It follows by Lemma I.4.1 for all l with k ≤ l < [nδ] that

nαp|gim+l,n(Tm)|p ≤ C|l − k|(α−k)p,

where we recall that (α− k)p < −1. Consequently, we find a random variable K > 0

such that for all t ∈ [0, t∞]

|V n,ε,dt − V n,εt | ≤ K
( ∑
m>d:Tm∈[0,t∞]

|∆LTmσTm−|p +
∑

m:Tm∈[0,t∞]

∞∑
l=vmt ∧d

|l− k|(α−k)p

)
.
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By definition, the random index vmt = vmt (n, ω) satisfies lim infn→∞ vmt (n, ω) =∞ for

all ω with Tm(ω) 6= t. Consequently, we obtain that lim supn→∞ |V
n,ε,d
t − V n,εt | → 0

almost surely as d→∞. It follows that on Ωε

lim sup
n→∞

{
max

t∈{t1,...,tr}
|V n,εt − V n,ε,dt |

}
→ 0, almost surely, as d→∞. (I.4.5)

By monotone convergence theorem we obtain supt∈[0,t∞] |Zdt −Zt| → 0 as d→∞. To-

gether with (I.4.4) and (I.4.5), this implies the statement of the lemma by a standard

approximation argument, see for example [15, Theorem 3.2].

Recall that the stable convergence V n,ε
LM1

−s−−−−−→ Z is equivalent to the joint

convergence in law (V n,ε, Y )
L−→ (Z, Y ) for all F-measurable random variables Y , cf.

[24, Proposition 5.33]. Consequently, Lemma I.4.2 and the following result together

with Prokhorov’s theorem imply (I.4.2), where we recall that (D([0, t∞]),M1) is a

Polish space.

Lemma I.4.3. The sequence (V n,ε)n≥1 of (D([0, t∞]),M1)-valued random variables

is tight.

Proof. The claim follows from [35, Theorem 12.12.3] if we verify that (V n,ε)n≥1 sat-

isfies the conditions of the theorem. Condition (i) follows since the processes V n,ε are

increasing in t and from tightness of {V n,εt∞ }n∈N, which follows from Lemma I.4.2. For

condition (ii) we need to verify that for all ζ, ξ > 0 there is an η > 0 such that

P
(

sup
t∈[0,t∞]

w(V n,ε, t, η) > ξ
)
≤ ζ, for all n,

where the oscillation function w was defined in (I.4.1). This follows since the processes

V n,ε are increasing, and consequently w(V n,ε, t, η) = 0 for all n, all t and all η.

This concludes the proof of (I.4.2). Next we show that

nαp
[nt∞]∑
i=k

|Ri,n,ε|p
P−→ 0. (I.4.6)

Recalling that α < k − 1/p, it is sufficient to show that

sup
n∈N

sup
i∈{k,...,[nt∞]}

nk|Ri,n,ε| <∞, almost surely.

It follows from Lemma I.4.1 that

nk|gi,n(s)σs−| ≤ C(1[−δ,t∞](s) + |g(k)(−s)σs−|1(−∞,−δ)(s)) := ψs.

Let L̃ = (L̃t)t∈R denote the process defined by L̃0 = 0 and L̃t − L̃u is the total

variation of v 7→ Lv on (u, t] for all u < t. Since L is a compound Poisson process,

the process L̃ is well-defined, finite and it follows from [32, Theorem 21.9] that L̃ is a

Lévy process with Lévy measure ν̃ = 2ν|R+
and shift parameter η with respect to the
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truncation function τ : x 7→ x1{|x|<1} + sign(x)1{|x|≥1} given by η =
∫
R τ(x) ν̃(dx).

Next we use the following estimate:

nk|Ri,n,ε| ≤
∫

(−∞, in−ε]
nk|gi,n(s)σs−| dL̃s ≤

∫
R
ψs dL̃s.

The right-hand side is finite almost surely due to the following Lemma I.4.4, and the

proof of (I.4.6) is complete.

Lemma I.4.4. Let L be a symmetric compound Poisson process with Lévy measure

ν satisfying ν([−a, a]) = 0 for some a ∈ (0, 1] and let L̃ and ψ be given as above.

Suppose, in addition, that (B1) is satisfied. Then the stochastic integral
∫
R ψs dL̃s

exists and is finite almost surely.

Proof. To show that the stochastic integral
∫
R ψs dL̃s is well-defined it is enough to

prove that Φ0,L̃(ψ)+Ψ0,L̃(ψ) <∞ almost surely (see (I.3.7) of Section I.3). For some

β′ > β we have from (B1) that∫
R
|ψs|θ1{|ψs|≤1} + |ψs|β

′
1{|ψs|>1} ds <∞, a.s.

This implies that Φ0,L̃(ψ) <∞ almost surely (cf. Remark I.3.3). Next we note that

Ψ0,L(ψ) =

∫
R

∣∣∣ ∫
R
τ(xψs)− τ(x)ψsν̃(dx) + ηψs

∣∣∣ ds =

∫
R

∣∣∣ ∫
R
τ(xψs)ν̃(dx)

∣∣∣ ds ,
where the second equality follows by definition of η above. Hence, to show that

Ψ0,L(ψ) < ∞ almost surely, it suffices according to (B1) to derive the following

estimate. There exists a constant C > 0 such that for all u ∈ R∫
R
|τ(ux)| ν̃(dx) ≤ C

(
|u|ρ1{|u|≤1} + 1{|u|>1}

)
. (I.4.7)

where ρ is as in assumption (B1). By the definitions of τ and ν̃ we have that∫
R
|τ(ux)| ν̃(dx) = |u|

∫
{|x|≤|u|−1}

|x| ν(dx) + ν
(
x ∈ R : |xu| > 1

)
. (I.4.8)

We recall that lim supt→∞ ν([t,∞))tθ < ∞. Since ν is finite, there exists C0 > 0

such that ν([t,∞)) ≤ C0/t
θ for all t ≥ a. Consequently, we obtain for all t ≥ a and

f(u) = 1[t,∞)(u) ∫ ∞
a

f(x) ν(dx) ≤ C0

θ

∫ ∞
a

f(x)x−θ−1 dx.

By monotone approximation, the inequality remains valid for all nondecreasing f :

[a,∞)→ R+. Therefore, the first term on the right-hand side of (I.4.8) is bounded by

|u|
∫
{|x|≤|u|−1}

|x| ν(dx) ≤ (C0/θ)1{|u|≤a−1}|u|
∫ |u|−1

a

|x|−θ dx

≤ C1{|u|≤a−1}


|u|θ θ < 1,

|u|(log(1/|u|) + log(1/a)) θ = 1,

|u| θ > 1.
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For the second term on the right-hand side of (I.4.8) we use the following estimate

ν
(
x ∈ R : |xu| > 1

)
≤ C(1{|u|>1} + (|u|−1)−θ1{|u|≤1}) = C(1{|u|>1} + |u|θ1{|u|≤1})

for all u ∈ R, which completes the proof of (I.4.7) and hence of the lemma.

Recalling the decomposition ∆n
i,kX = Mi,n,ε + Ri,n,ε we obtain by Minkowski’s

inequality

sup
t∈[0,t∞]

∣∣∣∣(nαpV (p; k)nt
) 1
p −

(
nαp

[nt]∑
i=k

|Mi,n,ε|p
) 1
p
∣∣∣∣ ≤ (nαp [nt∞]∑

i=k

|Ri,n,ε|p
) 1
p

.

Therefore, by virtue of (I.4.2) and (I.4.6), we conclude that

nαpV (p; k)nt
LM1

−s−−−−−→ Zt on Ωε.

By letting ε → 0 we conclude that Theorem I.1.1 (i) holds, when L is a compound

Poisson process with jumps bounded away from 0.

Decomposition into big and small jumps

In this section we extend the proof of Theorem I.1.1 (i) to general symmetric Lévy

processes (Lt)t∈R. We need the following preliminary result.

Lemma I.4.5. Let q ≥ 1 and a ∈ (0, 1]. The function

ξ(y) =

∫ a

−a
|yx|21{|yx|≤1} + |yx|q1{|yx|>1}ν(dx)

satisfies |ξ(y)| ≤ C(|y|21{|y≤1|} + |y|β′∨q1{|y>1|}) for any β′ > β, where C does not

depend on a.

Proof. Use the decomposition ξ = ξ1 + ξ2 with

ξ1(y) =

∫ a

−a
|yx|21{|yx|≤1} ν(dx), and ξ2(y) =

∫ a

−a
|yx|q1{|yx|>1} ν(dx).

We obtain

ξ1(y)1{|y|≤1} ≤ |y|2
∫ 1

−1

x2ν(dx)1{|y|≤1},

and ξ1(y)1{|y|>1} ≤ C|y|β
′∨q1{|y|>1} follows from (I.3.4), showing that ξ1 satisfies the

estimate given in the lemma. For q > β we obtain

ξ2(y) = 2|y|q1{|y|>1/a}

∫ a

1/|y|
|x|qν(dx) ≤ C|y|q1{|y|≥1}.

If q ≤ β we have similarly for any β′ > β

ξ2(y) ≤ 2|y|β
′
1{|y|>1/a}

∫ a

1/|y|
|x|β

′
ν(dx) ≤ C|y|β

′
1{|y|≥1},

which completes the proof.
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Now, given a general symmetric Lévy process (Lt)t∈R, consider for a > 0 the

compound Poisson process (L>at )t∈R defined by

L>a0 = 0, L>at − L>as =
∑
s<u≤t

∆Lu1{|∆Lu|>a}.

Moreover, let (L≤at )t∈R denote the Lévy process (Lt−L>at )t∈R. The key result of this

section is showing that

lim sup
n→∞

∥∥∥∥nαp [nt∞]∑
i=k

∣∣∣∣ ∫ i/n

−∞
gi,n(s)σs− dL

≤a
s

∣∣∣∣p∥∥∥∥
1

→ 0, as a→ 0. (I.4.9)

We make the decomposition∫ i/n

−∞
gi,n(s)σs− dL

≤a
s = Ai,n +Bi,n,

where

Ai,n =

∫ i/n

−δ
gi,n(s)σs− dL

≤a
s and Bi,n =

∫ −δ
−∞

gi,n(s)σs− dL
≤a
s .

Lemma I.3.1 shows that∥∥∥∥nαp [nt∞]∑
i=k

|Ai,n|p
∥∥∥∥

1

= n−1

[nt∞]∑
i=k

∥∥∥∥∫ i/n

−δ
nα+1/pgi,n(s)σs− dL

≤a
s

∥∥∥∥p
p

≤ Cn−1

[nt∞]∑
i=k

E
[∥∥F i,n∥∥p

p,L≤a

]
,

where the process (F i,nt )t∈R is defined as F i,nt = nα+1/pgi,n(t)1(−δ,i/n](t)σt−. Since

the random variable supt∈[−δ,∞) |σt| is uniformly bounded, we obtain by (I.3.6) and

[12, Eq.(4.23)]

E
[
‖F i,n‖p

p,L≤a

]
≤ C‖nα+1/pgi,n1[−δ,i/n]‖pp,L≤a
≤ C|Φp,L≤a(nα+1/pgk,n)|p/2 ∨ |Φp,L≤a(nα+1/pgk,n)|

≤ C
(∫
|x|≤a

|x|p + x2ν(dx)

)p/2
∨
(∫
|x|≤a

|x|p + x2ν(dx)

)
,

for all n ∈ N and i ∈ {k, . . . , [nt∞]}. Since p > β by assumption, we conclude that

lim sup
n→∞

∥∥∥∥nαp [nt∞]∑
i=k

|Ai,n|p
∥∥∥∥

1

→ 0, as a→ 0. (I.4.10)

Next, we show that for all a > 0

lim sup
n→∞

∥∥∥∥nαp [nt∞]∑
i=k

|Bi,n|p
∥∥∥∥

1

= 0. (I.4.11)
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Introducing the processes (Y i,nt )t∈R and (Yt)t∈R defined as

Y i,nt = nα+1/pgi,n(t)σt−1(−∞,−δ](t), and Yt = |g(k)(−t)σt−1(−∞,−δ](t)|,

we obtain by Lemma I.3.1 that∥∥∥∥nαp [nt∞]∑
i=k

|Bi,n|p
∥∥∥∥

1

≤ Cn−1

[nt∞]∑
i=k

E
[
‖Y i,n‖p

p,L≤a

]
.

Moreover, recalling that |g(k)| is decreasing on (δ,∞), an application of Lemma I.4.1

shows that

E
[
‖Y i,n‖p

p,L≤a

]
≤ np(α+1/p−k)E

[
‖Y ‖p

p,L≤a

]
,

for all i ∈ {k, . . . , n}. Since α+1/p−k < 0, equation (I.4.11) follows if E
[
‖Y ‖p

p,L≤a

]
<

∞. Applying the estimate (I.3.6) shows that this is satisfied if E
[
Φ

1∨ p2
p,L≤a

(Y )
]
< ∞,

which is a consequence of (B1) and Lemma I.4.5, where we used that p > β. Now,

(I.4.9) follows from (I.4.10) and (I.4.11).

We can complete the proof of Theorem I.1.1 (i) by combining (I.4.9) with the

results of Subsection I.4. To this end, let

X>a

t :=

∫ t

−∞
(g(t− s)− g0(−s))σs− dL>as , X≤at :=

∫ t

−∞
(g(t− s)− g0(−s))σs− dL≤as ,

and let T>am = Tm if |∆LTm | > a, and T>am = ∞ else. The results of Subsection I.4

show that

nαpV (X>a, p; k)nt
LM1

−s−−−−−→ Z>a

t :=
∑

m:T>am ∈(0,t]

|∆LT>am σT>am −|
pVm

for all a > 0, where V (X>a, p; k)nt denotes the power variation of the process X>a.

Making the decomposition(
nαpV (p; k)nt

)1/p
=
(
nαpV (X>a, p; k)nt

)1/p
+

((
nαpV (p; k)nt

)1/p − (nαpV (X>a, p; k)nt
)1/p)

:= Un,>at + Un,≤at ,

we have by Minkowski’s inequality

lim
a→0

lim sup
n→∞

P( sup
t∈[0,t∞]

|Un,≤at | > ε) ≤ lim
a→0

lim sup
n→∞

P(nαpV (X≤a, p; k)nt∞ > εp) = 0,

for all ε > 0, which follows easily from (I.4.9). Since Un,>at
LM1

−s−−−−−→ Z>a

t as n → ∞,
and supt∈[0,t∞] |Z>a

t −Zt| → 0 almost surely, as a→ 0, Theorem I.1.1 (i) follows from

[15, Theorem 3.2].

Remark I.4.6. A popular technique for proving limit theorems for volatility modulated

processes is to freeze the volatility over blocks of length 1/n and derive a limit theorem

for the resulting simpler process. However, in the framework of Theorem I.1.1 (i) this

approach is not applicable, since the power variations of the two processes are not

asymptotically equivalent if σ and L jump at the same times.
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Proof of Theorem I.1.1 (ii)

Since t 7→ V (p; k)nt is increasing and the limiting function is continuous, uniform

convergence on compact sets in probability follows if we show

n−1+p(α+1/β)V (p; k)nt
P−→ mp

∫ t

0

|σs|pds

for a fixed t > 0, which we will do in the following. A crucial step in the proof is

to show that the asymptotic behavior of the power variation does not change if we

replace ∆n
i,kX in (I.1.3) by σ(i−k)/n∆n

i,kG, where the process (Gt)t≥0 is defined as

the integral in (I.1.2) with σ ≡ 1. Note that assumption (A) ensures that G is well-

defined. Thereafter, we divide the interval [0, t] into subblocks of size 1/l and freeze σ

at the beginning of each block. The limiting power variation for the resulting process

can then be derived by applying part (ii) of [12, Theorem 1.1] on every block. The

proof of Theorem I.1.1 (ii) is then completed by letting l→∞. The following lemma

plays an important role for replacing ∆n
i,kX in (I.1.3) by σ(i−k)/n∆n

i,kG. Here and in

the following we denote by vσ the modulus of continuity of σ defined as

vσ(s, η) = sup{|σs − σr| : r ∈ [s− η, s+ η]}.

Lemma I.4.7. Let (σt)t∈R be a process with càdlàg or càglàd sample paths that is

uniformly bounded on [−δ,∞). For any α, q ∈ (0,∞) we have

lim
ε→0

lim sup
n→∞

 1

n

[nt]∑
i=k

‖vσ(i/n, ε)‖αq

 = 0.

Proof. Since vσ is bounded and x 7→ xα is locally Lipschitz for α > 1, we may assume

w.l.o.g. that α ≤ 1 and q ≥ 1. For κ > 0 we use the decomposition σ = σ<κ + σ≥κ,

where

σ≥κs =
∑

−δ<u≤s

∆σu1{|∆σu|≥κ},

and σ<κs = σs − σ≥κs . Even though σ is uniformly bounded on [−δ,∞), σ≥κ and σ<κ

might not be. For this reason we introduce the sets

Ωm :=
{
ω : |σ<κs (ω)|+ |σ≥κs (ω)| ≤ m for all s ∈ [−δ, t+ δ],

and σ≥κ(ω) has less than m jumps in [−δ, t+ δ]
}
.

Note that Ωm ↑ Ω, as m→∞. By the triangular inequality we have

vσ(s, η) ≤ vσ<κ(s, η)1Ωm + vσ≥κ(s, η)1Ωm + C1Ωc
m
,

for all s ∈ [0, t], η < δ and m ≥ 1. Since P(Ωc
m) → 0 as m → ∞, we can choose m

sufficiently large such that

1

n

[nt]∑
i=k

‖vσ(i/n, ε)‖αq ≤
1

n

[nt]∑
i=k

(
‖vσ<κ(i/n, ε)1Ωm‖αq + ‖vσ≥κ(i/n, ε)1Ωm‖αq

)
+ κ, (I.4.12)
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for all n ∈ N and ε > 0. We show that

lim sup
ε→0

lim sup
n→∞

 1

n

[nt]∑
i=k

‖vσ<κ(i/n, ε)1Ωm‖αq

 ≤ 2κα. (I.4.13)

In order to do so, we assume the existence of sequences (εl), (nl), (il) with εl → 0,

nl →∞ and il ∈ {1, ..., [tnl]} such that

‖vσ<κ(il/nl, εl)1Ωm‖αq > 2κα (I.4.14)

for all l, and derive a contradiction. Since (il/nl)l≥1 is a bounded sequence we may

assume that il/nl converges to some s0 ∈ [0, t] by considering a suitable subse-

quence (lk)k≥1. For all ω ∈ Ωm it holds that limγ→0 vσ<κ(s0, γ) = |∆σ<κs0 | ≤ κ.

Therefore, by the dominated convergence theorem, we can find a γ > 0 such that

‖vσ<κ(s0, γ)1Ωm‖αq ≤ 2κα. This is a contradiction to (I.4.14), since for sufficiently

large l we have [il/nl − εl, il/nl + εl] ⊂ [s0 − γ, s0 + γ]. This completes the proof of

(I.4.13). Next, we show that

lim
ε→0

lim sup
n→∞

 1

n

[nt]∑
i=k

‖vσ≥κ(i/n, ε)1Ωm‖αq

 = 0. (I.4.15)

Recalling that q/α ≥ 1, an application of Jensen’s inequality yields

1

n

[nt]∑
i=k

‖vσ≥κ(i/n, ε)1Ωm‖αq ≤
∥∥∥∥tq/α−1 1

n

[nt]∑
i=k

(
vσ≥κ(i/n, ε)1Ωm

)q∥∥∥∥α/q
1

,

for all n ∈ N, ε > 0. Now, (I.4.15) follows from the estimate

1

n

[nt]∑
i=k

(
vσ≥κ(i/n, ε)1Ωm

)q ≤ sup
s∈[−δ,t+δ]

|∆σ≥κs |qN1Ωm2(ε) ≤ Cmq+1(ε),

for all n ∈ N. Here N = N(ω) denotes the number of jumps of σ≥κ in [−δ, t + δ].

Using (I.4.13) and (I.4.15), the lemma now follows from (I.4.12) by letting κ→ 0.

The proof of Theorem I.1.1 (ii) heavily relies on the estimate given in Lemma

I.3.2. This lemma assumes the role that Itô’s isometry typically plays in proofs of

limit theorems for stochastic integral processes driven by a Brownian motion. In order

to apply Lemma I.3.2, the following estimates will be crucial.

Lemma I.4.8. Suppose that assumptions (A) and (B2) hold, and assume that α +

1/β < k. For ε > 0 with ε ≤ δ there is a constant C > 0 such that

E
[ ∫ i

n

i
n−ε
|gi,n(s)σs−|β ds

]
+

∫ i
n

i
n−ε
|gi,n(s)|β ds ≤ Cn−αβ−1, and

E
[ ∫ i

n−ε

−∞
|gi,n(s)σs−|β ds

]
+

∫ i
n−ε

−∞
|gi,n(s)|β ds ≤ Cn−kβ ,

for all i ∈ {k, . . . , n}.
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Proof. By Lemma I.4.1 we have that

|gi,n(s)|β1[i/n−ε,i/n](s)

≤ C
(
(i/n− s)αβ1[(i−k)/n,i/n](s) + n−kβ((i− k)/n− s)(α−k)β1[i/n−ε,(i−k)/n](s)

)
.

Recalling that σ is bounded on [−δ,∞), the first inequality follows by calculating

the integral of the right hand side. The second inequality is a direct consequence of

Lemma I.4.1 and assumptions (A) and (B2).

A crucial step in the proof of Theorem I.1.1 (ii) is showing that

n−1+p(α+1/β)

[nt]∑
i=k

‖∆n
i,kX − σ(i−k)/n∆n

i,kG‖pp → 0, (I.4.16)

as n→∞, where the process (Gt)t≥0 is defined as the integral in (I.1.2) with σ ≡ 1.

We fix some ε > 0 and make the decomposition

∆n
i,kX − σ(i−k)/n∆n

i,kG = An,εi +Bn,εi + Cn,εi ,

where

An,εi =

∫ i/n

i/n−ε
gi,n(s)(σs−−σi/n−ε) dLs, Bn,εi = (σi/n−ε−σ(i−k)/n)

∫ i/n

i/n−ε
gi,n(s) dLs,

Cn,εi =

∫ i/n−ε

−∞
gi,n(s)σs− dLs − σ(i−k)/n

∫ i/n−ε

−∞
gi,n(s) dLs.

We deduce (I.4.16) by showing that

lim
ε→0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

‖An,εi ‖
p
p

)
= 0,

and the same for Bn,εi and Cn,εi , respectively. For An,εi we obtain by Lemma I.3.2

n−1+p(α+1/β)

[nt]∑
i=k

‖An,εi ‖
p
p

≤ Cn−1+p(α+1/β)

[nt]∑
i=k

{
E
[ ∫ i/n

i/n−ε

∣∣gi,n(s)(σs− − σi/n−ε)
∣∣β ds]}p/β

≤ Cn−1+p(α+1/β)

[nt]∑
i=k

‖vσ(i/n, ε+ 1/n)‖pβ

(∫ i/n

i/n−ε
|gi,n(s)|β ds

)p/β
.

By Lemma I.4.7 and Lemma I.4.8 we conclude that

lim
ε→0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

‖An,εi ‖
p
p

)
= 0. (I.4.17)
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For Bn,εi we apply Hölder’s inequality with p′ and q′ satisfying 1/p′ + 1/q′ = 1 and

pq′ < β, which is possible due to our assumption p < β. This yields

n−1+p(α+1/β)

[nt]∑
i=k

‖Bn,εi ‖
p
p

≤ n−1+p(α+1/β)

[nt]∑
i=k

‖(σi/n−ε − σ(i−k)/n)‖ppp′
∥∥∥∥∫ i/n

i/n−ε
gi,n(s) dLs

∥∥∥∥p
pq′
,

≤ Cn−1

[nt]∑
i=k

∥∥vσ(i/n, ε+ k/n)
∥∥p
pp′
.

Here we have used that, as a consequence of Lemma I.3.2 and Lemma I.4.8, whenever

pq′ < β there exists a C > 0 such that ‖nα+1/β
∫ i/n
i/n−ε gi,n(s) dLs‖pq′ < C for all

n ∈ N, i ∈ {k, ..., [nt]}. Thus, by Lemma I.4.7

lim
ε→0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

‖Bn,εi ‖
p
p

)
= 0. (I.4.18)

Moreover, by Lemma I.3.2 and Lemma I.4.8 it follows that for all ε > 0

lim sup
n→∞

(
n−1+p(α+1/β)

[nt]∑
i=k

‖Cn,εi ‖
p
p

)
≤ C lim sup

n→∞
(np(α+1/β−k)) = 0,

which together with (I.4.17) and (I.4.18) completes the proof of (I.4.16).

By Minkowski’s inequality for p ≥ 1 and subadditivity for p < 1, it is now sufficient

to show that

n−1+p(α+1/β)

[nt]∑
i=k

|σ(i−1/n)∆
n
i,kG|p

P−→ mp

∫ t

0

|σs|p ds, (I.4.19)

in order to prove Theorem I.1.1 (ii).

Intuitively, replacing |∆n
i,kX| by |σ(i−k)/n∆n

i,kG| corresponds to freezing the pro-

cess (σt)t∈R over blocks of length 1/n. For the proof of (I.4.19) we freeze σ now over

small blocks with block size 1/l that does not depend on n. This will allow us to apply

[12, Theorem 1.1(ii)] on every block. Thereafter, (I.4.19) follows by letting l → ∞.
For l > 0 we decompose

n−1+p(α+1/β)

[nt]∑
i=k

|σ(i−k)/n∆n
i,kG|p −mp

∫ t

0

|σs|p ds

= n−1+p(α+1/β)

( [nt]∑
i=k

|∆n
i,kG|p

(
|σ(i−k)/n|p − |σ(jl,i−1)/l|p

))

+

( [tl]+1∑
j=1

|σ(j−1)/l|p
(
n−1+p(α+1/β)

∑
i∈Il(j)

|∆n
i,kG|p −mpl

−1

))

+

(
mpl

−1

[tl]∑
j=1

|σ(j−1)/l|p −mp

∫ t

0

|σs|pds
)

:= Dn,l + En,l + Fl.
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Here, jl,i denotes the index j ∈ {1, ..., [tl] + 1} such that (i − k)/n ∈ ((j − 1)/l, j/l]

and Il(j) is the set of indices i such that (i− k)/n ∈ ((j − 1)/l, j/l]. We show that

lim
l→∞

lim sup
n→∞

P(|Dn,l + En,l + Fl| > ε) = 0

for any ε > 0. Note that Fl
a.s.−→ 0 as l → ∞, since the Riemann integral of any

càdlàg function exists. For every l ∈ N we have lim supn→∞ P(|En,l| > ε) = 0 by

[12, Theorem 1.1(ii)]. For liml→∞ lim supn→∞ P(|Dn,l| > ε) = 0 we argue as follows.

Choose some p′ > 1 such that pp′ < β and let q′ be such that 1/p′ + 1/q′ = 1. We

find

‖Dn,l‖1 =

∥∥∥∥n−1+p(α+1/β)

( [nt]∑
i=k

|∆n
i,kG|p(|σ(i−k)/n|p − |σ(jl,n,i−1)/l|p)

)∥∥∥∥
1

≤ n−1

[nt]∑
i=k

‖|nα+1/β∆n
i,kG|p‖p′‖|σ(i−k)/n|p − |σ(jl,n,i−1)/l|p‖q′

≤
(
n−1

[nt]∑
i=k

‖nα+1/β∆n
i,kG‖

2/p
pp′

)1/2(
n−1

[nt]∑
i=k

‖|σ(i−k)/n|p − |σ(jl,n,i−1)/l|p‖2q′
)1/2

.

The first factor is bounded by Lemmas I.3.2 and I.4.8. For the second factor we can

apply Lemma I.4.7, since the process (|σt|p)t∈R is càdlàg and bounded on [−δ,∞), and

conclude that liml→∞ lim supn→∞ ‖Dn,l‖1 = 0. This completes the proof of (I.4.19),

and hence of Theorem I.1.1 (ii).

Proof of Theorem I.1.1 (iii)

For the proof of Theorem I.1.1 (iii) we show that under the conditions of the theorem

the process X admits a modification with k-times differentiable sample paths with k-

th derivative F , as defined in the theorem. Then the result follows by an application

of the following stochastic Fubini theorem. For a proof we refer to [1, Theorem

3.1], where a similar Fubini theorem was shown for deterministic integrands. The

generalisation towards predictable integrands is straightforward.

Lemma I.4.9. Let f : R × R × Ω → R be a random field that is measurable with

respect to the product σ-algebra B(R) ⊗ Π, where Π denotes the (Ft)t∈R-predictable

σ-algebra on R×Ω. That is, Π is the σ-algebra generated by all sets A× (s, t], where

s < t and A ∈ Fs. Let (Lt)t∈R be a symmetric Lévy process that has finite first

moment. Assume that we have

E
[ ∫

R
‖f(u, ·)‖1,L du

]
<∞.

Then, we obtain∫
R

(∫
R
f(u, s) du

)
dLs =

∫
R

(∫
R
f(u, s) dLs

)
du almost surely,

and all the integrals are well-defined.



52 Paper I. On limit theory for LSS processes

The following auxiliary result ensures that the conditions of this lemma are satis-

fied in our framework.

Lemma I.4.10. Suppose that assumption (B1) holds. Let q ∈ {1, p} which in par-

ticular implies α > k − 1/(β ∨ q). If q > 1 assume additionally that the jumps of the

Lévy process L are bounded in absolute value by 1. For any t > 0, the random field

ft(u, s) := g(k)(u− s)σs−1[0,t](u)1(−∞,u)(s) satisfies∫ t

0

E[‖ft(u, ·)‖qq,L] du <∞.

Proof. We decompose∫ t

0

E[‖ft(u, ·)‖qq,L] du

≤ C
∫ t

0

E[‖ft(u, ·)1(−δ,t]‖qq,L] du+ C

∫ t

0

E[‖ft(u, ·)1(−∞,−δ]‖qq,L] du

:= I1 + I2,

and show that both summands are finite. For I1 we use that σ is bounded on [−δ,∞).

Thus, denoting et(u, s) = g(k)(u− s)1[0,t](u)1(−δ,u)(s), we obtain using (I.3.6)

I1 ≤ C
∫ t

0

Φq,L(et(u, ·)) + Φ
q
2

q,L(et(u, ·)) du ≤ Ct
(
Φq,L(et(t, ·)) + Φ

q
2

q,L(et(t, ·))
)
,

where in the second inequality we used |et(u, s)| ≤ |et(t, s+ t− u)|, and that Φq,L(f)

is invariant under shifting the argument of the function f . For I1 to be finite it is

therefore sufficient to show that the following term is finite∫ t

−δ

∫
R
|g(k)(t−s)x|21{|g(k)(t−s)x|≤1}+|g(k)(t−s)x|q1{|g(k)(t−s)x|>1} ν(dx) ds := J1+J2.

We fix β′ ∈ (β∨1, 1/(k−α)) and q′ ∈ [q, 1/(k−α)) such that the Lévy process satisfies

E[|L1|q
′
] < ∞. Indeed, the former is possible by the conditions α > k − 1/(β ∨ p)

and p ≥ 1 in Theorem I.1.1(iii). The latter is possible for q = 1 by the assumption

θ > 1 in Theorem I.1.1 (iii), and for q = p > 1 by the assumption of bounded jumps

in the lemma. Recalling that |g(k)(t)| ≤ C|t|α−k for all t ∈ (0, δ), in order to show

J1 + J2 <∞, it is then sufficient to show

J1 + J2 ≤ C
(

1 +

∫ t

−δ
|g(k)(t− s)|β

′
ds+

∫ t

−δ
|g(k)(t− s)|q

′
ds

)
. (I.4.20)

For q = p > 1, this estimate follows easily from Lemma I.4.5, where we use the

assumption that L has jumps bounded by 1. For q = 1 the estimate follows for J1 by

(I.3.4). For J2 we obtain

J2 ≤
∫ t

−δ

∫ 1

−1

|g(k)(t− s)x|β
′
1{|g(k)(t−s)x|>1} ν(dx) ds

+ 2

∫ t

−δ
|g(k)(t− s)|q

′
ds

∫ ∞
1

|x|q
′
ν(dx)

≤ C
∫ t

−δ
|g(k)(t− s)|β

′
1{|g(k)(t−s)|>1} + |g(k)(t− s)|q

′
ds,
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which concludes the proof of (I.4.20) and of I1 < ∞. For I2 we use that |g(k)| is de-

creasing on (δ,∞), which implies that I2 ≤ CtE[‖ft(0, ·)1(−∞,−δ]‖qq,L]. By (I.3.6) the

latter is finite if Φ
1∨ q2
q,L (ft(0, ·)1(−∞,−δ]) ∈ L1(Ω). This follows easily from Assumption

(B2) (recall that q ≤ p) and (I.3.4).

With these preliminaries at hand, we can finally prove Theorem I.1.1 (iii). As

remarked at the beginning of Subsection I.4, it is sufficient to show convergence in

probability for a fixed t > 0 in order to obtain uniform convergence on compacts

in probability. Therefore, the theorem is an immediate consequence of the following

result and Lemma 4.3 in [12].

Lemma I.4.11. Under the conditions of Theorem I.1.1 (iii), there is a process (Zt)t≥0

that satisfies almost surely V (Z, p; k)nt = V (X, p; k)nt for all n ∈ N and t ≥ 0, has

almost surely k-times absolutely continuous sample paths and satisfies for Lebesgue

almost all t ≥ 0 that

∂kZt
(∂t)k

=

∫ t

−∞
g(k)(t− s)σs− dLs := Ft,

and F ∈ Lp([0, t0]) for any t0 > 0.

Proof. For ease of notation we only consider k = 1. The general case follows by similar

arguments. We let a ∈ (0, 1] and define the processes (F≤au )u∈R and (F>a
u )u∈R by

F≤au =

∫ u

−∞
g′(u− s)σs− dL≤as , and F>a

u =
∑

s∈(−∞,u)

g′(u− s)σs−∆Ls1{|∆Ls|>a},

where the process (L≤at )t∈R is the truncated Lévy process introduced in Section I.4.

We show that both processes F≤au and F>a
u are well-defined and that they both admit

a modification with sample paths in Lp([0, t]). Then, we define the process

Zt :=

∫ t

0

(F≤au + F>a

u ) du,

and show that it satisfies the properties given in the lemma.

We begin by analysing F≤au . It is well-defined, since, as a consequence of Lemma

I.4.10, ft0(u, s) = g′(u − s)σs−1[0,t0](u)1(−∞,u)(s) is integrable in s with respect to

L≤a for Lebesgue almost all u. Applying Lemmas I.3.1 and I.4.10 we obtain F≤a ∈
Lp([0, t]), almost surely, since

E
[ ∫ t

0

|F≤au |p du
]
≤ C

∫ t

0

E[‖ft(u, ·)‖pp,L≤a ] du <∞.

For the process F>a
u we make the decomposition

F>a

u = F>a,≤−δ
u + F>a,>−δ

u

=
∑

s∈(−∞,−δ]

g′(u− s)σs−∆Ls1{|∆Ls|>a} +
∑

s∈(−δ,u)

g′(u− s)σs−∆Ls1{|∆Ls|>a}.



54 Paper I. On limit theory for LSS processes

We argue first that F>a,≤−δ is well-defined and in Lp([0, t]) almost surely. Applying

Lemma I.4.4 we obtain that∑
s∈(−∞,−δ]

|g′(−s)σs−∆Ls|1{|∆Ls|>a} <∞

almost surely. Since |g′| is decreasing on [δ,∞), this implies that F>a,≤−δ is well-

defined and uniformly bounded in u. For F>a,>−δ
u we use that L has only finitely

many jumps of size > a on [−δ, t]. Therefore, F>a,>−δ is well-defined and we find a

positive random variable K <∞ such that∫ t

0

|F>a,>−δ
u |p du ≤ K

∫ t

0

∑
s∈(−δ,u)

∣∣g′(u− s)σs−∆Ls1{|∆Ls|>a}
∣∣p du

≤ K
∑

s∈(−δ,t)

∣∣σs−∆Ls1{|∆Ls|>a}
∣∣p ∫ t

0

|g′(u− s)|p du,

which is finite since |g′(s)| ≤ Csα−1 for s ∈ (0, δ) and (α−1)p > −1. All that remains

to show is that V (X, p; 1)nt = V (Z, p; 1)nt for all n ∈ N and all t > 0 with probability

1. For any t > 0 it holds with probability 1 that

Xt −X0 =

∫
R

(∫
R
ft(u, s) du

)
dLs =

∫
R

(∫
R
ft(u, s) dLs

)
du = Zt,

where we have applied Lemmas I.4.9 and I.4.10. Consequently, it holds that P[Xt =

Zt +X0 for all t ∈ Q+] = 1 which implies V (X, p; 1)nt = V (Z, p; 1)nt for all n ∈ N and

all t > 0 almost surely.
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Abstract: We present several limit theorems for a class of variation functionals

obtained by applying a continuous function f on the kth order differences of station-

ary increments Lévy driven moving average process. The limiting behavior of such

functionals depends not only on the function f at hand but also on the Blumenthal-

Getoor index β of the driving Lévy process and on the behavior of the kernel at 0,

which is specified by the power α. For the first order asymptotic theory, we show

that at least three different cases occur, depending on the interplay of α, β and k as

well as on certain properties of the function f . In connection with one of the three

cases we prove a second order limit theorem when the function f is bounded, with

two different limits; a central limit theorem and, when the Appell rank of f is greater

1, convergence in distribution to a (k − α)β-stable random variable.
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II.1 Introduction and main results

The last years have seen an increasing interest in the limit theory for various classes of

stochastic processes. Limit theorems in the high frequency setting are an important

tool for analysing the small scale behaviour of stochastic processes and have manifold

applications in statistical inference, such as parameter estimation or testing for jumps.

For Itô semimartingales the existing limit theory includes power and multipower vari-

ation [5] as well as related variation functionals [21, 20]. We refer to [2, 3, 4] for the

limit theory for multipower variation of fractional Brownian motion and a class of

related processes, and to [14, 15] for power variation of the Rosenblatt process. In

the recent publication [7], the authors consider power variations of stationary incre-

ments Lévy driven moving averages and derive the first order limit theory as well as

a partial second order limit theory. This article builds on their results and extends

the limit theory to include more general variation functionals obtained by applying a

continuous function to the kth order increments of the process.

We consider an infinitely divisible process with stationary increments (Xt)t≥0,

defined on a probability space (Ω,F ,P), given as

Xt =

∫ t

−∞

{
g(t− s)− g0(−s)

}
dLs, (II.1.1)

where L = (Lt)t∈R is a symmetric Lévy process on R with L0 = 0. That is, for all

u ∈ R, (Lt+u − Lu)t≥0 is a Lévy process indexed by R+ the distribution of which

is invariant under multiplication with −1. Furthermore, g and g0 are continuous

functions from R into R vanishing on (−∞, 0). The class of stationary increments Lévy

driven moving averages contains in particular the (symmetric) linear fractional stable

motions, which is the model (II.1.1) with g(s) = g0(s) = sα+ driven by a symmetric

stable Lévy process. These processes have been considered by many authors. Recent

research addresses various topics such as, among others, semimartingale property [8],

fine scale behavior [9, 17], simulation techniques [16] and statistical inference [1].

In this paper we consider for a continuous function f : R → R the variation

functional

V (f ; k)nt := an

[nt]∑
i=k

f(bn∆n
i,kX), (II.1.2)

where (an)n∈N, (bn)n∈N are suitable (nonrandom) normalising sequences, and [nt] de-

notes the integer part of nt. The kth order increments ∆n
i,kX of X, k ∈ N are defined

as

∆n
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−j)/n, i ≥ k.

For instance, we have that ∆n
i,1X = X i

n
−X i−1

n
and ∆n

i,2X = X i
n
− 2X i−1

n
+ X i−2

n
.

We recall that the Blumenthal–Getoor index of L is defined as

β := inf
{
r ≥ 0 :

∫ 1

−1

|x|r ν(dx) <∞
}
∈ [0, 2],
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where ν denotes the Lévy measure of L. It is well-known that
∑
s∈[0,1] |∆Ls|p is

finite when p > β, while it is infinite for p < β. Here ∆Ls = Ls − Ls− where

Ls− = limu↑s, u<s Lu. If L is stable with index of stability β ∈ (0, 2), the index of

stability and the Blumenthal-Getoor index coincide, and both will be denoted β. The

asymptotic theory is investigated under the following conditions on g, g0 and ν that

were introduced in [7].

Assumption (A): The function g : R→ R satisfies

g(t) ∼ c0tα as t ↓ 0 for some α > 0 and c0 6= 0,

where g(t) ∼ f(t) as t ↓ 0 means that limt↓0 g(t)/f(t) = 1. For some θ ∈ (0, 2],

lim supt→∞ ν(x : |x| ≥ t)tθ < ∞ and g − g0 is a bounded function in Lθ(R+). Fur-

thermore, g is k-times continuously differentiable on (0,∞) and there exists a δ > 0

such that |g(k)(t)| ≤ Ctα−k for all t ∈ (0, δ), and such that both |g′| and |g(k)| are in

Lθ((δ,∞)) and are decreasing on (δ,∞).

This assumption ensures in particular that the integral Xt is well-defined in the sense

of [24], see [7, Section 2.4]. When L is a β-stable Lévy process, we may and do always

choose θ = β. For Theorem II.1.1 (i) below, we need to strengthen Assumption (A)

slightly if θ = 1 and assume the following

Assumption (A-log): In addition to (A) suppose that∫ ∞
δ

|g(k)(s)|θ log(1/|g(k)(s)|) ds <∞.

In order to formulate our main results, we require some more notation. For p > 0 we

denote by Cp the space of r := [p]-times continuous differentiable functions f : R→ R
such that f (r) is locally p− r Hölder continuous if p 6∈ N. Let hk : R→ R be given by

hk(x) =

k∑
j=0

(−1)j
(
k

j

)
(x− j)α+, x ∈ R,

where y+ = max{y, 0} for all y ∈ R. Let F = (Ft)t∈R be the filtration generated by

the Lévy process and (Tm)m≥1 be a sequence of F-stopping times that exhausts the

jumps of (Lt)t≥0. That is, {Tm(ω) : m ≥ 1} ∩ [0,∞) = {t ≥ 0 : ∆Lt(ω) 6= 0} and

Tm(ω) 6= Tn(ω) for all m 6= n with Tm(ω) < ∞. Let (Um)m≥1 be independent and

uniform [0, 1]-distributed random variables, defined on an extension (Ω′,F ′,P′) of the

original probability space, which are independent of F . We recall that a sequence

(Zn)n∈N of random variables defined on (Ω,F) with values in a Polish space (E, E)

converges F-stably in law to Z, which is defined on the extended space (Ω′,F ′) if

for all bounded continuous g : E → R and for all bounded F-measurable random

variables Y it holds that E[g(Zn)Y ] → E′[g(Z)Y ], where E′ denotes the expectation

on the extended space. We denote F-stable convergence in law by Zn
L−s−→ Z, and

refer to [25, 18] for more details. By
u.c.p.−−−→ we denote uniform convergence on compact

sets in probability of stochastic processes. That is, (Znt )t≥0
u.c.p.−−−→ (Zt)t≥0 as n→∞

means that P(supt∈[0,N ] |Znt − Zt| > ε)→ 0 for all N ∈ N and all ε > 0. A definition

of the Skorokhod M1-topology, which was introduced in [27], will be given in Section

II.2. For a more detailed exposition we refer to [31].
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Theorem II.1.1. Suppose (A) is satisfied and assume that the Blumenthal–Getoor

index satisfies β < 2. We have the following three cases:

(i) Let k > α and suppose that (A-log) holds if θ = 1. Assume f(0) = 0 and that

f ∈ Cp for some p > β ∨ 1
k−α . With the normalising sequences an = 1 and

bn = nα we obtain the F-stable convergence of finite dimensional distributions

V (f ; k)nt
L−s−→ V (f ; k)t :=

∑
m:Tm∈[0,t]

∞∑
l=0

f
(
c0∆LTmhk(l + Um)

)
,

for all t > 0. Moreover the sequence of càdlàg processes
(
V (f ; k)nt

)
t≥0

converges

stably in law to
(
V (f ; k)t

)
t≥0

with respect to the Skorokhod M1-topology if f

satisfies additionally the following condition:

(FC) Each of the two functions x 7→ f(x)1{x≥0} and x 7→ f(x)1{x<0} is either

nonnegative or nonpositive.

(ii) Suppose that L is a symmetric β-stable Lévy process with scale parameter ρL >

0. Assume that H = α+ 1/β < k and E[|f(L1)|] <∞. Then, setting an = 1/n

and bn = nH , we obtain

V (f ; k)nt
u.c.p.−−−→ tE[f(S)],

where S is a symmetric β-stable random variable with scale parameter ρL‖hk‖Lβ(R).

(iii) Suppose that (1∨ β)(k− α) < 1 and assume that f(x) ≤ C(1∨ |x|q) for some q

with q(k−α) < 1, and some finite constant C. With the normalising sequences

an = 1/n and bn = nk it holds that

V (f ; k)nt
u.c.p.−−−→

∫ t

0

f(Fu) du

where (Fu)u∈R is a version with measurable sample paths of the process defined

by

Fu =

∫ u

−∞
g(k)(u− s) dLs a.s. for all u ∈ R (II.1.3)

which necessarily satisfies
∫ t

0
|f(Fu)|du <∞, almost surely.

The limiting random variable in (i) is indeed well-defined, as we show in Lemma

II.2.2 below. The three cases of the theorem are closely related to the three possible

limits for the realised power variation derived in [7, Theorem 1.1]. We remark that [7,

Theorem 1.1] shows only the convergence of the realised power variation at a fixed time

t > 0, the functional convergence was shown in [6]. Unlike for the power variation, the

conditions of Theorem II.1.1 (i) are not in conflict with the conditions of (ii) or (iii).

As a consequence, the functional V (f ; k)nt can converge to different limits for different

choices of the normalising sequences (an) and (bn). This phenomenon should not be

surprising, however, since it also occurs for other classes of stochastic processes. As an

example, consider a β-stable Lévy process L and the function f(x) = sin2(x). Then,
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for the functional V (f ; 1)nt with the normalising sequences an = bn = 1 we obtain the

almost sure convergence
[tn]∑
i=1

sin2(∆n
i,1L)

a.s.−→
∑

m:Tm∈[0,t]

sin2(∆LTm).

The right hand side is indeed finite since sin2 is bounded and satisfies sin2(x) ∼ x2

as x→ 0. However, for the choice of normalising sequences an = n−1 and bn = n1/β

we obtain by self-similarity of L

1

n

[tn]∑
i=1

sin2(n1/β∆n
i,1L)

d
=

1

n

[tn]∑
i=1

sin2(∆1
i,1L)

a.s.−→ E[sin2(L1)],

showing that the functional V (f ; k)nt may have different limits for different normalising

sequences, when applied to a Lévy process.

For Theorem II.1.1 (ii) we give a second order limit theorem when the function f

is bounded. To this end we introduce the notion of the Appell rank of f . Let

Φρ(x) = E[f(x+ ρS)]− E[f(ρS)],

where S is a symmetric β-stable random variable with scale parameter 1, and ρ > 0.

From boundedness of f it follows that Φρ is infinitely differentiable. The Appell rank

of f at ρ > 0 is then defined as

k∗ρ := min{r ∈ N : Φ(r)
ρ (0) 6= 0}.

The Appell rank has been introduced in [19] and is known to have major impact on

the second order asymptotic behaviour of V (f ; k)nt , the Appell rank of f plays an

important role, similar as in the limit theory for discrete time moving averages driven

by stable non-Gaussian noise. In Theorem II.1.2 (i) we consider only functions f with

k∗ρ > 1, which is for example satisfied when the function is even. Moreover, we restrict

ourselves to fixed t > 0, without loss of generality t = 1, and set V (f ; k)n := V (f ; k)nt .

Let us mention that in [23] and [28], where the authors derive similar limit theorems

in the low frequency setting, they show functional convergence towards a limiting

process. By multiplying the Lévy process with a constant we may and do assume

without loss of generality c0 = 1 where the constant c0 was introduced in Assumption

(A). Moreover, we strengthen our basic assumption as follows.

Assumption (A2): Suppose that in addition to Assumption (A) we have |g(k)(t)| ≤
Ctα−k for all t > 0. For the function ζ : [0,∞) → R defined as ζ(t) = g(t)t−α the

limit limt↓0 ζ
(j) exists in R for all j = 0, ..., k.

For Theorem II.1.1 (ii) we obtain the following second order limit theorem.

Theorem II.1.2. Suppose assumption (A2) is satisfied and that f is bounded. Let

L be a symmetric β-stable Lévy process with scale parameter ρL and set H = α+ 1
β .

(i) Assume that α ∈ (k − 2/β, k − 1/β), and suppose additionally that k∗ρ > 1 for

all ρ > 0. Then it holds that

n1− 1
(k−α)β

(
n−1

n∑
i=k

{
f
(
nH∆n

i,kX
)
− E

[
f
(
nH∆n

i,kX
)]}) L−→ S, (II.1.4)
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where S is a (k − α)β-stable random variable with location parameter 0, scale

parameter ρS and skewness parameter ηS, which are specified in (II.3.62).

(ii) Assume that α ∈ (0, k − 2/β). It holds that

√
n

(
n−1

n∑
i=k

{
f(nH∆n

i,kX)− E[f(nH∆n
i,kX)]

}) L−→ N (0, η2). (II.1.5)

where the variance is given as η2 := limm→∞ η2
m with ηm defined in (II.3.72).

We remark that the condition k∗ρ > 1 is stronger than the conditions for com-

parable results for discrete time moving averages, e.g. [28], where it is typically

sufficient to control the Appell rank at the scale parameter of the stable random vari-

able Xt −Xt−1. In Theorem II.4.6 we show that the condition k∗ρ > 1 for all ρ > 0

is satisfied if both the positive and negative part of f have Appell rank greater 1 at

ρ = 1.

Throughout all our proofs we denote by C a generic positive constant that does

not depend on n or ω, but may change from line to line. proof we denote all positive

constants that do not depend on n or ω by C, even though they may change from

line to line. For a random variable Y and q > 0 we denote ‖Y ‖q = E[|Y |q]1/q. We

abbreviate ‘symmetric β-stable’ by SβS and denote Y ∼ SβS(ρ) if Y is symmetric

β-stable distributed with scale parameter ρ, i.e. if its characteristic function is given

as

E[exp(iηY )] = e−|ρη|
β

, η ∈ R.

We use frequently the notation

gi,n(s) =

k∑
j=0

(−1)j
(
k

j

)
g((i− j)/n− s),

which leads to the expression

∆n
i,kX =

∫ i/n

−∞
gi,n(s) dLs

for the the kth order increments of X.

II.2 Proof of Theorem II.1.1

In this section we present the proof of Theorem (II.1.1). We begin by briefly recalling

the definition and some properties of the Skorokhod M1-topology, as it is not widely

used. It was originally introduced by Skorokhod [27] by defining a metric on the

completed graphs of càdlàg functions, where the completed graph of f is defined as

Γf = {(x, t) ∈ R× R+ : x = αf(t−) + (1− α)f(t), for some α ∈ [0, 1]}.

The M1-topology is weaker than the more commonly used J1-topology but still strong

enough to make many important functionals, such as sup and inf, continuous. It can
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be shown that the stable convergence in Theorem II.1.1 (i) does not hold with respect

to the J1-topology. Since M1 is metrisable, it is entirely defined by characterising

convergence of sequences, which we do in the following. A sequence fn of functions

in D(R+,R) converges to f ∈ D(R+,R) with respect to the Skorokhod M1-topology

if and only if fn(t)→ f(t) for all t in a dense subset of [0,∞), and for all t∞ ∈ [0,∞)

it holds that

lim
δ↓0

lim sup
n→∞

sup
0≤t≤t∞

w(fn, t, δ) = 0.

Here, the oscillation function w is defined as

w(f, t, δ) = sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧t∞

{|f(t2)− [f(t1), f(t3)]|},

where for b < a the interval [a, b] is defined to be [b, a], and |a−[b, c]| := infd∈[b,c] |a−d|.
For the functions gi,n we obtain the the following important estimates.

Lemma II.2.1. Suppose that assumption (A) is satisfied. It holds that

|gi,n(s)| ≤ C(i/n− s)α for s ∈ [(i− k − 1)/n, i/n],

|gi,n(s)| ≤ Cn−k((i− k)/n− s)α−k for s ∈ (i/n− δ, (i− k − 1)/n), and

|gi,n(s)| ≤ Cn−k
(
1[(i−k)/n−δ,i/n−δ](s) + g(k)((i− k)/n− s)1(−∞,(i−k)/n−δ)(s)

)
,

for s ∈ (−∞, i/n− δ].

Proof. The first inequality follows directly from (A). The second inequality follows

from Taylor expansion of order k and the condition |g(k)(t)| ≤ Ctα−k for t ∈ (0, δ).

The third inequality follows again through Taylor expansion and the fact that the

function g(k) is decreasing on (δ,∞).

Proof of Theorem II.1.1 (i)

The proof is divided into three parts. First, we assume that L is a compound Poisson

process and show the stable convergence for fixed t > 0. Thereafter we argue that the

convergence holds functional with respect to the M1-topology, when f satisfies condi-

tion (FC). Finally, the results are extended to general Lévy processes by truncation.

For this step, an isometry for Lévy integrals that is due to [24] plays a key role.

Since Cq ⊂ Cp for p < q we may and do assume that p 6∈ N. Note that f ∈ Cp
implies that for any N > 0 there is a constant CN such that

|f (j)(x)| ≤ CN |x|p−j , for all x ∈ [−N,N ], and j = 0, . . . r. (II.2.6)

By the assumption p > 1
k−α this implies the following estimate to be used in the proof

below. For all N > 0 there is a constant CN such that

|f (j)(x)| ≤ CN |x|γj , for all x ∈ [−N,N ], and j = 0, . . . r, (II.2.7)

where γj = p−j
p(k−α) . The following Lemma ensures in particular that the limit in

Theorem II.1.1 (i) exists.
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Lemma II.2.2. Let t > 0 be fixed. Under the conditions of Theorem II.1.1 (i) there

is a finite random variable K > 0 such that

∑
m:Tm∈[0,t]

∞∑
l=0

∣∣f(c0∆LTmhk(l + Um)
)∣∣ ≤ K, and

∑
m:Tm∈[0,t]

n−1∑
l=0

∣∣f(∆LTmnαgim+l,n(Tm)
)∣∣ ≤ K, for all n,

where im denotes the random index such that Tm ∈
(
im−1
n , imn

]
.

Proof. Throughout the proof, K denotes a positive random variable that may change

from line to line. For the first inequality note that |hk(l+Um)| ≤ C(l− k)α−k for all

l > k and |hk(l + Um)| ≤ C for l ∈ {0, ..., k}. This implies in particular

|c0∆LTm(ω)hk(l + Um)| <

{
C(l − k)α−k sups∈[0,t]{|∆Ls|}, for l > k

C sups∈[0,t]{|∆Ls|}, for l ∈ {0, ..., k}.

Therefore, we find by (II.2.6) a random variable K such that∣∣f(c0∆LTmhk(l + Um)
)∣∣ ≤ K∣∣c0∆LTmhk(l + Um)

∣∣p
for all l ≥ 0 and all m. Consequently, the first sum in the lemma is dominated by

K

( ∑
m:Tm∈[0,t]

|∆LTm |p +
∑

m:Tm∈[0,t]

|∆LTm |p
∞∑

l=k+1

(l − k)(α−k)p

)
< K,

where we used that (α−k)p < −1, and that
∑
|∆LTm |p <∞ since p > β. The second

inequality follows by the same arguments since Lemma II.2.1 implies the existence of

a constant C > 0 such that for all n ∈ N

nαgim+l,n(Tm) ≤ C for l ∈ {0, ..., k}, and

nαgim+l,n(Tm) ≤ C(l − k)α−k, for l ∈ {k + 1, ..., n− 1}.

Compound Poisson process as driving process

In this subsection, we show the convergence of V (f ; k)nt∞ for some fixed t∞ > 0 under

the assumption that L is a compound Poisson process. The extension to functional

convergence when condition (FC) is satisfied follows in the next subsection, the ex-

tension to general L thereafter.

Let 0 ≤ T1 < T2 < ... denote the jump times of (Lt)t≥0. For ε > 0 we define

Ωε =
{
ω ∈ Ω : for all m with Tm(ω) ∈ [0, t∞] we have |Tm(ω)− Tm−1(ω)| > ε

and ∆Ls(ω) = 0 for all s ∈ [−ε, 0] and |∆Ls| ≤ ε−1 for all s ∈ [0, t∞]
}
.



68 Paper II. On limit theory for functionals of LDMAs

We note that Ωε ↑ Ω, as ε ↓ 0. Letting

Mi,n,ε :=

∫ i/n

i/n−ε
gi,n(s) dLs, and Ri,n,ε :=

∫ i/n−ε

∞
gi,n(s) dLs,

we have the decomposition ∆n
i,kX = Mi,n,ε + Ri,n,ε. It turns out that Mi,n,ε is the

asymptotically dominating term, whereas Ri,n,ε is negligible as n → ∞. We show

that, on Ωε,

[nt∞]∑
i=k

f(nαMi,n,ε)
L−s−→ Zt∞ , where Zt∞ :=

∑
m:Tm∈[0,t∞]

∞∑
l=0

f(c0∆LTmhk(l + Um)).

(II.2.8)

Here, (Um)m≥1 are independent identically U([0, 1])-distributed random variables, de-

fined on an extension (Ω′,F ′,P′) of the original probability space, that are indepen-

dent of F . For this step, the following expression for the left hand side is instrumental.

On Ωε it holds that

[nt]∑
i=k

f(nαMi,n,ε) = V n,εt , (II.2.9)

where

V n,εt :=
∑

m:Tm∈(0,[nt]/n]

vmt∑
l=0

f(nα∆LTmgim+l,n(Tm)). (II.2.10)

Here, im denotes the random index such that Tm ∈ ((im − 1)/n, im/n], and vmt is

defined as

vmt = vmt (ε, n) :=

{
[εn] ∧ ([nt]− im) if Tm − ([εn] + im)/n > −ε,
[εn]− 1 ∧ ([nt]− im) if Tm − ([εn] + im)/n ≤ −ε.

(II.2.11)

Additionally, we set vmt =∞ if Tm > [nt]/n. The following Lemma proves (II.2.8) in

a slightly more general fashion, since the proof of functional convergence in the next

subsection requires convergence of finite dimensional distributions.

Lemma II.2.3. For r ≥ 1 and 0 ≤ t1 < · · · < tr ≤ t∞ we obtain on Ωε the F-stable

convergence

(V n,εt1 , . . . , V n,εtr )
L−s−→ (Zt1 , . . . , Ztr ), as n→∞.

Proof. By arguing as in [7, Section 5.1], we deduce for any d ≥ 1 the F-stable con-

vergence

{nαgim+l,n(Tm)}l,m≤d
L−s−→ {c0hk(l + Um)}l,m≤d

as n→∞. Defining

V n,dt :=
∑

m≤d:Tm∈(0,[nt]/n]

d∑
l=0

f(nα∆LTmgim+l,n(Tm)) and

Zdt :=
∑

m≤d:Tm∈(0,t]

d∑
l=0

f(c0∆LTmhk(l + Um)),
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we obtain by the continuous mapping theorem for stable convergence

(V n,dt1 , . . . , V n,dtr )
L−s−→ (Zdt1 , . . . , Z

d
tr ), as n→∞, (II.2.12)

for all d ≥ 1. Therefore, by a standard approximation argument (cf. [11, Thm 3.2]),

it is sufficient to show that

lim sup
n→∞

{
max

t∈{t1,...,tr}
|V n,εt − V n,dt |

}
a.s.−→ 0, as d→∞, and (II.2.13)

sup
t∈[0,t∞]

|Zdt − Zt|
a.s.−→ 0, as d→∞. (II.2.14)

For sufficiently large n we have

|V n,dt − V n,εt | ≤
∑

m≤d:Tm∈(0,[nt]/n]

d∨vmt∑
l=d∧vmt

|f(∆LTmn
αgim+l,n(Tm))|

+
∑

m>d:Tm∈(0,[nt]/n]

vmt∑
l=0

|f(∆LTmn
αgim+l,n(Tm))|

≤
∑

m:Tm∈(0,t∞]

n−1∑
l=d∧vmt

|f(∆LTmn
αgim+l,n(Tm))|

+
∑

m>d:Tm∈(0,[nt]/n]

n−1∑
l=0

|f(∆LTmn
αgim+l,n(Tm))|,

for all t ∈ [0, t∞]. Therefore, (II.2.13) follows from Lemma II.2.2 by an application of

the dominated convergence theorem since the random index vmt = vmt (n, ω) satisfies

lim infn→∞ vmt (n, ω) =∞, almost surely. Lemma II.2.2 also implies (II.2.14), since

sup
t∈[0,t∞]

|Zdt − Zt| ≤
∑

m≤d:Tm∈(0,t∞]

∞∑
l=d+1

|f(c0∆LTmhk(l + Um))|

+
∑

m>d:Tm∈(0,t∞]

∞∑
l=0

|f(c0∆LTmhk(l + Um))|.

The Lemma now follows from (II.2.12), (II.2.13) and (II.2.14).

Recalling the decomposition (II.2.8) and applying the triangle inequality, the proof

can be completed by showing that

Jn :=

[nt∞]∑
i=k

|f(nα∆n
i,kX)− f(nαMi,n,ε)|

a.s.−→ 0, as n→∞. (II.2.15)

We first argue that the random variables {nαMi,n,ε, n
α∆n

i,kX}n∈N,i∈{k,...,[nt∞]} are

on Ωε uniformly bounded by a constant, which will allow us to apply the estimate

(II.2.6). The random variables Mi,n,ε satisfy by construction either |nαMi,n,ε| = 0

or |nαMi,n,ε| = |nαgi,n(Tm)∆LTm | for some m, where we recall that on Ωε it holds
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that Tm − Tm−1 > ε. Consequently, they are uniformly bounded by Lemma II.2.1,

where we used that k > α and that the jumps of L are bounded on Ωε. The uni-

form boundedness of nα∆n
i,kX = nα(Mi,n,ε +Ri,n,ε) follows by [7, (4.8),(4.12)] which

implies that for any η > 0

sup
n∈N, i∈{k,...,[nt∞]}

{
nk−η|Ri,n,ε|

}
<∞, almost surely. (II.2.16)

In order to show (II.2.15) we apply Taylor expansion for f at nαMi,n,ε, and bound

the terms in the Taylor expansion using (II.2.6) and the following result.

Lemma II.2.4. Let ψ : R → R be continuous and such that |ψ(x)| ≤ C|x|γ for all

x ∈ [−1, 1] for some γ ∈ (0, 1/(k − α)). It holds on Ωε that

lim sup
n→∞

{
n(k−α)γ−1

[nt∞]∑
i=k

|ψ(nαMi,n,ε)|
}
≤ C, a.s.

Proof. We have on Ωε
[nt∞]∑
i=k

|ψ(nαMi,n,ε)| = Wn,ε
t∞ ,

where

Wn,ε
t∞ :=

∑
m:Tm∈(0,[nt∞]/n]

vmt∞∑
l=0

|ψ(nα∆LTmgim+l,n(Tm))|,

and vmt∞ is the random index defined in (II.2.11). By Lemma II.2.1 the random

variables nαgim+l,n(Tm) are bounded for l = 0, ..., k. For l ∈ {k+1, ..., n−1}, Lemma

II.2.1 implies that nαgim+l,n(Tm) ≤ C(l−k)α−k. Since the random index vmt∞ satisfies

vmt∞ < n for all m, we obtain on Ωε

[nt∞]∑
i=k

|ψ(nαMi,n,ε)| ≤ C
∑

m:Tm∈(0,t∞]

( k∑
l=0

|nαgim+l,n(Tm)|γ +

n∑
l=k+1

|(l − k)α−k|γ
)
.

It follows by comparison with the integral
∫ n
k+1

(s − k)(α−k)γ ds that the right hand

side multiplied with n(k−α)γ−1 is convergent, where we used that (α − k)γ ∈ (−1, 0)

and that the number of jumps of L(ω) in [0, t∞] is uniformly bounded for ω ∈ Ωε.

Considering the sum Jn in (II.2.15), Taylor expansion up to order r = [p] shows

that

Jn ≤
[nt∞]∑
i=k

∣∣nαRi,n,εf ′(nαMi,n,ε)
∣∣+ · · ·+ 1

r!

[nt∞]∑
i=k

∣∣(nαRi,n,ε)rf (r)(nαMi,n,ε)
∣∣+ TRr

:= T1 + · · ·+ Tr + TRr, (II.2.17)

where TRr denotes the Taylor rest term. Recalling the estimate (II.2.7), we can now

for j = 0, . . . , [p] estimate the jth Taylor monomial Tj by applying Lemma II.2.4 on
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ψ = f (j), where we remark that γj = p−j
p(k−α) ∈ (0, 1/(k − α)). Using (II.2.16) and

recalling that p > k − α, we obtain that for sufficiently small η > 0

1

j!

[nt∞]∑
i=k

∣∣(nαRi,n,ε)jf (j)(nαMi,n,ε)
∣∣ ≤ Cn−j/p−η [nt∞]∑

i=k

|f (j)(nαMi,n,ε)
∣∣

≤ Cn−η, (II.2.18)

where the second inequality follows from Lemma II.2.4 since (k − α)γj − 1 = −j/p.
For the Taylor rest term TRr we have by the mean value theorem the expression

TRr =
1

r!

[nt∞]∑
i=k

∣∣(nαRi,n,ε)r(f (r)(ξi,n)− f (r)(nαMi,n,ε)
)∣∣,

with ξi,n ∈ (nα|Mi,n,ε|, nα|Xi,n,ε|) where we set (a, b) := (b, a) for a > b. Since

nα|Mi,n,ε| and nα|Xi,n,ε| are bounded and f (r) is locally p− r-Hölder continuous, it

follows that

TRr ≤ Cn sup
n∈N, i∈{k,...,[nt∞]}

|nαRi,n,ε|p.

From (II.2.16) it follows that TRr → 0 as n→∞, where we recall that (α−k)p < −1.

Together with (II.2.17) and (II.2.18) this implies Jn
a.s.−→ 0, and it follows that

sup
t∈[0,t∞]

{∣∣∣∣V (f ; k)nt −
[tn]∑
i=k

f(nαMi,n,ε)

∣∣∣∣} a.s.−→ 0

on Ωε. Now, the theorem follows from Lemma II.2.3 by letting ε→ 0.

Functional convergence

In this subsection we show that if f satisfies (FC) and under the assumption that L

is a compound Poisson process, the convergence in Theorem II.1.1 holds functional

with respect to the Skorokhod M1-topology. To this end, we denote by
LM1

−s−−−−−→ the

F-stable convergence of càdlàg processes, regarded as D([0, t∞];R)-valued random

variables, where t∞ is some fixed positive time horizon and D([0, t∞];R) is equipped

with the Skorokhod M1-topology. We first replace (FC) by the following stronger

auxiliary assumption.

(FC’) It holds that f is either nonnegative or nonpositive.

This assumption puts us into the comfortable situation that our limiting process

is monotonic. Recall the definition of the processes V n,ε and Z introduced in (II.2.8)

and (II.2.10), respectively. In Lemma II.2.3 the stable convergence of the finite dimen-

sional distributions of V n,ε to Z was shown. By Prokhorov’s theorem the functional

convergence V n,ε
LM1

−s−−−−−→ Z on Ωε follows thus from the following Lemma.

Lemma II.2.5. The sequence of D([0, t∞])-valued random variables (V n,ε1{Ωε})n≥1

is tight if D([0, t∞]) is equipped with the Skorokhod M1-topology.
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Proof. It is sufficient to show that the conditions of [31, Theorem 12.12.3] are satisfied.

Condition (i) is satisfied, since the family of real valued random variables (V n,εt∞ )n≥1

is tight by Lemma II.2.3. Condition (ii) is satisfied, since the oscillating function ws
introduced in [31, chapter 12, (5.1)] satisfies ws(V

n,ε, θ) = 0 for all θ > 0 and all n,

since V n,ε is monotonic by assumption (FC’).

Recalling the identity (II.2.9) and the asymptotic equivalence of
∑[tn]
i=k f(nαMi,n,ε)

and V (f ; k)n shown in (II.2.15) and thereafter, the functional convergence in Theorem

II.1.1 follows.

Now, for general f satisfying condition (FC) we decompose f = f+ + f− with

f+(x) = f(x)1{x>0} and f−(x) = f(x)1{x<0}. Both functions f+ and f− satisfy

(FC’), and the functional convergence of V (f+; k)n and V (f−; k)n follows, with the

corresponding limits denoted by Z+ and Z−. Note that Z+ jumps exactly at those

times, where the Lévy process L jumps up, and Z− at those, where it jumps down. In

particular, Z+ and Z− do not jump at the same time, which implies that summation

is continuous at (Z+, Z−) with respect to the M1-topology (cf. [31, Thm. 12.7.3]).

Thus, an application of the continuous mapping theorem yields the convergence of

V (f ; k)n = V (f+; k)n + V (f−; k)n towards Z = Z+ + Z−. Let us stress that indeed

the sole reason why the extra condition (FC) is required for functional convergence

is that summation is not continuous on the Skorokhod space, and consequently the

convergence of V (f+; k)n and V (f−; k)n does not generally imply the convergence of

V (f ; k)n.

Extension to infinite activity Lévy processes

In this section we extend the results of Theorem II.1.1 (i) to moving averages driven

by a general Lévy process L, by approximating L by a sequence of compound Poisson

processes (L̂(j))j≥1. To this end we introduce the following notation. Let N be

the jump measure of L, that is N(A) := #{t : (t,∆Lt) ∈ A} for measurable A ⊂
R× (R \ {0}), and define for j ∈ N

Xt(j) :=

∫
(−∞,t]×[− 1

j ,
1
j ]

{(g(t− s)− g0(−s))x}N(ds, dx).

Denote X̂t(j) := Xt−Xt(j). The results of the last section show that Theorem II.1.1

holds for X̂(j), since it is a moving average driven by a compound Poisson process.

By letting j →∞ we will show that the theorem remains valid for X by deriving the

following approximation result

Lemma II.2.6. Suppose that f satisfies the conditions of Theorem II.1.1 (i). It holds

for all ε > 0 that

lim
j→∞

lim sup
n→∞

P
(

sup
t∈[0,t∞]

|V (X, f ; k)nt − V (X̂(j), f ; k)nt | > ε

)
= 0. (II.2.19)

Proof. In the following we call a family of random variables {Yn,j}n,j∈N asymptotically

tight if for any ε > 0 there is an N > 0 such that

lim sup
n→∞

P(|Yn,j | > N) < ε, for all j ∈ N.
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We deduce first for p > β ∨ 1
k−α the asymptotic tightness of the families

{ [nt∞]∑
i=k

|nα∆n
i,kX|p,

[nt∞]∑
i=k

|nα∆n
i,kX̂(j)|p

}
n,j∈N

, and (II.2.20){
max

i∈k,...,[nt∞]
(|nα∆n

i,kX|), max
i∈k,...,[nt∞]

(|nα∆n
i,kX̂(j)|)

}
n,j∈N

.

The authors of [7] show the stable convergences in law

[nt∞]∑
i=k

|nα∆n
i,kX̂(j)|p L−s−→ Zj ,

[nt∞]∑
i=k

|nα∆n
i,kX|p

L−s−→ Z,

where Zj and Z are defined as in [7, (4.34)]. The asymptotic tightness of the first fam-

ily follows thus from the tightness of the family {Zj , Z}j∈N, see [7, (4.35)]. The second

family follows from the first by the estimate maxi=1,...,n(|ai|) ≤
(∑n

i=1 |ai|p
)1/p

for

a1, ..., an ∈ R. The asymptotic tightness of the second family allows us for the proof

of (II.2.19) to assume that |∆n
i,kX̂(j)| and |∆n

i,kX| are uniformly bounded by some

N > 0. Consider first the case p < 1. By local Hölder-continuity of f of order p we

have that

sup
t∈[0,t∞]

|V (f,X; k)nt − V (f, X̂(j); k)nt | ≤ CN
[nt∞]∑
i=k

|nα∆n
i,kX(j)|p,

and (II.2.19) follows from [7, Lemma 4.2], where we used that p > β ∨ 1
(k−α) . Let

now p > 1. We can find ξi,n,j ∈ [nα∆n
i,kX̂(j), nα∆n

i,kX] such that |f(nα∆n
i,kX̂(j))−

f(nα∆n
i,kX)| = |nα∆n

i,kX(j)f ′(nαξi,n,j)| and obtain by (II.2.6)

|f(nα∆n
i,kX̂(j))− f(nα∆n

i,kX)| ≤ C|nα∆n
i,kX(j)||ξi,n,j |p

≤ C|nα∆n
i,kX(j)||ξi,n,j |γ

≤ C|nα∆n
i,kX(j)|γ+1 + C|nα∆n

i,kX(j)||nα∆n
i,kX|γ ,

with γ = p−1
p

(
β∨ 1

k−α
)

satisfying γ < p−1 by assumption. Thus, in order to complete

the proof of (II.2.19), it is sufficient to show that for all ε > 0 we obtain

lim
j→∞

lim sup
n→∞

P
( [nt∞]∑

i=k

|nα∆n
i,kX(j)|γ+1 > ε

)
= 0, and (II.2.21)

lim
j→∞

lim sup
n→∞

P
( [nt∞]∑

i=k

|nα∆n
i,kX(j)||nα∆n

i,kX|γ > ε

)
= 0. (II.2.22)

By definition it holds that γ + 1 > β ∨ 1
k−α , and (II.2.21) follows from [7, Lemma

4.2]. For (II.2.22) we choose Hölder conjugates θ1 and θ2 = θ1/(θ1 − 1) with θ1 ∈(
β ∨ 1

k−α , p
)
, where we used that p > 1. Hölders inequality and the estimate

P(|XY | > ε) ≤ P(|X| > ε/N) + P (|Y | > N) for any N > 0
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lead to the decomposition

P
( [nt∞]∑

i=k

|nα∆n
i,kX(j)||nα∆n

i,kX|γ > ε

)

≤ P
( [nt∞]∑

i=k

|nα∆n
i,kX(j)|θ1 >

(
ε

N

)θ1)
+ P

( [nt∞]∑
i=k

|nα∆n
i,kX̂(j)|γθ2 > Nθ2

)
:= J1

n,j,N + J2
n,j,N .

Since θ1 > β ∨ 1
k−α , yet another application of [7, Lemma 4.2] yields that

lim
j→∞

lim sup
n→∞

J1
n,j,N = 0 for all N > 0.

Moreover, θ1 < p implies γθ2 > β ∨ 1
k−α . Therefore, it follows from the asymptotic

tightness of the family (II.2.20) that

lim sup
j→∞

lim sup
n→∞

J2
n,j,N → 0, as N →∞.

This shows (II.2.22) which completes the proof of the Lemma.

Finally, the proof of Theorem II.1.1 (i) can be completed by letting j →∞. More

precisely, we introduce for j ∈ N the stopping times

Tm,j :=

{
Tm if |∆LTm | > 1/j,

∞ else.

The results of the last two subsections show that

V (X̂(j), f ; k)nt
L−s−→ Zjt :=

∑
m:Tm,j∈[0,t]

∞∑
l=0

f(c0∆LTm,jhk(l − Um)), for all t > 0,

and that the convergence holds functional with respect to theM1-topology if f satisfies

(FC). From Lemma II.2.2 and an application of the dominated convergence theorem

it follows that

sup
t∈[0,t∞]

|Zt − Zjt |
a.s.−→ 0, as j →∞.

Theorem II.1.1 (i) follows therefore from Lemma II.2.6 and a standard approximation

argument (cf. [11, Thm 3.2]).

Proof of Theorem II.1.1 (ii)

Let us first remark that it is sufficient to show convergence in probability for fixed t > 0

in order to obtain u.c.p.-convergence by the following standard argument. Making the

decomposition f = f+−f− with f+(x) = f(x)1{f(x)>0} and f−(x) = −f(x)1{f(x)<0},

the statistics V (f+; k)nt and V (f−; k)nt are increasing in t and converge to the (non-

random) limiting processes (tE[f+(S)])t≥0 and (tE[f−(S)])t≥0, respectively. Since the
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limiting processes are continuous in t, u.c.p.-convergence follows from convergence in

probability for all t > 0, see for example [21, Equation (2.2.16)].

The proof relies on replacing the increments of X by the increments of its tangent

process, which is the linear fractional stable motion Y , defined as

Yt =

∫ t

−∞

{
(t− s)α − (−s)α+

}
dLs,

where x+ := max{x, 0}. It is well known that the process Y is self-similar of index

H = α + 1/β, i.e. (Yat)t≥0
d
= (aHYt) for any a > 0, see [29]. Moreover, the discrete

time stationary sequence (Yr)r∈Z is mixing and hence ergodic, see for example [13].

Denoting by V (f ;Y )nt the variation functional (II.1.2) with an = n−1 and bn = nH

applied on the process Y , it follows from Birkhoff’s ergodic theorem, see [22, Theorem

10.6], that

V (f ;Y )nt =
1

n

[nt]∑
i=k

f(nH∆n
i,kY )

d
=

1

n

[nt]∑
i=k

f(∆1
i,kY )→ tE[f(∆1

k,kY )], almost surely.

Here we used that the expectation on the right hand side is well-defined by assumption.

By (II.3.45), the random variable ∆1
k,kY is SβS distributed with scale parameter

ρL‖hk‖Lβ(R), and the right hand side is the limiting expression in the theorem. It is

therefore sufficient to argue that

E
[
|V (X; f)nt − V (Y ; f)nt |]→ 0, as n→∞. (II.2.23)

For N > 0 and ε > 0 we denote by wf (ε,N) the modulus of continuity

wf (ε,N) := sup{|f(x)− f(y)| : x, y ∈ [−N,N ], |x− y| < ε}.

We obtain the estimate

E
[
|V (X; f)nt − V (Y ; f)nt |] ≤

1

n

[nt]∑
i=k

E
[
|f(nH∆n

i,kX)− f(nH∆n
i,kY )|

]
≤ 1

n

[nt]∑
i=k

(
wf (ε,N)P

(
nH |∆n

i,kX −∆n
i,kY | < ε, |nH∆n

i,kX| ∨ |nH∆n
i,kY | ≤ N

)
+ CNP

(
nH |∆n

i,kX −∆n
i,kY | > ε, |nH∆n

i,kX| ∨ |nH∆n
i,kY | ≤ N

)
+ E

[
1{|nH∆n

i,kX|>N}|f(nH∆n
i,kX)|

]
+ E

[
1{|nH∆n

i,kY |>N}|f(nH∆n
i,kY )|

])

=:
1

n

[nt]∑
i=k

(Jn,1i,ε,N + Jn,2i,ε,N + Jn,3i,N ), (II.2.24)

where CN = 2 sup|x|≤N |f(x)|. For the first summand we have that for any N > 0

1

n

[nt]∑
i=k

Jn,1i,ε,N ≤ wf (ε,N)→ 0 as ε→ 0.
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For the second summand an application of Markov’s inequality with some p < β

shows that for all ε,N > 0

1

n

[nt]∑
i=k

Jn,2i,ε,N ≤
CNε

−p

n

[nt]∑
i=1

E
[
|nH(∆n

i,kX −∆n
i,kY )|p

]
→ 0 as n→∞,

where the convergence follows from [7, (4.45)]. Hence, by stationarity of (nH∆n
i,kX)i≥k,

it is sufficient to argue that

lim
N→∞

lim sup
n→∞

E
[
1{|nH∆n

k,kX|>N}|f(nH∆n
k,kX)|

]
= 0, (II.2.25)

which we do in the following. From [7, (4.45)] it follows that nH∆n
k,kX

L−→ ∆1
k,kY ,

implying that ρn → ρ where ρn and ρ denote the scale parameters of the SβS random

variables nH∆n
k,kX and ∆1

k,kY , respectively. In particular there are constants c, C ∈
(0,∞) such that c < ρn < C for all n. Recalling that the density ψ of a standard SβS

random variable S satisfies ψ(y) ≤ C(1 + |y|)−1−β , it follows that

E
[
1{|nH∆n

k,kX|>N}|f(nH∆n
k,kX)|

]
= E

[
1{|ρnS|>N}|f(ρnS)|

]
≤ C

∫
R

(1 + |y|)−1−β1{|ρny|>N}|f(ρny)| dy

= Cρ−1
n

∫
R

(1 + |ρ−1
n y|)−1−β1{|y|>N}|f(y)| dy

≤ Cρβn
∫
R

(c+ |y|)−1−β1{|y|>N}|f(y)| dy

≤ C
∫
R

(c+ |y|)−1−β1{|y|>N}|f(y)| dy

Now (II.2.25) follows from E[|f(S)|] < ∞, and the decomposition (II.2.24) implies

(II.2.23) by letting N → ∞ and ε → 0. This completes the proof of Theorem II.1.1

(ii).

Proof of Theorem II.1.1 (iii)

By the argument given at the beginning of the last subsection, u.c.p.-convergence

follows if we show convergence in probability of V (f ; k)nt for arbitrary t > 0.

Let us first remark that the growth condition |f(x)| ≤ C(1∨ |x|q) for some q with

q(k − α) < 1 is weaker for larger q and can therefore be thought of as

|f(x)| ≤ C|x|
1

k−α−ε for |x| → ∞,

if k > α, whereas for k ≤ α we require only that f is of polynomial growth. Since

by assumption of the theorem we have k − α < 1, we may and do always assume

that q > 1. We recall that a function ξ : R→ R is absolutely continuous if there is a

function ξ′ such that

ξ(t)− ξ(s) =

∫ t

s

ξ′(u) du, for all s < t.



II.2. Proof of Theorem II.1.1 77

This implies that ξ is differentiable almost everywhere and the derivative coincides

with ξ′ almost everywhere. If ξ′ can again be chosen absolutely continuous with

derivative ξ(2) we say that ξ is two times absolutely continuous, and similarly we

define k-times absolute continuity.

By an application of [12, Theorem 5.1] it has been shown in [7, Lemma 4.3] that

under the condition (k − α)(1 ∨ β) > 1 the process X admits a k-times absolutely

continuous version and the k-th derivative is a version of the process (Fu)u∈R defined in

(II.1.3). Moreover, [7, Lemma 4.3] shows that for every q ≥ 1, q 6= θ with q(k−α) < 1

the process F admits a version with sample paths in Lq([0, t]), almost surely, which

implies
∫ t

0
|f(Fu)|du < ∞. The intuition behind the convergence in Theorem II.1.1

(iii) is that by the mean value theorem we have nk∆n
i,kX ≈ F i−1

n
which implies

V (f ; k)nt =
1

n

n∑
i=k

f(nk∆n
i,kX) ≈ 1

n

n∑
i=k

f(F i−1
n

)→
∫ t

0

f(Fu)du, as n→∞,

by convergence of Riemann sums to the integral. The remainder of this section

is dedicated to formalising this statement. This requires some work, mainly due

to the fact that the kth derivative process F is not necessarily continuous, which

compromises the intuition nk∆n
i,kX ≈ F i−1

n
. The proof of Theorem II.1.1 (iii) is

complete by the following result, where we denote by W k,q the space of k-times

absolutely continuous functions ξ on [0, t] satisfying ξ(k) ∈ Lq([0, t]).

Lemma II.2.7. Let ξ ∈ W k,q, and suppose that |f(x)| ≤ C(1 ∨ |x|q) for some q ≥ 1

and some C. It holds that

V (ξ; f, k)nt := n−1

[nt]∑
i=k

f(nk∆n
i,kξ)→

∫ t

0

f(ξ(k)
s ) ds,

as n→∞.

Proof. Assume first ξ ∈ Ck+1([0, t]). Taylor approximation shows that

nk∆n
i,kξ = ξ

(k)
i−k
n

+ ai,n,

where |ai,n| ≤ C/n for all n ≥ 1, k ≤ i ≤ n. We can therefore assume w.l.o.g.

that f has compact support and admits a concave modulus of continuity ωf , i.e.

a continuous increasing function ωf : [0,∞) → [0,∞) with ωf (0) = 0 such that

|f(x)− f(y)| ≤ ωf (|x− y|) for all x, y. We have by Jensen’s inequality that

lim sup
n→∞

∣∣∣∣V (ξ, f, k)nt −
1

n

[tn]∑
i=k

f
(
ξ

(k)
i−k
n

)∣∣∣∣ ≤ lim sup
n→∞

{
[tn]

n
ωf

(
1

[tn]

[tn]∑
i=k

|ai,n|
)}

= 0.

The result follows by the convergence of Riemann sums

1

n

[tn]∑
i=k

f
(
ξ

(k)
i−k
n

)
→
∫ t

0

f(ξ(k)
s ) ds.
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In the following we extend the result to general ξ ∈W k,q by approximating ξ with

a sequence (ξm)m≥1 of functions in Ck+1. To this end, choose ξm such that∫ t

0

|ξ(k)
s − ξm,(k)

s |q ds ≤ 1/m, for all m.

Indeed, the existence of such a sequence follows since continuous functions are dense

in Lq([0, t]). Note that II.2 implies that
∫ t

0
|ξ(k)
s − ξ

m,(k)
s | ds ≤ C/m1/q, since we

assumed q ≥ 1. The proof of the lemma will now be completed by showing that for

a sequence (ξm)m≥1 satisfying II.2 it holds that

lim sup
m→∞

∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )| ds = 0, (II.2.26)

and that

lim sup
m→∞

sup
n∈N
|V (ξ; f, k)nt − V (ξm; f, k)nt | = 0. (II.2.27)

Proof of (II.2.26):

Since ξm,(k) converges in Lq([0, t]), the family (|ξm,(k)|q)m≥1 and consequently also

the family {f(ξm,(k))m≥1} are uniformly integrable. Therefore, given ε > 0, there is

a N such that ∫ t

0

|ξm,(k)
s |q1{|ξm,(k)

s |>N} ds < ε for all m, and∫ t

0

|ξ(k)
s |q1{|ξ(k)

s |>N}
ds < ε. (II.2.28)

Choosing a continuous function f̃N with compact support such that f̃N = f on

[−N,N ], and denoting by ωN a concave modulus of continuity of f̃N , we have by

Jensen’s inequality

lim sup
m→∞

{∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )| ds
}

≤ lim sup
m→∞

{
tωN

(
t−1

∫ t

0

|ξ(k)
s − ξm,(k)

s |1{|ξ(k)
s |∨|ξm,(k)

s |≤N} ds

)
+

∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )|1{|ξ(k)
s |∨|ξm,(k)

s |>N} ds

}
= lim sup

m→∞

{∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )|1{|ξ(k)
s |∨|ξm,(k)

s |>N} ds

}
→ 0, as n→∞.

Hence, (II.2.26) follows by letting ε→ 0 from the estimate

lim sup
m→∞

∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )|1{|ξ(k)
s |∨|ξm,(k)

s |>N} ds < ε(4 + 2 sup
|x|≤1

|f(x)|), (II.2.29)
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which we derive in the following. Note that∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )|1{|ξ(k)
s |∨|ξm,(k)

s |>N} ds

≤
∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )|1{|ξ(k)
s |>N}

ds+

∫ t

0

|f(ξ(k)
s )− f(ξm,(k)

s )|1{|ξm,(k)
s |>N} ds

= I1 + I2.

For N > 1 we have by (II.2.28) and II.2 that

I1 ≤ ε+

∫ t

0

|f(ξm,(k)
s )|1{|ξ(k)

s |>N,|ξm,(k)
s |≤1} ds+

∫ t

0

|ξm,(k)
s |q1{|ξ(k)

s |>N,|ξm,(k)
s |>1} ds

≤ ε+ sup
|x|≤1

|f(x)|
∫ t

0

1{|ξ(k)
s |>N}

ds+

∫ t

0

|ξm,(k)
s |q1{|ξ(k)

s |>N}
ds

≤ ε(1 + sup
|x|≤1

|f(x)|) +

{(∫ t

0

|ξm,(k)
s − ξ(k)

s |q1{|ξ(k)
s |>N}

ds

)1/q

+

(∫ t

0

|ξ(k)
s |q1{|ξ(k)

s |>N}
ds

)1/q}q
≤ ε(1 + sup

|x|≤1

|f(x)|) +

{
1/m1/q + ε1/q

}q
,

and consequently

lim sup
m→∞

I1 ≤ ε(2 + sup
|x|≤1

|f(x)|).

By a similar argument it follows that lim supm→∞ I2 ≤ ε(2 + sup|x|≤1 |f(x)|), and we

obtain (II.2.29), which completes the proof of (II.2.26).

Proof of (II.2.27):

In order to show (II.2.27) we split the sum

|V (ξ; f, k)nt − V (ξm; f, k)nt | ≤
1

n

[tn]∑
i=k

∣∣f(nk∆n
i,kξ)− f(nk∆n

i,kξ
m)
∣∣

into sums over the following sets of indices, where N and M are positive constants:

ANn = {i ∈ {k, ..., [tn]} : nk|∆n
i,kξ| > N}

BN,Mm,n = {i ∈ {k, ..., [tn]} : nk|∆n
i,kξ| ≤ N, nk|∆n

i,kξ
m| > M}

CN,Mm,n = {i ∈ {k, ..., [tn]} : nk|∆n
i,kξ| ≤ N, nk|∆n

i,kξ
m| ≤M}.

and estimate the corresponding sums separately. The following relationship between

∆n
i,kξ and ξ(k) will be essential. For all ξ ∈W k,q we have

∆n
i,kξ =

∫ i/n

i−1
n

∫ s1

s1−1/n

. . .

∫ sk−1

sk−1−1/n

ξ(k)
sk
dsk . . . ds1.



80 Paper II. On limit theory for functionals of LDMAs

In particular, it follows that

|nk∆n
i,kξ| ≤

∫
[0,t]k

nk|ξ(k)
sk
|1{(s1,...,sk)∈[(i−k)/n,i/n]k} dsk . . . ds1

= kk−1

∫ i/n

i−k
n

n|ξ(k)
s | ds. (II.2.30)

The ANn term: We show that for given ε > 0 we can find sufficiently large N such

that

lim sup
m→∞

sup
n∈N

{
n−1

∑
i∈ANn

∣∣f(nk∆n
i,kξ)− f(nk∆n

i,kξ
m)
∣∣}

≤ lim sup
m→∞

sup
n∈N

{
n−1

∑
i∈ANn

|nk∆n
i,kξ|q

+ n−1
∑
i∈ANn

|nk∆n
i,kξ

m|q1{|nk∆n
i,kξ

m|>1}

+ n−1
∑
i∈ANn

|f(nk∆n
i,kξ

m)|1{|nk∆n
i,kξ

m|≤1}

}
:= lim sup

m→∞
sup
n∈N

{
I1,n,N + I2,n,m,N + I3,n,m,N

}
≤ ε, (II.2.31)

First we consider I1,n,N . By (II.2.30) we have for all i ∈ ANn

N < kk−1

∫ i/n

i−k
n

|ξ(k)
s |n ds ≤ kk−1

∫ i/n

i−k
n

n|ξ(k)
s |1{|ξ(k)

s |>C0,k}
ds+

N

2
,

where C0,k := N(2kk)−1. Therefore, again by (II.2.30), it follows that

|nk∆n
i,kξ| ≤ kk−1

∫ i/n

i−k
n

|ξ(k)
s |n ds

≤ 2kk−1

∫ i/n

i−k
n

|ξ(k)
s |n ds−N

≤ 2kk−1

∫ i/n

i−k
n

|ξ(k)
s |1{|ξ(k)

s |>C0,k}
n ds. (II.2.32)

Consequently, recalling that q ≥ 1, we have by Jensen’s inequality

n−1
∑
i∈ANn

|nk∆n
i,kξ|q ≤ (2kk−1)qkq−1n−1

∑
i∈ANn

∫ i/n

i−k
n

|ξ(k)
s |q1{|ξ(k)

s |>C0,k}
n ds

≤ (2kk)q
∫ t

0

|ξ(k)
s |q1{|ξ(k)

s |>C0,k}
ds. (II.2.33)

It follows for sufficiently large N > 0 that

lim sup
m→∞

sup
n∈N
{I1,n,N} ≤ ε. (II.2.34)
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Next, we argue that the same holds for the I2,n,m,N term. By II.2 and Minkowski’s

inequality it follows for any A ∈ B([0, t]) that
∫
A
|ξm,(k)
s |q ds ≤ 2q−1

∫
A
|ξ(k)
s |q ds +

C/m. Consequently, it holds that

n−1
∑
i∈ANn

|nk∆n
i,kξ

m|q1{|nk∆n
i,kξ

m|>1} ≤ Cn−1
∑
i∈ANn

∫ i/n

i−k
n

|ξm,(k)
s |qn ds

≤ C
∑
i∈ANn

∫ i/n

i−k
n

|ξ(k)
s |q ds+

C

m

≤ C
∑
i∈ANn

∫ i/n

i−k
n

|ξ(k)
s |q1{|ξ(k)

s |>C0,k}
ds+

C

m

≤ C
∫ t

0

|ξ(k)
s |q1{|ξ(k)

s |>C0,k}
ds+

C

m
,

where the first inequality follows from (II.2.30), and the third from (II.2.32) in the

third inequality. This shows that for sufficiently large N it holds that

lim sup
m→∞

sup
n∈N
{I2,n,m,N} ≤ ε. (II.2.35)

Next, we estimate the I3,n,m,N term. Introducing the notation

Dm,n = {i ∈ {k, ..., [tn]} : nk|∆n
i,kξ

(m)| ≤ 1}

we have

I3,n,m,N = n−1
∑

i∈ANn ∩Dm,n

|f(nk∆n
i,kξ

(m))| ≤ n−1|ANn ∩Dm,n| sup
{|x|<1}

|f(x)| (II.2.36)

where |ANn ∩Dm,n| denotes the number of elements of ANn ∩Dm,n. Using (II.2.30) we

have for all i ∈ ANn ∩Dm,n

N − 1 ≤ nk|∆n
i,k(ξ(k) − ξm,(k))| ≤ kk−1

∫ i/n

i−k
n

|ξ(k)
s − ξm,(k)

s |n ds,

and it follows that

|ANn ∩Dm,n| ≤
nkk

N − 1

∫ t

0

|ξ(k)
s − ξm,(k)

s |n ds ≤ nkkt

(N − 1)m1/q
,

where we recall II.2. With (II.2.36) it follows that for all N > 1 we have

lim sup
m→∞

sup
n∈N
{I3,n,m,N} = 0. (II.2.37)

Combining (II.2.34), (II.2.35) and (II.2.37) we conclude that (II.2.31) holds for suffi-

ciently large N .
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The BN,Mm,n term: We show that for any ε > 0 and any N > 0 we can find a sufficiently

large M such that

lim sup
m→∞

sup
n∈N

{
n−1

∑
i∈BN,Mm,n

∣∣f(nk∆n
i,kξ)− f(nk∆n

i,kξ
m)
∣∣}

≤ lim sup
m→∞

sup
n∈N

{
n−1

∑
i∈BN,Mm,n

∣∣f(nk∆n
i,kξ)|+ n−1

∑
i∈BN,Mm,n

|nk∆n
i,kξ

m|q
}

:= lim sup
m→∞

sup
n∈N
{J1
n,m,N,M + J2

n,m,N,M} < ε. (II.2.38)

The argument for J1
n,m,N,M is similar to the one used for I3,m,n,N above. We

assume that M > N. For i ∈ BN,Mm,n it holds by (II.2.30) that

M −N < nk|∆n
i,k(ξ − ξm)| ≤ kk−1n

∫ i/n

i−k
n

|ξs − ξms | ds.

Consequently, we have for all m ∈ N

|BN,Mm,n | ≤
kkn

M −N

∫ t

0

|ξs − ξms | ds ≤
kknt

(M −N)m1/q
,

where |BN,Mm,n | denotes the number of elements in BN,Mm,n . Then, it follows that for all

M > N

lim sup
m

sup
n
{J1
n,m,N,M}

≤ lim sup
m

sup
n
{n−1|BN,Mm,n | sup

s∈[−N,N ]

|f(s)|}

≤ lim sup
m

sup
n

{
kk

(M −N)m1/q
sup

s∈[−N,N ]

|f(s)|
}

= 0. (II.2.39)

For J2
n,m,N,M we obtain by arguing as in (II.2.33) with ξ(k) replaced by ξm,(k) and

N replaced by M that

J2
n,m,N,M ≤ (2kk)q

∫ t

0

|ξm,(k)
s |q1{|ξm,(k)

s |>M/2kk} ds,

for all m,n,N. Since (|ξm,(k)|q)m≥1 is uniformly integrable we can for ε > 0 find

sufficiently large M such that

lim sup
m

sup
n
{J2
n,m,N,M} ≤ ε. (II.2.40)

Now, (II.2.38) follows from (II.2.39) and (II.2.40).

The CN,Mm,n term: We show that for all N,M > 0 we have that

lim sup
m→∞

sup
n∈N

{
n−1

∑
i∈CN,Mm,n

∣∣f(nk∆n
i,kξ)− f(nk∆n

i,kξ
m)
∣∣} = 0. (II.2.41)
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Since |nk∆n
i,kξ| ≤ N and |nk∆n

i,kξ
m| ≤ M for all i ∈ CN,Mm,n , we can replace f by a

continuous function f̃N,M with compact support, such that f(x) = f̃N,M (x) for all

x ∈ [−(N ∨M), N ∨M ]. Denote by ω̃N,M a concave modulus of continuity for f̃N,M .

It holds that

sup
n∈N

{
n−1

∑
i∈CN,Mm,n

∣∣f(nk∆n
i,kξ)− f(nk∆n

i,kξ
m)
∣∣}

= sup
n∈N

{
n−1

∑
i∈CN,Mm,n

∣∣f̃N,M (nk∆n
i,kξ)− f̃N,M (nk∆n

i,kξ
m)
∣∣}

≤ sup
n∈N

{
[tn]/n ω̃N,M

(
[tn]−1

[tn]∑
j=k

nk|∆n
i,kξ −∆n

i,kξ
m|
)}

≤ t ω̃N,M
(
t−1kk

∫ t

0

|ξ(k)
s − ξm,(k)

s | ds
)
,

where we used (II.2.30) in the last inequality. Now (II.2.41) follows by II.2.

Finally, by (II.2.31), (II.2.38) and (II.2.41) we can for any ε > 0 find sufficiently

large N,M such that

lim sup
m→∞

sup
n→∞

(
n−1

[tn]∑
i=k

∣∣f(nk∆n
i,kξ)− f(nk∆n

i,kξ
m)
∣∣) < ε.

By letting ε→ 0 we obtain (II.2.27) and the proof of the lemma is complete.

II.3 Proof of Theorem II.1.2

Throughout this section we assume that the conditions of Theorem II.1.2 are satisfied.

We begin by introducing some notation followed by a brief outline of the proofs.

For any function ψ on the real line we denote

Dkψ(y) =

k∑
j=0

(−1)j
(
k

j

)
ψ(y − j).

The following functions and processes will be frequently used throughout the proofs

of both parts of the theorem.

gn(s) := nαg(s/n), φnt (s) := Dkgn(t− s), and Y nt :=

∫ t

−∞
φnt (s)dLs,(II.3.42)

for n ∈ N. By our conditions on the function g it holds that gn(s) → sα+, and

consequently φnt (s) → hk(t − s) as n → ∞, where hk was defined in Section II.1.

Therefore, we complement (II.3.42) by defining

φ∞t (s) := hk(t− s), and Y∞t :=

∫ t

−∞
hk(t− s)dLs.
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By self-similarity of L it holds that {nH∆n
r,kX}r=k,...,n

d
= {Y nr }r=k,...,n, and to deduce

the theorem we show convergence in distribution under proper scaling of

Sn :=

n∑
r=k

(
f(Y nr )− E[f(Y nr )]

)
=

n∑
r=k

V nr

where we denoted V nr := f(Y nr ) − E[f(Y nr )] for brevity. In order to outline the

strategy for the proof of Theorem II.1.2 (i) we recall that (Ft)t∈R denotes the filtration

generated by L and introduce additionally the σ-algebras

G1
s := σ(Lr − Lu | s ≤ r, u ≤ s+ 1),

remarking that (G1
s )s∈R is not a filtration. For n ≥ 1,m, r ≥ 0 we denote

ζnr,j := E[V nr |Fr−j+1]− E[V nr |Fr−j ]− E[V nr |F1
r−j ],

Rnr :=

∞∑
j=1

ζnr,j and Qnr :=

∞∑
j=1

E[V nr | G1
r−j ]. (II.3.43)

The sums Rnr and Qnr converge almost surely, as we argue in Remark 1. We obtain

the decomposition

Sn =

n∑
r=k

Rnr +

n∑
r=k

(Qnr − Zr) +

n∑
r=k

Zr, (II.3.44)

where (Zr)r≥k is a sequence of i.i.d. random variables, to be defined in (II.3.49) below.

In the proof of Theorem II.1.2 we argue that the first two sums are asymptotically

negligible and that the random variables Zr are in the domain of attraction of a

(k − α)β-stable random variable with location parameter 0, scale parameter ρS and

skewness parameter ηS as defined in (II.3.62) in the proof. We remark that similar

decompositions have been successful to derive stable limit theorems for discrete time

moving averages, see for example [19].

For the proof of Theorem II.1.2 (ii) we approximate Sn by

Sn,m =
n∑
r=k

(
f(Y n,mr )− E[f(Y n,mr )]

)
, where Y n,mr :=

∫ r

r−m
φnr (s)dLs.

More precisely, the main part of the proof is to derive the identity

lim
m→∞

lim sup
n→∞

E[n−1(Sn − Sm,n)2] = 0.

It is then sufficient to establish asymptotic normality of (Sn,m)n∈N, which follows

by the central limit theorem for m-dependent sequences of random variables. This

general approach to deriving central limit theorems is popular in the literature, see

[23] for an example.

Throughout the proof we will frequently use that for a deterministic function ψ

and a < b ∈ R the integral
∫ b
a
ψ(s)dLs is symmetric β-stable distributed with scale

parameter

ρL

(∫ b

a

|h(s)|βds
)1/β

= ρL‖h‖Lβ([a,b]), (II.3.45)
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see [26, Proposition 3.4.1]. Moreover, we recall that for a symmetric β-stable random

variable S with scale parameter 1 and γ > β there is a C > 0 such that

E[(ρS)γ1{|ρS|≤1}] ≤ Cρβ , and P(|ρS| > 1) ≤ Cρβ for all ρ ∈ (0, 1].(II.3.46)

For the proof of this result we refer to [7, Lemma 5.5]. The function φnj introduced

above satisfies the estimate

‖φnj ‖Lβ([0,1]) ≤ Cjα−k, (II.3.47)

for all j ∈ N, which follows from Taylor approximation and the condition (A2) in

Section II.1. Moreover, it satisfies the following estimate that was derived in [7, Eq.

(5.92)]. There is a C > 0 such that for all n ∈ N and j ∈ N

‖φnj − φ∞j ‖Lβ([0,1]) ≤ Cn−1jα−k+1. (II.3.48)

Recalling the definition of Φρ and k∗ρ in Section II.1 we have the following important

equivalence.

Lemma II.3.1. Let K ⊂ (0,∞) be bounded away from 0 by ε, i.e. K ∩ [0, ε) = ∅.
The following statements are equivalent.

(i) k∗ρ > 1 for all ρ ∈ K.

(ii) There is a constant Cε > 0 such that for all x, y ∈ R and for all ρ ∈ K it holds

that

|Φρ(x)− Φρ(y)| ≤ Cε
{

(1 ∧ |x|+ 1 ∧ |y|)|x− y|1{|x−y|≤1} + 1{|x−y|>1}
}
.

(iii) There is a constant Cε > 0 such that for all x ∈ R and for all ρ ∈ K it holds

that

|Φρ(x)| ≤ Cε(1 ∧ x2).

Proof. We first derive (i)⇒ (ii). By [28, Lemma 3.1] all derivatives of Φρ are uniformly

bounded by some Cε, for all ρ ∈ K, since K is bounded away from 0. In particular,

|Φρ(x)−Φρ(y)|1{|x−y|>1} ≤ Cε1{|x−y|>1} follows immediately. For x < y, |x− y| ≤ 1

we have |Φρ(x)−Φρ(y)| ≤
∫ y
x
|Φ′ρ(z)|dz ≤ Cε|x− y|. Moreover, as Φ′ρ(0) = 0, it holds

that

|Φρ(x)− Φρ(y)| ≤
∫ y

x

∫ z

0

|Φ′′ρ∞(u)|du dz ≤ Cε|x− y|||x|+ |y||,

and (ii) follows. (ii) ⇒ (iii) follows by letting y = 0. (iii) ⇒ (i) follows by Taylor

expansion of Φρ.
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Proof of Theorem II.1.2 (i)

In order to define the sequence (Zr)r≥k used in (II.3.44) we let

Unj,r :=

∫ r+1

r

φnj (s)dLs, where n ∈ N ∪ {∞} and j ≥ k,

and denote

ρnj := ‖φnj ‖Lβ(R\[0,1]), and ρn := ‖φn1‖Lβ(R).

Then, Zr is defined as

Zr :=

∞∑
j=1

{
Φρ∞j (U∞j+r,r)− E[Φρ∞j (U∞j+r,r)]

}
, (II.3.49)

where the sum is almost surely absolutely convergent, see Remark 1. Since for all

j ≥ 0 the sequence (U∞j+r,r)r≥k is i.i.d., so is (Zr)r≥k. By the decomposition (II.3.44),

the proof of Theorem II.1.2 (i) is divided into three parts. First we show that

n
1

(α−k)β

n∑
r=k

Rnr
P−→ 0. (II.3.50)

Thereafter, we argue that

n
1

(α−k)β

n∑
r=k

(Qnr − Zr)
P−→ 0. (II.3.51)

In the third part of the proof we show that the random variables (Zr)r≥k are in the

domain of attraction of a (k−α)β-stable distributed with location parameter 0, scale

parameter ρS and skewness parameter ηS , as defined in (II.3.62), which then implies

the convergence (II.1.4).

Proof of (II.3.50): Define for l ≥ j the random variables

ϑnr,j,l = E[ζnr,j | G1
r−j ∨ Gr−l]− E[ζnr,j | G1

r−j ∨ Gr−l−1] (II.3.52)

= E[f(Y nr ) | G1
r−j ∨ Gr−l]− E[f(Y nr ) | G1

r−j ∨ Gr−l−1]

−
{
E
[
E[f(Y nr ) | Gr−j ] | G1

r−j ∨ Gr−l
]
− E

[
E[f(Y nr ) | Gr−j ] | G1

r−j ∨ Gr−l−1

]}
.

Note that E[ϑnr,j,l|G1
r−j ] for all l ≥ j. It holds that liml→∞ E[ζnr,j | G1

r−j ∨ Gr−l] = 0,

a.s., which implies the decomposition

ζnr,j =

∞∑
l=j

ϑnr,j,l, (II.3.53)

Using that the sequence (ϑnr,j,l)l=j,... is orthogonal, i.e. E[ϑnr,j,lϑ
n
r,j,l′ ] = 0 for l 6= l′,

and applying Lemma II.4.2 with γ = 2 we obtain

E[|ζnr,j |2] =

∞∑
l=j

E[|ϑnr,j,l|2] ≤ Cj2(α−k)β+1. (II.3.54)
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We can now rewrite

n∑
r=k

Rnr =

n−1∑
s=−∞

Mn
s , where Mn

s =

n∑
r=1∨(s+1)

ζnr,r−s

are martingale differences. Exploiting the orthogonality of martingale differences, it

follows from the estimate (II.3.54) that

E
[( n∑

r=k

Rnr

)2]
≤ C(n+ n2(α−k)β+4).

For details we refer to the proof of [7, Equation (5.22)]. Therefore, (II.3.50) follows

by the assumption α ∈ (k − 2/β, k − 1/β), which implies 1 + 2
β(α−k) < 0 and

2(α− k)β + 4 +
2

β(α− k)
=

2

β(α− k)
((α− k)β + 1)2 < 0.

Proof of (II.3.51): The estimation of this term uses similar methods as the proof

of [7, Proposition 5.2]. Substituting s = r − j in Qnr we obtain the expression

n∑
r=k

Qnr =

n−1∑
s=−∞

n−s∑
j=(k−s)∨1

E[V ns+j |G1
s ].

Therefore we can make the decomposition

n∑
r=k

(Qnr − Zr) = H(1)
n +H(2)

n ,

where

H(1)
n =

k−1∑
s=−∞

n−s∑
j=k−s

{
E[V ns+j |G1

s ]−
{

Φρ∞j (U∞s+j,s)− E[Φρ∞j (U∞s+j,s)]
}}

H(2)
n =

n−1∑
s=k

n−s∑
j=1

{
E[V ns+j |G1

s ]−
{

Φρ∞j (U∞s+j,s)− E[Φρ∞j (U∞s+j,s)]
}}

.

We use that by definition of V ns+j and G1
s it holds that

E[V ns+j |G1
s ] = Φρnj (Uns+j,s)− E[Φρnj (Uns+j,s)]. (II.3.55)

We argue first that for sufficiently large N the set {ρnj : n ∈ {N, ...,∞}, j ∈ N} is

bounded away from 0. Choose ε > 0 such that ρ∞ > ε and ρ∞j > ε for all j ∈ N.

By Lemma II.3.47 it holds that ρn → ρ∞ and we can choose N sufficiently large such

that |ρn− ρ∞| < ε/3 for all n > N . By (II.3.47) we can find a J > 0 such that for all

j > J and all n it holds that |ρnj − ρn| < ε/3, implying that ρnj > ε/3 for all j > J

and n > N . For j ∈ {1, ..., J} we use that ρnj → ρ∞j > ε as n → ∞, which again



88 Paper II. On limit theory for functionals of LDMAs

follows from (II.3.47). Therefore, choosing N larger if necessary, we obtain ρnj > ε/3

for all j ∈ N and n > N . Now with Lemma II.3.1 we obtain for H
(1)
n the estimate

E[|H(1)
n |] ≤ 2

k−1∑
s=−∞

n−s∑
j=k−s

{
E[|Φρnj (Uns+j,s)|] + E[|Φρ∞j (Uns+j,s)|]

}
≤ C

k−1∑
s=−∞

n−s∑
j=k−s

{
E[(Uns+j,s)

2 ∧ 1] + E[(Uns+j,s)
2 ∧ 1]

}
≤ C

∞∑
s=−k+1

n+s∑
j=k+s

j(α−k)β

= C

( n∑
s=−k+1

n+s∑
j=k+s

j(α−k)β +

∞∑
s=n+1

n+s∑
j=k+s

j(α−k)β

)

≤ C
( n∑
s=−k+1

s(α−k)β+1 +

∞∑
s=n+1

ns(α−k)β

)
≤ Cn(α−k)β+2.

The third inequality uses (II.3.46) and (II.3.47), and the last two inequalities follow

from −1 < (α− k)β < −2. Since (α− k)β + 2 + 1
(α−k)β = 1

(α−k)β ((α− k)β + 1)2 < 0,

we obtain

n
1

(α−k)βH(1)
n

P−→ 0, as n→∞. (II.3.56)

For the estimation of H
(2)
n we use that H

(2)
n is of the form H

(2)
n =

∑
s=kn−1 Z

(n)
s

where for each fixed n, {Z(n)
s : s = k, ..., n − 1} are martingale differences. Since

(k − α)β ∈ (1, 2), we can choose q ∈ [1, 2] \ {β} with (k − α− 1)β < q < (k − α)β. It

follows from the von Bahr-Esseen inequality [30, Theorem 1] that

E[|H(2)
n |q] ≤ C

n−1∑
s=k

E[|Z(n)
s |q]

≤ C
n−1∑
s=k

( n−s∑
j=1

∥∥∥∥E[V ns+j |G1
s ]−

{
Φρ∞j (U∞s+j,s)− E[Φρ∞j (U∞s+j,s)]

}∥∥∥∥
q

)q

≤ C
n−k∑
s=1

( s∑
j=1

∥∥∥∥E[V nn−s+j |G1
n−s]−

{
Φρ∞j (U∞n−s+j,n−s)− E[Φρ∞j (U∞n−s+j,n−s)]

}∥∥∥∥
q

)q

≤ Cn
( n∑
j=1

∥∥∥∥Φρnj (Unj,0)− Φρ∞j (U∞j,0)

∥∥∥∥
q

)q
≤ Cn

( n∑
j=1

‖Cnj ‖q +

n∑
j=1

‖Dn
j ‖q
)q
,

(II.3.57)

where Cnj = Φρnj (Unj,0) − Φρnj (U∞j,0), and Dn
j = Φρnj (U∞j,0) − Φρ∞j (U∞j,0). In the fourth

inequality we used the representation (II.3.55) and ‖Z − E[Z]‖q ≤ 2‖Z‖q for any

random variable Z. For the estimation of the first sum we use [7, Lemma 5.4],
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(II.3.47) and (II.3.48) to obtain that for ε > 0 sufficiently small

n∑
j=1

‖Cnj ‖q ≤ C
n∑
j=1

{(
‖φnj ‖

(β−q)/q−ε
Lβ([0,1])

+ ‖φ∞j ‖
(β−q)/q−ε
Lβ([0,1])

)
‖φnj − φ∞j ‖1−εLβ([0,1])

1{β>q}

+ ‖φnj − φ∞j ‖
β/q

Lβ([0,1])

}
≤ C

n∑
j=1

{
j(α−k){(β−q)/q−ε}n−1+εj(α−k+1)(1−ε)1{β>q}

}
+ (n−1jα−k+1)β/q

≤ C
(
n−1+ε

n∑
j=1

j(α−k)β/q+1+ε′}1{β>q} + n−β/q
n∑
j=1

j(α−k+1)β/q

)
≤ Cn(α−k)β/q+1+ε+ε′ , (II.3.58)

where ε′ = ε(2(k − α) − 1). In the last inequality we used that q ≥ 1 implies that

(α− k)β/q + 1 + ε′ > −1 for all ε > 0, and that (α− k + 1)β/q > −1.

For the Dn
j term we apply [7, Lemma 5.3] to obtain the estimate∣∣(ρnj )β − (ρ∞j )β

∣∣ ≤ 2
∣∣‖φnj ‖Lβ(R) − ‖φ∞j ‖Lβ(R)

∣∣ ≤ Cn(α−k)β+1.

Applying Corollary II.4.7 we have that

‖Dn
j ‖q ≤ C

∣∣(ρnj )β − (ρ∞j )β
∣∣‖|Unj,0|2 ∧ 1‖q

≤ C
∣∣(ρnj )β − (ρ∞j )β

∣∣‖φnj ‖β/qLβ([0,1])
≤ Cn(α−k)β+1j(α−k)β/q,

where we used (II.3.46) and (II.3.47). Since (α− k)β/q < −1, we obtain

n∑
j=1

‖Dn
j ‖q ≤ Cn(α−k)β+1 ≤ n(α−k)β/q+1, (II.3.59)

where we used q ≥ 1. From (II.3.57), (II.3.58) and (II.3.59) we deduce that for any

ε > 0 there is a constant C such that

n
1

(α−k)βE[|H(2)
n |] ≤ n

1
(α−k)β ‖H(2)

n ‖q ≤ Cn
(α−k)β/q+1+1/q+ 1

(α−k)β
+ε := Cnη+ε.(II.3.60)

We show that η < 0. Since q ≥ 1, the function ξ : x 7→ x2 + (q+ 1)x+ q is decreasing

on (−∞,−q] and satisfies ξ(−q) = 0. Recalling that q < β(k − α), this implies

ξ((α−k)β) > 0 and thus η = ξ((α−k)β)
(α−k)βq < 0. Now, (II.3.51) follows from (II.3.56) and

(II.3.60).

We turn now to the third step of the proof, i.e. we show that Zr is in the domain

of attraction of a (k−α)β-stable random variable. This part is divided into two steps.

First we define the random variable

Q := Φ(Lk+1 − Lk)− E[Φ(Lk+1 − Lk)], where Φ(x) :=

∞∑
j=1

Φρ∞j (φ∞j (0)x)

and show that it is in the domain of attraction of a (k − α)β-stable random variable

S with scale parameter ρS and skewness parameter ηS . Thereafter we argue that for

some r > (k − α)β we have that

P(|Zk −Q| > x) ≤ Cx−r, for all x ≥ 1. (II.3.61)
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By an application of Markov’s inequality it follows then that Zk is in the domain of at-

traction of S as well, and an application of [26, Theorem 1.8.1] shows the convergence

(II.1.4).

Let us first remark that the function Φ and the random variable Q are well-defined.

Indeed, since ρ∞j → ρ∞, the set {ρ∞j }j∈N is bounded away from 0 and it follows from

Lemma II.3.1 that

|Φ(x)| ≤ C
∞∑
j=1

(|φ∞j (0)x|2 ∧ 1) ≤ C
∞∑
j=1

(|j(α−k)x|2 ∧ 1) ≤ C|x|2
∞∑
j=1

j2(α−k).

Since 2 > 1
k−α , it follows that Φ and Q are well-defined. Moreover, an application

of the dominated convergence theorem shows that Φ is continuous. In order to show

that Q is in the domain of attraction of a (k−α)β-stable random variable with scale

parameter ρS and skewness parameter ηS we now determine constants c−, c+ such

that

lim
x→∞

x(k−α)βP(Q < −x) = c−, lim
x→∞

x(k−α)βP(Q > x) = c+.

Indeed, it follows then from [26, Theorem 1.8.1] that Q is in the domain of attraction

of a (k − α)β-stable with scale parameter ρS and skewness parameter ηS , given by

ρS :=

(
c+ + c−
τ(k−α)β

)1/(k−α)β

, and ηS :=
c+ − c−
c+ + c−

. (II.3.62)

Here the constant τγ is for γ ∈ (0, 2) defined as

τγ :=

{
1−γ

Γ(2−γ) cos(πγ/2) if γ 6= 1,

π/2 if γ = 1.
(II.3.63)

See (II.3.66) and (II.3.67) below for the definition of c+ and c−. respectively.

In order to derive c+ and c− explicitly, we remark that for x > 0 it holds by

substituting t = (x/u)1/(k−α) that

x1/(α−k)Φ(x) = x1/(α−k)

∫ ∞
0

Φρ∞
1+[t]

(φ∞1+[t](0)x)dt

=
1

k − α

∫ ∞
0

Φρ∞
1+[(x/u)1/(k−α)]

(
φ∞1+[(x/u)1/(k−α)](0)x

)
u−1+1/(α−k)du

→ 1

k − α

∫ ∞
0

Φρ∞(kαu)u−1+1/(α−k)du := κ+, as x→∞, (II.3.64)

where kα = α(α − 1) . . . (α − k + 1). In the last line we use that {Φρ∞j (x) : j ∈
N∪{∞}, x ∈ R} is a bounded set by Lemma II.3.1 since ρ∞j is bounded away from 0.

Therefore, the convergence follows from the dominated convergence theorem, where

we remark that for all t ∈ R there is by the mean value theorem a ξt ∈ [t − k − 1, t]

such that

φ∞[t](0) = hk([t]) = kα(ξt)
α−k
+ ,

which implies the convergence

φ∞1+[(x/u)1/(k−α)](0)x→ kαu, as x→∞.



II.3. Proof of Theorem II.1.2 91

Similarly we obtain for x < 0 that

|x|1/(α−k)Φ(x)→ 1

k − α

∫ 0

−∞
Φρ∞(kαu)|u|−1+1/(α−k)du := κ−, as x→ −∞.(II.3.65)

We argue next that

lim
x→∞

x(k−α)βP(Q > x) = τβρL
(
κk−α+ 1{κ+>0} + κk−α− 1{κ−>0}

)
:= c+,(II.3.66)

where τβ was defined in (II.3.63). To this end we make the decomposition

P(Q > x) = P(Q > x,Lk+1 − Lk > 0) + P(Q > x,Lk+1 − Lk < 0),

and analyse the two summands separately. Consider the first summand and assume

κ+ > 0. By (II.3.64) it follows that Φ(y)→∞ as y →∞ and we have for sufficiently

large x that

P(Φ(Lk+1 − Lk+1) > x,Lk+1 − Lk > 0) = P(|Φ(Lk+1 − Lk+1)| > x,Lk+1 − Lk > 0).

Replacing Φ with |Φ| allows us to apply Lemma II.4.5 with ψ(x) = Φ(x) and ξ(x) =

x1/(k−α)κ+, and we obtain from (II.3.64) that

lim
x→∞

x(k−α)βP(Q > x,Lk+1 − Lk > 0) = lim
x→∞

x(k−α)βP
(
κk−α+ (Lk+1 − Lk) > xk−α

)
= τβρ

β
Lκ

(k−α)β
+ .

The second identity follows from [26, Property 1.2.15], where we recall that Lk+1 −
Lk ∼ SβS with scale parameter ρL. If κ+ < 0, it follows from (II.3.64) that lim supx→∞Φ(x) ≤
0 and therefore that Φ(x) is bounded for x ≥ 0. We obtain

lim
x→∞

x(k−α)βP(Q > x,Lk+1 − Lk > 0) = 0.

The same identity holds for κ+ = 0, as follows from Lemma II.4.5, (II.3.64), and the

estimate

P(Φ(Lk+1 − Lk+1) > x,Lk+1 − Lk > 0) ≤ P(|Φ(Lk+1 − Lk+1)| > x,Lk+1 − Lk > 0).

We conclude that

lim
x→∞

x(k−α)βP(Q > x,Lk+1 − Lk > 0) = τβρLκ
k−α
+ 1{κ+>0}.

By similar arguments, applying Lemma II.4.5 on the function ψ(x) = Φ(−x), we

deduce from (II.3.65) the convergence

lim
x→∞

x(k−α)βP(Q > x,Lk+1 − Lk < 0) = τβρLκ
k−α
− 1{κ−>0},

which completes the proof of (II.3.66). Arguing similarly for P(Q < −x) we derive

that

lim
x→∞

x(k−α)βP(Q < −x) = τβρL
(
|κ+|k−α1{κ+<0} + |κ−|k−α1{κ−<0}

)
:= c−.(II.3.67)
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This shows that Q is in the domain of attraction of a (k−α)β-stable random variable

with location parameter 0, and scale and skewness parameters as given in (II.3.62).

Now the proof of the theorem is completed by showing (II.3.61). To this end it is

by Markov’s inequality sufficient to show that E[|Zk−Q|r] <∞ for some r > (k−α)β.

Since (k − α)β > 1 an application of Minkowski’s inequality yields

‖Zk −Q‖r ≤
∞∑
j=1

∥∥Φρ∞j (U∞j+k,k)− Φρ∞j
(
φ∞j (0)(Lk+1 − Lk)

)∥∥
r
. (II.3.68)

We remark that by the mean value theorem there is a constant C > 0 such that for

all x ∈ [0, 1] and j ∈ N it holds that

|φ∞j+k(x)− φ∞j (0)| = |hk(j + k + x)− hk(j)| ≤ Cjα−k−1.

Since {ρ∞j }j∈N is bounded away from 0, there is a δ > 0 with δ < ρ∞j for all j. Letting

rε = (k − α)β + ε with ε ∈ (0, δ), an application of Lemma II.4.3 yields∥∥Φρ∞j (U∞j+k,k)− Φρ∞j (φ∞j (0)(Lk+1 − Lk))
∥∥
rε

≤ C
(
‖φ∞j+k − φ∞j (0)‖1−ε

Lβ([0,1])
+ ‖φ∞j+k − φ∞j (0)‖

1
k−α+ε/β

Lβ([0,1])

)
≤ C(j(α−k−1)(1−ε) + j

α−k−1
k−α+ε/β ).

For sufficiently small ε > 0, both powers are smaller than −1, which together with

(II.3.68) implies ‖Zk − Q‖r < ∞, and thus (II.3.61). Since Q is in the domain of

attraction of a (k−α)β-stable random variable with scale parameter ρS and skewness

parameter ηS , and r > (k − α)β, so is Zk. This completes the proof of Theorem

(II.1.2).

Proof of Theorem II.1.2 (ii)

We recall the definition of Y nt , Y
n,m
r , Sn and Sn,m from the beginning of this section

and define additionally, for a < b, a, b ∈ [0,∞]

Y n,[a,b]r :=

∫ r−a

r−b
φnr (s)dLs,

and Y n,mr = Y
n,[0,m]
r . By [11, Theorem 3.2], the statement of the theorem follows if

we derive the following three identities;

lim
m→∞

lim sup
n→∞

E[n−1(Sn − Sm,n)2] = 0, (II.3.69)

1√
n
Sn,m

L−→ N (0, η2
m), for some η2

m ∈ [0,∞), and (II.3.70)

η2
m → η2, as m→∞. (II.3.71)

We show (II.3.70) and (II.3.71) first. The sequence (Y n,mr )r=1,... is stationary and we

denote θn,mj = cov(f(Y n,mk ), f(Y n,mk+j )) for n ∈ N∪{∞}. The variance of Sn,m is then

given by

n−1var(Sn,m) = n−1

{
(n− k + 1)θn,m0 + 2

m∑
j=1

(n− k − j)θn,mj
}
.
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The covariances θn,mj converge to θ∞,mj for all m, j, as n → ∞, by the following

argument. The random variables Y n,mk − Y∞,mk are symmetric β-stable distributed

with scale parameter ‖φn1 − φ∞1 ‖Lβ([1−m,1]) ≤ ‖φn1 − φ∞1 ‖Lβ(R), which converges to 0

by Lemma II.4.4. Consequently, it holds that E[|Y n,mk − Y∞,mk |p] → 0 for all p < β,

which by boundedness and continuity of f implies E[(f(Y nk ) − f(Y∞k ))2] → 0 and it

follows that θn,mj → θ∞,mj . Since the sequence (Y n,mr )r=k,... is m-dependent, (II.3.70)

follows now from the central limit theorem for m-dependent sequences, see [10], with

the limiting variance

η2
m = θ∞,m0 + 2

m∑
j=1

θ∞,mj . (II.3.72)

Next we argue that η2
m is a Cauchy sequence, which then shows (II.3.71) with η2 :=

limm→∞ η2
m. This is indeed an immediate consequence of (II.3.69) and (II.3.70) since

|η2
m − η2

r | =
∣∣∣∣ lim
n→∞

{
n−1

(
var(Sn,m)− var(Sn,r)

)}∣∣∣∣
≤
∣∣∣∣ lim sup
n→∞

{
n−1

(
var(Sn − Sn,m) + var(Sn − Sn,r)

)}∣∣∣∣→ 0,

as m, r → ∞ by (II.3.69). The proof of (II.1.5) can now be completed by showing

(II.3.69), which we do in the following.

As in the last section, we denote by (Fr)r∈R the filtration generated by the Lévy

process, i.e. Gr = σ(Ls − Lu : s, u ≤ r). Our goal is to show that

lim
m→∞

lim sup
n→∞

(
n−1E[(Sn − Sn,m)2]

)
= 0.

We can express Sn and Sn,m as the telescoping sums

Sn =

n∑
r=k

∞∑
j=1

(E[f(Y nr )|Gr−j+1]− E[f(Y nr )|Gr−j ]),

Sn,m =

n∑
r=k

m∑
j=1

(E[f(Y n,mr )|Gr−j+1]− E[f(Y n,mr )|Gr−j ]).

Indeed, the first telescoping sum coincides with Sn almost surely, since by the back-

wards martingale convergence theorem and Kolmogorov’s 0-1 law it holds that E[f(Y nr )|Gr−j ]
a.s.−→

E[f(Y nr )], as j →∞. We denote for n ≥ 1 and m, r, j ≥ 0

ζn,mr,j = E[f(Y nr )− f(Y n,mr )|Gr−j+1]− E[f(Y nr )− f(Y n,mr )|Gr−j ].

and obtain

Sn − Sn,m =

n∑
r=k

∞∑
j=1

ζn,mr,j .

Now we use the estimate

n−1E[(Sn − Sn,m)2]

≤ 3n−1E
[( n∑

r=k

∞∑
j=m+1

ζn,mr,j

)2]
+ 3n−1E

[( n∑
r=k

m∑
j=2

ζn,mr,j

)2]
+ 3n−1E

[( n∑
r=k

ζn,mr,1

)2]
,
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and show that each summand on the right hand side converges to 0. Observing that

cov(ζn,mr,j , ζn,mr′,j′) = 0, unless r − j = r′ − j′,

an application of Cauchy-Schwarz’ inequality and Fatou’s lemma yields

n−1E[(Sn − Sn,m)2] ≤ 3n−1Qn,1,m + 3n−1Qn,2,m + 3n−1Qn,3,m,

where

Qn,1,m =

n∑
r=k

∞∑
j=m+1

∞∑
j′=m+1

E[(ζn,mr,j )2]1/2E[(ζn,mr′,j′)
2]1/2,

Qn,2,m =

n∑
r=k

m∑
j=2

m∑
j′=2

E[(ζn,mr,j )2]1/2E[(ζn,mr′,j′)
2]1/2, and

Qn,3,m =

n∑
r=k

E[(ζn,mr,1 )2],

where we denoted r′ = r − j + j′. For the proof of (II.1.5) it remains to show that

lim sup
n→∞

1

n
Qn,i,m → 0, as m→∞, for i = 1, 2, 3.

Estimation of Qn,1,m: Throughout this argument the index r ∈ {k, . . . , n} is

arbitrary but fixed. We recall that (Y n,jr )r≥0 is a stationary sequence. We introduce

the notation

f̃nj (x) = E
(
f(x+ Y n,jr )

)
,

which allows us to write E[f(Y nr )|Gr−j ] = f̃nj (Y
n,[j,∞]
r ). In the sum Qn,1,m we have

j > m, implying that E[f(Y n,mr )|Gr−j+1] = E[f(Y n,mr )|Gr−j ]. Thus we can write

ζn,mr,j = f̃nj−1

(
Y n,[j−1,∞]
r

)
− f̃nj

(
Y n,[j,∞]
r

)
, for j > m.

Observe that Y
n,[j−1,∞]
r = Y

n,[j−1,j]
r + Y

n,[j,∞]
r and denote by Fn[j−1,j] and Fn[j,∞] the

corresponding distribution functions. Then, it follows that

E(ζn,mr,j )2 =

∫
R

∫
R

(
f̃nj−1(u+ v)− f̃nj (u)

)2
dF[j−1,j](v)dF[j,∞](u).

Using moreover that f̃nj (u) = E
(
f
(
u+Y n,j−1

r +Y
n,[j−1,j]
r

))
=
∫
R f̃

n
j−1(u+z)dF[j−1,j](z),

we obtain

E(ζn,mr,j )2 =

∫
R

∫
R

(∫
R
D(u, v, z)dF[j−1,j](z)

)2

dF[j−1,j](v)dF[j,∞](u)

≤
∫
R

∫
R

∫
R
D2(u, v, z)dF[j−1,j](z)dF[j−1,j](v)dF[j,∞](u),

where D(u, v, z) = f̃nj−1(u + v) − f̃nj−1(u + z). Our goal is to use mean value the-

orem to derive an upper bound for this integral. By Lemma 3.2 of [23] the l-th
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derivative of f̃nj−1 is bounded by Cl(ρ
n
j−1)−l(1 + | log(ρnj−1)| + log2(ρnj−1)), where

ρnj−1 is the scale parameter of the symmetric β-stable random variable Y n,j−1
r , i.e.

ρnj−1 =
( ∫ r

r−j+1
|φnr (s)|βds

)1/β
. We have for all j ≥ 2 that

(ρnj−1)β =

∫ r

r−j+1

|φnr (s)|βds ≥
∫ r

r−1

|φnr (s)|βds.

The right hand side is positive for all n and converges to
∫ 1

0
sαβds > 0 as n→∞, by

the dominated convergence theorem, since by Assumption (A) there is a constant C

such that |φnr (s)| ≤ C|r − s|α for all s ∈ [r − 1, r] and all n ≥ 1. Consequently, the

scale parameters ρnj−1 are bounded away from 0 for all j ≥ 2, n ≥ 1, and [23, Lemma

3.2] implies that for all l ≥ 0 there is a constant Cl such that

|f̃n,(l)j−1 (x)| < Cl (II.3.73)

for all j ≥ 2, all n ∈ N and all x ∈ R. Now, applying mean value theorem on

D(u, v, z) = f̃nj−1(u+ v)− f̃nj−1(u+ z), it follows that

(D(u, v, z))2 ≤ C min(1, (v − z)2),

where the constant does not depend on j or n. Consequently, we obtain

lim sup
n→∞

E[(ζn,mr,j )2] ≤C
∫
|v−z|≤1

(v − z)2dFn[j−1,j](z)dF
n
[j−1,j](v)

+ C

∫
|v−z|>1

dFn[j−1,j](z)dF
n
[j−1,j](v)

= CE[(S1
n,j − S2

n,j)
21{|S1

n,j−S2
n,j |≤1}] + CP(|S1

n,j − S2
n,j | > 1),

where S1
n,j and S2

n,j are independent symmetric β-stable random variables with scale

parameter
( ∫ r−j+1

r−j |φnr (s)|βds
)1/β

= ‖φnj ‖Lβ([0,1]), see (II.3.45). Consequently S1
n,j −

S2
n,j

d
= 21/β‖φnj ‖Lβ([0,1])S where S is symmetric β-stable with scale parameter 1. It

follows now from (II.3.47) and (II.3.46) that there is a constant C such that

E[(ζn,mr,j )2] ≤ Cjβ(α−k),

for all n,m, r ∈ N and j > m, and we obtain

1

n
Qn,1,m ≤ C

1

n

n∑
r=k

( ∑
j=m+1

jβ(α−k)/2

)2

.

This shows that lim supn→∞ n−1Qn,1,m → 0 as m→∞ since β(α− k)/2 < −1.

Estimation of Qn,2,m: For j ≤ m we obtain

ζn,mr,j = f̃nj−1

(
Y n,[j−1,∞]
r

)
− f̃nj

(
Y n,[j,∞]
r

)
−
{
f̃nj−1

(
Y n,[j−1,m]
r

)
− f̃nj

(
Y n,[j,m]
r

)}
.

The involved random variables can be decomposed into the sum of independent ran-

dom variables as

Y n,[j−1,∞]
r = Y n,[j−1,j]

r + Y n,[j,m]
r + Y n,[m,∞]

r

Y n,[j,∞]
r = Y n,[j,m]

r + Y n,[m,∞]
r

Y n,[j−1,m]
r = Y n,[j−1,j]

r + Y n,[j,m]
r .
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Denoting by Fn[j−1,j], F
n
[j,m] and Fn[m,∞] the corresponding distribution functions, we

obtain

E[(ζn,mr,j )2] =

∫
R

∫
R

∫
R

{
f̃nj−1(u+ v + w)− f̃nj (v + w)

−
(
fnj−1(u+ v)− f̃nj (v)

)}2
dFn[j−1,j](u)dFn[j,m](v)dFn[m,∞](w).

Using the relation f̃nj (x) = Ef
(
x+ Y n,j−1

r + Y
n,[j−1,j]
r

)
=
∫
R f̃

n
j−1(x+ z)dFn[j−1,j](z),

we obtain

E[(ζn,mr,j )2] =

∫
R

∫
R

∫
R

(∫
R
D(u, v, w, z)dFn[j−1,j](z)

)2

dFn[j−1,j](u)dF[j,m](v)dFn[m,∞](w)

≤
∫
R

∫
R

∫
R

∫
R
D2(u, v, w, z)dFn[j−1,j](z)dF

n
[j−1,j](u)dFn[j,m](v)dFn[m,∞](w),

where

D(u, v, w, z) = f̃nj−1(u+ v + w)− f̃nj−1(v + w + z)−
(
f̃nj−1(u+ v)− f̃nj−1(v + z)

)
.

As we argued in (II.3.73), for j ≥ 2 the first two derivatives of f̃nj−1 are uniformly

bounded with the bound not depending on j or n. Therefore, we obtain by the mean

value theorem that

D2(u, v, w, z) ≤ C min{1, w2, (u− z)2, (u− z)2w2}.

This leads to the estimate

E[(ζn,mr,j )2] ≤ C
(∫
|u−z|≤1

(u− z)2dFn[j−1,j](u)dFn[j−1,j](z) +

∫
|u−z|>1

dFn[j−1,j](u)dFn[j−1,j](z)

)
×
(∫
|w|≤1

w2dFn[m,∞](w) +

∫
|w|>1

dFn[m,∞](w)

)
.

Similar as in the estimation of Qn,1,m we derive from (II.3.47) and (II.3.46) that

E[(ζn,mr,j )2] ≤ C(ρn[j−1,j]ρ
n
[m,∞])

β , where ρn[j−1,j] and ρn[m,∞] are the scale parameters

of the stable distributions Fn[j−1,j] and Fn[m,∞], respectively. By (II.3.45) and (II.3.47)

the scale parameters satisfy ρn[j−1,j] = ‖φnj ‖Lβ([0,1]) ≤ Cjα−k, and

(ρn[m,∞])
β =

∫ r−m

−∞
|φnr (s)|βds =

∞∑
l=m+1

‖φnl ‖
β
Lβ([0,1])

< C

∞∑
l=m+1

lβ(α−k).(II.3.74)

It follows that

E(ζn,mr,j )2 ≤ Cjβ(α−k)
∞∑

l=m+1

lβ(α−k),

for all j ∈ {2, ...,m} and we obtain

lim sup
n→∞

1

n
Qn,2,m ≤ C

( m∑
j=2

j
β
2 (α−k)

)2( ∞∑
l=m+1

lβ(α−k)

)
,
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which converges to 0, as m→∞ since β(α− k) < −2.

Estimation of Qn,3,m: Using the inequality E
{
E[X|G]−E[Y |F ]

}2 ≤ 2EX2 +2EY 2

we obtain

1

n
Qn,3,m ≤

4

n

n∑
r=k

E[(f(Y nr )− f(Y n,mr ))2] =
n− k + 1

n
E[(f(Y n1 )− f(Y n,m1 ))2].

In order to argue that lim supn→∞ E[(f(Y n1 ) − f(Y n,m1 ))2] → 0 as m → ∞, it

is by boundedness and continuity of f sufficient to show that the family of random

variables {Y n1 , Y
n,m
1 }m∈N,n∈N∪{∞} is tight and satisfies

lim
m→∞

lim sup
n→∞

P[|Y n1 − Y
n,m
1 | > ε] = 0, for all ε > 0.

The latter follows from (II.3.74), since Y n1 − Y
n,m
1 is SβS distributed with scale pa-

rameter ρn[m,∞]. For the tightness we first recall that E[|Y n1 − Y∞1 |p] → 0 for all

p < γ, which follows from Lemma II.4.4, since Y n1 −Y∞1 is SβS distributed with scale

parameter ‖φn1 − φ∞1 ‖Lβ(R). Consequently, given ε > 0, we can choose N sufficiently

large such that

P(|Y n,m1 | > N) ≤ P(|Y n,m1 − Y∞,m1 | > N/2) + P(|Y∞,m1 | > N/2)

≤ P(|Y n1 − Y∞1 | > N/2) + P(|Y∞1 | > N/2) < ε for all m,n ∈ {1, ...,∞}.

In the second inequality we used that all random variables are SβS distributed and

that the scale parameters of Y n1 − Y∞1 and Y∞1 are greater or equal than the scale

parameters of Y n,m1 − Y∞,m1 and Y∞,m1 , respectively. This shows the tightness of

{Y n1 , Y
n,m
1 }m∈N,n∈N∪{∞} and it follows that lim supn→∞ n−1Qn,3,m → 0 as m→∞.

II.4 Auxiliary results

Here we give some technical results used in the proof of Theorem II.1.2. First we

argue that the various telescope sum expressions used throughout the proof converge

almost surely to the limit claimed in the proof.

Remark 1. We argue first that the sum Qnr defined in (II.3.43) is absolutely con-

vergent with probability 1. By Kolmogorov’s three-series theorem and Markov’s in-

equality it is sufficient to show that

∞∑
j=1

E[|E[V nr |F1
r−j ]|] <∞.

Recalling the representation (II.3.55), it holds by Lemma II.3.1, (II.3.47) and (II.3.46)

that

E[|E[V nr |F1
r−j ]|] ≤ CE[|Φρnj (Unr,r−j)|] ≤ CE[|(Unr,r−j)2∧1|] ≤ ‖φnj ‖

β
Lβ([0,1])

≤ Cjβ(α−k) <∞,

since β(α − k) < −1, showing that Qnr is indeed well-defined. For the sum Rnr it is

now sufficient to argue that E[V nr |Fr−j ]
a.s.−→ 0, as j → ∞, which is a consequence
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of Kolmogorov’s 0-1 law and the backward martingale convergence theorem. The

convergence of the sum in the definition of Zr in (II.3.49) follows by the same argument

as given for Qnr where we remark that Zr = Q∞r . The convergence of the sum and

identity in (II.3.53) follows from the backward martingale convergence theorem and

the fact that E[ζnr,j |F1
r−j ] = 0.

Lemma II.4.1. For any ε > 0 there exists a finite constant C > 0 such that for all

ρ ≥ ε and all a ∈ R we have that

F (a, x, y) :=

∣∣∣∣ ∫ y

0

∫ x

0

Φ′′ρ(a+ u+ v) du dv

∣∣∣∣ ≤ C(1 ∧ x)(1 ∧ y).

Proof. By [23, Lemma 3.2], Φρ(x),Φ′ρ(x) and Φ′′ρ(x) are uniformly bounded for ρ ≥ ε
and x ∈ R. Boundedness of Φ′′ρ immediately implies F (a, x, y) ≤ Cxy. Moreover, it

holds that∫ y

0

∫ x

0

Φ′′ρ(a+ u+ v) du dv =

∫ y

0

Φ′ρ(a+ x+ v)− Φ′ρ(a+ v) dv

=
(
Φρ(a+ x+ y)− Φρ(a+ y)

)
−
(
Φρ(a+ x)− Φρ(a)

)
.

The first equality and boundedness of Φ′ρ implies F (a, x, y) ≤ Cy, and similarly

F (a, x, y) ≤ Cx, whereas the second equality shows that F (a, x, y) ≤ C.

Lemma II.4.2. For all γ > β there is a C > 0 such that for all n ∈ N, r ∈ {k, . . . , n},
j ∈ N and l ≥ j it holds that

E[|ϑnr,j,l|γ ] ≤ Cj(α−k)βl(α−k)β ,

where ϑnr,j,l is defined in (II.3.52).

Proof. It is sufficient to consider the case r = 1, since for fixed j, l, n the sequence

(ϑnr,j,l)r∈N is stationary. Without loss of generality we assume that l ≥ 2 ∨ j. By

definition of ϑ it holds that

ϑn1,j,l = E[f(Y n1 ) | G1
1−j ∨ G1−l]− E[f(Y n1 ) | G1−l]

−
{
E[f(Y n1 ) | G1

1−j ∨ G−l]− E[f(Y n1 ) | G−l]
}
,

Define for −∞ ≤ a < b ≤ 1 the random variable

Un[a,b] =

∫ b

a

φn1 (s) dLs.

Let in the following L̃ be an independent copy of L and define Ũn[a,b] accordingly,

and denote by Ẽ the expectation with respect to L̃ only. Moreover we denote by

ρnj,l = ‖φn1‖Lβ([1−l,1−j]∪[2−j,1]), i.e. the scale parameter of
∫ 1−j

1−l φ
n
1 dLs +

∫ 1

2−j φ
n
1 dLs.

Then, decompsing
∫ 1

−∞ φn1 dLs into the independent integrals∫ 1

−∞
φn1 dLs =

∫ −l
−∞

φn1 dLs+

∫ 1−l

−l
φn1 dLs+

∫ 1−j

1−l
φn1 dLs+

∫ 2−j

1−j
φn1 dLs+

∫ 1

2−j
φn1 dLs
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we obtain the expression

ϑn1,j,l = Ẽ
[
Φρnj,l(U

n
[−∞,−l] + Un[−l,1−l] + Un[1−j,2−j])

− Φρnj,l(U
n
[−∞,−l] + Un[−l,1−l] + Ũn[1−j,2−j])

− Φρnj,l(U
n
[−∞,−l] + Ũn[−l,1−l] + Un[1−j,2−j])

+ Φρnj,l(U
n
[−∞,−l] + Ũn[−l,1−l] + Ũn[1−j,2−j])

]
= Ẽ

[ ∫ Un[−l,1−l]

Ũn
[−l,1−l]

∫ Un[1−j,2−j]

Ũn
[1−j,2−j]

Φ′′ρnj,l(U
n
[−∞,−l] + u+ v) du dv

]
,

and by substitution there is a random variable W̃n
j,l such that

|ϑn1,j,l| ≤ Ẽ
[∣∣∣∣ ∫ |Ũn[−l,1−l]−Un[−l,1−l]|

0

∫ |Ũn[1−j,2−j]−Un[1−j,2−j]|
0

Φ′′ρnj,l(W̃
n
j,l + u+ v) du dv

∣∣∣∣].
We obtain by Lemma II.4.1 and using that |x− y| ∧ 1 ≤ |x| ∧ 1 + |y| ∧ 1 that

E[|ϑn1,j,l|γ ] ≤ CE[Ẽ[(1 ∧ |Ũn[−l,1−l] − U
n
[−l,1−l]|

γ)(1 ∧ |Ũn[1−j,2−j] − U
n
[1−j,2−j]|

γ)]]

≤ CE[Ẽ[1 ∧ |Ũn[−l,1−l]|
γ + 1 ∧ |Un[−l,1−l]|

γ ]]E[Ẽ[1 ∧ |Ũn[1−j,2−j]|
γ + 1 ∧ |Un[1−j,2−j]|

γ ]]

≤ C‖φn1‖
β
Lβ([−l,1−l])‖φ

n
1‖
β
Lβ([1−j,2−j]) ≤ Cl

(α−k)βj(α−k)β ,

where we used in the second inequality the independence of both factors which follows

from l ≥ j. The third inequality uses that for a SβS random variable S with scale

parameter ρ it holds that E[|S|γ ∧ 1] ≤ Cρβ for any γ > β, see (II.3.46). The last

inequality follows from (II.3.47).

Lemma II.4.3. ([7, Lemma 5.4]) For any q ≥ 1 with q 6= β there exists δ > 0

and a finite constant C such that for all ε ∈ (0, δ), ρ > δ and κ, τ ∈ Lβ([0, 1]) with

‖κ‖Lβ([0,1]), ‖τ‖Lβ([0,1]) ≤ 1 we have∥∥∥∥Φρ

(∫ 1

0

κ(s)dLs

)
− Φρ

(∫ 1

0

τ(s)dLs

)∥∥∥∥
q

≤

{
‖κ− τ‖β/q

Lβ([0,1])
β < q(

‖κ‖(β−q)/q−ε
Lβ([0,1])

+ ‖τ‖(β−q)/q−ε
Lβ([0,1])

)
‖κ− τ‖1−ε

Lβ([0,1])
+ ‖κ− τ‖β/q

Lβ([0,1])
β > q.

Proof. Denote U =
∫ 1

0
κ(s)dLs and V =

∫ 1

0
τ(s)dLs. By Lemma II.3.1 we obtain

‖Φρ(U)− Φρ(V )‖q
≤ C

∥∥(|U | ∧ 1 + |V | ∧ 1
)
|U − V |1{|U−V |<1}

∥∥
q

+ CP(|U − V | ≥ 1)1/q.

For the second summand, (II.3.46) yields

CP(|U − V | ≥ 1)1/q ≤ C‖κ− τ‖β/q
Lβ([0,1])

.

The first summand can be estimated as in [7, Lemma 5.4].
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Lemma II.4.4. Let (α− k)β < −1. There is a constant C > 0 such that

‖φn1 − φ∞1 ‖Lβ(R) ≤ C(nα−k+1/β ∨ n−1).

Proof. The function ζ(s) = s−αg(s) is k-times continuously differentiable on (0,∞)

and can by Assumption (A2) be extended to a k-times continuously differentiable

function on R, which we also will denote ζ. By substitution it holds that∫
R
|φn1 (x)− φ∞1 (x)|βdx =

∫ ∞
0

|Dkgn(s)− hk(s)|βds.

For s ≥ n we have |hk(s)| ≤ Csα−k and |Dkgn(s)| ≤ Csα−k by Lemma II.2.1 and

Assumption (A2). This implies together with (α− k)β < −1 that∫ ∞
n

|Dkgn(s)− hk(s)|βds ≤ C
∫ ∞
n

s(α−k)βds ≤ Cn(α−k)β+1. (II.4.75)

Using the linearity of Dk and that ζ(0) = 1 it follows from the mean value theorem

that ∫ k

0

|Dkgn(s)− hk(s)|βds =

∫ k

0

|Dk{(ζ(s/n)− 1)sα+}|βds (II.4.76)

≤ Cn−β sup
t∈[−k/n,k/n]

|ζ ′(t)|
∫ k

0

sαβ+ ds ≤ Cn−β .

It remains to show that∫ n

k

|Dkgn(s)− hk(s)|βds ≤ C(n(α−k)β+1 ∨ n−β). (II.4.77)

Since ζ is k-times continuously differentiable by assumption, it follows from Taylor

expansion for ζ of order k that for s ∈ [k, n]

Dk(gn(s)) = ζ(s/n)hk(s) +

k∑
l=1

λnl (s)n−lDk−l(s+ l)α+,

where the coefficients λnl (s) are bounded uniformly in n ∈ N and s ∈ [k, n], see [7,

Lemma 5.3] for details. It follows that∫ n

k

|Dkgn(s)− hk(s)|βds

≤ C
∫ n

k

|(ζ(s/n)− 1)hk(s)|βds+ C

k∑
l=1

n−lβ
∫ n

k

(sα−k+l)βds

≤ C sup
t∈[0,1]

|ζ ′(t)|
∫ n

k

|(s/n)sα−k|βds+ C(n−β ∨ n(α−k)β+1)

≤ C(n(α−k)β+1 ∨ n−β)

This shows (II.4.77), which together with (II.4.75) and (II.4.76) completes the proof

of the lemma.
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Lemma II.4.5. Let ψ, ξ be continuous functions on R with ψ ∼ ξ for x → ∞. Let

X be a random variable taking values in R+ and γ ≥ 0 such that

lim
x→∞

xγP(|ψ(X)| > x) = κ

where κ ∈ [0,∞). Then it holds that

lim
x→∞

xγP(|ξ(X)| > x) = κ.

Proof. Denote ψ(x) = ξ(x)ϕ(x) with ϕ(x)→ 1 for x→∞. Let ε > 0. By continuity

of ψ and ξ we can choose x sufficiently large such that ϕ(y) ∈ (1− ε, 1 + ε) whenever

min(|ψ(y)|, |ξ(y)|) > x and y ≥ 0. Since X takes values in R+, this implies that

ϕ(X) ∈ (1− ε, 1 + ε) whenever |ψ(X)| > x or |ξ(X)| > x. It follows that

xγ |P(|ψ(X)| > x)− P(|ξ(X)| > x)| = E
[
xγ
(
1{|ψ(X)|>x>|ξ(X)|} + 1{|ψ(X)|<x<|ξ(X)|}

)]
≤ 2E

[
xγ1{ x

1+ε<|ψ(X)|< x
1−ε}

]
= 2E

[
xγ1{ x

1+ε<|ψ(X)|} − xγ1{ x
1−ε≤|ψ(X)|}

]
→ 2κ((1 + ε)γ − (1− ε)γ), as x→∞.

The lemma follows by letting ε→ 0.

We conclude this section by showing a sufficient criterion for the condition k∗ρ > 1

for all ρ > 0 that is used in Theorem II.1.2 (i).

Theorem II.4.6. Denote by f+ and f− the positive and negative part of f , and

denote by k∗+(ρ) and k∗−(ρ) the Appell rank of f+ and f− at ρ, respectively. Suppose

there is a ρ̃ > 0 such that k∗+(ρ̃) > 1 and k∗−(ρ̃) > 1. Then k∗+(ρ0) > 1 and k∗−(ρ0) > 1

for all ρ0 > 0 implying that k∗(ρ0) > 1 for all ρ0 > 0.

Proof. We first assume that f is nonnegative. Let ρ0 > 0 be arbitrary but fixed. Let

R0 ⊂ (0,∞) be a compact set containing ρ̃ and ρ0. Introducing the function

hρ(y) :=

∫
R
|t|β cos(ty) exp(−ρβ |t|β) dt

we show first that there exists a C > 0 such that

|hρ(y)| ≤ C|1 ∧ y−1−β | (II.4.78)

for all ρ ∈ R0. For sufficiently large C > 0 we have

|hρ(y)| ≤
∫
R
|t|β exp(−ρβ |t|β) dt ≤ C, for all ρ ∈ R0.

Therefore it suffices to show |hρ(y)| ≤ C|y−1−β |, which can be done along the lines of

Lemma 5.8 of [7], replacing ν − 1− p by β. Denote by gρ the density of a symmetric

β-stable distribution with scale parameter ρ and recall that limy→∞ ρ−βy1+βgρ(y) =

const. Consequently, we can find a constant C such that

|1 ∧ y−β−1| ≤ Cgρ(y), for all ρ ∈ R0, y ∈ R.
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Indeed, it is easy to see that such a constant Cρ exists for any fixed ρ ∈ R0 and can

be chosen continuously in ρ, which allows us to set C := supR0
Cρ. By (II.4.78) it

follows that there is a C such that

hρ1(y) ≤ Cgρ2(y), for all ρ1, ρ2 ∈ R0, y ∈ R.

It follows that for all ρ ∈ R0∣∣∣∣ ∂∂ρΦρ(x)

∣∣∣∣ = βρβ−1

∫
R
f(x+ y)hρ(y)dy

≤ Cρβ−1

∫
R
f(x+ y)gρ(y)dy

= Cρβ−1Φρ(x), (II.4.79)

where we used that f is nonnegative. An application of Gronwall’s lemma yields that

Φρ0(x) ≤ Φρ̃(x) exp(C|ρβ0 − ρ̃β |).

Now, k∗(ρ̃) > 1 implies that |Φρ̃(x)| ≤ C(1 ∧ x2) for all x (see Lemma II.3.1), which

implies that |Φρ0(x)| ≤ C(1 ∧ x2), and consequently k∗(ρ0) > 1.

For general f satisfying the conditions of the theorem the statement follows im-

mediately from the decomposition f = f+ − f−.

Corollary II.4.7. Let R0 ⊂ (0,∞) be compact, and assume that k∗+(ρ̃) > 1 and

k∗−(ρ̃) > 1 for some ρ∞ ∈ R0. There is a constant C such that for all ρ1, ρ2 ∈ R0

|Φρ1(x)− Φρ2(x)| ≤ C|ρβ1 − ρ
β
2 |(1 ∧ x2),

for all x.

Proof. This follows immediately from the estimate (II.4.79), Lemma II.3.1 and the

fundamental theorem of analysis.
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Abstract: We develop a simulation scheme for a a class of spatial stochastic

processes called volatility modulated moving averages. A characteristic feature of

this model is that the behaviour of the moving average kernel at zero governs the

roughness of realisations, whereas its behaviour away from zero determines global

properties of the process, such as long range dependence. Our simulation scheme takes

this into account and approximates the moving average kernel by a power function

around zero and by a step function else. For this type of approach the authors of [7],

who considered a comparable model in one dimension, coined the expression hybrid

simulation scheme. We derive the asymptotic mean square error of the simulation

scheme and compare it in a simulation study with several other simulation techniques.
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III.1 Introduction

In this article we develop a simulation scheme for real valued random fields that we

call volatility modulated moving average (VMMA) fields. A VMMA is defined by the

formula

Xt =

∫
R2

g(t− s)σsW (ds), (III.1.1)

where W is Gaussian white noise, g ∈ L2(R2) is a deterministic kernel, and σ is a

random volatility field. This model has been used for statistical modelling of spatial

phenomena throughout a variety of sciences, examples being modelling of vegetation

and nitrate deposition [20], of sea surface temperature [26] and of wheat yields [29]. It

is known that any stationary Gaussian random field with a continuous and integrable

covariance function has a moving average representation of the form (III.1.1) with σ

constant, cf. [19, Proposition 6]. Introducing the stochastic volatility factor σ allows

for modelling spatial heteroscedasticity and non-Gaussian marginal distributions. We

are interested in the case when the moving average kernel g has a singularity at

zero. In this situation, the order of the singularity governs the roughness of the

random field, specified by its Hausdorff dimension or its index of Hölder continuity.

Spatial stochastic models with Hausdorff dimension greater 2 (i.e. with non-smooth

realisations) are for example used in surface modelling, where it is of high importance

to model the roughness of the surface accurately. Specific examples are modelling of

seafloor morphology [15] or surface modelling of celestial bodies [18]. The challenge

in simulating volatility modulated moving averages therefore lies in recovering the

roughness of the field accurately, while simultaneously capturing the global properties

of the field, such as for example long range dependence. Our hybrid simulation scheme

relies on approximating the kernel g by a power function in a small neighbourhood of

zero, and by a step function away from zero. This approach allows us to reproduce the

explosive behavior at the origin, while simultaneously approximating the integrand on

a large subset of R2. This idea is motivated by the recent work [7], where the authors

proposed a similar simulation scheme for the simulation of the one-dimensional model

of Brownian semi-stationary processes.

This article is structured as follows. In Section III.2 we introduce our model in

detail and discuss some of its properties. In Section III.3 we describe the hybrid

simulation scheme and derive the exact asymptotic error of the scheme. Section III.4

contains a simulation study comparing the hybrid scheme to other simulation schemes.

Proofs for our theoretical results are given in Section III.5. The appendix contains

some technical details and calculations.

III.2 Volatility modulated moving average fields

Let (Ω,F ,P) be a probability space, and W white noise on R2. That is, W is an

independently scattered random measure satisfying W (A) ∼ N (0, λ(A)) for all sets

A ∈ B0 = {A ∈ B(R2) : λ(A) <∞}, where λ denotes the Lebesgue measure. Recall

that a collection of real valued random variables Λ = {Λ(A) : A ∈ B0} is called
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independently scattered random measure if for every sequence (An)n∈N of disjoint

sets with λ(
⋃
nAn) < ∞, the random variables Λ(An), n = 1, 2, ... are independent

and Λ(
⋃
nAn) =

∑
n Λ(An), almost surely.

The kernel function g : R2 → R is assumed to be of the form

g(t) = g̃(‖t‖) := ‖t‖αL(‖t‖)

for some α ∈ (−1, 0), and a function L : (0,∞)→ (0,∞) that is slowly varying at 0.

Here and in the following ‖ · ‖ always denotes the Euclidean norm on R2. Recall that

L is said to be slowly varying at 0 if for any δ > 0

lim
x→0

L(δx)

L(x)
= 1,

and that then the function g̃(x) = xαL(x) is called regularly varying at 0 of index

α. The explosive behavior of the kernel at 0 is a crucial feature of this model, as it

governs the roughness of the field. Indeed, under week additional assumptions the

Hausdorff dimension of a realisation of X is 2 − α with probability 1, see [17] and

Theorem III.2.1, meaning that for α → −1 the realisations of X become extremely

rough. In Figure III.1 we present samples of realisations of VMMAs for different α.

The roughness of realisations poses a challenge for simulation of volatility modu-

lated moving averages. Indeed, the maybe most intuitive way to simulate the model

(III.1.1) is by freezing the integrand over small blocks and simulating the white noise

over these blocks as independent centered normal random variables with variance

equaling the block size. However, this method does not account for the explosive

behavior of g at 0 and therefore does a poor job in reproducing the roughness of the

original process correctly, in particular for values of α close to −1. We will demon-

strate this phenomenon in a simulation study in section III.4. The hybrid scheme

resolves this issue by approximating g around 0 by a power kernel, and approximat-

ing it by a step function away from 0.

The integral in (III.1.1) is well defined, when σ is measurable with respect to

B(R2) ⊗ F and the process s 7→ g(t − s)σs(ω) takes almost surely values in L2(R2).

In particular we do not require independence of σ and W or any notion of filtration

or predictability for the definition of the integral, as is usually used in the theory

of temporal stochastic processes. This general theory of stochastic integration dates

back to Bichteler [8], see also [24]. A brief discussion can be found in Appendix III.A.

When σ and W are independent, we can realise them on a product space and it is

therefore sufficient to define integration with respect to W for deterministic functions,

which has been done in [27].

The volatility field (σs)s∈R2 is assumed to satisfy E[σ2
s ] < ∞ for all s. Moreover,

we assume σ to be covariance stationary, meaning that E[σs] does not depend on

s and cov(σs+r, σs) = cov(σr, σ0) for all s, r ∈ R2. In particular E[σ2
s ] = E[σ2

0 ] for

all s ∈ R2. For some of our theoretical results we will assume that σ and W are

independent, however we show in Appendix III.A that this is not required for the

convergence of the hybrid scheme. We make the assumption that σ is sufficiently

smooth such that freezing σ over small blocks will cause an asymptotically negligible
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Figure III.1: Realisations of volatility modulated moving average fields for different

α with Matérn covariance, see Example III.2.2. All plots range over t ∈ [−1, 1]2

and are generated with constant volatility σ. In section III.4 we present examples of

VMMAs with nontrivial volatility.
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error in the simulation. It turns out that this is the case when σ satisfies

E[|σ0 − σu|2] = o(‖u‖2α+2), for u→ 0. (III.2.2)

When σ is independent of the Gaussian noise W , the covariance stationarity of σ

implies that the process X is itself covariance stationary and covariance isotropic in

the sense that E[(Xt+s −Xt)
2] depends only on ‖s‖. If σ is in fact stationary, X is

stationary and isotropic.

Moreover, we pose the following assumptions on our kernel function g. They ensure

in particular that g is square integrable, which together with covariance stationarity

of σ ensures the existence of the integral in (III.1.1).

(A1) The slowly varying function L is continuously differentiable and bounded away

from 0 on any interval (u,
√

2] for u > 0.

(A2) It holds that g̃(x) = O(xβ), as x→∞, for some β ∈ (−∞,−1),

(A3) There is an M > 0 such that |g̃′| is decreasing on [M,∞) and satisfies∫ ∞
1

g̃′(r)2r dr <∞.

(A4) There is a C > 0 such that |L′(x)| < C(1 + x−1) for all x ∈ (0, 1].

An appealing feature of the VMMA model is its flexibility in modelling marginal

distributions and covariance structure independently. Indeed, assuming that σ is sta-

tionary and independent of W , the covariance structure of X is entirely determined

by the kernel g, whereas the marginal distribution of X is a centered Gaussian vari-

ance mixture with conditional variance
∫
R2 g(−s)2σ2

s ds, the distribution of which is

governed by the distribution of σ.

The behavior of the kernel at 0 is determined by the power α, whereas its behavior

away from 0, e.g. how quickly it decays at∞, depends on the slowly varying function

L. While the behavior of g at 0 determines local properties of the process X, like the

roughness of realisations, the behavior of g away from 0 governs its global properties,

e.g. whether it is long range dependent. Being able to independently choose α and L

allows us therefore to model local and global properties of the VMMA independently,

which underlines the flexibility of the model. This separation of local and global

properties, and the desire to capture both of them correctly, is one of our main

motivations to use a hybrid simulation scheme. We now formalise the statement that

the roughness of X is determined by the power α.

Theorem III.2.1. (i) Assume independence of σ and W . The variogram of X

defined as V (h) := E[(X0 −Xt)
2], where h = ‖t‖, satisfies

h−2−2αL(h)2V (h)→ 2πE[σ2
0 ]

∫
R2

(
‖x + e/2‖α − ‖x− e/2‖α

)2
dx as h→ 0,

where e is any vector with ‖e‖ = 1.
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(ii) Assume additionally that the volatility is locally bounded in the sense that it

satisfies sup‖s‖≤M+1

{
σ2
s

}
< ∞ almost surely, where M is as in assumption

(A3). Then, for all ε > 0, the process X has a version with locally α + 1 − ε-
Hölder continuous realisations.

The proof can be found in Section III.5. In [17] the authors analyse the variogram

of a closely related model and derive similar results.

We conclude this section by discussing examples of possible choices for kernel

functions g and volatility fields σ.

Example III.2.2 (Matérn). Assume that σ is independent of W . Denote for ν ∈
(0, 1) by Kν the modified Bessel function of the second kind. Letting λ > 0 and

g(t) = ‖t‖
ν−1

2 K ν−1
2

(λ‖t‖),

it has been argued in [22] that then the model (III.1.1) has correlation function

C(‖r‖) = E[(Xr −X0)2]/E[X2
0 ] =

(λ‖r‖)ν

2ν−1Γ(ν)
Kν(λ‖r‖), r ∈ R2,

and consequently belongs to the Matérn covariance family, cf. [25], see also [16] and

references therein. We argue now that g as above satisfies our model assumptions

with α = ν − 1. The function

L(x) = x
1−ν

2 K ν−1
2

(λx)

is continuously differentiable on (0,∞). It holds that limx↓0 L(x) = 2−
ν+1

2 Γ
(
ν−1

2

)
,

see [1, Eq. (9.6.9), p.375], which implies that L is slowly varying at 0 and satisfies

condition (A4). Moreover, since K ν−1
2

(λx) decays exponentially as x → ∞, cf. [1,

p.378], condition (A2) is satisfied for all β < −1. Condition (A3) follows as well from

the exponential decay together with the identity

d

dx
(xα/2Kα/2(x)) = x

α
2−1Kα

2−1(x).

Example III.2.3 (ambit fields). In a series of papers [5, 6] the authors proposed to

model velocities of particles in turbulent flows by a class of spatio-temporal stochastic

processes called ambit fields. Over the last years this model found manifold appli-

cations throughout various sciences, examples being [3, 21]. The VMMA model is

a purely spatial analogue of an ambit field driven by white noise and can therefore

be interpreted as a realisation of an ambit field at a fixed time t. In the framework

of turbulence modeling, the squared volatility σ2
s has the physical interpretation of

local energy dissipation and it has been argued in [4] that it is natural to model σ2
s as

(exponential of an) ambit field itself. A possible model for the volatility is therefore

σ2
t = exp(X ′t) where X ′ is a volatility modulated moving average, independent of W .

By Theorem III.2.1 (i) it is not difficult to see that this model satisfies assumption

(III.2.2) when the roughness parameter α′ of X ′ satisfies α′ > α. In its core, an am-

bit field is a stochastic integral driven by a Lévy basis, which does not need to be

Gaussian. A simulation of such integrals in the non-Gaussian case typically relies on

a shot noise decomposition of the integral, as demonstrated in [28], see also [11].



114 Paper III. Hybrid simulation scheme for VMMAs

III.3 The Hybrid Scheme

In this section we present the hybrid simulation scheme using the following notation.

For r > 0 and t = (t1, t2) ∈ R2 we introduce the notation � rt for a square with side

length 1/r centered at t, that is � rt =
[
t1 − 1

2r , t1 + 1
2r

]
×
[
t2 − 1

2r , t2 + 1
2r

]
. We will

suppress the index r if it is 1, and will denote � r instead of � r0. We simulate the

process Xt for t ∈ [−1, 1]2 on the square grid Γn :=
{

1
n (i, j), i, j ∈ {−n, ..., n}

}
.

A first necessary step for approximating the integral (III.1.1) is to truncate the

range of integration, i.e.

Xt ≈
∫

� 1/Ct

g(t− s)σsW (ds),

for some large C > 0. To ensure convergence of the simulated process as n→∞, we

increase the range of integration simultaneously with increasing the grid resolution

n. We let therefore C = Cn ≈ nγ for some γ > 0. More precisely, it proves to be

convenient to choose Cn = Nn+1/2
n with Nn = [n1+γ ], where [x] denotes the integer

part of x.

An intuitive approach to simulating the model (III.1.1) is approximating the in-

tegrand on �C−1
n

t by freezing it over squares with side length 1/n, i.e.

XR,n
t =

∑
j∈t+{−Nn,...,Nn}2

g(t− bj/n)σj/n

∫
� nj

W (ds), (III.3.3)

where bj ∈ � j are evaluation points chosen such that t−bj/n 6= 0 for all t ∈ Γn and

j ∈ Z2. Indeed, XR,n
t can be simulated, assuming that the volatility σ can be simulated

on the square grid
{

1
n (i, j), i, j ∈ Z

}
, since

{ ∫
� nj

W (ds)
}
j∈Z2

i.i.d∼ N
(
0, 1

n2

)
. We will

refer to this simulation method as Riemann-sum scheme. The authors of [26] use

this technique to simulate volatility moving averages with bounded moving average

kernel and demonstrate that it performs well in this setting. In our framework,

however, a crucial weakness of this approach is the inaccurate approximation of the

kernel function g around its singularity at 0, which results in a poor recovery of the

roughness of X.

This weakness can be overcome by choosing a small κ ∈ N0 (typically, κ ∈ {0, 1, 2})
and approximating g by a power kernel on 1

n [−κ − 1/2, κ + 1/2]2. More specifically,

denoting Kκ = {−κ, . . . , κ}2 and Kκ = {−Nn, . . . , Nn}2 \ Kκ, the hybrid scheme

approximates Xt by

Xn
t :=

∑
j∈Kκ

σt−j/nL(‖bj‖/n)

∫
� n(t−j/n)

‖t− s‖αW (ds)

+
∑
j∈Kκ

σt−j/ng(bj/n)

∫
� n(t−j/n)

W (ds). (III.3.4)

In order to simulate Xt on the grid t ∈ Γn, we simulate the families of centered

Gaussian random variables W1
n and W2

n, defined as

W1
n :=

{
Wn

i,j =

∫
�ni/n

‖(i + j)/n− s‖αW (ds),Wn
i =

∫
�ni/n

W (ds)

}
,
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for i ∈ {−n− κ, . . . , n+ κ}2 and j ∈ Kκ, and

W2
n :=

{
Wn

i =

∫
�ni/n

W (ds)

}
,

for i ∈ {−Nn − n, . . . , Nn + n}2 \ {−n− κ, . . . , n+ κ}2. Indeed, replacing t by i/n in

(III.3.4) yields

Xn
i/n =

∑
j∈Kκ

L(‖bj‖)σ i−j
n
Wn

i−j,j +
∑
j∈Kκ

g(bj/n)σ i−j
n
Wn

i−j

:= X̃(i/n) + X̂(i/n), for i ∈ {−n, . . . , n}.

By definition the random vectors (Wn
i,j,W

n
i ) are independent and identically dis-

tributed for varying i. As a consequence, W1
n and W2

n are independent and W2
n

is composed of i.i.d. N (0, 1/n2)-distributed random variables. In order to simulate

W1
n we need to compute the covariance matrix of (Wn

0,j,W
n
0 )j∈Kκ , which is of size

(|Kκ|+ 1)2 with |Kκ| = (2κ+ 1)2. In contrast to the purely temporal model consid-

ered in [7], computing the covariance structure becomes much more involved in our

spatial setting. It relies partially on explicit expressions derived in appendix III.B,

and partially on numeric integration.

Note that the complexity of computing X̃( i
n ) for all i ∈ {−n, ..., n}2 is O(n2), as

the number of summands does not increase with n. The sum X̂( i
n ) can be written as

the two dimensional discrete convolution of the matrices A and B defined by

Ak :=

{
0 k ∈ Kκ

g(bk/n) k ∈ Kκ

, Bk := σk/nW
n
k , for k ∈ {−N − n, ..., N + n}2.

We remark that this expression as convolution is the main motivation that in (III.3.3)

and (III.3.4) we chose to evaluate σ at the midpoints t−j/n of � n(t−j/n). Using FFT

to carry out the convolution leads to a computational complexity of O(N2 logN) =

O(n2+2γ log n) for computing {X̂( i
n )}i∈{−n,...,n}2 . Consequently, the computational

complexity of the hybrid scheme is O(n2+2γ log n), provided the computational com-

plexity of simulating {σi/n}i∈{−N−n,...,N+n}2 does not exceed O(n2+2γ log n). For a

comparison we recall that the exact simulation of an isotropic Gaussian field using

circulant embeddings is of complexity O(n2 log n), see [14].

Next we derive the asymptotics for the mean square error of the hybrid simulation

scheme.

Theorem III.3.1. Let α ∈ (−1, 0). Assume that σ is independent of W and satisfies

(III.2.2). If γ > −(1 + α)/(1 + β), we have for all t ∈ R2 that

n2(α+1)L(1/n)−2E[|Xt −Xn
t |2]→ E[σ2

0 ]J(α, κ,b), as n→∞.

Here the constant J(α, κ,b) is defined as

J(α, κ,b) =
∑

j∈Z2\{−κ,...,κ}2

∫
�j

(‖x‖α − ‖bj‖α)2 dx,

which is finite for α < 0.
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Figure III.2: The first figure shows the value of J(α, κ,b) = Jopt for different values

of α and κ for b chosen optimal, as in (III.3.5). The second figure shows the absolute

error J(α, κ,b)− Jopt for b chosen as midpoints, i.e. bj = j, demonstrating that this

choice leads to close to optimal results.

The proof is given in Section III.5. The sequence of evaluation points b = (bj)j∈Z2

can be chosen optimally, such that it minimises the limiting constant J(α, κ,b) and

thus the asymptotic mean square error of the hybrid scheme. To this end bj needs to

be chosen in such a way that it minimises∫
� j

(‖x‖α − ‖bj‖α)2dx,

for all j ∈ Z2. By standard L2 theory, c ∈ R minimises
∫

� j
(‖x‖α − c)2dx if and only

if the function x 7→ ‖x‖α− c is orthogonal to constant functions, that is, if it satisfies∫
� j

(‖x‖α − c)dx = 0.

It follows then that J(α, κ,b) becomes minimal if we choose b such that

‖bj‖ =

(∫
� j

‖x‖αdx
)1/α

. (III.3.5)

In Appendix III.B, we derive an explicit expression for this integral involving the

Gauß hyperbolic function 2F1. However, in our numerical experiments computing

these integrals explicitly for all j ∈ Kκ slowed the hybrid scheme down considerably,

and we recommend choosing the midpoints bj = j instead. Figure III.2 shows the

constant J(α, κ,b) = Jopt for optimally chosen b and the error caused by choosing

midpoints bj = j instead, giving evidence that choosing midpoints leads to a close to

optimal result.

For j ∈ Kκ \{0}, the evaluation points bj do not appear in the limiting expression

in Theorem III.3.1, and we will simply choose bj = j. However, for j = 0 the expression

L(‖j‖) is not necessarily defined. Indeed, the slowly varying function L might have a

singularity at 0, which shows that particular attention should be paid to the choice of

b0. The choice of b0 ∈ � n \ {0} is optimal if it minimises the L2 error of the central
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cell, i.e.,

b0 = arg min
b∈� n\{0}

E
(∫

� n

g(s)W (ds)− L(‖b‖)
∫

� n

‖s‖αW (ds)

)2

.

By straightforward calculation it can be shown that this is equivalent to

L(‖b0‖) =

(∫
� n

‖s‖2αL(‖s‖) ds
)(∫

� n

‖s‖2α ds
)−1

= 8C−1
0,0

∫ 1/
√

2

0

r2α+1L(r/n)
(
π/4− arccos(

√
2r)1{r>1/2}

)
dr,

where C0,0 is defined in Appendix III.B. The integral on the right hand side is finite

for α > −1, which follows from the Potter bound (III.5.6), and can be evaluated

numerically.

III.4 Numerical results

In this section we demonstrate in a simulation study that the hybrid scheme is capable

of capturing the roughness of the process correctly, and compare it in that aspect to

other simulation schemes. Before doing so, we present in Figure III.3 samples of VM-

MAs highlighting the effect of volatility. The volatility is modelled as σ2
t = exp(X ′t),

where X ′ is again a volatility modulated moving average, compare Example III.2.3.

For X ′ we choose the roughness parameter α = −0.2 and the slowly varying function

L(x) = e−x. For the first realisation we chose α = −0.3 and L(x) = e−x. For the

second we chose α = −0.7 and L such that the model has Matérn covariance, see

Example III.2.2.

For our simulation study we first recall the definition of fractal or Hausdorff di-

mension. For a set S ⊂ Rd and ε > 0, an ε-cover of S is a countable collection of balls

{Bi}i∈N with diameter |Bi| ≤ ε such that S ⊂
⋃
iBi. The δ-dimensional Hausdorff

measure of S is then defined as

Hδ(S) = lim
ε→0

inf

{ ∞∑
i=1

|Bi|δ : {Bi}i∈N is ε-cover of S

}
,

and the fractal or Hausdorff dimension of S is HD(S) := inf{δ > 0 : Hδ(S) = 0}. The

Hausdorff dimension of a spatial stochastic process (Xt)t∈R2 is the (random) Hausdorff

dimension of its graph HD({(t, Xt), t ∈ R2}), and takes consequently values in [2, 3].

For the model (III.1.1) with constant volatility σ ≡ 1 it follows easily from a standard

result [2, Theorem 8.4.1] and Theorem III.2.1 that HD(X) = 2− α, see also [17]. In

[13], the authors give an overview over existing methods for estimating the Hausdorff

dimension of both time series data and spatial data, and provide implementations for

various estimators in form of the R package fractaldim, which we rely on.

We estimate the Hausdorff dimension from simulations of X generated by the

hybrid scheme, and compare to other simulation methods. We consider the model

(III.1.1) with constant volatility σ and Matérn covariance, see example III.2.2. In
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Figure III.3: Examples for moving average fields modulated by volatility. The

first row shows the volatility (σt)t∈R2 modelled as σ2
t = exp(X ′t), where X ′ is again

a VMMA field. The second and third row show realisations of VMMAs. On the

left hand side the field is simulated with constant volatility, the right hand side is

generated by the same Gaussian noise and with the same model parameters, but

is modulated by (σt)t∈R2 . For the second row we chose α = −0.3 and the slowly

varying function L(x) = e−x. The third row is generated with α = −0.7 and Matérn

covariance.
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this case the process X can be simulated exactly using circulant embeddings of the

covariance matrix. For this we use the R package RandomFields. For a discussion

and many properties of the circulant embedding method in the context of simulating

spatial Gaussian fields we refer to [14]. As this technique is restricted to Gaussian

processes, and cannot be applied for general VMMAs, we compare additionally to the

Riemann-sum scheme introduced in (III.3.3). These simulation techniques are com-

pared to the hybrid scheme for κ = 0, 1, 2. With each technique we simulate 100 i.i.d.

Monte-Carlo samples of the process (Xt)t∈[−1,1]2 for every α ∈ {−0.8,−0.7, ...,−0.1}.
As grid resolution we chose n = 100 and, for the hybrid scheme and the Riemann-

sum scheme, Nn = [n1+γ ] with γ = 0.3, i.e. Nn = 398. Thereafter we estimate the

roughness of X using the isotropic estimator ν̂I that was introduced in [12], see also

[13], and average the estimates over the Monte-Carlo samples. Figure III.4 shows the

results and compares them to the theoretical value of the Hausdorff dimension 2−α,

plotted as dashed line. Let us remark that there is a variety of methods to estimate

roughness of spatial stochastic processes, a detailed comparison can be found in [13].

All estimators discussed there lead to similar results when applied to our simulations.

III.5 Proofs

This section is dedicated to the proofs of our theoretical results. We begin by recalling

the Potter bound which follows from [9, Theorem 1.5.6]. For any δ > 0 there exists a

constant Cδ > 0 such that

L(x)/L(y) ≤ Cδ max

{(
x

y

)δ
,

(
x

y

)−δ}
, x, y ∈ (0, 1]. (III.5.6)

This bound will play an important role throughout all the proofs in this section.

Proof of Theorem III.2.1 (i). The proof is similar to the proof of [7, Proposition 2.1]

We have for h > 0 by covariance stationarity of σ that

V (h) = E[σ2
0 ]

∫
R2

(
g(s + he)− g(s)

)2
ds,

where e is any unit vector and we used transformation into polar coordinates. We

obtain

V (h) = E[σ2
0 ](Ah +A′h), where

Ah =

∫
{‖s‖≤1}

(
g(s + he/2)− g(s− he/2))2 ds, and

A′h =

∫
{‖s‖>1}

(
g(s + he/2)− g(s− he/2))2 ds.

Since the function g̃ is continuous differentiable on (0,∞), we obtain by mean value
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Figure III.4: Roughness estimated from samples generated by the hybrid scheme,

the Riemann-sum approximation method and by exact simulation using the circulant

embedding method for Gaussian fields. The roughness is estimated by the isotropic

estimator νI introduced in [12], averaged over 100 i.i.d. samples. The second plot

shows in more detail the absolute error between the estimation and the theoretical

value, which is marked by the dashed line in the first plot.
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theorem the following estimate for A′h.

A′h ≤ h2

{∫
{1<‖s‖<M+1}

sup
{ξ : |ξ−‖s‖|≤h/

√
2}

(g̃′(ξ))2 ds

+ 2π

∫ ∞
M

g̃′(r)2r dr

}
,

where we used that |g̃′| is decreasing on [M,∞). The term in curly brackets is finite

by Assumption (A3), and we obtain that A′h = O(h2), as h→ 0. For Ah we make the

substitution x = s/h and obtain

Ah = h2

∫
‖x‖≤1/h

(
g(h(x + e/2))− g(h(x− e/2)))2 dbx

= h2+2αL2(h)

∫
‖x‖≤1/h

Gh(x) dx,

where

Gh(x) =

(
‖x + e/2‖αL(h‖x + e/2‖)

L(h)
− ‖x− e/2‖αL(h‖x− e/2‖)

L(h)

)2

.

Note that Gh(x) →
(
‖x + e/2‖α − ‖x − e/2‖α

)2
, as h → 0. Therefore the first

statement of the theorem follows by the dominated convergence theorem if there is

an integrable function G satisfying G(x) ≥ |Gh(x)| for all x for sufficiently small h.

The existence of such a function follows since L is bounded away from 0 on (0, 1] and

by Assumption (A4). For details we refer to the proof of [7, Proposition 2.1].

Proof of Theorem III.2.1 (ii). The proof relies on the Kolmogorov-Chentsov theorem

(cf. [23, Theorem 3.23]), which requires localisation of the process, as σ does not

necessarily have sufficiently high moments. We therefore first show the existence of a

Hölder continuous version under the assumption that there is an m > 0 such that

|σs|2 ≤ m, for all s with ‖s‖ ≤M + 1, ω ∈ Ω, and (III.5.7)∫
{‖s‖≥M+1}

(g(t− s)− g(−s))2σ2
s ds ≤ m‖t‖2,

for all t with ‖t‖ ≤ 1, ω ∈ Ω, (III.5.8)

where M is as in (A3). Thereafter we argue that the theorem remains valid if we

relax these assumptions to E[sup‖s‖≤M σ2
s ] <∞.

For ‖t‖ ≤ 1 we have for all p > 0 that

E[(Xt −X0)p] ≤ CpE
[(∫

R2

(
g(t− s)− g(−s)

)2
σ2
s ds

)p/2]
≤ Cpmp/2

(∫
{‖s‖≤M+1}

(
g(t− s)− g(−s)

)2
ds + ‖t‖2

)p/2
≤ Cpmp/2

(
V0(‖t‖) + ‖t‖2

)p/2
,



122 Paper III. Hybrid simulation scheme for VMMAs

where V0 denotes the variogram of the process (Xt)t∈R2 with σ ≡ 1. In the first

inequality we used that σ and W are independent and therefore Xt − X0 has a

Gaussian mixture distribution with the integral on the right hand side being the

conditional variance. Applying the first part of the theorem and the Potter bound

(III.5.6) we obtain that for any δ > 0 a constant Cp,m,δ such that for all t with ‖t‖ ≤ 1

E[(Xt −X0)p] ≤ Cp,m,δ‖t‖p+pα−δ.

Therefore, the Kolmogorov-Chentsov Theorem [23, Theorem 2.23] implies that X has

a continuous version that is Hölder continuous of any order γ < 1 + α − δ
p −

2
p , and

the result follows for any γ ∈ (0, 1 + α) by letting p→∞.
We will now complete the proof of the theorem by extending it to processes not

satisfying assumptions (III.5.7) and (III.5.8). By mean value theorem we obtain that

for all t with ‖t‖ ≤ 1

‖t‖−2

∫
{‖s‖≥M+1}

(g(t− s)− g(−s))2σ2
s ds

≤ ‖t‖−2

∫
{‖s‖≥M+1}

|‖t− s‖ − ‖s‖|2 sup
r∈[‖s‖,‖t−s‖]

(
g̃′(r)2

)
σ2
s ds

≤
∫
{‖s‖≥M+1}

g̃′(‖s‖ − 1)2σ2
s ds

where we used that |g̃′| is decreasing on [M,∞). By taking expectation and trans-

formation into polar coordinates it follows from assumption (A3) that the right hand

side is almost surely finite. Consequently, the random variable

Z := max

{
sup

‖s‖≤M+1

(
σ2
s

)
, sup
‖t‖≤1

(
‖t‖−2

∫
{‖s‖≥M+1}

(g(t− s)− g(−s))2σ2
s ds

)}

is almost surely finite. The process (Xt1{Z≤m})t∈R2 satisfies conditions (III.5.7) and

(III.5.8) and coincides with X on {Z ≤ m}. Therefore, the existence of a version of

X with α+ 1− ε-Hölder continuous sample paths follows by letting m→∞.

For the proof of Theorem III.3.1 we need the following auxiliary result. The proof

is similar to the proof of [7, Lemma 4.2] and not repeated.

Lemma III.5.1. Let α ∈ R and j ∈ Z2 \ {(0, 0)}. If bj ∈ � j, it holds that

(i) lim
n→∞

∫
�j

(
‖x‖αL(‖x‖/n)

L(1/n)
− ‖bj‖

L(‖bj‖/n)

L(1/n)

)2

dx =

∫
�j

(‖x‖α − ‖b‖α)2 dx,

(ii) lim
n→∞

∫
�j

‖x‖2α
(
L(‖x‖/n)

L(1/n)
− L(‖bj‖/n)

L(1/n)

)2

dx = 0.

The same holds for j = (0, 0) if b(0,0) 6= (0, 0) and α > −1.
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Proof of Theorem III.3.1. Recall the definition

Xn
t :=

∑
j∈Kκ

∫
� n(t−j/n)

‖t− s‖αL(‖bj‖)σt−j/nW (ds)

+
∑
j∈Kκ

∫
� n(t−j/n)

g(bj/n)σt−j/nW (ds).

We introduce the auxiliary object X ′
n

defined as

X ′t
n

:=
∑

j∈Kκ∪Kκ

σt−j/n

∫
� n(t−j/n)

g(t− s)W (ds)

+

∫
R2\�Nn/nt

g(t− s)σsW (ds).

Denoting En := E[|Xn
t − X ′

n
t |2] and E′n := E[|Xt − X ′nt |2], Minkowski’s inequality

yields

En(1−
√
E′n/En)2 ≤ E[|Xn

t −Xt|2] ≤ En(1 +
√
E′n/En)2. (III.5.9)

We will show later that E′n/En → 0 as n→∞, and it is thus sufficient to analyse the

asymptotic behavior of En.

We have that

En =
∑
j∈Kκ

∫
� n(t−j/n)

(
‖t− s‖αL(‖bj‖/n)− g(t− s)

)2E[σ2
t−j/n] ds

+
∑

j∈{−n,...,n}2\Kκ

∫
� n(t−j/n)

(
g(t− s)− g(bj/n)

)2E[σ2
t−j/n] ds

+
∑

j∈Kκ\{−n,...,n}2

∫
� n(t−j)

(
g(t− s)− g(bj/n)

)2E[σ2
t−j/n] ds

+

∫
R2\� (2Nn+1)/nt

g(t− s)2E[σ2
s ] ds

=E[σ2
0 ](D1 +D2 +D3 +D4). (III.5.10)

For D4 we obtain, recalling assumption (A2) and Nn = nγ+1 that

D4 ≤
∫
‖s‖>Nn/n

g(s)2ds = O((Nn/n)2β+2) = O(n2γ(1+β)).

Therefore, we have

n2(1+α)D4 → 0. (III.5.11)

For D3 we obtain

D3 =
∑

j∈Kκ\{−n,...,n}2

∫
� nj/n

(
g(s)− g(bj/n)

)2
ds.
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Recalling the notation g̃(‖s‖) = g(s) we have for s ∈ �j with j ∈ Kκ \ {−n, . . . , n}2
by the mean value theorem ξ ∈ [‖s‖ ∧ ‖bj/n‖, ‖s‖ ∨ ‖bj/n‖]. Since g̃′ is decreasing

on [M,∞) by assumption (A3) it follows that

|g(s)− g(bj/n)| = |g̃′(ξ)(‖s‖ − ‖bj‖/n)|

≤

{
1
n supy∈[1−1/(

√
2n),M+1/(

√
2n)] |g̃′(y)|, (‖j‖ −

√
2)/n < M,

1
n |g̃
′((‖j‖ −

√
2)/n)|, (‖j‖ −

√
2)/n ≥M.

Consequently, we obtain with transformation into polar coordinates

lim sup
n→∞

n2D3 ≤
(
π(M + 1)2 sup

z∈[1/2,M+1/2]

|g̃′(z)|+ C

∫ ∞
M

r|g̃′(r)|2 dr
)
<∞. (III.5.12)

For D1 we have that

D1 =
1

n2

∑
j∈Kκ

∫
�j

(
‖s/n‖αL(‖bj‖/n)− g(s/n)

)2
ds

=
L(1/n)

n2+2α

∑
j∈Kκ

∫
�j

‖s‖2α
(
L(‖bj‖/n)

L(1/n)
− L(‖s‖/n)

L(1/n)

)2

ds.

Since the number of elements of Kκ does not depend on n, we have by Lemma III.5.1

lim
n→∞

n2+2αD1

L(1/n)
= 0. (III.5.13)

For the asymptotic of D2 it holds that

D2 =
1

n2

∑
j∈{−n,...,n}2\Kκ

∫
�j

(
g(s/n)− g(bj/n)

)2
ds

=
L(1/n)2

n2+2α

∑
j∈{−n,...,n}2\Kκ

∫
�j

(
‖s‖αL(‖s‖/n)

L(1/n)
− ‖bj‖α

L(‖bj‖/n)

L(1/n)

)2

ds︸ ︷︷ ︸
:=Aj,n

.

From Lemma III.5.1 we know that limn→∞Aj,n =
∫

�j
(‖s‖α − ‖bj‖α)2 ds. Conse-

quently, if we find a dominating sequence Aj such that Aj ≥ Aj,n for all n and∑
j∈Z2\Kκ Aj <∞, it follows from dominated convergence theorem that

lim
n→∞

D2n
2α+2

L(1/n)2
=

∑
j∈Z2\Kκ

∫
�j

(‖s‖α − ‖bj‖α)2 ds, for α ∈ (−1, 0). (III.5.14)

It holds that

Aj,n =

∫
�j

{(
‖s‖α − ‖bj‖α

)L(‖s‖/n)

L(1/n)
+ ‖bj‖α

(
L(‖s‖/n)

L(1/n)
− L(‖bj‖/n)

L(1/n)

)}2

ds

≤ 2

∫
�j

(‖s‖α − ‖bj‖α)2

(
L(‖s‖/n)

L(1/n)

)2

ds

+ 2

∫
�j

‖bj‖2α
(
L(‖s‖/n)− L(‖bj‖/n)

L(1/n)

)2

ds

:= Ij,n + I ′j,n.
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For I ′j,n we note that ‖bj‖2α ≤ (‖j‖−1/
√

2)2α for α < 0. By the mean value theorem

we have a ξ ∈ [‖s‖/n ∧ ‖bj‖/n, ‖s‖/n ∨ ‖bj‖/n] such that

|L(‖s‖/n)− L(‖bj‖/n)| = L′(ξ)|‖s‖/n− ‖bj‖/n| ≤
C

n
+

C

‖j‖ − 1/
√

2
≤ 2C

‖j‖ − 1/
√

2
,

where we used (A4) and that ‖j‖ ≤ n. Consequently, we obtain

I ′j,n ≤
C

infx∈(0,1] L(x)
(‖j‖ − 1/

√
2)2α

∫
�j

(L(‖s‖/n)− L(‖bj‖))2 ds

≤ C(‖j‖ − 1/
√

2)2(α−1).

For the term Ij,n we obtain by the Potter bound and the mean value theorem that

Ij,n ≤ Cδ
∫

�j

min(‖s‖, bj)2α−2‖s‖2δ ds ≤ Cδ(‖j‖ − 1/
√

2)2(α−1+δ),

where we choose δ ∈ (0,−α). Consequently, we obtain Ij,n + I ′j,n ≤ C(‖j‖ − 1/
√

2)−2

for all n > 0, and since ∑
j∈Z2\Kκ

C(‖j‖ − 1/
√

2)−2 <∞,

(III.5.14) follows from dominated convergence theorem and Lemma III.5.1. Now

(III.5.10) together with (III.5.11), (III.5.12), (III.5.13) and (III.5.14) show that

En ∼ E[σ2
0 ]J(α, κ,b)n−2(α+1)L(1/n)2, n→∞.

Therefore, recalling (III.5.9), the proof of statement (i) of the Theorem can be com-

pleted by showing that E′n/En → 0 as n→∞.
Since σ is covariance stationary, we obtain for E′n

E′n =
∑

j∈Kκ∪Kκ

∫
� n(t−j/n)

E[(σt−j/n − σs)2]g(t− s)2ds

= sup
u∈� n

E[|σu − σ0|2]

∫
R2

g(s)2ds,

and E′n/En → 0 follows by the assumption (III.2.2)

Appendix III.A On general stochastic integrals

Here we recall the definition of general stochastic integrals of the form
∫
R2 HsW (ds)

where H is a real valued stochastic process, not necessarily independent of W. The

construction of such integrals dates back to Bichteler [8]. In a recent publication [10],

this theory is revisited in a spatio-temporal setting and the authors derive a general

integrability criterion for stochastic integrals driven by a random measure that is

easy to check. In the context of integrals of the form (III.1.1), this criterion yields

the following statement.
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Proposition III.A.1. Let (Hs)s∈R2 be a real valued stochastic process, measurable

with respect to B(R2)⊗F , such that H ∈ L2(R2), almost surely. Then, the stochastic

integral
∫
R2 HsW (ds) exists in the sense of [8].

Proof. We apply the integrability criterion [10, Theorem 4.1] that is formulated in a

spatio-temporal framework. To this end, we introduce an artificial time component

and lift the white noise W (ds) to a space time white noise W̃ (dt; ds) such that W (A) =

W̃ ([0, 1] × A) for all A ∈ B(R2). Equipping (Ω,F ,P) with the maximal filtration

Ft = F for all t ∈ [0, 1], the spatio-temporal process defined as Hs(t) := Hs for all

t ∈ [0, 1] is predictable and it holds that∫
R2

HsW (ds) =

∫
[0,1]×R2

Hs(t)W̃ (dt; ds)

if the latter exists. The random measure W̃ satisfies the conditions of [10, Theorem

4.1] with characteristics B = µ = ν = 0 and C(A;B) = λ(A ∩ B) for all A,B ∈
B([0, 1]×R2), where λ denotes the Lebesgue measure. The theorem then implies that

H is integrable with respect to W if and only if it satisfies almost surely
∫
R2 H

2
s ds <

∞.

Note that the proofs for some of our theoretical results rely on the isometry

E
[(∫

R2

HsW (ds)

)2]
= E

[ ∫
R2

H2
s ds

]
,

which does not necessarily hold when H and W are dependent. In particular, we

cannot rely on Theorem III.3.1 in this more general framework. We argue next that

the hybrid scheme converges for dependent σ and W , when σ admits a continuous

version, without specifying the speed of convergence.

Proposition III.A.2. Assume that (σs)s∈R2 has a continuous version. Then, Xn
t

P−→
Xt for all t ∈ R2, i.e. the hybrid scheme converges.

Proof. Using the notation of Section III.3, we consider the auxiliary integrals

X̃n
t :=

∑
k∈Kκ∪Kκ

σt−k/n

∫
� n(t−k/n)

g(t− s)W (ds) =

∫
R2

σ̃ns g(t− s)W (ds),

where

σ̃ns :=
∑

k∈Kκ∪Kκ

σt−k/n1� n(t−k/n)(s).

By arguing as in the proof of Theorem III.3.1, it follows that E[(X̃n
t −Xn

t )2]→ 0 as

n→∞, and it is therefore sufficient to argue that X̃n
t

P−→ Xt. It holds that

Xt =

∫
R2

g(t− s)σsW (ds) =

∫
R2

σsMg,t(ds),
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where the random measure Mg,t is defined as Mg,t(A) =
∫
A
g(t − s)W (ds). Since

(σs)s∈R2 is continuous, the sequence of simple integrands σ̃n converges pointwise to

σ, and it follows that

Xt =

∫
R2

σsMg,t(ds) = lim
n→∞

∫
R2

σ̃nsMg,t(ds) = lim
n→∞

X̃n
t , in probability,

by integrability of σ with respect to Mg,t.

Appendix III.B The covariance of W1
n

In this section we analyse the covariance structure of the Gaussian family W1
n intro-

duced in Section III.3. For a wide range of covariances we are able to derive closed

expressions, whereas the remaining covariances are computed by numeric integration.

Let us remark that in addition to the symmetry of the covariance matrix the isotropy

of the process adds 8 more spatial symmetries (corresponding to the linear transfor-

mations in SO(2) that map Z2 onto itself), which reduces the number of necessary

computations drastically. Since the random variables in W1
n are i.i.d. along i, it is

sufficient to derive the covariance matrix for{
Wn

0,j, W
n
0

}
j∈Kκ

.

For j1, j2 ∈ {−κ, . . . , κ}2 it holds that

C1,1 := var(Wn
0 ) =

1

n2

C1,j1 := cov(Wn
0 ,W

n
0,j1) =

1

n2+α

∫
�
‖j1 − s‖α ds

Cj1,j2 := cov(Wn
0,j1 ,W

n
0,j2) =

1

n2+2α

∫
�
‖j1 − s‖α‖j2 − s‖α ds.

We now derive explicit expressions for Cj,j using the Gauss hypergeometric func-

tion 2F1. Clearly, these expressions can be applied to compute C1,j by replacing α

with α/2. Using symmetries we may assume without loss of generality that j = (j1, j2)

with j1 ≥ j2 ≥ 0. We introduce the notation � j for the area {(x1, x2) : j2 ≤ x1 ≤
j1, j2 ≤ x2 ≤ x1}, that is a right triangle with lower right point (j1, j2) and hy-

potenuse lying on the diagonal {(x1, x2) : x1 = x2}. In order to obtain explicit

expressions for Cj,j, we first derive explicit expressions for∫
� j

‖x‖2α dx, for all j = (j1, j2) ∈ R2, 0 ≤ j2 < j1. (III.B.15)

Thereafter we give for all j = (j1, j2) ∈ Z2 with 0 ≤ j2 ≤ j2 an explicit formula to

write Cj,j as linear combination of such integrals.

Transforming into polar coordinates we obtain that∫
� j

‖x‖2α dx =

∫ π/4

arctan(j2/j1)

∫ j1/ cos(θ)

j2/ sin(θ)

r2α+1 dr dθ

=
1

2α+ 2

∫ π/4

arctan(j2/j1)

(
j1

cos(θ)

)2α+2

−
(

j2
sin(θ)

)2α+2

dθ. (III.B.16)
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It holds that arctan(j2/j1) = arccos( j1‖j‖ ), and consequently we obtain by substituting

cos(θ) = z the following expression for the first summand:

j2α+2
1

2α+ 2

∫ π/4

arctan(j2/j1)

cos(θ)−2α−2 dθ

= − j2α+2
1

2α+ 2

∫ cos(π/4)

j1/‖j‖
z−2α−2(1− z2)−1/2 dz

=
j2α+2
1

4(α+ 1)

∫ j21/‖j‖
2

1/2

z−α−
3
2 (1− z)−1/2 dz

=
j2α+2
1

4(α+ 1)

∫ 1/2

j22/‖j‖2
(1− z)−α− 3

2 z−1/2 dz

=
j2α+2
1

4(α+ 1)
(B(1/2; 1/2,−α− 1/2)−B(j2

2/‖j‖2; 1/2,−α− 1/2))

=
j2α+2
1

23/2(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2)

− j2α+2
1 j2

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

2/‖j‖2).

Here, B(x; p, q) denotes the incomplete beta function, satisfyingB(x; p, q) = xp

p 2
F1(p, 1−

q; p + 1;x). For the first equality we used that d/dz(arccos(z)) = −(1 − z2)−1/2 For

the second summand in (III.B.16) we argue similarly, using that arctan(j2/j1) =

arcsin( j2‖j‖ ),

− j2α+2
2

2α+ 2

∫ π/4

arctan(j2/j1)

sin(θ)−2α−2 dθ

= − j2α+2
2

2α+ 2

∫ sin(π/4)

j2/‖j‖
z−2α−2(1− z2)−1/2 dz

= − j2α+2
2

4(α+ 1)

∫ 1/2

j22/‖j‖2
z−α−

3
2 (1− z)−1/2 dz

= − j2α+2
2

4(α+ 1)

∫ j21/‖j‖
2

1/2

(1− z)−α− 3
2 z−1/2 dz

= − j2α+2
2

4(α+ 1)
(B(j2

1/‖j‖2; 1/2,−α− 1/2)−B(1/2; 1/2,−α− 1/2))

=
j2α+2
2

23/2(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2)

− j2α+2
2 j1

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

1/‖j‖2).
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This leads to∫
� j

‖x‖2α dx =
j2α+2
2 + j2α+2

1

23/2(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2)

− j1j
2α+2
2

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

1/‖j‖2)

− j2α+2
1 j2

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

2/‖j‖2),

for all 0 ≤ j2 < j1. For implementation we remark that in the case j2 = 0 the

hypergeometric function in the second line is not defined since in this case j2
1/‖j‖2 = 1,

and we use ∫
� (j1,0)

‖x‖2α dx =

√
2j2α+2

1

4(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2).

Thus, we have explicit expressions for integrals of the form (III.B.15) and all that

remains to do is to argue that for 0 ≤ j2 < j1 we can write Cj,j as linear combinations

of such integrals. By symmetry we obtain that

C(0,0),(0,0) =

∫
�
‖x‖2α dx = 8

∫
� (1/2,0)′

‖x‖2α dx.

For j > 0 we obtain

C(j,j),(j,j) =2

∫
� (j+1/2,j−1/2)

‖x‖2α dx, and

C(j,0),(j,0) =2

(∫
� (j+1/2,0)

‖x‖2α dx−
∫
� (j−1/2,0)′

‖x‖2α dx

−
∫
� (j+1/2,1/2)

‖x‖2α dx +

∫
� (j−1/2,1/2)

‖x‖2α dx
)
.

For 0 < j2 < j1 we obtain

C(j1,j2),(j1,j2) =

∫
� (j1+1/2,j2−1/2)

‖x‖2α dx−
∫
� (j1−1/2,j2−1/2)

‖x‖2α dx

−
∫
� (j1+1/2,j2+1/2)

‖x‖2α dx +

∫
� (j1−1/2,j2+1/2)

‖x‖2α dx.

This covers all possible choices for 0 ≤ j2 < j1 and consequently we have explicit

expressions for Cj,j and Cj,1 for all j.
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Appendix A

Technical supplement

In this appendix we provide some results that are of more technical nature, including

several proofs for results stated in Chapter 1. Literature references are with respect

to the bibliography of Chapter 1.

A.1 The Skorokhod topologies

In his original work [79], Skorokhod introduced four different topologies on the space

D(R+,R) of cádlág functions, usually denoted by J1,M1, J2 and M2.

In this section we argue that the functional stable convergence in Theorem I.1.1

(i) does hold with respect to the M1 and M2 topology, but not with respect to the J1

and J2 topology, providing a complete picture.

We quickly recall the definition and some properties of the J1, J2 and M2 topology,

since especially the J2 and M2 topology are not widely used. An excellent analysis

of the four Skorokhod topologies in the context of stochastic processes can be found

in the monograph [87]. For simplicity we restrict ourselves in this section to the

finite time horizon t∞ = 1 and work on the space D = D([0, 1);R), since including

the endpoint of the interval requires more technical notation to account for functions

that jump at the endpoint. First of all we recall that the J1 topology on D is induced

by the metric

dJ1(f1, f2) = inf
λ∈Λ
{‖f1 ◦ λ− f2‖ ∨ ‖λ− e‖},

where ‖ · ‖ denotes the uniform norm on [0, 1), e is the identity on [0, 1) and Λ is the

set of all strictly increasing continuous bijections [0, 1)→ [0, 1).

Similarly, the J2 topology is induced by the metric

dJ2
(f1, f2) = inf

λ∈Λ′
{‖f1 ◦ λ− f2‖ ∨ ‖λ− e‖},

where Λ′ is the class of all bijections of [0, 1), not requiring that they are increasing

and continuous. As a consequence, a single jump can in the J2 topology approximated

by a function that jumps multiple times up and down near the jump, see Figure A.1.

The M2 metric is defined as the Hausdorff distance of the completed graphs,

introduced in Section 1.2, i.e. dM2(f1, f2) = dHD(Γf1 ,Γf2), where we recall that the
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Hausdorff distance between compact sets A,B of R2 is defined as

dHD(A,B) := sup
x∈A

inf
y∈B
‖x− y‖ ∨ sup

x∈B
inf
y∈A
‖x− y‖,

where ‖ · ‖ denotes the Euclidean norm on R2. To gain some intuition for the M2-

topology we follow up on our picture of ants walking on the completed graphs that we

gave for the M1-metric in Section 1.2. Given two functions f and g we imagine two

ants positioned at the starting points (0, f(0)) and (0, g(0)) in R2. For ε > 0 it holds

dM2
(f1, f2) < ε if the ants can find any way to walk the completed graphs Γf and Γg

from start to finish without ever being further apart than ε. The crucial difference

to the M1-distance is that they are now allowed to change directions in between. In

Figure A.1 we show examples for convergence in J2 and M2. Indeed we see in the

figure that the ant walking on the green graph needs to walk back and forth on the

vertical line in order to stay close to the ant walking the blue line, which can walk

forward the entire time.

The four Skorokhod topologies are ordered by

J1 > J2 > M2 and J1 > M1 > M2,

where > means stronger than. The J2 and M1 topology are not comparable. The

first example in Figure A.1 converges in J2 but not in M1, the second example in

Figure 1.2 converges in M1 but not in J2.

The main result of this section is the following theorem.

Theorem A.1.1. In the setting of Section I.4, the sequence V n,ε defined in (I.4.3)

does not converge stably in law in D equipped with the J2 topology.

By the ordering of the 4 topologies this implies that the sequence neither converges

in J1, whereas M2 convergence follows from Theorem I.1.1 (i).

We remark that this result is in fact quite intuitive, as by the definition of V n,ε

a jump of the limiting process Z at time T is indeed approximated by jumps of V n,ε

at times ([nT ] + 1)/n, ..., [n(T + ε)]/n forming a monotone staircase. This type of

monotone staircase scenario is a popular model example for convergence in M1 but

not J2. The formal proof of Theorem A.1.1 relies on the following Lemma.

Lemma A.1.2. Let m ≥ 1 and let

A := {f ∈ D : f is piecewise constant and has at most m jumps}

Let g ∈ D be increasing with at least m+ 1 jumps of size greater or equal δ > 0. Then

dJ2
(f, g) ≥ δ/2 for all f ∈ A.

Proof. The function g attainsm+1 values g1, ..., gm+1 satisfying mini,j∈{1,...,m+1}{|gi−
gj |} > δ. For any λ ∈ Λ′, g ◦λ attains the same values, and since f attains at most m

different values, we have ‖g ◦ λ− f‖ ≥ δ/2 for all λ ∈ Λ′ and the result follows.

For the proof of Theorem A.1.1 we recall the definition of the Prokhorov metric

defined on the space P(S) of probability measures on a metric space (S, d). Denote



A.1. The Skorokhod topologies 139

bn 0.5 cn 1

an

0.5

1− an

1

Convergence in J2, not M1

bn 0.5 cn 1

an

0.5

1− an

1

Convergence in M2, not J2 or M1

Figure A.1: Examples for convergence in J2 and M2. If an → 0 and bn, cn → 0.5,

the function plotted in blue converges to the function 1[1/2,1) plotted in green. For

J2-convergence the approximating function is allowed to jump multiple times up and

down when the limiting function jumps. For M2-convergence the completed graphs

(plotted as dashed lines) converge in the Hausdorff metric.

by Aεd the open ε-neighbourhood of A, i.e.

Aεd = {y ∈ S : d(x, y) < ε for some x ∈ A}.

The Prohorov distance of two probability measures P1,P2 ∈ P(S) is then defined as

πd(P1,P2) = inf{ε > 0 : P1(A) ≤ P2(Aεd) + ε for all A ∈ B(S)}.

It has been shown in [87, Theorem 3.2.1] that weak convergence is equivalent to

convergence in the Prohorov metric whenever the metric space (S, d) is separable.

Proof of Theorem A.1.1. Since it is sufficient to show that the convergence does not

hold in a specific example, we can choose σ ≡ 1, g(x) = xα+ and k = 1 and ν =

δ{−1}+ δ{1}. Recall the definition of Ωε, V
n,ε and Z introduced in Subsection I.4. For

the proof we introduce the set

Ω0 = {ω : L(ω) has exactly one jump in (0, 1)} ∩ Ωε.

It is then sufficient to show that V n,ε1Ω0 does not converge stably in law. Moreover,

the results of Subsection I.4 imply V n,ε1Ω0

LM1
−s−−−−−→ Z1Ω0

and it is sufficient to

show that V n,ε1Ω0

L−s−→ Z1Ω0 does not hold in (D, dJ2). Since (D, dJ1) is Polish and

dJ2
≤ dJ1

, the metric space (D, dJ2
) is separable, and by Theorem 3.2.1 of [87] the

proof is complete if we find a δ > 0 such that πJ2
(V n,ε1Ω0

, Z1Ω0
) > δ for infinitely

many n. Let

A := {f ∈ D : f is piecewise constant, f(0) = 0,

f has exactly 1 jump of absolute size ≥ αp}

Let ω ∈ Ω0 and denote by T1(ω) the jump time of the Lévy process in (0, 1). The

process Z1Ω0
is piecewise constant, 0 at 0, increasing, and has one jump at time T1(ω)
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of size V1 defined in Theorem I.1.1. It is straightforward to show that V1 ≥ αp. In

particular, we can choose δ sufficiently small such that P(Z1Ω0
∈ A) = P(Ω0) > 2δ.

It is then sufficient to show that

P(V n,ε1Ω0
∈ AδdJ2

) ≤ δ, for infinitely many n,

since this implies πJ2
(V n,ε1Ω0

, Zε1Ω0
) ≥ δ. We choose δ < αp3p(α−1)/2 and show

that the set {ω : V n,ε(ω)1Ω0
(ω) ∈ AδdJ2

} is in fact empty for all n. First note that

δ < αp3p(α−1)/2 implies δ < αp and thus 0 6∈ AδdJ2
. It is therefore sufficient to show

that for all ω ∈ Ω0 and all n it holds that

dJ2
(f, V n,ε(ω)) > δ, for all f ∈ A.

We denote by i1 the index such that T1 ∈ ((i1 − 1)/n, i1/n]. It is straight forward to

show that

∆ i1+1
n
V n,ε = |(1 + i1 − nT1)α − (i1 − nT1)α|p ≥ αp2p(α−1),

∆ i1+2
n
V n,ε ≥ αp3p(α−1).

Therefore V n,ε is increasing and has at least 2 jumps ≥ αp3p(α−1). Since f ∈ A has

only one jump, an application of Lemma A.1.2 with m = 1 shows that dJ2(V n,ε, f) ≥
αp3p(α−1)/2 > δ for all f ∈ A. This completes the proof.

A.2 Details on modulars

In this subsection we provide proofs and supplementary details to Section 1.3. We

begin by showing the following proposition.

Proposition A.2.1. For all p ≥ 1, the modular Φp,L introduced in Section 1.3 is

both of moderate growth and 0-convex.

Proof. We first derive the following estimate for the function φp. For all x ∈ R it

holds that

(λ2 ∧ λp)φp(x) ≤ φp(λx) ≤ (λ2 ∨ λp)φp(x) for all λ ≥ 0. (A.2.1)

We show the second inequality, the first one follows directly by an application of the

second one with x′ = λx and λ′ = λ−1. Assume w.l.o.g. that x ≥ 0. For x ∈ [0, 1∧λ−1]

we have φp(λx) = λ2φp(x). For λ > 1 and x ∈ (λ−1, 1] it holds that

φp(λx) = λpxp

{
≤ λpx2 = λpφ(x) if p ≥ 2

= λ2(λx)p−2x2 ≤ λ2φ(x) if p ≤ 2.

Similarly, for λ < 1 and x ∈ [1, λ−1)

φp(λx) = λ2x2

{
≤ λ2xp = λ2φ(x) if p ≥ 2

= λp(λx)2−pxp ≤ λpφ(x) if p ≤ 2.
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Finally, when x ≥ λ−1 ∨ 1 it holds that φp(λx) = λpφp(x), which completes the proof

of (A.2.1).

This estimate implies in particular that the modular Φp,L is of moderate growth,

i.e. satisfies condition ((iii)) of Definition 1.3.1. Indeed, for x, y ∈ R we obtain by

(A.2.1) that φp(x + y) ≤ φp(2(|x| ∨ |y|)) ≤ 22∨pφp(|x| ∨ |y|) ≤ 22∨p(φp(x) + φp(y)),

which immediately implies

Φp,L(f + g) ≤ 2p∨2(Φp(f) + Φp(g)) for all f, g ∈ Lpnr(dL).

Moreover, Φp,L is 0-convex, since φp(αx+ βy) ≤ φp(|x| ∨ |y|) ≤ φp(x) + φp(y) for all

x, y ∈ R and α, β ≥ 0 with α+ β = 1.

Next, we prove Theorem 1.3.2 and Proposition 1.3.4.

Proof of Theorem 1.3.2. (i) follows immediately from [71, Theorem 2.7] and [71, The-

orem 3.3] where we remark that the quantity σ(s) introduced in [71, (2.4)] vanishes

since L has no Brownian part, and the functional U introduced in [71, Theorem 2.7]

vanishes since L is symmetric.

Next we prove (ii). By [71, Theorem 3.4] the integration mapping Λ : Lpnr(dL)→
Lp(Ω) is a linear homeomorphism onto its image. We recall that any linear homeomor-

phism between normed vector spaces is a quasi isometry which follows by considering

the operator norm. Since in our case the vector spaces are not equipped with a norm

but with homogeneous modulars, we need to generalise this idea slightly in the fol-

lowing way. Denote by B1 the unit ball in Lpnr(dL), which coincides for Φp,L, ‖ · ‖p,L
and ||| · |||p,L, since for any f the function t 7→ Φp,L(tf) is strictly increasing on [0,∞).

The set B1 is bounded in the linear metric space (Lpnr(dL), ||| · |||p,L) and consequently

its image under the continuous linear operator Λ is bounded as well by a standard

result, see for example [73]. Thus we can define

‖Λ‖op := sup
f∈B1

‖Λ(f)‖p <∞,

which defines a norm if p ≥ 1, and a homogeneous modular for p < 1. It follows then

by homogeneity of ‖ · ‖p,L and ‖ · ‖p that

‖Λ(f)‖p = ‖f‖p,L
∥∥Λ(f/‖f‖p,L)

∥∥
p
≤ ‖Λ‖op‖f‖p,L.

The same argument applied on the inverse mapping Λ−1 yields ‖f‖p,L ≤ C‖Λ(f)‖p.

Proof of Proposition 1.3.4. It follows from [64, Theorem 1.10] and the comment there-

after that the homogeneous modular ‖ · ‖Φ defines a norm if Φ is convex. We replace

φp in (1.5) by the convex function

φ̃p(x) := (2/p|x|p + 1− 2/p)1{|x|>1} + x21{|x|≤1},

and define Φ̃p,L accordingly. Then, the convexity of Φ̃p,L implies that ‖·‖′p,L := ‖·‖Φ̃p,L
defines a norm on Lpnr(dL). We show that it is equivalent to ‖ · ‖p,L.
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Clearly, there exist c, C > 0 such that cφ̃p(x) ≤ φp(x) ≤ Cφ̃p(x) for all x ∈ R,
which implies cΦ̃p,L(x) ≤ Φp,L(x) ≤ CΦ̃p,L(x). Moreover, the modular Φp,L satisfies

the moderate growth condition (iii) which implies the existence of a C ′ > 0 such that

c−1Φp,L(f) ≤ Φp,L(C ′f) for all f. It follows for all f ∈ Lpnr(dL) that

‖f‖′p,L = inf{t > 0 : Φ̃p,L(t−1f) ≤ 1}
≤ inf{t > 0 : c−1 Φp,L(t−1f) ≤ 1}
≤ inf{t > 0 : Φp,L(C ′t−1f) ≤ 1}
= ‖C ′f‖p,L = C ′‖f‖p,L.

Similarly it follows that there is a c′ such that c′‖f‖p,L ≤ ‖f‖′p,L. This shows the

equivalence of ‖ · ‖p,L and ‖ · ‖′p,L.

The modular ‖ · ‖p,L satisfies ((i)) by definition. Property ((ii)) follows from

equivalence to ‖ · ‖′L,p. The estimate ((iii)) follows from (A.2.1).

A.3 Existence of Lévy semi-stationary processes

In this section we discuss conditions that ensure the existence of the integral (1.2).

We first argue that assumption (A) implies the following important estimate. For

all ε > 0 there is a constant C > 0 such that∫
R

(|yx|2 ∧ 1)ν(dx) ≤ C(|y|θ1{|y|≤1} + |y|β+ε1{|y|>1}). (A.3.2)

Recall that the condition lim supt→∞ ν([t,∞))tθ <∞ implies that there is a C, such

that for all nondecreasing functions f∫ ∞
1

f(x) ν(dx) ≤ C
∫ ∞

1

f(x)x−θ−1 dx, (A.3.3)

as we argued in Lemma I.4.4. First, consider the case y > 1. Choosing ε > 0 such

that β + ε ≤ 2, it holds that∫
R
(|yx|2 ∧ 1)ν(dx) = 2

(∫ y−1

0

(yx)2ν(dx) + ν([y−1,∞))

)
≤ 2

(
yβ+ε

∫ 1

0

xβ+εν(dx) + ν([1,∞))

)
≤ Cyβ+ε.

For |y| ≤ 1 we have∫
R

(|yx|2 ∧ 1)ν(dx) ≤ C
(
y2 +

∫ ∞
1

((yx)2 ∧ 1)ν(dx)

)
≤ C

(
y2 +

∫ ∞
1

((yx)2 ∧ 1)x−θ−1dx

)
= Cy2

(
1 +

∫ |y−1|

1

x1−θdx

)
+ C

∫ ∞
|y−1|

x−θ−1dx

≤ C|y|θ,
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where we used (A.3.3) in the second inequality, and θ ≤ 2 in the last. This shows the

estimate (A.3.2).

This estimate ensures the existence of the integral (1.2) if σ = 1 by the following

argument, see also [20]. By Theorem 1.3.2 it is sufficient to argue that for all t ≥ 0

the function ft defined as ft(s) = g(t−s)−g0(−s) satisfies Φ0,L(ft) <∞, where Φ0,L

is as in Section 1.3. Applying the estimate (A.3.2) it holds that

Φ0,L(ft) ≤ C
∫
R
|ft(s)|θ1{|ft(s)|≤1} + |ft(s)|β+ε1{|ft(s)|>1}ds.

By the mean value theorem and the conditions on g, there is a ξt ∈ [0, t] such that

|ft(s)| ≤ |f0(s)| + |g′(ξt − s)|1{s>t+δ} + Ct(t − s)α+1{s≤t+δ}, and the conditions of

Assumption (A) ensure that Φ0,L(ft) is finite.

When the volatility factor σ is nontrivial, the following condition is sufficient for

the integral (1.2) to exist, see also Remark (I.3.3). This follows easily from Theorem

1.3.3 and the estimate (A.3.2).

Assumption (B): Suppose that Assumption (A) is satisfied and define the two

processes F (1) and F (2) by F
(1)
s = (g(−s)− g0(−s))σs and F

(2)
s = g′(−s)σs for s < 0.

Then the process X given by (1.2) is well-defined if there exists a β′ > β such that∫ −δ
−∞

(
|F (i)
s |θ1{|F (i)

s |≤1} + |F (i)
s |β

′
1{|F (i)

s |>1}

)
ds <∞

almost surely for i = 1, 2.





Appendix B

MATLAB code for the hybrid

scheme

Here we list the MATLAB code for simulating volatility modulated moving averages

by the hybrid scheme presented in Paper III. The comments of the code follow the

notation of the paper, denoting bold letters (i.e. variables representing vectors in R2)

by \b, for example we denote i by \bi.

The code is written in MATLAB R2014b, version 8.4.0.150421. For fast 2d-

convolution it relies on the function conv2fft by Luigi Rosa, available at

http://se.mathworks.com/matlabcentral/fileexchange/4334

1

2 %%%%%% The Hybrid scheme 2d %%%%%%

3

4 % Claudio Heinr ich , August 2016

5

6 c l e a r a l l ;

7 c l o s e a l l ;

8

9 %% Simulates and p l o t s a VMMA over [−1 ,1]ˆ2 with g r id

10 % r e s u l t i o n 1/n . The va lue s o f the proce s s are saved

11 % in the (2n+1) x (2n+1) matrix X

12

13 kappa = 2 ; %depth o f the Hybrid scheme

14 a = −0.3; %roughness parameter alpha

15 n = 100 ; %gr id r e s o l u t i o n i s 1/n

16 g = 0 . 2 ; %parameter gamma

17 N = f l o o r (nˆ(1+g ) ) ; %the i n t e g r a l range i s N/n

18

19

20 %% The v o l a t i l i t y f a c t o r sigma

21

22 % the func t i on vo l r e tu rn s the v o l a t i l i t y p roce s s

23

24 sigma=vol (n ,N) ;

145
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25

26 %% The matrix conta in ing the eva lua t i on po in t s \ | b k \ |
27

28 bMat= bMatSimple (N) ;

29

30

31 %% Auxi l i a ry ob j e c t s :

32 % LgMat conta in s the va lue s L(\ | \ bk \ |/n) f o r \bk\ in
33 % {−kappa , . . . , kappa }ˆ2 , and the va lue s g (\bk/n) f o r

34 % \bk\ in {−N, . . . ,N}ˆ2 \ setminus \{−kappa , . . . , kappa \}ˆ2 .
35 % Choose ’LgMatMatern ’ f o r Matern covar iance and

36 % ’ LgMatexponential ’ f o r the s l ow ly vary ing func t i on

37 % L(x )=exp(−x )
38

39

40 LgMat =LgMatMatern (n ,N, a , kappa , bMat) ;

41 %LgMat =LgMatExponential (n ,N, a , kappa , bMat) ;

42

43

44 %% Simulate Gaussian RVs

45

46 C=Cov3( kappa , a , n ) ; % re tu rn s the covar iance matrix

47

48 W0=mvnrnd( z e ro s ( (2∗ kappa+1)ˆ2+1 ,1) ,C, ( 2∗ n+2∗kappa+1)ˆ2) . ’ ;

49

50

51 % The f o l l ow i ng array s t o r e s the random va r i a b l e s

52 % Ŵ n {\ bi } f o r \ bi in {−n−kappa , . . . , n+kappa }ˆ2 :
53

54 W01=reshape (W0( 1 , : ) , [ 2∗n+2∗kappa+1,2∗n+2∗kappa+1]) ;

55

56

57 % The f o l l ow i n g array supplements W0 and conta in s

58 % the random va r i a b l e s Ŵ n {\ bi } f o r a l l \ bi in

59 % {−N−n , . . . ,N+n}ˆ2 :
60

61 We1=normrnd (0 ,1/n ˆ2 , [ 2∗n+2∗N+1,2∗n+2∗N+1]) ;

62 We1(N−kappa+2:N+2∗n+kappa+2,N−kappa+2:N+2∗n+kappa+2)=W01;

63

64

65 % The f o l l ow i ng array s t o r e s the random va r i a b l e s

66 % Ŵ n {\bi ,\ bj } f o r \ bi in {−n−kappa , . . . , n+kappa }ˆ2 ,
67 % \bj in {−kappa , . . . , kappa }ˆ2 :
68

69 W02=reshape (W0( 2 : end , : ) , [ 2∗ kappa+1,2∗kappa+1,2∗n+2∗kappa+1,2∗n+2∗
kappa+1]) ;

70

71
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72 % The f o l l ow i ng aux i l i a r y 4d array conta in s the same

73 % data as W02 as We2:

74

75 We2=ze ro s (2∗ kappa+1,2∗kappa+1,2∗n+2∗N+1,2∗n+2∗N+1) ;

76 We2( : , : ,N−kappa+2:N+2∗n+kappa+2,N−kappa+2:N+2∗n+kappa+2)=W02;

77

78

79

80

81 %% Simulat ion o f \ t i l d e X, i . e . o f the i n t e g r a l around 0

82

83 % Wshift conta in s s igma {\bi−\bk}W {\bi−\bk ,\ bk}
84 % at po s i t i o n ( k1+kappa+1,k2+kappa+1, i 1+n+1, i 2+n+1) ,

85

86 Wshift=nan (2∗ kappa+1,2∗kappa+1,2∗n+1,2∗n+1) ;

87 f o r k1=−kappa : kappa
88 f o r k2=−kappa : kappa
89 f o r i 1=−n : n

90 f o r i 2=−n : n

91 Wshift ( k1+kappa+1,k2+kappa+1, i 1+n+1, i 2+n+1)=sigma (

i1−k1+N+n+1, i2−k2+N+n+1)∗We2( k1+kappa+1,k2+

kappa+1, i1−k1+N+n+1, i2−k2+N+n+1) ;

92 end

93 end

94 end

95 end

96

97

98

99 X1=nan (2∗n+1) ; %temporary , s t o r e s va lue s o f \ t i l d e X

100

101 f o r i 1= −n : n

102 f o r i 2 = −n : n

103 B=LgMat(N−kappa+1:N+kappa+1,N−kappa+1:N+kappa+1) .∗ Wshift

( : , : , i 1+n+1, i 2+n+1) ;

104 X1( i 1+n+1, i 2+n+1)= sum(B( : ) ) ;

105 end

106 end

107

108

109

110 %% Simulat ion o f \hat X, that i s the i n t e g r a l away from 0

111

112 % gMat conta in s the va lue s g (\bk/n) f o r

113 % \bk\ in\{−N, . . . ,N\}ˆ2\ setminus\{−kappa , . . . , kappa \}ˆ2 ,
114 % and 0 at the p o s i t i o n s cor re spond ing to \{−kappa , . . . , kappa\}ˆ2
115

116 gMat=LgMat ;
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117 gMat(N+1−kappa :N+1+kappa ,N+1−kappa :N+1+kappa )=ze ro s (2∗ kappa+1) ;

118

119 X2=conv2 f f t ( sigma .∗We1, gMat , ’ v a l i d ’ ) ; %s t o r e s \hat X

120

121

122 %% p l o t t i n g

123

124 X=X1+X2 ;

125 s u r f (−1:1/n :1 ,−1:1/n : 1 ,X, ’ EdgeColor ’ , ’ none ’ ) ;

126

127 s e t ( gca , ’ FontSize ’ , 12)

128 x l ab e l ( ’ $ t 1$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

129 y l ab e l ( ’ $ t 2$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

130 z l a b e l ( ’ $X {\ bf { t }}$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

131 t i t l e ( [ ’ $\ alpha=−$ ’ num2str ( a ) ] , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’

, 14)

B.1 Auxiliary functions for the hybrid scheme

In this section we list all functions (and subfunctions) called by the hybrid scheme in

alphabetical order.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on [ b ] = bMatSimple ( N )

4

5 % Contains the eva lua t i on po in t s \bb {\ bj }
6 % fo r \bj in {−N, . . . ,N}ˆ2 .
7

8 b=ze ro s (2∗N+1) ;

9

10 f o r i =0:N

11 f o r j =0: i

12 b( i+N+1, j+N+1)=norm ( [ i , j ] ) ;

13 end

14 end

15

16 b(N+1,N+1)=0; %b (0 , 0 )

17

18 f o r i =0:N−1
19 f o r j=i +1:N

20 b( i+N+1, j+N+1)=b( j+N+1, i+N+1) ;

21 end

22 end

23

24 f o r i=−N:−1
25 f o r j=−N:−1
26 b( i+N+1, j+N+1)=b(− i+N+1,− j+N+1) ;
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27 end

28 f o r j =0:N

29 b( i+N+1, j+N+1)=b(− i+N+1, j+N+1) ;

30 end

31 end

32

33 f o r i =0:N

34 f o r j=−N:−1
35 b( i+N+1, j+N+1)=b( i+N+1,− j+N+1) ;

36 end

37 end

38

39 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on C1 = Cov1( kappa , a , n )

4

5 % return s the cova r i ance s C {1 ,\ bj } .
6 % The output matrix C1 i s de f ined as

7 % C1( j , k )=C {1 , ( j−kappa−1,k−kappa−1)}
8 % See Appendix I I I . B f o r d e t a i l s .

9

10 TriMa=TriIntMat ( kappa , a /2) ;

11

12 C1=nan (2∗ kappa+1,2∗kappa+1) ;

13

14 % C { (0 , 0 ) , ( 0 , 0 ) }
15

16 C1( kappa+1,kappa+1)=8∗TriMa (1 , 1 ) ;

17

18

19 % C {( j , j ) , ( j , j ) } , f o r j > 0

20

21 coor=nan (1 , 4 ) ; % s t o r e s coo rd ina t e s o f e n t r i e s

22 % of the Covariance matrix that

23 % conta in the same value by

24 % symmetry arguments

25

26 f o r j =1:kappa

27 value=2∗TriMa( j +1, j +1) ;

28

29 coor (1 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1, j+kappa+1) ;

30 coor (2 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1, j+kappa+1) ;

31 coor (3 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1,− j+kappa+1) ;

32 coor (4 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1,− j+kappa+1) ;

33

34 C1( coor )=value ;

35
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36 end

37

38

39 % C {1 , (1 , 0 ) }
40

41 i f kappa>0

42 value=2∗(TriMa (2 , 1 )−TriMa (2 , 2 )−TriMa (1 , 1 ) ) ;

43

44 coor (1 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , kappa+2,kappa+1) ;

45 coor (2 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , kappa+1,kappa+2) ;

46 coor (3 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , kappa , kappa+1) ;

47 coor (4 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , kappa+1,kappa ) ;

48

49 C1( coor )=value ;

50 end

51

52

53 % C {1 , ( j , 0 ) } , j > 1

54

55 i f kappa > 1

56 f o r j =2:kappa

57 value=2∗(TriMa( j +1 ,1)−TriMa( j +1 ,2)−TriMa( j , 1 )+TriMa( j , 2 ) ) ;

58

59 coor (1 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1,kappa+1) ;

60 coor (2 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1,kappa+1) ;

61 coor (3 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , kappa+1, j+kappa+1) ;

62 coor (4 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , kappa+1,− j+kappa+1) ;

63

64 C1( coor )=value ;

65 end

66 end

67

68

69 % C {1 , ( j , k ) } , 0 < k = j+−1
70

71 coor=nan (8 , 1 ) ;

72

73 i f kappa>1

74 f o r j =2:kappa

75 value=TriMa( j +1, j )−TriMa( j +1, j +1)−TriMa( j , j ) ;

76

77 coor (1 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1, j+kappa ) ;

78 coor (2 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1, j+kappa )

;

79 coor (3 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1,− j+kappa

+2) ;

80 coor (4 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1,− j+kappa

+2) ;
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81 coor (5 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa , j+kappa+1) ;

82 coor (6 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa ,− j+kappa+1)

;

83 coor (7 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+2, j+kappa

+1) ;

84 coor (8 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+2,− j+kappa

+1) ;

85

86 C1( coor )=value ;

87 end

88 end

89

90

91 % C {1 , ( j , k ) } , 0 < k < j−1
92

93 i f kappa>2

94 f o r j =3:kappa

95 f o r k=1: j−2
96 value=TriMa( j +1,k+1)−TriMa( j +1,k+2)−TriMa( j , k+1)+TriMa

( j , k+2) ;

97 coor (1 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1,k+

kappa+1) ;

98 coor (2 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1,k+

kappa+1) ;

99 coor (3 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] , j+kappa+1,−k+
kappa+1) ;

100 coor (4 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],− j+kappa+1,−k+
kappa+1) ;

101 coor (5 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] ,k+kappa+1, j+

kappa+1) ;

102 coor (6 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1] ,k+kappa+1,− j+

kappa+1) ;

103 coor (7 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],−k+kappa+1, j+

kappa+1) ;

104 coor (8 )=sub2ind ( [ 2∗ kappa+1 2∗kappa+1],−k+kappa+1,− j+

kappa+1) ;

105

106 C1( coor )=value ;

107 end

108 end

109 end

110

111 C1=nˆ(−2−a ) ∗C1 ;
112

113 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on covM = Cov2( kappa , a , n )
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4

5 % Returns the (2 kappa+1)ˆ4 array covM with e n t r i e s

6 % covM( j1 , j2 , k1 , k2 )=

7 % C {( j 1−kappa−1, j 2−kappa−1) , ( k 1−kappa−1,k 2−kappa−1) } .
8

9 format long ;

10 TriMa=TriIntMat ( kappa , a ) ;

11 covM = nan (2∗ kappa+1,2∗kappa+1,2∗kappa+1,2∗kappa+1) ;

12

13

14 % C { (0 , 0 ) , ( 0 , 0 ) }
15

16 covM( kappa+1,kappa+1,kappa+1,kappa+1)=8∗TriMa (1 , 1 ) ;

17

18

19 % C {( j , j ) , ( j , j ) } , f o r j > 0 :

20

21 f o r j =1:kappa

22 coor=symind ( [ j+kappa+1; j+kappa+1; j+kappa+1; j+kappa+1] , kappa

) ;

23 covM( coor )=2∗TriMa( j +1, j +1) ;

24 end

25

26

27 % C { (1 , 0 ) , ( 1 , 0 ) } :
28

29 i f kappa>0

30 value=2∗(TriMa (2 , 1 )−TriMa (2 , 2 )−TriMa (1 , 1 ) ) ;

31 coor=symind ( [ kappa+2; kappa+1; kappa+2; kappa+1] , kappa ) ;

32 covM( coor )=value ;

33 end

34

35

36 % C {( j , 0 ) , ( j , 0 ) } , j > 1 :

37

38 i f kappa > 1

39 f o r j =2:kappa

40 value=2∗(TriMa( j +1 ,1)−TriMa( j +1 ,2)−TriMa( j , 1 )+TriMa( j , 2 ) ) ;

41 coor=symind ( [ j+kappa+1; kappa+1; j+kappa+1; kappa+1] , kappa

) ;

42 covM( coor )=value ;

43 end

44 end

45

46

47 % C {( j , k ) , ( j , k ) } , 0 < k = j −1:
48

49 i f kappa>1



B.1. Auxiliary functions for the hybrid scheme 153

50 f o r j =2:kappa

51 value=TriMa( j +1, j )−TriMa( j +1, j +1)−TriMa( j , j ) ;

52 coor=symind ( [ j+kappa+1; j+kappa ; j+kappa+1; j+kappa ] ,

kappa ) ;

53 covM( coor )=value ;

54 end

55 end

56

57

58 % C {( j , k ) , ( j , k ) } , 0 < k < j −1:
59

60 i f kappa>2

61 f o r j =3:kappa

62 f o r k=1: j−2
63 value=TriMa( j +1,k+1)−TriMa( j +1,k+2)−TriMa( j , k+1)+TriMa

( j , k+2) ;

64 coor=symind ( [ j+kappa+1; k+kappa+1; j+kappa+1; k+kappa

+1] , kappa ) ;

65 covM( coor )=value ;

66 end

67 end

68 end

69

70

71 % The remaining e n t r i e s are f i l l e d by numeric i n t e g r a t i o n .

72 % The f o l l ow i ng loop computes the cor re spond ing i n t e g r a l s

73 % fo r a l l s l o t s o f C that s t i l l conta in a NaN.

74

75 f o r j 1 =1:kappa

76 f o r j 2 =0: j 1

77 f o r k1=−kappa : kappa
78 f o r k2=−kappa : kappa
79 i f i snan (covM( j1+kappa+1, j 2+kappa+1,k1+kappa+1,k2+

kappa+1) )

80 fun=@(x , y ) ( ( ( j1−x ) .ˆ2+( j2−y ) . ˆ 2 ) . ˆ ( a /2) . ∗ ( ( k1−
x ) .ˆ2+(k2−y ) . ˆ 2 ) . ˆ ( a /2) ) ;

81 value=i n t e g r a l 2 ( fun , −0 .5 ,0 . 5 , −0 .5 ,0 . 5 , ’ AbsTol ’

,1 e−20, ’ RelTol ’ , 0 ) ;

82 coor=symind ( [ j 1+kappa+1; j 2+kappa+1; k1+kappa

+1; k2+kappa+1] , kappa ) ;

83 covM( coor )=value ;

84 end

85 end

86 end

87 end

88 end

89

90 covM=nˆ(−2−2∗a ) ∗covM ;
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91

92 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on C = Cov3( kappa , a , n )

4

5 % return s the covar iance matrix o f the vec to r

6 % (W 0ˆn ,Wˆ 1 ’ , . . . ,Wˆ(2 kappa+1) ’ ) ,

7 % where

8 % Ŵ k ’=(W { (0 , 0 ) ,(−kappa , k−kappa−1) } , . . . ,W { (0 , 0 ) , ( kappa , k−kappa
−1)}) .

9

10 A=Cov2( kappa , a , n ) ;

11 A=reshape (A, [ ( 2 ∗ kappa+1) ˆ2 , (2∗ kappa+1) ˆ2 ] ) ;

12

13 B=Cov1( kappa , a , n ) ;

14 B=reshape (B , [ ] , 1) ;

15

16 C=nan ((2∗ kappa+1)ˆ2+1) ;

17 C(1 ,1 ) =1/(nˆ2) ;

18 C(2 : ( 2∗ kappa+1)ˆ2+1 ,1)=B;

19 C(1 , 2 : ( 2∗ kappa+1)ˆ2+1)=B. ’ ;

20 C(2 : ( 2∗ kappa+1)ˆ2+1 ,2:(2∗ kappa+1)ˆ2+1)=A;

21 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on [ Mat ] = LgMatMatern (n ,N, a , kappa , b)

4

5 % Mat conta in s the va lue s L(\bk/n) f o r

6 % \bk\ in {−kappa , . . . , kappa }ˆ2 , and the

7 % values g (\bk/n) f o r

8 % \bk\ in {−N, . . . ,N}ˆ2 \ setminus {−kappa , . . . , kappa}ˆ2
9 % fo r the matern covar iance case . In order

10 % to minimise func t i on c a l l s , we compute LgMat

11 % only on ha l f a quadrant and e xp l o i t symmetries .

12

13 % Matern covar iance ke rne l :

14 lambda=1;

15 Lfct = @(x ) ( norm(x )ˆ(−a /2) ∗ be s s e l k ( a /2 , lambda∗norm(x ) ) ) ;

16 Lfct1d = @(x ) ( abs (x ) .ˆ(−a /2) .∗ be s s e l k ( a /2 , lambda∗abs (x ) ) ) ;

17

18

19 Mat=nan (2∗N+1) ;

20 f o r i =0:N

21 f o r j =0: i

22 i f abs ( i )>kappa | abs ( j )>kappa
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23 Mat( i+N+1, j+N+1)=Lfct1d (b( i+N+1, j+N+1)/n) ∗(b( i+N+1, j+N

+1)/n) ˆa ;

24 e l s e

25 Mat( i+N+1, j+N+1)=Lfct1d (b( i+N+1, j+N+1)/n) ;

26 end

27 end

28 end

29

30

31 % For the c en t r a l square [−1/n ,1/n ]ˆ2 the value

32 % of L at the optimal d i s c r e t i s a t i o n po int i s obta ined

33 % as f o l l ow s . The func t i on Tr i Int0 i s l i s t e d below

34 i n t f c t = @(x ) ( Lfct1d (x/n) . ∗ ( x . ˆ ( 2∗ a+1) ) . ∗ ( p i /4−(x>=1/(2) ) .∗ acos (

sq r t (2 ) ∗x ) ) ) ;
35 Mat(N+1,N+1) =i n t e g r a l ( i n t f c t , 0 , 1/ sq r t (2 ) ) . / Tr i Int0 (1/2 , a ) ;

36

37 % The r e s t o f the matrix i s f i l l e d by us ing symmetries

38

39 f o r i =0:N−1
40 f o r j=i +1:N

41 Mat( i+N+1, j+N+1)=Mat( j+N+1, i+N+1) ;

42 end

43 end

44

45 f o r i=−N:−1
46 f o r j=−N:−1
47 Mat( i+N+1, j+N+1)=Mat(− i+N+1,− j+N+1) ;

48 end

49 f o r j =0:N

50 Mat( i+N+1, j+N+1)=Mat(− i+N+1, j+N+1) ;

51 end

52 end

53

54 f o r i =0:N

55 f o r j=−N:−1
56 Mat( i+N+1, j+N+1)=Mat( i+N+1,− j+N+1) ;

57 end

58 end

59

60 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on x = Tr i ang l e I n t e g r a l ( j1 , j2 , a )

4

5 % Takes input ( j1 , j 2 ) with 0<j2<j 1 and computes the

6 % in t e g r a l o f \ | x \ |ˆ2 a over the s e t

7 % {(x , y ) : 0 < x < i −1/2 , j −1.5 < y < x } .
8 % see Appendix I I I . B f o r d e t a i l s .
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9

10 x=(( j 1 . ˆ ( 2∗ a+2)+j2 . ˆ ( 2∗ a+2) ) / ( 2 ˆ ( 1 . 5 ) ∗( a+1) ) ) .∗ hypergeom ( [ 0 . 5 , 1 . 5+

a ] , 1 . 5 , 0 . 5 ) ;

11 x=x−( j 1 .∗ j 2 . ˆ ( 2∗ a+2) ) .∗ hypergeom ( [ 0 . 5 , 1 . 5+ a ] , 1 . 5 , j 1 . ˆ 2/ ( j 1 .ˆ2+ j2

. ˆ 2 ) ) . / ( 2∗ ( a+1)∗ s q r t ( j 1 .ˆ2+ j2 . ˆ 2 ) ) ;

12 x=x−( j 1 . ˆ ( 2∗ a+2) .∗ j 2 ) .∗ hypergeom ( [ 0 . 5 , 1 . 5+ a ] , 1 . 5 , j 2 . ˆ 2/ ( j 1 .ˆ2+ j2

. ˆ 2 ) ) /(2∗ ( a+1)∗ s q r t ( j 1 .ˆ2+ j2 . ˆ 2 ) ) ;

13 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on x = Tr i Int0 ( j1 , a )

4

5 % Returns the i n t e g r a l o f \ | x \ |ˆ{2 a} over the

6 % t r i a n g l e {(x , y ) : 0 < x < 0 . 5 , 0 < y < x } .
7

8 x=sq r t (2 ) ∗ j 1 ˆ(2∗ a+2)∗hypergeom ( [ 0 . 5 , 1 . 5+ a ] , 1 . 5 , 0 . 5 ) /(4∗ ( a+1) ) ;

9

10 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on A = TriIntMat ( kappa , a )

4

5 % TriIntMat conta in s i n t e g r a l s o f \ | x \ |ˆ a over

6 % t r i a n gu l a r s e t s in the f o l l ow i n g s t r u c tu r e .

7 % TriIntMat i s a symmetric matrix . I t s f i r s t

8 % column conta in s the e n t r i e s

9 % TriIntMat ( i , 1 ) = i n t e g r a l o f \ | x \ |ˆ a over the s e t

10 % {(x , y ) : 0 < x < i −1/2 , 0 < y < x } .
11 % For a l l other columns , i . e . with j>1

12 % we have

13 % TriIntMat ( i , j ) = i n t e g r a l o f \ | x \ |ˆ a over the s e t

14 % {(x , y ) : 0 < x < i −1/2 , j −1.5 < y < x}
15 % See Appendix I I I .B f o r d e t a i l s .

16

17 A=nan ( kappa+1,kappa+1) ;

18

19 A(1 ,1 )= Tr i Int0 ( 0 . 5 , a ) ;

20

21 f o r j 1 =2:kappa+1

22 A(1 , j 1 )=Tr i Int0 ( j1 −0.5 , a ) ;

23 A( j1 , 1 )=A(1 , j 1 ) ;

24 f o r j 2 =2: j 1

25 A( j1 , j 2 )=Tr i ang l e I n t e g r a l ( j1 −0.5 , j2 −1.5 , a ) ;

26 A( j2 , j 1 )=A( j1 , j 2 ) ;

27 end

28 end



B.1. Auxiliary functions for the hybrid scheme 157

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 f unc t i on [ sigma ] = vo l ( n ,N )

4

5 % Contains the va lue s o f the v o l a t i l i t y f i e l d sigma .

6

7 sigma=ones (2∗N+2∗n+1) ;

8

9 end


