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Summary

Ambit fields are a class of tempo-spatial stochastic processes that have been intro-
duced for the purpose of modeling velocities in turbulent particle flows. The main
contribution of this thesis is establishing limit theorems in the high frequency frame-
work for a class of zero-spatial ambit processes called Lévy semi-stationary processes.
These processes are of moving average type, driven by a pure jump Lévy process
which is modulated by a stochastic volatility factor.

We establish the first order limit theory for power variations based on kth order
increments of Lévy semi-stationary processes. The limiting behavior turns out to
be heavily dependent on the interplay between the considered power, the order of
increments k, the Blumenthal-Getoor index (8 of the driving Lévy process and the
behaviour of the kernel function of the moving average at 0, which is specified by
the power a. Our results can be used for statistical inference, in particular, they can
be used to estimate the model parameters o and 8. A natural generalisation of the
power variation functional is obtained by applying an arbitrary continuous function
f on kth order increments of the process. For this type of functionals the first order
limit theory is investigated, when applied to stationary increments moving average
processes, i.e. Lévy semi-stationary processes with constant volatility factor. In this
framework we also prove a second order limit theorem, when the function f is bounded
and the driving Lévy process is symmetric S-stable. Depending on the interplay of &,
B and «, we obtain either a central limit theorem or convergence to a (k — o) 8-stable
random variable. From a mathematical point of view, this part of the thesis extends
the asymptotic theory investigated in the recent publication [20], where the first and
partial second order limit theory for power variations of stationary increments Lévy
driven moving averages have been studied.

In the last part of the thesis we develop and implement a simulation scheme for a
certain class of spatial ambit fields often referred to as volatility modulated moving
averages. Our technique of simulation is especially aimed at recovering the fine scale
properties of the field correctly, and we demonstrate that it outperforms several other
simulation schemes in that regard. The asymptotic behaviour of the mean square
error of the simulation scheme is derived. The scheme relies on approximating the
kernel function in the moving average representation partially by a step function
and partially by a power function. For this type of approach the authors of [24],
who considered a comparable model in one dimension, coined the expression hybrid
simulation scheme.






Dansk sammenfatning

Ambit processer er en klasse af tids- og rumafheengige stokastiske processer som er
blevet introduceret med formalet at modellere hastigheder af turbulente partikel-
stromninger. Hovedbidraget fra denne afthandling er resultater om store tals love
og stabile greenseveerdissetninger i det hgjfrekvente tifeelde, for en klasse af ambit
processer kaldet Lévy semistationaere processer. Disse processer er af typen glidende
gennemsnit, som bliver drevet af en springfarlig Lévy process, hvor volatiliteten bliver
pavirket af en stokastisk process.

Vi etablerer resultater om fgrste ordens graensessetninger for potens variation
baseret pa k-ordens tilvaeksterne af Lévy semistationzere processer. Opfgrslen af graen-
sevariablen viser sig at veeret dybt pavirket af sammenspillet mellem den betragtede
potens, ordenen k af tilveeksterne, Blumenthal-Getoor indekset § for den drivende
Lévy process og opfgrslen af integranden af det glidende gennemsnit tzet ved 0, som er
specificeret ved potensen «v. Vores resultater kan anvendes til statistisk inferens - mere
praecist kan de bruges til at modellere parametrene « og 5. En naturlig generalisering
af potens variation funktionalet fas ved at anvendes en arbitreer funktion f pa k’te
ordens tilvaeksterne af processen. For denne type af funktionaler viser vi resultater
om fgrste ordens graenseszetninger for glidende gennemsnit med stationgere tilveekster,
svarende til Lévy semistationaere processer med konstant volatilitet. Indenfor denne
ramme beviser vi ogsa en anden-ordens graenseveerdisaetning, hvor funktionen f er be-
greenset og den drivende Lévy process har en symmetrisk S-stabil fordeling. Afheengig
af sammenspillet mellem &, 8 og «, opnar vi enten en central greenseveerdiseetning eller
en konvergens til en (k — «)S-stabil stokastisk variabel. Fra et matematisk synspunkt
udvider denne del af athandlingen de nyere resultaterne fra artiklen [20], hvor forste-
og andens-ordens gransesatninger for potens variation af glidende gennemsnit, med
stationeere tilvaekster drevet af en Lévy process, er blevet studeret.

I den sidste del af athandlingen udvikles og implementeres en simulationsalgoritme
for en bestemt klasse af rumlige ambit processer - ofte refereret til som volatilitetsmod-
ulerede glidende gennemsnit. Algoritmen approksimerer kernefunktionen i glidende
gennemsnit’s repraesentationen med en kombination af en trappefunktion og en potens-
funktion. For denne type af approksimation har forfatterne i [24], som studerede en
sammenlignelig model i en dimension, navngivet metoden hydrid simulationsalgo-
ritme. Vores simulationsalgoritme sigter i seerlig grad mod at reproducere opfgrslen
af processen pa mikroniveau, og vi demonstrerer at dette ggr algoritmen bedre end
flere andre simulationsalgortimer. Vi udleder den asymptotiske opfgrsel af den gen-
nemsnitlige kvadratiske variation af simulationsalgoritmen.






Chapter 1

Introduction and preliminaries

A little over ten years ago, Ole E. Barndorff-Nielsen and Jiirgen Schmiegel introduced
the model of ambit fields in a series of papers [15, 16]. Their ambitious goal was to
find a stochastic model that accurately captures characteristic features attributed to
the velocity in turbulent flows, based on physical laws and measurements. Among
these features are violent spontaneous changes in velocity and energy dissipation, i.e.
the amount of kinetic turbulence energy transformed into heat by viscosity on small
scales. Mathematically, an ambit field is a stochastic process, indexed by space and
time, defined by the formula

X, (z) = /A 05,200, Lids,de) + / o(t,5, 7, 6)ay(€) dsde,  (L1)

Dy (z)

where L is a Lévy basis, to be defined in Section 1.3. The random value X;(x) models
the turbulent velocity vector field at time ¢t € R and location in space x € R%. The
sets A;(x) and Dy(z) resemble the area of space-time governing the velocity at (¢, z),
and are called ambit sets, giving the name to the model (the word ‘ambit’ comes from
Latin and means ‘sphere of influence’). The weight functions g and ¢ are deterministic,
whereas o and a are stochastic processes representing aspects of the intermittency of
the turbulence velocity field, which can be thought of as a measure for the local energy
dissipation.

Ever since its introduction, ambit stochastics has been a rapidly expanding re-
search field. The flexibility of the model quickly led to a range of applications beyond
turbulence such as bioimaging, finance or metereology, examples being [6, 56, 67].
Recent reviews focusing on different aspects of ambit fields are [7, 13] and [69]. Due
to the complexity of the model, much of the research so far focuses on one dimensional
analoga of (1.1). Examples for such ambit processes can be obtained by observing an
ambit field along a parametrised curve (¢,2(t)) or by considering zero spatial ambit
fields such as Lévy semi-stationary (LSS) processes. A Lévy semi-stationary process
is defined as

Xi= [ ot =9~ w9} dL. (1.2)
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where g, go are deterministic functions, o is stochastic and L is a Lévy process. Papers
I and II of this thesis investigate the limit theory for these processes in the high
frequency setting, when the driving Lévy process is a pure jump process. In Paper I
we consider the realised power variation of X based on kth order increments, defined
as

[nt]

and derive its asymptotic behavior for n — co. Here [z] denotes the integer part of z,
and the kth order increments AZ,CX are defined as

A”kX Z ( ) (i—j)/n> for ¢ > k.

In particular, A7} X = X: — X 1 are the increments of the process, and A"} X =
Al (X — A, 1Xfork:>1

Over the last decade the limit theory of realised power variations has been an
active field of research for a variety of stochastic processes. We refer to [18, 12] for
the limit theory of It6 semimartingales, to [8, 10] for a class of Gaussian processes,
including fractional Brownian motion, and to [32, 33] for the Rosenblatt process. In [9]
the authors derive the limit theory for power variations of Brownian semi-stationary
processes, which is the model (1.2) driven by a Brownian motion. In Paper I we
present the first order limit theory for the power variation of LSS processes driven
by a pure jump Lévy process. From a mathematical point of view this extends the
asymptotic theory derived in [20], where the authors consider stationary increments
Lévy driven moving averages, which is the model (1.2) with constant volatility o. It
turns out that the limiting behavior of V(p; k) is divided into three different regimes,
depending on the choice of p and k as well as on the Blumenthal-Getoor index (5 of
the driving Lévy process and the behavior at 0 of the kernel function g, specified by
the power . We demonstrate that our results can be used to estimate o and 3 and
the relative intermittency, which for p = 2 describes the relative amplitude of the
velocity process on a fixed interval.

A natural generalisation of the realised power variation are functionals of the form

[nt]

faan (bn A7 X (1.3)

where f is a deterministic function, and (a,)nen and (b, )nen are suitable normalising
sequences. In Paper II we present the first order limit theory for such functionals,
when X is a stationary increments Lévy driven moving average and the function f is
continuous. Also in this framework the limiting behavior depends on the Blumenthal-
Getoor index of the driving Lévy process L and the behavior of g at 0, as well as on
certain properties of the function f. Moreover, we derive the second order asymptotics
for one of the occurring cases, when the function f is bounded and has Appell rank
greater than one.
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Papers I and II of this thesis can be interpreted as a stepping stone on the road
to understanding the limit theory for ambit fields. However, the model (1.2) is not
only of high interest from an angle of ambit stochastics. The class of LSS processes
contains as an important example linear fractional stable motions. This is the model
(1.2) driven by a symmetric S-stable Lévy process, with o = 1 and ¢(t) = go(t) =
max(t,0)* for some o € (—1/8,1—1/5)\{0}. These processes are self-similar of index
H = a+1/p and are a natural generalisation of the fractional Brownian motion, which
is the linear fractional stable motion with 8 = 2. There is a wide range of literature on
linear fractional stable motions and recent research addresses various topics such as,
among others, semimartingale property [22], fine scale behavior [23, 40], simulation
techniques [35] and statistical inference [4].

In Paper III we present and implement a simulation technique for purely spatial
ambit fields of the form

X(o) = [ o= oW, 2er

where W is Gaussian white noise on R2. When the kernel ¢ has a singularity at 0,
the order of the singularity governs the roughness of the sample paths. The challenge
in simulating X is to accurately recover the roughness while also capturing global
properties of the model X. This can be achieved by using a hybrid simulation scheme
that approximates the kernel g by a power function around 0, and by a step function
away from 0. This idea is motivated by [24] where the authors propose a hybrid scheme
for simulating Brownian semi-stationary processes, i.e. the model (1.2) driven by
Brownian motion. We derive the asymptotic mean square error of the hybrid scheme
and demonstrate in a simulation study that it outperforms other simulation methods
in recovering the roughness of the field X.

In the remainder of this chapter we give some mathematical prerequisites that are
essential for the results and proofs presented in this thesis. First we introduce our
probabilistic setting and recall the main results of [20], which are an essential funda-
ment for the theory and results presented in Papers I and II. Thereafter, in section
1.2, we give preliminaries for the proof of functional limit theorems and give some
details on the Skorokhod M;i-topology. In section 1.3 we discuss the definition and
important estimates for stochastic integrals with respect to Lévy processes. Section
1.4 summarises the key ideas and the intuition behind the proofs presented in Papers
I and II.

1.1 Limit theory for Lévy driven moving average processes

In this section we introduce our basic assumptions and some notation. Thereafter we
recall the limit theory for the power variation of stationary increments Lévy driven
moving average processes presented in [20], which forms an essential prerequisite for
Paper I and II of this thesis.

Let (Q, F, (Fi)ier, P) be a filtered probability space. A Lévy process on the real
line is an adapted process (L;):cr with stationary independent increments and cadlag

S

sample paths (the French acronym “cadlag” stands for right continuous with left limits



4 Chapter 1. Introduction and preliminaries

— continue & droite, limite & gauche). We remark that the independence of increments
is to be understood with respect to the filtration (F;)¢cg which might be larger than
the filtration generated by L, i.e. L; — Ly is independent of F; for all s < t. For
simplicity we assume Lg = 0.

The Blumenthal-Getoor index of L is defined as

1

B :=inf {7" >0: [1 |z|" v(dx) < oo} € [0,2],

where v denotes the Lévy measure of L. Intuitively, this index measures the con-
centration of the small jumps of L. For example is § = 0 when L has only finitely
many jumps on bounded intervals. It is well-known that > ¢ 1 [ALs[ is finite when
p > B, while it is infinite for p < 8. Here ALy = Ly — Ly— where Ly_ = limyps, u<s Lu-
For a stable Lévy process with index of stability 5 € (0,2), the Blumenthal-Getoor
index matches the index of stability and both will be denoted .

Throughout this thesis, we will assume L to be a symmetric pure jump Lévy
process, i.e. L has zero drift and no Gaussian part and its Lévy measure satisfies
v(—A) = v(A) for all A € B(R). The functions g and go in (1.2) are assumed to
satisfy the following conditions, introduced in [20].

Assumption (A): The function g: R — R satisfies
g(t) ~ cot® ast 0 for some a >0 and cy # 0,

where g(t) ~ f(t) as t L 0 means that limso g(t)/f(t) = 1. For some 6 € (0,2],
limsup,_, . v(z: |z| > t)t? < 0o and g — go is a bounded function in L°(R.). PFur-
thermore, g is k-times continuously differentiable on (0,00) and there exists a 6 > 0
such that |g®) (t)| < Ct*=* for all t € (0,6), and such that both |g'| and |g™*)| are in
LY((8,00)) and are decreasing on (3,00).

The volatility process o (in the ambit framework usually called intermittency pro-
cess) is assumed to be cadlag and adapted, making the process (0;— );cr predictable.
We recall that a stochastic process is called predictable if it is measurable with re-
spect to the predictable g-algebra on €2 x R, which is generated by all left continuous
adapted processes.

Occasionally, it is necessary to strengthen the condition |¢(®)| € L?((§, 00)) slightly
and assume the following.

Assumption (A-log): In addition to (A) suppose that

/ 10 (5)]? tog(1/1g™) (5)]) ds < .

Assumption (A) ensures, in particular, that the process X with o = 1 is well-
defined, see Appendix A.3 for details. For 0 as in the assumption, the Lévy process
has moments of all orders smaller 6, cf. [78, Theorem 25.3]. When L is a S-stable Lévy
process, we can and will always choose § = 5. Even though the driving Lévy process
is a pure jump process, it follows from the Kolmogorov moment criterion (see [59,
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Theorem 2.23]) that under the conditions above the process X admits a continuous
version. Intuitively speaking, the kernel g smooths out the incoming shocks of the
Lévy process, since it vanishes at 0. Indeed, the sample paths of X are smoother for
larger «, and it is therefore not surprising that the parameter o has major influence
on the limiting behaviour of the power variation. Visual evidence for this smoothing
effect is given in Figure 1.1, where we show examples of Lévy driven moving average
processes.

We now recall the first order limit theory for the power variation of stationary
increments Lévy driven moving averages that was derived in [20]. To this end we
introduce the following notation. Let hy: R — R be given by

k

miw) = Y0 (He-ig, acr

3=0
where y+ = max{y, 0} for all y € R. Let (T},,)m>1 be a sequence of F-stopping times
that exhausts the jumps of (L;)¢>o. That is, {T;n(w) : m > 1} N[0,00) = {t > 0 :
AL (w) # 0} and Ty, (w) # Ty (w) for all m # n with T,,,(w) < co. Let (Up,)m>1 be a
sequence of independent and uniform [0, 1]-distributed random variables, defined on
an extension (', F',P’) of the original probability space, which are independent of

F. For random variables Z, Z;, Z, ... defined on (', F',P’) we denote by Z, a4
the F-stable convergence in law, see Section 1.2 for details.

Theorem 1.1.1 (Theorem 1.1, [20]). Suppose that X = (X;)i>0 s a stochastic
process defined by (1.2) with o = 1, and that Assumption (A) is satisfied. Moreover,
assume that the Blumenthal-Getoor index of L satisfies B < 2. Set V(p; k)" :=
Vp; k)y. We have the following three cases:

(i) Suppose that (A-log) holds if 0 = 1. If « <k —1/p and p > 8 then the F-stable

convergence holds as n — oo

n°PV (pi k)" 53 eol? S |ALg, [PV, (1.4)
m: Ty, €[0,1]

where Vi, = > 120 [hie(U+ Uy, ) 7.

(i) Suppose that L is a symmetric B-stable Lévy process with scale parameter v > 0.
Ifa <k—1/8 and p < B then it holds

n PO By () By

where my, = |coPAP([p |hi(2)|P dz)P/PE[|Z|P] and Z is a symmetric B-stable
random variable with scale parameter 1.

(iii) Suppose that p > 1. If p = 0 suppose in addition that (A-log) holds. For all
a>k—1/(BVp) we have that

1
Y (s / Ful? du,
0
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Figure 1.1: Realisations of the model (1.2) with constant volatility. The first row
shows the driving Lévy process, row two and three show a Lévy driven moving average
process X with @ = 0.2 and o = 0.5, respectively. In the first column, the driving
Lévy process is symmetric -stable with 5 = 1.2 and in the second it is symmetric
[-stable with f = 1.8. When the driving Lévy process has a jump that is much
larger than the jumps surrounding it, the shape of the kernel function g at 0 becomes
visible. The smoothing effect of the kernel, which becomes stronger as « increases, is
apparent.
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where (Fy)yer s a version with measurable sample paths of the process defined
by
F, = / g (u—s)dLy a.s. for all u € R,

— 00

which necessarily satisfies fol |Fu|P du < oo, almost surely.

For a (-stable driving Lévy process and for p > 1, these three cases cover all
possible configurations of «,3,p and k except the critical cases p =  and a =
k—1/(8V p). The limit theory for the latter is discussed in [21].

In Paper I we extend this result to include a nontrivial volatility factor . We
remark that, in contrast to the Brownian setting, the extension of Theorem 1.1.1 to
Lévy semi-stationary processes is a more complex issue. This is due to the fact that
it is harder to estimate various norms of X and related processes when the driving
process L is a Lévy process. Our estimates on X rely heavily on decoupling techniques
and isometries for stochastic integral mappings presented in the book of Kwapién and
Woyczyniski [61], which we will recall in Section 1.3. Moreover, we show functional
convergence of the power variation — with respect to the Skorokhod M;j-topology in
case (i) and uniform on compacts in probability in cases (ii) and (iii). See Section 1.2
for details.

In Paper II we consider more general variation functionals of the form (1.3) for
continuous functions f. In this situation also three cases occur that are related to
the three cases in Theorem 1.1.1. Which case applies depends not only on properties
of the function f but also on the chosen normalising sequences (a,)nen and (by)nen-
In particular, for a fixed function f the variation functional (1.3) can converge to
different limits for different normalising sequences. We also derive a second order
limit theorem related to case (ii) when the function f is bounded. When oo < k—2/5,
a central limit theorem applies, and for « € (k —2/8,k — 1/3) we show convergence
towards a (k — «)f-stable random variable. This result relates to the second order
asymptotic for the power variation for Lévy driven moving average processes derived
in [20, Theorem 1.2].

1.2 Functional limit theorems and the Skorokhod
M;-topology

In this section we give preliminaries for the proof of functional convergence in Theorem
1.1.1 and its generalisations. In particular, we recall the notion of stable convergence
and the definition and basic properties of the Skorokhod M;-topology, which will be
used in the functional version of Theorem 1.1.1 (i).

Theorem 1.1.1 shows the convergence of the sequence of real random variables
V(p; k)7, where t > 0 is fixed, under proper normalisation. More precisely, it only
considers the case t = 1, but generalising it to arbitrary ¢ > 0 is straightforward.
However, the functionals (V(p; k)})>0 and (V(f; k)7 )i>0 define stochastic processes
with cadlag sample paths, and it is natural to ask whether they converge as processes
to a limiting process, i.e. whether the limit theorem holds functional. To this end
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we need to define notions of convergence for cadlag processes, or equivalently, define
metrics on the space D = D(R4,R) of cadlag functions from R, into R.

One mode of convergence on D is uniform convergence on compacts in probability,
which will be denoted by —<25. For cadlag stochastic processes Z, Z', Z2,... we have

u.c.p.

Z" —— Z if for all € > 0 and all C' > 0 it holds that
P(| 2" = Z||c,c >€) =0, asn— oo,

where || ||c,00 denotes the supremum norm on [0, C]. Equivalently, u.c.p.-convergence
can be defined as convergence in probability of D-valued random variables if D is
equipped with a metric that metrises uniform convergence on compact sets, e.g.
duc(f,9) = 20127 (LA |If = glljo,n),00)- The following proposition is well known
and the proof is straightforward, see [54, Equation (2.2.16)].

Proposition 1.2.1. Let Z™ be a sequence of increasing processes in D(R4;R), such

that Z}} N Zy for all t in a dense subset of Ry. If the limiting process Z is contin-

u.c.p.

uous, it follows that 2™ —— Z.

This proposition indeed implies easily that the convergence in Theorem 1.1.1 (ii)
and (iii) holds uniformly on compacts in probability, as was already remarked in [20].
See Theorem I.1.1 for details.

The situation is much more complicated in the framework of Theorem 1.1.1 (i),
where the limit is not continuous and the convergence is stably in law. Let us briefly
recall the definition of stable convergence, which was originally introduced in [72]. For
a detailed treatment of the topic we refer to [49]. Consider a measurable space (£, F)
and a Markov kernel K : QxF — [0, 1], i.e. a mapping such that K (-, B) : Q — [0,1] is
measurable for all B € F and K (w, -) is a probability measure on (€2, F) for all w € .
We obtain a probability measure P’ on the measure space (€, F') = (2xQ, F& F) by
setting P’ (dw, dw) = K (w, dw)P(dw). Random variables defined on (€2, F,P) extend to
(€, F',P’) in the usual fashion, and we identify F with the sub o-algebra F ® {0, ﬁ}
of F'. Let (E, &) be a Polish space, i.e. a separable complete metric space, equipped
with its Borel g-algebra.

Definition 1.2.2. A sequence Z,, of E-valued random variables defined on (2, F)

converges JF-stably in law to Z defined on the extension (', '), denoted Z, £ Z,
if it satisfies one of the following two equivalent conditions.

(S1) For all real valued F-measurable random variables Y € L'(Q) and all bounded
continuous functions g : £ — R it holds that

Elg(Zn)Y] = Eg(2)Y],

where E’ denotes the expectation on the probability space (Q', F/,P').

(S2) For all F-measurable random variables Y the joint convergence in law (Z,,Y) N

(Z,Y) holds.
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Clearly, stable convergence in law implies convergence in law. Conversely, it is
implied by convergence in probability, i.e. Z™ .z implies Z™ £ g , which follows
easily from (S2). When both Z,, and Z are F-measurable Z, Sy , is equivalent to

Zn, %y Z. The main advantage of stable convergence over convergence in law is the
following desirable property, see [49, Theorems 3.17, 3.18]. For sequences (Z,)nen and
(Y,)nen of F-measurable random variables with Z,, £7¢ 7 and Y, 4 ¥ it holds that
(Z,,Y,) N (Z,Y). This property is often useful for statistical applications, since in
many frameworks it holds that Z, £, 7 and the limiting distribution depends on an
unknown random quantity Y. The stable convergence 7, £7% 7 then allows, roughly
speaking, to replace Y by a consistent estimator.

In order to show functional stable convergence in Theorem 1.1.1 (i), we now need to
choose a metric on D. The metric dyc of uniform convergence on compacts introduced
above is not a good candidate, since the limiting process Z is not continuous and the
approximating sequences V (p; k)™ and V(f; k)™ do not jump at the same times as Z.
For characterising convergence of cadlag functions to a discontinuous limit, Skorokhod
[79] introduced 4 different topologies on the linear space D(R4; R), which are typically
called the Ji-, Js-, M1- and Ms-topology, all of which can be given by a metric. The by
far most popular one is the Ji-topology, which is also the strongest, i.e. convergence
with respect to J; implies convergence with respect to the three other topologies.
However, it can be shown that the convergence in Theorem 1.1.1 (i) does not hold
functional with respect to the J;-topology, see Appendix A.1. We prove that it holds
with respect to the M;-topology, which we introduce next. Some details to the other
topologies are given in Appendix A.1.

In order to define the M;-metric, we first consider a finite time horizon 0 < t,, < 00
and consider for a function f € D([0, too]; R) the completed graph, which is the subset
of R? obtained by ‘filling in the jumps of f, i.e.

Iy={(t,z) €[0,t0) xR : z =af(t—) + (1 — a)f(t), for some a € [0,1]}.

For a visualisation of the functioning of the Mj-metric consider two functions f,g €
D([0,tx]; R), and imagine two ants positioned at the starting points of the completed
graphs 'y and 'y, i.e. at the points (0, f(0)) and (0, ¢(0)) in R%. We now let the ants
walk on the graphs, but forbid them to change directions, so they are only allowed
to walk forward. If the two ants can find a way to walk the graphs to the end, i.e.
10 (too, f(teo)) and (feo, g(tso)) respectively, without ever being further apart than e
(in R?), then it holds that the Mj-distance of f and g is smaller or equal ¢ (in D).
See Figure 1.2 for an example. More formally, a parametric representation of f is a
continuous bijection ¢ : [0,1] — I'y with ¢(0) = (0, f(0)). Denoting by II(f) the set
of parametric representations of f, the M;-metric is defined as

dMl(f17f2): inf {||¢1_¢2||00}7

@i EIL(f4)
i=1,2

where for a function ¢ : [0,1] — R?, ¢(t) = (u(t),r(t)) we denote [|¢|loo := sup,eo,17{|u(t)|V
|7(t)|} (most ants prefer to measure distances in the maximum metric on R?). It is not
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Figure 1.2: Examples for convergence in J; and M;. The functions plotted in blue
converge to the function 1[; /1, plotted in green if the sequences (a,), (b,) and (c,)
are chosen such that a,, — 0 and b, ¢, — 1/2. The first plot shows J;-convergence
(which implies Mj-convergence), in the second plot we have only M;j-convergence.
The dashed lines show the completed graphs. See Appendix A.1 for definition and
examples of Jo- and Ms-convergence.

difficult to show that dps, indeed defines a metric. The M;i-topology is weaker than
J1, i.e. every sequence that converges in Jy, converges in M; as well. A typical exam-
ple for convergence in M; but not in J; is a monotonic staircase converging to a single
jump, see Figure 1.2. Convergence with respect to M; can be generalised to D(R,; R)
by defining f, — f in (D(R4;R), My) if and only if f, — f in (D(]0,¢];R), My) for
all ¢ > 0 such that f is continuous at ¢.

Since it is given by a metric, the Mi-topology can alternatively be defined by
characterising convergence of sequences. This characterisation is often more conve-
nient and will be used throughout our proofs. A sequence f,, of functions in D(R;; R)
converges to f € D(R,;R) with respect to the Skorokhod Mj-topology if and only if
fn(t) = f(¢) for all ¢ in a dense subset of [0, 00), and for all ts € [0, 00) it holds that

limlimsup sup w(fp,t,6)=0.
510 nooo 0<t<teo

Here, the oscillation function w is defined as

w(f,t,6) = sup {1f(t2) = [f(t2), F(E3)]I},
OV (t—=08)<t1 <te<tz<(t+0)Atoo

where for b < a the interval [a, b] is defined to be [b, a], and |a—[b, c]| := infyep, ¢ la—d].
We remark that stochastic process convergence with respect to M;, but not with
respect to Jq, is a rare phenomenon in the literature, examples being [3, 60] and [86].

We conclude this subsection by sketching the typical approach to proving stable
convergence of a sequence of processes Z" in the M;-topology, which will be denoted
Zn £ty 7 This technique is almost identically used to show convergence with
respect to the Ji-topology and is discussed in detail in [27], see also [54, 87]. The
key idea is that Z™ —M1=*4 7 i equivalent to (Z™)nen satisfying the following two
conditions.
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(i) The sequence (Z™),en is tight in (D(R4+;R), day, )-

(ii) The finite dimensional distributions converge stably in law, i.e. for all ¢, ...,t5 >
0 we have the joint stable convergence in distribution of R? valued random
variables

n ny £L—s
(Zt17"'7th) —>(Zt17'--7th)'

Recall that a sequence of random variables (Z™),cy with values in a metric space
(E, &) is called tight if for all € > 0 there is a compact set K C E such that P(Z" €
K) > 1 — ¢ for all n. The justification that it is sufficient to show (i) and (ii) above
is the following corollary to Prokhorov’s theorem.

Corollary 1.2.3. ([27, Theorem 5.1]) Let (E, &) be a Polish space, and (Z™)nen be
a sequence of (E,E)-valued random variables. Then (Z™)pen is tight if and only if
every subsequence of (Z™)nen has a weakly convergent subsequence. If moreover the
limit of every weakly convergent subsequence of (Z™)nen must be Z, it follows already
that Z™ converges in law to Z.

We remark that the space D equipped with the M;-topology is indeed Polish, see
[87, Section 12.8]. The convergence of the finite dimensional distributions (ii) implies
that the limit of every weakly convergent subsequence of (Z™),cn must be Z, see [27,
Theorem 13.1] and [87, Theorem 11.6.6]. This argument is easily generalised to stable
convergence in law by using (S2) of Definition 1.2.2.

1.3 Integration with respect to Lévy processes and
Musielak-Orlicz spaces

In this section we give an overview of stochastic integration with respect to Lévy pro-
cesses and infinitely divisible random measures, and present several estimates for Lévy
integrals. When proving limit theorems for a Lévy driven process Y; = ffoo Fi sdLs,
it is essential to have sharp control on the order of magnitude of increments

t+A
Yiea — Y, = / (Frons— Fialpen)dls,  as A0,
— 00

Typically, it is much easier to control the order of magnitude of the integrand Fi A s—
Fy s1(4<4y. Therefore, a crucial ingredient to our proofs are several isometries for the
integral mapping F' — fioo Fi sdLs that we present below. These estimates were
derived by Rajput and Rosinski [71] for deterministic integrands, and by Kwapién,
Rosiniski and Woyczyniski [61, 75] for predictable integrands. They play a similar
role for our proofs as Burkholder’s inequality plays for proofs of limit theorems for
processes driven by Brownian motion, e.g. continuous Ito semimartingales. In our
framework, however, an application of Burkholder’s inequality is not possible as the
Lévy process does not necessarily have sufficiently high moments.

Consider a o-finite measure space (A, A, p1), for our purposes mostly (R, B(R), \),
and let A, denote the sets in A of finite measure. An independently scattered infinitely
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divisible random measure on A is a collection of real valued random variables {A(A) :
A € A} satisfying the following properties

1. For {A,}nen C Ay with |, A, € Ay it holds that A, An) = Y o A(An),

n=1
almost surely.

2. For disjoint sets { A, }nen C Ap the random variables {A(A,,)}nen are indepen-
dent.

3. For all A € Ay, the law of A(A) is infinitely divisible.

A Lévy basis on R%, as used in the definition of ambit fields (1.1), is an independently
scattered infinitely divisible random measure that is stationary in the sense that
A(A) 4 A(A + ) for all x € R% A popular example of a Lévy basis is Gaussian
white noise on R?, see Paper III. For simple functions f : A — R of the form
f= ZLI a;1 4, where a; € R and A; € A;, the stochastic integral is then defined as
on fdA =370 a;A(A; N Ap) for any A € A.

Taking limits in probability, the integral can be extended to the class L, (dA) of
all (nonrandom) functions f : A — R such that there exists a sequence of simple
functions (fy,)nen with

(i) fn — f p-almost everywhere and
(i) [ A, fndA converges in probability for all Ay € A.

For f € L, (dA), the integral on fdA is then defined as P-lim,,_ o on fndA, which
does not depend on the choice of the approximating sequence (f,), as was demon-
strated in [84]. In [71], the authors derived a more explicit equivalent definition for
the class of integrands L, (dA), see Theorem 1.3.2 below.

We are mostly interested in the case (A, A,u) = (R,B(R),\) where A denotes
the Lebesgue measure and the independently scattered infinitely divisible random
measure is generated by a pure jump symmetric Lévy process. More precisely, given
a Lévy process L on the real line and letting A((a,b]) = Ly — L, for a < b, A extends
uniquely to a random measure on (R,B(R),\) by a standard argument, cf. [58,
Theorem 3.4]. In this framework, the discussed integration theory can be extended
to include predictable integrands. This extension relies on the use of decoupling
inequalities and a complete account can be found in the monograph [61].

In order to derive continuity and isometry properties of the integral mapping, the
space of integrands L, (dL) (and certain subspaces) need to be equipped with topolo-
gies induced by normlike functionals called modulars. We recall now the definition
and some basic properties of modulars. A detailed account can be found in [64].
Let us remark that in the literature there exist several slightly different definitions of
modulars. We follow mostly [61] and [64].

Definition 1.3.1. Let E be a linear space over R. A function ® : £ — [0,00] is
called a modular on E if it satisfies the following conditions

(i) ®(e) =0 if and only if e = 0.
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(ii) For any e € FE the function R — [0,00],¢ + ®(te) is continuous, even and
nondecreasing on R .

A modular is of moderate growth if it additionally satisfies
(iii) There is a finite constant C such that ®(e+ f) < C(®(e)+P(f)) for alle, f € E.
It is 0-convex if it satisfies

(iv) For any e, f € E and o, > 0 with o + 8 = 1 it holds that ®(ae + Sf) <
O(e) + D(f).

A 0-convex modular of moderate growth defines a topology on E, which is deter-
mined by the condition that e,, converges to e if ®(e, —e) — 0. It is often convenient
to work instead with either of the two following regularized modulars, both of which
induce the same topology as P,

llelle :=inf{t >0 : ®(e/t) <1}, or |le||s :=inf{t >0 : ®(e/t) <t}

The modular ||-||¢ is of moderate growth and is homogeneous, i.e. it satisfies ||te|l¢ =
[t||le|le for all t € R and e € E. It is not necessarily 0-convex and does not necessarily
obey the triangle inequality. However, if ® is convex, then || - ||¢ is a norm, and
is called the Luxemburg norm, see [64, Theorem 1.5]. This is used in Proposition
1.3.4 below. The modular || - ||, on the other hand, is an F-norm, i.e. it obeys
the triangle inequality and satisfies || —e[|s = [|e[lls, but is not homogeneous. In
particular, d(e, f) = ||le — f||l4 defines a metric on E. It can be shown that for a 0-
convex modular ® of moderate growth the conditions d(e,,e) — 0 and ®(e, —e) — 0
are equivalent, cf. [64, Theorem 1.6]. Since in metric spaces the topology is completely
determined by characterising convergent sequences, this justifies our definition of the
topology induced by ®. For further details about the modulars | - ||¢ and || - || we
refer to [63] and [61, Chapter 0.7].

Now let L be a pure jump symmetric Lévy process with Lévy measure v. For
p € [0,00) and measurable f : R — R define

@, L(f) = . ¢p(f(s)u) dsv(du), where ¢,(x) = |2[Pl{g>1) + $2]1{|x|§1(}1.5)
Then, the functional @, ;, defines a modular on the space
LE.(dL) :={f : R — R measurable : &, 1(f) < co}.

We show in Appendix A.2 that ®, ; is 0-convex and of moderate growth. The latter
implies in particular that L2 (dL) is a vector space. For p > 0, this type of modular
space is called Musielak-Orlicz space. It is complete with respect to the F-norm
M-l . =1 |||¢,p’L and simple functions are dense in it, cf. [64]. We remark that
for p > 0 the Lévy process L needs to admit pth moment in order for L (dL) to be
nontrivial. The following theorem is a corollary to several results from [71, Section 2
& 3], the proof can be found in Appendix A.2.
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Theorem 1.3.2. (i) A function f is integrable with respect to the Lévy process L
if and only if f € LY (dL), i.e. LY (dL) = L, (dL). Moreover, for any p > 0
the integral [, f(s)dLs is in LP(Q) if and only if f € L (dL).

(ii) Let p >0 and equip LY (dL) with the homogeneous modular || - ||,.L := || - ||l®, .
introduced above. Then, the integral mapping L¥, (dL) — LP(Q), f +— [p f(s)dLs
s a quasi-isometry, i.e. there are constants c, C, depending only on p, such that
for all f € L (dL)

c

P

C dL,
Sl s H / £(s)

/R f(s)dL,

Here and in the following we use for p > 0 and random variables Z the notation
Wz, = ]E[|Z|p]%, which defines a norm when p > 1 and a homogeneous modular
when p < 1.

The following generalisation to predictable integrands is discussed in detail in
[61]. A modular ® on a linear metric space E defines by composition a mapping ® :
LY°(E) — L°([0, ]), where L°(E) and L°([0, 00]) denote the spaces of E- and [0, cc]-
valued random variables, respectively. For p > 0, we define the random Musielak-
Orlicz space

LP(dL) :={F = (Fi)ter € P : @, 1(F) < o0, almost surely},

where P denotes the class of predictable processes. The following result from [61]
generalises Theorem 1.3.2 and will play a key role for our proofs.

Theorem 1.3.3. A predictable process F' is integrable with respect to L if and only
if F € LO(dL). For all p > 1 there are constants ¢, C, depending only on p, such that
for all F € LP(dL) it holds that

] < CE[|F

E[|F|E,] < IEH /RF dL,

porl

This result follows from [61, Theorem 9.1.1], [61, Equation (9.5.3)] and the com-
ments following it. The restriction p > 1 is inherent to the decoupling inequality used
in [61]. In general the modulars || - ||, are much better behaved for p > 1, as they
are equivalent to a norm in this case. This fact will also be essential for some of our
proofs.

Proposition 1.3.4. Assume p > 1. There is a norm || - ||}, , on L} (dL), called the
Luzemburg norm, and constants c¢,C' > 0 such that

cllfllp,e < 1fllp < Clfl e
for all f € LE (dL). The modular || - ||p,z. has the following properties

(i) Homogeneity: For all A € R, f € LE (dL), [|Afllp.c = |IAIfllp.L-
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(i) Triangle inequality (up to a constant): There exists a constant C > 0 such that,
forallm>1 and f1,..., fr, € LR (dL) we have

”fl + 4+ fm| p,L < C(”flllp,L +oee ||fm||p,L)-

(i1i) Upper bound: For all f € LP (dL) it holds that

I£llp.r < @,/7(F) v @)E(f).

The proof is given in Appendix A.2. Properties ((i))-((iii)) obviously continue to
hold, w by w, for processes in LP(dL). Fortunately, the restriction p > 1 becomes
unnecessary when the driving Lévy process L is symmetric S-stable, as we can rely
on an isometry derived in [75]. We use the notation ||Z||goo = supy-o \P[|Z] > A
for an arbitrary random variable Z. In the literature, || - ||,00 is often referred to
as the weak LP-norm, even though it satisfies the triangle inequality only up to a
constant. For p < it holds that | Z]|, < ||Z]|8,00 < (%)1/”\%”,3. In particular, we
can have || Z||g,00 < 0o even though || Z|z = oo, which is for example the case when
Z is (-stable.

Theorem 1.3.5 ([75], Theorem 2.1). Let (L;)ier be a symmetric B-stable Lévy pro-
cess. Then there are positive constants ¢,C > 0 such that for all F in L°(dL) it holds

that
B
CE[/ |F,|° ds] < H/F dL, SCEU |Fy|? ds}
R R 3,00 R

We remark that Theorem 1.3.3 and 1.3.5 consider in the original references only
integrals over a finite time interval, say fg F,dLs;. However, the definition of the
stochastic integral and the estimates of the integral extend to the case of fR FsdL;
in a natural way.

The theory of Lévy integration developed in [61] and [71] is not restricted to

symmetric Lévy processes. For non-symmetric Lévy processes, however, the corre-
sponding modulars become more involved and are much harder to control. As an
example, Assumption (A) is no longer sufficient to guarantee the existence of the
integral (1.2) with ¢ = 1 when the Lévy process is non-symmetric, which is easily
seen by considering a pure drift process L. In Section 1.3 of Paper I we present an
estimate for integrals with respect to non-symmetric Lévy processes that we use in
the proof of Theorem I.1.1.

Finally, let us remark that a general approach to define stochastic space-time in-
tegrals with random integrand as in (1.1) dates back to Bichteler [26] and constructs
the stochastic integral by the Daniell procedure. In the recent publication [31] the
authors derive an explicit characterisation of the class of possible integrands for this
integration theory, which coincides with the class L(dL) when applied to the frame-
work discussed above. This general integration theory can in particular be used to
show the existence of general tempo-spatial ambit fields with stochastic integrand.
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1.4 Methodology of the proofs

The proofs of the generalisations of Theorem 1.1.1 in the articles below contain many
technical details, sometimes making it difficult to grasp the general idea behind them.
It adds to this effect that some of the essential steps of the proof of Theorem 1.1.1
given in [20] can be transferred to the generalisations presented in Paper I and II
in a straightforward manner, and are then referenced rather than repeated. In this
section we explain therefore the intuition and methodology of the proof of Theorem
1.1.1 and discuss some aspects of the generalisation to include nontrivial volatility and
to general variation functionals V'(f; k). We motivate how the limits and convergence
rates emerge, prioritising simplicity over mathematical preciseness. Throughout this
section we denote by X; the model (1.2), and by Y; the same model with o = 1. For
simplicity of exposition we only consider the case k = 1 and we set ATX = AT X
and h := hy. By V(p; X)7 and V (p; V)7 we denote the realised power variation of the
processes X and Y, respectively, and similarly V(f;Y)? denotes the general variation
functional introduced in (1.3).

Theorem 1.1.1 (i)

Let us first remark that the limit in Theorem 1.1.1 (i) is indeed finite almost surely by
the following argument. By mean value theorem there is a constant C' > 0 such that
|h(z)| < C|z|*~! for all 2 € R, implying that |V,,| < C(|Up [P+ 372 I+ U,y |(@=1P).
Since (a—1)p < —1 by assumption, the random variables V,,, are uniformly bounded.
It follows that V(p;Y) < C>, .1

m

cjo,1) [|ALT,, [P, which is finite almost surely by the
assumption p > .

Now, let us recall the basic intuition behind the proof of Theorem 1.1.1 (i). We
first discuss the asymptotic distribution of the increments

i/n . .
A;’Y:/ g(z—s>—g<21—s>dLs.
EINSRAN n

In the situation of Theorem 1.1.1 (i) it holds that @ < 1 — 1/p, implying that the
derivative ¢’ explodes at 0. This explosive behaviour dominates the asymptotics of
the increments, and justifies the approximation

A?Y%/ g(zs)g<Z s)dLs.
%71 n n

Although the process L typically has infinitely many jumps on finite intervals, we
assume for simplicity of exposition that 7' € [(j — 1)/n,j/n) is the only jump time
of L within the interval [—1,¢]. Recalling the assumption g(t) ~ cot* for t — 0, we

consider the approximation

ATY ~ AT + B?
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Since T € [(j — 1)/n, j/n) is the only jump time of L, we observe that A? = 0 for all
i # j and B =0 for all 4 < j. More precisely, we deduce that

conLr(1-T)" =0

ALy (B -7) = (H=-1)7) 121
Now, we use the following result, which is essentially due to Tukey [83] (see also [38]
and [20, Lemma 4.1]): Let Z be a random variable with an absolutely continuous

distribution and let {z} := 2 — [z] € [0,1) denote the fractional part of x € R. Then
it holds that

(1.6)

(nZ}y £33 U ~U([0,1)),

where U is defined on an extension of the probability space (Q, F,P) and is indepen-
dent of F. Using j —nT =1 — {nT}, the approximation (1.6) now implies the stable
convergence of scaled increments

nOAYY ES ALy (14 U)) —(1-1+0)%),  1>0. (1.7)

Thus, we obtain the result of (1.4) for one jump time:

[nt] o)
ST oAy P ES BALP S [+ U)g — (- 1+ U)S (1.8)
i=7 =0

In Paper I, where we extend the model to contain a nontrivial volatility factor
o, the formal proof becomes more complicated, but the intuition remains largely the
same. We can follow essentially the same argument as above, replacing dL, by os_dL,
and ALy by op_ALp. This leads us to presume that the limit of the power variation
in the 1 jump scenario above is

o
L—
V(p; X)p =3 | ALyor— [Py |1+ U)F = (1= 1+ U)3]".
1=0
This intuition proves to be correct, as we will show in Theorem I.1.1.

In Paper II we consider the more general variation functional introduced in (1.3)
assuming that o is constant. The intuitive approximations (1.7) and (1.8) above
show that the appropriate choice for the normalising sequences (a,,)nen and (b, )nen
is ap, = 1 and b, = n®. Arguing as above, we then expect the stable convergence in
law

r o0
—S
VYR =3 ) HeodLlr(((+U)F (1 -1+U)%)}-
1=0
The function f needs to satisfy a certain growth condition to ensure that the limit is
finite. See Theorem II.1.1 for details.

Theorem 1.1.1 (ii)

Here we present the intuition behind the proof of Theorem 1.1.1 (ii). We first turn
our attention to the small scale behaviour of the stationary increments Lévy driven
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moving averages Y. Under the conditions of Theorem 1.1.1 (ii), & < 1—1/8 and thus
g’ explodes at 0. Hence, we intuitively deduce the following approximation for the
increments of Y for a small A > 0:

tHA
K&JrA_Yt:/ {g(t+ A —s)—g(t—s)}dLs

— 00

t+A
%/ {g(t+ A —s) — gt — 5)} dLs
t+A—e

t+A
%C(]/ {(t-’-A—S)i—(t—S)i}dLs
t+A—e

t+A _ _
MO/ {(t+A—8)2 — (t—5)%}dLy = Vion — Vi,

—00

where
Toimeo [ ((t=9)% - (=913} dL.,
R

and € > 0 is an arbitrary small real number with £ > A. In the classical terminology
Y is called the tangent process of Y. In the framework of Theorem 1.1.1 (ii), the
process Y is a symmetric fractional -stable motion. We recall that (?t)tzo has
stationary increments and is self-similar with index H = a+1/8 € (1/2,1), i.e.

d
(Yar)ts0 = a (Yy)1>0.

Furthermore, the symmetric fractional S-stable noise (}7,5 —57,5_1)21 is mixing; see e.g.
[30]. Thus, using Birkhoff’s ergodic theorem we conclude that

[nt]

1
VY =S [ Ary ]

=1
| [ N
~ = Z ‘nHA:»"Y‘p
n <
i=1
41 [nt] _ _ » _ _
= E Z ‘Y; — Y;,l‘ — tEHYl — Y0|p] = tmp7

i=1

where m,, is the constant defined in 1.1.1 (ii).
For the generalised variation functional (1.3) we expect by the same arguments
the convergence in probability

V(f;Y)p 5 B[ (Y1 - Yo)l,

with the scaling sequences a,, = n~' and b, = nf, provided f is such that the
expectation exists.

In our first paper we derive the convergence of the realised power variation of the
process X with nontrivial volatility by the following blocking technique. In the first
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step of the proof we freeze o over blocks of length 1/n and replace the power variation

by the functional
[nt]

Vi X)p =Y

i=1

ci-1 ATY|P.
This replacement is justified by the asymptotic equivalence
[P OV (p X =V (0 X)) = 0, (1.9)

which we derive in the proof. Thereafter, we introduce a new step size 1/1 satisfying
1/n <« 1/l < 1, and freeze the volatility at the beginning of each blocks of length 1/1.
More precisely, we consider the functional

(tl]

Vo =Y leal( X 1anp).

j=1 o i1
Z'iE[Jz 7%)

Thereafter , we establish asymptotic equivalence of ‘N/(p; X )?l and V(p; X)? by show-
ing that

Jim Jimsup P(|n? OV (g X)p" = V(ps X)P)| > €) = 0,

—00 n—oo

for all € > 0. Then, applying the limit theorem for the process Y on each block of
size 1/1, we obtain

1] .
plat1/B) =177 (). x\bm P e s P
" UR D DL M S
=
where the second step is convergence of Riemann sums. The integral on the right
hand side is indeed the limit in Theorem I.1.1 (ii).

Remark 1.4.1. The approach of freezing o over blocks of different sizes is quite popular
for extending limit theorems to volatility modulated processes, and has for example
been used for It6 semimartingales [12] and Brownian semi-stationary processes [9],
i.e. the process X driven by a Brownian motion. It is therefore remarkable that this
technique is not applicable in the proofs of Theorem I.1.1 (i) and (iii) for the following
reason. The fundamental idea behind the blocking technique is the approximation

t+A
Xira— X = / {g(t+ A —s) — g(t — s)}ou_dLs

— 00

t+A
SN / g(t+ A —s)—g(t —s)dLs,

for A > 0 small. This approximation is justified if the integrand gains asymptotically
most weight around ¢, which is the case when « is small and ¢’ explodes at 0. Con-
sequently, the blocking technique must fail in the framework of Theorem 1.1.1 (iii),
where we consider large «.
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In the framework of Theorem I.1.1 (i) we assume o < 1 — 1/p and it is therefore
somewhat surprising that the blocking technique is not applicable either. Consider-
ing the one jump scenario and the notation of the last subsection, (1.6) yields the
approximation

i+ 1 o F+1—1 a
A;‘L—HX ~ coor- ALt ((]: — T) — (% — T) ) ~op_AlY,

for [ > 1. The first step of the blocking technique, however, approximates the in-
crement A;.LHX by Oyt A;‘HY ~ UTA;LHY, leading to a different result if o and
L jump at the same time. Consequently, the asymptotic equivalence (1.9), properly
scaled, does not hold.

Theorem 1.1.1 (iii)

In order to uncover the path properties of the process Y we perform a formal differ-
entiation with respect to time. Since g(0) = 0 we obtain a formal representation

t

dY; = g(0)dL; + (/

— 00

gt —s) dLS> dt = Fy dt. (1.10)

We remark that the random variable F; is not necessarily finite under assumption
(A). However, under conditions of Theorem 1.1.1 (iii), the process Y is differentiable
almost everywhere and Y/ = F € LP([0,1]), although the process F' explodes at
jump times of L when o < 1. Thus, under the conditions of Theorem 1.1.1 (iii), an
application of the mean value theorem gives an intuitive proof of (iii):

[nt]

t
-13 N TL: -1i —_ np: p
Blim V(xY)} = Blim =3[Pl = [ 1) du

n— o0 4
i=1

where &' € ((¢ — 1)/n,i/n). This gives a sketch of the proof of the asymptotic result
in Theorem 1.1.1 (iii).

For extending the result to the process X the intuition remains largely the same,
with the process F; replaced by U; = fioo g'(t — s)osdLs. We do not show that the
sample paths of X are differentiable with derivative U but derive a stochastic Fubini
result for Lévy integrals to formalize the idea behind (1.10).

For the variation functional V(f;Y)} the arguments above show that with the
normalizing sequences a,, = n~! and b, = n we can expect

P t
‘wwmeﬁﬂmw

when the function f is such that the integral exists.
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Paper 1

On limit theory for Lévy
semi-stationary processes

Andreas Basse-O’Connor’, Claudio Heinrich! and Mark Podolskij’

I Department of Mathematics, Aarhus University, Denmark

Abstract: In this paper we present some limit theorems for power variation of Lévy
semi-stationary processes in the setting of infill asymptotics. Lévy semi-stationary
processes, which are a one-dimensional analogue of ambit fields, are moving average
type processes with a multiplicative random component, which is usually referred
to as volatility or intermittency. From the mathematical point of view this work
extends the asymptotic theory investigated in [12], where the authors derived the
limit theory for kth order increments of stationary increments Lévy driven moving
averages. The asymptotic results turn out to heavily depend on the interplay between
the given order of the increments, the considered power p > 0, the Blumenthal-Getoor
index 8 € (0,2) of the driving pure jump Lévy process L and the behaviour of the
kernel function g at 0 determined by the power «. In this paper we will study
the first order asymptotic theory for Lévy semi-stationary processes with a random
volatility /intermittency component and present some statistical applications of the
probabilistic results.
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I.1 Introduction and main results

Over the last ten years there has been a growing interest in the theory of ambit fields.
Ambit fields is a class of spatio-temporal stochastic processes that has been originally
introduced by Barndorff-Nielsen and Schmiegel in a series of papers [9, 10, 11] in
the context of turbulence modelling, but which has found manifold applications in
mathematical finance and biology among other sciences; see e.g. [2, 25].

Ambit processes describe the dynamics in a stochastically developing field, for
instance a turbulent wind field, along curves embedded in such a field. A key char-
acteristic of the modelling framework is that beyond the most basic kind of random
noise it also specifically incorporates additional, often drastically changing, inputs
referred to as wvolatility or intermittency. In terms of mathematical formulae an ambit
field is specified via

Xi(z) :,u+/

Ag(x)

olt.5,2.90,(O) Lids.de) + [ glts,z,au()dsde, (LL11)

Dy (z)

where t denotes time while = gives the position in space. Further, A;(z) and D;(x)
are Borel measurable subsets of R x R?, g and ¢ are deterministic weight functions,
o represents the intermittency field, a is a drift field and L denotes an independently
scattered infinitely divisible random measure on R x R? (see e.g. [30] for details). In
the literature, the sets A¢(x) and D;(z) are usually referred to as ambit sets. In the
framework of turbulence modelling the stochastic field (X¢(x));>0, zers describes the
velocity of a turbulent flow at time ¢ and position x, while the ambit sets A¢(z), D¢ ()
are typically bounded.

In this paper we consider a purely temporal analogue of ambit fields (without drift)
(Xt)ier, defined on a filtered probability space (2, F, (F¢)ier, P), which is given as

X, = /_ {g(t — s) — go(—s)}os— dLs, (I1.1.2)

and is usually referred to as a Lévy semi-stationary (LSS) process. Here L = (Ly)ter
is a symmetric Lévy process on R with respect to (F;)ier with Ly = 0 and without a
Gaussian component. That is, for all u € R, the process (Ly4 — Ly ):>0 is a symmetric
Lévy process on Ry with respect to (Fity)e>0. The process (o4)ier is assumed to be
cadlag and adapted to (F;)ter, and g and gy are deterministic continuous functions
vanishing on (—o00,0). The name Lévy semi-stationary process refers to the fact
that the process (X;):er is stationary whenever go = 0 and (o)icr is stationary
and independent of (L;)icr. It is assumed throughout this paper that g, go,o and L
are such that the process (X;) is well-defined, which is in particular satisfied under
the conditions stated in Remark 1.3.3 below. We are interested in the asymptotic
behaviour of the power variation of the process X. More precisely, let us consider the
kth order increments A7, X of X, k € N, that are defined by

k
(kK
AlX = Z(‘UJ (]-)X(ij)/n, where i > k.
=0
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For instance, we have that A} X = X: — Xio1 and AP, X = X —2Xio1 + Xioa.
The main functional of interest is the power variation computed on the basis of kth

order increments: [
nt|

Z ATXPP, p>0. (1.1.3)

At this stage we remark that power variation of stochastic processes has been a very
active research area in the last decade. We refer e.g. to [7, 22, 23, 29| for limit theory
for power variations of Itd semimartingales, to [3, 5, 17, 21, 28] for the asymptotic
results in the framework of fractional Brownian motion and related processes, and to
[16, 34] for investigations of power variation of the Rosenblatt process. The power
variation of Brownian semi-stationary processes, which is the model (I.1.2) driven by
a Brownian motion, has been studied in [4, 6, 19]. Under proper normalisation the
authors have shown convergence in probability for the statistic V(p; k)} and proved
its asymptotic mixed normality.

However, when the driving motion in (I.1.2) is a pure jump Lévy process, the
asymptotic theory is very different from the Brownian case. In the recent work [12] the
power variation of the model (I.1.2) with constant intermittency o has been studied.
The authors showed that the asymptotic behavior of V(p; k)7 is greatly affected by
the Blumenthal-Getoor index (8 of the driving Lévy motion as well as the behavior
of the kernel function g at 0. The goal of this work is to extend the result of [12] to
LSS-processes with nontrivial intermittency process o. Such extensions are important
in applications, say in the framework of turbulence, since the intermittency is often
the main object of interest. Moreover, we show that the convergence holds functional
with respect to the Skorokhod Mj-topology in the setting of Theorem 1.1.1 (i), and
with respect to the uniform norm in the settings of Theorem 1.1.1 (ii) and (iii).

Throughout this article, S denotes the Blumenthal-Getoor index of the driving

Lévy process, which is defined as
1

B = inf {7“ >0: /_1 |x|" v(dx) < oo} € [0,2],

where v denotes the Lévy measure of L. It is well-known that > i [ALs[” is
finite when p > (, while it is infinite for p < 8. Here AL, = Ls — Ly where
Lg_ = limyps, ucs Ly. We recall that for a stable Lévy processes the Blumenthal-
Getoor index matches the index of stability. The authors of [12] impose the following
set of assumptions on g, go and v, which we assume to hold throughout this paper.

Assumption (A): The function g: R — R satisfies limy o g(t)t~* = ¢o for some
a >0 and cog # 0. There is a € (0,2], such that limsup, ,  v(z: |z| > t)t! < co
and g — go is a bounded function in L°(R). Furthermore, g is k-times continuously
differentiable on (0,00) and there exists a § > 0 such that |g™®) (t)] < Ct*=F for all

€ (0,0), and such that both |g'| and |g®| are in L°((6,00)) and are decreasing on
(6, 00).

Assumption (A-log): In addition to (A) suppose that

/ 19 (5)]? tog(1/1g™) (5)]) ds < .
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Assumption (A) ensures, in particular, that the process X with o = 1 is well-
defined, cf. [12]. When L is a S-stable Lévy process, we can and will always choose 6 =
B in assumption (A). In addition to these assumptions we use in our main result the
following integrability conditions on the stochastic process Hy := g(*) (—=8)0s1(—00,—5)(5),
s € R, where ¢ is defined as in assumption (A).
Assumption (B1): There exists p > 0 with p <1 A6 and 5’ > § with 5’ > p such
that

]EK/R(HSV\MHSW')ds)NZ} < . (1.1.4)

For # = 1 suppose in addition that we may choose p < 1 in (I1.1.4).
Assumption (B2): It holds that

E{/R|HS\5ds} < .

For p < 2 it is not difficult to show that (B1) is at least satisfied when we can
choose 6 < 1 in (A), and the intermittency satisfies supse(fooﬁ[;]EHas\lvﬁl] < 0.
Assumption (B2) will only be used in the case where L is a S-stable Lévy motion
(see Theorem L.1.1 (ii) below), and is e.g. satisfied when sup,e(_o _g E[los]?] < oo.
These stronger assumptions are satisfied in many applications, as ¢ is often assumed
to be stationary.

Before we state our main theorem we introduce some more notation. Let hy: R —

R be given by .

hi(z) = Z(—l)j (j) (x—7)%, r €R, (1.1.5)

Jj=0

where y; = max{y,0} for all y € R. Let F = (F;)¢>0 and (T)n)m>1 be a sequence
of F-stopping times that exhausts the jumps of (L¢)¢>o. That is, {T},(w) : m >
1} N[0,00) = {t > 0 : ALy(w) # 0} and T}, (w) # Tp(w) for all m # n with
Ti(w) < oo. Let (Up)m>1 be independent and uniform [0, 1]-distributed random
variables, defined on an extension (', F',P’) of the original probability space, which
are independent of F. By (ID)(R+; R), Ml) we denote the Skorokhod space of cadlag
functions from R, into R, equipped with the Skorokhod Mj-topology, making it a
Polish space. The M;-topology was originally introduced in [33]. We give a definition
in Section I.4, a detailed account and many properties can be found in [35]. For
stochastic processes Z", Z with cadlag sample paths that are defined on (', F’), we
denote by Z" —SM1=*, 7 the functional F-stable convergence in law with respect
to the M;-topology. That is, Z" —*1="4 Z means that E'[¢(Z")Y] — E'[¢(Z)Y]
for all bounded continuous functions ¢ : (D(Ry;R), M;) — R, and all bounded F-
measurable Y, where E’ denotes the expectation on the extended space (', F/,P').
By —“2% we denote uniform convergence on compact sets in probability. That is,
(ZM) >0 —2% (Z4)i>0 as m — 0o means that P(supseqo,ny 121" — Zit| > €) — 0 for all
N eNand all € > 0.

The following extension of [12, Theorem 1.1], to include a non-trivial o process
and functional convergence, is the main result of this paper.



32 Paper I. On limit theory for LSS processes

Theorem I.1.1. Let X = (Xy)i>0 be a stochastic process defined by (1.1.2). Let (A)
be satisfied and assume that the Blumenthal-Getoor index satisfies f < 2.

(i) Suppose that (B1) holds and if @ = 1 assume additionally that (A-log) is satisfied.
Let « <k—1/p, p> B and p > 1. Then, as n — oo, the functional F-stable
convergence holds

nPV(p; k)i =20 (e Y |ALg, o0, - [PV
m: T, €[0,¢]

where Vi, = 3150 [hie(U+ Uy, ) P

(i) Suppose that L is a symmetric 3-stable Lévy process with 8 € (0,2) and scale
parameter v > 0. Suppose that (B2) holds and that « < k — 1/8 and p < 8.
Then as n — oo

n71+p(a+1/5)v(p’ u)mp/ |Us| ds,

where my, = |co|PAP ([ [hi(2)|? dx)P/PE[|Z|P], where Z is a symmetric B-stable
random variable with scale parameter 1.

(iii) Suppose that (B1) holds, 8 > 1, a >k —1/(BV p) and p > 1. If p =0 assume
additionally that (A-log) is satisfied. Then, as n — oo,

t
n~ PR (p; k)p 2o / |Fy|P du,
0

where (Fy)yer 18 a version with measurable sample paths of the process defined
by
F, = / g(k) (u—8)os—dLs a.s. for allu € R,

— 00

which necessarily satisfies fot |F.|P du < oo, almost surely.

Under the integrability assumptions (B1) and (B2), Theorem I.1.1 covers all pos-
sible choices of « > 0,8 € [0,2) and p > 1 except the critical cases where p = £,

=k—1/por @« = k—1/8. The two critical cases « = k — 1/p, p >  and
a=k—1/B, p < have been studied in [13] in the case o = 1. We conjecture that
analogous results hold for LSS processes with non-trivial intermittency component,
but will not pursue this theory in the paper.

First order asymptotic theory for Lévy semi-stationary processes can be used to
draw inference on the parameters «, 5 and on certain intermittency functionals in
the context of high frequency observations, see Section 1.2. Furthermore, this type of
limit theory is an intermediate step towards asymptotic results for general ambit fields
of the form (I.1.1). We remark that, in contrast to the Brownian setting, extending
the first order limit theory presented in [12] to Lévy semi-stationary processes with
non-trivial ¢ is a more complex issue. This is due to the fact that it is harder to
estimate various norms of X and related processes when the driving process L is a
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Lévy process. To this end, we rely heavily on decoupling techniques and isometries for
stochastic integral mappings presented in the monograph [26] and [31], see Section 1.3
for more details.

This paper is structured as follows. Section 1.2 is devoted to various statistical
applications of our limit theory. In Section 1.3 we discuss properties of Lévy integrals
of predictable processes and recall essential estimates from [26] for those integrals.
All proofs are demonstrated in Section 1.4.

1.2 Some statistical applications

We start this section by giving an interpretation to the parameters a > 0 and g €
(0,2). Let us consider the linear fractional stable motion defined by

Y; = Co/R{(t —5)¢ — (—s)3}dLs,

where L is symmetric 8-stable, and the constant ¢y has been introduced in assumption
(A). It is well known that the process (Y;);>o is well defined whenever H = a+1/8 <
1. Furthermore, the process (Y;)¢>o has stationary symmetric S-stable increments,
Holder continuous paths of all orders smaller than o and self-similarity index H, i.e.

d
(Yat);>o = (aHY})tZO for any a € R;.

We refer to e.g. [14] for more details. As it has been discussed in [12, 13] in the
setting o = 1, the small scale behaviour of the process X is well approximated by
the corresponding behaviour of the linear fractional stable motion Y. In other words,
when the intermittency process ¢ is smooth, we have that

Xign — Xy = Jt(Yt+A - Yt)

for small A > 0. Thus, intuitively speaking, the properties of Y (H6lder smoothness,
self-similarity) transfer to the process X on small scales.

Having understood the role of the parameters « > 0 and H = a+1/6 € (1/2,1)
from the modelling perspective, it is obviously important to investigate estimation
methods for these parameters. We note that the conditions o« > 0 and H € (1/2,1)
imply the restrictions § € (1,2) and o < 1 — 1/ max{p, 3}. Hence, the regime of
Theorem I.1.1 (iii) is never applicable.

We start with a direct estimation procedure, which identifies the convergence rates
in Theorem I.1.1 (i)-(ii). We apply these convergence results only for ¢ = 1 and k = 1.
For p € [p,p] with p € (0,1) and p > 2, we introduce the statistic

_logV(p)"

Sn.p) = logn

with Vip)" =V(p;1)T.
When the underlying Lévy motion L is symmetric S-stable and the assumptions of
Theorems 1.1.1 (i)-(ii) are satisfied, we obtain that

S(n,p) — Sa.5(p) :{ o a<l-l/pandp>p (1.2.1)

pH—1: a<l-—1/fandp<pg ’
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if the parameter is (o, 8). Indeed, the result of Theorem I.1.1 (i) shows that

aplogn +log V(p)" £-s N aplogn + log V(p)™ P

logn logn
This explains the first line in (I.2.1), and the second line follows similarly from The-
orem L.1.1 (ii). At this stage we remark that the limit So 5 : [p,p] \ {8} = Ris a
piecewise linear function with two different slopes. It can be continuously extended
to the function S, s : [p,p] = R, whose definition can be further extended to include

all values

(a,8) € J:={(a,B) eR*: B€[L,2], a€[0,1-1/8]}.

For estimation of (v, 3), it is natural to minimise the L?-distance between the observed
scale function S(n,p) and the theoretical limit S, g(p):

(dn, Bn) S argmin(a’ﬁ)eJHS(n) — SO&ﬁHLZ([g,ﬁ]) (1.2.2)

with S(n) := S(n,-). This approach is somewhat similar to the estimation method
proposed in [20]. For finite n, the minimum of the L?([p, p])-distance at (I.2.2) is not

necessarily obtained at a unique point, and we take an arbitrary measurable minimiser
(Gn, Br). Our next result shows consistency of the estimator (Gy, 8y).

Corollary 1.2.1. Let (ag,B0) € J°, where J° is the set of all inner points of J,
denote the true parameter of the model (1.1.2), and let L be a symmetric [o-stable
Lévy motion. Assume that the conditions of Theorem 1.1.1 (i) (resp. Theorem I.1.1
(ii)) hold when oy € (0,1 —1/p) and p > By (resp. ap € (0,1 —1/Fp) and p < Bo).
Then we obtain convergence in probability

(é‘na Bn) L (a07 60)

Proof. Set ro = (v, Bo) and 7, = (G, Bn) We first show the convergence
P
[5(n) — SrollL2(pp)) — 0. (1.2.3)

From (I.2.1) we deduce that S(n,p) N Sro(p) for all p € [p,p] \ {Bo}. Furthermore,
for any p € [p,p], it holds that

VEMYP < (V)Y < (Vip)) R,

Hence, we deduce the inequality

< max { b

Since |log V' (p)"/logn| N p(ao+1/B8p) — 1 and |log V' (p)"/logn| L5 P, because
p<1<pfpandp>2 > By, we readily deduce the convergence at (1.2.3) by dominated
convergence theorem.

log V(p)"
logn

log V(p)"
logn

log V(p)"
logn

P
p

hSTERS]
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Now, we note that the mapping G : J — G(J) C L*([p,p]), r — S,, is a home-

omorphism. Thus, it suffices to prove that ||Sz — Sy || r2(1p5 2.0 to conclude
p ) p n o IlL2([p,p])

™ LN ro. To show the former we observe that

157, = Srollz2(@p)) < 1S(n) = Sroll L2y + 1S() — Sz, L2 (pa))
= [15(n) = Sroll2(ppp)) +min [S(n) = Sell2(ip.30)

P
< 2”5(71) — S"DHLZ([B@]) — 0.
This completes the proof of Corollary 1.2.1. O

In practice the integral in (I1.2.2) needs to be discretised. We further remark that
the estimator S(n,p) has the rate of convergence logn due to the bias V(p)/logn,
where V(p) denotes the limit of V' (p)™.

As for the estimation of the self-similarity parameter H = a4+ 1/8 € (1/2,1),
there is an alternative estimator based on a ratio statistic. Recalling that 8 € (1,2),
we deduce for any p € (0,1]

Z?:z |X: — Xiza P

P 2pH
i [ X — X
n n

R(n,p) ==

by a direct application of Theorem I.1.1 (ii). Thus, we immediately conclude that

- 1
i, = s Bnp)
plog?2

This type of idea is rather standard in the framework of a fractional Brownian motion
with Hurst parameter H. It has been also applied to Brownian semi-stationary pro-
cesses in [4, 6]. Theorem 1.2 (i) in [12], which has been shown in the setting o = 1,
suggests that the statistic H, has convergence rate n! /(=8 whenever p € (0,1/2].
Furthermore, the rate of convergence can be improved to /n via using kth order in-
crements with k > 2 (cf. [12, Theorem 1.2 (ii)]). However, we dispense with the
precise proof of these statements for non-constant intermittency process ¢. In a re-
cent work [18] it was shown that for linear fractional stable motions the convergence
H, P, H continues to hold for powers p € (—1,0). This is particularly useful, since
choosing p negative ensures that the condition p < 8 of Theorem I.1.1 (ii) is always
satisfied. However, proving this result for a general Lévy semi-stationary process is a
much more delicate issue.

Another important object for applications in turbulence modelling is the inter-
mittency process o. First of all, we remark that the process ¢ in the general model
(I.1.2) is statistically not identifiable. This is easily seen, because multiplication of o
by a constant can not be distinguished from the multiplication of, say, Lévy process
L by the same constant. However, it is very well possible to estimate the relative
intermittency, which is defined as

B fot |os[Pds

RI(p) := ,
(p) fol |Us | Pds

t e (0,1),
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for p € (0,1]. The relative intermittency, which has been introduced in [8] for p = 2 in
the context of Brownian semi-stationary processes, describes the relative amplitude of
the velocity process on an interval [0, 1]. Applying the convergence result of Theorem
I.1.1 (ii) for p € (0, 1], the relative intermittency can be consistently estimated via

RI(n,p) :=

Again we suspect that the associated convergence rate is n!~1/(1=®F whenever p €
(0,1/2] as suggested by [12, Theorem 1.2 (i)].

I.3 Preliminaries: Estimates on Lévy integrals

To prove the various limit theorems we need very sharp estimates of the pth moments
of the increments of process X defined in (I.1.2). In fact, we need such estimates
for several different processes related to X obtained by different truncations. When
F :R; — R is a deterministic function, the estimates for integrals fg FsdLg go back
to Rajput and Rosiriski [30, Theorem 3.3]. Their results imply the existence of a

constant C' > 0 such that
t
EH/ F,dLg
0

where || - ||1,q is & certain functional to be defined below (when L is symmetric and
without Gaussian component). The decoupling approach used in Kwapién and Woy-
czynski [26] provides an extension of the results to general predictable F', see Lem-
mas [.3.1 and 1.3.2 below. Before stating the results precisely, we need the following

q
] <o|F|.,.

notation.

Let L = (L;)icr be a symmetric Lévy process on the real line with Ly = 0, Lévy
measure v and without a Gaussian component. For a predictable process (F});cr and
for ¢ =0 or ¢ > 1 we define

(IJq,L(F) = /2 (bq(FSu) dsv(du), where qzﬁq(x) = |x\q]l{|w‘>1} + $21{\z|§1}~
R

A predictable process F' = (F})ier is integrable with respect to (L;);cg in the sense
of [26] if and only if ®g 1(F) < oo almost surely (cf. [26, Theorem 9.1.1]). The linear
space of predictable processes satisfying ®, 1 (F) < oo will be denoted by L?(dL)L.
In order to estimate the gth moments of stochastic integrals we introduce for all ¢ > 1

|Fllgz :=inf{\ >0 : &, (F/\) <1}, F e L4Y(dL)L. (1.3.1)
The following two results from [26] and [31] will play a key role for our proofs.

Lemma I.3.1 ([26], Equation (9.5.3)). For all ¢ > 1 there is a constant C, depending
only on q, such that we obtain for all F € L4(dL)L

o fr
R

} < CE[|F2 ). (1.3.2)
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The above lemma follows by [26, Equation (9.5.3)] and the comments following
it. Actually, [26, Equation (9.5.3)] only treats the case where the stochastic integral
in (I1.3.2) is over a finite time interval, say fg FydLs. However, the definition of the
stochastic integral and the estimates of the integral in [26, Chapters 8-9] extend to
the case of [, Fiy dL, in a natural way.

For the next result, which is an immediate consequence of [31, Theorem 2.1], we
use the notation HZHgOO = sup,-o A’P[|Z| > )] for an arbitrary random variable Z.
For ¢ < f it holds that E[|Z|7]Y/9 < ||Z]|,00 < (ﬁi_q)l/qEHZW]l/ﬂ. In the literature,
| - lg.00 is often referred to as the weak LP-norm. However, || - |50 satisfies the
triangle inequality only up to a constant.

Lemma I.3.2 ([31], Theorem 2.1). Let (L;)ier be a symmetric B-stable Lévy process.
Then there is a positive constant C > 0 such that for all (F})ier in L°(dL)L it holds
B

that
H/F dL < C]EU |F,|P ds].
R 3,00 R

The next remark gives sufficient conditions for the process X introduced at (I1.1.2)
to be well-defined.

Remark 1.3.3. Suppose that (A) is satisfied and define the two processes F") and
F® by FY = (9(—s) — go(—s))os and F® = g'(—s)os for s < 0. Then the process
X given by (I.1.2) is well-defined if there exists a 5/ > 8 such that

—d
/ (|Fs<z>|e]1{|F§i>|§1} +FOP ]1{|F§”|>1}) ds < 0o (1.3.3)

almost surely for ¢ = 1,2. To show the above we argue as follows: For any 8’ € (3, 2]
we deduce from (A) and simple calculations the estimate

/R(\uxm Dw(dr) < Cllul Ty + [l Tusry),  uweR.  (13.4)

Then, an application of the mean value theorem combined with assumption (I1.3.3)
yields that ®q r(H®) < oo almost surely for all ¢ > 0, where aY = (g(t —s) —
go(—s))os. This guarantees the existence of the process X due to [26, Theorem
9.1.1].

In our proofs we will need the following properties of the functional || - ||z, defined
in (I.3.1).

i Homogeneity: For all A\ € R, F' € LI(dL)L, | AF ||, = ||| F]

q,L-

ii Triangle inequality (up to a constant): There exists a constant C' > 0 such that
for all F*, ..., F™ € L4(dL)L we have

IF' -+ F™lqr <C(IF g+ + | F™

la,L) (1.3.5)

and the constant C' does not depend on m or L.
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iii Upper bound: For all F' € LY(dL)L we have

1Fllgr < @UE(F) V@ 1(F). (1.3.6)

Property (i) follows directly from the definition of || ||z 4 in (I.3.1). To show property
(ii) it is sufficient to derive (1.3.5) for F, ..., F™ € L4 (dL)L, where L% (dL)L denotes
the subspace of nonrandom processes in L?(dL)L. We will show that there is a norm
|-l on Li.(dL)L and ¢ > 0 and C > 0 such that c||F|, , < ||[Flq, < ClF| 1
for all F' € L4 (dL)L, which then implies (I.3.5). To this end, let

nr

Pq(x) == (2/q|z|? + 1 = 2/q) 1 a5y + 22Dy ppi<a)-

Clearly, there exist ¢, C' > 0 such that cgijq(x) < gg(z) < Caq(x) for all x € R. Since
the function ¢, is convex, the functional

|F|} , = inf {)\ >0 : /R bg(Fyu/N) dsv(du) < 1}

is a norm on L4 (dL)L, called the Luxemburg norm (cf. [27, Chapter 1]). Using
convexity of (Zq it follows by straightforward calculations that c||F'[|;, ; < [[Fllg,r <
C||F|;,;, for all F' € L{ (dL)L. This implies (I.3.5). Finally, property (iii) follows by
the fact that ¢,(A\z) < (A\?V A9)¢,(z) for all A > 0.

We conclude this subsection with a remark on the situation when the integrator

is a non-symmetric Lévy process (Et)teR with ZO = 0, Lévy measure v, shift pa-
rameter 7, without a Gaussian part, and the truncation function 7: x — 13«1} +
sign(z)1{|5/>13. That is, for all 6 € R,

E[ewil] = exp <i077 +/

(ewm —1—if7(z)) 17(dx)>.
R

In this situation the modulars and norms defined above become much more involved
and harder to control, which is the main reason why we consider only symmetric
Lévy motions as driving processes. Moreover, assumptions (A), (Bl) and (B2) are
not sufficient to guarantee the existence of the integral (I1.1.2) if we consider non-
symmetric Lévy processes, e.g. if L; = nt with n # 0. For more details we refer to
[26, Chapter 9.1]. For our purposes, the following integrability criterion with respect
to non-symmetric Lévy processes will suffice. For a predictable process (F}):ecr define

\IIOj(F) = /]R ‘ /RT(’U,FS) — 7(u)Fsv(du) + nFs| ds.
Then, the condition
Q7 (F)+ ¥, 7(F) <oco almost surely (1.3.7)

is sufficient for the integral fR F dzs to exist, and we write F' € LO(dL)E. Indeed, this
is a consequence of [26, Theorem 9.1.1 and pp. 217-218] combined with the estimate
[30, Lemma 2.8].
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1.4 Proofs

In this section we present the proofs of our main results. The proof of (i) is divided
into two parts and is similar to the proof of the corresponding result in [12]. First
we show the theorem under the assumption that L is a compound Poisson process
with jumps bounded away from zero in absolute value by some a > 0. Thereafter,
we argue that the contribution of the jumps of L with absolute value < a to the
power variation becomes negligible as a — 0. The proof of Theorem I.1.1 (ii) relies
on freezing the intermittency o over small blocks and then deducing the result from
[12, Theorem 1.1]. A key step in the proof of Theorem I.1.1 (iii) is an application of
a suitable stochastic Fubini result that we introduce in Subsection 1.4.

Throughout the proofs we denote all positive constants that do not depend on n
or w by C, even though they may change from line to line. Similarly, we will denote
by K any positive random variable that does not depend on n, but may change from
line to line. For a random variable Y and ¢ > 0 we denote ||V, = E[|Y]?]/9. We
frequently use the notation

k

gin(6) = 317 (Hat(i =y~ 5),

Jj=0

which allows us to express the kth order increments of X as

AZkX = / gi,n(s)aﬂg_ dLy.

Recalling that [g®*) (s)] < Ct*~* for all s € (0,6) and |g(¥)| is decreasing on (d, 00) by
assumption (A), Taylor expansion leads to the following important estimates.

Lemma 1.4.1. Suppose that assumption (A) is satisfied. It holds that

19i.n(s)] < C(i/n—s)*  forse[(i—k)/n,i/n],
|gin(s)] < C’n*k((i —k)/n— s)o‘*’C forse (i/n—20,(t—k)/n), and

1950 (8)] < Cn* (L i) /m—s.ifn—s)(8) + g™ (i — k) /n = 8)L(— oo (i—k)/n—5)(5)),
for s € (—o0,i/n — 0].

Applying a standard localisation argument (cf. [7, Section 3]) we can and will
assume throughout the proofs that the process ¢ is uniformly bounded by a constant
on [—6,00).

We conclude this subsection with a definition and some brief remarks on the
Skorokhod Mj-topology. It was originally introduced by Skorokhod [33] by defining
a metric on the completed graphs of cadlag functions, where the completed graph of
f is defined as

I'y={(z,t) eRxRy : z=af(t—) + (1 — a)f(t), for some o € [0, 1]}.

The M;-topology is weaker as the more commonly used Ji-topology but still strong
enough to make many important functionals, such as sup and inf, continuous. It can
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be shown that the stable convergence in Theorem 1.1.1 does not hold with respect to
the Ji-topology. As M; is metrisable, it is entirely defined by characerising conver-
gence of sequences, as we do in the following. A sequence f,, of functions in D(R,,R)
converges to f € D(R;,R) with respect to the Skorokhod M;-topology if and only if
fn(t) = f(¢) for all ¢ in a dense subset of [0, 00), and for all to € [0, 00) it holds that

limlimsup sup w(fn,t,8) =0.
0,0 nooo 0<t<too

Here, the oscillation function w is defined as

w(f,t,0) = sup {If(t2) = [f(t2), F(E3)I1}, (I4.1)

O\/(t*(;)gtl <t2<t3§(t+5)/\too

where for b < a the interval [a, b] is defined to be [b, a], and |a—[b, c]| := infsep ¢ la—d].

Proof of Theorem I1.1.1 (i)

For the proof of Theorem 1.1.1 (i) we follow the strategy from [12, Theorem 1.1 (i)].
We assume first that L is a compound Poisson process with jumps bounded in absolute
value away from zero by some a > 0. Later on, we argue that the small jumps of L
are asymptotically negligible. In order to show functional F-stable convergence on
D(R4;R) it is sufficient to show F-stable convergence on ([0, t]; R), for arbitrary
but fixed to, > 0 (cf. [35, Chapter 3.3]). Throughout this subsection we therefore
fix a t > 0, and denote by D the space D([0,t~]; R) equipped with the Skorokhod
M;-topology, and by —21="3 the F-stable convergence of D-valued processes.

Compound Poisson Case

Suppose that (L¢):er is a symmetric compound Poisson process with Lévy measure
v, satisfying v([—a,a]) = 0 for some a > 0. Let 0 < T} < T3 < ... denote the jump
times of (L¢)¢>0 in increasing order. For & > 0 we define

Qe = {w e Q: for all m with T,,,(w) € [0, tos] We have [Ty, (w) — Trp—1(w)| > €
and AL,(w) =0 for all s € [—¢,0]}.

We note that . T, as € | 0. Letting

i/n—e

i/n
Mi,n,s ::/ gi,n(s)os, dLs, and Ri,n,s ::/ gi,n(s)o'sf dst

n—e — 0
we have the decomposition AP, X = M; o + Rin.. It turns out that M; , . is the
asymptotically dominating term, whereas R; .. is negligible as n — oco. We show
that, on €.,

[nt]

a § :
n p |Mi,n,£

i=k

Zi=lel’ Y. |ALp,om,- [PV,
m:T,, €(0,t]

p Az, 7. where (1.4.2)
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where (V,;,)m>1 are defined in Theorem I.1.1 (i). Denote by i,, the random index
such that T}, € ((4m — 1)/n,9m/n]. Then, we have on Q.

[nt]

a E
n P |Mi,n,a
i=k

vy
P =n > ALz, 07,7 | Y 19410 (Ton) [P
m:Tp, €(0,[nt]/n] =0

— ‘/;77"5’ (143)
where the random index v} is defined as

[en] A ([nt] —im) if Ty — ([en] +im)/n > —¢,

v;n—vtm(s,n)—{ ’ ] .
([en] = 1) A ([nt] — i) if Topy — ([en] + im)/n < —e.

For the proof of (I.4.2) we first show stable convergence of the finite dimensional
distributions of V™. Thereafter, we show that the sequence (V™*%),>1 is tight and
deduce the functional convergence Ve —SM1=°, 7.

Lemma 1.4.2. Forr>1 and 0 <ty < --- < t, <ty we obtain on Q. the F-stable
convergence
(Vs V) 5 (Zy, o0 Z4y), asm— oo

Proof. Let (U;)i>1 be i.i.d. U([0, 1])-distributed random variables, defined on an ex-
tension (€2, F',P’) of the original probability space, independent of F. By arguing as
in [12, Section 5.1], we deduce for any d > 1 the F-stable convergence

a L—s
{n%Gi,+1.0(Tm) Him<d — {cohx (I + Um) Him<d
as n — 0o, where hy, is defined in (I.1.5). Defining

d
Vet i= o > |ALx, o, " (Z Igim+z,n(Tm)|p>

m<d:T,, €(0,[nt]/n] =0

d
Zi =’ Y, |ALzp,or,-I" (Zlhk(l+Um)l”>7

m<d:Trm €(0,t] 1=0
the continuous mapping theorem for stable convergence yields
(Vs Ve B8z 78, for n— oo, (1.4.4)
for all d > 1. It follows by Lemma I.4.1 for all [ with & <[ < [nd] that
121Gy +1,0 (T) [ < Ol — K| 7P

where we recall that (o — k)p < —1. Consequently, we find a random variable K > 0
such that for all ¢ € [0, t]

o0
|th,s,d_vtn,5| SK( Z ‘ALTmO'Tm—|p+ Z Z |l_k|(ak)P>_

m>d:Ty, €[0,t0] m:T,, €[0,te] I=v{"Nd
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By definition, the random index v}" = v}"(n, w) satisfies lim inf,,_,~ v}"(n,w) = oo for
all w with T}, (w) # t. Consequently, we obtain that limsup,, ,__ [V — V"] = 0
almost surely as d — oco. It follows that on Q.

n—o00 te{ty,....tyr

lim sup{ max |V, — 1/;5"’57d|} — 0, almost surely, as d — oo. (1.4.5)

By monotone convergence theorem we obtain sup;¢jo;_; |Z¢ — Z,| — 0 as d — oo. To-
gether with (I.4.4) and (I1.4.5), this implies the statement of the lemma by a standard
approximation argument, see for example [15, Theorem 3.2]. O

Recall that the stable convergence V™*° Lty 7 s equivalent to the joint
convergence in law (V™= Y) N (Z,Y) for all F-measurable random variables Y, cf.
[24, Proposition 5.33]. Consequently, Lemma 1.4.2 and the following result together
with Prokhorov’s theorem imply (1.4.2), where we recall that (ID([0,¢]), M7) is a

Polish space.

Lemma 1.4.3. The sequence (V™%),>1 of (D([0,to]), M1)-valued random variables
18 tight.

Proof. The claim follows from [35, Theorem 12.12.3] if we verify that (V™%),>1 sat-
isfies the conditions of the theorem. Condition (i) follows since the processes V¢ are
increasing in ¢ and from tightness of {V;"’“},,en, which follows from Lemma I.4.2. For
condition (ii) we need to verify that for all ¢,& > 0 there is an 1 > 0 such that

]P’( sup w(V™ t,n) > f) < (¢, forall n,
t€[0,too]

where the oscillation function w was defined in (I.4.1). This follows since the processes
V™€ are increasing, and consequently w(V™¢ t,n) =0 for all n, all t and all . O

This concludes the proof of (I1.4.2). Next we show that

[ntoc]
7 3" |Rinel? = 0. (1.4.6)
i=k

Recalling that o < k — 1/p, it is sufficient to show that

sup sup nF|Ri .| < oo, almost surely.
nEN i€ {k,....[ntoo]}

It follows from Lemma I.4.1 that
1195 (8)0s—| < C(U[_g50.0)(5) + [9%) (=8)0s— |1 (_co,—5)(5)) := ts.

Let L = (Zt)teR denote the process defined by ZO = 0 and Zt — Eu is the total
variation of v — L, on (u,t] for all u < t. Since L is a compound Poisson process,
the process L is well-defined, finite and it follows from [32, Theorem 21.9] that Lisa
Lévy process with Lévy measure v = 2v|g, and shift parameter n with respect to the
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truncation function 7: @ — zl{j,<1y + sign(z) Ly, >1} given by n = [, 7(z) U(dx).
Next we use the following estimate:

nk‘Ri,n,E| S / nk|gi,n(8)0’s—‘ dzs S / ws dz.s
(—o0, L —¢] R
The right-hand side is finite almost surely due to the following Lemma I1.4.4, and the

proof of (I.4.6) is complete.

Lemma 1.4.4. Let L be a symmetric compound Poisson process with Lévy measure
v satisfying v([—a,d]) = 0 for some a € (0,1] and let L and 1 be given as above.
Suppose, in addition, that (B1) is satisfied. Then the stochastic integral fR P dzs
exists and is finite almost surely.

Proof. To show that the stochastic integral fR P dzs is well-defined it is enough to
prove that ® 7 (¢) + ¥, 7 () < oo almost surely (see (1.3.7) of Section 1.3). For some
8" > B we have from (B1) that

/ |¢s|91{|w5\g1} + |w5|l3 Lijp.>13 ds < oo, as.
This implies that @, (¢) < oo almost surely (cf. Remark 1.3.3). Next we note that

ds-/‘/ (z)s)v(dx)

where the second equality follows by definition of n above. Hence, to show that
Uy, .(1) < oo almost surely, it suffices according to (Bl) to derive the following

Wy 1 (0 /\/ (2 = ()7 (de) + 10,

estimate. There exists a constant C' > 0 such that for all u € R
/R|T(uac)\ (dz) < C(JulLyguery + Ljuioy)- (L.4.7)

where p is as in assumption (B1). By the definitions of 7 and ¥ we have that
/ |7(uz)|v(dx) = |u|/ |z|v(dz) + v(z € R : |zu| > 1). (1.4.8)
R || <lu|="}

We recall that limsup,_,.. v([t,00))t? < oco. Since v is finite, there exists Cy > 0
such that v([t,00)) < Co/t? for all t > a. Consequently, we obtain for all ¢ > a and

f(’LL) = ]l[t,oo) (u) - ‘ .
/a f(@)v(dr) < ?O/G f(z)z= 1 da.

By monotone approximation, the inequality remains valid for all nondecreasing f :
[a,00) — R . Therefore, the first term on the right-hand side of (1.4.8) is bounded by

ul ™
Ju /u o el (ol zanilul [ fol " da

Ju]? 6 <1,
< Clyjuj<a—1y § |ul(log(1/|ul) +log(1/a)) 6=1,
|ul 0> 1.
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For the second term on the right-hand side of (I.4.8) we use the following estimate
v(e e R foul > 1) < CQgusy + (u™) D<) = Cgusay + [l Lui<ry)
for all uw € R, which completes the proof of (I.4.7) and hence of the lemma. O

Recalling the decomposition Az’f X = M; p o+ R; . we obtain by Minkowski’s
inequality

=

[nt]
sup (no‘pV(p; k)?)

% [ntoo] %
- (napz |Mi,n,6|p> ‘ < <nap Z |Ri,n,6|p> .
t€[0,to0] i=k i=k
Therefore, by virtue of (1.4.2) and (1.4.6), we conclude that
nPV (p; k) 17" 7, on Q..
By letting ¢ — 0 we conclude that Theorem 1.1.1 (i) holds, when L is a compound
Poisson process with jumps bounded away from 0.
Decomposition into big and small jumps

In this section we extend the proof of Theorem I.1.1 (i) to general symmetric Lévy
processes (L¢)ier. We need the following preliminary result.

Lemma 1.4.5. Let ¢ > 1 and a € (0,1]. The function
a
€)= [ Iyl Lgaen) + oL oy ()
—a

satisfies [£(y)| < C(|lyl*Lyy<1py + |y|ﬂlvq1{‘y>1|}) for any B’ > B, where C' does not
depend on a.

Proof. Use the decomposition £ = & + & with

a

&1(y) = / e Lgpyei<y v(dz), and  Ea(y) = / |1 gy v(de).

—a —a
‘We obtain .
E1(y)Lqy<ny < |y|2/1$2'/(d93)]1{|y\s1},

and & (y)Lqjy>1) < C|y\ﬁlvq]l{|y‘>1} follows from (1.3.4), showing that &; satisfies the
estimate given in the lemma. For ¢ > /3 we obtain

&2(y) = 2yl gy > 1/a) /1/| ‘ |z (dz) < Cly["y>13-
Yy
If ¢ < 8 we have similarly for any 8’ > 8
&) < 2lyP Ly s1/ay /l/l | 2% v(dz) < ClyP Ly 1y,
Y

which completes the proof. O
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Now, given a general symmetric Lévy process (L;):er, consider for a > 0 the
compound Poisson process (L7*)ier defined by

Lg*=0, Ly"—L;"= Y ALJdgar,|>a}-

s<u<t

Moreover, let (L7*);er denote the Lévy process (L; — L;*)ier. The key result of this
section is showing that

[ntoo] i/n p
lim sup ||n*? Z / Gin(s)os— dL3* —0, asa—0. (1.4.9)
n—00 i—k —00 1

We make the decomposition
i/n
/ gi,n(s)as— dLsga == Ai,n + Bi,na
where
i/n -5
Ain :/ Gin(s)os— dL:* and B, :/ Gin(s)os— dL3".
-5 —o0

Lemma 1.3.1 shows that

[ntoo] [ntoc] i/n P
noP Z |Ai’"|pH —pn1! Z ’/ na+1/pgi’n(8)057 dL="
i=k 1 i=k 17/ —0 P

[nteo

]
<ot S E||F e,
i=k

where the process (F{"");er is defined as F}"" = no P g o ()1~ 5i/m)(t)or—. Since
the random variable sup,c_s ) [o¢| is uniformly bounded, we obtain by (1.3.6) and
(12, Bq.(4.23)]

E[HFz,n”p ] < C||na+1/pgi,n]1[—5}i/n] Hz,LSa

p, L=
< Ol pza (0P g ) [PV |, Lo (0 P g1 )|

< C(/z|<a [P + x2y(dx)>p/2 v </|w<a |z|P + x2y(dx)>,

for alln € Nand i € {k,...,[nts]}. Since p > 8 by assumption, we conclude that
[nteo]
lim sup ||n*? Z |AinlP|| — 0, asa—0. (1.4.10)
n—oo i—k 1

Next, we show that for all @ > 0

[nt(x,]

"y |Binl’

i=k

=0. (14.11)
1

lim sup
n—roo
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Introducing the processes (Y;"")yer and (V;)ier defined as
Y =0 0 (0oL, —5)(1),  and Yy = |g" (—t)or- Lo, g (1),

we obtain by Lemma 1.3.1 that

[nteo] [nteo]

n Y |Bi,n|”H <Cn”' YRV ]
i=k 1 i=k

Moreover, recalling that |g(*)| is decreasing on (6, 00), an application of Lemma 1.4.1
shows that

E[Hyz,n
for alli € {k,...,n}. Since a+1/p—k < 0, equation (1.4.11) follows ifE[||Y||§ L<a] <
oo. Applying the estimate (I1.3.6) shows that this is satisfied if E[@;v;ﬁa (V)] < oo,
which is a consequence of (B1) and Lemma I1.4.5, where we used that p > 5. Now,
(1.4.9) follows from (1.4.10) and (1.4.11).

We can complete the proof of Theorem I.1.1 (i) by combining (I.4.9) with the
results of Subsection 1.4. To this end, let

[p p<a] S PPEHVERE[Y LT,

Xie ;:/ (9(t —s) —go(=s))os— dLJ",  Xi* ;:/ (9(t—s) = go(—=s))os— dL3",

—00 —00

and let T>* = T, if |[ALp,, | > a, and T;* = oo else. The results of Subsection 1.4
show that

nPV (X0 pik)y 2= Zpt = Y [ALpzeoqze [PV
m:T,i‘LG(O,t]
for all @ > 0, where V(X>* p;k)} denotes the power variation of the process X>*.
Making the decomposition
(napv(p; k):b)l/p

_ ap >a .. n\1/p ap . n\1/p ap >a .. n\1/p
- (n V(X , D5 k)t) + ((TL V(pvk)t) - (’ﬂ V(X y D5 k)t) )
=U + U=,

we have by Minkowski’s inequality

lim limsupP( sup |U;"=%| > ¢) < lim limsup P(n®?V (X =", p; k)} > eP) =0,
a—=0 p 0o t€[0,t00] a—=0 p 0o Oo
for all € > 0, which follows easily from (I.4.9). Since U/">* —SM1=2y 7> a5 n — oo,

and sup,ejo, ) |27 * — Z¢| — 0 almost surely, as @ — 0, Theorem L.1.1 (i) follows from
[15, Theorem 3.2]. O

Remark 1.4.6. A popular technique for proving limit theorems for volatility modulated
processes is to freeze the volatility over blocks of length 1/n and derive a limit theorem
for the resulting simpler process. However, in the framework of Theorem I.1.1 (i) this
approach is not applicable, since the power variations of the two processes are not
asymptotically equivalent if o and L jump at the same times.
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Proof of Theorem I.1.1 (ii)

Since t +— V(p; k)7 is increasing and the limiting function is continuous, uniform
convergence on compact sets in probability follows if we show

¢
n= et /By (4 fyn BN mp/ |0y |Pds
0

for a fixed t > 0, which we will do in the following. A crucial step in the proof is
to show that the asymptotic behavior of the power variation does not change if we
replace A} X in (L.1.3) by o(;_x)mA}}G, where the process (G¢)i>o is defined as
the integral in (I.1.2) with ¢ = 1. Note that assumption (A) ensures that G is well-
defined. Thereafter, we divide the interval [0,¢] into subblocks of size 1/1 and freeze o
at the beginning of each block. The limiting power variation for the resulting process
can then be derived by applying part (ii) of [12, Theorem 1.1] on every block. The
proof of Theorem I.1.1 (ii) is then completed by letting [ — oo. The following lemma
plays an important role for replacing AY; X in (L1.3) by o(; —k)/n A7y G. Here and in
the following we denote by v, the modulus of continuity of ¢ defined as

vo(s,n) = sup{los — o] : v € [s — 1,5 + 1]}

Lemma 1.4.7. Let (01)ier be a process with cadlag or caglad sample paths that is
uniformly bounded on [—6,00). For any a,q € (0,00) we have

1
Ehg(l) hmsup ZHUJ i/n,e)llg || =0.

Proof. Since v, is bounded and x +— z® is locally Lipschitz for « > 1, we may assume
w.l.o.g. that « <1 and ¢ > 1. For k > 0 we use the decomposition o = <" + g=*
where

P Z Aoy L{ac, >k}

—o<u<s

3

and 05" = 0, — 02". Even though o is uniformly bounded on [—§, 00), 02" and o<*

might not be. For this reason we introduce the sets

m = {w i [o7" ()| + 07" (w)] < mfor all s € [-4,¢+ 4],
and o~ ( ) has less than m jumps in [—0,¢ + 8] }.

Note that 2,, T Q, as m — oo. By the triangular inequality we have
Vo (8,1) < vo<r(s,n)la,, +voze(s,n)la, + Clag,,

for all s € [0,¢],n < § and m > 1. Since P(Q¢,) — 0 as m — oo, we can choose m
sufficiently large such that

[nt [nt]

- Z o0 (/. )l < 3 (o), 5 + og2n(i/m, )10, ) + 5, (1412)

i=k
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for all n € N and € > 0. We show that

[n]
1
limsup limsup | — Z [vo<n(i/n,e)la,, Iy | < 2% (1.4.13)
e—0 n—00 n st

In order to do so, we assume the existence of sequences (&), (n;), (4;) with ¢, — 0,
n; — oo and 4 € {1, ..., [tn;]} such that

|vg<r(ir/n1, €1)Lq,, [l > 26 (1.4.14)

for all [, and derive a contradiction. Since (4;/n;);>1 is a bounded sequence we may
assume that 4;/n; converges to some sy € [0,t] by considering a suitable subse-
quence (Ix)k>1. For all w € Qy, it holds that lim, .o vs<<(s0,7) = [Aogr| < k.
Therefore, by the dominated convergence theorem, we can find a v > 0 such that
[vo<n(50,7)La,,|l; < 2. This is a contradiction to (1.4.14), since for sufficiently
large I we have [i;/n; — e;,41/n + €] C [So — 7, So + 7]. This completes the proof of
(I.4.13). Next, we show that

nt)
lim i - (i/ne)la, o | = 0. 14.1
Jimg lim sup n;Hvaz (i/n,e)la,lly | =0 (L4.15)

Recalling that ¢/« > 1, an application of Jensen’s inequality yields

1 [nt] y 1 [nt] alq
- « a—1 . q
- Zk lg2r i/, )La, llg < |12/~ Zk (Vo2 (i/n,€)1q,,) o
for all n € N, € > 0. Now, (1.4.15) follows from the estimate
| [
=3 (o2 (i/m,9)10,)" < swp |AGE|INIg, 2(e) < Ot (),
n = SE[—6,845)

for all n € N. Here N = N(w) denotes the number of jumps of o= in [—4,¢ + J].
Using (1.4.13) and (I1.4.15), the lemma now follows from (1.4.12) by letting k — 0. O

The proof of Theorem I.1.1 (ii) heavily relies on the estimate given in Lemma
[.3.2. This lemma assumes the role that It6’s isometry typically plays in proofs of
limit theorems for stochastic integral processes driven by a Brownian motion. In order
to apply Lemma 1.3.2, the following estimates will be crucial.

Lemma 1.4.8. Suppose that assumptions (A) and (B2) hold, and assume that o +
1/ < k. Fore >0 with € < ¢ there is a constant C > 0 such that

i i

E{/n |gi7n(s)as_\5 ds] +/_n |gi7n(s)|ﬁ ds < Cn~ =1 and

L
w €

E[ | |gzv,n<s>os_|ﬁds}+ [ ) s < cn,

o0 — 00

forallie{k,...,n}.
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Proof. By Lemma 1.4.1 we have that

|gi,n(5)|ﬁ]l[i/n—s,i/n](5)
< C((ifn — 8)*PLi—kymipny(5) + 072G — k) fn— ) P0G ek (5).

Recalling that o is bounded on [—d,00), the first inequality follows by calculating
the integral of the right hand side. The second inequality is a direct consequence of
Lemma I.4.1 and assumptions (A) and (B2). O

A crucial step in the proof of Theorem I.1.1 (ii) is showing that
[n]
n~1+p(et1/8) Z AT X — 0k n ATGE — 0, (1.4.16)
i=k
as n — 0o, where the process (Gy)>o is defined as the integral in (I.1.2) with o = 1.
We fix some ¢ > 0 and make the decomposition

AZkX — O—(i—k)/nAZkG = A?E + B;L’E + Cin’g,

where
e i/n e i/n
Ai’ = / gi,n(s)(gs—fai/n—a) dLsa Bi T= (Uz’/n—efa(i—k)/n)/ gi,n(s) dLsa

n—e i/n—e

. i/n—e i/n—e
C;” = / Gin(8)os— dLs — U(i*k)/"/ Giun(s) dLs.

— 00 — 00

We deduce (1.4.16) by showing that

[nt]
s —14+p(a+1/8) WEIP ) =
sy imoup (» > I4715) =0
i=

and the same for B;"® and C}"°, respectively. For A" we obtain by Lemma 1.3.2

nt
np—itplatl/B) g |AE|1B
i=k
[nt] i/n p/B
< Op~Hpletl/B) Z {E{/ |gi}n(s)(os, — Ui/n_5)|ﬂ d8:| }
l:k 1/n—e
[nt] i/n p/B
< Op~l+plat1/8) Z v (i/n,e +1/n)|5 (/ 9i.n(5)]° ds> .
i—k i/n—e

By Lemma I.4.7 and Lemma 1.4.8 we conclude that

[nt]

im L —14+p(at+1/B) nEp ) —
glgtl) ll?asolip (n Z; |A; ||p) 0. (1.4.17)
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For B]"® we apply Holder’s inequality with p’ and ¢’ satisfying 1/p’ +1/¢ = 1 and
pq’ < B, which is possible due to our assumption p < 3. This yields

nt
n—Hplat+1/8) [ZE B
i=k
[nt] i/n P
< HEAYD S (01 — iy [ / gin(s) dLy|
i—k i/n—e pq’
[nt]
<Oy lvo(ifn,e+ K/} .
i=k

Here we have used that, as a consequence of Lemma 1.3.2 and Lemma [.4.8, whenever
pq’ < B there exists a C' > 0 such that |n*T1/# f;/:_e Gin(8) dLsl||py < C for all
n €N, i € {k,...,[nt]}. Thus, by Lemma 1.4.7
[nt]
lim lim sup <n1+p(a+1/ﬂ) Z ||Bf’€|g> =0. (1.4.18)

e—=0 n 00 vt

Moreover, by Lemma 1.3.2 and Lemma 1.4.8 it follows that for all € > 0

[nt]
lim sup (n_lﬂ’(o‘ﬂ/ﬂ) Z |C’i”’€||§> < Climsup(nP@ /=Ry = o,
which together with (I1.4.17) and (I.4.18) completes the proof of (1.4.16).

By Minkowski’s inequality for p > 1 and subadditivity for p < 1, it is now sufficient
to show that

[nt] t
WS o MG L [Cards. (1419
i=k 0
in order to prove Theorem I.1.1 (ii).

Intuitively, replacing [Af, X| by |o(;—x)/n A}y G| corresponds to freezing the pro-
cess (01)ier over blocks of length 1/n. For the proof of (1.4.19) we freeze o now over
small blocks with block size 1/ that does not depend on n. This will allow us to apply
[12, Theorem 1.1(ii)] on every block. Thereafter, (1.4.19) follows by letting I — occ.
For [ > 0 we decompose

[nt]

t
n—ttp(at1/B) Z |U(i7k)/nAZkG|p _ mp/ |los|? ds
i=k 0
[nt]
— - 1tp(at1/8) (Z |A2kG|p(|U(i7k)/n‘p _ |U(jg,i1)/l|p)>
i=k
[t]+1
+ ( > log-nal (”_1“’(““/5) > ALGP —mpl‘1>)
Jj=1 i€l (5)

[t t
+ (m;ﬂl_l Z ‘O—(j—l)/l|p - mp/ Uspd8> = Dn,l + En,l + Fy.
0

Jj=1
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Here, j;; denotes the index j € {1,...,[t]] + 1} such that (i — k)/n € ((j — 1)/1,5/]]
and [;(j) is the set of indices ¢ such that (i — k)/n € (( — 1)/1,5/1]. We show that

lim lim sup P(| Dy + Eny + Fi| > €) =0

-0 npn—oo
for any € > 0. Note that F; == 0 as | — oo, since the Riemann integral of any
cadlag function exists. For every ! € N we have limsup,,_, . P(|E, ;| > €) = 0 by
[12, Theorem 1.1(ii)]. For lim;_,o limsup,,_, . P(|Dp | > €) = 0 we argue as follows.
Choose some p’ > 1 such that pp’ < 8 and let ¢’ be such that 1/p’ +1/¢' = 1. We
find

[nt]

1+l 1/8) (Z AL G (06 l? — |o—<j,m,,i_1)/l|p>)
1=k

[ Dn il =

1
[nt]

<n~! Z H|na+l/ﬁAﬁkG\p||p/|||J(i—k)/n|p - |U(jl,n,i—1)/l|p||q’
i=k

[nt] y 1/2 [nt] 1/2
_ a n 2 _
= (" Pl “/Mi,kG”pf) (" P lllo-wml ~ 0<jz,,,b.i—1)/l|p3/) :
i=k i=k

The first factor is bounded by Lemmas 1.3.2 and 1.4.8. For the second factor we can
apply Lemma 1.4.7, since the process (|o¢|P):cr is cadlag and bounded on [—4, o), and
conclude that lim;_, limsup,,_, o, || Dy |l1 = 0. This completes the proof of (1.4.19),
and hence of Theorem I.1.1 (ii). O

Proof of Theorem I.1.1 (iii)

For the proof of Theorem I.1.1 (iii) we show that under the conditions of the theorem
the process X admits a modification with k-times differentiable sample paths with k-
th derivative F', as defined in the theorem. Then the result follows by an application
of the following stochastic Fubini theorem. For a proof we refer to [1, Theorem
3.1], where a similar Fubini theorem was shown for deterministic integrands. The
generalisation towards predictable integrands is straightforward.

Lemma 1.4.9. Let f : Rx R x Q — R be a random field that is measurable with
respect to the product o-algebra B(R) ® II, where I denotes the (F;)ier-predictable
o-algebra on R x Q. That is, I is the o-algebra generated by all sets A x (s,t], where
s <tand A € Fs. Let (Li)ier be a symmetric Lévy process thal has finite first
moment. Assume that we have

5| [ 17w
R
Then, we obtain

/]R (/Rf(“@ d“) dls = /R (/Rf(u,é’) dLs) du  almost surely,

and all the integrals are well-defined.

1,L du] < 00.
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The following auxiliary result ensures that the conditions of this lemma are satis-
fied in our framework.

Lemma 1.4.10. Suppose that assumption (B1) holds. Let q € {1,p} which in par-
ticular implies « > k —1/(BV q). If ¢ > 1 assume additionally that the jumps of the
Lévy process L are bounded in absolute value by 1. For any t > 0, the random field

fi(u,s) == g™ (u— $)0s— 10,1 () L (—oo,u)(s) satisfies

/O E{lfu(u, )12 1] du < .

Proof. We decompose

/0 Bl fy(w, )| 1] du

t
c/ Bl fu(u, )1 g
0
=1 + I,

t
T du+ C / E{ (s ) (oo g1 dus

and show that both summands are finite. For I; we use that ¢ is bounded on [—4d, 00).
Thus, denoting e;(u, s) = g® (u — 8) 10,4 (u)1(—s5.4)(s), we obtain using (1.3.6)

1< C [ @yalenlin )+ 08 el ) du < OOt ) + 0 (),

where in the second inequality we used |e;(u, s)| < |e:(t, s+t — )|, and that @, 1(f)
is invariant under shifting the argument of the function f. For I; to be finite it is
therefore sufficient to show that the following term is finite

t
/_5 /]R lg®) (t—3)2 1 11y (1 ya) <13 H19P (E=8)2| 1L g0 (1 s 51y V(dT) ds := Jy+To.

We fix 8’ € (BV1,1/(k—«)) and ¢’ € [¢,1/(k—a)) such that the Lévy process satisfies
E[|L1]|7] < oo. Indeed, the former is possible by the conditions a > k — 1/(8 V p)
and p > 1 in Theorem I.1.1(iii). The latter is possible for ¢ = 1 by the assumption
6 > 1 in Theorem I.1.1 (iii), and for ¢ = p > 1 by the assumption of bounded jumps
in the lemma. Recalling that |¢®)(t)| < C|t|*~* for all t € (0,), in order to show
J1 + Ja < 00, it is then sufficient to show

g™ (t - 5)7 ds+/ g™ (t — )7 ds> (1.4.20)
5

For ¢ = p > 1, this estimate follows easily from Lemma 1.4.5, where we use the

J1+J2<C<].+/

assumption that L has jumps bounded by 1. For ¢ = 1 the estimate follows for J; by
(I.3.4). For Jy we obtain

JZ / / t - S |Bl]1{\g(’“)(tfs)a:|>l} l/(dx) ds
+2/ 98 (¢ — )7 ds/ 2|7 v(dx)
1

<C/ t—S ]l{‘g(k)(t,s)‘>1}+‘g(k)(t—sﬂq, ds,
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which concludes the proof of (I1.4.20) and of I; < co. For I we use that [g®)] is de-
creasing on (4, 00), which implies that I < CtE[[|f;(0, )1 (oo, —s)ll7 1]- By (I.3.6) the
latter is finite if @;L% (f¢(0,)L(—oo,—s]) € L' (£2). This follows easily from Assumption
(B2) (recall that ¢ < p) and (1.3.4). O

With these preliminaries at hand, we can finally prove Theorem I.1.1 (iii). As
remarked at the beginning of Subsection 1.4, it is sufficient to show convergence in
probability for a fixed ¢ > 0 in order to obtain uniform convergence on compacts
in probability. Therefore, the theorem is an immediate consequence of the following
result and Lemma 4.3 in [12].

Lemma 1.4.11. Under the conditions of Theorem 1.1.1 (i), there is a process (Z;)i>o
that satisfies almost surely V(Z,p;k)} = V(X,p;k)} for alln € N and t > 0, has
almost surely k-times absolutely continuous sample paths and satisfies for Lebesgue
almost all t > 0 that

ok Z,
(Ot)*

t
= / g(k')(t — 8)os— dLg := F,
— 0o

and F € LP([0,t0]) for any to > 0.

Proof. For ease of notation we only consider k£ = 1. The general case follows by similar
arguments. We let a € (0, 1] and define the processes (F=*),ecr and (F,*)uer by

Fse :/ g (u—s)os_ dL:*, and F;* = Z g’(u—s)as_ALs]l{Msta},

- s€(—oo,u)

where the process (L;®)icr is the truncated Lévy process introduced in Section 1.4.
We show that both processes F=* and FJ are well-defined and that they both admit
a modification with sample paths in LP([0,¢]). Then, we define the process

t
Zt = / (Fuga +Fu>a) du,
0

and show that it satisfies the properties given in the lemma.

We begin by analysing F=¢. It is well-defined, since, as a consequence of Lemma
1.4.10, fi,(u,s) = g'(u — 8)os_ L 4,) (1)1 (—o0,u)(s) is integrable in s with respect to
L= for Lebesgue almost all u. Applying Lemmas 1.3.1 and 1.4.10 we obtain F<* €
L?([0,¢]), almost surely, since

t t
B| [ 1rer au] < [ BlAGIE el du<
0 0
For the process F;* we make the decomposition

>a __ >a,<—§ >a,>—46
Fu _Fu +Fu

Z g (u—s)os— AL (AL, |>a} + Z g (u—8)os— AL (AL, |>a}-
s€(—o00,—d] se(—o6,u)
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We argue first that F>*=7° is well-defined and in LP([0,¢]) almost surely. Applying
Lemma 1.4.4 we obtain that

Z l9'(=8)0s— ALs|1{jaL,|>a} < 00
sE(—o00,—d]

almost surely. Since |¢'| is decreasing on [0, 00), this implies that F>*<7° is well-
defined and uniformly bounded in w. For F;*>~° we use that L has only finitely
many jumps of size > a on [—6,t]. Therefore, F>*>~° is well-defined and we find a
positive random variable K < oo such that

/ |Fze>-o|p du<K/ Z (u—8)os— AL AL, \>a}| du

se(—d,u)

<K Z |os— AL AL, ‘>a}| / I (u — 5)|? du,
se(—0d,t)

which is finite since |¢’(s)| < Cs*~! for s € (0,9) and (a—1)p > —1. All that remains
to show is that V(X,p; 1)} = V(Z,p;1)7 for all n € N and all ¢ > 0 with probability
1. For any ¢ > 0 it holds with probability 1 that

Xt—XO:/R</th(u,s) du> dLS:/R(/th(ms) dLS) du = 7,

where we have applied Lemmas 1.4.9 and 1.4.10. Consequently, it holds that P[X; =
Zy + Xo for all t € Q4] = 1 which implies V(X,p; 1)} = V(Z,p; 1)} for all n € N and
all ¢ > 0 almost surely. O



Bibliography

[1] Barndorff-Nielsen, O. and A. Basse-O’Connor (2011). Quasi Ornstein-Uhlenbeck
processes. Bernoulli 17(3), 916-941.

[2] Barndorff-Nielsen, O., F. Benth, and A. Veraart (2011). Modelling electricity
forward markets by ambit fields. Awvailable at https://ssrn.com/abstract=1938704.

[3] Barndorfl-Nielsen, O., J. Corcuera, and M. Podolskij (2009). Power variation for
Gaussian processes with stationary increments. Stochastic Process. Appl. 119(6),
1845-1865.

[4] Barndorfi-Nielsen, O., J. Corcuera, and M. Podolskij (2011). Multipower variation
for Brownian semistationary processes. Bernoulli 17(4), 1159-1194.

[5] Barndorff-Nielsen, O., J. Corcuera, M. Podolskij, and J. Woerner (2009). Bipower
variation for Gaussian processes with stationary increments. J. Appl. Probab. 46 (1),
132-150.

[6] Barndorff-Nielsen, O., J. M. Corcuera, and M. Podolskij (2013). Limit theorems
for functionals of higher order differences of Brownian semi-stationary processes. In
Prokhorov and contemporary probability theory, Volume 33 of Springer Proc. Math.
Stat., pp. 69-96. Springer, Heidelberg.

[7] Barndorff-Nielsen, O., S. Graversen, J. Jacod, M. Podolskij, and N. Shephard
(2006). A central limit theorem for realised power and bipower variations of con-
tinuous semimartingales. In From stochastic calculus to mathematical finance, pp.
33-68. Springer, Berlin.

[8] Barndorff-Nielsen, O., M. Pakkanen, and J. Schmiegel (2014). Assessing relative
volatility /intermittency /energy dissipation. Electron. J. Stat. 8(2), 1996-2021.

[9] Barndorff-Nielsen, O. and J. Schmiegel (2007). Ambit processes; with applications
to turbulence and tumour growth. In Stochastic analysis and applications, pp. 93—
124. Springer.

[10] Barndorfl-Nielsen, O. and J. Schmiegel (2008). Time change, volatility, and
turbulence. In Mathematical control theory and finance, pp. 29-53. Springer, Berlin.

[11] Barndorff-Nielsen, O. and J. Schmiegel (2009). Brownian semistationary pro-
cesses and volatility /intermittency. In Advanced financial modelling, Volume 8 of
Radon Ser. Comput. Appl. Math., pp. 1-25. Walter de Gruyter, Berlin.

55



56 Bibliography

[12] Basse-O’Connor, A., R. Lachiéze-Rey, and M. Podolskij (2016). Power varia-
tion for a class of stationary increments levy driven moving averages. Annals of
Probability. To appear.

[13] Basse-O’Connor, A. and M. Podolskij (2017). On critical cases in limit theory for
stationary increments Lévy driven moving averages. Stochastics 89(1), 360-383.

[14] Benassi, A., S. Cohen, and J. Istas (2004). On roughness indices for fractional
fields. Bernoulli 10(2), 357-373.

[15] Billingsley, P. (1999). Convergence of probability measures (Second ed.). John
Wiley & Sons, Inc., New York.

[16] Chronopoulou, A., F. Viens, and C. Tudor (2009). Variations and Hurst index
estimation for a Rosenblatt process using longer filters. FElectron. J. Stat. 3, 1393—
1435.

[17] Coeurjolly, J. (2001). Estimating the parameters of a fractional Brownian motion
by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4(2), 199—
227.

[18] Dang, T. and J. Istas (2015). Estimation of the hurst and the stability indices
of a h-self-similar stable process. Working paper. Available at arXiv:1506.05593.

[19] Gértner, K. and M. Podolskij (2015). On non-standard limits of Brownian semi-
stationary processes. Stochastic Process. Appl. 125(2), 653-677.

[20] Grahovac, D., N. Leonenko, and M. Taqqu (2015). Scaling properties of the
empirical structure function of linear fractional stable motion and estimation of its
parameters. J. Stat. Phys. 158(1), 105-119.

[21] Guyon, X. and J. Ledén (1989). Convergence en loi des H-variations d’un pro-
cessus gaussien stationnaire sur R. Ann. Inst. H. Poincaré Probab. Statist. 25(3),
265-282.

[22] Jacod, J. (2008). Asymptotic properties of realized power variations and related
functionals of semimartingales. Stochastic processes and their applications 118(4),
517-559.

[23] Jacod, J. and P. Protter (2012). Discretization of processes. Springer, Heidelberg.

[24] Jacod, J. and A. Shiryaev (2003). Limit theorems for stochastic processes (Second
ed.). Springer-Verlag, Berlin.

[25] Jensen, E., K. Jonsdottir, J. Schmiegel, and O. Barndorff-Nielsen (2006). Spatio-
temporal modelling-with a view to biological growth. Monographs on statistics and
applied probability 107, 47.

[26] Kwapien, S. and W. Woyczyniski (1992). Random series and stochastic integrals:
single and multiple. Birkh&duser Boston, Inc., Boston, MA.



Bibliography 57

[27] Musielak, J. (1983). Orlicz spaces and modular spaces. Springer-Verlag, Berlin.

[28] Nourdin, I. and A. Réveillac (2009). Asymptotic behavior of weighted quadratic
variations of fractional Brownian motion: the critical case H = 1/4. Ann.
Probab. 57(6), 2200-2230.

[29] Podolskij, M. and M. Vetter (2010). Understanding limit theorems for semi-
martingales: a short survey. Stat. Neerl. 64(3), 329-351.

ajput, B. and J. Rosinski . Opectral representations of infinitely divisible
30] Raj B d J. Rosiniski (1989). S 1 i f infinitely divisibl
processes. Probab. Theory Related Fields 82(3), 451-487.

[31] Rosiniski, J. and W. Woyczyniski (1986). On Itd stochastic integration with re-
spect to p-stable motion: inner clock, integrability of sample paths, double and
multiple integrals. Ann. Probab. 14 (1), 271-286.

[32] Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge
University Press, Cambridge.

[33] Skorohod, A. (1956). Limit theorems for stochastic processes. Teor. Veroyatnost.
1 Primenen. 1, 289-319.

[34] Tudor, C. A. and F. G. Viens (2009). Variations and estimators for self-similarity
parameters via Malliavin calculus. Ann. Probab. 37(6), 2093-2134.

[35] Whitt, W. (2002). Stochastic-process limits. Springer-Verlag, New York.






Paper 11

On limit theory for functionals of
stationary increments Lévy driven
moving averages
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Abstract: We present several limit theorems for a class of variation functionals
obtained by applying a continuous function f on the kth order differences of station-
ary increments Lévy driven moving average process. The limiting behavior of such
functionals depends not only on the function f at hand but also on the Blumenthal-
Getoor index B of the driving Lévy process and on the behavior of the kernel at 0,
which is specified by the power «. For the first order asymptotic theory, we show
that at least three different cases occur, depending on the interplay of a, 8 and k as
well as on certain properties of the function f. In connection with one of the three
cases we prove a second order limit theorem when the function f is bounded, with
two different limits; a central limit theorem and, when the Appell rank of f is greater
1, convergence in distribution to a (k — «)B-stable random variable.
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IT1.1 Introduction and main results

The last years have seen an increasing interest in the limit theory for various classes of
stochastic processes. Limit theorems in the high frequency setting are an important
tool for analysing the small scale behaviour of stochastic processes and have manifold
applications in statistical inference, such as parameter estimation or testing for jumps.
For It6 semimartingales the existing limit theory includes power and multipower vari-
ation [5] as well as related variation functionals [21, 20]. We refer to [2, 3, 4] for the
limit theory for multipower variation of fractional Brownian motion and a class of
related processes, and to [14, 15] for power variation of the Rosenblatt process. In
the recent publication [7], the authors consider power variations of stationary incre-
ments Lévy driven moving averages and derive the first order limit theory as well as
a partial second order limit theory. This article builds on their results and extends
the limit theory to include more general variation functionals obtained by applying a
continuous function to the kth order increments of the process.

We consider an infinitely divisible process with stationary increments (X;);>o,
defined on a probability space (2, F,P), given as

X, = / {g(t — s) — go(—s)} dLs, (I.1.1)

where L = (L;)ier is a symmetric Lévy process on R with Ly = 0. That is, for all
u € R, (Lyyy — Ly)i>0 is a Lévy process indexed by Ry the distribution of which
is invariant under multiplication with —1. Furthermore, g and gy are continuous
functions from R into R vanishing on (—oc0, 0). The class of stationary increments Lévy
driven moving averages contains in particular the (symmetric) linear fractional stable
motions, which is the model (II.1.1) with g(s) = go(s) = s¢ driven by a symmetric
stable Lévy process. These processes have been considered by many authors. Recent
research addresses various topics such as, among others, semimartingale property [8],
fine scale behavior [9, 17], simulation techniques [16] and statistical inference [1].
In this paper we consider for a continuous function f : R — R the variation
functional
[nt]
V() = an Y F(bnA}X), (I1.1.2)
i=k
where (an)nen, (bn)nen are suitable (nonrandom) normalising sequences, and [nt] de-
notes the integer part of nt. The kth order increments AY; X of X, k € N are defined
as

kX Z ( > (i—3)/m> i>k.

For instance, we have that A} X = X: — X1 and A, X = X
We recall that the Blumenthal-Getoor index of L is defined as
1

B :=inf {7’ >0: [1 |z|" v(dx) < oo} €1[0,2],

—2Xia +Xﬁ

i
n
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where v denotes the Lévy measure of L. It is well-known that > i q) [ALs[" is
finite when p > [, while it is infinite for p < 5. Here AL; = Ly — Ls_ where
Ls_ = limyqs, y<s Ly. If L is stable with index of stability 5 € (0,2), the index of
stability and the Blumenthal-Getoor index coincide, and both will be denoted 5. The
asymptotic theory is investigated under the following conditions on g, gy and v that
were introduced in [7].

Assumption (A): The function g: R — R satisfies

g(t) ~ cot® astl 0 for some a >0 and ¢y # 0,

where g(t) ~ f(t) as t L 0 means that lim, o g(t)/f(t) = 1. For some 6§ € (0,2],
limsup,_, . v(z: |z| > t)t’ < oo and g — go is a bounded function in L°(R.). PFur-
thermore, g is k-times continuously differentiable on (0,00) and there exists a 6 > 0
such that |g®) (t)| < Ct*=* for all t € (0,6), and such that both |g'| and |g*)| are in
L?((6,00)) and are decreasing on (6, 00).

This assumption ensures in particular that the integral X; is well-defined in the sense
of [24], see [7, Section 2.4]. When L is a 8-stable Lévy process, we may and do always
choose § = 8. For Theorem II.1.1 (i) below, we need to strengthen Assumption (A)
slightly if # = 1 and assume the following

Assumption (A-log): In addition to (A) suppose that

/ " 10" (5)[? 10g(1/1g® (3)]) ds < o

In order to formulate our main results, we require some more notation. For p > 0 we
denote by CP the space of r := [p]-times continuous differentiable functions f : R — R
such that £ is locally p —r Holder continuous if p & N. Let hy,: R — R be given by

k
miw) = (He-py wer
=0 J

where y; = max{y,0} for all y € R. Let F = (F;):cr be the filtration generated by
the Lévy process and (T),)m>1 be a sequence of F-stopping times that exhausts the
jumps of (Lt)¢>0. That is, {Tp,(w) : m > 1} N [0,00) = {t > 0 : AL (w) # 0} and
T (w) # Ty (w) for all m # n with Tp,,(w) < co. Let (U, )m>1 be independent and
uniform [0, 1]-distributed random variables, defined on an extension (', F',P’) of the
original probability space, which are independent of F. We recall that a sequence
(Z™)nen of random variables defined on (€2, F) with values in a Polish space (E, &)
converges F-stably in law to Z, which is defined on the extended space (', F') if
for all bounded continuous g : E — R and for all bounded F-measurable random
variables Y it holds that E[g(Z™)Y] — E'[¢(Z)Y], where E’ denotes the expectation
on the extended space. We denote F-stable convergence in law by Z" s g , and
refer to [25, 18] for more details. By —* we denote uniform convergence on compact
sets in probability of stochastic processes. That is, (Z");>0 —— (Z¢)i>0 as n — 00
means that P(sup,cpo vy |27 — Zi| > €) — 0 for all N € N and all € > 0. A definition
of the Skorokhod Mj-topology, which was introduced in [27], will be given in Section
I1.2. For a more detailed exposition we refer to [31].
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Theorem II.1.1. Suppose (A) is satisfied and assume that the Blumenthal-Getoor
index satisfies § < 2. We have the following three cases:

(i) Let k > « and suppose that (A-log) holds if 6 = 1. Assume f(0) = 0 and that
f € CP for somep > BV ﬁ With the normalising sequences a, = 1 and
b, = n® we obtain the F-stable convergence of finite dimensional distributions

oo

VIR SSVERDe= Y. Y feoALy, hi(l+ Un)),

m:Thm €[0,t] 1=0

for allt > 0. Moreover the sequence of cadlag processes (V(f; k‘)?)t>0 converges

stably in law to (V(f;k')t)t>0 with respect to the Skorokhod M;-topology if f
satisfies additionally the following condition:

(FC) Each of the two functions x + f(x)li>0y and v — f(x)Liy<0y is either
nonnegative or nonpositive.

(i) Suppose that L is a symmetric §-stable Lévy process with scale parameter pr, >
0. Assume that H=a+1/8 <k and E[|f(L1)|] < co. Then, setting a,, = 1/n
and b, = n*, we obtain

V(fik)P == tE[f(9)],
where S is a symmetric 3-stable random variable with scale parameter pr||he|| s (&)

(1i1) Suppose that (1V B)(k —a) < 1 and assume that f(z) < C(1V |z|?) for some q
with ¢(k — a) < 1, and some finite constant C. With the normalising sequences
a, = 1/n and b, = n* it holds that

t
V(R e / F(F) du

where (Fy)uer 18 a version with measurable sample paths of the process defined
by
F, = / g®(u—s)dLy a.s. for allu e R (I1.1.3)

— 00

which necessarily satisfies fg |f(Fy)|du < 0o, almost surely.

The limiting random variable in (i) is indeed well-defined, as we show in Lemma
I1.2.2 below. The three cases of the theorem are closely related to the three possible
limits for the realised power variation derived in [7, Theorem 1.1]. We remark that [7,
Theorem 1.1] shows only the convergence of the realised power variation at a fixed time
t > 0, the functional convergence was shown in [6]. Unlike for the power variation, the
conditions of Theorem II.1.1 (i) are not in conflict with the conditions of (ii) or (iii).
As a consequence, the functional V(f; k) can converge to different limits for different
choices of the normalising sequences (a,) and (b,,). This phenomenon should not be
surprising, however, since it also occurs for other classes of stochastic processes. As an
example, consider a S-stable Lévy process L and the function f(z) = sin? (). Then,
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for the functional V(f; 1) with the normalising sequences a,, = b, = 1 we obtain the
almost sure convergence

[tn]
> sin®(A},L) 25 sin?(ALp ).
i=1 m:T,, €[0,t]

The right hand side is indeed finite since sin? is bounded and satisfies sin?(z) ~ z?

as © — 0. However, for the choice of normalising sequences a,, = n~! and b, = n'/#
we obtain by self-similarity of L

[tn] [tn]
1 1 a.s. .
— E sin?(n'/# A L) L= E sin?(A} L) 2% E[sin?(L,)],
n ’ n ’

i=1 i=1

showing that the functional V'(f; k)7 may have different limits for different normalising
sequences, when applied to a Lévy process.

For Theorem II.1.1 (ii) we give a second order limit theorem when the function f
is bounded. To this end we introduce the notion of the Appell rank of f. Let

®,(2) = E[f(z + pS)] — E[f(p9)],

where S is a symmetric S-stable random variable with scale parameter 1, and p > 0.
From boundedness of f it follows that @, is infinitely differentiable. The Appell rank
of f at p > 0 is then defined as

kj, := min{r e N : <I>£f) (0) # 0}.

The Appell rank has been introduced in [19] and is known to have major impact on
the second order asymptotic behaviour of V(f;k)}, the Appell rank of f plays an
important role, similar as in the limit theory for discrete time moving averages driven
by stable non-Gaussian noise. In Theorem I1.1.2 (i) we consider only functions f with
k;, > 1, which is for example satisfied when the function is even. Moreover, we restrict
ourselves to fixed ¢ > 0, without loss of generality ¢t = 1, and set V' (f; k)™ := V(f; k).
Let us mention that in [23] and [28], where the authors derive similar limit theorems
in the low frequency setting, they show functional convergence towards a limiting
process. By multiplying the Lévy process with a constant we may and do assume
without loss of generality ¢y = 1 where the constant ¢y was introduced in Assumption
(A). Moreover, we strengthen our basic assumption as follows.

Assumption (A2): Suppose that in addition to Assumption (A) we have |g™F) (t)| <
Cto=k for all t > 0. For the function ¢ : [0,00) — R defined as ((t) = g(t)t= the
limit lim, o CY9) exists in R for all j =0, ..., k.

For Theorem II.1.1 (ii) we obtain the following second order limit theorem.

Theorem I1.1.2. Suppose assumption (A2) is satisfied and that f is bounded. Let
L be a symmetric B-stable Lévy process with scale parameter pr, and set H = a + %

(i) Assume that o € (k —2/8,k —1/B), and suppose additionally that k; > 1 for
all p > 0. Then it holds that

nl” Tmas (n—1 Z {f(n" A} X) —E[f(n" A}, X)] }) £ 5, (IL.1.4)
i=k
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where S is a (k — a)B-stable random variable with location parameter 0, scale
parameter ps and skewness parameter ng, which are specified in (11.3.62).

(ii) Assume that o € (0,k —2/8). It holds that
( - Z {f(n" A} X —E[f(nHAZkX)]}> £ N(0,7?). (IL1.5)

where the variance is given as n° := lim,, oo n2, With Ny, defined in (11.3.72).

We remark that the condition £k > 1 is stronger than the conditions for com-
parable results for discrete time moving averages, e.g. [28], where it is typically
sufficient to control the Appell rank at the scale parameter of the stable random vari-
able X; — X;_1. In Theorem II.4.6 we show that the condition k;", > 1 forall p >0
is satisfied if both the positive and negative part of f have Appell rank greater 1 at
p=1

Throughout all our proofs we denote by C' a generic positive constant that does
not depend on n or w, but may change from line to line. proof we denote all positive
constants that do not depend on n or w by C, even though they may change from
line to line. For a random variable Y and ¢ > 0 we denote ||Y|, = E[|Y|]}/2. We
abbreviate ‘symmetric S-stable’ by SBS and denote Y ~ SBS(p) if YV is symmetric
[-stable distributed with scale parameter p, i.e. if its characteristic function is given
as
|°

Y

Elexp(inY)] = e~ lP" n € R.

We use frequently the notation

Gin(s :i 0/ (5)atti = yn - ),

Jj=

which leads to the expression

A?,kX :/ Gin(s) dLg

for the the kth order increments of X.

I1.2 Proof of Theorem II1.1.1

In this section we present the proof of Theorem (II.1.1). We begin by briefly recalling
the definition and some properties of the Skorokhod Mj-topology, as it is not widely
used. It was originally introduced by Skorokhod [27] by defining a metric on the
completed graphs of cadlag functions, where the completed graph of f is defined as

I'y={(z,t) e RxRy : z=af(t—)+ (1 — ) f(t), for some a € [0,1]}.

The M;-topology is weaker than the more commonly used J;-topology but still strong
enough to make many important functionals, such as sup and inf, continuous. It can
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be shown that the stable convergence in Theorem II.1.1 (i) does not hold with respect
to the Ji-topology. Since M; is metrisable, it is entirely defined by characterising
convergence of sequences, which we do in the following. A sequence f, of functions
in D(R4,R) converges to f € D(Ry,R) with respect to the Skorokhod M;-topology
if and only if f,,(t) — f(t) for all ¢ in a dense subset of [0, 00), and for all ¢, € [0, )
it holds that
limlimsup sup w(fp,t,6)=0.
10 nooo 0<t<to,

Here, the oscillation function w is defined as

w(f,t,6) = sup {If(t2) = [f(t2), F(E3)]1},
O\/(t*(s)gtl<t2<t3§(t+5)/\too
where for b < a the interval [a, b] is defined to be [b, a], and |a—[b, c]| := inf e ¢ la—d].
For the functions g; ,, we obtain the the following important estimates.

Lemma I1.2.1. Suppose that assumption (A) is satisfied. It holds that

[gin(s)| < C>i/n— ) forsel(i—k—1)/n,i/n],
lgin(s)] < CnF((i — k)/n —s)*~F forse(i/n—9,(i—k—1)/n), and

|95 ()] < CnF (Lii—iyn—s.i/m—s1(s) + g™ (0 = k) /n = $)L(Zoo, (i) fn-5)(5))
for s € (—o0,i/n — 0].

Proof. The first inequality follows directly from (A). The second inequality follows
from Taylor expansion of order k and the condition |¢®*)(¢)] < Ct*~* for t € (0,).
The third inequality follows again through Taylor expansion and the fact that the
function ¢(*) is decreasing on (J, 00). O

Proof of Theorem II.1.1 (i)

The proof is divided into three parts. First, we assume that L is a compound Poisson
process and show the stable convergence for fixed ¢ > 0. Thereafter we argue that the
convergence holds functional with respect to the Mi-topology, when f satisfies condi-
tion (FC). Finally, the results are extended to general Lévy processes by truncation.
For this step, an isometry for Lévy integrals that is due to [24] plays a key role.

Since C? C CP for p < ¢ we may and do assume that p € N. Note that f € CP
implies that for any N > 0 there is a constant C such that

|f9(z)| < Cyl|z|P~7, forallz € [-N,N], and j =0,...r. (I1.2.6)

By the assumption p > ﬁ this implies the following estimate to be used in the proof
below. For all N > 0 there is a constant C'ny such that

|f9)(2)| < Cnlx|, forall z € [-N,NJ, and j =0,...r, (I1.2.7)
where v; = %. The following Lemma ensures in particular that the limit in

Theorem II.1.1 (i) exists.
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Lemma I1.2.2. Let ¢t > 0 be fized. Under the conditions of Theorem II.1.1 (i) there
is a finite random variable K > 0 such that

> D |flcodLy, (i +Un))| < K, and

m:T,, €[0,t] I=0

n—1
Z Z |f (AL, n®gi, 410 (Tn))| < K, for alln,

m:T, €[0,t] 1=0

where i,, denotes the random index such that T,, € (%, %ﬂ]

Proof. Throughout the proof, K denotes a positive random variable that may change
from line to line. For the first inequality note that |hg (I + U,,)| < C(I — k)*~* for all
I >k and |ht(Il4+Up)| < C forl €{0,...,k}. This implies in particular

C(l—k)a—* supyeo,{|ALsl}, for 1>k

coALy, (w)he(l4+Up)| <
|coALr,, (w)hi( )| {C’supse[o,t]ﬂALSHv for I € {0,..., k}.

Therefore, we find by (I1.2.6) a random variable K such that
|f(coALT, his(l+ Upn))| < K|coALr, hi(l+ Up)|”

for all [ > 0 and all m. Consequently, the first sum in the lemma is dominated by

K< > IALn P+ Y |ALp,l i (z_k)m—k)p) <K,

m:T,, €[0,t] m:T,, €[0,t] I=k+1

where we used that (a—k)p < —1, and that > |ALr, |P < oo since p > . The second
inequality follows by the same arguments since Lemma I1.2.1 implies the existence of
a constant C' > 0 such that for all n € N

nGipin(Tm) < C for I € {0,...,k}, and
n°gi, +1n(Tm) < C(1 — k)*7F, forl e {k+1,...,n—1}.

Compound Poisson process as driving process

In this subsection, we show the convergence of V'(f; k)7 for some fixed o, > 0 under
the assumption that L is a compound Poisson process. The extension to functional
convergence when condition (FC) is satisfied follows in the next subsection, the ex-
tension to general L thereafter.

Let 0 <Tj < T3 < ... denote the jump times of (L;);>0. For e > 0 we define

Qe = {w e Q: for all m with T,,,(w) € [0, tos] we have |Tp,(w) — Trn—1(w)| > €
and ALy(w) =0 for all s € [—¢,0] and [AL,| < e for all s € [0,t5) }.
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We note that . T €, as € | 0. Letting

i/n—e

i/n
Mi,n,e ::/ gi,n(s) dLS7 and Ri,n,a ::/ gi,n(s) dLs:

i/n—e [e'e]
we have the decomposition AﬁkX = Mine~+ Rine It turns out that M, , . is the
asymptotically dominating term, whereas R; .. is negligible as n — oco. We show
that, on Q,,

[ntoc]
ST FnMine) 53 2o, where Zi_= Y Z F(coALy, hyu(l+Up)).
i= M Ty €[0,t00] 1=0

(I1.2.8)

Here, (U, )m>1 are independent identically 2([0, 1])-distributed random variables, de-
fined on an extension (£, F',P') of the original probability space, that are indepen-
dent of F. For this step, the following expression for the left hand side is instrumental.
On (). it holds that

(1]
> (M) = Vi, (I1.2.9)
i=k

where

Ve = > Z F*ALz, gi, +1.0(Tm))- (I1.2.10)

m:Tp, €(0,[nt]/n] 1=0

Here, i,, denotes the random index such that T;,, € ((ir, — 1)/n,im/n], and vf™ is
defined as

A t] — ‘m if Tm - -m <
ey o A=) T (e i) > e
[en] — 1A ([nt] — i) if Ty — ([en] +im)/n < —&.
Additionally, we set vj* = oo if T),, > [nt]/n. The following Lemma proves (11.2.8) in

a slightly more general fashion, since the proof of functional convergence in the next
subsection requires convergence of finite dimensional distributions.

Lemma I1.2.3. Forr>1and 0 <ty <--- <t, <ty we obtain on Q. the F-stable
convergence
L_ 3
(Ve ve) =3 (Ziy,.. ., Zs,), asn— oo.

Proof. By arguing as in [7, Section 5.1], we deduce for any d > 1 the F-stable con-
vergence

{n%gi,+1.:0(Tm) Him<d £ {cohr(l + Um)}i,m<d

as n — 00. Defining

d
vt = Z Z f(n*ALr, gi,+1,n(T3)) and

m<d:T,,€(0, [nt]/n] =0

ze > choALT hi(l+Upn)),

m<d:T,, €(0,t] I=0
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we obtain by the continuous mapping theorem for stable convergence

Ve VY ES (zd 28, as s oo, (11.2.12)

for all d > 1. Therefore, by a standard approximation argument (cf. [11, Thm 3.2]),
it is sufficient to show that

lim sup{ max |V/"° — V;”’d|} =20, as d — oo, and (11.2.13)
n—o00 te{ty,...,tr}
sup |28 — 7] 25 0, as d — oo. (I1.2.14)
t€[0,too]

For sufficiently large n we have

dvoy"

Vit = vl < > Y (AL, nGi 10 (T))]

m<d:T,, €(0,[nt]/n] I=dAv®

Y ALt n(T))]

m>d:Tr, €(0,[nt]/n] 1=0

n—1
< Z Z |f(ALT,,n"Gi,, +1,0(Tin))]

m:T,, €(0,tsc] I=dAv]"

n—1
" 3 > (AL, 1% gi10(T)),

m>d:T,, €(0,[nt]/n] 1=0

for all t € [0, too]. Therefore, (I1.2.13) follows from Lemma I1.2.2 by an application of
the dominated convergence theorem since the random index vj® = v*(n,w) satisfies
lim inf,, ;o v{*(n,w) = 0o, almost surely. Lemma I1.2.2 also implies (I1.2.14), since

sup |Z{ — Zi| < > > f(coALr, hi(l+ Up))l

t€[0,te0] M AT €(0,to0] I=d+1

+ Y Z|f ALz, (L + Un))l-

m>d: Ty, €(0,t00] 1=
The Lemma now follows from (II.2.12), (I1.2.13) and (II.2.14). O

Recalling the decomposition (I1.2.8) and applying the triangle inequality, the proof
can be completed by showing that

[nteo]

Z |f(ALX) — f(n* M) =550,  asn—oo. (IL2.15)

We first argue that the random variables {n®M; o, n*A}; X} nenic(k,... [ntoo]} aTe
on 2. uniformly bounded by a constant, which will allow us to apply the estimate
(I1.2.6). The random variables M, , . satisfy by construction either |n®M; | = 0
or [n®*M; ne| = [n*Gin(Tm)ALr, | for some m, where we recall that on €. it holds
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that T,,, — T,,—1 > €. Consequently, they are uniformly bounded by Lemma II.2.1,
where we used that k& > « and that the jumps of L are bounded on .. The uni-
form boundedness of n® A} X = n®(M; n e + Rin,) follows by [7, (4.8),(4.12)] which
implies that for any n > 0

sup {n*""R; .|} < oo, almost surely. (I1.2.16)
neN, ie{k,...,[ntoo]}

In order to show (I1.2.15) we apply Taylor expansion for f at n®*M; , ., and bound
the terms in the Taylor expansion using (I1.2.6) and the following result.

Lemma I1.2.4. Let ¢ : R — R be continuous and such that |yp(x)] < Clx|? for all
x € [-1,1] for some v € (0,1/(k — «)). It holds on Q. that

]

[ntoo
lim sup {n(k_a)'y_l Z

n—00 :
i=k

|"/)(naMi7n,£)|} < C, a.s.

Proof. We have on ()

[ntoc]
Z W(”aMi,n,EN = Wtifv
i=k
where
Wie = > > WALz, gy 41.0(T),

m: Ty, €(0,[ntss]/n] 1=0

and v;" is the random index defined in (II.2.11). By Lemma II.2.1 the random
variables n®g;, 4i1n(Tn) are bounded for [ =0, ..., k. Forl € {k+1,...,n—1}, Lemma
I1.2.1 implies that n%g;,, 41.n(Tm) < C(I—k)*~*. Since the random index v satisfies
vi" < n for all m, we obtain on (2.

[ntoo] k n
S M) < Y (Znamw,n@m)w 3 (z—k>a-’“|”).

i=k m: T €(0,t00] =0 I=k+1

It follows by comparison with the integral fknﬂ(s — /ﬁ:)(o"’“)7 ds that the right hand
side multiplied with n(*=®)7=1 is convergent, where we used that (o — k)y € (—1,0)
and that the number of jumps of L(w) in [0, {s] is uniformly bounded for w € Q.. O

Considering the sum J,, in (I1.2.15), Taylor expansion up to order r = [p] shows
that

[ntoo] [ntoo]
Jn < 2 ’naRi,n,&‘f/(naMi,n,E)’ + 4+ ﬁ Z; ’(naRi,n,E)rf(T) (naMi,n,8)| + TRT
=11+ ---+T,+TR,, (I1.2.17)

where TR, denotes the Taylor rest term. Recalling the estimate (I1.2.7), we can now
for j =0,...,[p] estimate the jth Taylor monomial 7; by applying Lemma II1.2.4 on
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¢ = fU), where we remark that v; = p(i’i_—j;)c) € (0,1/(k — «)). Using (I1.2.16) and
recalling that p > k — a;, we obtain that for sufficiently small n > 0

[nte] [nteo]
1 a i i [} —3/p— i o
ﬁ Z |(n Ri,n,e)Jf(J)(n Mzna)‘ < COnp~d/P=n Z |f(3)(n Mmg)‘
i=k i=k
< Cn, (I1.2.18)
where the second inequality follows from Lemma II1.2.4 since (k — a)vy; — 1 = —j/p.

For the Taylor rest term TR, we have by the mean value theorem the expression

[ntec]

1
TR, = ﬁ Z |(naRi,n,s)r(f(T) (fz,n) - f(T) (naMi,n,s))|7
i=k

with &, € (nY|M;nel,n%|Xine|) where we set (a,b) := (b,a) for a > b. Since
n®|M; p, | and n®| X, ,, .| are bounded and f() is locally p — r-Holder continuous, it
follows that

TR, <Cn sup [N R e |P
neN, ie{k,...,[nt]}

From (I1.2.16) it follows that TR, — 0 as n — oo, where we recall that (o —k)p < —1.
Together with (I1.2.17) and (I1.2.18) this implies J,, — 0, and it follows that

[tn]

sup (VU= Y F0 M)
i=k

te[0,too]

} 24
on €).. Now, the theorem follows from Lemma I1.2.3 by letting ¢ — 0.

Functional convergence

In this subsection we show that if f satisfies (FC) and under the assumption that L
is a compound Poisson process, the convergence in Theorem II.1.1 holds functional
with respect to the Skorokhod M1-topology. To this end, we denote by —2+—* the
F-stable convergence of cadlag processes, regarded as D([0, t]; R)-valued random
variables, where ¢, is some fixed positive time horizon and D([0, t]; R) is equipped
with the Skorokhod M;-topology. We first replace (FC) by the following stronger
auxiliary assumption.

(FC’) It holds that f is either nonnegative or nonpositive.

This assumption puts us into the comfortable situation that our limiting process
is monotonic. Recall the definition of the processes V™ and Z introduced in (II.2.8)
and (I1.2.10), respectively. In Lemma I1.2.3 the stable convergence of the finite dimen-
sional distributions of V™¢ to Z was shown. By Prokhorov’s theorem the functional
convergence V™ —£M1=* 4 7 on Q) follows thus from the following Lemma.
Lemma II.2.5. The sequence of D([0,t])-valued random variables (V"1 (g 3 )n>1
is tight if D([0,tx0]) is equipped with the Skorokhod My -topology.
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Proof. Tt is sufficient to show that the conditions of [31, Theorem 12.12.3] are satisfied.
Condition (i) is satisfied, since the family of real valued random variables (V;"%),>1
is tight by Lemma I1.2.3. Condition (ii) is satisfied, since the oscillating function wy
introduced in [31, chapter 12, (5.1)] satisfies ws(V"™¢,6) = 0 for all # > 0 and all n,
since V™€ is monotonic by assumption (FC’). O

Recalling the identity (I1.2.9) and the asymptotic equivalence of th:n,]c (n*M; ne)
and V(f; k)™ shown in (I1.2.15) and thereafter, the functional convergence in Theorem
I1.1.1 follows.

Now, for general f satisfying condition (FC) we decompose f = fy + f_ with
fo(w) = f(x)lips0y and f(z) = f(2)l{z<0y- Both functions f, and f_ satisfy
(FC’), and the functional convergence of V(fi;k)™ and V(f_; k)™ follows, with the
corresponding limits denoted by Z+ and Z~. Note that Zt jumps exactly at those
times, where the Lévy process L jumps up, and Z~ at those, where it jumps down. In
particular, Zt and Z~ do not jump at the same time, which implies that summation
is continuous at (Z1,Z7) with respect to the M;-topology (cf. [31, Thm. 12.7.3]).
Thus, an application of the continuous mapping theorem yields the convergence of
V(fik)" = V(fy;k)" + V(f-; k)" towards Z = ZT + Z~. Let us stress that indeed
the sole reason why the extra condition (FC) is required for functional convergence
is that summation is not continuous on the Skorokhod space, and consequently the
convergence of V(f1; k)™ and V(f_; k)™ does not generally imply the convergence of
V(fik)"

Extension to infinite activity Lévy processes

In this section we extend the results of Theorem II.1.1 (i) to moving averages driven
by a general Lévy process L, by approximating L by a sequence of compound Poisson
processes (ﬁ(j))jzl. To this end we introduce the following notation. Let N be
the jump measure of L, that is N(A) := #{t : (t,AL;) € A} for measurable A C
R x (R\ {0}), and define for j € N

Xi(j) = / {(g(t — 5) — go(—s))x}N(ds, dx).
(7oo,t}><[—%,%]

Denote X;(j) := X; — X;(j). The results of the last section show that Theorem I1.1.1
holds for X (j), since it is a moving average driven by a compound Poisson process.
By letting j — oo we will show that the theorem remains valid for X by deriving the
following approximation result

Lemma I1.2.6. Suppose that f satisfies the conditions of Theorem II1.1.1 (i). It holds
for all € > 0 that

lim limsup]P’< sup |V(X, f; k)P = V(X(), f; k)7 > 5) =0. (II.2.19)

J—=0 n—oo t€[0,to0]

Proof. In the following we call a family of random variables {Y}, ; }n jen asymptotically
tight if for any € > 0 there is an N > 0 such that

limsupP(|Y,, ;| > N) <e, forall jeN.

n—oo
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We deduce first for p > 8V = the asymptotic tightness of the families

[nteo] [ntoo]
{ Z AT X P, Z A7, X } , and (I1.2.20)
n,j€EN

{iekmax ](|nO‘A"kX|) max ](naAsz(j))}

yeens[Mtoo i€k,...,[nteo n,jEN
The authors of [7] show the stable convergences in law
ntoo ntoo]
Z In*An X ()P £33 25, Z [N (==

where Z; and Z are defined as in [7, (4.34)]. The asymptotic tightness of the first fam-
ily follows thus from the tightness of the family {Z;, Z};en, see [7, (4.35)]. The second
family follows from the first by the estimate max;—1,..,(las]) < (X1, |ai\p)1/p for
ai,...,an € R. The asymptotic tightness of the second family allows us for the proof
of (I1.2.19) to assume that |A7kX'(])\ and [A}, X[ are uniformly bounded by some
N > 0. Consider first the case p < 1. By local Hélder-continuity of f of order p we
have that

[ntoo
sup [V (f, X; k) = V(f, X(7): k)7| < Cy Z [n*ALX
t€[0,too]
and (I1.2.19) follows from [7, Lemma 4.2], where we used that p > gV (=) a) Let
now p > 1. We can find &, ; € [n®A7, X (j),n“Ar, X] such that |f(n®A}, X (j)) —
f(*A7 X)| = [n*A7, X (4) f'(n%Ei ;)| and obtain by (I1.2.6)

|f(n ALK () = F(n* AT X)] < Cln® AL X ()i s 1P
< Cln® AL X ()i 517
< ClnALX () + Cln® AL X () In A7 X7,

with v = p ! (5\/ ) satisfying v < p—1 by assumption. Thus, in order to complete
the proof of (I1.2.19), it is sufficient to show that for all € > 0 we obtain

[nteo]
lim hmsup]P< Z [n® AL X (j NPT > 5) =0, and (I1.2.21)
J—=0 n—oo i—k

[Nteo]
lim hmsup]P’( > I ALX () In AL X[ > 5) =0. (11.2.22)
J—=® nooo ’ ’

i=k

By definition it holds that v+ 1 > 8V 2, and (11.2.21) follows from [7, Lemma
4.2]. For (I1.2.22) we choose Holder conjugates 6; and 0y = 61/(6; — 1) with 6, €
(ﬁ \Y, ﬁ, p), where we used that p > 1. Holders inequality and the estimate

P(|XY|>¢e) <P(|X|>e¢/N)+ P(|Y| > N) for any N >0
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lead to the decomposition

[nteo

( Z In“A7LX (5)|In“ A7 X[ > e)
ntoo)

[ntoo] 61 [
aAn 9 € aAn A 0 0-
<]P’<ZnA o> (N>>+P<Z|nA (>|~2>Nz)
= J’iqj,N + J’s,j,N'
Since 1 > 3V =, yet another application of [7, Lemma 4.2] yields that

lim limsup J; 4N =0 foral N >0.

J—© nooo

Moreover, 61 < p implies y02 > 3V ;—=. Therefore, it follows from the asymptotic
tightness of the family (I1.2.20) that

lim sup lim sup Jﬁ in—0, as N —oo.
j—o0 n—00 e

This shows (I1.2.22) which completes the proof of the Lemma. O

Finally, the proof of Theorem II.1.1 (i) can be completed by letting j — co. More
precisely, we introduce for j € N the stopping times

Tm if|ALg, | >1/4,
ij =
oo else.

The results of the last two subsections show that

VXGRS 2= Y if(coALTm’jhk(l— Un)), forallt>0,

m:Ty, ;€[0,t] =0

and that the convergence holds functional with respect to the M;-topology if f satisfies
(FC). From Lemma I1.2.2 and an application of the dominated convergence theorem
it follows that
sup |Zy — ZI| 250, as j — oo.
te[0,too]
Theorem II.1.1 (i) follows therefore from Lemma I1.2.6 and a standard approximation
argument (cf. [11, Thm 3.2]). O

Proof of Theorem II.1.1 (ii)

Let us first remark that it is sufficient to show convergence in probability for fixed ¢ > 0
in order to obtain u.c.p.-convergence by the following standard argument. Making the
decomposition f = fy —f- with fi (z) = f(2)1{(2)>0y and f—(¥) = = f(2)L{s(z)<0}s
the statistics V(f; k) and V(f_; k)} are increasing in ¢ and converge to the (non-
random) limiting processes (tE[f+(S5)])¢>0 and ((E[f_(S)])¢>0, respectively. Since the
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limiting processes are continuous in ¢, u.c.p.-convergence follows from convergence in
probability for all ¢ > 0, see for example [21, Equation (2.2.16)].

The proof relies on replacing the increments of X by the increments of its tangent
process, which is the linear fractional stable motion Y, defined as

Y, = /7 {(t —5)% — (fs)ﬂ‘_}dLs,

where z; := max{z,0}. It is well known that the process Y is self-similar of index
H=a+1/8,1e. (Ya)i>o0 4 (a®Y;) for any a > 0, see [29]. Moreover, the discrete
time stationary sequence (Y;.),cz is mixing and hence ergodic, see for example [13].
Denoting by V(f;Y)? the variation functional (I1.1.2) with a, = n~! and b, = n’!
applied on the process Y, it follows from Birkhoff’s ergodic theorem, see [22, Theorem
10.6], that

[nt] [nt
d

Zf nTAlY) = Zf 1Y) > tE[f(Ag,Y)], almost surely.

Here we used that the expectation on the right hand side is well-defined by assumption.
By (I1.3.45), the random variable A,lglkY is SAS distributed with scale parameter
prl|Pkl Ls ry, and the right hand side is the limiting expression in the theorem. It is
therefore sufficient to argue that

E[V(X; )} =V )] =0, asn— oo, (I1.2.23)

For N > 0 and € > 0 we denote by wy(e, N) the modulus of continuity

wi(e, N) = sup{[f(z) = f(y)| : @,y € [N, N], |z —y| <e}.

We obtain the estimate
[nt

E[|V(X; f)p - ZE |f(nP A7 X) — f(n" A7LY)]

[nt]

<= Z (wf e, N)P(nf|A7, X — A7, Y| <&, [nfT A7 X|V AT Y| < N)
+ CNP(nTAL X — ALY > e, [nT AT XV [nT ALY < N)

+E []1{|nHA;f,€X|>N} |f(nT AT X)|] +E []l{lnHAZkY|>N} |f(”HA?,kY)|]>

[n1]
1 n n,
‘h D iy + N+ TR, (11.2.24)
i=k

where C'y = 2sup|, <y |f(2)]. For the first summand we have that for any N > 0

[nt]

—ZZEN<wf5N) —0 ase—0.
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For the second summand an application of Markov’s inequality with some p < S
shows that for all e, N > 0

1 [nt] ) CN&?*p [nt]
n, H n n
I ;Ji,s,N < n ;EUTL (Ai,kX — Ai,kY)lp] =0 as n — 0o,

where the convergence follows from [7, (4.45)]. Hence, by stationarity of (nff AN X)izks
it is sufficient to argue that

lim limsupE[Ly,map xis>nlf(n AL X)[] =0, (11.2.25)

N—oo pnoco

which we do in the following. From [7, (4.45)] it follows that n" A} X £, ALY,
implying that p,, — p where p,, and p denote the scale parameters of the SS random
variables nf A7 X and A} Y, respectively. In particular there are constants ¢,C €
(0, 00) such that ¢ < p,, < C for all n. Recalling that the density ¥ of a standard SBS
random variable S satisfies 1 (y) < C(1 + |y|)~*=7, it follows that

E[Lgnap xi>n 1 f (7 AL XN = E[L,, 5155 f(0nS)]]

<c / (L [y) P Lgpnyiony | F () dy

— Cp,;l/R(H o )T L gy sy 1 F ()] dy
<Cpf / (c+ YD) Py ny £ (0)] dy
<cC / (c+ )™ Lyysny () dy

Now (I1.2.25) follows from E[|f(S)|] < oo, and the decomposition (II.2.24) implies
(I1.2.23) by letting N — oo and € — 0. This completes the proof of Theorem II.1.1
(i). O

Proof of Theorem II.1.1 (iii)

By the argument given at the beginning of the last subsection, u.c.p.-convergence
follows if we show convergence in probability of V(f;k)} for arbitrary t > 0.

Let us first remark that the growth condition |f(z)| < C(1V |z]?) for some ¢ with
q(k — a) < 1 is weaker for larger ¢ and can therefore be thought of as

[f(z)] < Cla|7=~¢ for |z| = oo,

if k& > «, whereas for k& < a we require only that f is of polynomial growth. Since
by assumption of the theorem we have £ — o < 1, we may and do always assume
that ¢ > 1. We recall that a function £ : R — R is absolutely continuous if there is a
function £’ such that

() —£&(s) = /t ¢ (u)du, forall s <t.
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This implies that £ is differentiable almost everywhere and the derivative coincides
with ¢ almost everywhere. If £ can again be chosen absolutely continuous with
derivative £ we say that ¢ is two times absolutely continuous, and similarly we
define k-times absolute continuity.

By an application of [12, Theorem 5.1] it has been shown in [7, Lemma 4.3] that
under the condition (k — «)(1V 8) > 1 the process X admits a k-times absolutely
continuous version and the k-th derivative is a version of the process (F,,),er defined in
(I1.1.3). Moreover, |7, Lemma 4.3] shows that for every ¢ > 1,¢q # 6 with g(k—«a) < 1
the process F admits a version with sample paths in L7([0,t]), almost surely, which
implies fo |f(Fy)|du < oo. The intuition behind the convergence in Theorem II.1.1
(iii) is that by the mean value theorem we have nkA”kX Fi which implies

1 S kAn 1 Z ¢
:ﬁ;f(n AT X) EZ;C Fi;l)%/of(Fu)du, as n — 0o,

by convergence of Riemann sums to the integral. The remainder of this section
is dedicated to formalising this statement. This requires some work, mainly due
to the fact that the kth derivative process F' is not necessarily continuous, which
compromises the intuition nkAZkX ~ Fi-1. The proof of Theorem II.1.1 (iii) is
complete by the following result, where v;e denote by W4 the space of k-times
absolutely continuous functions & on [0, #] satisfying £*) € L4([0,1]).

Lemma I1.2.7. Let £ € W54, and suppose that |f(x)| < C(1V |z]?) for some ¢ > 1
and some C. It holds that

[nt]

V(& £ R ”kaNﬁ%/fém
as m — 0o.
Proof. Assume first & € C*T1(]0,¢]). Taylor approximation shows that
WAL = €5 +ain,

where |a;,| < C/n for all n > 1,k < i < n. We can therefore assume w.l.o.g.
that f has compact support and admits a concave modulus of continuity wy, i.e.
a continuous increasing function wy : [0,00) — [0,00) with ws(0) = 0 such that

|f(z) — f(y)] Sws(lz—yl|) for all z,y. We have by Jensen’s inequality that

[tn

limsup |V (¢, f, k) Zf f(k)

n— oo

[tn]
<hmsup{ - (tn Z'a”‘|>}

The result follows by the convergence of Riemann sums

[tn]

foLk%Aﬂ#mh
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In the following we extend the result to general ¢ € W*:9 by approximating ¢ with
a sequence (£™),,>1 of functions in C¥+1. To this end, choose £™ such that

t
/ €0 — em(®) |9 gs < 1/m,  for all m.
0

Indeed, the existence of such a sequence follows since continuous functions are dense
in L9([0,4]). Note that IL2 implies that [} [¢/) — ¢I*®| ds < C/m!/9, since we
assumed g > 1. The proof of the lemma will now be completed by showing that for
a sequence ({™)m>1 satisfying I1.2 it holds that

t
timsup [ [£(6) ~ £(& ) ds =, (11.2.26)
m—oo Jo
and that
limsup sup [V/(&; f, k) — V(§™; f,k){| = 0. (11.2.27)

m—oo neN

Proof of (11.2.26):
Since ¢™(*) converges in L4([0,]), the family (|¢™(*)|9),,>; and consequently also
the family {f(€™®)),,>1} are uniformly integrable. Therefore, given ¢ > 0, there is
a N such that

t
/ |§;n’(k)|q]l{‘£m,<k)|>N} ds < e for all m, and
0 s
t
/ EXIL 05y ds < e (11.2.28)
0 >

Choosing a continuous function fN with compact support such that fN = f on
[-N, N], and denoting by wy a concave modulus of continuity of fx, we have by
Jensen’s inequality

t
nmsup{ /O FE®) = pem®)) ds}

m—r o0
t
. —1 k m,(k

m—r oo

t
(k)y _ m, (k)
+/0 |f(&57) — f(&S )|]l{|§gk>‘v|§g”=(k)\>N} ds}

t
= lim sup { / F(EP) = FEP L e pem 5 ay ds}
; ®vie:

m—o0

—0, asn — oo.

Hence, (I1.2.26) follows by letting e — 0 from the estimate

t
limsup/ G f(é‘;n1(k))|ﬂ{‘£gk)|v|€:n,,(lc)|>N} ds < e(4+2sup |f(x)]), (I1.2.29)
0 . :

m—o00 |z[<1



I1.2. Proof of Theorem II.1.1 79

which we derive in the following. Note that

t
/ F(EF) - f(ggn’(k))“lﬂg(k)\v|§m>(’“>\>N} ds

/lf FE DI 005y ds+/ FE) = FE O g5y ds
=1+ Is.

For N > 1 we have by (I1.2.28) and I1.2 that

m,(k
Il<5+/ FE L e, wger o<1y ds*/ €51 115 e 05
< e+ sup f / (k) d8+/ fm (F)jaq (k) ds
sup @ [ ey €O e, vy

1/q
e(1+ sup |f(2)]) + {(/ & _ggk”q]l{\&ik)bfv} ds)
0

2 <1
t " /gy 4
q
* (/0 €51 e 1 ds) }

q

w1+ sup @)+ {1/mtr oL
lz|<1

and consequently

limsup I; < e(2+ sup |f(z)]).

m—o0 |z|<1

By a similar argument it follows that limsup,, o, I2 < &(2 + sup, <1 [f()]), and we
obtain (II.2.29), which completes the proof of (I1.2.26).
Proof of (11.2.27):
In order to show (I1.2.27) we split the sum
1 bl

V(& f.R)F = V(E™ f k) Z\f nfALE) = f(nPATE™)]

into sums over the following sets of indices, where N and M are positive constants:

A11’2/' = {Z € {ka7[tn]} : k|A k§| > N}
ol = {ie{k,..,[tn]} : n¥|ALE < N, nF|ATE™ > M}
Codt={ie{k,...[tn]} : n*|A7E| < N, nF|ATE™ < M}

and estimate the corresponding sums separately. The following relationship between
A7, ¢ and £F) will be essential. For all £ € W7 we have

i/n psi Sk—1
A;‘kfz/ / / EMdsy ... ds
’ ZZI s1—1/n Sk—1—1/n
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In particular, it follows that
InFATE| < /[0 , n*lEB 6, soyellok) iy dSk- .. dsi

i/n
= kF? / n|e®)| ds. (I1.2.30)
i—k

n

The AY term: We show that for given € > 0 we can find sufficiently large N such
that

limsupsup{ Z |£( kAn — f(n kAnkfm)|}

m—oo neN lGAN

< lim sup sup {n_l Z |nkA”k£|q

m—oo neN iEAfy

-1 k
nt Y nFATET L jnray emi>1y
i€AN

nt Y] |f(”kA7,k5m)|]1{|nkA:5k£m|§1}}
1€EAN

:= lim sup sup {Il’n,N + Lo pm N+ I37n)m7N} <e, (11.2.31)

m—o00 neN

First we consider I; ,, y. By (I11.2.30) we have for all i € AY

N < B+ /; €0 ds < kE /; RIEP L 012 5+

n

where Cj 1, := N(2k*)~1. Therefore, again by (I1.2.30), it follows that

Ik A7) < KF1 / €0 ds

n

< 2Kk / 1€®) |n ds — N
i—k

n

< 2kF1 /;k |§gk>|1{|§gk>‘>covk}n ds. (I1.2.32)

Consequently, recalling that ¢ > 1, we have by Jensen’s inequality

nTh Y nFATE < KR I Y / €17 e 5.0, 7 8
ic AN ic AN
kyq (k)|a
< (2M) /0 B 0 o (I1.2.33)
It follows for sufficiently large N > 0 that

limsup sup{l1 , v} <e. (I1.2.34)

m—oo neN
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Next, we argue that the same holds for the I, n term. By II.2 and Minkowski’s
inequality it follows for any A € B([0,t]) that [, jcr®ja g < ga-1 Ia 1£Pe ds +
C'/m. Consequently, it holds that

nt Y P ATE T D ke ar em sy SO0 Y / €00 ds

i€ AN i€ AN
C
<C |¢(F)|a =
Z/ €517 ds + —
1€AN
<C Z/ €710 1600 5,y B8 +
1€EAN

C
(k) |q —
< C/o €571 ]1{|g§’“>\>co,k} ds + m’

where the first inequality follows from (I1.2.30), and the third from (I1.2.32) in the
third inequality. This shows that for sufficiently large N it holds that

limsup sup{l2, m v} < €. (11.2.35)

m—oo neN

Next, we estimate the I3 ,, ., v term. Introducing the notation
Dy = {i € {k,...,[tn]} : n®|AT, (™| <1}
we have

Ispmn =n"" Z |f(n* A} WY <n AN N D, | sup |f(x)] (11.2.36)
i€ANMDm {lz<1}

where |AY N D,, ,,| denotes the number of elements of AY N D,, ,,. Using (I11.2.30) we
have for all i € AY N D,,

Vot - ey <t e e pas

and it follows that

Kkt nkkt
ANAD, 1< " / k) _ emi(B)|py g < Rt
| nm ) |7N_1 0 |£S 53 ‘n S—(Nil)ml/qv

where we recall I1.2. With (I1.2.36) it follows that for all N > 1 we have

lim sup sup{I3 nm n} = 0. (I1.2.37)

m—oo neN

Combining (I11.2.34), (I1.2.35) and (11.2.37) we conclude that (11.2.31) holds for suffi-
ciently large N.
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The B,]X:,]Y term: We show that for any € > 0 and any NV > 0 we can find a sufficiently
large M such that

lim sup sup {nl Z | f(n kA”kf) f(n kAnkfm)|}

m—o0 neN

ieBhM
< lim sup sup {n_l Z | f(n" A7+ Z |nkAnk€m|q}
m—oo neN iEBﬁ‘M EBQ{’%I
= hmsup sup{ n,m,N,M =+ Jn m,N, M} < €. (11238)

m—o0 neN

The argument for J} m,N,m 18 similar to the one used for I3, n N above. We
assume that M > N. For i € BN M it holds by (I1.2.30) that

M — N < nF|A7, (€ — &™) Skk_ln/ |6 =€ ds.

Consequently, we have for all m € N

k*nt
= €M ds <
e -eras<

BNM
| |_M N

where |[BN-M]| denotes the number of elements in BY-}?. Then, it follows that for all
M >N

lim sup sup{J}L m.N. M}
m n ’ ’ ’

<limsupsup{n ' |BXM| sup |f(s)|}
m n ’ SG[—N7N]

kk

For thm’NyM we obtain by arguing as in (I1.2.33) with £ replaced by €™ ) and
N replaced by M that

t
T mNom < (274’“)"/O 67 M 5 ng oy 4

for all m,n, N. Since (|¢™(*)|9),,~; is uniformly integrable we can for ¢ > 0 find
sufficiently large M such that

lim sup sup{J37m7N7M} <e. (11.2.40)

Now, (I1.2.38) follows from (I1.2.39) and (II.2.40).
The CN-M term: We show that for all N, M > 0 we have that

limsupsup{n_1 Z |f(n kA"kf) f(n ’“A”kgm)\}:o. (I1.2.41)
m—o0 neN CN M

m,n
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Since |nkAZk§\ < N and |nkA?’k§m| < M for all ¢ € C’,J,\fﬁ/[, we can replace f by a
continuous function fN, M with compact support, such that f(z) = fN, wm(z) for all
€ [-(NV M),NV M]. Denote by Wy, p a concave modulus of continuity for fa, a-

It holds that

sup {nl Z |f(nkA:lk§) - f(”kA?,kfm”}

neN
iecN:M

m,n

= sup {n_l Z ’fN,M( kAnkﬁ) fN,M(” A"kfm)’}

neN
icoNM

m,n

[tn]

< sup{[tn]/n@MM( Zn’“\A K — A7 kf’”l)}

neN

t
< t&jN,JV[ (t—lkk/ |§§k) _ f;n’(k)| ds>7
0

where we used (I1.2.30) in the last inequality. Now (II.2.41) follows by II.2.
Finally, by (I1.2.31), (I1.2.38) and (II.2.41) we can for any ¢ > 0 find sufficiently
large N, M such that

[tn]
limsup sup (n Z |f kAn — f(nkAﬁkfm)’) < e.

m—o0 N—oQ

By letting ¢ — 0 we obtain (I1.2.27) and the proof of the lemma is complete. O

I1.3 Proof of Theorem I1.1.2

Throughout this section we assume that the conditions of Theorem II.1.2 are satisfied.
We begin by introducing some notation followed by a brief outline of the proofs.
For any function ¢ on the real line we denote

DHu(y) Z 7 (5wt

Jj=

The following functions and processes will be frequently used throughout the proofs
of both parts of the theorem.

gn(s) = nog(s/n),  #7(s) = D¥gu(t—s), and Y= / o7 (5)dIL3.A42)

for n € N. By our conditions on the function g it holds that g,(s) — s, and
consequently ¢7(s) — hi(t —s) as n — oo, where hy, was defined in Section II.1.
Therefore, we complement (11.3.42) by defining

¢:°(s) = hi(t —s), and Y := / hy(t — s)dLs.
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By self-similarity of L it holds that {nHA?,kX}T:k,,,,7n 4 {Y,"}r=k,... n, and to deduce
the theorem we show convergence in distribution under proper scaling of

n

Su= Y (FO0) —EFY]) =Y v
r=k

r=k

where we denoted V* := f(Y,*) — E[f(Y,")] for brevity. In order to outline the
strategy for the proof of Theorem I1.1.2 (i) we recall that (F;)ier denotes the filtration
generated by L and introduce additionally the o-algebras

Gli=0(L, — Ly|s <ru<s+1),
remarking that (G1)seg is not a filtration. For n > 1,m,r > 0 we denote
v =BV Fepn] = [V F—j] - B[V F_),
(oo} (oo}
Ry :=> (¢, and Q=Y E[V;"[G} . (I1.3.43)
j=1 j=1
The sums R}’ and @) converge almost surely, as we argue in Remark 1. We obtain

the decomposition

Sn

NE

R4+ (Qr =2+ > Zn, (11.3.44)
r=k r=k

Il
ES

T

where (Z,),> is a sequence of 1.i.d. random variables, to be defined in (I1.3.49) below.
In the proof of Theorem I1.1.2 we argue that the first two sums are asymptotically
negligible and that the random variables Z,. are in the domain of attraction of a
(k — a)B-stable random variable with location parameter 0, scale parameter pg and
skewness parameter 7s as defined in (I1.3.62) in the proof. We remark that similar
decompositions have been successful to derive stable limit theorems for discrete time
moving averages, see for example [19].

For the proof of Theorem I1.1.2 (ii) we approximate S,, by

n T
Sm = Y (FP™) = BF ™), where ¥ o= [ gp(s)aL,
r==k r—m
More precisely, the main part of the proof is to derive the identity
lim limsup E[n~*(S,, — Sm,n)Q} =0.
m—roo n—oo

It is then sufficient to establish asymptotic normality of (S m)nen, which follows
by the central limit theorem for m-dependent sequences of random variables. This
general approach to deriving central limit theorems is popular in the literature, see
[23] for an example.

Throughout the proof we will frequently use that for a deterministic function
and a < b € R the integral f;w(s)dLS is symmetric S-stable distributed with scale
parameter

b 1/8
A RC IR R T et (11.3.45)
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see [26, Proposition 3.4.1]. Moreover, we recall that for a symmetric §-stable random
variable S with scale parameter 1 and v > 3 there is a C' > 0 such that

E[(pS)"1{ps1<13] < Cp®, and P(|pS|>1) < Cp® for all p € (0,1]{I1.3.46)

For the proof of this result we refer to [7, Lemma 5.5]. The function ¢7 introduced
above satisfies the estimate

167 112a o,y < €57, (IL.3.47)

for all j € N, which follows from Taylor approximation and the condition (A2) in
Section II.1. Moreover, it satisfies the following estimate that was derived in [7, Eq.
(5.92)]. There is a C' > 0 such that for all n € Nand j € N

167 — &5l Ls(o,1)) < Cn~ljo—htl (11.3.48)

Recalling the definition of ®, and £} in Section II.1 we have the following important
equivalence.

Lemma II.3.1. Let K C (0,00) be bounded away from 0 by €, i.e. K N[0,e) = 0.
The following statements are equivalent.

(i) k> 1 for allp € K.

(ii) There is a constant C; > 0 such that for all x,y € R and for all p € K it holds
that

1@, (z) — @, (y)| < C{A A x| + 1A YD)z — YL je—yi<1y + Lija—y/>1} }-

(i1i) There is a constant C. > 0 such that for all x € R and for all p € K it holds
that

[®,(z)| < Co(1A xQ)-

Proof. We first derive (i) = (ii). By [28, Lemma 3.1] all derivatives of ®, are uniformly
bounded by some C;, for all p € K, since K is bounded away from 0. In particular,
|Pp() = @p(Y) L fjz—y>1} < Celfjzy>1y follows immediately. For x <y, [z —y[ <1
we have |®,(z) — ®,(y)| < [J |®)(z)|dz < Cc|z — y|. Moreover, as ®/,(0) = 0, it holds
that

y z
\%(w)—@p(y)\g/ / 187 (w)ldudz < Cele — yllle] + Iyl
x 0

and (ii) follows. (ii) = (iii) follows by letting y = 0. (iii) = (i) follows by Taylor
expansion of ®,. O
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Proof of Theorem II.1.2 (i)
In order to define the sequence (Z,),>; used in (I1.3.44) we let
r+1
Ur, = /T ¢7(s)dLs, where n € NU{oo} and j > k,
and denote

7= 107 [Ls@\0,1)), and  p" = 67| Law)-
Then, Z, is defined as

2:{¢ (Us%rr) = El@p (U} (I1.3.49)

where the sum is almost surely absolutely convergent, see Remark 1. Since for all

J > 0 the sequence (U, ,.)r>k is i.i.d., so is (Z;),>k. By the decomposition (I1.3.44),

the proof of Theorem II.1.2 (i) is divided into three parts. First we show that

n
n@m5 Y Rr L 0. (I1.3.50)
r==k
Thereafter, we argue that
n
n@m7 Y (QF — Z,) — 0. (I1.3.51)
r==k

In the third part of the proof we show that the random variables (Z,),>) are in the
domain of attraction of a (k — a)3-stable distributed with location parameter 0, scale
parameter ps and skewness parameter 7)g, as defined in (I1.3.62), which then implies
the convergence (I1.1.4).

Proof of (I1.3.50): Define for [ > j the random variables

P =BGV G =BG GV Gri] (I1.3.52)
=E[f(Y,")G—; VGri] - E[f (an) GV Grii]
(BB V") o) | G2y v Got] — BBV 1Gr ] 162,V Gria] ).

Note that ]E[ﬁfj l|g,1._j] for all [ > j. It holds that lim;_, E[Cﬁj | g}._j VG =0,
a.s., which implies the decomposition

Zﬁm h (I1.3.53)

19’”

Using that the sequence (7‘9:},j,l>l:jw~ is orthogonal, i.e. E[¢" il

il ]=0forl £V,
and applying Lemma I1.4.2 with v = 2 we obtain

E[I¢r,1%] Z]E 07 7] < CjFem et (11.3.54)
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We can now rewrite
n n—1 n
n __ n n __ n
E R = E M7, where M. = E CN_S
r=k s§=—00 r=1V(s+1)

are martingale differences. Exploiting the orthogonality of martingale differences, it
follows from the estimate (I1.3.54) that

(5e)] e

For details we refer to the proof of [7, Equation (5.22)]. Therefore, (11.3.50) follows
by the assumption « € (k —2/8,k — 1/8), which implies 1 + ﬁ < 0 and

2 2 9
Q(O‘_k)ﬁ+4+ﬁ(a—k) :B(a_k)((a—k)6+1) <0.

Proof of (11.3.51): The estimation of this term uses similar methods as the proof
of [7, Proposition 5.2]. Substituting s = r — j in Q" we obtain the expression

Sar Z Y BV

r=k §=—00 j=(k—s)V1

Therefore we can make the decomposition
Z(Qn Z)=HWY + H?,

where

n - Y Z{ VI8 — (B (U.0) — B[R <U:ijs>]}}

s=—00 j=k—s
n—1n—s

s=k j=1

We use that by definition of V", ; and Gl it holds that

E[VE168] = B (UT ) — B[R (UL, (I13.55)

We argue first that for sufficiently large N the set {p7 : n € {N,...,00},j € N} is
bounded away from 0. Choose € > 0 such that p> > ¢ and pj° > ¢ for all j € N.
By Lemma I1.3.47 it holds that p™ — p>° and we can choose N sufficiently large such
that [p™ — p*>°| < /3 for all n > N. By (I1.3.47) we can find a J > 0 such that for all
j > J and all n it holds that [p] — p"| < &/3, implying that p} > /3 for all j > J
and n > N. For j € {1,...,J} we use that p] — p3° > € as n — oo, which again
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follows from (IL.3.47). Therefore, choosing NV larger if necessary, we obtain p > /3
for all j € N and n > N. Now with Lemma II.3.1 we obtain for H,(LI) the estimate

k—1 _
E“HT(LI S ; ; €+_] 9)” + E“(I) ( s+, 9)”}
k—1 —
S Z s+g s /\ 1} + E[(Uanrj s) A 1]}

§=—00 j=k—s

) n—+s

<C Z Z jla—kp

s=—k+1j=k+s

n n+s o] n+s (
a— k)ﬁ_|_ a—k)pB )
(G_Ek:—&—l]zk—:i-s Szn;rlggk-:i-s
n

SC( S slemer 3 ns(ak)ﬁ) < Cnle—k)B+2,

s=—k+1 s=n—+1

The third inequality uses (I1.3.46) and (I1.3.47), and the last two inequalities follow
from —1 < (e — k)5 < —2. Since (a — k)5 + 2+ m = m((a —k)B+1)? <0,
we obtain

anr(Ll) 50, asn— oo (I1.3.56)

For the estimation of H,(LQ) we use that H,(LQ) is of the form H,(LQ) = Zs:k"*l Zg")
where for each fixed n, {Zé”) : s =k,...,n — 1} are martingale differences. Since
(k—a)B € (1,2), we can choose g € [1,2]\ {8} with (k—a—-1)f<g< (k—a)8. It
follows from the von Bahr-Esseen inequality [30, Theorem 1] that

|
—

n

E[lHP] < C ) E[ZM|]

®»
I
»—A?r

3

M
HM\

V210 - {0, 03, - Blo - (02,01}

)

S(E
n—=k q
< C (Z n 5+j|g'r1L—s] - { (USO s+j,n— s) - [ (U;;O s+j,mn— s)]} )
s=1 =1 q
n q n n q
<on( 3 |en @ -erwm)| ) <on( i+ 1051)
j=1 q j=1 j=1
(IL.3.57)

where CF = @0 (Ufy) — @pr (UFg), and D} = @pn (UFG) — Ppee (UG)- In the fourth
inequality we used the representation (I1.3.55) and ||Z — IE[ e < 21Z||4 for any

random variable Z. For the estimation of the first sum we use [7, Lemma 5.4],
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(I1.3.47) and (I1.3.48) to obtain that for € > 0 sufficiently small
Ylepla<ey { (ll¢”llﬁ U o [k ) 167 = 622 113550.17) L (s>}
j=1 j=1

16 = 57 o }

<CZ{ (@R {(B-a)/a—c}y, 1+ej<ak+1>(1s>]l{ﬁ>q}}+(n1jak+1)ﬁ/q

<C <n1+€ DO R LCE R SR, o j(ak+1)ﬂ/q>
j=1 j=1

< Cpla—hB/atitete’ (I1.3.58)

where ¢’ = €(2(k — o) — 1). In the last inequality we used that ¢ > 1 implies that
(a—k)B/g+1+4+¢ > —1forall e >0, and that (a« —k+1)8/q > —1.
For the D} term we apply [7, Lemma 5.3] to obtain the estimate
|(P?)ﬁ - (P?O)ﬁ‘ <2161 Le @) — 195 e my| < Cnle—Fk)B+1,
Applying Corollary I1.4.7 we have that
1D}y < Cl(e? = (052)°[I1UFo 2

< Cl()? = (016} 1750,y < Cnl@ RS FEjleRP/a,

where we used (I1.3.46) and (I1.3.47). Since (o — k)5/q < —1, we obtain

D Dy lg < Cnlom At < plomif/art (I1.3.59)
j=1
where we used ¢ > 1. From (I1.3.57), (I1.3.58) and (II.3.59) we deduce that for any
€ > 0 there is a constant C' such that

nr B[ HP)|] < n=o7 |H®)||, < Cnle~RF/at1+l/at mmmate .= Cn/(1E3.60)

We show that n < 0. Since ¢ > 1, the function ¢ : x + 22 + (¢ + 1)z + ¢ is decreasing
on (—oo,—q] and satisfies £(—¢) = 0. Recalling that ¢ < B(k — «), this implies
E((a—k)B) > 0 and thus n = g((éo‘ k])%g) < 0. Now, (II.3.51) follows from (I1.3.56) and
(I1.3.60).

We turn now to the third step of the proof, i.e. we show that Z,. is in the domain
of attraction of a (k— «)S-stable random variable. This part is divided into two steps.
First we define the random variable

Q :=®(Lpy1 — Ly) — E[®(Lpy1 — Ly)], where &(z) := Z e (¢5°(0))

and show that it is in the domain of attraction of a (k — «)S-stable random variable
S with scale parameter pg and skewness parameter 7ng. Thereafter we argue that for
some r > (k — )8 we have that

P(|Z — Q| >z) <Cz™", forallz>1. (I1.3.61)



90 Paper II. On limit theory for functionals of LDMAs

By an application of Markov’s inequality it follows then that Zj is in the domain of at-
traction of S as well, and an application of [26, Theorem 1.8.1] shows the convergence
(II.1.4).

Let us first remark that the function ® and the random variable @ are well-defined.
Indeed, since p3° — p>, the set {p3°};en is bounded away from 0 and it follows from
Lemma II.3.1 that

B(2)] < O3 (165022 A1) < 3 (5O PP A1) < ClaP Y j2R),
Jj=1 j=1 =

; 1
Since 2 > —,

of the dominated convergence theorem shows that @ is continuous. In order to show
that @ is in the domain of attraction of a (k — a))3-stable random variable with scale
parameter pg and skewness parameter 17g we now determine constants c_,cy such
that

it follows that ® and @ are well-defined. Moreover, an application

lim z*~PP(Q < —z) =c_,  lim 2*IPQ > 2) = ¢,
r—r o0

Tr—r00

Indeed, it follows then from [26, Theorem 1.8.1] that @ is in the domain of attraction
of a (k — ) 5-stable with scale parameter pg and skewness parameter ng, given by

1/(k—a)B _
5= <c+ + c) , and Ng = G (I1.3.62)
T(k—a)p cy +c

Here the constant 7, is for v € (0,2) defined as

1 .

iy £ 1,

7, = TE=eostmyn T 7 (11.3.63)
/2 ify=1.

See (I1.3.66) and (11.3.67) below for the definition of ¢y and c_. respectively.
In order to derive ¢4 and c_ explicitly, we remark that for x > 0 it holds by
substituting ¢ = (z/u)Y*~®) that

oo
OB a) =D [ (07 Ot
0

1 o ) —141/(a—k
TEo a/o e sty (O (a0 Q)2 u™ O
1 oo
- / D oo (kqu)u @R dy .= k| asz — oo, (I1.3.64)
—a /s

where ko = a(a—1)...(a — k + 1). In the last line we use that {®,e(z) : j €
NU{oo},z € R} is a bounded set by Lemma I1.3.1 since p$° is bounded away from 0.
Therefore, the convergence follows from the dominated convergence theorem, where
we remark that for all ¢ € R there is by the mean value theorem a & € [t — k — 1,¢]
such that

675(0) = (1)) = kal€)2 7",

which implies the convergence

qﬁﬁ[(x/u)l/(k,a)](O)x — koqu, as x — oo.
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Similarly we obtain for x < 0 that

_ 1 0
2|V (=P (2) — m/ D oo (kou)|u| TFY @R gy .= k| as z — (A53.65)

— 00

We argue next that

lim z*~PP(Q > z) = T8PL (/{i_("]l{,,i+>0} + Iili_a]l{,g7>0}) = ¢y, (11.3.66)

r—00

where 73 was defined in (I1.3.63). To this end we make the decomposition
P(Q>z)=P(Q >z, Liy1 — L > 0) +P(Q >z, Ly+1 — L <0),

and analyse the two summands separately. Consider the first summand and assume
k4 > 0. By (IL.3.64) it follows that ®(y) — 0o as y — oo and we have for sufficiently
large x that

P(E(L/ﬁ_l — Lk—i—l) > 1’,Lk+1 — Ly > O) = P(|6(Lk+1 — Lk+1)| >, Lk+1 — Ly > 0)

Replacing ® with |®| allows us to apply Lemma I11.4.5 with ¢(z) = ®(z) and £(z) =
2t/ (k=) and we obtain from (I1.3.64) that
lim 2*~PP(Q > 2, Lyy1 — Ly, > 0) = lim 2~ PP(kh~(Lypy — Ly) > 2"7%)

T—r 00 r—r 00

k—
= ropprt ™",

The second identity follows from [26, Property 1.2.15], where we recall that Lyiq —

Ly, ~ SBS with scale parameter pr,. If k4 < 0, it follows from (I1.3.64) that limsup,_, . ®(z) <
0 and therefore that ®(z) is bounded for > 0. We obtain

lim z*~98P(Q > x, Lyy1 — Ly > 0) = 0.

T—r 00

The same identity holds for k; = 0, as follows from Lemma I1.4.5, (I11.3.64), and the
estimate

P(E(Lk_._l — Lk+1) >, Lk+1 — Ly > O) < P(|6(Lk+1 — Lk+1)| >z, Lk+1 — Ly > 0)
We conclude that

lim z*~PP(Q > z, L1 — Ly > 0) = TBPL’fi—a]l{n+>0}~

Tr—r 00

By similar arguments, applying Lemma I1.4.5 on the function ¥ (z) = ®(—z), we
deduce from (I1.3.65) the convergence

lim m(k_“)BIP’(Q >, L — Ly <0) = T/;/)Lfi’f“]l{,i_>0}7

T—>00
which completes the proof of (I1.3.66). Arguing similarly for P(Q < —z) we derive
that

lim 2% P(Q < —x) = mepp (|54 [*  Lin, <o) + [5-[* L n_<oy) :=@L3.67)

T—00
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This shows that @ is in the domain of attraction of a (k — «)S-stable random variable
with location parameter 0, and scale and skewness parameters as given in (I1.3.62).

Now the proof of the theorem is completed by showing (II.3.61). To this end it is
by Markov’s inequality sufficient to show that E[|Z; —Q|"] < oo for some r > (k—a)/3.
Since (k — «)f > 1 an application of Minkowski’s inequality yields

HZk‘ - QHT < Z H(I)/JJ g+k k) (I’p? (¢?O(O)(Lk+1 - Lk)) HT (H-3~68)
Jj=1

We remark that by the mean value theorem there is a constant C' > 0 such that for
all z € [0,1] and j € N it holds that

6505 (2) — ¢5°(0)] = |hie(j + k + ) — hi(5)] < CjoF,

Since {p}°} jen is bounded away from 0, there is a § > 0 with § < p3° for all j. Letting
re = (k — a)f + ¢ with € € (0,0), an application of Lemma II.4.3 yields

[ @52 (U5 1) = Ppee (65 (0) (L1 — L)) |,

. a—k—1
< O(I6354 — 67 O3 oy + 16550 — 67 ONET) < CGEFD0-9) 1 sty

For sufficiently small € > 0, both powers are smaller than —1, which together with
(I1.3.68) implies || Zx — Q||» < o0, and thus (II.3.61). Since @ is in the domain of
attraction of a (k — «)SB-stable random variable with scale parameter pg and skewness
parameter ng, and r > (k — «)f, so is Z. This completes the proof of Theorem
(I1.1.2). O

Proof of Theorem II.1.2 (ii)

We recall the definition of Y,”, Y™ S,, and S}, ,, from the beginning of this section

T

and define additionally, for a < b, a,b € [0, 0]
r—a
vt [ an(s)ar
r—b

and Y = ¥, By [11, Theorem 3.2], the statement of the theorem follows if
we derive the following three identities;

lim limsup E[n~ (S, — Sm.n)?] =0, (I1.3.69)
m—00 n—oo

1
—Spm N(0,72,), for some 2, € [0,00), and (I1.3.70)
vno
n2, = 1%, asm — oo. (I11.3.71)

We show (I1.3.70) and (I1.3.71) first. The sequence (Y;™™),—1,... is stationary and we
denote 0" = cov(f(V,""™), (V7)) for n € NU{co}. The variance of S, ,, is then
given by

n”tvar(Sym) =n""! {(n —k+ 1) +2) (n—k- j)H;-“m}.

j=1
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The covariances 67" converge to 677" for all m,j, as n — oo, by the following
argument. The random variables Y, — Y,”" are symmetric S-stable distributed
with scale parameter [|¢7 — ¢ Ls(1—m,1)) < |67 — ¢7°I|Ls(r), Which converges to 0
by Lemma II.4.4. Consequently, it holds that E[|Y,""™ —Y,>*"™|P] — 0 for all p < 8,
which by boundedness and continuity of f implies E[(f(Y;") — f(Y2°))?] — 0 and it
follows that 67 — 67°™. Since the sequence (Y,*™),—y, . is m-dependent, (I1.3.70)
follows now from the central limit theorem for m-dependent sequences, see [10], with
the limiting variance

e, =000 +2) 07 (11.3.72)

Jj=1

Next we argue that n2, is a Cauchy sequence, which then shows (I1.3.71) with n? :=
lim,;, o0 72,- This is indeed an immediate consequence of (I1.3.69) and (I1.3.70) since

I, —n2| =

nlggo {77,71 (V&I‘(Sn,m) — Var(Sn,r)) } ‘

<

lim sup {nfl (var(Sn — Snp,m) + var(S, — S”ﬂ")) }‘ -0,

n—roo

as m,r — oo by (IL.3.69). The proof of (II.1.5) can now be completed by showing
(I1.3.69), which we do in the following.

As in the last section, we denote by (F;),cr the filtration generated by the Lévy
process, i.e. G, =o(Ls — L, : s,u <r). Our goal is to show that

lim limsup (nilE[(Sn - Sn,m)z}) =0.

m—00 noo

We can express S, and .S, ,, as the telescoping sums

o0

Z(]E[f(iﬁ")lgr—m] —E[f (V)G ),

"
I
NE

i
Il
Bl

<
Il
_

NE
NE

Snm:

)

Bl ™)Gr—j] = ELf ()]G 5])-

T

I
el
<.

Il
-

Indeed, the first telescoping sum coincides with S,, almost surely, since by the back-
wards martingale convergence theorem and Kolmogorov’s 0-1 law it holds that E[f(Y,")|G,—;] —>
E[f(Y,™)], as j — oco. We denote for n > 1 and m,r,j >0

Gy =BIFY) = F™)Gr ] = ELF (V) = £V )G 5]

and obtain

S0 Sum =30 G

r=k j=1
Now we use the estimate

n'E[(S, — Snm)?]

cane(5 3 ) Teane (S 30a) e (Sar) |

r=k j=m+1 r=k j=2
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and show that each summand on the right hand side converges to 0. Observing that
cov(¢™, ) =0, unless r—j =1 — j’,
an application of Cauchy-Schwarz’ inequality and Fatou’s lemma yields

nillE[(Sn - Sn,m)Q] < 377‘71Qn,1,m + SnilQn,Q,m + 3n71Q7l,3,T)’L7

where

Qn,l,m Z Z Z 7lm 1/2E[(C )]1/2a

r=k j=m+1 j'=m+1

Qn2m = zn:z ZE 1/2E[(C ™22, and

r=k j=2j'=2

2 : n m
Qn,?),m ]E 7

where we denoted ' = r — j + j'. For the proof of (II.1.5) it remains to show that

lim sup — anm—>0 asm — oo, fori=1,2,3.

n— oo

Estimation of Qn1,m: Throughout this argument the index r € {k,...,n} is
arbitrary but fixed. We recall that (Y,"7),>¢ is a stationary sequence. We introduce
the notation

Fi(x) = E(f(z +Y,")),

which allows us to write E[f(Y,")|G,—;] = f"( Yl DO]) In the sum @, 1., we have
J > m, implying that E[f(Y,"™)|G,_;4+1] = IE[f(Y”’m)\gr,j]. Thus we can write

G = Fa (Vo) = fr (v, for > m.

Observe that an’[j_l’oo] = an’[j_l’j] + an’[j’oo] and denote by F?

[—1.4] and F[?,oo} the

corresponding distribution functions. Then, it follows that

/ / Lt v) = Fr () dFy 1 (0)dFy o) (u).

Using moreover that fj"(u) =E(f (u+Yr"’j’1+YT"’[j_1’j])) = [q EEI (utz)dFy_ j(2),

we obtain
2
:// </D(U’U’2)dF[j—1vﬂ(Z)) dFyj1 .4 (0)dFpj 001 (1)
RJR R
S///DQ(U7U7Z)dF[],LJ](Z)dF[jfLJ](’U)dF[]‘OO](u))
RJRJR

where D(u,v,z) = f;"_l(u +v) — f;"_l(u + z). Our goal is to use mean value the-
orem to derive an upper bound for this integral. By Lemma 3.2 of [23] the I[-th
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derivative of ]7]”71 is bounded by Ci(p}_,)~(1 + [log(p}_,)| + logQ(p;Ll)),‘ where
pj—1 is the scale parameter of the symmetric S-stable random variable ¥,/ i.e.

Pi-1 = (frfjﬂ |¢f(8)|ﬁds)1/ﬁ. We have for all j > 2 that

T
T T
= [ ererasz [ jere)s
r—j+1 r—1
The right hand side is positive for all n and converges to fol 5*Pds > 0 as n — oo, by
the dominated convergence theorem, since by Assumption (A) there is a constant C
such that |¢(s)| < C|r — s|® for all s € [r — 1,7] and all n > 1. Consequently, the

scale parameters p7_; are bounded away from 0 for all j > 2, n > 1, and [23, Lemma
3.2] implies that for all [ > 0 there is a constant C; such that

1P @) < o (11.3.73)
for all 7 > 2, alln € N a~nd all x € R. Now, applying mean value theorem on
D(u,v,z) = fi* 1(u+v) — fiy(u+ 2), it follows that

(D(u, v, z))2 < C'min(1, (v — 2)2)7

where the constant does not depend on j or n. Consequently, we obtain

limsup E((¢7")?) <C [ 0 P ()

n—oo

+C dF[?_L]](Z)dF[?_L]](’U)

lv—z|>1

= CE[(Sp; — Sn ;)" ysr g2 j<ny] + CP(IS, ; = 57 51 > 1),

where S}, ; and S ; are independent symmetric -stable random variables with scale
parameter (fr_jH |¢?(s)|6d8)1/6 = 1671l L& (j0,1)» see (11.3.45). Consequently S,

r—j ng
S? i 4 21/ﬁ||¢;?||La([071])S where S is symmetric 3-stable with scale parameter 1. It
follows now from (II.3.47) and (I1.3.46) that there is a constant C such that

E[(¢17)?] < CjFeP),
for all n,m,r € N and j > m, and we obtain
L <y ( T j5<a—k)/2>2
n HEM = T , '
r=k j=m+1

This shows that limsup,, .. " 1Qn.1.m — 0 as m — oo since B(a — k)/2 < —1.
Estimation of Qn2m: For j < m we obtain

GEy = Fra (v osl) = (v 0iod) — (7 (vt = o (ypdi),

The involved random variables can be decomposed into the sum of independent ran-
dom variables as

anv[j717oo] = an7[j717j] + anv[.j’m] + }/Tn’[mvoo]
anv[j’oo] = an,[j,m] + an’[mfoo]
an,[jfltm] = an»[j717j] + }/;_nv[.]’m]
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Denoting by F[ and F[ﬁn o0] the corresponding distribution functions, we

obtain

j—1,3] [;Lvm]

¢ ///{ff1u+v+w> T +w)

Using the relation f]"(gc) =Ef(z+Ymi71 + Knn’[jfl’j]) fR (@t 2)dE] ) (2),
we obtain

2
:/// (/D(u’v’w’z)dF[?—Lj](z)) dF;_y j(w)dFjjm)(v)dEy, o (w)
RJRJR \ JR
< D2 w, v, w, 2)dFY | 2 (2)dF_ 4 (w)dF L (0)dF? o (w),
/R/]R/]R/]R ( JAE(; ) (2)dE(} o i (W)dEYj ) (0)dFp, o) (w)
where
D(u,v,w,2) = iy (ut vt w) = fla(otw2) = (foa(uto) = L@+ 2).

As we argued in (I1.3.73), for 7 > 2 the first two derivatives of f}il are uniformly
bounded with the bound not depending on j or n. Therefore, we obtain by the mean
value theorem that

D?(u,v,w,2) < Cmin{l,w?, (u— 2)%, (u— 2)*w?}.

This leads to the estimate

s <o [ e oParg e+

lu—z|>1

X </ 2dF[m oo]( )+/ dF[?n,oo] (w))
|w|<1 |w|>1

Similar as in the estimation of @y 1,, we derive from (I1.3.47) and (I1.3.46) that

E[(¢")%] < C(pf_1 1P, ])ﬁ, where pfi_, o and pf  are the scale parameters

AR 012

of the stable distributions F[J 1] and F[m oo]’ respectlvely By (11.3.45) and (11.3.47)
the scale parameters satisfy p[j—l,j = ||<;5J lLeqoa)) < Cj*™ k. and
r—m 0 e e}
o) = |12 s = 3 167 ugony <€ > 1 MiLam)
-0 l=m+1 l=m+1

It follows that -
E(¢")? < ¢t 37 ek,

l=m+1

for all j € {2,...,m} and we obtain

m 2 oo
lim sup — Qn2m<C<Zj§(a—k)> ( Z l,@(a—k)>’

n—0o0 j=2 l=m+1
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which converges to 0, as m — oo since f(a — k) < —2.
Estimation of Qp,3,m: Using the inequality E{E[X|G] —E[Y | F] }2 <2EX?+2EY?
we obtain

Quam < o B[O — 0] = R0 - FO)?)
r=k

n

In order to argue that limsup,,_, . E[(f(Y]") — f(Y{"™))?] — 0 as m — oo, it
is by boundedness and continuity of f sufficient to show that the family of random
variables {Y", Y"'"" },ennenufooy 18 tight and satisfies

lim limsupP[|Y" — Y™ >¢] =0, foralle > 0.
m—o0 oo

The latter follows from (I1.3.74), since Y{* — Y{""™ is SBS distributed with scale pa-
rameter pp, . For the tightness we first recall that E[|Y]" — Y@[F] — 0 for all
p < 7, which follows from Lemma I1.4.4, since Y7 —Y;> is S@S distributed with scale
parameter ||¢7 — ¢9°|| s r). Consequently, given e > 0, we can choose N sufficiently
large such that

Py > N) <P(IV"™ = Y70 > N/2) + P([Y75™] > N/2)

<
<P(Y" =Y > N/2) + P(JY7™°| > N/2) <e forall m,n € {1,...,00}.

In the second inequality we used that all random variables are SBS distributed and
that the scale parameters of Y* — Y™ and Y™ are greater or equal than the scale
parameters of Y™ — Y>>™ and Y™™, respectively. This shows the tightness of
(Y, Y bnen nenufoo} and it follows that limsup,, o, n™'Qpn 3m — 0 as m — oc.

O

I1.4 Auxiliary results

Here we give some technical results used in the proof of Theorem II.1.2. First we
argue that the various telescope sum expressions used throughout the proof converge
almost surely to the limit claimed in the proof.

Remark 1. We argue first that the sum Q' defined in (I1.3.43) is absolutely con-
vergent with probability 1. By Kolmogorov’s three-series theorem and Markov’s in-
equality it is sufficient to show that

ZEHE[VT"IH_AH < 00,

Recalling the representation (I1.3.55), it holds by Lemma I1.3.1, (I1.3.47) and (I1.3.46)
that

E(E[V;"|F_ )| < CE[1@,5 (U, )] < CE[(UF,_)*AL) < 167175 o,17) < O3 < o0,

rr—j rr—j LA([0,1]

since B(a — k) < —1, showing that Q7 is indeed well-defined. For the sum R} it is
now sufficient to argue that E[V,"|F,_;] == 0, as j — oo, which is a consequence
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of Kolmogorov’s 0-1 law and the backward martingale convergence theorem. The
convergence of the sum in the definition of Z, in (I1.3.49) follows by the same argument
as given for Q)7 where we remark that Z, = Q>°. The convergence of the sum and
identity in (II.3.53) follows from the backward martingale convergence theorem and
the fact that E[¢;|F} ;] = 0.

Lemma I1.4.1. For any € > 0 there exists a finite constant C' > 0 such that for all
p> ¢ and all a € R we have that

y px
F(a,z,y) == ‘/ / P (a+u+v)dudv| <C(LAZ)(1AY).
o Jo

Proof. By [23, Lemma 3.2], ®,(z), ®/(x) and () are uniformly bounded for p > ¢
and z € R. Boundedness of ®/ immediately implies F'(a,r,y) < Cxy. Moreover, it
holds that

/y/zq);,’(a—ku—&—v)dudvz/yq’;(a—kx—kv)—@;(a—kv)dv
o Jo 0
= (Pyla+z+y)—Pylat+y)) — (Ppla+z)—Py(a)).

The first equality and boundedness of @/, implies F(a,z,y) < Cy, and similarly
F(a,z,y) < Cx, whereas the second equality shows that F(a,z,y) < C. O

Lemma I1.4.2. For ally > § there is a C > 0 such that for alln € N, r € {k,...,n},
j €N andl > j it holds that

B[y ;,[7] < CjleRP o8,

.J,
where U}, is defined in (11.3.52).
Proof. 1t is sufficient to consider the case r = 1, since for fixed j,1,n the sequence

(ﬁ:f,jJ)reN is stationary. Without loss of generality we assume that [ > 2V j. By
definition of ¥ it holds that

i =Ef ()G VG —Elf(Y]") |G-
—{E[f(Y7")|Gi_; vV Gi] —E[f(Y") | G-1]},

Define for —oo < a < b < 1 the random variable
b
U[Z,b] =/ @1 (s) dLs.

Let in the following L be an independent copy of L and define 6[2,!;] accordingly,

and denote by E the expectation with respect to L only. Moreover we denote by

. 1—j 1
P = 971 L5 ([1-1,1—jjujz—j,1))> 1-€- the scale parameter of fplj ¢ dLs + f27j @7 dLs.
Then, decompsing f_loo @7 dL into the independent integrals

1—j 2—j 1

1 1 1-1
/ o7 dL, = / ovdlor [ ovarer [ @pdrer [ evdres [ ¢y dr.
—00 —00 —1

1-1 1—j 2—j
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we obtain the expression
7, =E[® o (Ul ey T U1 T UG o)
= @ (Ul oy T U1 + U2 1)
= @ (Ul o) T ULt + U1 2-51)

+@pp (Uloo, -y + Ullia- l]+Uﬁ—j,2—jJ>]
[nll 1] U[l —3j,2— J]
IE{ / U[_ _ytuto) dudv}7
[ 1,1-1] [1—3,2—3]

and by substitution there is a random variable Wﬁz such that

|U[111—U[z1z\ |U1727] Ufi—j2-5l
|97 ]l|<IEH/ / <I>” ( ”l+u+v)dudv
0

We obtain by Lemma II.4.1 and using that |z —y| A1 < |z| A1+ |y| A1 that

|

E[|07 ;"] < CEEILA TP 1y = UL pa—g A A TR gy = Ufi—ja—iy )]
< CEE[L AT 11—yl + LA U g MIEEL A TG g + LA UGy
< COUSTN L o 18T N s oy gy < CUETRIP L5,
where we used in the second inequality the independence of both factors which follows
from [ > j. The third inequality uses that for a SAS random variable S with scale

parameter p it holds that E[|S|Y A 1] < Cp” for any v > 3, see (I1.3.46). The last
inequality follows from (I1.3.47). O

Lemma I1.4.3. ([7, Lemma 5.4]) For any q > 1 with q # [ there exists 6 > 0
and a finite constant C such that for all € € (0,5), p > 6 and x,7 € L?(]0,1]) with
16l 26 0,17, 1711 Ls 0,1y < 1 we have

o [ ) o [ o)

q
< {H“ THLﬁ ([0,1]) B<q
(N8l s + 11 ot ) e = T 50y + Ik = 7l ek B> @

Proof. Denote U = fo s)dLs and V = fo s)dLs. By Lemma I1.3.1 we obtain

||(I)p(U) - q)p(v)”q
< CIl(IUIAL+IVIA DU = VILgy—vi<y ||, + CB(U = V| = 1)V
For the second summand, (I1.3.46) yields

CB(U ~ V| > )Y4 < Olls — 7|34 0 1p-

The first summand can be estimated as in [7, Lemma 5.4]. O
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Lemma I1.4.4. Let (o« — k)3 < —1. There is a constant C > 0 such that
67 = 5%l Loy < C(n* /P vty

Proof. The function ((s) = s~%g(s) is k-times continuously differentiable on (0, co)
and can by Assumption (A2) be extended to a k-times continuously differentiable
function on R, which we also will denote (. By substitution it holds that

[ 161 = o= @)lPdr = [ D () (o) Pas.
R 0

For s > n we have |hi(s)| < Cs®™% and |D¥g,(s)| < Cs*~* by Lemma I1.2.1 and
Assumption (A2). This implies together with (o — k)8 < —1 that

/ |D¥ g, (s) — he(s)|Pds < c/ slaRBgs < ople=kBHL - (11.4.75)

n

Using the linearity of D* and that ¢(0) = 1 it follows from the mean value theorem
that

k k
/|D’€gn(s)—hk(s)|ﬁds=/ |D*{(¢(s/n) — 1)s%}|Pds (11.4.76)
0 0

k
<Cn™?  sup |C’(t)|/ s%Pds < Cn=*
te[—k/n,k/n] 0

It remains to show that
/ |D*g,,(5) — hi(s)|Pds < C(ne=RBHLy =8, (I1.4.77)
k

Since (¢ is k-times continuously differentiable by assumption, it follows from Taylor
expansion for ¢ of order k that for s € [k, n]

D*(gn(s)) = ¢(s/n)hi(s +ZA” ) DEI (s + 1)1,

where the coefficients A}'(s) are bounded uniformly in n € N and s € [k, n], see [7,
Lemma 5.3] for details. Tt follows that

/kn D g (s) — hi(s)|ds

k n
<c/ C(s/n) — Dhi(s )|Bds+CZn_l'B/ (5% K )8 g

1=1 k

< C sup |§’(t)|/ I(s/n)s*k|Bds + C(n=8 v pla—RB+1)
te[0,1] k

< C(n(a—k)ﬂ-i-l V n—ﬁ)

This shows (I1.4.77), which together with (I1.4.75) and (I1.4.76) completes the proof
of the lemma. O
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Lemma I1.4.5. Let ¢,& be continuous functions on R with ¢ ~ & for x — oco. Let
X be a random variable taking values in Ry and v > 0 such that

lim 2 "P(|¢(X)| > z) =&
Tr—00

where k € [0,00). Then it holds that
lim 2"P(|£(X)]| > x) = k.
T—>00

Proof. Denote (z) = £(x)p(x) with ¢(x) — 1 for z — co. Let € > 0. By continuity
of 1 and & we can choose z sufficiently large such that ¢(y) € (1 —e,1+ ¢) whenever
min(|(y)|, |€(y)]) > = and y > 0. Since X takes values in R, this implies that
o(X) € (1 —¢,14¢) whenever |(X)| > x or |{(X)| > z. It follows that

2V [P([p(X)] > 2) = P(|E(X)] > 2)| = E[27 (Lgpx) s lex) + Liwx)i<e<iex))y)]
S2E[27D g = yx) <))
=2E[2 Ly cppx)y — L <ppixp]

—=26((14+e)"—=(1—¢)7), aszx— .
The lemma follows by letting ¢ — 0. O

We conclude this section by showing a sufficient criterion for the condition &} > 1
for all p > 0 that is used in Theorem II.1.2 (i).

Theorem I1.4.6. Denote by fi and f_ the positive and negative part of f, and
denote by k% (p) and k* (p) the Appell rank of fy and f_ at p, respectively. Suppose
there is a p > 0 such that k% (p) > 1 and k* (p) > 1. Then k% (po) > 1 and k* (po) > 1
for all pg > 0 implying that k*(po) > 1 for all pg > 0.

Proof. We first assume that f is nonnegative. Let py > 0 be arbitrary but fixed. Let
Ry C (0,00) be a compact set containing p and pg. Introducing the function

ho(y) == /]R |t|ﬁcos(ty) exp(—pﬁ\ﬂﬁ) dt
we show first that there exists a C > 0 such that
hp(y)l < ClLAY™ P (I1.4.78)

for all p € Ry. For sufficiently large C' > 0 we have
oWl < [ 17 exp(—p?ltf’) de < €, forall p€ R
R

Therefore it suffices to show |h,(y)| < Cly~1~#|, which can be done along the lines of
Lemma 5.8 of [7], replacing v — 1 — p by 3. Denote by g, the density of a symmetric
jB-stable distribution with scale parameter p and recall that lim, ., p~Py'*Pg,(y) =
const. Consequently, we can find a constant C such that

LAy P71 < Cg,(y), forall pe Ry,ycR.
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Indeed, it is easy to see that such a constant C, exists for any fixed p € Ry and can
be chosen continuously in p, which allows us to set C' := supp C,. By (I1.4.78) it
follows that there is a C' such that

oy (y) < Cgpy(y), for all p1,p2 € Ro, y € R.

It follows that for all p € Ry
9]
’ap@p(x)

= 8P / £z + 1)y (9)dy

<Cp’! /Rf(x +9)9,(y)dy
=CpP71o,(z), (I1.4.79)
where we used that f is nonnegative. An application of Gronwall’s lemma yields that
®,,(z) < ®j(x) exp(Clpy — 7))

Now, k*(p) > 1 implies that |®;(z)| < C(1 A z?) for all z (see Lemma 11.3.1), which
implies that |®,,(z)| < C(1 A 2?), and consequently k*(pg) > 1.

For general f satisfying the conditions of the theorem the statement follows im-
mediately from the decomposition f = fy — f_. O

Corollary I1.4.7. Let Ry C (0,00) be compact, and assume that k% (p) > 1 and
k* (p) > 1 for some poo € Ry. There is a constant C such that for all p1,ps € Ry

|(I)/J1 ({)3) - (I)Pz(x)‘ < C|pf - pg|(1 A 1‘2),
for all .

Proof. This follows immediately from the estimate (I1.4.79), Lemma II.3.1 and the
fundamental theorem of analysis. O
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Abstract: We develop a simulation scheme for a a class of spatial stochastic
processes called volatility modulated moving averages. A characteristic feature of
this model is that the behaviour of the moving average kernel at zero governs the
roughness of realisations, whereas its behaviour away from zero determines global
properties of the process, such as long range dependence. Our simulation scheme takes
this into account and approximates the moving average kernel by a power function
around zero and by a step function else. For this type of approach the authors of [7],
who considered a comparable model in one dimension, coined the expression hybrid
simulation scheme. We derive the asymptotic mean square error of the simulation
scheme and compare it in a simulation study with several other simulation techniques.
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ITI1.1 Introduction

In this article we develop a simulation scheme for real valued random fields that we
call volatility modulated moving average (VMMA) fields. A VMMA is defined by the
formula

X = /}R2 g(t —s)osW(ds), (II1.1.1)

where W is Gaussian white noise, g € L?(R?) is a deterministic kernel, and o is a
random volatility field. This model has been used for statistical modelling of spatial
phenomena throughout a variety of sciences, examples being modelling of vegetation
and nitrate deposition [20], of sea surface temperature [26] and of wheat yields [29]. It
is known that any stationary Gaussian random field with a continuous and integrable
covariance function has a moving average representation of the form (III.1.1) with o
constant, cf. [19, Proposition 6]. Introducing the stochastic volatility factor o allows
for modelling spatial heteroscedasticity and non-Gaussian marginal distributions. We
are interested in the case when the moving average kernel g has a singularity at
zero. In this situation, the order of the singularity governs the roughness of the
random field, specified by its Hausdorff dimension or its index of Holder continuity.
Spatial stochastic models with Hausdorfl dimension greater 2 (i.e. with non-smooth
realisations) are for example used in surface modelling, where it is of high importance
to model the roughness of the surface accurately. Specific examples are modelling of
seafloor morphology [15] or surface modelling of celestial bodies [18]. The challenge
in simulating volatility modulated moving averages therefore lies in recovering the
roughness of the field accurately, while simultaneously capturing the global properties
of the field, such as for example long range dependence. Our hybrid simulation scheme
relies on approximating the kernel g by a power function in a small neighbourhood of
zero, and by a step function away from zero. This approach allows us to reproduce the
explosive behavior at the origin, while simultaneously approximating the integrand on
a large subset of R?. This idea is motivated by the recent work [7], where the authors
proposed a similar simulation scheme for the simulation of the one-dimensional model
of Brownian semi-stationary processes.

This article is structured as follows. In Section III.2 we introduce our model in
detail and discuss some of its properties. In Section III.3 we describe the hybrid
simulation scheme and derive the exact asymptotic error of the scheme. Section 111.4
contains a simulation study comparing the hybrid scheme to other simulation schemes.
Proofs for our theoretical results are given in Section III.5. The appendix contains
some technical details and calculations.

II1.2 Volatility modulated moving average fields

Let (9, F,P) be a probability space, and W white noise on R?. That is, W is an
independently scattered random measure satisfying W(A) ~ N (0, A\(A)) for all sets
A€ By={A € B(R?) : A\(A) < 0o}, where X denotes the Lebesgue measure. Recall
that a collection of real valued random variables A = {A(A) : A € By} is called
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independently scattered random measure if for every sequence (A, )nen of disjoint
sets with A(J,, An) < oo, the random variables A(A,),n = 1,2, ... are independent
and A(lJ,, 4n) =Y, A(A,), almost surely.

The kernel function g : R? — R is assumed to be of the form

g(t) = g(l[tll) := e[ LIt])

for some o € (—1,0), and a function L : (0,00) — (0, 00) that is slowly varying at 0.
Here and in the following || - | always denotes the Euclidean norm on R?. Recall that
L is said to be slowly varying at 0 if for any § > 0

L(éz)
50 L(z)

and that then the function g(z) = z*L(x) is called regularly varying at 0 of index
«. The explosive behavior of the kernel at 0 is a crucial feature of this model, as it
governs the roughness of the field. Indeed, under week additional assumptions the
Hausdorff dimension of a realisation of X is 2 — o with probability 1, see [17] and
Theorem III.2.1, meaning that for o« — —1 the realisations of X become extremely
rough. In Figure III.1 we present samples of realisations of VMMAs for different «.

The roughness of realisations poses a challenge for simulation of volatility modu-
lated moving averages. Indeed, the maybe most intuitive way to simulate the model
(II1.1.1) is by freezing the integrand over small blocks and simulating the white noise
over these blocks as independent centered normal random variables with variance
equaling the block size. However, this method does not account for the explosive
behavior of g at 0 and therefore does a poor job in reproducing the roughness of the
original process correctly, in particular for values of « close to —1. We will demon-
strate this phenomenon in a simulation study in section III.4. The hybrid scheme
resolves this issue by approximating g around 0 by a power kernel, and approximat-
ing it by a step function away from 0.

The integral in (III.1.1) is well defined, when o is measurable with respect to
B(R?) ® F and the process s +— g(t — s)os(w) takes almost surely values in L?(R?).
In particular we do not require independence of ¢ and W or any notion of filtration
or predictability for the definition of the integral, as is usually used in the theory
of temporal stochastic processes. This general theory of stochastic integration dates
back to Bichteler [8], see also [24]. A brief discussion can be found in Appendix ITT.A.
When ¢ and W are independent, we can realise them on a product space and it is
therefore sufficient to define integration with respect to W for deterministic functions,
which has been done in [27].

The volatility field (os)scre is assumed to satisfy E[o2] < co for all s. Moreover,
we assume o to be covariance stationary, meaning that E[os] does not depend on
s and cov(0sir,0s) = cov(oy,0g) for all s,r € R?. In particular E[oZ] = E[o3] for
all s € R2. For some of our theoretical results we will assume that o and W are
independent, however we show in Appendix III.A that this is not required for the
convergence of the hybrid scheme. We make the assumption that o is sufficiently
smooth such that freezing o over small blocks will cause an asymptotically negligible
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0
ty

Figure III.1: Realisations of volatility modulated moving average fields for different
a with Matérn covariance, see Example I111.2.2. All plots range over t € [—1,1]?
and are generated with constant volatility ¢. In section I11.4 we present examples of
VMMASs with nontrivial volatility.
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error in the simulation. It turns out that this is the case when o satisfies
E[loo — oul?] = o(|Ju***?), for u — 0. (I11.2.2)

When o is independent of the Gaussian noise W, the covariance stationarity of o
implies that the process X is itself covariance stationary and covariance isotropic in
the sense that E[(X¢1s — X¢)?] depends only on ||s||. If o is in fact stationary, X is
stationary and isotropic.

Moreover, we pose the following assumptions on our kernel function g. They ensure
in particular that g is square integrable, which together with covariance stationarity
of o ensures the existence of the integral in (II1.1.1).

(A1) The slowly varying function L is continuously differentiable and bounded away
from 0 on any interval (u, /2] for u > 0.

(A2) It holds that g(z) = O(z), as © — oo, for some 8 € (—o0, —1),

(A3) There is an M > 0 such that |g’| is decreasing on [M, co) and satisfies
/ g (r)*r dr < co.
1

(A4) There is a C' > 0 such that |L'(z)| < C(1 +2~1) for all z € (0, 1].

An appealing feature of the VMMA model is its flexibility in modelling marginal
distributions and covariance structure independently. Indeed, assuming that o is sta-
tionary and independent of W, the covariance structure of X is entirely determined
by the kernel g, whereas the marginal distribution of X is a centered Gaussian vari-
ance mixture with conditional variance [, g(—s)%02 ds, the distribution of which is
governed by the distribution of o.

The behavior of the kernel at 0 is determined by the power «, whereas its behavior
away from 0, e.g. how quickly it decays at oo, depends on the slowly varying function
L. While the behavior of g at 0 determines local properties of the process X, like the
roughness of realisations, the behavior of g away from 0 governs its global properties,
e.g. whether it is long range dependent. Being able to independently choose o and L
allows us therefore to model local and global properties of the VMMA independently,
which underlines the flexibility of the model. This separation of local and global
properties, and the desire to capture both of them correctly, is one of our main
motivations to use a hybrid simulation scheme. We now formalise the statement that
the roughness of X is determined by the power a.

Theorem III.2.1. (i) Assume independence of o and W. The variogram of X
defined as V(h) := E[(Xo — X¢)?], where h = ||t||, satisfies

W22 L2 () > 20l [ (Ice/2" — [x—e/2]?) dx ash o,
R2

where e is any vector with |e| = 1.
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(i) Assume additionally that the wvolatility is locally bounded in the sense that it
satisfies SUD||s||< M+1 {03} < oo almost surely, where M is as in assumption
(A83). Then, for all € > 0, the process X has a version with locally oo + 1 — e-
Hélder continuous realisations.

The proof can be found in Section IIL.5. In [17] the authors analyse the variogram
of a closely related model and derive similar results.

We conclude this section by discussing examples of possible choices for kernel
functions g and volatility fields o.

Example IT1.2.2 (Matérn). Assume that o is independent of W. Denote for v €
(0,1) by K, the modified Bessel function of the second kind. Letting A > 0 and

v—1
g(t) = [[¢]I=" Ke_a (A[It]),

it has been argued in [22] that then the model (III.1.1) has correlation function

(Allr[l)”

C(|lr])) = E[(Xy — X0)?]/E[X3] = 2=10(0)

K,(Arl), reR?

and consequently belongs to the Matérn covariance family, cf. [25], see also [16] and
references therein. We argue now that g as above satisfies our model assumptions
with @ = v — 1. The function

1—

L(z)=a"2

K (M)

is continuously differentiable on (0,00). It holds that limg o L(z) = 2_VT+1I‘(”2;1)7
see [1, Eq. (9.6.9), p.375], which implies that L is slowly varying at 0 and satisfies
condition (A4). Moreover, since K vl (Ax) decays exponentially as x — oo, cf. [1,
p.378], condition (A2) is satisfied for all § < —1. Condition (A3) follows as well from
the exponential decay together with the identity

d a
%(ma/QKa/Q(x)) = m7_1K%,1(m).

Example II1.2.3 (ambit fields). In a series of papers [5, 6] the authors proposed to
model velocities of particles in turbulent flows by a class of spatio-temporal stochastic
processes called ambit fields. Over the last years this model found manifold appli-
cations throughout various sciences, examples being [3, 21]. The VMMA model is
a purely spatial analogue of an ambit field driven by white noise and can therefore
be interpreted as a realisation of an ambit field at a fixed time ¢. In the framework
of turbulence modeling, the squared volatility o2 has the physical interpretation of
local energy dissipation and it has been argued in [4] that it is natural to model o2 as
(exponential of an) ambit field itself. A possible model for the volatility is therefore
o = exp(X{) where X is a volatility modulated moving average, independent of W.
By Theorem III1.2.1 (i) it is not difficult to see that this model satisfies assumption
(III.2.2) when the roughness parameter o’ of X’ satisfies o > «. In its core, an am-
bit field is a stochastic integral driven by a Lévy basis, which does not need to be
Gaussian. A simulation of such integrals in the non-Gaussian case typically relies on
a shot noise decomposition of the integral, as demonstrated in [28], see also [11].
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II1.3 The Hybrid Scheme

In this section we present the hybrid simulation scheme using the following notation.
For r > 0 and t = (t1,t9) € R? we introduce the notation O ,t for a square with side
length 1/r centered at t, that is O,t = [tl — %,tl + %] X [tg — 2—17«,152 + %] We will
suppress the index r if it is 1, and will denote O, instead of O0,0. We simulate the
process Xg for t € [—1,1]% on the square grid T, := {1 (i, ), i,j € {-n,...,n}}.

A first necessary step for approximating the integral (III.1.1) is to truncate the
range of integration, i.e.

X~ / g(t —s)osW(ds),
Oi1/ct

for some large C' > 0. To ensure convergence of the simulated process as n — oo, we
increase the range of integration simultaneously with increasing the grid resolution
n. We let therefore C = C,, = n” for some v > 0. More precisely, it proves to be
convenient to choose C), = N+1/2 with N, = [n'T7], where [z] denotes the integer
part of x.

An intuitive approach to simulating the model (III.1.1) is approximating the in-
tegrand on O -1t by freezing it over squares with side length 1/n, i.e.

X = > glt—by/n)oy, [ W(ds), (I11.3.3)
jet+{—N,,...,N,}2 Onj

where b; € O j are evaluation points chosen such that t —b;/n # 0 for all t € I';, and
j € Z2. Indeed, XtR '™ can be simulated, assuming that the volatility o can be simulated
on the square grid {%(Lj)7 i,j € Z}, since { fD i W(ds)}jEZQ i'i/dj\/(O, #) We will
refer to this simulation method as Riemann-sum scheme. The authors of [26] use
this technique to simulate volatility moving averages with bounded moving average
kernel and demonstrate that it performs well in this setting. In our framework,
however, a crucial weakness of this approach is the inaccurate approximation of the
kernel function g around its singularity at 0, which results in a poor recovery of the
roughness of X.

This weakness can be overcome by choosing a small k € Ny (typically, x € {0, 1,2})
and approximating ¢g by a power kernel on %[fn —1/2,k + 1/2]%. More specifically,
denoting K, = {—k,...,x}?> and K, = {~N,,...,N,}?>\ K, the hybrid scheme
approximates Xt by

Xp= Jt—j/nL(”bj”/n)/ [t —s[|*W(ds)

eyl O (6=j/m)

+ ) ov_j/mg(by/n) / W (ds). (111.3.4)

jeR, On(t—j/n)

In order to simulate X on the grid t € T',,, we simulate the families of centered
Gaussian random variables W} and W2, defined as

Wy, = {W{E - / ) (i +§)/n — s||*W (ds), W = /
Opi/n

Oni/n

W(als)}7
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forie {-n—r,...,n+r}?and j € K,, and

W2 .= {Wi" :/ W(ds)},
Oni/n

fori€ {—N,—n,...,N,+n}*\{—n—k,...,n+r}2 Indeed, replacing t by i/n in
(II1.3.4) yields

JeK, jeK .
= X (i/n) + X (i/n), forie {-n,...,n}.

By definition the random vectors (W, W;*) are independent and identically dis-
tributed for varying i. As a consequence, W! and W? are independent and W2
is composed of i.i.d. N(0,1/n?)-distributed random variables. In order to simulate
W) we need to compute the covariance matrix of (We'ss Wi)jer,., which is of size
(|Kx| +1)? with |K,.| = (2 + 1)2. In contrast to the purely temporal model consid-
ered in [7], computing the covariance structure becomes much more involved in our
spatial setting. It relies partially on explicit expressions derived in appendix III.B,
and partially on numeric integration.

Note that the complexity of computing X(%) for all i € {-n,...,n}? is O(n?), as
the number of summands does not increase with n. The sum X () can be written as
the two dimensional discrete convolution of the matrices A and B defined by

Ay = {0 ke f’* , By = oWy, forke{-N—n,..,N+n}>
(bx/n) ke K,

We remark that this expression as convolution is the main motivation that in (II1.3.3)
and (I11.3.4) we chose to evaluate ¢ at the midpoints t—j/n of 0, (t—j/n). Using FFT
to carry out the convolution leads to a computational complexity of O(N?log N) =
O(n2t27logn) for computing {X (£)}ie{=n,...ny2. Consequently, the computational
complexity of the hybrid scheme is O(n?*2Ylogn), provided the computational com-
plexity of simulating {0/, }ic{—N—n,...,N+n}> does not exceed O(n**t27logn). For a
comparison we recall that the exact simulation of an isotropic Gaussian field using
circulant embeddings is of complexity O(n?logn), see [14].

Next we derive the asymptotics for the mean square error of the hybrid simulation
scheme.

Theorem ITI1.3.1. Let a € (—1,0). Assume that o is independent of W and satisfies
(I1.2.2). If v > —(1 + @)/(1 + B), we have for all t € R? that

2(a+1)L(1/n QE[lXt | ] N E[O’O]J(Oé7 K, b)7 as n — 00.

Here the constant J(o, k,b) is defined as

J(arb) = / (] = bs]1)2 d
0

EZZ\{ K,

which is finite for a < 0.
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Figure III.2: The first figure shows the value of J(«, k,b) = Jopt for different values
of a and & for b chosen optimal, as in (II1.3.5). The second figure shows the absolute
error J(a, k, b) — Jopt for b chosen as midpoints, i.e. b; = j, demonstrating that this
choice leads to close to optimal results.

The proof is given in Section IIL.5. The sequence of evaluation points b = (bj);ez2
can be chosen optimally, such that it minimises the limiting constant J(c, x, b) and
thus the asymptotic mean square error of the hybrid scheme. To this end bj needs to
be chosen in such a way that it minimises

/ (Il — [y *)2dx,

OJ

for all j € Z2. By standard L? theory, ¢ € R minimises ij(||x||a — ¢)2dx if and only
if the function x — ||x||* — ¢ is orthogonal to constant functions, that is, if it satisfies

/D (™ = =

It follows then that J(c, k,b) becomes minimal if we choose b such that

1/«
sl = ([ elax) (11135)
0J

In Appendix III.B, we derive an explicit expression for this integral involving the
Gaufl hyperbolic function o F;. However, in our numerical experiments computing
these integrals explicitly for all j € K, slowed the hybrid scheme down considerably,
and we recommend choosing the midpoints b; = j instead. Figure IIL.2 shows the
constant J(a, k,b) = Jop for optimally chosen b and the error caused by choosing
midpoints b; = j instead, giving evidence that choosing midpoints leads to a close to
optimal result.

For j € K, \ {0}, the evaluation points b; do not appear in the limiting expression
in Theorem III.3.1, and we will simply choose b; = j. However, for j = 0 the expression
L(||j||) is not necessarily defined. Indeed, the slowly varying function L might have a
singularity at 0, which shows that particular attention should be paid to the choice of
bg. The choice of by € O, \ {0} is optimal if it minimises the L? error of the central
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cell, i.e.,

by = argmin E(/ g(s)W (ds) *L(Ilbll)/ IISIIO‘W(dS))2~

beO »\{0} n n

By straightforward calculation it can be shown that this is equivalent to

1/v2
= 80573 / r?* T L(r/n) (n/4 — arccos(V2r) L (51 /2}) dr,
0

where Cj o is defined in Appendix III.B. The integral on the right hand side is finite
for a > —1, which follows from the Potter bound (III.5.6), and can be evaluated
numerically.

I11.4 Numerical results

In this section we demonstrate in a simulation study that the hybrid scheme is capable
of capturing the roughness of the process correctly, and compare it in that aspect to
other simulation schemes. Before doing so, we present in Figure I11.3 samples of VM-
MAs highlighting the effect of volatility. The volatility is modelled as o = exp(X{),
where X’ is again a volatility modulated moving average, compare Example 111.2.3.
For X’ we choose the roughness parameter a = —0.2 and the slowly varying function
L(z) = e~®. For the first realisation we chose « = —0.3 and L(z) = e~ *. For the
second we chose @ = —0.7 and L such that the model has Matérn covariance, see
Example I11.2.2.

For our simulation study we first recall the definition of fractal or Hausdorff di-
mension. For a set S € R? and € > 0, an e-cover of S is a countable collection of balls
{B;}ien with diameter |B;| < € such that S C |J; B;. The d-dimensional Hausdorff
measure of S is then defined as

H(S) = lim inf { > IBil° : {Bi}ien is e-cover of S},
=1

and the fractal or Hausdorff dimension of S is HD(S) := inf{d > 0 : H°(S) = 0}. The
Hausdorff dimension of a spatial stochastic process (Xt )¢ege is the (random) Hausdorff
dimension of its graph HD({(t, Xt), t € R?}), and takes consequently values in [2, 3].
For the model (II1.1.1) with constant volatility o = 1 it follows easily from a standard
result [2, Theorem 8.4.1] and Theorem II1.2.1 that HD(X) = 2 — «, see also [17]. In
[13], the authors give an overview over existing methods for estimating the Hausdorff
dimension of both time series data and spatial data, and provide implementations for
various estimators in form of the R package fractaldim, which we rely on.

We estimate the Hausdorff dimension from simulations of X generated by the
hybrid scheme, and compare to other simulation methods. We consider the model
(IT1.1.1) with constant volatility o and Matérn covariance, see example I11.2.2. In
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o, te[-1,1? o, te[-1,1?

Figure IIL.3: Examples for moving average fields modulated by volatility. The
first row shows the volatility (ot)¢crz modelled as 0 = exp(X{), where X' is again
a VMMA field. The second and third row show realisations of VMMAs. On the
left hand side the field is simulated with constant volatility, the right hand side is
generated by the same Gaussian noise and with the same model parameters, but
is modulated by (ot)terz. For the second row we chose a = —0.3 and the slowly
varying function L(z) = e~*. The third row is generated with « = —0.7 and Matérn
covariance.
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this case the process X can be simulated exactly using circulant embeddings of the
covariance matrix. For this we use the R package RandomFields. For a discussion
and many properties of the circulant embedding method in the context of simulating
spatial Gaussian fields we refer to [14]. As this technique is restricted to Gaussian
processes, and cannot be applied for general VMM As, we compare additionally to the
Riemann-sum scheme introduced in (II1.3.3). These simulation techniques are com-
pared to the hybrid scheme for k = 0, 1,2. With each technique we simulate 100 i.i.d.
Monte-Carlo samples of the process (Xt )¢e[—1,152 for every a € {-0.8,-0.7,..., —0.1}.
As grid resolution we chose n = 100 and, for the hybrid scheme and the Riemann-
sum scheme, N,, = [n!™7] with v = 0.3, i.e. N,, = 398. Thereafter we estimate the
roughness of X using the isotropic estimator 7; that was introduced in [12], see also
[13], and average the estimates over the Monte-Carlo samples. Figure I11.4 shows the
results and compares them to the theoretical value of the Hausdorff dimension 2 — «,
plotted as dashed line. Let us remark that there is a variety of methods to estimate
roughness of spatial stochastic processes, a detailed comparison can be found in [13].
All estimators discussed there lead to similar results when applied to our simulations.

I11.5 Proofs

This section is dedicated to the proofs of our theoretical results. We begin by recalling
the Potter bound which follows from [9, Theorem 1.5.6]. For any § > 0 there exists a
constant Cs > 0 such that

L(z)/L(y) < Cs max { (;’)5 (x) _6}, z,y € (0,1]. (IIL5.6)

Y

This bound will play an important role throughout all the proofs in this section.

Proof of Theorem III.2.1 (i). The proof is similar to the proof of [7, Proposition 2.1]
We have for h > 0 by covariance stationarity of o that

V() = Blof] [ (o(s+he) ~ o) ds,

where e is any unit vector and we used transformation into polar coordinates. We
obtain

E[o3](An + A}), where

(9(s + he/2) — g(s — he/2))* ds, and
{lIsli<1}

/| - (9(s + he/2) — g(s — he/2))?

Since the function g is continuous differentiable on (0, c0), we obtain by mean value
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Figure II1.4: Roughness estimated from samples generated by the hybrid scheme,
the Riemann-sum approximation method and by exact simulation using the circulant
embedding method for Gaussian fields. The roughness is estimated by the isotropic
estimator vy introduced in [12], averaged over 100 i.i.d. samples. The second plot
shows in more detail the absolute error between the estimation and the theoretical
value, which is marked by the dashed line in the first plot.
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theorem the following estimate for Aj .

A;sm{A s (F(©)? ds

I<|lsll<M+1} {¢: |6~ |sll|<h/v2}

oo
+ 27T/ g (r)*r dr},
M

where we used that |g'| is decreasing on [M, 00). The term in curly brackets is finite
by Assumption (A3), and we obtain that A} = O(h?), as h — 0. For Aj, we make the
substitution x = s/h and obtain

Ap = h2/ (9(h(x +e/2)) — g(h(x — e/2)))? dbx
IxlI<1/h

= W22 L2 (h) / Gn(x) dx,
x| <1/h

where

th+eﬂm_ﬁx_dmaMMk—eﬁm)%

Gh(x) = (||x+e/2||°‘ () L(h)

Note that Gp(x) — (||x +e/2[* — [|x — e/2||°‘)2, as h — 0. Therefore the first
statement of the theorem follows by the dominated convergence theorem if there is
an integrable function G satisfying G(x) > |G (x)| for all x for sufficiently small h.
The existence of such a function follows since L is bounded away from 0 on (0, 1] and
by Assumption (A4). For details we refer to the proof of [7, Proposition 2.1]. O

Proof of Theorem III.2.1 (ii). The proof relies on the Kolmogorov-Chentsov theorem
(cf. [23, Theorem 3.23]), which requires localisation of the process, as ¢ does not
necessarily have sufficiently high moments. We therefore first show the existence of a
Holder continuous version under the assumption that there is an m > 0 such that

los|? < m, for all s with ||s|| < M +1, w € Q,and  (IIL.5.7)
[ alt-) - g(=s)Pa? ds < me]
{lIsll>M+1}
for all t with [[t|| <1, w € Q, (IT1.5.8)

where M is as in (A3). Thereafter we argue that the theorem remains valid if we
relax these assumptions to E[SUPHngM 02] < o0.
For [|t|| < 1 we have for all p > 0 that

El(Xe = Xoy) < C”E[(_/RQ (g(t —s) — 9(—s))20§ ds)p/T
- Cpmp/Q(/{|s|§M+1} (9t = 5) — g(-=))" ds + |t||2>p/2

p/2
scwﬂﬂ<%<un+uw) ,
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where Vj denotes the variogram of the process (Xi¢)ierz with ¢ = 1. In the first
inequality we used that ¢ and W are independent and therefore Xy — Xy has a
Gaussian mixture distribution with the integral on the right hand side being the
conditional variance. Applying the first part of the theorem and the Potter bound
(IIL.5.6) we obtain that for any ¢ > 0 a constant C), ,,, s such that for all t with ||t|| <1

E[(Xe — X0)] < Cpmsllt[7F7o7°.

Therefore, the Kolmogorov-Chentsov Theorem [23, Theorem 2.23] implies that X has
a continuous version that is Hélder continuous of any order v < 1+ o — g — %, and
the result follows for any v € (0,1 4+ «) by letting p — oo.

We will now complete the proof of the theorem by extending it to processes not
satisfying assumptions (II1.5.7) and (II1.5.8). By mean value theorem we obtain that

for all t with ||t]] <1

672 [ Gale—s) - g(-s)Pad ds
{lIsll=1+1}
<l [ fle=si=IsIP swp (G(0))ok ds
{lIsll=M+1} rel

[Is]l,lIt—sl[]
< / 7 (lsll - 1)%02 ds
{lIsl|>M+1}

where we used that |§’| is decreasing on [M, 00). By taking expectation and trans-
formation into polar coordinates it follows from assumption (A3) that the right hand
side is almost surely finite. Consequently, the random variable

7 = max{ sup  (03), sup (|t||_2/ (g(t —s) — g(—s))?02 ds)}
sl <M+1 lIt]<1 {lIsll=M+1}

is almost surely finite. The process (X¢1{z<m})¢er2 satisfies conditions (IT1.5.7) and
(IT1.5.8) and coincides with X on {Z < m}. Therefore, the existence of a version of
X with a + 1 — e-Hdlder continuous sample paths follows by letting m — oo. O

For the proof of Theorem II1.3.1 we need the following auxiliary result. The proof
is similar to the proof of [7, Lemma 4.2] and not repeated.

Lemma IIL5.1. Let a € R and j € Z*\ {(0,0)}. If b; € Oj, it holds that

0 [ (e ) N
I N e o) IR N AR

0j
i [ e (LUK L3N
(2) ) ( L(i/m)  L(/n) ) dx = 0.

The same holds for j = (0,0) if bo,0y # (0,0) and o > —1.
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Proof of Theorem II1.3.1. Recall the definition

= / o = S E by Doy )

JEK,

+ Z/ g(bj/n)oe_;/, W (ds).

€K n(t J/n
We introduce the auxiliary object X’™ defined as
X Y oy [ gl
jeK.UR, On(t—j/n)
+ / g(t — s)osW(ds).
R2A\O N, /n

Denoting E,, := E[|X]* — X'{|?] and E!, := E[|X¢ — X'{|?], Minkowski’s inequality
yields

En(1 = E,JEn)? <E[|X] — X¢|?] < En(1 + VE,/E,)? (I11.5.9)

We will show later that E! /F,, — 0 as n — oo, and it is thus sufficient to analyse the

asymptotic behavior of F,,.
We have that

E,=>" / (It = sI*L(bsll/n) - gt — 5))*Elo7_; ] ds

jEK, nt J/n

! Z /n(t ji/n) (g(t_s) 9( J/n)) [Ut J/n] ds

je{—n,...n}2\ K,

Y[ (et~ ol /m) By, s

JER N —n,myz " O

+/ g(t —s)’E[o2] ds
R2\O 2y, +1)/n't

=E[03)(D1 + D2 + D3 + D). (I11.5.10)

For D4 we obtain, recalling assumption (A2) and N,, = n?™! that
D, < / g(s)?ds = O((N,, /n)?*2) = O(n*(1+5),
lIsl|>Nn/n
Therefore, we have
n*+ Dy — 0. (IIL5.11)

For D3 we obtain

Dy = 3 / — g(by/n))* ds.

JER N\ —nsem} "J/”
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Recalling the notation §(||s||) = g(s) we have for s € Oj with j € K. \ {-n,...,n}?
by the mean value theorem ¢ € [||s|| A |[bj/nl|,||s|| V ||bj/nl|]]. Since §’ is decreasing
on [M, o) by assumption (A3) it follows that

l9(s) = g(bs/n)| = 13" () (IIs]| — lIbs]l/n)]

{;supye[l_1/(@),%1/@”)] 7w, (5l - v2)/n < M,
Lig (3] = v2)/n), (I3l = V2)/n > M.

Consequently, we obtain with transformation into polar coordinates

A

limsupn®D; < (m(M +1)? sup 17’ (2)] + C’/ r|g'(r)|? dr) < oo. (IIL5.12)
n—00 z€[1/2,M+1/2] M

For Dy we have that

D=5y / (Is/n*L(Ibgll/n) — g(s/n))? ds

JGK

L(1/n) s ( L(bsll /) L(|Isll/n)?
=S 3 [sie (M - ) s

JEK,

Since the number of elements of K, does not depend on n, we have by Lemma I11.5.1

n2+2aD1
lim =0, 11L.5.1
A TV (HL5.13)

For the asymptotic of D5 it holds that

D / (gls/n) — glby/m))’

2
_L/ny [ (i S Y,
- 242« j .
n JE{ n,.. n}z\K Oj ) L(l/n)
=Ajn
From Lemma IIL.5.1 we know that lim, o Aj, = ij(HsHa — |Ib3]|*)? ds. Conse-

quently, if we find a dominating sequence A; such that A; > A;, for all n and
Zjezz\ i, Aj < 00, it follows from dominated convergence theorem that

D2n2a+2
lim

Jm = 2 / (Isl|” = [Ib][*)? ds, for a € (—1,0). (IIL5.14)

JEZ2\K

It holds that

g = [ {0t = i) S e (Z1E) - IR L

2
<2 [ sl =l () s

e (LAl — Lyl /) \*
Il ( A ) a

0j
o /
«-— Ij7n + Ij,n‘
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For I{ , we note that [|b;|** < (||jl| —1/v/2)** for @ < 0. By the mean value theorem
we have a £ € [||s||/n A ||bj||/n, ||s||/n V ||bj||/n] such that

! s||/n — ||bs||/n ¢ ¢ 20
|LlIsll/n) = L{Ibsll/n)| = L'(E)]lIsll/n — b3l /nl < — + GI=1/v3 < G- 1ve

where we used (A4) and that ||j|| < n. Consequently, we obtain

/ c s 2a _ . 2 S
Ij,nﬁ m(\b”‘l/\@) /‘(L(”SH/TL) L(||b3||)) d

Oj
< Ol - 1/v2)*h.

For the term I, we obtain by the Potter bound and the mean value theorem that

I <Gy [ min(s], by 2 Is* ds < Co([§] — 1/v2)21+,

[k

where we choose § € (0, —a). Consequently, we obtain I, + I{ , < C(||j|| — 1/v2)7?

jn =
for all n» > 0, and since

Y Cllil =1/v2)7? < e,

JEZ2\K,,

(IT1.5.14) follows from dominated convergence theorem and Lemma III1.5.1. Now
(IT1.5.10) together with (II1.5.11), (111.5.12), (I11.5.13) and (111.5.14) show that

E, ~E[o2]J(a, 5, b)n 2V L(1/n)2 n — .

Therefore, recalling (IT1.5.9), the proof of statement (i) of the Theorem can be com-
pleted by showing that E! /E, — 0 as n — co.
Since o is covariance stationary, we obtain for E/,

= ¥ / E[(0e_3/m — 03)]g(t — 5)°ds
On(t=j/n)

JEK UK,

= sup E[|au—00\2]/ g(s)zds7
ued, R2

and E/, /E, — 0 follows by the assumption (III.2.2) O

Appendix III.A On general stochastic integrals

Here we recall the definition of general stochastic integrals of the form [, HsW (ds)
where H is a real valued stochastic process, not necessarily independent of W. The
construction of such integrals dates back to Bichteler [8]. In a recent publication [10],
this theory is revisited in a spatio-temporal setting and the authors derive a general
integrability criterion for stochastic integrals driven by a random measure that is
easy to check. In the context of integrals of the form (II1.1.1), this criterion yields
the following statement.
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Proposition ITI.A.1. Let (Hg)scre be a real valued stochastic process, measurable
with respect to B(R?) @ F, such that H € L*(R?), almost surely. Then, the stochastic
integral [o. HSW (ds) exists in the sense of [8].

Proof. We apply the integrability criterion [10, Theorem 4.1] that is formulated in a
spatio-temporal framework. To this end, we introduce an artificial time component
and lift the white noise W (ds) to a space time white noise W(dt; ds) such that W(A) =
W([0,1] x A) for all A € B(R2). Equipping (€2, F,P) with the maximal filtration
Fi = F for all t € [0,1], the spatio-temporal process defined as Hg(t) := Hg for all
t € [0,1] is predictable and it holds that

HOW (ds) = / H,(6)W (dt; ds)

R2 [0,1] xR2

if the latter exists. The random measure W satisfies the conditions of [10, Theorem
4.1] with characteristics B = y = v = 0 and C(4A;B) = AM(ANB) for all A,B €
B([0,1] x R?), where X denotes the Lebesgue measure. The theorem then implies that
H is integrable with respect to W if and only if it satisfies almost surely fW H2ds <
00. O

Note that the proofs for some of our theoretical results rely on the isometry

]E[( . HSW(ds))T :EUR2 Hfds},

which does not necessarily hold when H and W are dependent. In particular, we
cannot rely on Theorem III.3.1 in this more general framework. We argue next that
the hybrid scheme converges for dependent ¢ and W, when ¢ admits a continuous
version, without specifying the speed of convergence.

Proposition ITI.A.2. Assume that (0g)serz has a continuous version. Then, X[ RN
Xt for all t € R?, i.e. the hybrid scheme converges.

Proof. Using the notation of Section II1.3, we consider the auxiliary integrals

e /
O

keK, UK

ot — )W (ds) = / 5 g(t — )W (ds),
n(t—k/n) R2

where

(AT': = Z Utfk/nﬂmn(tfk/n)<s)~
keEK, UK,

By arguing as in the proof of Theorem IIL.3.1, it follows that E[(X — X{)2] — 0 as
n — oo, and it is therefore sufficient to argue that )~(§ N X¢. It holds that

X, = /]R gt s)oaW(ds) = /R oMy 4 (d5),
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where the random measure M ¢ is defined as M, ¢(A) = [, g(t —s)W(ds). Since
(0s)serz is continuous, the sequence of simple integrands " converges pointwise to
o, and it follows that

X = / oM, (ds) = lim [ &7M,¢(ds) = lim X7, in probability,
R2

n—oo [p2 n— 00

by integrability of o with respect to M, +. O

Appendix III.B The covariance of W}

In this section we analyse the covariance structure of the Gaussian family W} intro-
duced in Section III.3. For a wide range of covariances we are able to derive closed
expressions, whereas the remaining covariances are computed by numeric integration.
Let us remark that in addition to the symmetry of the covariance matrix the isotropy
of the process adds 8 more spatial symmetries (corresponding to the linear transfor-
mations in SO(2) that map Z? onto itself), which reduces the number of necessary
computations drastically. Since the random variables in W} are i.i.d.along i, it is
sufficient to derive the covariance matrix for

{W(;fj’ Won}jeKK'
For ji,j2 € {—K,...,k}? it holds that
1
0171 = V&I‘(Wén) = ﬁ

.
Cugy = cov WG Wis,) = = [l s ds
O

1 . .
Cjy jp = COV(W&jlv Wél,h) = W/ i1 — sl|*llj2 — s[|* ds.
O

We now derive explicit expressions for Cj; using the Gauss hypergeometric func-
tion oF;. Clearly, these expressions can be applied to compute C j by replacing o
with a;/2. Using symmetries we may assume without loss of generality that j = (j1, j2)
with j; > j2 > 0. We introduce the notation <1j for the area {(r1,x2) : j2 < a1 <
Ji, Jo < x9 < x1}, that is a right triangle with lower right point (j1,j2) and hy-
potenuse lying on the diagonal {(x1,x2) : z1 = z2}. In order to obtain explicit
expressions for Cj j, we first derive explicit expressions for

/ |x]|2% dx, for all j = (j1,j2) € R*,0 < jo < ji. (IT1.B.15)
<j

Thereafter we give for all j = (ji1,j2) € 72 with 0 < j, < jg an explicit formula to
write Cj; as linear combination of such integrals.
Transforming into polar coordinates we obtain that

w/4 j1/ cos(0)
/ |x/|%® dx = / / r2ot dr de
<j arctan(jz/j1) 7 j2/ sin(0)

1 w/4 jl 2a+2 j2 2a4+2
= — . (ITI.B.1
2a+2 /arctan(jg/jl) (COS(G)) (Sln(g)) 0 ( 6)
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It holds that arctan(ja/j1) = arccos(”%”), and consequently we obtain by substituting
cos(f) = z the following expression for the first summand:

j2a+2 /4
! / cos(0) 7272 do
20 +2 arctan(jz/j1)
j2a+2 cos(m/4)
__N / S22 22)_1/2 d
20042 Jj, 15
2042 33 /1507
:Jli/l Z—a—%(l_z)—l/Q d
4 Ol+ 1) 1/2
2042 1/2
= Jli/ (1—z)" 2 3,712 4,
Ala+1) Jyz5
2a+2
.71 .2 112
=—(B(1/2;1/2,—a—1/2) — B :1/2, —a—1/2
4(a+1)((/,/,a /2) = B3 /1§15 1/2, —a — 1/2))
j2a+2
=2 F(1/2,3/24 ;3/2;1/2
23/2(a+1)2 1( /7 / +Oé, /7 /)
j%a+2j2 ) ,
— s 2 F(1/2,3/2 4+ a3 3/2; 55 /113[7)-
STy (1/23/2 + c3/2 /)

Here, B(z; p, q) denotes the incomplete beta function, satisfying B(z;p, q) = %QFl (p,1—

¢;p + 1;z). For the first equality we used that d/dz(arccos(z)) = —(1 — 2%)~/2 For
the second summand in (III.B.16) we argue similarly, using that arctan(js/ji) =

arcsin(ﬁ” ),

j§a+2 m/4 20—2
_ sin(6) == do
200 + 2 /arctan(j2/j1)
j2a+2 sin(7/4)
_ 2 / Z72a72(1_22)71/2 dZ
2a+2 Jj, /150
2a+2 1/2
= fbi/ Zﬁai%(lfz)ilm dz
4la+1) Jiz /502
2042 i3 /11301 :
:_]27/]1 J (1_Z)—a—%z—1/2 dz
da+1) Ji
i B2
=2 (B(2/I5lI%1/2, —a — 1/2) — B(1/2:1/2. —a — 1/2
4(a+1)( G/ 1/2, —a = 1/2) = B(1/2;1/2, —a — 1/2))
j3ot?
=22 F(1/2,3/2 4 a;3/2;1/2
23/2(a+1)2 1(/ / e / /)

.722(1+2]1 , ,
— —=——" 5 F1(1/2,3/2+ ;3/2; 57/l .
i 12 (1/23/2 4 es3/2 50/ 1)
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This leads to

.72(,!-‘,-2 +J2o¢+2
2 J2  TtJ1 . .
/ Il = i R (12872 4 005/2:12)

2a+2
J1Ja

2fille+1)

31225,

2fille+1)

for all 0 < jo < ji. For implementation we remark that in the case jo = 0 the
hypergeometric function in the second line is not defined since in this case j2//j||* = 1,
and we use

2 F1(1/2,3/2 + a;3/2; 53 /1li|%)

2F1(1/2,3/2 + o;3/2; 33 /113117),

2a+2
J1

Thus, we have explicit expressions for integrals of the form (III1.B.15) and all that
remains to do is to argue that for 0 < jo < j; we can write Cj ; as linear combinations
of such integrals. By symmetry we obtain that

Comoo = [ P ax=s [ i

)

For j > 0 we obtain

C(] 9),(3.9) — / ||X||2a dx, and
<(j+1/2,5-1/2)

Comuo =2( [ x| e s
< (3+1/2,0) <Q(3-1/2,0)
-/ I ax+ | x> ix ).
Q(G+1/2,1/2) a(i-1/2,1/2)
For 0 < js < j1 we obtain
Cloirrim = |, Il dx [ I dx
<Q(§141/2,j2—1/2) <Q(§1—1/2,52—1/2)

—/ ]2 dx+/ 2 dx.
< (J1+1/2,52+1/2) <(j1—1/2,j2+1/2)

This covers all possible choices for 0 < jo» < j; and consequently we have explicit
expressions for Cj; and Cj,; for all j.
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Appendix A

Technical supplement

In this appendix we provide some results that are of more technical nature, including
several proofs for results stated in Chapter 1. Literature references are with respect
to the bibliography of Chapter 1.

A.1 The Skorokhod topologies

In his original work [79], Skorokhod introduced four different topologies on the space
D(R4,R) of cadlag functions, usually denoted by Ji, M7, Jo and Ms.

In this section we argue that the functional stable convergence in Theorem I.1.1
(i) does hold with respect to the M; and M topology, but not with respect to the Jy
and J, topology, providing a complete picture.

We quickly recall the definition and some properties of the Ji, J; and Ms topology,
since especially the Js and My topology are not widely used. An excellent analysis
of the four Skorokhod topologies in the context of stochastic processes can be found
in the monograph [87]. For simplicity we restrict ourselves in this section to the
finite time horizon t», = 1 and work on the space D = D([0, 1);R), since including
the endpoint of the interval requires more technical notation to account for functions
that jump at the endpoint. First of all we recall that the J; topology on D is induced
by the metric

dy (f1, f2) = Airelg{\\ﬁ oA — fa| VA —ell},

where || - || denotes the uniform norm on [0,1), e is the identity on [0,1) and A is the
set of all strictly increasing continuous bijections [0,1) — [0, 1).
Similarly, the Js topology is induced by the metric

dr(fis f2) = inf {llfro A= fall VIA = ell}

where A’ is the class of all bijections of [0,1), not requiring that they are increasing
and continuous. As a consequence, a single jump can in the J, topology approximated
by a function that jumps multiple times up and down near the jump, see Figure A.1.

The Ms metric is defined as the Hausdorff distance of the completed graphs,
introduced in Section 1.2, i.e. dy,(f1,f2) = dup(T's,,I'y,), where we recall that the
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Hausdorff distance between compact sets A, B of R? is defined as
dup (A, B) := sup inf ||z — y|| V sup inf ||z —
(4, B) = sup inf |~ |V sup int [~ ]|

where || - || denotes the Euclidean norm on R2. To gain some intuition for the Mo-
topology we follow up on our picture of ants walking on the completed graphs that we
gave for the Mi-metric in Section 1.2. Given two functions f and g we imagine two
ants positioned at the starting points (0, f(0)) and (0, g(0)) in R2. For ¢ > 0 it holds
das, (f1, f2) < e if the ants can find any way to walk the completed graphs I'y and T,
from start to finish without ever being further apart than €. The crucial difference
to the M;-distance is that they are now allowed to change directions in between. In
Figure A.1 we show examples for convergence in Jo and Ms. Indeed we see in the
figure that the ant walking on the green graph needs to walk back and forth on the
vertical line in order to stay close to the ant walking the blue line, which can walk
forward the entire time.
The four Skorokhod topologies are ordered by

J1 > Jo > My and Jy > My > Mo,

where > means stronger than. The J, and M; topology are not comparable. The
first example in Figure A.1 converges in Jo but not in Mj, the second example in
Figure 1.2 converges in M; but not in Js.

The main result of this section is the following theorem.

Theorem A.1.1. In the setting of Section I.4, the sequence V'™ defined in (1.4.3)
does not converge stably in law in D equipped with the Js topology.

By the ordering of the 4 topologies this implies that the sequence neither converges
in Jy, whereas My convergence follows from Theorem I.1.1 (i).

We remark that this result is in fact quite intuitive, as by the definition of V™=
a jump of the limiting process Z at time T is indeed approximated by jumps of V"™
at times ([nT] + 1)/n, ..., [n(T + €)]/n forming a monotone staircase. This type of
monotone staircase scenario is a popular model example for convergence in M; but
not Jy. The formal proof of Theorem A.1.1 relies on the following Lemma.

Lemma A.1.2. Let m > 1 and let
A:={feD : f is piecewise constant and has at most m jumps}

Let g € D be increasing with at least m+ 1 jumps of size greater or equal § > 0. Then
dy,(f,g) >d/2 for all f € A.

Proof. The function g attains m+1 values g1, ..., gm+1 satisfying min; je 1, mi13{]9i—
gj|} > 0. For any A € A/, go X attains the same values, and since f attains at most m
different values, we have ||[go A — f|| > §/2 for all A € A’ and the result follows. [

For the proof of Theorem A.1.1 we recall the definition of the Prokhorov metric
defined on the space P(S) of probability measures on a metric space (S, d). Denote
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Convergence in Jo, not My Convergence in Ms, not Jy or M,
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Figure A.1: Examples for convergence in Jo and Ms. If a,, — 0 and b,,c, — 0.5,
the function plotted in blue converges to the function 1 /5 1) plotted in green. For
Ja-convergence the approximating function is allowed to jump multiple times up and
down when the limiting function jumps. For Ms-convergence the completed graphs
(plotted as dashed lines) converge in the Hausdorff metric.

by A% the open e-neighbourhood of A, i.e.
c={ye S :d(z,y) < e for some z € A}.
The Prohorov distance of two probability measures P1,Ps € P(S) is then defined as
ma(P1,P2) = inf{e > 0 : P1(A) <Po(A5) +¢ for all A € B(S)}.

It has been shown in [87, Theorem 3.2.1] that weak convergence is equivalent to
convergence in the Prohorov metric whenever the metric space (5, d) is separable.

Proof of Theorem A.1.1. Since it is sufficient to show that the convergence does not
hold in a specific example, we can choose 0 = 1, g(z) = % and k = 1 and v =
d{—1y + 911} Recall the definition of ., V™ and Z introduced in Subsection I.4. For
the proof we introduce the set

Qo = {w : L(w) has exactly one jump in (0,1)} N Q..
It is then sufficient to show that V™*1g, does not converge stably in law. Moreover,
the results of Subsection 1.4 imply V™*1lq, —21="4 Zlg, and it is sufficient to
show that V™1q, £ Z1g, does not hold in (D,dys,). Since (D, dy,) is Polish and
dy, < dj,, the metric space (D,dy,) is separable, and by Theorem 3.2.1 of [87] the

proof is complete if we find a § > 0 such that 75, (V"*1q,, Z1q,) > 0 for infinitely
many n. Let

A:={f €D : fis piecewise constant, f(0) =0,

f has exactly 1 jump of absolute size > o}

Let w € Qg and denote by Tj(w) the jump time of the Lévy process in (0,1). The
process Z1g, is piecewise constant, 0 at 0, increasing, and has one jump at time 77 (w)
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of size V; defined in Theorem I.1.1. It is straightforward to show that V3 > oP. In
particular, we can choose ¢ sufficiently small such that P(Z1g, € A) = P(Q) > 2.
It is then sufficient to show that

P(V™ g, € Ang) < ¢, for infinitely many n,

since this implies 7z, (V™*1q,, Z1q,) > 6. We choose § < a?3P(®=1) /2 and show
that the set {w : V™% (w)lg,(w) € Ang} is in fact empty for all n. First note that

§ < aP3P(@=1) /2 implies § < o and thus 0 ¢ A‘dez. It is therefore sufficient to show
that for all w € Qg and all n it holds that

dp, (f,V*(w)) >4, forall fe A.

We denote by i1 the index such that 77 € ((i1 — 1)/n,i1/n]. It is straight forward to
show that

Anni V' = |(1+i1 — nTy)™ — (iy — nTy)*P > o271,
A2V > aPgpla—1)
Therefore V™¢ is increasing and has at least 2 jumps > a?3?(®=1_ Since f € A has

only one jump, an application of Lemma A.1.2 with m = 1 shows that dj, (V™ f) >
aP3P(@=1) /9 > § for all f € A. This completes the proof. O

A.2 Details on modulars

In this subsection we provide proofs and supplementary details to Section 1.3. We
begin by showing the following proposition.

Proposition A.2.1. For all p > 1, the modular ®, 1 introduced in Section 1.3 is
both of moderate growth and 0-convez.

Proof. We first derive the following estimate for the function ¢,. For all z € R it
holds that

(A2 AN)B,(2) < dp(Ax) < (N2 V AP)p,(z)  for all A > 0. (A.2.1)

We show the second inequality, the first one follows directly by an application of the
second one with 2/ = Az and \' = A~!. Assume w.l.o.g. that z > 0. For x € [0, 1AA"}]

we have ¢,(Az) = A2¢,(z). For A > 1 and x € (A\~!, 1] it holds that
< NP2 = \P if p>2

by Oz) = woar L ST ¢(x) if p >
= N2(\z)P 222 < N2¢(z) ifp<2.

Similarly, for A < 1 and = € [1, A7 1)

< AP = \2¢(x) ifp>2

A — )\2,.2
p(hw) = X {:AP(Ax)Q_pxp<>\p¢(x) if p<2
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Finally, when > A~! V1 it holds that ¢,(A\z) = A ¢,(z), which completes the proof
of (A.2.1).

This estimate implies in particular that the modular @, , is of moderate growth,
i.e. satisfies condition ((iii)) of Definition 1.3.1. Indeed, for z,y € R we obtain by

(A.2.1) that ¢p(z +y) < ép(2(|z[ V [y])) < 227, (|2] V [y]) < 22VP(dp(2) + 05 (y)),
which immediately implies

O 1(f+9) <27H(@y(f) + ylg))  forall f,g € LE, (dL).

Moreover, ®,, 1, is 0-convex, since ¢p,(ax + By) < ¢p(|z| V |y|) < ¢p(x) + ¢p(y) for all
z,y € Rand o, >0 with a+ 5 = 1. O

Next, we prove Theorem 1.3.2 and Proposition 1.3.4.

Proof of Theorem 1.3.2. (i) follows immediately from [71, Theorem 2.7] and [71, The-
orem 3.3] where we remark that the quantity o(s) introduced in [71, (2.4)] vanishes
since L has no Brownian part, and the functional U introduced in [71, Theorem 2.7]
vanishes since L is symmetric.

Next we prove (ii). By [71, Theorem 3.4] the integration mapping A : L2 (dL) —
LP(Q) is a linear homeomorphism onto its image. We recall that any linear homeomor-
phism between normed vector spaces is a quasi isometry which follows by considering
the operator norm. Since in our case the vector spaces are not equipped with a norm
but with homogeneous modulars, we need to generalise this idea slightly in the fol-
lowing way. Denote by B the unit ball in L% (dL), which coincides for ®, r, || - ||p,z
and || - [, 1, since for any f the function ¢ — @, (tf) is strictly increasing on [0, 0c).
The set By is bounded in the linear metric space (L, (dL), || - [, ;,) and consequently
its image under the continuous linear operator A is bounded as well by a standard
result, see for example [73]. Thus we can define

[Allop := sup [[A(f)lp < oo,
feBy

which defines a norm if p > 1, and a homogeneous modular for p < 1. It follows then

by homogeneity of || - ||,z and | - ||, that

|p7L-

AN = 1 lp.L[|AF /A llp.2)],, < Ao llf

The same argument applied on the inverse mapping A~! yields || f||,.. < C||A(f)]],-
O

Proof of Proposition 1.3.4. Tt follows from [64, Theorem 1.10] and the comment there-
after that the homogeneous modular || - ||¢ defines a norm if ® is convex. We replace
¢p in (1.5) by the convex function

Gp() = (2/plal? + 1 = 2/p)Ljujsry + 22D (ja <1y

and define ®,, 1, accordingly. Then, the convexity of ®, ;. implies that ||- oL =15,
’ P,
defines a norm on L% (dL). We show that it is equivalent to || - ||,
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Clearly, there exist ¢,C > 0 such that c,(z) < ¢,(x) < Cop(x) for all z € R,
which implies ¢®,, 1.(z) < @, 1.(z) < C®, 1(x). Moreover, the modular ®, 1, satisfies
the moderate growth condition (iii) which implies the existence of a C’ > 0 such that
1, 1(f) < @, L(C'f) for all f. It follows for all f € L2, (dL) that

1f 1}, = inf{t >0 : (671 f) <1}
<inf{t>0:c '@, (t71f) <1}
<inf{t >0 : &, (C't71f) <1}
=" fllp.e = Cll fllp.-
Similarly it follows that there is a ¢’ such that ¢'[|f|[,,r. < [ fI[}, - This shows the

equivalence of || - ||, . and [ - ||}, 1
The modular || - ||, 1 satisfies ((i)) by definition. Property ((ii)) follows from
equivalence to || - ||7, .- The estimate ((iii)) follows from (A.2.1). O

A.3 Existence of Lévy semi-stationary processes

In this section we discuss conditions that ensure the existence of the integral (1.2).
We first argue that assumption (A) implies the following important estimate. For
all € > 0 there is a constant C' > 0 such that

/}R(|yiﬂ|2 ADw(dz) < C(lyl"Lgy <oy + " Ly s 1y)- (A.3.2)

Recall that the condition limsup,_, ., v([t,00))t’ < co implies that there is a C, such
that for all nondecreasing functions f

/ f(z) v(dz) <o/ f(x)z=0"1 da, (A.3.3)

as we argued in Lemma 1.4.4. First, consider the case y > 1. Choosing € > 0 such
that 8 + ¢ < 2, it holds that

[ A vt ( v(da) 4 v(ly )
<2 <ﬂ+€ aPre (dx)-i—u([l,oo)))

\ /\

For |y| <1 we have

/R(|yx|2 A1)v(dz) < C’<y2 + /100((y:c)2 A 1)y(dm)>

<o+ [ (ar aea)

Iy o0
= Cy? (1 +/ wledx) + C/ e 0z
1 ly=11

< Clyl?,
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where we used (A.3.3) in the second inequality, and 6 < 2 in the last. This shows the
estimate (A.3.2).

This estimate ensures the existence of the integral (1.2) if o = 1 by the following
argument, see also [20]. By Theorem 1.3.2 it is sufficient to argue that for all ¢ > 0
the function f; defined as fi(s) = g(t —s) — go(—s) satisfies ®¢ 1,(fi) < 0o, where ¢ 1,
is as in Section 1.3. Applying the estimate (A.3.2) it holds that

o,(ft) < C/R |fe ()L g 1,00y 1<1y + ()P 1, (o) 511 s

By the mean value theorem and the conditions on g, there is a & € [0,¢] such that
Ife(s)| < [fo(s)] + 19" (& — 8)[Mqssiasy + Ce(t — 5)F 1 {s<i45y, and the conditions of
Assumption (A) ensure that ®q 1 (f:) is finite.

When the volatility factor ¢ is nontrivial, the following condition is sufficient for
the integral (1.2) to exist, see also Remark (1.3.3). This follows easily from Theorem
1.3.3 and the estimate (A.3.2).

Assumption (B): Suppose that Assumption (A) is satisfied and define the two
processes F(1) and F®) by Y = (9(—s) —go(—s))os and F? = g’ (—s)os for s < 0.
Then the process X given by (1.2) is well-defined if there exists a 5’ > 3 such that

-5
i)|0 i)|8'
Lm (|F9( )| ]1{|FS<’7>|§1} + |F9( )‘B l{|F§i)|>1}) ds < 00

almost surely for i =1, 2.






Appendix B

MATLAB code for the hybrid
scheme

Here we list the MATLAB code for simulating volatility modulated moving averages
by the hybrid scheme presented in Paper III. The comments of the code follow the
notation of the paper, denoting bold letters (i.e. variables representing vectors in R?)
by \b, for example we denote i by \bi.

The code is written in MATLAB R2014b, version 8.4.0.150421. For fast 2d-
convolution it relies on the function conv2fft by Luigi Rosa, available at
http://se.mathworks.com/matlabcentral/fileexchange/4334

YW The Hybrid scheme 2d %577 %
% Claudio Heinrich, August 2016

clear all;
close all;

%% Simulates and plots a VWWMA over [—1,1]"2 with grid
% resultion 1/n. The values of the process are saved
% in the (2n+1) x (2n+1) matrix X

kappa = 2; %depth of the Hybrid scheme
a = —0.3; %roughness parameter alpha
n = 100; %grid resolution is 1/n

g = 0.2; Y%parameter gamma

N = floor(n"(14+g)); %the integral range is N/n

9% The volatility factor sigma
% the function vol returns the volatility process
sigma=vol (n,N);
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%% The matrix containing the evaluation points \|b_k\]

bMat= bMatSimple (N) ;

%% Auxiliary objects:

%  LgMat contains the values L(\|\bk\|/n) for \bk\in

%  {—kappa,...,kappa}~"2, and the values g(\bk/n) for

%  \bk\in {-N,... N}"2 \setminus \{—kappa,..., kappa\}"2.
% Choose ’LgMatMatern’ for Matern covariance and

% "LgMatexponential * for the slowly varying function

%  L(x)=exp(—x)

LgMat  =LgMatMatern(n,N,a, kappa,bMat) ;

%LgMat =LgMatExponential (n,N,a, kappa,bMat);

%% Simulate Gaussian RVs

C=Cov3(kappa,a,n); % returns the covariance matrix
WO=mvnrnd ( zeros ((2xkappa+1)"2+1,1) ,C, (2*n+2xkappa+1)"2).";
% The following array stores the random variables
% W' n_{\bi} for \bi in {—n—kappa,...,ntkappa} 2:
WoOl=reshape (WO(1,:) ,[2*n+2+kappa+1,2xn+2+kappa+1]);
% The following array supplements WO and contains
% the random variables W n_{\bi} for all \bi in

% {-N-n,... ,N+n}"2:

Wel=normrnd (0,1/n"2,[2%n+2+«N+1,2xn+2+«N+1]) ;

Wel (N-kappa+2:N+2«n+kappa+2,N-kappa+2:N+2+n+kappa+2)=W01;

% The following array stores the random variables

% W' n_{\bi,\bj} for \bi in {-n—kappa,...,ntkappa}”2,
% \bj in {—kappa,...,h6 kappa} 2:

Wo02=reshape (WO(2:end ,:) ,[2xkappa+1,2xkappa+1,2«n+2«kappa+1,2+n+2x*

kappa+1]);
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% The following auxiliary 4d array contains the same

% data as W02 as We2:

We2=zeros (2xkappa+1,2«kappa+1,2xn+2+«N+1,2%n+2+«N+1);
We2(:,: ,N-kappa+2:N+2«n+kappa+2,N-kappa+2:N+2«nt+kappa+2)=W02;

%% Simulation of \tilde X, i.e. of the integral around 0

% Wshift contains sigma_{\bi—\bk}W_{\bi—\bk,\bk}
% at position (kl+kappa+1,k2+kappa+1,il4+n+1,i24n+1),

Wshift=nan (2xkappa+1,2xkappa+1,2«n+1,2xn+1);
for kl=kappa:kappa
for k2=kappa:kappa
for il=mn:n
for i2=mn:n
Wshift (kl+kappa+1,k2+kappa+1,il4+n+1,i2+4n+1)=sigma (
il—k1+N4n+1,i2 —k24N4n+1)*We2(kl+kappa+1,k2+
kappa+1,il —k1+\N4n+1,i2 —k24N+n+1);
end
end
end
end

Xl=nan(2*n+1); %temporary, stores values of \tilde X

for il= —n:n
for i2 = —n:n
B=LgMat (N—kappa+1:N+kappa+1,N-kappa+1:N+kappa+1).* Wshift
(:,:,il4n+1,i24n+1);
X1(il4n+1,i24n+1)= sum(B(:));
end
end

9% Simulation of \hat X, that is the integral away from 0

% gMat contains the values g(\bk/n) for

% \bk\in\{—-N,... ,N\}"2\setminus\{—kappa,..., kappa\}~2,

% and 0 at the positions corresponding to \{—kappa,..., kappa\} 2

gMat=LgMat ;
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gMat (N+1-kappa :N+1+kappa ,N+1-kappa : N+1+kappa )=zeros (2xkappa+1);

X2=conv2fft (sigma.*Wel,gMat, *valid ’); %stores \hat X

%% plotting

X=X14X2;
surf(—1:1/n:1,-1:1/n:1,X, "EdgeColor’, "none’) ;

set (gca, 'FontSize’ ,12)

xlabel (7$t_1$", Interpreter ’, latex ")

ylabel (7$t_2%" "Interpreter ’, latex ")

zlabel ("$X_{\bf{t}}$’, Interpreter’,’latex’)

title ([ '$\alpha=$ " num2str(a) ], interpreter’,’latex’,’ FontSize’
14)

B.1 Auxiliary functions for the hybrid scheme

In this section we list all functions (and subfunctions) called by the hybrid scheme in
alphabetical order.

function [ b ] = bMatSimple( N )
% Contains the evaluation points \bb_{\bj}
% for \bj in {-N,... /N}"2.
b=zeros (2«N+1);
for i=0:N

for j=0:i

b (i-N+1, N+ D=norm ([ ,1]) ;

end

end

b (N+1,N+1)=0; %b_(0.0)

for 1=0:N—-1
for j=i+1:N
b(i4N+1,j4N+1)=b(j+N+1,i+N+1);
end
end

for i=N:—1
for j=N:—1
b(i+N+1,j+N+1)=b(— i+N+1,— j4N+1);
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B.1. Auxiliary functions for the hybrid scheme

end
for j=0:N
b(i4N+1,j+N+1)=b(—i+N+1,j4+N+1);
end
end
for i=0:N
for j=N:—1
b(i4N+1,j4N+1)=b(i4N+1,— j4N+1);
end
end
end

function Cl = Covl(kappa,a,n)

% returns the covariances C_{1,\bj}.
% The output matrix Cl is defined as
% C1(j,k)=C_{1,(j—kappa—1,k—kappa—1)}
% See Appendix III. B for details.

TriMa=TrilntMat (kappa,a/2);
Cl=nan (2+kappa+1,2«kappa+1);
% C_{(0,0),(0,0)}

Cl(kappa+1,kappa+1)=8+«TriMa(1,1);

% CA(j,i),(i i)}, for j >0

coor=nan(1,4); % stores coordinates of entries
% of the Covariance matrix that
% contain the same value by

% symmetry arguments

for j=I1:kappa
value=2«TriMa(j+1,j+1);

=sub2ind ([2xkappa+1 2xkappa+1],jt+kappa+1,j+kappa+1);
=sub2ind ([2* kappa+1 2xkappa+1],—j+kappa+1,j+kappa+1);

coor (1)
2)
3)=sub2ind ([2* kappa+1 2xkappa+1],j+kappa+1,—j+kappa+1);
4)

coor
coor
coor

Py

Cl(coor)=value;

=sub2ind ([2*kappa+1 2xkappa+1],—jt+kappa+1l,—j+kappa+1);
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% C_{1,(1,0)}

if kappa>0
value=2x(TriMa(2,1)—TriMa(2,2)-TriMa(1,1));

1)=sub2ind ([2xkappa+]l 2xkappa+1],kappa+2,kappa+1);
2)=sub2ind ([2x kappa+1 2xkappa+1],kappa+1,kappa+2);
3)=sub2ind ([2* kappa+1 2xkappa-+1],kappa,kappa+1);
4)=sub2ind ([2*x kappa+1 2xkappa-+1],kappa+1,kappa);

Cl(coor)=value;

end

% C_{1,(j

0) ), jo> 1

if kappa > 1

for

end
end

j=2:kappa
value=2x%(TriMa(j+1,1)-TriMa(j+1,2)-TriMa(j,1)+TriMa(j,2));

coor (1)=sub2ind ([2xkappa+1 2xkappa+1],j+kappa+1,kappa+1);
coor (2)=sub2ind ([2xkappa+1 2xkappa+1],— j+kappa+1,kappa+1);
coor (3)=sub2ind ([2*kappa+1 2xkappa+1],kappa+1,j+kappa+1);
coor (4)=sub2ind ([2+kappa+l 2xkappa-+1],kappa+1,—j+kappa+1);

Cl(coor)=value;

% CA{1,(j,k)}, 0<k=j+1

coor=nan(8,1);

if kappa>1

for

j=2:kappa
value=TriMa(j+1,j)—TriMa(j+1,j+1)—-TriMa(j,j);

coor (1)=sub2ind ([2xkappa+1 2xkappa+1],j+kappa+1,j+kappa);
coor (2)=sub2ind ([2xkappa+1 2xkappa+1],— j+kappa+1,j+kappa)

coor (3)=sub2ind ([2+kappa+l 2xkappa-+1],j+kappa+1,—j+kappa
+2);
coor (4)=sub2ind ([2* kappa+1 2xkappa+1],— jt+kappa+1,—j+kappa
)
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coor (5)=sub2ind ([2+*kappa+l 2xkappa+1],j+kappa, j+kappa+1);
coor (6)=sub2ind ([2xkappa+1 2xkappa+1],j+kappa,— j+kappa+1)
coor (7)=sub2ind ([2+kappa+l 2xkappa+1],—j+kappa+2,j+kappa

+1);
coor (8)=sub2ind ([2+kappa+l 2xkappa+1],— j+kappa+2,—j+kappa
+1);5
Cl(coor)=value;
end
end

7% CA{1,(j k)

if kappa>2
for j=3:kappa
for k=1:j-2

value=TriMa (j+1,k+1)-TriMa(j+1,k+2)—TriMa(j , k+1)+TriMa
(i, k+2);

coor (1)=sub2ind ([2xkappa+1 2xkappa+1],j+kappa+1,k+
kappa+1);

coor (2)=sub2ind ([2+*kappa+l 2xkappa+1],—j+kappa+1,k+
kappa+1);

coor (3)=sub2ind ([2xkappa+1 2xkappa+1],j+kappa+1,—k+
kappa+1);

coor (4)=sub2ind ([2+*kappa+l 2xkappa+1],—j+kappa+1,—k+
kappa+1);

coor (5)=sub2ind ([2xkappa+1 2xkappa+1],k+kappa+1,j+
kappa+1);

coor (6)=sub2ind ([2+kappa+l 2xkappa+1],k+kappa+1,—j+
kappa+1);

coor (7)=sub2ind ([2xkappa+1 2xkappa-+1],—k+kappa+1,j+
kappa+1);

coor (8)=sub2ind ([2*kappa+l 2xkappa+1],—k+kappa+1,—j+
kappa+1);

Cl(coor)=value;

end
end
end

Cl=n"(—2—a)*

end

b, 0< k< j—1

C1;

function covM = Cov2(kappa,a,n)



© N O o

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

39
40
41
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% Returns the (2kappa+1)°"4 array covM with entries
% covM(j1,j2 ,k1,k2)=
% C_{(j-1—kappa—1,j_-2—kappa—1),(k_-1-kappa—1,k_2—kappa—1)}.

format long;
TriMa=TrilntMat (kappa,a) ;
covM = nan (2xkappa+1,2xkappa+1,2«kappa+1,2xkappa+1);

% C_{(0,0),(0,0)}

covM (kappa+1,kappa+1,kappa+1,kappa+1)=8«TriMa(1,1);

% C*{(JJ)(JJ)}~ for j > 0:

for j=1:kappa
coor=symind ([ j+kappa+1; j+kappa+1; jt+kappa+1; j+kappa+1],kappa
E
covM (coor )=2«TriMa(j+1,j+1);
end

% C_{(1,0),(1,0)}:

if kappa>0
value=2#(TriMa (2,1)—TriMa(2,2)—TriMa(1,1));
coor=symind ([kappa+2; kappa+1; kappa+2; kappa+1],kappa);
covM (coor )=value;

end

% C_{(j,0),(j,0)}, j > 1:

if kappa > 1
for j=2:kappa
value=2x%(TriMa(j+1,1)—TriMa(j+1,2)—TriMa(j,1)+TriMa(j,2));
coor=symind ([ j+kappa+1; kappa+1; j+kappa+1; kappa+1],kappa
)
covM (coor )=value;
end
end

%C*{(J“,k)a(‘jak)}~ 0<k:,].*l:

if kappa>1
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for j=2:kappa
value=TriMa (j+1,j)—TriMa(j+1,j+1)-TriMa(j,j);
coor=symind ([ j+kappa+1; j+kappa; j+kappa+1; j+kappa],
kappa) ;
covM (coor )=value;
end
end

% C{(j,k),(j,k)}, 0< k< j—1:

if kappa>2
for j=3:kappa
for k=1:j-2
value=TriMa(j+1,k+1)-TriMa(j+1,k+2)—TriMa(j ,k+1)+TriMa
(J 7k+2) )
coor=symind ([ j+kappa+1; k+kappa+1; j+kappa-+1; kt+kappa
+1],kappa) ;
covM (coor )=value;
end
end
end

% The remaining entries are filled by numeric integration.
% The following loop computes the corresponding integrals
% for all slots of C that still contain a NaN.

for jl=1:kappa
for j2=0:j1
for kl=kappa:kappa
for k2=kappa:kappa
if isnan (covM(jl+kappa+1,j2+kappa+1,kl+kappa+1,k2+
kappa+1))
fun=0(x,y) (((j1—x)."2+(j2-y)."2) . " (a/2).x((kl—
x)."24+(k2—y)."2)."(a/2));
value=integral2 (fun,—-0.5,0.5,—-0.5,0.5, "AbsTol’
,1e—=20, RelTol’,0);
coor=symind ([ jl4+kappa+1; j2+kappa+1; kl+kappa
+1; k2+4kappa-+1],kappa);
covM (coor )=value;
end
end
end
end
end

covM=n"(—2—2x%a) *xcovM;
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end

function C = Cov3(kappa,a,n)
% returns the covariance matrix of the vector

% (W0 n,W"1’, ... W (2kappa+1) ),
% where

% Wk’=(W_{(0,0),(—kappa ,k—kappa—1)},... ,W_{(0,0) ,(kappa ,k—kappa

-0}

A=Cov2(kappa,a,n);
A=reshape (A,[(2+kappa+1) "2,(2xkappa+1) " 2]) ;

B=Covl (kappa,a,n);
B=reshape (B,[], 1);

C=nan ((2xkappa+1)"2+1);

C(1,1)=1/(n"2);

C(2:(2+kappa+1)"2+1,1)=B;
C(1,2:(2xkappa+1)"24+1)=B. ;
C(2:(2xkappa+1)"2+1,2:(2xkappa+1)"2+1)=A;
end

function [ Mat ] = LgMatMatern(n,N,a,kappa,b)
% Mat contains the values L(\bk/n) for

% \bk\in {—kappa,...,kappa}”2, and the
% values g(\bk/n) for

% \bk\in {-N,... ,N}"2 \setminus {—kappa,..., 6 kappa}~ 2

% for the matern covariance case. In order
% to minimise function calls , we compute LgMat

% only on half a quadrant and exploit symmetries.

% Matern covariance kernel:
lambda=1;

Lfct = @Q(x)( norm(x)"(—a/2)*besselk (a/2,lambda*norm(x)
Lfctld = @Q(x)( abs(x)."(—a/2).xbesselk (a/2,lambdaxabs(x)))

Mat=nan (2+N+1);
for i=0:N
for j=0:i
if abs(i)>kappa | abs(j)>kappa
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Mat (i-4N+1, j-+N+1)=Lfct1d (b (i+N+1,j4N+1)/n) * (b (i4N+1,j+N

+1)/n) "a;
else

Mat (i-4N+1,j+N+1)=Lfct1d (b(i+N+1,j4+N+1)/n) ;

end
end
end

% For the central square [—1/n,1/n]"2 the value
% of L at the optimal discretisation
% as follows. The function TrilntO
intfct = @Q(x) (Lfctld(x/n).x(x."(2xa+1)).x(pi/4—(x>=1/(2)) .xacos(

sqrt (2)#x)) ) ;

Mat (N+1,N+1) =integral (intfct ,0,1/sqrt(2))./Trilnt0(1/2,a);

% The rest of the matrix

for 1=0:N-1
for j=i+1:N

Mat (i4N+1, j4N+1)=Mat ( j+N+1,i+N+1);

end
end

for i=N:—1
for j=N:—1

Mat (i4N+1,j+N+1)=Mat(— i+N+1,— j4+N+1) ;

end
for j=0:N

Mat ( i+N+1, j+N+1)=Mat(— i+N+1, j4+N+1) ;

end
end

for i=0:N
for j=N:—1

Mat (i4N+1, j+N+1)=Mat ( i+N+1,— j4N+1);

end
end

end

TSI SITTTTTTTTTSTISSSSSSIITT ST TS TTTSISSSS TSI TS
function x = Trianglelntegral (j1,j2,a)
% Takes input (jl1,j2) with 0<j2<jl and computes the

% integral of \|x\|"2a over the set
% {(x,y) : 0 < x<i—-1/2, j—1.5 <y < x}.

% see Appendix III. B for

is

details.

listed below

filled by using symmetries
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x=((j1."(2xa+2)+j2."(2xa+2)) /(2" (1.5) *(a+1))).xhypergeom ([0.5,1.5+
al],1.5,0.5);

x=x—(j1.%xj2."(2xa+2)) .xhypergeom ([0.5,1.54+a],1.5,j1.72/(jl1.724]j2
.72)) /(2% (a+1)xsqrt (j1.724j2.72));

x=x—(j1."(2*a+2).%j2).xhypergeom ([0.5,1.54+a],1.5,j2.72/(jl1.724j2
.72)) /(2% (a4+1)xsqrt (j1.72+j2.72));

end

WITTTITTTTISSTTTTIISTTTITSTTTITSITTISSTTTIITTTIT o
function x = Trilnt0(jl,a)

% Returns the integral of \|x\| {2a} over the
% triangle {(x,y) : 0 < x< 0.5, 0 <y < x}.

x=sqrt (2)*j1 " (2*a+2)xhypergeom ([0.5,1.54+a],1.5,0.5) /(4% (a+1));
end
function A = TrilntMat (kappa,a)

% TrilntMat contains integrals of \|x\| a over

% triangular sets in the following structure.

% TrilntMat is a symmetric matrix. Its first

% column contains the entries

% TrilntMat(i,1) = integral of \|x\| a over the set
% {(x,y) : 0 < x<i-1/2, 0 <y < x}.

% For all other columns, i.e. with j>1

% we have

% TrilntMat(i,j) = integral of \|[x\| a over the set
% {(x,y) : 0 < x<i-1/2, j—15 <y < x}

% See Appendix III.B for details.

A=nan (kappa+1,kappa+1);
A(1,1)= TriInt0(0.5,a);

for jl=2:kappa+l
A(1,j1)=TriInt0(j1 —0.5,a)
AGT L 1)=A(1,11) 3
for j2=2:j1
A(jl1,j2)=Trianglelntegral (j1—-0.5,j2—-1.5,a);
AGG2,i1)=A(j1,j2) ;
end
end
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function [ sigma ] = vol( n,N )

% Contains the values of the volatility field sigma.

sigma=ones (2xN+2%n+1);

end
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