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Abstract

The theory of intrinsic Diophantine approximation concerns the problem
of approximating points on a variety by rational points lying on the same
variety. We first consider this problem from a metric point of view, where we
try to derive results regarding almost all points in the sense of measure. In
this direction, we derive a zero-infinity law for Hausdorff measure on certain
varieties using a projection argument. The key novelty here is the use of
algebraic geometry to control the complexity of the rational points under
the projection. Following this, we turn to the problem of finding algorithms
for Diophantine approximation on varieties. This is inspired by a problem of
constructing efficient universal quantum computers. We consider continued
fractions in terms of a certain tree, and use this description to describe the
problems in constructing continued fractions for the unit circle. Finally, we
consider a problem of finding transcendental numbers which behave like
Pisot numbers. We use finite automata to construct transendetal numbers
with known Diophantine properties and do a computer search through these.

Resumé

Teorien for intrinsisk Diofantisk approksimation omhandler problemet om
at tilnærme punkter på en varitet med rationelle punkter der ligger på den
samme varitet. Vi betragter først dette problem fra et metrisk synspunkt,
hvor vi prøver at udlede egenskaber for næsten alle punkter i en målteoretisk
forstand. I denne retning udleder vi en nul-uendelig lov for Hausdorffmål
på visse variteter ved at bruge et projektionsargument. Hovedidéen er her
at bruge algebraisk geometri til at styre kompleksiteten af de rationelle
punkter under projektionen. Herefter kigger vi på problemet med at finde
algoritmer til Diofantisk approksimation på variteter. Dette er inspireret
af problemet med at konstruere effektive universelle kvantecomputere. Vi
betragter kædebrøker i termer af et vist træ, og bruger denne beskrivelse
til at beskrive problemet med at konstruere kædebrøker på enhedscirklen.
Endeligt betragter vi spørgsmålet om hvorvidt der findes transcendente tal
der opfører sig som Pisottal. Vi bruger endelige automater til at konstruere
transcendente tal med kendte Diofantiske egenskaber og søger igennem disse
med en computer.





PREFACE

This thesis is the culmination of my work as a graduate student at the
Department of Mathematics, Aarhus University. The main subject mat-
ter is Diophantine approximation, which roughly concerns the problem of
approximating real numbers by simple rational numbers.

After introducing the subject matter in Chapter 1, the thesis naturally
splits into three parts: Metric Theory, Continued Fractions and Experimental
Mathematics. The unifying theme for the first two parts, is that of intrinsic
Diophantine Approximation, from which the thesis derives its title. In
here, we consider approximation of points by rational points in the same
space. The metric theory seeks to quantify, in terms of measure, the size
of the “well-approximable” points. The theory of continued fractions, at
least from our point of view, seeks to derive algorithms for finding these
approximations.

Historically, the theory of continued fractions precedes the metric theory
by several millennia. But with our modern technology, it is possible to derive
results in the metric direction much more readily than in the algorithmic
direction.

In Chapter 2, we introduce the very important notion of Hausdorff
measure which generalize the usual notions of length, area and volume,
and will be used throughout. The metric theory proper is introduced in
Chapter 3, where we discuss the fundamental theorems of Khintchine and
Jarník, which provide zero-infinity laws for the size of the set of sufficiently
well-approximable points in Rn. Chapter 4 surveys the theory of metric ap-
proximation on manifolds. In particular, we discuss the particular problems
of the intrinsic theory which is not present in the ambient theory.

The main result of the thesis is Theorem 6.1, which provides an analogue
of Jarník’s theorem for certain varieties given as a graph of integer polynomi-
als. This result led to the publication [Til17]. In order to derive Theorem 6.1,
we need to be able to control the complexity of rational points under certain
maps. This is done using projective methods of algebraic geometry and the
Nullstellensatz. This theory is covered in Chapter 5. Chapter 6 is dedicated
to the proof and discussion of the main result. Compared to the published
version, the discussion of Hausdorff measures in Chapter 2 allows us to
slightly weaken some assumptions.
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In the second part, Continued Fractions, we delve into the problem of
generating algorithms for approximation. This is motivated by a problem of
constructing efficient universal quantum computers, which is discussed in
Chapter 7. We take some time to study the classical continued fractions in
Chapter 8. We do so from a slightly unorthodox perspective, which more
closely aligns the fundamental definition to the question of Diophantine
approximation. In Chapter 9, we try to apply this definition to constructing
a continued fraction algorithm on the unit circle, unfortunately without
much success.

Finally, the third part of the thesis, Experimental Mathematics, is some-
what disjoint from the rest. It concerns the distribution of numbers modulo
one, and in particular an attempt at finding transcendental numbers with
exceptional behavior. In a joint work with my advisor, Simon Kristensen,
we generate transcendental numbers with known Diophantine properties by
using automatic sequences. We then use a computer to search through such
examples, unfortunately without finding any likely candidates.

Notation

Throughout we use Vinogradov notation, that is, for a, b > 0, a� b means
that there exists some constant c > 0 such that a ≤ cb.

We will also make use of Big-O notation, also known as Landau notation.
Thus, we say that f(x) = O(g(x)) if there exists a constant c > 0 and a
point x0 such that f(x) ≤ cg(x) for x > x0. We say that f(x) = o(g(x))
if the constant c > 0 can be made arbitrarily small, or equivalently, if
f(x)/g(x)→ 0 as x→∞.
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Chapter 1

INTRODUCTION

Diophantine approximation concerns the problem of approximating arbi-
trary real numbers by simple rational numbers. There are several ways of
measuring the complexity (also known as the height) of a rational number,
but the most common choice is to take the size the denominator when the
fraction is written in lowest terms. Concretely, the problem is to find the
parameters ε and M for which we may solve the inequalities∣∣∣∣∣α− p

q

∣∣∣∣∣ < ε, q ≤M.

A good starting point for this theory is the approximation theorem of
Dirichlet from the 1800s.

Theorem 1.1 (Dirichlet) Let α ∈ R be a real number. For any natural
number N , there exists a fraction p/q with 1 ≤ q ≤ N such that∣∣∣∣∣α− p

q

∣∣∣∣∣ ≤ 1
qN

.

Proof. By multiplying the above inequality with q, we find that we need
to solve

|qα− p| ≤ 1
N
.

For q = 0, 1, . . . , N consider the fractional part {qα} in the intervals[
0, 1
N

)
,
[ 1
N
,

2
N

)
, . . . ,

[
N − 1
N

, 1
)
.

Since we have N + 1 numbers {qα} in N intervals, the pigeonhole principle
implies that there exist two numbers q1 > q2 such that {q1α} and {q2α} lie
in the same interval. Put p1 = bq1αc and p2 = bq2αc, then

|{q1α} − {q2α}| = |(q1 − q2)α− (p1 − p2)| ≤ 1
N
.

So choosing q = q1 − q2 and p = p1 − p2 yields the desired result. �

The estimate q ≤ N immediately yields the following non-uniform
corollary.
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Corollary 1.2 Let α ∈ R be a real number. There are infinitely many
rational points, such that ∣∣∣∣∣α− p

q

∣∣∣∣∣ ≤ 1
q2 .

It turns out that this result is essentially optimal, as it does not hold if we
replace the exponent by 2 + ε. The constant of 1 however, is not optimal.
The optimal value was found by Hurwitz to be 1/

√
5.

While Dirichlet’s theorem has a neat and beautiful proof and is essentially
optimal, it has one important defect: It provides no method of actually
finding the fractions! It turns out, that an algorithm does exist and that it
has been known since antiquity: the process of continued fractions, which is
an extension of the Euclidean algorithm. We delay a full discussion of this
process to the second part.

The questions raised by Diophantine application may at first seem
quaint, but they are in fact connected to natural problems arising in applied
mathematics. Probably the first application was in ease of calculations. The
well-known approximation of π ≈ 22/7 comes from this theory, and makes
many calculations much easier. But there are also many applications which
are much more intrinsically tied to the theory.

A very simple example of a completely rational phenomenon is the ratio
produced by mechanical gear trains. The ratio produced by a set of gears
is always the ratio of number of teeth. A more complex fraction requires
more teeth, and is hence also mechanically more complex to produce. If you
were to construct an analog clock with an indicator for the year, or perhaps
a mechanical model of the solar system, the problem of approximating
complex ratios by simpler ratios while minimizing the error is very natural.
A further twist to this problem, is that gears’ ratios multiply when put
together. Thus, it is mechanically feasible to produce a high gear ratio
if the numbers are sufficiently smooth (have many small prime divisors).
An example of a gear train producing the ratio 1 : 60, as might be found
in an ordinary clock, is given in figure 1.1. This in turn motivates us to
extend the mathematical theory. We will see another example of applications
motivating the mathematical theory in the second part of the thesis.

Finally, a very important application which is of current interest is to
resonances. The oldest case of this, are the harmonics of music. When
you pluck a string, it will resonate at some frequency ν and additionally at
2ν, 3ν, . . . known as the overtones. It was known already by the Pythagoreans
that frequencies which share overtones are harmonious, or phrased differently,
that simple proportions are harmonious. Thus, when designing music, one
should use simple ratios like 1 : 2 and 3 : 2 and their inverses. The
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problem here, is that starting with one base note and using these two rules,
it is possible to arrive slightly off from the original note. This makes it
impossible to make a correct musical scale. Mathematically, the problem
is that 2a = 3b has no solutions in the integers. By taking the base two
logarithm, we see that this is equivalent to finding a rational expression
for log2(3). The 5-note and 12-note scales we know today, arise from the
Diophantine approximations log2(3) ≈ 8/5 and log2(3) ≈ 19/12. Fore more
details on this example see [DM99].

Figure 1.1: A gear train with total ratio 1/60 = 1/6× 1/10.

Diophantine Approximation in Higher Dimensions

The theory of Diophantine approximation can be extended to higher di-
mensions. There are several ways of doing this, but perhaps the most
natural is that of simultaneous approximation. Here we try to approximate
an arbitrary vector x ∈ Rn be a rational vector p/q where p ∈ Zn is an
integer vector and q ∈ N is a natural number. Alternatively, we may phrase
this as approximating n real numbers by rational numbers with the same
denominator.

It is possible to generalize Dirichlet’s theorem to this setting. In order
to do this, we need a geometric analogue of the pigeon hole principle. The
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analogue is known as Minkowski’s theorem and forms the beginning of the
field of geometry of numbers, see [Cas97].

Theorem 1.3 (Minkowski) Let S ∈ Rn be a convex set which is centrally
symmetric, i.e.

−S := {−x : x ∈ S} = S.

Suppose that Vol(S) > 2n, then S contains a non-zero integer point.

Proof. Consider the set

S ′ := 1
2S =

{
1
2x : x ∈ S

}
with volume Vol(S ′) > 1. Divide this into disjoint sets by

S ′u := {x ∈ S ′ : ui ≤ xi < ui + 1}, u ∈ Zn.

Now consider the sets

S ′′u = S ′u − u ⊆ [0, 1)n , u ∈ Zn.

The sum of the volumes of these sets is strictly greater than 1, so they must
overlap. Hence, we may find point x′,x′′ ∈ S ′ and u′,u′′ ∈ Zn such that

x′ − x′′ = u′ − u′′ =: u ∈ Zn \ {0}.

Now by convexity of S we get
1
2x

′ − 1
2x

′′ = 1
2u ∈ S

′ = 1
2S

so u ∈ S as required. �

With this tool, it is easy to generalize Dirichlet’s theorem to the case of
simultaneous approximation.

Theorem 1.4 Let x1, . . . , xn ∈ R. For any N ∈ N there exists p1, . . . , pn ∈
Z and q ∈ N with 1 ≤ q ≤ Nn such that∣∣∣∣∣xi − pi

q

∣∣∣∣∣ ≤ 1
qN

, i = 1, . . . , n.

Proof. This is equivalent to solving |qxi − pi| ≤ 1/N for i = 1, . . . , n. Put

S :=
{

(q, p1, . . . , pn) ∈ Rn+1 : |q| ≤ Nn + 1
2 , |qxi − pi| ≤

1
N

}
⊂ Rn+1.

Note that

Vol(S) = 2(Nn + 1
2) 2n
Nn

= 2n+1
(

1 + 1
2Nn

)
> 2n+1.

So by Minkowski’s theorem there is a non-zero integer point (q, p1, . . . , pn) ∈
S. By symmetry we may choose q > 0. This proves the claim. �
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Corollary 1.5 Let x1, . . . , xn ∈ R. There are infinitely many integers
p1, . . . , pn ∈ Z and q ∈ N such that∣∣∣∣∣xi − pi

q

∣∣∣∣∣ ≤ 1
q1+1/n .

As in the one-dimensional version of Dirichlet’s theorem, the proof gives
no algorithm for actually finding such solutions. In fact, there is no known
efficient algorithm in this case.
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Part I

Metric Theory
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Chapter 2

HAUSDORFF MEASURE AND
DIMENSION

In this chapter, we introduce the Hausdorff measures which greatly generalize
the usual notions of length, area, volume and so forth. The standard
introduction to this is [Fal03], while a much more technical treatment is
given in [Rog70]. While we are not striving for utmost generality in our
definitions (for instance, we will work exclusively over Rn), we do take care
to prove all theorems in the general case, as some non-trivial issues arise
here.

§ 2.1 Fundamental Definitions

Recall that for any subset E ⊆ Rn, the diameter of E is defined by
diam(E) = sup{|x − y| : x, y ∈ E}. A collection {Ui} of subsets of Rn

is called a δ-cover of E if diam(Ui) < δ for all i and E ⊆ ⋃
Ui. For any

s ≥ 0 and δ > 0 we define the (outer) Hausdorff s-δ-measure by

Hs
δ(E) = inf

{∑
diam(Ui)s : {Ui} is a δ-cover of E

}
.

Note that as δ decreases, the number of possible δ-covers decrease and hence
Hs
δ increases and the limit as δ → 0 exists.

Definition 2.1 For s > 0, the (outer) Hausdorff s-measure of a set E is

Hs(E) = lim
δ→0
Hs
δ(E).

When we restrict to the Borel subsets of Rn, the outer Hausdorff mea-
sure does indeed restrict to a proper measure by the usual Carathéodory
construction.

A very special case of the Hausdorff measure is the case of Hn where
n is an integer. In this case, the Hausdorff measure will agree with the
Lebesgue measure up to scaling by a factor equal to the volume of the
n-dimensional sphere. The advantages of the Hausdorff measure are twofold:
First, the usual construction of the n-dimensional Lebesgue measure is tied
intrinsically to Rn, which makes it inconvenient for measuring e.g. surface
area in space. The Hausdorff measure does not have this limitation. Second,
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the Hausdorff measure is defined for all s ≥ 0, not just integers. This opens
the door for a measure-theoretic approach to “fractals”. For instance, the
middle-third Cantor set C is uncountable but with length 0. However, for
s = log 2/ log 3 we have Hs(C) = 1.

It turns out that there is always a correct choice for s in the following
sense: If E is some set and {Ui} is a δ-cover, then for any t > s∑

i

diam(Ui)t =
∑
i

diam(Ui)s diam(Ui)t−s ≤ δt−s
∑
i

diam(Ui)s.

Hence Ht
δ(E) ≤ δt−sHs

δ(E). So if Hs(E) < ∞ letting δ → 0 we find that
Ht(E) = 0. We thus see that there exists a point t ≥ 0 with the property
that Hs(E) =∞ for s < t (which is an empty set if t = 0), and Hs(E) = 0
if s > t. This number is called the Hausdorff dimension of E. A perhaps
more convenient way of stating this, is the following definition.

Definition 2.2 For any set E the Hausdorff dimension of E is given by

dimH E = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) =∞}.

Note that the Hausdorff measure may be (and frequently is) 0 or ∞ at this
critical value.

0 s

0

Hs(E)

∞

dimH E n

Figure 2.1: The Hausdorff s-measure of a set E as a function of s. The
dimension is at the critical value.

10



A very nice way to think about the Hausdorff dimension is in analogy
with a microscope, which we borrow from [DK04]: When you zoom in to
dimension 0, points are sharp while larger objects like lines and planes are
blurry. Adjusting the scale to 1 makes points blurry, while lines are now
sharp. When the “microscope” is set to log 2/ log 3, the Cantor set is in
focus while both points and lines are blurry.

§ 2.2 Arbitrary Dimension Functions

More generally, let h : [0,∞) → [0,∞) be an increasing and continuous
function, which we will refer to as a dimension function. With exactly the
same construction as above, we define the (outer) Hausdorff h-measure.

Definition 2.3 For any set E and dimension function h, the (outer) Haus-
dorff h-measure is defined by

Hh(E) = lim
δ→0

inf
{∑

h(diam(Ui)) : {Ui} is a δ-cover of E
}
.

The Hausdorff s-measure is recovered as the Hausdorff h-measure with
h(r) = rs.

The classical example of the usefulness of Hausdorff h-measures is the case
of Brownian motion in R3. Any Brownian motion has Hausdorff dimension
2, but H2-measure equal to 0. However, if we put h(r) = r2 log log(1/r), it
turns out that the Hausdorff h-measure of the path is both positive and
finite.

§ 2.3 Hausdorff Measure and Lipschitz Mappings

A very important property of the Hausdorff measures, is the fact their
measure is changed by at most a constant under a bi-Lipschitz mapping.
We first show this for Hausdorff s-measures, and then extend this proof to
cover the case of Hausdorff measures for general dimension functions. To
the author’s knowledge, the generalization (while probably well-known) has
not appeared in the literature.

Theorem 2.4 Let E ⊆ Rn be some set, and suppose that f : E → Rm is a
Lipschitz mapping, so there exists some K > 0 such that

|f(x)− f(y)| ≤ K|x− y| for all x, y ∈ E.

Then
Hs(f(E)) ≤ KsHs(E).
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Proof. Let {Ui} be a δ-cover of E. Now

diam(f(Ui)) ≤ K diam(Ui)

so {f(Ui)} is a Kδ-cover of f(E). Since∑
i

diam(f(Ui))s ≤ Ks
∑
i

diam(Ui)s

we have
Hs
Kδ(E) ≤ KsHs

δ(E).
Letting δ → 0 yields the desired result. �

Corollary 2.5 If f : E → Rm is bi-Lipschitz with

K1|x− y| ≤ |f(x)− f(y)| ≤ K2|x− y|,

then
Ks

1Hs(E) ≤ Hs(f(E)) ≤ Ks
2Hs(E).

Proof. The second inequality follows directly from the theorem. The first
inequality follows from the theorem applied to f−1. �

In order to formulate the above theorems in the general case, we introduce
the concept of a doubling dimension function.

Definition 2.6 A dimension function h is called doubling if there exists a
constant C > 0 such that for all sufficiently small x ≥ 0

h(2x) ≤ Ch(x).

It is quite easy to see that not all dimension functions are doubling. For
instance, it is readily verified that h(r) = 2−1/r is not doubling. However, it
turns out that such dimension functions do not cause problems as they lead
to degenerate measures.

Lemma 2.7 If there exists a C > 0 such that h(2−n) ≤ Ch(2−(n+1)) for all
n, then h is doubling.

Proof. Suppose such a C exists. Then for any x ∈ [0, 1] we may find n
such that

2−(n+1) ≤ x ≤ 2−n.
Now

h(2x) ≤ h(2−(n−1)) ≤ C2h(2−(n+1)) ≤ C2h(x). �
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Lemma 2.8 If h is a non-doubling dimension function, then

Hh(Rn) = 0.

Proof. Let F ⊂ Rn be a compact set. We show that Hh(F ) = 0, since then
Hh(Rn) = 0 by σ-compactness.

Let K be a number such that any ball of radius r may be covered
by K balls of radius r/2. This number only depends on the dimension
n. Let {Bi}i∈I be a finite cover of F by balls of radius 1. Since h is
not doubling, there exists a sequence {Ck} of positive numbers, such that
h(2−(k−1)) ≥ Ckh(2−k) and Ck →∞ as k →∞.

Now, for any k ∈ N we may cover F by Kk|I| balls of radius 2−k and we
get the estimate

Hh(F ) ≤ Kk
∑
i∈I

h(2−k) ≤ Kk

C1C2 . . . Ck

∑
i∈I

h(1)

which tends to 0 as Ck →∞ when k →∞. �

Theorem 2.9 Let h : [0,∞)→ [0,∞) be an arbitrary dimension function.
Let E ⊂ Rn be some subset of Rn and let f : E → Rm be a Lipschitz function
such that

|f(x)− f(y)| ≤ K|x− y|, x, y ∈ E.

Then there exists a constant C = C(K,h) depending only on K and h such
that

Hh(f(E)) ≤ CHh(E).

Proof. If h is not doubling, the measure Hh is identically 0 and there is
nothing to prove. Now suppose that h is doubling. Then there exists a
constant C > 0 such that

h(Kx) ≤ Ch(x)

when x is sufficiently small.
Now let δ > 0 be given and let {Ui}i∈I be a δ-cover of E. We have

diam(f(Ui)) = sup
x,y
|f(x)− f(y)| ≤ K diam(Ui).

When δ is sufficiently small, we get the estimate

h(diam(f(Ui))) ≤ h(K diam(Ui)) ≤ Ch(diam(Ui))
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and hence ∑
i

h(diam(f(Ui))) ≤ C
∑
i

h(diam(Ui)).

Since {f(Ui)} is a δK-cover of f(E) we get

Hh
δK(f(E)) ≤ CHh

δ (E).

Letting δ → 0 gives the desired result. �

Corollary 2.10 If f : E → Rm is bi-Lipschitz with

K1|x− y| ≤ |f(x)− f(y)| ≤ K2|x− y|,

then there exists constants C1 = C1(h,K1) and C2 = C2(h,K2) such that

C1Hh(E) ≤ Hh(f(E)) ≤ C2Hh(E).
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Chapter 3

THE THEOREMS OF KHINTCHINE AND
JARNÍK

The metric theory of Diophantine approximation allows us to make more
general statements, at the cost of some precision as to what happens on a
nullset. The theory begins with Khintchine’s theorem. Let ψ : N→ R+ be a
decreasing function, which we will refer to as an approximation function. We
say that x ∈ Rn is (simultaneously) ψ-approximable if there exists infinitely
many rational points p/q with p ∈ Zn and q ∈ N such that

‖x− p/q‖∞ ≤ ψ(q).

Denote the set of ψ-approximable vectors by Sψ. For the particular approxi-
mation function ψτ (r) := r−τ put Sτ = Sψτ .

Theorem 3.1 (Khintchine) Let ψ : N→ R+ be a decreasing approxima-
tion function. Let λn denote the n-dimensional Lebesgue measure. Then

λn(Sψ) =


0 if

∞∑
r=1

rnψ(r)n <∞

∞ if
∞∑
r=1

rnψ(r)n =∞.

In particular, this theorem recovers up to a nullset the statement of
Dirichlet’s theorem. Furthermore, it shows that the exponent in Dirichlet’s
theorem is optimal in the sense that the set of ψ1+1/n+ε-approximable
vectors is a nullset. Finally, it gives complete metric answers not only
for the particular approximation function ψτ (r) = r−τ but for arbitrary
approximation functions.

The proof of Khintchine’s theorem naturally splits into two parts: the
case of convergence and the case of divergence. The convergence part is
easy, and is essentially just an application of the first Borel-Cantelli lemma.
The key realization is that the set of ψ-approximable vectors is a limsup set:

Sψ =
∞⋂
N=1

⋃
q>N

⋃
p∈Z

B

(
p

q
, ψ(q)

)
,

where B(x, r) = {y ∈ Rn : ‖x− y‖∞ ≤ r} denotes the ball centered at x
of radius r in the supremum norm.
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Proof (Convergence part). Let I ⊂ R be some bounded interval. For
any fixed N ∈ N we have

λn(Sψ ∩ In)�
∑
q>N

∑
p/q∈In

λn

(
B

(
p

q
, ψ(q)

))

�
∑
q>N

qnψ(q)n,

which is the tail of a convergent series and hence tends to 0 as N → ∞.
Since N was arbitrary we conclude that λn(Sψ ∩ In) = 0. Now we can write
Sψ as a countable union of nullsets and we hence conclude that λn(Sψ) = 0.�

Like in the case of the Borel Cantelli lemmas, the divergence case is much
harder as we need to make sure that the sets in question do not overlap too
much. In probability theory, this is done by assuming that the sets (events)
are independent. This is neither a natural nor a true condition in our setting.
To solve this problem, various weaker notions of independence have been
found, which allow us to reclaim the conclusion of the second Borel-Cantelli
lemma. The modern version of this is the notion of ubiquity, which is a very
general framework for deriving theorems of this kind (see [BDV06]).

We remark that Khintchine’s theorem also holds when intersecting with
an arbitrary ball. In this case, the measure is either null or the full measure
of the ball. The method of proof outlined above works precisely the same.

There is an analogue of Khintchine’s theorem for Hausdorff measures,
known as Jarník’s theorem. The history of this theorem is rather complicated,
and many early versions had unnecessary technical conditions attached to
them. A modern version is the following (see [BDV06, Theorem DV]).

Theorem 3.2 (Jarník; Dickinson, Velani) Let h be a dimension func-
tion such that r−nh(r) → ∞ as r → 0 and r 7→ r−nh(r) is decreasing.
Then

Hh(Sψ) =


0 if

∞∑
r=1

h(ψ(r))rn <∞

∞ if
∞∑
r=1

h(ψ(r))rn =∞.

When h(r) = rn this theorem morally generalizes Khintchine’s theorem,
however note that the theorem is strictly not true in this case as h does
not satisfy the growth condition. It is perhaps somewhat surprising then,
that Khintchine’s theorem in fact implies Jarnik’s theorem by the mass
transference principle of Beresnevich and Velani [BV06]. This principle
relies on the beautiful observation that when we are rescaling the measure,
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we should simply rescale the balls in our limsup set. To be more precise, we
need to introduce some notation.

Given a dimension function h and a ball B = B(x, r) ⊂ Rn, define

Bh := B(x, h(r)1/n).

For real numbers s > 0 we put Bs = B(r 7→rs). Note that Bn = B.

Theorem 3.3 (Mass Transference Principle) Let {Bi}∞i=1 be a sequence
of balls in Rn. Let h be a dimension function such that r−nh(r) is decreasing
and suppose that for any ball B in Rn we have

Hn
(
B ∩ lim sup

i→∞
Bh
i

)
= Hn(B).

Then, for any ball B in Rn

Hh
(
B ∩ lim sup

i→∞
Bn
i

)
= Hh(B).

Assuming Khintchine’s theorem and the mass transference principle, it
is now easy to derive Jarnik’s theorem.

Proof of Jarnik’s theorem. The proof of the convergence part is exactly
the same as in the case of Khintchine’s theorem, so we skip it.

Now suppose that
∞∑
r=1

h(ψ(r))rn =∞.

Let {Bi}∞i=1 be some ordering of the balls

B

(
p

q
, ψ(q)

)
, p ∈ Zn, q ∈ N

and recall that
Sψ = lim sup

i→∞
Bi.

Now {Bh
i }∞i=1 consists of balls of the form

B

(
p

q
, h(ψ(q))1/n

)

so by Khintchine’s theorem we have

Hn
(

lim sup
i→∞

Bh
i

)
= Hn

(
Sr 7→h(ψ(r))1/n

)
=∞.
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And in fact, the proof of Khintchine’s theorem extends to give that

Hn
(
B ∩ lim sup

i→∞
Bh
i

)
= Hn(B).

The mass transference principle now implies that

Hh
(
B ∩ lim sup

i→∞
Bi

)
= Hh (B ∩ Sψ) = Hh(B).

The condition that r−nh(r)→∞ as r → 0 implies that Hh(B) =∞, which
proves the theorem. �
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Chapter 4

METRIC APPROXIMATION ON
MANIFOLDS

Recall once again that Dirichlet’s theorem shows that S1+1/n = Rn. We
say that x ∈ Rn is very well approximable if x ∈ Sτ for some τ > 1 + 1/n.
Otherwise we say that x is not very well approximable or extremal.

Consider a manifold M ⊂ Rn. We say that M is extremal if almost all
points on M (with respect to the Hausdorff s-measure where s = dimM)
are extremal. By Khintchine’s theorem we saw that Rn is extremal.

The theory of Diophantine approximation on manifolds begins with the
question of whether there exists non-extremal manifolds in Rn. Intuitively,
we’re asking whether the well-approximable points somehow “clump to-
gether”. We note that we have a class of degenerate counterexamples: on
the manifold given by the natural embedding R ↪→ Rn which puts all but
one coordinate constant, almost all points are ψτ = r−τ approximable where
τ = 2.

This problem was originally considered by Mahler in 1932 [Mah32] in
the context of approximating transcendental numbers by algebraic numbers.
Mahler conjectured that the Veronese curve

V = {(x, x2, . . . , xn) : x ∈ R}

is extremal. This conjecture was verified by Sprindžuk in 1964, which led
to development of this theory of Diophantine approximation on manifolds.
The culmination of this investigation, was the seminal paper of Kleinbock
and Margulis [KM98], which shows that all smooth manifolds which are
non-degenerate in a sense of not lying infinitesimally in an affine hyperplane,
are extremal. Their proof used a dynamical approach to Diophantine
approximation via the so-called Dani-Margulis correspondence. We briefly
sketch the correspondence for simultaneous approximation.1

1Kleinbock and Margulis used another form of approximation called dual approxima-
tion, but for the question of extremality, this is equivalent to simultaneous approximation.
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For x ∈ Rn associate a lattice in Rn+1 by

Λx =



1 0 . . . 0 x1
1 . . . 0 x2

. . . ...
1 xn

1

Zn+1 =





p1 + qx1
p2 + qx2

...
pn + qxn

q




.

It is intuitively clear, that good approximations correspond to small vectors
in Λx. The insight is to act on the lattice Λx by elements of the form

gt =


et1

. . .
etn

e−t


where t = (t1, . . . , tn) and t = t1+· · ·+tn. It can be shown that small vectors
along this flow correspond to good approximation. By realizing that the set of
unimodular lattices in Rn+1 is isomorphic to the space SLn+1(R)/ SLn+1(Z),
this turns the problem into one of studying the dynamics on this homogeneous
space.

The result of Kleinbock and Margulis shows that the correct exponent
for Diophantine approximation on a non-degenerate manifold M is the same
as that of the ambient space. Two natural problems now emerge.

(i) To obtains a Khintchine-type theory for manifolds, which allow us
to replace the approximation functions ψτ (r) = r−τ by more general
approximation functions.

(ii) To give a more detailed account of the size null sets, by establishing
Hausdorff measure and dimension of the set of ψ-approximable points
on M .

The Khintchine-type theory is very well developed, and the question was
essentially completely answered by Beresnevich in 2012 [Ber12].

It is very tempting to think that a Jarník-type theorem should follow
from the Khintchine-type theory, by using the mass transference principle as
in the classical case. However, this is not so. We are approximating by points
outside the manifold, so on rescaling the balls, we may not hit anything at
all. In fact, it turns out that the Jarník-type theory is completely different
from the Khintchine-type theory and depends intricately on the subtle
arithmetical nature of the manifold itself. The reason for this, is that for

20



many manifolds, if the approximation is sufficiently good, the approximating
points must eventually lie on the manifold itself. This was first observed in
the case of the circle by Dickinson and Dodson [DD01]. We give a slightly
generalized version of their argument.

Lemma 4.1 Let r, n ∈ N be natural numbers and consider the manifold

M := {(x, y) ∈ Rn : xn + yn = r}.

Suppose (x1, x2) ∈M satisfies |x1 − p1/q|, |x2 − p2/q| = o (1/qn) for integers
p1, p2 ∈ Z and q ∈ N. Then, for q sufficiently large, we have (p1/q, p2/q) ∈
M .

Proof. Let (x1, x2) ∈M so xn1 + xn2 = r. Put ε1 := qx1− p1, ε2 := qx2− p2.
We have ε1, ε2 = o(1/qn−1) and p1, p2 = O(q). Now we find

qn(r − xn1 ) = (qx2)n = (ε2 + p2)n

qnxn1 = (ε1 + p1)n.

Adding these two equations we get

qnr = (ε2 + p2)n + (ε1 + p1)n

= pn1 + pn2 +
n∑
k=1

(
n

k

)(
εk1p

n−k
1 + εk2p

n−k
2

)
= pn1 + pn2 + o(1).

So we find that
|qnr − pn1 − pn2 | = o(1) < 1

for q large. Since there is only one integer satisfying this, we get that

qnr = pn1 + pn2

and (p1/q, p2/q) ∈M . �

In the case of the circle of radius 1, we have a dense set of rational points,
while the circle of radius 3 has no only finitely many rational points and the
question of Diophantine approximation is meaningless.

This gives rise to a new form of Diophantine approximation on manifolds:
the question of intrinsic Diophantine approximation in which we consider
approximation by rational points on the manifold. In contrast, we refer to
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the previous form of Diophantine approximation as ambient approximation.
We introduce the notation

Iψ(M) :=
{x ∈M : ‖x− p/q‖∞ ≤ ψ(q) for infinitely many p/q ∈ Qn ∩M}

for the set of intrinsically ψ-approximable points on M . For ψτ (r) = r−τ we
put Iτ = Iψτ .

In order for the question of intrinsic Diophantine approximation to
make sense, we need to have a dense set of rational points on the manifold.
However, there is no known method for determining if a variety, much less
a manifold, has infinitely many rational points. Indeed, even determining
the number of rational points on {(x, y) : xn + yn = 1} for n ≥ 3 is the
content of a famous theorem of Wiles2. Thus, a general theory for intrinsic
Diophantine approximation is very much out of reach. However, some
important progress has been made in special cases.

In the case of the unit circle, the Hausdorff dimension of Iτ is computed
in [DD01] using the concept of ubiquity. This is extended to a Jarník-type
theorem in [BDV06, Theorem 19].

In [BDL10] a projection argument is used to derive a Jarník-type theorem
for intrinsic approximation for graphs of polynomial curves of the form

Γ = {(x, P1(x), . . . , Pn(x)) : x ∈ R}

where P1, . . . , Pn ∈ Z[x]. In the paper, this is expressed as a result as a result
on ambient approximation when the approximation is suitably fast and the
two questions coincide. In chapter 6 we generalize their approach to the case
of certain polynomials in several variables. The case of several variables,
where each polynomial still only depends on one variable is considered in
[Sch15].

Recently, a lot of progress has been made using dynamical methods.
Complete answers for spheres are obtained in a paper by Kleinbock and
Merrill from 2015 [KM15]. Their approach uses a analogue of the Dani-
Margulis correspondence, where the space SLn+1(R)/ SLn+1(Z) is replaced
by the space SOn+1(R)/ SOn+1(Z). This approach has been generalized to
the case of quadratic hypersurface [FKMS14].

Another angle of the dynamic approaches, is the work of Ghosh, Gorod-
nik and Nevo on homogeneous varieties [GGN14, GN15]. Their results are
applicable not only for approximation by rationals, but also by S-algebraic

2the fact that it has only finitely many points follows from a theorem of Faltings
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integers. Their approach is to use an analogue of the Dani-Margulis corre-
spondence along with quantitative ergodic theorems to control the dynamics.
The quantitative ergodic theorems depend on a spectral gap property for the
Laplacian of the associated homogeneous space. This relates their work to
spectral theory and representation theory.
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Chapter 5

PRELIMINARIES ON ALGEBRAIC
GEOMETRY

In this chapter we cover the basics of algebraic geometry. The goal is to
obtain a theorem which will allow us to control the height of rational points
under certain maps. This theorem provides the crucial step in the proof of
the main theorem of the next chapter.

There are many books on algebraic geometry, many of which are quite
technical and abstract. For a broader picture, we recommend the intro-
duction of Smith et. al. [SKKT00] and for the Diophantine aspects we
recommend the book of Hindry and Silverman [HS00].

In the following, let k be an arbitrary field of characteristic 0.

§ 5.1 Affine Varieties

The most basic object in algebraic geometry is the affine n-space An =
An(k) = kn. There are two reasons for introducing this notation. Firstly, it
hints at the fact that we consider kn in the category of affine varieties and
not, for example, as a vector space. More importantly, it’s useful to think
of the affine n-space as living independently of the ground field k, though
this doesn’t make sense in a strictly set-theoretical sense. We will make use
of this technique shortly.

A set V ⊆ An is called an affine variety if it is given as the common set
of vanishing for a collection of polynomials1 {fi}i∈I ⊂ k[x1, . . . , xn], i.e.

V = V ({fi}i∈I) = {x ∈ An : fi(x) = 0 for all i ∈ I}.

In general we allow the variety to be defined by infinitely many polynomials,
but finitely many suffice by Hilbert’s basis theorem. We define a topology
on An called the Zariski topology by taking the affine varieties as a basis for
the closed sets.

If a variety is given as the vanishing of some polynomials, it will also be
given as the vanishing of the ideal generated by these polynomials. Hence,

1It is customary to assume that varieties are indecomposable, i.e., they cannot be
written as the proper union of other varieties. This is not important for our purposes, so
we do not make this distinction.

25



for any variety V we may write V = V(I) for some ideal I. On the other
hand, we can associate an ideal to each variety by

I(V ) = {f ∈ k[x1, . . . , xn] : f(x) = 0 for all x ∈ V }.

It is readily verified that if I ⊂ J are ideals, then V(I) ⊃ V(J) and if V ⊂
W are varieties, then I(V ) ⊃ I(W ) so the correspondence is order-reversing.
Furthermore, it is seen that if V is a variety, then V(I(V )) = V . However
it is not true that if I is an ideal, then I(V(I)) = I. A counterexample is
given by the ideal I = 〈x2〉 ⊂ C[x] as I(V(I)) = 〈x〉. In general the answer
is given by Hilbert’s nullstellensatz.

Theorem 5.1 (Hilbert’s Nullstellensatz) Suppose that k is algebraical-
ly closed. Let I ⊂ k[x1, . . . , xn] be some ideal. We have

I(V(I)) = rad I
:= {f ∈ k[x1, . . . , xn] : there exists m > 0 such that fm ∈ I}.

The assumption that k is algebraically closed is crucial: for f ∈ C[x] the
Nullstellensatz asserts that the polynomial is given up to a scalar factor and
multiplicity by its roots. In this way, the Nullstellensatz is a generalization
of the fundamental theorem of algebra. The proof is an entirely algebraic
consequence of the fundamental theorem of algebra and can be found in
many books on commutative algebra (e.g. [Eis95]).

As a corollary we have the following version of the Nullstellensatz, which
relates the statement to one of solving equations.

Corollary 5.2 A system of polynomial equations

f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

over an algebraically closed field k has no solution in kn if and only if 1 can
be expressed as a linear combination of the form

1 =
m∑
i=1

pifi

with pi ∈ k[x1, . . . , xn].
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Proof. Let I = I({fi}mi=1) be the ideal generated by the polynomials.
Suppose the system has no solutions. Then

V(I) = ∅ = V(k[x1, . . . , xn]) = V(〈1〉).

By the Nullstellensatz we have rad I = 〈1〉 so 1p = 1 ∈ I for some p, but
then 1 is given a linear combination as desired.

On the other hand, if 1 is given as a linear combination of the polynomials,
then 1 ∈ I and I = k[x1, . . . , xn] and V(I) = ∅. �

The natural maps on varieties are polynomials, so the morphisms should
preserve that structure. A map F : An → Am is called a polynomial map if
F is given as F (x) = (f1(x), . . . , fm(x)) for some polynomials f1, . . . , fm ∈
k[x1, . . . , xn]. if V ⊆ An and W ⊆ Am are affine varieties, we say that
F : V → W is a morphism of affine varieties if F is the restriction of a
polynomial map.

As an aside, we are now in a position to make the connection between
algebra and geometry more precise, at least for algebraically closed fields.
For a variety V define the coordinate ring of V by

k[V ] = {f : V → k : f is a polynomial map}.

We can think of this object as an analogue of the dual of a vector space. It
is not too hard to see that

k[V ] ' k[x1, . . . , xn]
I(V ) .

The coordinate ring is a finitely generated reduced k-algebra. The generators
are (equivalence classes of) the functions x1, . . . , xn and, since I(V ) is radical,
the quotient has no zero divisors so k[V ] is reduced.

Conversely, every finitely generated reduced k-algebra R is given as a
coordinate ring of some variety. To see this, fix a set of generators σ1, . . . , σn
of R and let I be the kernel of

k[x1, . . . , xn]→ R, xi 7→ σi.

Then R ' k[x1, . . . , xn]/I and as R is reduced, I is a radical ideal, and
V(I) ⊆ An defines a variety whose coordinate ring is isomorphic R.

In fact, this equivalence extends to an (arrow-reversing) equivalence of
categories between the category of affine varieties and the category finitely
generated, reduced k-algebras.
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§ 5.2 Projective Varieties

It turns out that the natural setting for algebraic geometry is in a larger
space than the affine space: the projective space. Intuitively, the projective
space is given as the compactification of the affine space, by adding points
“at infinity” in all directions. More precisely, we define the projective n-space
as the set of all lines through the origin in An+1. We can represent these as
non-zero points in An+1 modulo scaling, i.e.,

Pn = Pn(k) =
(
An+1 \ {0}

)
/ ∼

where (x0 : · · · : xn) ∼ (λx0 : · · · : λxn) for any λ ∈ k∗. The scaling-invariant
coordinates are called homogeneous coordinates.

The Zariski topology on Pn is given as in the affine case by taking the
projective varieties as a basis for the closed sets. The relationship between
projective and affine varieties can now be made precise. For i = 0, . . . , n let
Hi ⊂ Pn be the hypersurface given by the vanishing of xi. We see that

Pn \Hi =
{(

x0

xi
, . . . ,

xi−1

xi
, 1, xi+1

xi
, . . . ,

xn
xi

)}
' An.

Hence, Pn is covered by n + 1 copies of An which are open subsets of Pn.
We can thus think of affine varieties as local charts of the global projective
space.

Recall that a polynomial is called homogeneous if all terms have the
same (total) degree. A subset V ⊆ Pn is called a projective variety if
it given as the common vanishing of a set of homogeneous polynomials
{fi}i∈I ⊂ k[x0, . . . , xn]. We write

V = V({fi}i∈I) = {x ∈ Pn : fi(x) = 0 for all i ∈ I}.

This is well-defined since if f ∈ k[x0, . . . , xn] is a homogeneous polynomial
of degree d, we have

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

for all λ ∈ k∗, so the question of whether f vanishes or not is independent
on the choice of homogeneous coordinates.

We say that an ideal is homogeneous if it is generated by homogeneous
polynomials. To each homogeneous ideal I ⊆ k[x0, . . . , xn] we associate a
projective variety

V(I) = {x ∈ Pn : f(x) = 0 for all f ∈ I},
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where by f(x) = 0 we mean that f vanishes for all representations of x in
An+1. On the other hand we may associate a homogeneous ideal to each
projective variety V ⊆ Pn by:

I(V ) = {f ∈ k[x0, . . . , xn] : f(x) = 0 for all x ∈ V }.

This is easily seen to be a radical ideal and by Hilbert’s basis theorem, it is
seen to be finitely generated. It can be checked, that if f ∈ I(V ) then each of
the homogeneous components must also be in I(V ), so it is a homogeneous
ideal.

Given a homogeneous ideal I ⊆ k[x0, . . . , xn], care should be taken to
distinguish between the affine variety V(I) ⊂ An+1 and the projective variety
V(I) ⊂ Pn. The affine variety defined by the same polynomials is called the
affine cone over the projective variety. The standard way of working with
projective space is to go to the associated affine cone. For example, we can
use it to derive the following correspondence between projective varieties
and homogeneous ideals.

Theorem 5.3 (Projective Nullstellensatz) The projective varieties in
Pn are in one-to-one correspondence with the radical homogeneous ideals
in the ring k[x0, . . . , xn] with the exception of the ideal 〈x0, . . . , xn〉. The
correspondence is given by the maps I and V.

The ideal 〈x0, . . . , xn〉 corresponds to the affine variety {0} which of
course does not correspond to any projective points. It is sometimes known
as the irrelevant ideal.

Proof. The only hard thing to show, is that if I is an ideal then I(V(I)) =
rad I. If I = 〈x0, . . . , xn〉 then V(I) = ∅ in Pn and I(V(I)) = k[x0, . . . , xn].
Now for any other ideal, the polynomials vanishing on the projective variety
V(I) are precisely the polynomials vanishing on the affine cone V(I). The
result now follows from the affine nullstellensatz. �

A map F : Pn ⊇ V → W ⊆ Pm is called a (projective) morphism if it is
given locally as a polynomial map. That is, if for each p ∈ V there exists a
(Zariski) open neighborhood U of p such that F |U is given by

F |U(q) = (F0(q), . . . , Fm(q)) , (q ∈ U)

for some homogeneous polynomials F0, . . . , Fm ∈ k[x0, . . . , xn]. In order
for the homogeneous coordinates to be well-defined, it is implicit that the
polynomials are all of the same degree and do not vanish at the same time.
We say that F : Pn → Pm is a global morphism of projective varieties if we
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may use the same polynomials everywhere, that is if we may choose U = Pn.
A partial map F : V → W is called a rational map if it is a morphism on a
(Zariski) open subset U ⊂ V .

§ 5.3 Heights and Morphisms

We introduce the notion of a height for rational points in projective space
Pn(Q), which measures the complexity of the rational point. In the intro-
duction we took the height of a rational in reduced terms to be the size of
denominator. More generally, for a rational vector in Qn, we took the height
to be the size of least common denominator of the entries. For P ∈ Pn(Q)
we may write P uniquely up to a sign as

P = (x0 : · · · : xn)

where x0, . . . , xn ∈ Z and gcd(x0, . . . , xn) = 1. The projective height is
defined by

Hproj(p) = max{|x0|, . . . , |xn|}.

This is not quite the same notion of complexity as we defined in the
introduction. If p/q ∈ Q is a rational vector, the natural ways of embedding
it in Pn(Q) are as P = (p/q : 1) = (p : q) and as P = (1 : p/q) = (q : p). In
either case, the projective height is max{|p|, |q|}.

We are now in a position to derive arithmetic information from the
(algebraic) geometry.

Theorem 5.4 Let φ : Pn → Pm be a global morphism of degree d defined
over Q but with coefficients in Q. For all rational points P ∈ Pn(Q) we have

Hproj(P )d � Hproj(φ(P ))� Hproj(P )d.

The implied constants depend on φ but not on P .

Proof. As φ is a global morphism with rational coefficients, we may write

φ = (φ0 : · · · : φm)

for some homogeneous polynomials φ0, . . . , φm ∈ Q[X0, . . . , Xn] of degree d.
Write out each φi explicitly as

φi(X0, . . . , Xn) =
∑

e0+···+en=d
ci,e0,...,enX

e0
0 · · ·Xen

n .
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We now establish the upper bound. Consider P ∈ Pn(Q) and write
P = (x0 : · · · : xn) for x0, . . . , xn ∈ Z coprime integers. We find that

|φi(x0, . . . , xn)| =

∣∣∣∣∣∣
∑

e0+···+en=d
ci,e0,...,enx

e0
0 · · ·xenn

∣∣∣∣∣∣
� max |xj|d.

Taking the maximum and clearing possible denominators coming from the
φi’s yields

H(φ(P ))� H(P )d.
We now turn to the lower bound. The polynomials φ0, . . . , φm have no

common point of vanishing other than 0. Thus, as affine varieties, we have

V(φ0, . . . , φm) = {0} = V(X0, . . . , Xn).

The affine Nullstellensatz (Theorem 5.1) yields the following equality of
ideals in the ring Q[X0, . . . , Xn]:

rad (〈φ0, . . . , φm〉) = 〈X0, . . . , Xn〉.

Hence there exists polynomials gij ∈ Q[X0, . . . , Xn] and a natural number
p ∈ N such that

Xp
j =

n∑
i=0

gijφi (0 ≤ j ≤ n).

We may further take the gij’s to be homogeneous polynomials with coeffi-
cients in Q.

Now consider P ∈ Pn(Q) and write P = (x0 : · · · : xn) for x0, . . . , xn ∈ Z
coprime integers. Evaluating the above in the affine point (x0, . . . , xn) we
find

xpj =
n∑
i=0

gij(x0, . . . , xn)φi(x0, . . . , xn)

As the φi’s are homogeneous of degree d the gij ’s must have degree p− d so

|gij(x0, . . . , xn)| � max
j
|xj|p−d, (0 ≤ j ≤ n).

So we get the estimate

max
j
|xj|p � max

j
|xj|p−d max

i
|φi(x0, . . . , xn)|.

Since the only possible denominators are those coming from the φi’s, we
find that

H(φ(P ))� H(P )d. �
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It is possible to generalize the theorem to number fields, as well as the case
of subvarieties and sufficiently nice rational maps see [HS00, Theorem B.2.5].
The constants may also be made effective by using an effective version of
the Nullstellensatz.

The upper bound holds even if φ is only a rational map, but the lower
bound depends both on the fact that the morphism is global and that it is
defined over an algebraically closed field. To see this, consider the affine
map (x, y) 7→ x2 + y2. Since there are infinitely many Pythagorean triples,
we have rationals of arbitrarily large height which map to 1. A projective
version of this map is that map F : P2 → P1 given by

F (X, Y, Z) = (X2 + Y 2, Z2).

Note that it restricts to the map above in the affine chart given by Z = 1.
It is easy to see that this is a morphism over Q and it also restricts to a
morphism over Q in the affine chart Z = 1. But it is not a global morphism
over Q as it is not defined at the point (1 : i : 0). It is thus very close to
satisfying the conditions of the theorem, and yet the upper bound fails to
hold in a spectacular way: For any Pythagorean triple p2 + r2 = q2 we have
Hproj(p : r : q) = q while

Hproj(F (p : r : q)) = Hproj(p2 + r2 : q2) = Hproj(1 : 1) = 1.

This shows a quite remarkable interplay between geometry and arithmetic.
The local arithmetical properties are governed by the geometry at “infinity”
over a larger field!

It would be quite interesting to know if we could go the other way. That
is, given a rational map φ : Pn → Pm which satisfies the conclusion of
Theorem 5.4, what can be said about the geometry of φ?

§ 5.4 Diophantine Approximation and Algebraic Ge-
ometry

The most basic question in algebraic geometry is the problem of classifying
all varieties up to isomorphism. Similarly, we might frame the problem
of metric Diophantine approximation on varieties as one of classifying all
varieties by the quality of approximation possible on them. From the
previous section is seems obvious to suggest that the answer lies in the
classification of projective varieties.

However, it turns out that the question of Diophantine approximation
relies not just on the projective variety, but also by the “coordinate system”
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given in terms of its embedding into projective space. To see this, consider
the morphism φ : P1 → P2 given by (x : y) 7→ (x2 : xy : y2). The image of
P1 under φ is the curve

C = V(xz − y2)

and in fact, φ provides an isomorphism C ' P1. The inverse morphism is
given by

C → P1

(x : y : z) 7→
{

(x : y) if x 6= 0,
(x : z) if z 6= 0.

The map is defined everywhere since if z = x = 0 then zx = y2 = 0 and
y = 0, which is impossible. It is well-defined since if both x and z are
non-zero, then y is non-zero, and

(x : y) = (yx : y2) = (xy : xz) = (y : z).

Furthermore, it is easily seen to be an inverse.
We thus see that Diophantine aspects are not intrinsic to the algebraic

variety. That is not to say that algebraic geometry is not useful, but that
more care is needed. The field of Diophantine geometry concerns how to do
this, but it requires some substantial technical baggage, even for something
as simple as defining a good intrinsic notion of height. The idea here is
to consider the functions on the variety (algebraically known as divisors)
and using these to construct a canonical morphism into projective space in
which a height can be measured. For more information see [HS00].
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Chapter 6

A JARNÍK-TYPE THEOREM FOR
VARIETIES

Let P1, . . . , Pm ∈ Z[X1, . . . , Xn] be integer polynomials in n variables, and
consider the variety given as the graph of the polynomials:

Γ = {(x,y) ∈ Rn × Rm : y1 = P1(x), . . . , ym = Pm(x)}.

Let d = maxj degPj be the maximum degree of the polynomials. For an
approximation function ψ, we consider the set of ambiently ψ-approximable
vectors Sψ(Γ) = Sψ ∩ Γ as well as the set of intrinsically ψ-approximable
vectors Iψ(Γ) as introduced in Chapter 4. Our main result is the following
Jarník-type theorem which appeared in [Til17]. It generalizes the main
theorem of [BDL10], which considered the case n = 1 where the variety is a
curve.

Theorem 6.1 Let ψ be a decreasing approximation function and let h be
a dimension function such that for all δ > 0 we have h(ψ(δr)) � h(ψ(r))
when r is large. Suppose that r−nh(r)→∞ as r → 0 and r 7→ r−nh(r) is
decreasing. Write

Pi = Pi,0 + · · ·+ Pi,d

where Pi,k are homogeneous polynomials of degree k, and suppose that the
only common point of vanishing for {Pi,d}mi=1 over Q is 0. The Hausdorff h
measure of Iψ(Γ) satisfies

Hh(Iψ(Γ)) =


0 if

∞∑
r=1

rnh(ψ(rd)) <∞,

∞ if
∞∑
r=1

rnh(ψ(rd)) =∞.

Furthermore, if rdψ(r)→ 0 as r →∞ we have Iψ(Γ) = Sψ(Γ).

As a corollary, we derive the following statement on the Hausdorff
dimension.
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Corollary 6.2 Suppose that the polynomials defining Γ satisfy the condition
of the theorem. For τ > (n + 1)/nd, the Hausdorff dimension of Iτ (Γ) is
given by

dim Iτ (Γ) = 1 + n

dτ
.

Proof of corollary. Put ψ(r) = r−τ and h(r) = rs where s = (1 + n)/dτ .
We see that

r−nh(r) = rs−n →∞ as r → 0
precisely when

s− n = 1 + n

dτ
− n < 0.

But this is satisfied as τ > (1 + n)/dτ .
By the strict inequality, the condition of the theorem is satisfied for

dimension functions h(r) = rt where t is in some small interval around s. It
follows that Ht(Iτ (Γ)) =∞ when t ≤ s and Ht(Iτ (Γ)) = 0 when t > s. �

We now turn to the proof of the theorem. The strategy is the same
as in [BDL10]: Project down to Rn where we may apply Jarník’s theorem
and estimate how the projection changes the distribution and height of the
rationals. The only novelty in our argument is the use of algebraic geometry
to control the height of the rationals, which in the case of curves was done
explicitly. We prove the theorem through three lemmas, which establish the
cases of convergence and divergence as well as the equality of ambient and
intrinsic approximation separately. This also highlights which assumptions
are used in the different parts.

We begin by making some reductions in order to write the set Iψ(Γ) as
a more manageable limsup set. Since we are aiming for a zero-infinity law,
it suffices to show that the Hausdorff measure of the ψ-approximable points
is either full or null for sets of the form

ΓI = {(x, P1(x), . . . , Pm(x)) ∈ In × Rm}

where I ⊂ R is some arbitrary bounded interval. In order to make the
notation simpler, we take I = [0, 1] to be the unit interval, although the
argument does not make use of this in any essential way.

Define the function F : Rn → Γ by

F (x) = (x, P1(x), . . . , Pm(x)).

By the mean value theorem, we may find a constant K ≥ 1 such that for
any x1,x2 ∈ In, we have

‖x1 − x2‖∞ ≤ ‖F (x1)− F (x2)‖∞ ≤ K‖x1 − x2‖∞

36



and we see that F is bi-Lipschitz on In. By Corollary 2.10 the Hausdorff
measure is changed by at most a constant under a bi-Lipschitz mapping. It
hence suffices to show that the Hausdorff measure is full or null for the set

Vψ(ΓI) = {x ∈ In : F (x) ∈ Iψ(Γ)}.

For a rational vector x ∈ Qk, the affine height is the least natural number
D such that

x = (r1/D, . . . , rk/D) and gcd(r1, . . . , rn, D) = 1

for some integers r1, . . . , rk ∈ Z. Denote the height of x ∈ Qk by H(x).
Recall that Vψ(ΓI) consists of the set of x ∈ In such that

‖F (x)− r‖∞ ≤ ψ(H(r))

for infinitely many rationals r ∈ ΓI ∩Qn+m. Such rationals are necessarily
of the form r = F (p/q) for some rational p/q.

We may now write Vψ(ΓI) as a limsup set. Put

Lq := {p ∈ Z : 0 ≤ p1, . . . , pn ≤ q, gcd(p1, . . . , pn, q) = 1}.

We have
∞⋂
N=1

⋃
q>N

⋃
p∈Lq

B

(
p

q
,
ψ(H(F (p/q)))

K

)
⊆ Vψ(ΓI),

Vψ(ΓI) ⊆
∞⋂
N=1

⋃
q>N

⋃
p∈Lq

B

(
p

q
, ψ(H(F (p/q)))

)
.

(6.1)

Lemma 6.3 (Divergence case) Let ψ be a decreasing approximation func-
tion and let h be a dimension function. Suppose that r−nh(r) → ∞ as
r → 0 and r 7→ r−nh(r) is decreasing. If ∑∞r=1 r

nh(ψ(rd)) = ∞, then
Hh(Iψ(Γ)) =∞.

Proof. Let p/q ∈ In be some rational vector. It is clear that qd is a
common multiple of all denominators in F (p/q) so H(F (p/q)) ≤ qd. As ψ
is decreasing we have

ψ(H(F (p/q)))
K

≥ ψ(qd)
K

.

We thus have
∞⋂
N=1

⋃
q>N

⋃
p∈Lq

B

(
p

q
,
ψ(qd)
K

)
⊆ Vψ(ΓI).
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The set on the left is just the set of φ(q) := ψ(qd)/K-approximable points
in In. By Jarník’s theorem (Theorem 3.2) this set has full measure if

∞∑
r=1

h(φ(r))rn =∞.

By the discussion in chapter 2, without loss of generality, we may assume
that h is doubling so that h(ψ(rd)/K) � h(ψ(rd)) when r is large. This
gives

∞∑
r=1

h(ψ(rd)/K)rn �
∞∑
r=1

h(ψ(rd))rn =∞. �

Lemma 6.4 (Convergence case) Let ψ be a decreasing approximation
function and let h be a dimension function such that h(ψ(δr)) � h(ψ(r))
when r is sufficiently large. Write

Pi = Pi,0 + · · ·+ Pi,d

where Pi,k are homogeneous polynomials of degree k, and suppose that the
only common point of vanishing for {Pi,d}mi=1 over Q is 0. If we have∑∞

r=1 r
nh(ψ(rd)) <∞, then Hh(Iψ(Γ)) = 0.

Proof. We wish to apply Theorem 5.4 to control the height of the rationals
under F . In order to do this, we need to extend F to projective space. For
each of the defining polynomials Pi ∈ Z[X1, . . . , Xn] write Pi = Pi,0+· · ·+Pi,d
in homogeneous components and define the degree-d homogenization of Pi
by

P ∗i = Xd
0Pi,0 +Xd−1

0 Pi,1 + · · ·+ Pi,d.

Now P ∗i ∈ Z[X0, . . . , Xn] is a homogeneous polynomial of degree d which
is equal to Pi in the affine patch X0 = 1. Define the (rational) map
F ∗ : Pn → Pm by

F ∗(X0 : · · · : Xn)
= (Xd

0 : Xd−1
0 X1 : · · · : Xd−1

0 Xn : P ∗1 (X0, . . . , Xn) : · · · : P ∗n(X0, . . . , Xn)).

In the affine patch X0 = 1 this is just the map F from above. Furthermore,
we claim that this map is a global morphism over Q. To see this, we
just need to check that the defining polynomials do not have a common
point of vanishing other than 0. For X0 6= 0 this is clearly true as then
Xd

0 6= 0. If X0 = 0, then the defining polynomials vanish if and only if the
polynomials P1,d, . . . , Pm,d has a common point of vanishing other than 0,
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but the assumption of the theorem was precisely that this does not happen.
We conclude that F ∗ is a global morphism of Q.

Now let p/q ∈ In be a rational vector. Since I is a bounded interval, the
ratio of the projective height of and affine height is bounded by a constant.
We now have

qd ≤ Hproj((1 : p1/q : · · · : pn/q))d � Hproj(F ∗(1 : p1/q : · · · : pn/q))
� H(F (p/q)).

The implied constants here only depend on Γ and I. Let δ > 0 be a constant
such that H(F (p/q)) ≥ δqd. Now, by the inclusion (6.1) and the estimate
h(ψ(δqd))� h(ψ(qd)) we get, for any N ∈ N:

Hh(Vψ(ΓI))�
∑
q>N

∑
p∈Lq

h(ψ(H(F (p/q))))

�
∑
q>N

qnh(ψ(qd)) <∞.

So we find that the Hausdorff measure of Vψ(ΓI) is bounded by the tail of a
convergent series, and hence that Hh(Vψ(ΓI)) = 0. �

Finally, we need to establish the equivalence of ambient and intrin-
sic approximation. This was already shown in full generality in [BDL10,
Lemma 1].

Lemma 6.5 Let ψ be an approximation function satisfying the growth con-
dition rdψ(r)→ 0 as r →∞. Let (x,y) ∈ Sψ(Γ). If

‖(x,y)− (r, t)‖∞ ≤ ψ(H(r, t))

for (r, t) ∈ Qn+m with H(r, t) sufficiently large, then (r, t) ∈ Γ.

Proof. Define D = H(r, t) and put εi = xi − ri and ηj = yj − tj. By
assumption we have |εi|, |ηj| ≤ ψ(D).

We have
yj = Pj(x) = Pj(r + ε)

so
yj = tj + ηj = Pj(r) +Rj(ε)

for some polynomial Rj where Rj(ε)� ‖ε‖∞ for ε small. Multiply by Dd

and rearrange to obtain∣∣∣Ddtj −DdPj(r)
∣∣∣ = Dd|ηj +Rj(ε)|,
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where we’ve cleared denominators, so the left hand side is seen to be an
integer. The right hand side can be estimated by

Dd|ηj +Rj(ε)| � Ddψ(D)

which tends to 0 as D →∞. Hence, for D sufficiently large, we have

tj = Pj(r).

We conclude that (r, t) ∈ Γ as desired. �

The proof of the theorem is now just a formality.

Proof of Theorem 6.1. This follows immediately from Lemmas 6.3, 6.4
and 6.5. �

The most restrictive condition in the theorem is the assumption that
the degree-d parts of the defining polynomials have no common point of
vanishing away from 0 over Q. As we previously mentioned, this always
holds in the case of curves where n = 1 as the terms would be of the form
cxd for some constant c. Examples in several variables include the Veronese
varieties, where we have all possible forms of degree d. Another example is
given by Γ = {(x, y, x2 + y2, x2 − y2)}. In the other direction, it never holds
for hypersurfaces when n > 1: The zero locus of the highest degree part
of the polynomial over an algebraically closed field would have dimension
n − 1 and hence cannot be a point. In general we need at least as many
polynomials as we have variables.

The obvious question is whether this theorem may be generalized further.
The key ingredient is the estimate H(F (r))� H(r)d, which is derived from
Theorem 5.4. It seems unlikely that this theorem can be generalized in the
direction we need, so the estimate probably fails for other varieties. When
the estimate fails we get additional rational points of low height on the
variety. In order to do Diophantine approximation on such varieties, we
would need new methods for controlling how many and how well-distributed
these points are.
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Part II

Continued Fractions
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Chapter 7

A QUANTUM COMPUTATIONAL
CONUNDRUM

In this chapter, we will explain how a problem of constructing universal
quantum computers leads to new questions in Diophantine approximation,
and links the metric and algorithmic aspects of the theory. This connection
was pointed out by Peter Sarnak [Sar15].

We will briefly introduce the notions of quantum mechanical computers,
the exposition will be short and we will omit most of the physics. The
classical reference for this is Nielsen and Chuang [NC00].

§ 7.1 The Circuit Model for Computation

Before explaining what a quantum computer is, we will explain what we
mean by a classical computer. There are many theoretical models for a
classical computer, with the most famous probably being the Turing machine.
For our purposes, we will introduce a somewhat more practical model called
the circuit model.

The most basic unit of information in a classical computer is the bit
consisting of 1 or 0, which we often think of as true or false. A logical gate
is a Boolean function

f : {0, 1}m → {0, 1}n

of m input bits and n output bits. A circuit is a collection of logical gates
connected by wires, which connects outputs to inputs without loops.

There are only two gates with 1 input bit and 1 output bit: the trivial
(identity) gate, and the NOT gate which takes 0 to 1 and 1 to 0. Examples of
gates with 2 input bits and 1 output bit are the classical logical operations:
AND, OR, exclusive-or XOR along with the inverted versions of these, for
instance NOT-AND or NAND. Additionally we have the very important
FANOUT gate, which simply copies the input to two outputs.

A set of gates G is called universal if any function can be constructed from
a circuit of gates from G with wires, extra bits and the FANOUT operation.
A classical result in computing is that the NAND-gate alone is universal, a
fact that can be shown by small induction proof.
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§ 7.2 Quantum Mechanical Computers

Quantum States
The smallest state in quantum computing is the quantum bit or qubit. A
qubit ψ is a complex linear combination of the two classical states

ψ = α0 + β1

normalized such that |α|2 + |β|2 = 1. If we measure the quantum bit, we get
0 with probability |α|2 and 1 with probability |β|2. Thus, we may describe
a quantum bit as a unit vector in C2.

It would seem that the quantum bit contains an infinite amount of
information, however this is not so. Unlike in the classical world, quantum
measurements are not passive but active. After measuring either the state 1
or 0, the qubit decays to this state, and all subsequent measurements will
give the same result. From an information theoretical perspective, a qubit
thus carries at most the entropy of a coin-flip which is 1 bit.

Going further, an n-qubit state is a unit vector in the tensor product

C2 ⊗ C2 ⊗ . . .⊗ C2 ∼= C2n.

Note that we allow all possible states. So for instance, we might consider
the state

ψ = 0⊗ 0 + 1⊗ 1√
2

which is known as the Bell state or EPR1 pair. This state has the property,
that if we measure just the first qubit it gives 0 and 1 with equal probability
and then decays to the measured state. Now the second qubit must give
the same result, so it also has to decay. This is an example of quantum
entanglement.

Quantum Gates
We begin by describing 1-qubit quantum gates. Such a gate should be a
function

f : C2 → C2.

But not all such functions are allowed. It turns out that we need to require
that f is linear. Secondly, the states were really unit vectors in C2 so we
need to assume that f is an isometry. These are the only constrains we

1Einstein, Podolsky, Rosen
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need, so we define the set of 1-bit quantum gates to be the group U(2) of
unitary 2× 2 matrices. A good example of a 1-qubit quantum gate is the
extension of the classical NOT gate given by

NOT : α0 + β1 7→ β0 + α1

or as a matrix
UNOT =

(
0 1
1 0

)
.

Similarly, a k-bit quantum gate is an element of U(2k). Note that these
restrictions mean that all quantum gates must be invertible, unlike in the
case of classical gates, and hence there are no direct analogous of the AND-,
OR- and NAND-gates. The prototypical example of a 2-qubit quantum gate is
the controlled-NOT or CNOT-gate, which is defined by:

0⊗ 0 7→ 0⊗ 0
0⊗ 1 7→ 0⊗ 1
1⊗ 0 7→ 1⊗ 1
1⊗ 1 7→ 1⊗ 0

or in matrix form

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
That is, if the first entry is 0, the second entry is the identity, if the first
entry is 1, the second entry is a NOT-gate. Another way of describing it, is
that it’s the identity on the first output and XOR on the second output.

A quantum circuit is now constructed in much the same way as a classical
circuit: We have gates connected with “wires” without loops. However,
we do not allow combining “wires” through the OR-operation, as this is
not an invertible operation. Additionally, there is no FANIN operation. In
fact, copying an unknown quantum state is impossible, a fact known as the
No-Cloning Theorem.

Universal Quantum Gates
A set of gates G is called universal if any quantum gate can be approximated
arbitrarily well by a finite circuit with gates from G. We would like to obtain
a universality result analogous to the universality of NAND-gates for classical
computers. It is a reasonable assumption that the time complexity of a
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quantum circuit is proportional to the number of gates, hence we would also
like the universal set to be efficient.

A two-level unitary matrix is a unitary matrix U which only acts non-
trivial on at most two vectors. A little bit of linear algebra shows that
any unitary matrix can be decomposed as a product of two-level unitary
matrices. This shows that the set of 2-qubit quantum gates is universal.
Furthermore, it can be shown that any two-level unitary transformation can
be approximated by single-qubit gates and the CNOT-gate. This process is
algorithmic and close to optimal. See [NC00, Chapter 4] for details.

This still leaves us with an infinite set of gates, which is not practical.
We are then left with our main problem: Finding an efficient, universal set
of 1-bit quantum gates.

§ 7.3 A Mathematical Framework

We begin by rephrasing the problem in a more mathematical setting, which
unfortunately comes with quite a bit of notation. We replace the group U(2)
by G := SU(2) – the only difference is an unimportant phase factor. This
group is equipped with a (left) Haar measure which we denote by µ and
normalize such that µ(G) = 1.

We consider a finite set of gates

S = {s1, . . . , sν} ⊂ G

and the subgroup generated by this set

Γ = 〈S〉 ⊂ G.

We assume that this set is a universal set of gates, such that 〈S〉 is dense
in G. We allow each gate to have a cost associated with them, which we
denote w(si) ≥ 0. We now define the height on Γ by

h(γ) = min
{

l∑
k=1

w(sik) : γ = si1 · · · sil

}
.

For each natural number t put

V (t) = {γ ∈ Γ : h(γ) ≤ t}.

For each ε > 0 let tε denote the smallest t such that the set of gates of
height at most t cover G, i.e.

G ⊆
⋃

γ∈V (t)
BG(γ, ε).
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Note that |V (tε)| is essentially the number of gates we need to cover
G with balls of size ε, so if the gates were optimally spread out, we would
expect

|V (tε)| ∼
1

µ(Bε)

where µ(Bε) denotes the measure of a ball of radius ε. Now suppose we
have |V (tε)| ∼ µ(Bε)−κ for some κ > 0, then we would have

κ = lim
ε→0

log|V (tε)|
− log µ(Bε)

.

Of course we have no reason to make this assumption nor do we have any
reason to expect the limit to exist at all, however it motivates the following
definition.

Definition 7.1 The number

κ := lim sup
ε→0

log|V (tε)|
− log µ(Bε)

is called the (upper) covering exponent of the gate set S.

This number is a reasonable measure of how well-chosen our set of gates is.
Our problems are now the following:

(A) How small can we make the covering exponent κ by choosing S suitably?

(B) For a given (well-chosen) gate set, can we find an efficient approximation
algorithm?

The first result towards the existence of a good universal gate set, is the
following theorem known as the Solovay-Kitaev theorem see [NC00, App. 3]
and [DN06].

Theorem 7.2 (Solovay-Kitaev) Let S be a finite set of gates which con-
tains its own inverses, such that 〈S〉 is dense in G. Let ε > 0 and x ∈ G be
given. There is an algorithm which finds γ ∈ Γ with

dG(x, γ) ≤ ε, h(γ) = O(log(1/ε)3.97)

in time O(log(1/ε)2.97.
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The idea of the proof is to walk around randomly, until you reach a specified
distance (say 1/10) from the identity I. Then, you go to the Lie algebra,
and apply a process similar to Newton’s method.

The Solovay-Kitaev theorem is very general and completely answers the
question in a theoretical sense: any quantum circuit may be simulated on
a quantum computer constructed from a gate set as above with at most
a polynomial time cost. In this way, a computer constructed from these
circuits is universal from a perspective of complexity classes.

From a more practical perspective, a polynomial time simulation cost
is not acceptable and indeed the Solovay-Kitaev theorem does not even
guarantee the existence of a gate set with κ <∞. To get an idea of what
we should expect, suppose that |V (t)| ∼ et, then if κ <∞ we have

tε ≈ log|V (tε)| ≈ −κ log µ(Bε) ≈ − log(ε3) ≈ log(1/ε).

So the Solovay-Kitaev algorithm is off by up to a exponent of 4. In other
words, the Solovay-Kitaev theorem might give an approximation using 10.000
gates where 10 might suffice, this is clearly not practical!

In order to do better, we need to be more specific in our construction.
It turns out, almost magically, that all known good constructions (even
those originating from physics) can be constructed from number theoretical
methods. We now describe one such example.

§ 7.4 An Example of an Efficient Gate Set

The following example was originally used by Lubotzky et. al. [LPS86] to
construct a well-distributed set of rotations from SO(3), and discussed in
connection with universal quantum computers in Sarnak’s letter [Sar15].

Consider the prime number p = 5. Let

S = {s1, s
−1
1 , s2, s

−1
2 , s3, s

−1
3 }

where

s1 = 1√
5

(
1 + 2i 0

0 1 + 2i

)
, s2 = 1√

5

(
1 2i
2i 1

)
, s3 = 1√

5

(
1 2
−2 1

)
.

We take w(si) = 1 for i = 1, 2, 3. Here, Γ is the free group on s1, s2, s3 and
h(γ) is the reduced word length, that is the length of the word without
subwords of the form sis

−1
i or s−1

i si. We will see, that if we include some
non-important phase factors this is a universal gate set.

It turns out, that these elements and their approximation properties
have a very nice interpretation in terms of the quaternion algebra which we
now review.
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Quaternion Arithmetic
We consider the classical Hamilton quaternions

H(R) = {a0 + a1i+ a2j + a3k : ai ∈ R}

where i, j, k satisfy the relations i2 = j2 = k2 = −1 and ij = k. If
α = a0 + a1i+ a2j + a3k is a quaternion, we define the conjugate by

α = a0 − a1i− a2j − a3k

and define the norm by2

N(α) = αα = a2
0 + a2

1 + a2
2 + a2

3.

We can embed the quaternions into the space of complex 2× 2 matrices by

a0 + a1i+ a2j + a3k 7→
(
a0 + a1i a2 + a3i
−a2 + a3i a0 − a1i

)
.

In this way conjugation corresponds to the conjugate transpose matrix, and
the norm corresponds to the determinant. In particular, if we restrict to the
quaternions of unit norm H1(R) we get an isomorphism H1(R) ∼= SU(2).

Now consider the integral quaternions (not to be confused with the
Hurwitz integers)

H(Z) = {a0 + a1i+ a2j + a3k : ai ∈ Z}.

In general, these are not quite as nice as one could hope, but Dickson [Dic22]
has shown that the odd elements (elements with N(α) odd) is a left- and
right Euclidean ring. Furthermore, the prime elements are precisely the
elements where N(α) is a rational prime. It is clear that the units in H(Z)
are precisely ±1,±i,±j,±k. It is also clear the number of elements with
N(α) = n is equal to the number of representations of n as a sum of four
squares, which is well-known to be given by

r4(n) = 8
∑

d|n, 4-d
d. (7.1)

Now let p be a prime number p ≡ 1(4), for instance p = 5. We consider
the set of integer quaternions α ∈ H(Z) with N(α) = p. By reduction
modulo 4, we find that for such α = a0 + a1i+ a2j + a3k, precisely one of

2For reasons which will be clear later, we omit the usual square root from the norm.
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ai, i = 0, 1, 2, 3 is odd. Thus, for each α′ we may find a unit ε such that
α = εα′ satisfies

N(α) = p, a0 ≡ 1(2), a1 ≡ a2 ≡ a3 ≡ 0(2), a0 > 0. (7.2)

By (7.1) there are p+ 1 elements of the form (7.2), which clearly split into
σ = 1

2(p+ 1) conjugate pairs

Sp = {α1, α1, . . . , ασ}.

In particular, it is not too hard to see that

S5 = {1± 2i, 1± 2j, 1± 2k}.

Let Hp(Z) denote the set of integer quaternions with N(α) = pk for some
k. The following lemma shows that every elements of Hp(Z) can be written
as a product of elements from Sp.

Lemma 7.3 Every β ∈ Hp(Z) with N(β) = pk has a unique representation

β = plεRm(α1, . . . , ασ),

where l ≤ 1
2k, m+ 2l = k and Rm is a reduced word (i.e. without subwords

of the form αjαj or αjαj) of length m.

Proof. Let β be such an element. Since the odd elements form a left- and
right Euclidean ring, and the primes are exactly the numbers with prime
norm, we may factor β as β = γα with N(γ) = pk−1 and N(α) = p. Up to
a unit we may choose α ∈ Sp. By induction get the factorization

β = εs1 . . . sk, si ∈ Sp

and carrying out the cancellations gives the desired factorization.
We now show uniqueness. The number of reduced words of length l in

α1, . . . , ασ is (p+ 1)pl−1, so the number of different factorizations is

8
 ∑

0≤l<k/2
(p+ 1)pk−2l−1 + δ(k)
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where δ(k) = 1 if k is even and δ(k) = 0 otherwise. We can rewrite this as
the geometric sum

8

 ∑
0≤m<k
m even

(p+ 1)pk−m−1 + δ(k)

 = 8
 ∑

0≤m≤k
pk−m



= 8
 ∑

0≤m≤k
pm


= 8 p

k+1 − 1
p− 1 .

But this is precisely the number of elements of norm pk as

r4(pk) = 8
∑
d|pk

d = 8(1 + p+ · · ·+ pk) = 8 p
k+1 − 1
p− 1 .

This proves uniqueness. �

Note that the elements of Hp(Z) are in one-to-one correspondence with
the integer solutions to

x2
1 + x2

2 + x2
3 + x2

4 = pk.

The elements of the form β = εRk(α1, . . . , ασ) (without a term pl) precisely
correspond primitive solutions, that is those solutions where

gcd(x1, x2, x3, x4, p) = 1.

We now define the height of an element of Hp(Z) to be the reduced word
length in the representation given by the lemma.

Now consider the set H∗(Z[ 1
p
]) quaternions with entries in the ring

Z[ 1
p
] =

{
a

b
: b = pk

}
which are invertible, and whose inverse is also in H∗(Z[ 1

p
]). These are exactly

the α ∈ H(Z[1
5 ]) with N(α) = pk for some k. The map

H∗
(
Z[1

5 ]→ SU(2)
)

α = a0 + a1i+ a2j + a3k 7→
1√
N(α)

(
a0 + a1i a2 + a3i
−a2 + a3i a0 − a1i

)
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is dense, and injective modulo scaling. Now note that the elements of Hp(Z)
correspond to the primitive elements of H∗(Z[ 1

p
]) with N(α) ≥ 1. The

primitive elements in H∗(Z[ 1
p
]) with N(α) ≤ 1 correspond to the inverses of

those such elements. The image of S5 in SU(2) is exactly the set S given
above, and the phase factors mentioned are precisely those coming from the
units in H(Z).

By using methods from harmonic analysis and spectral theory, Lubotzky
et. al. [LPS86, LPS87] uses a spectral gap to show that

4
3 ≤ κ(S) ≤ 2.

It is also useful to compare with the work of Ghosh et. al. [GGN14]. They
consider approximation by points in Z[1

5 ] on a homogeneous space which we
take to be S3. These points correspond to solutions of

x2
1 + x2

2 + x2
3 + x2

4 = p2k

which is almost the same as in our case. As in the case above, they get

4
3 ≤ κ ≤ 2.

However, they also define a local covering exponent as follows: Let x ∈ S3

and ε > 0 be given. Let tε(x) be the smallest t such that BS3(x, ε) contains
an element of S3(Z[1

5 ]) of height at most 5t. We define the local covering
exponent at x in an analogous way by

κ(x,Z[1
5 ]) = lim sup

ε→0

log|Vtε(x)|
− log(µ(Bε))

.

Remarkably, they show that for all x ∈ S3 with respect to the induced
Lebesgue measure we have

κ(x) = 1.

In other words, almost all points have optimal approximation properties
with elements from Z[1

5 ].

§ 7.5 Problems in Diophantine Approximation

The above example illustrates an important point: the question is really
one of Diophantine approximation in a suitable variety. While the historical
development begins with an algorithm – the continued fraction algorithm,
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in this case we begin by a much better understanding of the metric theory.
This motivates us to further develop the algorithmic theory, and to try to
extend the theory of continued fractions. In particular, we could ask for a
solution to the following problems:

(1) Develop a continued fraction algorithm for the (unit) quaternions and
the (unit) complex numbers.

(2) Develop a continued fraction algorithm on manifolds/varieties.

(3) Develop the algorithm over not just Q but also over Z[ 1
p
].

In the following chapter, we will go into some details on the classical
continued fraction algorithm, to see what makes it “tick”. We will then try
to extend these methods to the unit circle (or equivalently, the unit complex
numbers).
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Chapter 8

CLASSICAL CONTINUED FRACTIONS

We are going to describe a process for finding rational approximations to a
given real number. This process is usually known as the Continued Fraction
Algorithm, and a plethora of books exist on the subject. For a classical
treatment see for example [HW08] and [Khi63]. Our treatment of this
process starts from a somewhat different perspective akin to using Farey
fractions. In [Niv63] Niven uses the Farey fractions as a simpler alternative
to continued fractions, but with some loss of refinements. The point of this
chapter, is to show that the two approaches are essentially the same, and to
derive the classical theory “backwards”, starting with a construction that
puts the approximation aspects first.

The author does not claim much originality in this description, as the
proofs quickly turn out to be the same. However, it is the author’s belief
that the theory should start from the most fundamental definitions, which
should relate directly to the problem at hand. A grave defect of the classical
approach, is that the central approximation aspects are not at all obvious,
and appear only after much work.

Before proceeding, it is useful to introduce two notions of “best” rational
approximations. If α is a real number, we say that p/q is a (weak) best
approximation or a best approximation of the first kind, if every fraction
r/s 6= p/q with s ≤ q satisfies∣∣∣∣∣α− p

q

∣∣∣∣∣ ≤
∣∣∣∣α− r

s

∣∣∣∣.
In other words, among all fractions with denominator at most q, the fraction
p/q is the one closest to α.

Furthermore, we say that p/q is a strong best approximation or a best
approximation of second kind, if every fraction r/s 6= p/q with s ≤ q satisfies

|qα− p| ≤ |sα− r|.

It is fairly easy to see that strong best approximations are also weak best
approximants. The difference is that strong best approximants are not only
the closest approximants, but also the best “value for money”. Both are
interesting from a practical perspective.
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§ 8.1 The Construction

Without loss of generality, we will consider only the problem of approximating
positive rationals. We are going to construct an infinite binary tree containing
all positive reduced fractions, subject to the following conditions:

(i) For any node in the tree, all children have a greater denominator

(ii) For any node in the tree, all elements to the left are smaller than the
node, and all elements to right are larger.

Our construction is known as the Stern-Brocot tree after the German
mathematician Moritz Stern and the French clockmaker Achille Brocot. We
follow the exposition of Knuth et. al. [GKP94]. We first introduce the
mediant, which consists of adding fractions “the easy way”:

p

q
⊕ r

s
= p+ r

q + s
.

The mediant has the following elementary property.

Lemma 8.1 If 0 ≤ p/q < r/s are two positive fractions, then

p

q
<
p+ r

q + s
<
r

s
.

Proof. We prove the first inequality, and leave the second as an exercise to
the reader. We have

p

q
<
p+ r

q + s
⇐⇒ (q + s)p < q(p+ r) ⇐⇒ sp < qr ⇐⇒ p

q
<
r

s

and the lemma follows. �

The Stern-Brocot tree is now constructed inductively as follows: start
with the “fractions”

0
1 and 1

0 =∞.

Take the mediant to obtain the first node of the tree: 1/1. Inductively, for
each pair of adjacent nodes in the tree, insert the mediant between them.
See Figure 8.1.

We need to show that this process includes all positive rationals, and
that they are in reduced form. The key to realizing this, is the following
technical lemma.
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Figure 8.1: The Stern-Brocot Tree

Lemma 8.2 For any pair of adjacent rationals p/q < r/s, we have

qr − sp = 1.

Proof. The proof goes by induction in the tree. It is true for the fractions 0/1
and 1/0. Now suppose the relation is true at some point in the construction
of the tree. Let p/q < r/s be two adjacent fractions in the tree, so that
qr− sp = 1. The successor to p/q is then (p+ r)/(q + s) and we must show

1 = q(p+ r)− (q + s)p,

but this follows directly, since

q(p+ r)− (q + s)p = qp+ qr − qp− ps = qr − ps = 1.

Similarly, the successor to (p+ r)/(q + s) is r/s so we verify that

r(q + s)− s(p+ r) = qr − sp = 1. �

Corollary 8.3 All fractions in the Stern-Brocot tree are in reduced form.

Proof. Consider a fraction p/q in the tree and find an adjacent element
r/s such that

p

q
<
r

s
.

By the lemma, we have
qr − sp = 1

so any common divisor of p and q is also a divisor of 1. �

Proposition 8.4 All positive fractions appear in the Stern-Brocot tree.
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Proof. Let a/b > 0 be some positive fraction. We will show that a/b
appears in the tree. Suppose we have

p

q
<
a

b
<
r

s

for two successive fractions p/q < r/s in the tree. It is clear that such exist
as we can simply start with 0/1 and 1/0.

The algorithm for finding a/b is now the following. Compute the median
of p/q and r/s. We have three cases:

(i) If (p+ q)/(r + s) = a/b we are done.

(ii) If (p+ q)/(r + s) < a/b we replace p/q by the mediant.

(iii) If (p+ q)/(r + s) > a/b we replace r/s by the mediant.

We show that this process must eventually stop. The inequalities p/q <
a/b < r/s gives

qa− bp > 0 and br − as > 0.
Since this is an inequality in integers, we have

qa− bp ≥ 1 and br − as ≥ 1.

Now we find

a+ b = (r + s)(qa− bp) + (p+ q)(br − as) ≥ p+ q + r + s.

At each step of the algorithm, the right hand side must increase by at least
one, so we must stop after at most a+ b iterations. �

As a corollary, we remark that this gives an alternative proof of the
following classical theorem.

Corollary 8.5 (Bezout’s identity) For any pair of positive, coprime in-
tegers a and b, the equation

ax+ by = 1

has an integer solution.

Proof. The fraction a/b is in reduced form, so it is somewhere in the
Stern-Brocot tree. Find a successor

a

b
<
r

s

then
ar − bs = 1

is a solution to the equation. �
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Finally, we note that the Stern-Brocot tree contains the classical Farey
fractions. The Farey fractions of order n is the sequence of reduced fractions
between 0 and 1 with denominator less than n. Thus, the first few entries
are

F1 =
{0

1 ,
1
1

}
F2 =

{0
1 ,

1
2 ,

1
1

}
F3 =

{0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

}
F4 =

{0
1 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1

}
F5 =

{0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1

}
.

The Farey fractions can be recovered from the Stern-Brocot tree by consid-
ering the subtree to the left of 1 and simply searching.

§ 8.2 Approximations of Real Numbers

A method for finding approximations to a given real number α > 0 is now
clear: simply search the tree. This will generate all best approximants of the
first kind from above and below, i.e. fractions which are best approximations
of the first kind if we only consider fractions greater than (resp. smaller
than) α. Since the Stern-Brocot tree is constructed from the mediant process
which only depends on the two adjacent numbers, finding the n’th best
approximant from either above or below can be done in constant space and
O(n) arithmetical operations.

A more challenging problem is to find the strong best approximations.
For this purpose, we will associate to α the path in the tree starting with 1
and going towards α. We will denote this with R and L for right and left
respectively. Thus, we get a sequence

R . . . RL . . . LR . . .

where introduce the notation Rn = R . . . R (n times) so that we may write
the path as

Ra0La1Ra2La3 . . .

For reasons which will become clear later, we will call this sequence of
symbols the continued fraction of α.
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For example, for Euler’s number e = 2.718 . . . we get the continued
fraction

R2L1R2L1R1L4R1L1R6 . . .

We now introduce the convergents of a continued fraction. They are the
elements in the continued fraction which are closest to the number without
crossing it, i.e. the elements just before we change direction when searching
the tree. Formally, we may define them as follows.

Definition 8.6 For a given real number α > 0, we define the convergents
inductively by putting

p−1

q−1
= 0

1 ,
p0

q0
= 1

0
and for each n ≥ 0

pn
qn

= pn−1

qn−1
⊕an pn

qn
= pn−1 + anpn
qn−1 + anqn

.

Note that the convergents are less than α when n is even, and greater than
α when n is odd.

Proposition 8.7 We have

qn+1pn − qn+1pn = (−1)n

Proof. We prove this by induction. For n = −1 we have

q0p−1 − q−1p0 = 1 · 1− 0 · 0 = 1.

Inductively, we have

qn+1pn − qnpn+1 = (anqn + qn−1)pn − qn(anpn + pn−1)
= qn−1pn − qnpn−1 = −(−1)n−1 = (−1)n. �

Corollary 8.8 The convergents satisfy∣∣∣∣∣α− pn
qn

∣∣∣∣∣ ≤ 1
qnqn+1

≤ 1
q2
n

.

Proof. The convergents are alternatively greater than and less than α and
we have

pn
qn
− pn+1

qn+1
= (−1)n
qnqn+1

so ∣∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣∣ = 1
qnqn+1

≤ 1
q2
n

and the statement follows. �
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Theorem 8.9 The convergents pn/qn for n ≥ 2 of a real number α > 0 are
strong best approximants.

Proof. Let p/q 6= pn/qn be some fraction with 1 ≤ q ≤ qn. We must show
that

|pn − qnα| < |p− qα|.

Without loss of generality, suppose that gcd(p, q) = 1. The statement is
clear if q = qn, since then |pn/qn − p/q| > 1/qn and Corollary 8.8 gives that
pn/qn is a better approximation.

Suppose that qn−1 < q < qn. By Proposition 8.7 we may solve the
equation (

pn pn−1
qn qn−1

)(
s
t

)
=
(
p
q

)

in non-zero integers s, t. Note that q = sqn+tqn−1 so that sign(s) = − sign(t)
and sign(pn − qnα) = − sign(pn−1 − qn−1α) so that

sign(s(pn − qnα)) = sign(t(pn−1 − qn−1α)).

Thus,

|p− qα| = |s(pn − qnα) + t(pn−1 − qn−1α)| ≥ |pn−1 − qn−1α| > |pn − qnα|.

Which was what we wanted. �

Theorem 8.10 All strong best approximants of a real number α > 0 appear
as convergents.

Proof. Let p/q be a strong best approximant to α. Observe that p/q must
lie on the path of the continued fraction, since otherwise we have taken a
wrong turn in the binary tree, and we can get a better approximation with
a simpler fraction by backtracking.

Thus, there must exist two convergents pn−1/qn1 and pn+1/qn+1 such
that

pn−1

qn−1
≤ p

q
≤ pn+1

qn+1
.

If p/q is equal to either of endpoints, we are done, so suppose the inequality
is sharp. We now have, ∣∣∣∣∣pq − pn−1

qn−1

∣∣∣∣∣ ≥ 1
qqn−1
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and ∣∣∣∣∣pq − pn−1

qn−1

∣∣∣∣∣ ≤
∣∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣∣ = 1
qnqn−1

so q > q0.
On the other hand,∣∣∣∣∣α− p

q

∣∣∣∣∣ ≥
∣∣∣∣∣pn+1

qn+1
− p

q

∣∣∣∣∣ ≥ 1
qqn+1

so
|qx− p| ≥ 1

qn+1
.

But now we have
|qnα− pn| ≤

1
qn+1

≤ |qα− p|

which contradicts the fact that p/q is a strong best approximant. �

We may now formulate an efficient algorithm for finding the best ap-
proximants of a given real number. This is equivalent to computing the
convergents, which we may do by finding the continued fraction. For some
convergents with say,

pn−1

qn−1
< α <

pn
qn

we may compute an as the largest number N such that

pn−1 +Npn
qn−1 +Nqn

< α,

but solving this is easy. Similarly for the case where

pn
qn

< α <
pn−1

qn−1
.

Thus, the n’th convergents of a real number α > 0 may be computed in
space equivalent to two integers and O(n) arithmetical operations. This is
very efficient indeed!

§ 8.3 A Geometric Approach

The observant reader will have noticed, that in this construction we never
used the arithmetical properties of the fractions and only treated a fraction
as a pair of numbers. It is natural to make this construction formal, by

62



considering the process in R2. Here, the mediant simply becomes vector
addition.

Let α > 0 be some real number. Start by drawing the line y = αx and
define the vectors

e−1 = (1, 0)
e0 = (0, 1).

Inductively, we define ei+1 by

ei+1 = ei−1 + aiei

where ai is taken to be the largest integer such that the sum does not cross
the line y. This is precisely the same definition as in the case of the tree.
This is illustrated in Figure 8.2. In this description, the crucial technicality
of lemma 8.2 also gains a nice geometric interpretation: It states that the
determinant of (ek+1, ek) is (−1)k.

Another way of generating these vectors, is to take an infinite string
fixed at the end of the line and pulling down (resp. up) until it is straight.
The extremal points of this convex hull are precisely the convergents. This
method is what Arnol’d calls “the algorithm of stretching the noses” [Arn88].

It is worth noting that this process works not only for the lattice Z2 but
also for any sublattice of Z2. With this observation, we see that this process
gives an efficient algorithm for Diophantine approximation by elements of
Z[1/p]. Of course, we already have a simpler algorithm for this: write up
the base-p expansion of the number and truncate.

§ 8.4 The Classical Definition

The standard definition of the continued fraction is quite different from what
we have described here, and we briefly recall it. Given a real number α we
may put

α = bαc+ {α}

where bαc is the largest integer less than α and {α} is the remainder, called
the fractional part of α. We define a0 = bαc and get

α = a0 + {α}

= a0 + 1
1
{α}

.

63



q

p

e−1

e0

e1

e2

e3

Figure 8.2: Geometric Continued Fraction of e.

By iterating this process on 1/{α} we get an infinite sequence

α = a0 +
1

a1 +
1

a2 + . . .

which turns out to have the property that the convergents are given by

pn
qn

= a0 +
1

a1 +
1

· · ·+
1
an

.

This should explain why the process is known as the continued fraction
algorithm.

Since this notation for continued fractions is rather cumbersome, we
often write

α = [a0; a1, a2, . . . ].
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§ 8.5 What Are Continued Fractions?

On a slightly philosophical level, we might then ask, what is a continued
fraction? In the classical case of approximation of the reals by rationals, all
these are answers are the same, but that is not so when we try to generalize.
We review some of the work done in order to extend continued fractions to
higher dimensions.

One approach, which is quite close to the old definition from which the
process derives its name, is to consider the Gauss map on the unit interval:

T :[0, 1]→ [0, 1]

x 7→
{1
x

}
.

With this map, the elements of the continued fraction are given as the
integers parts of successive iterations of T .

One aspect, that becomes very clear from this point of view, is the
periodicity. We can classify the rational numbers as those for which T n(x) =
0 from some point on and Lagrange’s theorem states that a number is a
quadratic irrational if and only if there is some number p such that T n+p(x) =
T n(x) for sufficiently large n. Another very nice aspect is that the Gauss map
turns out to be ergodic with respect to a certain measure. This allows us to
derive statistical properties on the distribution of the entries in the continued
fraction. This viewpoint is taken by Schweiger [Sch00], who generalize
continued fractions to be (essentially) fractional linear transformations of
the unit interval. Unfortunately, these algorithms fail to exhibit good
convergence properties.

Another approach is to try to generalize the geometric viewpoint. This
was originally done by Klein, but was abandoned due to the computational
complexity. This has recently been taken up again, primarily by Russian
mathematicians as the theory of sails. A comprehensive treatment of this idea
is given by Karpenkov [Kar13] who describes this in terms of a synthetic
geometry called integer geometry, which is created in analogy with the
Euclidean geometry.

The book of Brentjes [Bre81] is a quite comprehensive survey of most
continued fraction algorithms. The definition taken here is essentially based
on the recursion formula. In this book, good algorithms from the point of
view of Diophantine approximation are constructed in two dimensions.

Finally, one could take the Farey sequence (which as discussed above, is
essentially the same as the Stern-Brocot tree). This approach is taken by A.
Schmidt [Sch69], [Sch67] by generalizing the Farey sections to the quadratic
fields Q(i

√
m) for m = 1, 2, 3, 7 as well as the quaternions. This approach
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yields good (if not necessarily efficient) approximation and in the paper this
is used to obtain information on the spectrum of optimal approximation
constants.
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Chapter 9

CONTINUED FRACTIONS ON THE
CIRCLE

In this section we consider the problem of constructing a continued fraction
algorithm on the unit circle. In order to do this, we describe an analogue
of the Stern-Brocot tree on the circle. Unfortunately, the non-linear circle
turns out to be much more complicated, and we are unable to construct an
efficient algorithm.

§ 9.1 The Rational Case

Consider the unit circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

The stereographic projection to the real line puts the rational points on the
circle in one-to-one correspondence with the rational numbers, so the set of
rational numbers is dense on the unit circle and the question of Diophantine
approximation makes sense.

Our first problem is to list all the fractions in a reduced form. Multiplying
through by a common denominator, the rational points correspond to integral
solution of the Pythagorean equation

x2 + y2 = z2.

These are also known as Pythagorean triples. The classical way of generating
all primitive triples (that is, triples with gcd(x, y, z) = 1) is by Euclid’s
formula: if m > n > 0 positive integers coprime integers, which are not both
odd, then

x = m2 − n2, y = 2mn, z = m2 + n2

is a primitive Pythagorean triple. Furthermore, up to interchanging x and
y, all positive primitive triples are generated in this way. Note that this
procedure does not guarantee x < y < z.

We would like to generate an analogue of the Stern-Brocot tree for the
circle, and in order to do that, we would like to sort the triples by z. The
primitive Pythagorean triples with z < 100 sorted by their z-value are the
following:
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(3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25)
(20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53)
(11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73)
(13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97).

Or alternatively in terms of the generating pair (m,n):

(2, 1) (3, 2) (4, 1) (4, 3)
(5, 2) (6, 1) (5, 4) (7, 2)
(6, 5) (8, 1) (7, 4) (8, 3)
(7, 6) (9, 2) (8, 5) (9, 4).

The author is not aware of, and has not been able to find, any structure in
these pairs that would allow us to effectively compute the next entry. To
generate the above, we used brute-force: compute all Pythagorean triples
given by pairs (m,n) where m <

√
100 and sort them.

For the problem of approximating points on the circle it’s useful to realize
that we only need to consider the points in the first quadrant, as the other
points are analogous up to choosing a sign. Furthermore, we have mirror
symmetry around the angle π/4 by interchanging the x- and y-coordinates,
so it suffices to consider the points (x, y) with x < y. For these points the
analogue of the Stern-Brocot tree for the circle is given by Figure 9.1. In
Figure 9.1 we give the same tree in terms of the generators of the associated
Pythagorean triple.

As in the classical case, we might define the continued fraction to be the
sequence in L and R of the path to our given point. In order to construct
a good continued fraction algorithm, we would like to compute the next
element in the tree using only finitely many of the previous elements. The
trees below were again generated by brute force.

§ 9.2 The Case of Restricted Rationals

We now consider the problem of approximation on the unit circle by elements
of Z[ 1

p
]. These correspond to solutions of

x2 + y2 = p2k.

To be more concrete, we just consider the case p = 5.
To begin with, it is not even clear that there are infinitely many such

rational points and if there are, that these points are dense. A clever trick,
however, is to realize that we know one solution, namely

32 + 42 = 52.
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Figure 9.1: The octant of the circle which we consider.
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Figure 9.2: The Stern-Brocot tree on the circle.
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(2, 1)

(3, 2)

(4, 3)
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(11, 4) (9, 4)

(12, 5)

(19, 8) (29, 12)

Figure 9.3: The Stern-Brocot on the circle in terms of generators of the
Pythagorean triple.

In the complex plane this corresponds to z = (3 + 4i)/5 with |z| = 1. Note
that zn gives rise to a new solution for all integers n. Now, the argument of
z is θ = arccos(3/5) which is rationally independent on π, so the orbit of
{zn}∞n=1 is dense in the unit circle. To see why θ is rationally independent
on π, suppose to the contrary that

θ = m

m
π

so that cos(nθ) = ±1. Write cos(nθ) = Tn(cos(θ)) = Tn(3/5) where Tn is
the n’th Chebyshev polynomial. The Chebyshev polynomial is an integer
polynomial of the form

Tn(x) = 2n−1xn +O(xn−1).

Plugging in our values we get

±1 = Tn(3/5) = 2n−1
(3

5

)n
+ An/5n−1

where An ∈ Z is some integer. Multiplying by 5n and moving around we get

±5(5n−1 − An) = 2n−13n

which is clearly impossible.
Having shown that the question makes sense, we turn to the same

question as before: Generating all the Pythagorean triples satisfying

x2 + y2 = p2k

and putting them in the suitable tree. We begin with the problem of gener-
ating the associated Pythagorean triples. Generating all the Pythagorean
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triples and filtering those where z is a power of p is very slow. A better
approach is to fix z = pk and search through the possible generating pairs
(m,n) of which the ones we need to try are those with 1 ≤ n <

√
(z) and

m =
√

(z − n2) which takes O(pk) time – extremely slow. Still, by a brute
force process, we can write down the first entries in the Stern-Brocot tree
here. This is done in Figure 9.2.
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Chapter 10

ON A CONJECTURE RELATED TO
PISOT NUMBERS

In this chapter, we describe an unsuccessful attempt at producing transcen-
dental analogues of Pisot numbers through the use of finite automata. This
is joint work with Simon Kristensen.

§ 10.1 Pisot Numbers

Let α ∈ (1,∞). We consider the problem of how the sequence ({αn})∞n=1 is
the distributed modulo one. Here {·} denotes the fractional part, and we will
let ‖·‖Z denote the distance to the nearest integer. A very comprehensive
survey of this problem is available in [Bug12].

A first step is the well-known result of Koksma that for almost all (in
the sense of Lebesgue measure) α > 1, the sequence ({αn})∞n=1 is uniformly
distributed modulo 1. Thus, the problem is almost solved. What remains,
is to determine what kind of exceptional behavior we can get in a nullset.

Now suppose that α > 1 is a Pisot number, that is, an algebraic in-
teger whose Galois conjugates have norm strictly less than 1. Let α =
α1, α2, . . . , αd denote the Galois conjugates with associated embeddings
σ1, . . . , σd : Q(α) ↪→ C. Recall that the trace of an algebraic integer

Tr(α) = σ1(α) + · · ·+ σd(α)

is a rational integer. In particular, since αn is an algebraic integer for all
n ∈ N we have Tr(αn) ∈ Z. We have the estimate

‖αn‖Z ≤ |αn − Tr(αn)|
= |αn2 + αn3 + · · ·+ αnd |
≤ |αn2 |+ · · ·+ |αnd |

so since |α2|, . . . , |αd| < 1 we find that ‖αn‖Z → 0 as n→∞.
Conversely, we have the following theorem due to Hardy and Pisot.

Theorem 10.1 If α > 1 is algebraic and

‖αn‖Z → 0, n→∞

then α is a Pisot number.
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This naturally leads to the following problem: Are there any transcendental
numbers α > 1 such that ‖αn‖Z → 0?

This question is currently out of reach. On the one hand, such transcen-
dental numbers, if they exist, must be sparse. In fact, it can be shown that
there are only countably many α > 1 satisfying ‖αn‖Z → 0 as n→∞. On
the other hand, there is no particular reason to expect algebraic numbers to
be special in this regard. Furthermore, some “almost counterexamples” are
abundant: Baker [Bak14] has shown that if nk grows sufficiently rapidly, the
numbers satisfying limk→∞‖αnk‖Z is dense in the real line, and has Hausdorff
dimension 1.

The problem in attempting to explicitly construct such numbers, is that
we need to construct transcendental numbers whose Diophantine properties
are well-understood. In practice, this means constructing transcendental
numbers whose continued fraction expansion is known. In general, such
numbers are hard to construct as the continued fraction expansion only allow
us to classify fractions (finite continued fractions) and quadratic irrationals
(ultimately periodic continued fractions).

Our approach to constructing transcendental numbers whose Diophantine
properties are known, is through the recent work of Bugeaud [Bug13]: if
{an} is the continued fraction of an algebraic number, and {an} is not
ultimately periodic, then the complexity of the sequence is high. Thus, if we
generate a simple sequence of numbers (an) which is not ultimately periodic,
then x = [a0, a1, . . . ] is transcendental.

§ 10.2 Automatic Sequences

Before proceeding, we review the basics of finite automata and automatic
sequences. The standard reference is [AS03].

We will need some notation. An alphabet Σ is a finite set, the elements
are called letters. A word over an alphabet, is some concatenation of letters
or the empty word. The set of all words is called the language over Σ and is
denoted Σ∗.

A deterministic finite automaton (DFA) is a very simple model for a
computer which takes a word over some alphabet Σ and return accepted or
rejected to any input. Formally, we may define a DFA as a 5-tuple

M = (Q,Σ, δ, q0, F )

where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → Q
a transition function, q0 ∈ Q is the initial state and F ⊂ Q is the set of
accepted states. The process for determining whether some input is accepted
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or rejected works like this: we start at the state q0 and read the first letter
of our input word l, then follow the transition function to get a new state
δ(q0, l) and continue. If the final state is in F , we accept the word, otherwise
we reject it.

As an example, a DFA which accepts the words in {0, 1}∗ with a positive
even number of 1’s is illustrated in Figure 10.2. The states are represented
as nodes of the graph, with arrows for the transition function. The accepting
states are denoted by double lines.

q0start q1 q2

0
1

0
1

0

1

Figure 10.1: Example of a DFA.

In this way, we may think of a DFA as a function

fM : Σ∗ → {accept, reject}.

An extension of this line of thought, is that rather than just outputting a
binary value, we can output an arbitrary value of some output alphabet ∆.
We call such an automaton a deterministic finite automaton with output
(DFAO). Formally, we define a DFAO as a 6-tuple

M = (Q,Σ, δ, q0,∆, τ)

where Q,Σ, δ, q0 are as in the definition of a DFA, and τ : Q → ∆ is a
function which takes a state and gives a number.

Now take the input alphabet to be

Σ = Σk = {0, 1, 2, . . . , k − 1}.

For each n denote by [n]k the base-k representation of the number. For a
DFAO M on Σk we have an associated sequence given by {fm([n]k)}∞n=0.
We call a sequence k-automatic if it is generated by a DFAO in this way. A
sequence is called automatic if it is k-automatic for some k.

The prototypical automatic sequence is the Thue-Morse sequence {tn}∞n=0
which counts the number of 1’s in the base-2 representation of n. The first
few terms are

{tn}∞n=0 = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, . . .}.
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A graphical representation of the DFAO which generates the Thue-Morse
sequence is given in figure 10.2.

q0/0start q1/1

0
1

0

1

Figure 10.2: A finite automaton generating the Thue-Morse sequence

§ 10.3 Complexity of Words and Diophantine Approx-
imation

Let w = {wn} be some infinite word on an alphabet Σ. A natural measure of
the complexity of the word, is the block complexity p(n,w) which measures
the number of distinct blocks of n successive letters in w. That is,

p(n,w) = |{wkwk+1 · · ·wk+n−1 : k ≥ 1}|.

It is easily seen the block complexity of an ultimately periodic word is
bounded by some constant. Furthermore, it was shown by Cobham [Cob72,
Theorem 2] that if the sequence w = {wn} is automatic, then p(n,w) =
O(n).

Now let a = {an} be a sequence of natural numbers, and consider the
number

α := [0; a1, . . . ]

=
1

a1 +
1

a2 + . . .

.

Bugeaud has shown [Bug13, Theorem 1.1] that if a is not ultimately periodic
and α is algebraic, then

lim
n→∞

p(n,a)
n

=∞.
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This gives us a method for constructing transcendental numbers: If
{an} ⊂ N is an automatic sequence which is not ultimately periodic then

α = a0 +
1

a1 +
1

a2 + . . .

cannot be algebraic, and is hence transcendental.

§ 10.4 A Computer Search

Our approach to finding possible counterexamples of this form, was to do
a computer search. For this purpose we used SageMath1 software package.
We chose Sage for several reasons. The most important reason, is that is
allows us to use mathematical objects as if they were infinite by using lazy
evaluation where only the terms requested are computed. Coupling this with
built-in support for interval arithmetic, means that we can compute with
real numbers given in various ways as if they were mathematical objects,
and let the computer dynamically increase the number of digits used for
computation behind the scenes. The downside of this is that it is very hard
to reason about the complexity of the computation. Finally, Sage has library
support for both continued fractions and finite automata, so we did not
need to implement these ourselves.

The program works as follows. Start by generating a list of output labels
for the DFAO, for example [1, 2, 3, 4]. Next, we generate all possible binary
transition functions for DFA’s starting in 1. For each of these, we generate
the infinite word associated with the DFAO and use this to construct the
associated continued fraction. Both are of course implemented as lazy
objects. We check that the continued fraction is not ultimately periodic
by the heuristic that it is ultimately periodic if after the first 35 entries,
there exists a range of 25 letters for which we get the same subsequence by
translating with a period between 1 and 10. This is very crude, but seems
good enough for our purposes.

Finally, we need to figure out if the number α generated by the continued
fraction satisfies {αn} → 0 as n→∞. To do this, we compute the continued
fraction of αn. There are essentially two ways to do this. We first considered
using the continued fraction arithmetic of Gosper [BGS72, Gos] which is
further described in [LS98], however this was abandoned due to being fairly
complex to implement and with unclear improvements. Instead we chose

1http://www.sagemath.org
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the use interval arithmetic to compute the numbers αn and compute their
continued fractions by brute force. Here, it is important that α is not
a quadratic irrational, and in particular that αn is not rational, as it is
impossible to conclude that αn is rational from the interval approximations
and the computation would result in an infinite loop of repeating with higher
and higher precision.

Once the continued fraction has been computed, we need a criterion for
deciding if {αn} is close to 0. In terms of the continued fraction, there are
two ways this can happen. Write

αn = a0,n +
1

a1,n +
1

a2,n + . . .

.

If a1,n is large, then αn is close to a0,n from above. If a1,n = 1 and a2,n is
large, then αn is very close a0,n + 1 from below. To keep track of this, we
associated a number c(αn) by

c(αn) =
{
a1,n if a1,n > 1
a2,n if a1,n = 1.

We now formulated the heuristic for {αn} → 0 as n→∞, that for n > 50
we had c(αn) > 3.

Unfortunately, the only numbers we found with ‖αn‖Z → 0 were quadratic
irrationals.
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SAGE CODE

1 import i t e r t o o l s
2 c f = cont inued_frac t ion
3
4 c l a s s In f in i t eLoopExcept i on ( Exception ) :
5 " " " Exception to ca s t in case o f p o s s i b l y i n f i n i t e l oops . " " "
6 de f __init__( s e l f , message , ob j e c t ) :
7 super ( Exception , s e l f ) . __init__(message )
8 s e l f . ob j e c t = ob j e c t
9

10 de f cc ( x ) :
11 " " " For x > 1 , compute the c o e f f i c i e n t which should tend to i n f i n i t y . " " "
12 y = c f ( x )
13 i f y [ 1 ] == 1 :
14 re turn y [ 2 ]
15 re turn y [ 1 ]
16
17 de f l i k e l y_ i n c r e a s i n g ( myl i s t ) :
18 " " " Return true i f l im i n f o f the l i s t seems to tend to i n f i n i t y ,
19 l i s t must be at l e a s t 50 long . " " "
20
21 re turn min ( myl i s t [ 5 0 : ] ) > 4
22
23 de f mylabel (T) :
24 " " " Proper l a b e l s f o r edges o f t r a n s i t i o n s " " "
25 re turn s t r (T. word_in [ 0 ] )
26
27 de f generator_automatons (N) :
28 " " "
29 Genrator y i e l d i n g a l l our chosen automatons with N s t a t e s .
30 " " "
31
32 s t a t e s = l i s t ( range (1 ,N+1) )
33 alphabet = [ 0 , 1 ]
34
35 t r an s i t i on_ func t i on s = [ ]
36 f o r outputs in i t e r t o o l s . product ( s t a t e s , r epeat=2∗N) :
37 q = i t e r ( outputs )
38 t r an s i t i on_ func t i on s . append ( [ ( p , q . next ( ) , a )
39 f o r p in s t a t e s
40 f o r a in a lphabet ] )
41
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42 f o r t r a n s i t i o n in t r an s i t i on_ func t i on s :
43 tm = Automaton ( t r an s i t i o n ,
44 i n i t i a l _ s t a t e s =[1 ] ,
45 f i n a l_ s t a t e s=s ta t e s ,
46 input_alphabet=alphabet
47 )
48
49 y i e l d tm
50
51 de f dfa_word ( dfa , tau ) :
52 " " " Output the automatic word generated by the DFA.
53
54 Input : DFA with s t a t e s l a b e l l e d by i n t e g e r s with t r a n s i t i o n s f o r
55 {0 ,1} .
56
57 Output : Automatic word o f In t ege r s , g iven by the tau ( l a b e l ) .
58 " " "
59 de f word_gen ( dfa ) :
60 # Generator p ro c e s s i ng each i n t e g e r in turn
61 i = In t eg e r (0 )
62 whi le True :
63 # proce s s the d i g i t s in r e v e r s e order
64 # Stop p ro c e s s i ng i f we seem to be reach ing an end l e s s loop
65 i f i > 1000 :
66 r a i s e In f in i t eLoopExcept i on ( "Maximum genera t i on depth reached

( i > 1000) " , dfa )
67 out = dfa . p roc e s s ( i . d i g i t s ( base=2) [ : : − 1 ] )
68
69 i += In t eg e r (1 )
70 # out conta in s (True , end_state ) , s i n c e a l l s t a t e s are
71 # accepted , we d i s ca rd unnessecary i n f o . Result i s o f
72 # type FSMState , l a b e l i s o f type ’ i n t ’ , so we turn i t
73 # into a sage . r i n g s . i n t e g e r . I n t eg e r ob j e c t .
74 y i e l d tau [ In t eg e r ( out [ 1 ] . l a b e l ( ) ) ]
75
76 g = word_gen ( dfa )
77 w = Word(g , l ength=I n f i n i t y )
78 re turn w
79
80 de f l i k e l y_u l t ima t e l y_pe r i od i c (w, max_period=10) :
81 i f w. i s _ f i n i t e ( ) :
82 re turn True
83
84 w = w[ : 1 0 0 0 ]
85
86 o f f s e t = 35
87 test_range = 25
88
89 f o r p in range (1 , max_period+1) :
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90 i f w[ o f f s e t : o f f s e t + test_range ] == w[ o f f s e t + p : o f f s e t + p +
test_range ] :

91 re turn True
92
93 re turn Fal se
94
95 de f f i nd_ l i k e l y_ in c r e a s i n g ( output_labe l s ) :
96 " " " Find l i k e l y i n c r e a s i n g sequences in automatic words
97
98 INPUT: A l i s t o f output l a b e l s .
99 " " "

100
101 n = len ( output_labe l s )
102
103 # Create the tau func t i on f o r the DFAO
104 s t a t e s = [ k f o r k in range (1 , n+1) ]
105 tau = d i c t ( z ip ( s t a t e s , output_labe l s ) )
106
107 count = 0
108 h i t s = 0 # count o f number o f p o s s i b l e cand idate s
109 d i s carded = 0 # count o f quadrat i c i r r a t i o n a l s , which we d i s ca rd
110
111 generato r = generator_automatons (n)
112 f o r dfa in genera tor :
113 count += 1
114
115 i f not dfa . digraph ( ) . i s_strongly_connected ( ) :
116 # Only s t r ong l y connected components are r e a l l y i n t e r r e s t i n g
117 cont inue
118
119 t ry :
120 w = dfa_word ( dfa , tau )
121 except In f in i t eLoopExcept i on as except ion :
122 pr in t " Skipping due to i n f i n i t e loop . This should not happen ! "
123 debug_information . append ( dfa )
124 d i s carded += 1
125
126 i f l i k e l y_u l t ima t e l y_pe r i od i c (w) :
127 d i s carded += 1
128 cont inue
129
130 x = cont inued_fract ion (w)
131 v = x . va lue ( )
132
133 c o e f f i c i e n t s = [ ]
134 f o r k in range (100) :
135 c o e f f i c i e n t s . append ( cc (v^k ) )
136
137 i f l i k e l y_ i n c r e a s i n g ( c o e f f i c i e n t s ) :
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138 pr in t ( "Found candidate : " , w)
139 h i t s += 1
140 cand idate s . append ( dfa )
141
142 pr in t " Resu l t s f o r : " , output_labe l s
143 pr in t " \ tTr ied " , count , " automatic sequences "
144 pr in t " \ tDiscarded " , d i scarded , " quadrat i c i r r a t i o n a l s "
145 pr in t " \tFound " , h i t s , " cand idates "
146
147 i f __name__ == "__main__" :
148 outputs = [ [ 1 , 2 ] ,
149 [ 2 , 3 ] ,
150 [ 3 , 4 ] ,
151 [ 1 , 2 , 3 ] ,
152 [ 1 , 2 , 2 ] ,
153 [ 2 , 3 , 4 ] ,
154 [ 2 , 3 , 3 ] ,
155 [ 2 , 4 , 5 ] ,
156 [ 2 , 4 , 7 ] ,
157 [ 1 , 1 , 2 ] ,
158 [ 1 , 2 , 3 , 4 ] ,
159 [ 2 , 2 , 3 , 4 ]
160 ]
161
162 pr in t " S ta r t i ng search . . . "
163
164 e r r o r = Exception ( )
165
166 cand idate s = [ ]
167 debug_information = [ ] # used when r a i s i n g except i ons
168
169 f o r x in outputs :
170 f o r y in i t e r t o o l s . permutat ions ( x ) :
171 t ry :
172 f i nd_ l i k e l y_ in c r e a s i n g ( l i s t ( y ) )
173 except Exception as e :
174 pr in t ( " s e r i o u s e r r o r . " )
175 e r r o r = e
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