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Abstract

Photoactivated localization microscopy (PALM) is an ingenious super-resolu-
tion imaging technique that produces 2D point patterns of proteins. Individual
proteins may appear as small artificial clusters of points, due to multiple blink-
ing of individual fluorophores. The proteins may also cluster together, and in
such cases a pertinent model for a PALM point pattern describes clustering at
two different scales. Despite the importance of the imaging technique, statisti-
cal methods for analyzing PALM data have remained relatively under-studied.
In the present paper, we develop a model-based framework for analysis of
PALM data. We focus on a subclass of independent cluster processes, denoted
double Cox cluster processes (DCCPs), for which both the parent process (of
proteins) and the observed process are Cox cluster processes. Parametric mod-
els for DCCPs with a Neyman-Scott process as parent process are developed
together with statistical inference procedures, based on moment methods. To
illustrate the proposed methodology, we analyze a data set from a PALM
acquisition. In contrast to earlier model-free methods, the analysis provides
information, directly relating to the performance of the proteins. The paper
also represents an independent contribution to point process theory.

Keywords: double Cox cluster process, independent clustering, moment-based
inference, photoactivated localization microscopy, point process

1 Introduction

PALM is an ingenious super-resolution imaging technique by means of which pro-
teins may be localized with a precision down to 20 nm, even though the resolution of
the microscope is limited to 250 nm, due to the diffraction limit. During the record-
ing of the image, PALM uses that fluorescent proteins will emit light at separate
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times and their positions thereby become resolvable also in cases where the proteins
are closer than the conventional resolution limit of the microscope.

PALM was introduced in the seminal paper Betzig et al. (2006), published in
Science, and two years later the technique was the “Method of the Year” in Nature
Methods. In 2014, the Nobel Prize in Chemistry was awarded to Eric Betzig, William
E. Moerner and Stefan Hell for the development of super-resolved fluorescence mi-
croscopy, which brought “optical microscopy into the nanodimension”.

The raw data in PALM is a list of 2D coordinates of the observed fluorescent
proteins. Individual proteins may fluoresce multiple times at slightly varying posi-
tions so each protein gives rise to a small cluster. The challenge is to make inference
on the interactions between the proteins as well as on the multiple appearances of
each protein.

Despite of the importance of the PALM imaging technique, methods for analyzing
the resulting point patterns for properties such as clustering have remained relatively
under-studied (Rubin-Delanchy et al., 2015). Methods based on pair correlation
analysis have been developed by Sengupta et al. (2011, 2013); Veatch et al. (2012).
However, these are model-free methods in the sense that they are not based on a
point process model for the proteins and the estimated parameters do not directly
relate to the performance of the proteins. In Rubin-Delanchy et al. (2015), a model-
based Bayesian cluster algorithm is developed, but the model and algorithm do not
account for multiple appearances of proteins.

In the present paper, we develop a model-based framework for analysis of PALM
data. Although this motivating application is in 2D, we consider point processes
in Rd. The parent process (of proteins) is modelled as a stationary point process
X in Rd. To each x ∈ X, we associate a point process Yx, representing the mul-
tiple appearances of a protein. Conditional on X, the processes {Yx : x ∈ X} are
independent and identically distributed (i.i.d.). If Y is a point process, having the
common distribution of the Yxs, we suppose that the intensity function of Y has the
form ρY (y) = τk(y) where τ > 0 is the mean number of multiple appearances and
k is a probability density function on Rd. In the application from PALM, k is the
so-called point spread function and typically of Gaussian form

k(y) = exp(−‖y‖2/(2σ2))/(2πσ2)d/2, y ∈ Rd.

The observed process
Z =

⋃

x∈X
(x+ Yx)

is thus modelled as an independent cluster process (Lieshout and Baddeley, 2002;
Illian et al., 2008, p. 370). These processes can be classified into various subclasses,
including Poisson cluster processes, for which X is assumed to be a Poisson process,
and Cox cluster processes (CCPs), for which the Yxs are assumed to be Poisson
processes. Bayesian inference for CCPs with X modelled by a repulsive Markov
point process has been studied in Lieshout and Baddeley (2002). Considering the
PALM applications where proteins typically are clustered, we are instead interested
in models for Z for which X shows clustering.

We will primarily focus on parametric models for Z for which X is a CCP
and Y is a Poisson process. In such cases, we call Z a double Cox cluster process
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(DCCP), since both the parent process X and Z itself are CCPs. DCCPs with
Neyman-Scott processes as parent processes is a very flexible model class. We show
that moment-based inference is particularly simple for this type of processes. An
important example is the double Thomas process (TTP), obtained by assuming
that X is a Thomas process and the probability density k is Gaussian. TTPs have
also been used in ecology for modelling two scales of interaction in rain forest data
(Wiegand et al., 2007).

The present paper is organized as follows. In Section 2, we introduce the notation
and basic properties of point processes used in this paper. In Section 3, we give
a summary of first- and second-order moment properties of independent cluster
processes while DCCPs together with the associated moment-based inference are
treated in Section 4. Parametric models for DCCPs with a Neyman-Scott parent
process are discussed in Section 5. In Section 6, we apply the developed moment-
based inference to a data set from a PALM acquisition. The model used in the
analysis also includes background noise modelled by a Poisson process. A discussion
regarding further generalizations of the model, Bayesian inference and future work,
may be found in Section 7. Some derivations are deferred to Appendix A while
additional information about model fitting in Section 6 may be found in Appendix B.

2 Preliminaries

This section introduces the notation and basic properties of the point process models
considered in this paper. For further details, see Møller and Waagepetersen (2004);
Illian et al. (2008); Chiu et al. (2013).

A spatial point process Z in Rd is a random locally finite subset of Rd. We assume
that Z has a well-defined intensity function ρZ and second-order product density ρ(2)

Z ,
such that the intensity measure αZ and the second-order factorial moment measure
α(2)
Z are given by

αZ(C) = E
[∑

z∈Z
1(z ∈ C)

]
=

∫

C

ρZ(z) dz,

α(2)
Z (C1 × C2) = E

[∑6=

z1,z2∈Z
1(z1 ∈ C1, z2 ∈ C2)

]
=

∫

C1

∫

C2

ρ(2)
Z (z1, z2) dz1 dz2,

for C,C1 and C2 in the Borel σ-algebra on Rd. Here
∑ 6= denotes summation over

distinct pairs. The interaction between pairs of points can be measured by the pair
correlation function

gZ(z1, z2) = ρ(2)
Z (z1, z2)/

(
ρZ(z1)ρZ(z2)

)
.

A stationary process, i.e. a process with translation invariant distribution, has a
constant intensity function and a translation invariant second-order product density,
i.e. ρ(2)

Z (z1, z2) = ρ(2)
Z (z1 − z2). A process is said to be isotropic if its distribution

is rotation invariant. For stationary and isotropic processes, we have ρ(2)
Z (z1, z2) =

ρ(2)
Z (‖z1 − z2‖) and the pair correlation function is effectively a function on R,

gZ(r) = ρ(2)
Z (r)/ρ2

Z , r ∈ R.
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The function can be interpreted as the mean number of points at distance r from a
“typical” point in Z, relative to the mean number for a Poisson process with same
intensity.

Additional summary functions are distance functions such as the F -function and
G-function, defined for a stationary process Z. Here, F is the distribution function
of the distance from the origin to the nearest point in Z while G is the distribution
function of the distance from a typical point of Z to the nearest neighbour in Z.
Finally, the J-function is defined by

J(r) = (1−G(r))/(1− F (r)) for F (r) < 1,

see Lieshout and Baddeley (1996).
For Poisson processes, g(r) ≡ J(r) ≡ 1 and G(r) ≡ F (r), while for cluster

processes g(r) > 1 > J(r) and G(r) > F (r) for small r values.
The CCPs studied in the present paper form a subclass of the class of Cox pro-

cesses (Cox, 1955; Møller and Waagepetersen, 2004). Let {Λ(z)} be a non-negative
random field. A point process is then a Cox process with driving field Λ, if con-
ditionally on Λ, the process is a Poisson process with intensity function Λ. Note
that a CCP (as defined in Section 1) is actually a Cox process with driving field
Λ(z) =

∑
x∈X ρY (z − x), where ρY is the common intensity function of the Yx pro-

cesses.

3 Moment properties of independent cluster
processes

Let Z = ∪x∈X(x+Yx) be an independent cluster process, as defined in Section 1. In
particular, X is stationary. We suppose that X has a finite and positive intensity ρX
and pair correlation function gX . The pair correlation function of Y is denoted gY .

Using conditioning on X, it is easy to show that the intensity of Z is ρZ = ρXτ .
Since Z is stationary, the pair correlation function of Z is a function of one argument
only and takes the following form

gZ(z) = ρ−1
X

∫

Rd

k(z + x)k(x)gY (z + x, x) dx+

∫

Rd

hk(z − x)gX(x) dx, (3.1)

z ∈ Rd, where

hk(z) =

∫

Rd

k(z + x)k(x) dx, z ∈ Rd. (3.2)

The equation (3.1) holds under the assumption that the processes x + Yx, x ∈ X,
do not overlap. We will make this assumption in the following. Note that hk is
the probability density of U1 − U2 where U1 and U2 are independent, both with
probability density k.

The first term in (3.1) corresponds to the contribution from pairs of points from
the same cluster and the second term is the contribution from pairs of points from
different clusters. The formula (3.1) for gZ follows from Illian et al. (2008, (6.2.10)),
see also Felsenstein (1975); Shimatani (2001). In Appendix A, a short proof of (3.1)
in the notation used in the present paper may be found.
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Let N be the number of points in Y . If, conditional on N , the points in Y are
i.i.d., then (3.1) simplifies to, cf. Appendix A,

gZ(z) =
E(N2)− E(N)

ρXτ 2
hk(z) +

∫

Rd

hk(z − x)gX(x) dx, z ∈ Rd. (3.3)

Note that N ≡ 1 corresponds to the situation of noisy observations of a spatial
point process in which case (3.3) reduces to a convolution

gZ(z) =

∫

Rd

hk(z − x)gX(x) dx, z ∈ Rd.

In the case where Y is a Poisson process, Z is a CCP and (3.3) simplifies to

gZ(z) = ρ−1
X hk(z) +

∫

Rd

hk(z − x)gX(x) dx, z ∈ Rd. (3.4)

Let us now consider the case where the probability density k is Gaussian

k(y) = exp(−‖y‖2/2σ2)/(2πσ2)d/2, y ∈ Rd,

which is often used as a model for point spread functions in PALM. If X is isotropic,
we can use polar decomposition in Rd and express the pair correlation function (3.4)
of Z more explicitly as

gZ(z) = (4πσ2)−d/2 exp(−‖z‖2/(4σ2))

×
[
ρ−1
X +

∫ ∞

0

exp
(
−r2/(4σ2)

)
F
(
‖z‖r/(2σ2)

)
gX(r)rd−1 dr

]
, (3.5)

where
F (r) =

∫

Sd−1

exp(ru1) dud−1, r > 0, (3.6)

and u1 is the first coordinate of u ∈ Sd−1. For d = 2,

F (r) = 2πI0(r), r > 0,

where I0 is the modified Bessel function of the first kind with index 0.
Relation (3.5) may be used for numerical evaluation of gZ for a specific choice of

model for gX .
Equation (3.3) implies that the relationship between the Fourier transforms of

gX and gZ is of the form

F(gZ) = F(hk)

(
E(N2)− E(N)

ρXτ 2
+ F(gX)

)

where the d-dimensional Fourier transform is given by

F(f)(x) =

∫

Rd

exp(−ix · y)f(y) dy.
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4 Double Cox cluster processes (DCCPs)

For the PALM application, it is interesting to consider the case where the parent
process X is a cluster process. An independent cluster process Z is said to be a
double Cox cluster process (DCCP) if X is a CCP and Y is Poisson. Note that when
Z is a DCCP, both X and Z are CCPs.

The intensity and pair correlation function of a DCCP Z are easily obtained,
using the results of Section 3. We have

Z =
⋃

x∈X
(x+ Yx),

as previously, but now
X =

⋃

φ∈Φ

(φ+ Uφ),

where Φ is a stationary process with intensity κ, and conditional on Φ, the processes
{Uφ : φ ∈ Φ} are i.i.d. Poisson processes with intensity function ρU(u) = µkX(u),
say. Here, µ > 0 and kX is a probability density on Rd. Note that ρX = µκ.

The intensity of Z is ρZ = τµκ. Using that X is a CCP, we find, cf. (3.4),

gX(x) = κ−1hkX (z) +

∫

Rd

hkX (x− y)gΦ(y) dy, x ∈ Rd, (4.1)

and, using that (3.4) also holds for gZ , we find

gZ(z) = (µκ)−1hk(z) + κ−1

∫

Rd

hk(z − x)hkX (x) dx

+

∫

Rd

∫

Rd

hk(z − x)hkX (x− y)gΦ(y) dy dx, z ∈ Rd.

(4.2)

In the particular case where Φ is Poisson, X is a Neyman-Scott process (Neyman
and Scott, 1958; Illian et al., 2008, p. 374) and (4.1) and (4.2) reduce to

gX(x) = 1 + κ−1hkX (x), x ∈ Rd, (4.3)
and

gZ(z) = 1 + (µκ)−1hk(z) + κ−1

∫

Rd

hk(z − x)hkX (x) dx, z ∈ Rd. (4.4)

Moment-based inference for DCCPs may be performed, using a discrepancy mea-
sure such as

D(θ) =

∫ r2

r1

(ĝZ(r)q − gZ(r; θ)q)p dr, (4.5)

where ĝZ is a kernel estimator of gZ and gZ(·; θ) is of the form (4.2). Note that it
may be difficult to estimate all components of the parameter θ with high precision.
As an example, suppose hkX is much more concentrated at the origin than hk. Then,
(4.4) is approximately

gZ(z) ≈ 1 + ((µκ)−1 + κ−1)hk(z).

In such an extreme case, there is no information about the parent process in gZ .
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5 DCCPs with a Neyman-Scott process as parent
process

In this section, we discuss different parametric models for the probability density
kX and the resulting expressions for gX and gZ . We focus on the case where X is a
Neyman-Scott process. Having PALM applications in mind, k will be Gaussian.

If both k and kX are of Gaussian form (with not necessarily the same param-
eters), then X is a Thomas process and Z is called a double Thomas process with
abbrevation TTP. This process has also been considered in ecology, see Wiegand
et al. (2007).

The pair correlation function gZ has a closed form when Z is a TTP. If the
Gaussian probability density kX is parametrized by ω, then the pair correlation
function of X is, cf. (4.3),

gX(x) = 1 + κ−1(4πω2)−d/2 exp(−‖x‖2/(4ω2)), x ∈ Rd, (5.1)

and, using (4.4), we thus find for z ∈ Rd

gZ(z) = 1 + (µκ)−1(4πσ2)−d/2 exp
(
−‖z‖2/(4σ2)

)

+ κ−1
(
4π(ω2 + σ2)

)−d/2
exp
(
−‖z‖2/[4(ω2 + σ2)]

)
. (5.2)

More generally, if

gX(x) = 1 +
n∑

i=1

αi exp(−‖x‖2/βi), x ∈ Rd, (5.3)

with αi, βi > 0, then the last term in (5.2) is replaced by, cf. (3.4),

n∑

i=1

αi
(
βi/(βi + 4σ2)

)d/2
exp
(
−‖z‖2/(βi + 4σ2)

)
.

As shown in Møller and Christoffersen (in preparation), (5.3) is the pair correlation
function of a point process that can be obtained by an iterative scheme.

Furthermore, the class of Neyman-Scott processes also includes processes for
which the pair correlation function gX follows the flexible Matérn type covariance
model (Jalilian et al., 2013; Jónsdóttir et al., 2013). As an example, suppose that
gX is of exponential form

gX(x) = 1 + κ−1α exp(−‖x‖/η), x ∈ Rd, (5.4)

with α, η > 0. In order to find a probability density kX such that (4.3) is satisfied,
we recall that hkX is a probability density and therefore,

α =
(
2dπ(d−1/2)Γ([d+ 1]/2]ηd

)−1
. (5.5)

Using Jónsdóttir et al. (2013, p. 515), we find

kX(x) =
(
23(d−1)/4πd/2Γ([d+ 1]/4)ηd

)−1
(‖x‖/η)−(d−1)/4K−(d−1)/4(‖x‖/η), (5.6)
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where Kν is a modified Bessel function of the second kind with index ν.
In Sengupta et al. (2011), the correlation between proteins are exactly assumed

to give rise to an exponential form of gX for d = 2, however, no parametric point
process model is stated for the proteins. More generally, we can find the probability
density kX corresponding to a pair correlation function of the form

gX(x) = 1 + α‖x‖νKν(‖x‖/η), x ∈ Rd, α, η, ν > 0.

When X is a Neyman-Scott process with kX of the form (5.6) and k is Gaussian,
then Z is said to be a Thomas exponential process (TEP). Its pair correlation function
is of the form, cf. (4.4),

gZ(z) = 1 + (µκ)−1(4πσ2)−d/2 exp
(
−‖z‖2/(4σ2)

)

+ κ−1(4πσ2)−d/2α

∫

Rd

exp
(
−‖z − x‖2/(4σ2)

)
exp(−‖x‖/η) dx,

(5.7)

where α is given in (5.5). Using polar coordinates in Rd, the last integral in (5.7)
can be rewritten as

exp
(
−‖z‖2/(4σ2)

) ∫ ∞

0

exp
(
−r2/(4σ2)

)
F
(
‖z‖r/(2σ2)

)
exp(−r/η)rd−1 dr,

where the function F is defined in (3.6).
In Figure 1, gX and gZ are shown for d = 2 for some examples of TTPs, using

(5.1) and (5.2), and some examples of TEPs, using (5.4) and (5.7). Note that the
pair correlation function gX is quite different in the case of TTP and TEP, but gZ
has a similar appearances for the two types of processes.
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Figure 1: Plots of gX (full drawn lines) and gZ (stippled and dotted lines) for some
examples of the TTP (left) and the TEP (right). The parameters κ = 25 and ω = η = 0.1
are fixed while the remaining parameters (which do not have an impact on gX) are µ = 3
or 5 and σ = 0.033 or 0.050.

6 Data example

Data originates from a PALM study (Arnspang et al., in preparation) and consists
of N = 1324 observed positions of fluorescent proteins in a sub-section of a super-
resolution PALM image, as shown in Figure 2. A single protein may fluoresce a
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number of times at slightly varying positions and may thus appear as a small cluster.
Furthermore, the proteins are expected to cluster, hence DCCPs seem to be a natural
choice of model class for the data.

Figure 2: Observed point pattern consisting of N = 1324 positions of fluorescent proteins
in a sub-section of size 3355 nm× 4188 nm of a PALM image.

We use moment-based inference and start by fitting a TTP and a TEP, using
the discrepancy measure (4.5) with d = 2, gZ( · ; θ) of the form (5.2) or (5.7) and
θ = (κ, ω, µ, σ, τ) or θ = (κ, η, µ, σ, τ), respectively. Note that gZ( · ; θ) does not
depend on τ so the estimation procedure is supplemented by the estimating equation
ρ̂Z = µκτ .

In Figure 3, ĝZ (full drawn line) is plotted together with gZ(r; θ̂) for both models
(stippled lines). See Appendix B for numerical details.

Both TTP and TEP provide a very good fit to the observed pair correlation
function. However, these models do not explain the quite high fraction of single
points that is visible in the plotted data. The J-functions shown in Figure 4 reveal
that the pure DCCP models are not sufficient to describe the data. We therefore
extend the model by superimposing a Poisson point process, which may be interpret
as background noise from the microscope. This model has an additional parameter,
namely the fraction a of points that originate from the DCCP model. Below we pro-
pose a two step method to fit the model, by minimizing the discrepancy of both the
pair correlation function and the J-function. For sake of readability, the procedure
is described only for the TTP model; fitting a TEP model is completely analogous.
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Figure 3: Estimated pair correlation function (full drawn line) of the observed point
pattern and the theoretical pair correlation function of the fitted processes (stippled lines)
for the TTP (left) and the TEP (right).

Let Z̃ denote a stationary and isotropic point process that results from indepen-
dent superposition of a TTP process Z and a stationary Poisson point process. The
process Z̃ has pair correlation function

gZ̃(r) = 1 + a2(gZ(r)− 1), (6.1)

and J-function
JZ̃(r) = 1 + aJZ(r) + (1− a), (6.2)

where a = ρZ/ρZ̃ , see Illian et al. (2008, p.371) and Lieshout and Baddeley (1996).
From (5.2) and (6.1), we see that gZ̃ can be written in the form

gZ̃(r) = 1 + a2

κ
f(r;ω, σ, µ).

This is the pair correlation function of a TTP Z0 with parameters κ0 = κ/a2, ω0 = ω,
σ0 = σ, and µ0 = µ. Estimates of these parameters and of τ0 are obtained by fitting
Z0 to the data as previously described. In the extended model, κ̂0 is an estimate of
κ/a2 and with aρZ̃ = µκτ , it follows that τ̂0 is an estimate of τa. The remaining
parameter estimates remain valid in the extended model.

The extra parameter a of the extended model is subsequently estimated by mini-
mizing the distance between the observed J-function and JZ̃ . Since JZ is not known
in closed form, this was done by simulation of superposition processes for a sequence
of different values of a, followed by minimizing the discrepancy measure similar to
(4.5) based on the J-function with respect to a. We used medians of the estimated
J-functions based on the simulations as estimates of the theoretical J-functions and
obtained estimates for a approximately equal to 0.6 for both processes.
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Figure 4: Estimated J-function for the observed point pattern (full drawn line), compared
to the ones for the fitted (i) TTP (left) and TEP (right) and (ii) DCCPs superimposed with
approximately 40% Poisson noise, (ii) being the process which coincides with the estimate
from the observed point pattern. 95% global envelopes (grey areas) and median estimates
(stippled lines) for r = 0, 1, . . . , 100, are based on 2000 simulations.

We clearly get a much better fit when the superposition models are used, as
illustrated in Figure 4, where the estimated J-function of the observed point pattern
(full drawn line) is compared to estimates of J-functions for the fitted DCCPs with
and without superimposed background noise. Thus, approximately (1 − a)100% =
40% of the points are modelled as background noise.

All estimates from the fitted DCCPs and the superposition models are found
in Table 1 (top), together with estimated relative mean squared error (RMSE),
estimated relative bias (Rbias) and measured discrepancy of the fitted models. Both
the TTP and TEP with background noise provide a very good fit to the data, which
is also visualized in Figure 5, where realizations from the fitted models are shown.
We tested the models further using envelope tests, based on the pair correlation
function and the J-, G- and F -functions, and found no significant deviations.
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TTP TEP

Est Est2 RMSE Rbias Est Est2 RMSE Rbias

â 57.5% 59.5%
κ̂ (×10−5) 2.98 0.99 .17 .13 2.39 0.84 .09 .05
µ̂ 2.62 2.62 .14 −.05 4.99 4.99 .33 −.04
ω̂/η̂ 53.06 53.06 .06 .09 51.92 51.92 .29 .30
τ̂ 1.21 2.11 .11 .11 0.80 1.34 .59 .37
σ̂ 19.36 19.36 .02 .08 17.42 17.42 .06 .14

D(θ̂) 0.0134 0.0106

TTP TEP

Est Est2 RMSE Rbias Est Est2 RMSE Rbias

â 57.5% 58.0%
κ̂ (×10−5) 3.03 1.00 .06 .02 2.55 0.86 .06 .01
µ̂ 2.42 2.42 .09 .16 3.36 3.36 .25 .28
ω̂/η̂ 54.26 54.26 .03 −.02 55.89 55.89 .07 .00
τ̂ 1.29 2.25 .03 -.09 1.10 1.90 .05 −.14
σ = 20 — — — — — — — —

D(θ̂) 0.0134 0.0169

Table 1: Parameter estimates for the TTP (left) and the TEP (right), before (Est) and
after (Est2) correction for (1− a)100% background noise. Estimated relative mean square
error (RMSE) and estimated relative bias (Rbias) based on 200 simulations of the fitted
processes are also shown together with discrepancies between observed and fitted pair
correlation functions. The top table shows results for the models with unknown σ and the
bottom table shows the results for the models with fixed σ = 20.
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Figure 5: The observed point pattern (middle) together with two realizations from the
fitted TTP (top) and fitted TEP (bottom) with superimposed Poisson noise.
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Figure 6: 95% global envelopes (grey areas) for r = 10, 11, . . . , 200, based on 2000 sim-
ulations and the pair correlation function for the fitted TTP (top left), the TTP with
alternative parameters (top right), the fitted TEP (bottom left) and the TEP with alter-
native parameters (bottom right). The estimated pair correlation function of the observed
point pattern (full drawn line) is shown together with the theoretical pair correlation func-
tions (stippled lines).
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As shown in Table 1 (top), the RMSEs of the estimators are quite large. Based on
simulations of the fitted processes, we also found that the estimators were correlated,
one obvious reason is that in the noise free models we use the estimating equation
ρ̂Z = µκτ . In fact, the parameter estimates obtained in the TTP model also gave an
acceptable fit in the TEP model and vice versa, see the global envelope tests based
on the pair correlation functions in Figure 6. The same conclusion was obtained
when using envelope tests based on F -, G- and J-functions. As a consequence, the
observed data can be generated, using parent processes with somewhat different
degree of clustering, see Figure 7 showing simulations from the two fitted parent
processes.

However, if prior information about σ is available, it is possible to estimate the
parent process with higher precision. For instance, if we let σ = 20, we obtain the
results reported in Table 1 (bottom). The parameter estimates in the TTP and
TEP models are now much more alike, and the MSE and bias of the estimators are
reduced in this simpler model.

Figure 7: Realizations from the fitted parent processes, i.e. a Thomas process (left) and
a Neyman-Scott process with an exponential pair correlation function (right).

7 Discussion

In the present paper, we have developed a model-based framework for analysis of
PALM data. The focus has been on moment-based inference for double Cox cluster
processes, in particular the double Thomas process and the Thomas exponential
process.

The model considered in the present paper may be extended in various ways.
Apart from superposition of independent Poisson noise which was used in the data
example, we may in addition include independent thinning. For the PALM applica-
tion, this may be a relevant extension of the model since it is expected that not all
proteins are actually observed.
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In Møller and Christoffersen (in preparation), the pair correlation function for
such a model is studied in an iterative scheme, described as a discrete time Markov
chain of point processes. Their basic Lemma 3.4 simplifies under no noise and thin-
ning to the relation (3.3) between gX and gZ in the present paper. See also Møller
and Torrisi (2005, Proposition 2) for the special case of generalized shot noise Cox
processes. The focus of Møller and Christoffersen (in preparation) is, however, differ-
ent from the focus of the present paper. The iterative scheme is the primary object
of study in their paper, including limiting distributions, while the aim of the present
paper is parametric modelling and statistical inference for double Cox cluster point
processes, motivated by the applications in PALM.

Our set-up includes as a special case modelling of noisy observations of spatial
point processes. Earlier references on inference for spatial point processes subject to
noise are Lund and Rudemo (2000); Cucala (2008); Bar-Hen et al. (2013). The latter
reference considers the influence of measurement errors on descriptive statistics for
testing complete spatial randomness.

In the analysis of the data example, we have found that the observed data could
be generated by parent processes with somewhat different degree of clustering. If
prior information about some of the model parameters are available, we encourage
to use this information because then it is possible to estimate the parent process
with much higher precision.

In Sengupta et al. (2011, 2013); Veatch et al. (2012), the convolution in the last
term in (10) seems to be replaced by hkX (z) as a simple approximation, see e.g.
Veatch et al. (2012, p. 5). In the models considered for the data example in the
present paper, we found that parameter estimates, obtained with such approxima-
tion, deviate up to 43% from the estimates, obtained by numerical integration based
on (3.5). Hence, when a Gaussian point spread function is used in PALM, better
estimates can be obtained, using (3.5).

An alternative to the proposed method is to construct a non-parametric estimate
ĝX of gX , using the relation between the Fourier transforms of gX and gZ , derived
in Section 3, and then use moment-based inference directly on the estimate ĝX and
the parametric model gX(·; θ).

An alternative method to moment-based inference is Bayesian inference, which
has the advantage, that it also provides a posterior estimate of the intensity surface
of the parent process X. Bayesian inference can often improve the quality of the pa-
rameter estimates, see e.g. a comparison of the methods for Neyman-Scott processes
in Kopeckỳ and Mrkvička (2016).

Unfortunately, the Bayesian approach is time-consuming as the posterior density
is intractable, hence it must be found using MCMC methods. Additional background
noise complicates Bayesian inference for double Cox cluster processes further, as an
additional classification algorithm, similar to the one in Redenbach et al. (2015), is
required to classify points as either cluster points or background points.

Preliminary studies indicate that a Bayesian approach can be used for double Cox
cluster point processes without background noise, for instance, in the case where the
parameters for the multiple appearances are known. Future work includes further
investigation as to what extent, Bayesian inference can be applied to double Cox
cluster processes with background noise.
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Appendix A

In order to derive the second-order factorial moment measure α(2)
Z of Z, let C1, C2

be two Borel sets in Rd. Then,

α(2)
Z (C1 × C2)

= E
∑6=

z1,z2∈Z
1(z1 ∈ C1, z2 ∈ C2)

= E
∑

x∈X

∑6=

y1,y2∈Yx
1(x+ y1 ∈ C1, x+ y2 ∈ C2)

+ E
∑ 6=

x1,x2∈X

( ∑

y1∈Yx1

1(x1 + y1 ∈ C1)
)( ∑

y2∈Yx2

1(x2 + y2 ∈ C2)
)
,

where the last equality sign holds since the processes x+Yx, x ∈ X, do not overlap,
as assumed in Section 3. Using the conditional independence of the processes {Yx :
x ∈ X}, given X, we get

α(2)
Z (C1 × C2)

= E
∑

x∈X

∫

Rd×Rd

1(y1 ∈ C1 − x, y2 ∈ C2 − x)ρ(2)
Y (y1, y2) dy2 dy1

+ τ 2E
∑ 6=

x1,x2∈X

(∫

C1

k(y1 − x1) dy1

)(∫

C2

k(y2 − x2) dy2

)
.

It follows that

α(2)
Z (C1 × C2)

= ρX

∫

Rd

∫

Rd×Rd

1(y1 ∈ C1 − x, y2 ∈ C2 − x)ρ(2)
Y (y1, y2) dy2 dy1 dx

+ τ 2

∫

C1

∫

C2

∫

Rd×Rd

k(y1 − x1)k(y2 − x2)ρ(2)
X (x1, x2) dx2 dx1 dy2 dy1.

Since the first term can be rewritten as

ρX

∫

C1

∫

C2

∫

Rd

ρ(2)
Y (z1 − x, z2 − x) dx dz2 dz1,

the second-order product density of Z takes the form

ρ(2)
Z (z1, z2) = ρX

∫

Rd

ρ(2)
Y (z1 − x, z2 − x) dx

+ τ 2

∫

Rd×Rd

k(z1 − x1)k(z2 − x2)ρ(2)
X (x1, x2) dx2 dx1,

or, equivalently, the pair correlation function of Z becomes

gZ(z1, z2) =
1

ρX

∫

Rd

ρ(2)
Y (z1 − x, z2 − x)

τ 2
dx

+

∫

Rd×Rd

k(z1 − x1)k(z2 − x2)gX(x1, x2) dx2 dx1.
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If gX(x1, x2) = gX(x1 − x2), say, the second term takes the form
∫

Rd

hk(z1 − z2 − x)gX(x) dx,

where
hk(z) =

∫

Rd

k(z + x)k(x) dx.

Putting these results together, we obtain (3.1).
Let N be the number of points in Y . Then, ρ(2)

Y takes a simple form if, conditional
on N , the points in Y are i.i.d. with probability density k. Note that E(N) = τ . The
second factorial moment measure α(2)

Y of Y becomes

α(2)
Y (C1 × C2) = E

∑ 6=

y1,y2∈Y
1(y1 ∈ C1, y2 ∈ C2)

=
∞∑

n=2

P(N = n)E
(∑ 6=

y1,y2∈Y
1(y1 ∈ C1, y2 ∈ C2)

∣∣∣ N = n
)

=
∞∑

n=2

P(N = n)n(n− 1)

∫

C1

k(y1) dy1

∫

C2

k(y2) dy2

=
(
E(N2)− E(N)

) ∫

C1

k(y1) dy1

∫

C2

k(y2) dy2.

We find
gY (y1, y2) =

(
E(N2)− E(N)

)
/τ 2,

and (3.3) follows. If Y is a Poisson process, gY (y1, y2) ≡ 1 and the pair correlation
function of Z becomes

gZ(z1, z2) = ρ−1
X hk(z1 − z2) +

∫

Rd

hk(z1 − z2 − x)gX(x) dx.

Appendix B

All estimates of summary functions were obtained using default settings of functions
in the spatstat library of R (Baddeley et al., 2015). The parameter estimates were
obtained with the mincontrast algorithm using tuning parameters r1 = 10, r2 =
300, q = 1/4, p = 2 and startpar with kappa = 0.00001, mu = 5, omega = 75
and sigma = 20 (or eta = 75). The algorithm was tested for several choices of
startpar. The chosen startpar gave the best fit for both models, and the obtained
estimates were robust in the sense that several combinations of startpar led to
approximately the same results. Furthermore, the results were robust to alternative
choices of r1 and kernel bandwidth. This was tested because it is well-known, that
the algorithm may be affected by a bias near r = 0 due to kernel smoothing. The
parameter estimates were supplemented by estimated relative mean squared error
(RMSE) and estimated relative bias (Rbias). These estimates were obtained by re-
estimation of the parameters based on 200 simulations from the fitted models, using
same tuning parameters. Envelope tests were performed with the devtools and
spptest libraries of R, using rank_envelopes based on 2000 simulations.
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