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Abstract

In this paper, we demonstrate how deterministic and stochastic dynamics
on manifolds, as well as differential geometric constructions can be imple-
mented concisely and efficiently using modern computational frameworks that
mix symbolic expressions with efficient numerical computations. In particular,
we use the symbolic expression and automatic differentiation features of the
python library Theano, originally developed for high-performance computa-
tions in deep learning. We show how various aspects of differential geometry
and Lie group theory, connections, metrics, curvature, left/right invariance,
geodesics and parallel transport can be formulated with Theano using the
automatic computation of derivatives of any order. We will also show how
symbolic stochastic integrators and concepts from non-linear statistics can be
formulated and optimized with only a few lines of code. We will then give
explicit examples on low-dimensional classical manifolds for visualization and
demonstrate how this approach allows both a concise implementation and ef-
ficient scaling to high dimensional problems.

1 Introduction

Differential geometry extends standard calculus on Euclidean spaces to nonlinear
spaces described by a manifold structure, i.e. spaces locally isomorphic to the Eu-
clidean space [Lee03]. This generalisation of calculus turned out to be extremely
rich in the study of manifolds and dynamical systems on manifolds. In the first case,
being able to compute distances, curvature, and even torsion provides local infor-
mation on the structure of the space. In the second case, the question is rather on
how to write a dynamical system intrinsically on a nonlinear space, without relying
on external constraints from a larger Euclidean space. Although these constructions
are general and can be rather abstract, many specific examples of both cases are
used for practical applications. We will touch upon such examples later.

Numerical evaluation of quantities such as curvatures and obtaining solutions of
nonlinear dynamical systems constitute important problems in applied mathematics.
Indeed, high dimensional manifolds or just complicated nonlinear structures make
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explicit closed-form computations infeasible, even if they remain crucial for applica-
tions. The challenge one usually faces is not even in solving the nonlinear equations
but in writing them explicitly. Nonlinear structures often consist of several coupled
nonlinear equations obtained after multiple differentiations of elementary objects
such as nontrivial metrics. In these cases, there is no hope of finding explicit solu-
tions. Instead, the standard solution is to implement the complicated equations in a
mathematical software packages such as Matlab or Python using numerical libraries.

In this work, we propose to tackle both issues – being able to solve the equations
and being able to implement the equations numerically – by using automatic differen-
tiation software which takes symbolic formulae as input and outputs their numerical
solutions. Such libraries in Python includes Theano [The16], TensorFlow [A+16] and
PyTorch (http://pytorch.org). It is important to stress that these libraries are
not symbolic computer algebra packages such as Mathematica or Sympy, as they do
not have any symbolic output, but rather numerical evaluation of a symbolic input.
In this work, we chose to use Theano but similar codes can be written with other
packages with automatic differentiation feature. The main interest for us in using
Theano is that it is a fully developed package which can handle derivatives of any
order, it has internal compilation and computational graph optimization features
that can optimize code for multiple computer architectures (CPU, GPU), and it
outputs efficient numerical code.

It is the recent explosion of interest and impact of deep learning that has lead to
the development of deep learning libraries such as Theano that mix automatic differ-
entiation with the ability to generate extremely efficient numerical code. The work
presented in this paper thus takes advantage of the significant software engineering
efforts to produce robust and efficient libraries for deep learning to benefit a sepa-
rate domain, computational differential geometry and dynamical systems. We aim
to present the use of Theano for these applications in a similar manner as the Julia
framework was recently presented in [BEKS17].

We now wish to give a simple example of Theano code to illustrate this process of
symbolic input and numerical output via compiled code. We consider the symbolic
implementation of the scalar product, that is the vector function f(x,y) = xTy,
and want to evaluate its derivative with respect to the first argument. In Theano, the
function f is first defined as a symbolic function, f = lambda x,y: T.dot(x,y),
where T calls functions of the library theano.tensor. Then, the gradient of f with
respect to x is defined by calling the gradient function T.grad, as df = lambda x,y:
T.grad(f(x,y),x). Both functions f and df are still symbolic but can be evaluated
on any numerical arrays after the compilation process, or construction of an eval-
uation function. For our function f, the compilation is requested by ff = theano
.function([x,y], f(x,y)), where we have previously declared the variables x and
y as x =T.vector() and y = T.vector(). The function ff is now a compiled ver-
sion of the function f that can be evaluated on any pair of vectors. As we will see
later in the text, such code can be written for many different functions and combi-
nation of derivatives, in particular for derivatives with respect to initial conditions
in a for loop.

In this work, we want to illustrate this transparent use of Theano in various
numerical computations based on objects from differential geometry. We will only
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cover a few topics here, and many other such applications will remain for future
works. Apart from our running example, the sphere, or the rotation group, we will
use higher dimensional examples, in particular the manifold of landmarks as often
used in computational anatomy. In both cases, we will show how to compute various
geometrical quantities arising from Riemannian metrics on the spaces. In most cases,
the metric is the only information on the manifold that is needed, and it allows for
computing geodesics, Brownian motion, parallel transport etc. In some cases, it
will be convenient to extend to computations in a fiber bundle of the manifold to
have more freedom and allow for e.g. anisotropic diffusion processes. Also, when the
manifold has a group structure, we can perform for example reduction by symmetry
for dynamical systems invariant under the group action. All of these mechanical
constructions can be used to real-world applications such as in control or robotics.
We refer to the books [Blo, Chi09, Chi11] for more theories and applications in
these directions. We will not directly consider these applications here, but rather
focus on applications of computational anatomy. We refer the interested reader to
the book [You10] and references therein for a good overview of this topic. We also
refer to the conference paper [KS17] for a short introduction of the use of Theano in
computational anatomy. Computational anatomy is a vast topic, and we will only
focus here on a few aspects when shapes or images are represented as sets of points,
or landmarks, that are used as tracers of the original shape. With these landmarks,
we show how many algorithms related to matching of shapes, statistics of shapes or
random deformations, can be implemented concisely and efficiently using Theano.
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Figure 1: (left) Matching of 2500 landmarks on the outline of a letter ‘T’ to a letter ‘O’.
The matching is performed by computing the logarithm map Log considering the 5000
dimensional landmark space a Riemannian manifold. (right) Similar matching of landmark
configurations using Log while now using the transparent GPU features of Theano to
scale to configurations with 20 000 landmarks on a 40 000 dimensional manifold. Theano
generates highly efficient numerical code and allows GPU acceleration transparently to the
programmer. For both matches, only a subset of the geodesic landmark trajectories are
display.

As an example, we display in Figure 1 two examples of solving the inverse prob-
lem of estimating the initial momenta for a geodesic matching landmark configura-
tions on high-dimensional manifolds of landmarks on the plane. On the left panel
of Figure 1, we solved the problem of matching a letter ‘T’ to a letter ‘O’, or more
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precisely an ellipse, with 2500 landmarks. On the right panel, we solved the problem
of matching two simple shapes, ellipses, however with 20 000 landmarks. The shapes
represented by landmarks are considered elements of the LDDMM landmark mani-
fold of dimension 5000 and 40 000, see [You10]. The geodesics equation and inverse
problem are implemented using the few lines of code presented in this paper and
the computation is transparently performed on GPUs.

Parts of the code will be shown throughout the paper with corresponding ex-
amples. The full code is available online in the Theano Geometry repository http:
//bitbucket.org/stefansommer/theanogeometry. The interested reader can find
a more extensive description of the mathematical notions used in this paper in
the books Riemannian Manifolds: an introduction to curvature by J. Lee [Lee06],
Stochastic Analysis on Manifolds by E. P. Hsu [Hsu02] and Introduction to Mechan-
ics and Symmetry by Marsden, Ratiu [MR99].

Content of the paper

The paper will be structured as follows. Section 2 gives an account of how central
concepts in Riemannian geometry can be described symbolically in Theano, includ-
ing the exponential and logarithm maps, geodesics in Hamiltonian form, parallel
transport and curvature. Concepts from Lie group theory are covered in section 3,
and section 4 continues with sub-Riemannian frame bundle geometry. In addition
to the running example of surfaces embedded in R3, we will show in section 5 ap-
plications on landmark manifolds defined in the LDDMM framework. At the end,
concepts from non-linear statistics are covered in section 6.

2 Riemannian Geometry

In this section, we will show how to implement some of the theoretical concepts from
Riemannian geometry. This includes geodesics equation, parallel transport and cur-
vature. The focus is to present simple and efficient implementation of these concepts
using Theano [The16].

Though the code applies to any smooth manifolds M of dimension d, we will
only visualize the results of numerical computations on manifolds embedded in R3.
We represent these manifolds by a smooth injective map F : R2 → R3 and the
associated metric onM inherited from R3, that is

g = (dF )TdF , (2.1)

where dF denotes the Jacobian of F . One example of such representation is the
sphere S2 in stereographic coordinates. In this case, F : R2 → S2 ⊂ R3 is

F (x, y) =
(

2x
1+x2+y2

2y
1+x2+y2

−1+x2+y2

1+x2+y2

)
. (2.2)

2.1 Geodesic Equation

We begin by computing solutions to the Riemannian geodesic equations on a smooth
d-dimensional manifold M equipped with an affine connection ∇ and a metric g.
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A connection on a manifold defines the relation between tangent spaces at different
points onM. Let (U,ϕ) denote a local chart onM with coordinate basis ∂i = ∂

∂xi
,

i = 1, . . . , d. The connection ∇ is related to the Christoffel symbols Γkij by the
relation

∇∂i∂j = Γkij∂k . (2.3)

An example of a frequently used connection on a Riemannian manifold (M, g) is
the Levi-Civita connection. The Christoffel symbols for the Levi-Civita connection
is uniquely defined by the metric g. Let gij denote the coefficients of the metric
g, i.e. g = gijdx

idxj, and gij be the inverse of gij. The Christoffel symbols for the
Levi-Civita connection are then

Γkij = 1
2
gkl(∂igjl + ∂jgil − ∂lgij) . (2.4)

The implementation of the Christoffel symbols in Theano are shown in the code
snippet below.

Python code
"""
Christoffel symbols for the Levi-Civita connection

Args:
x: Point on the manifold
g(x): metric g evaluated at position x on the manifold.

Returns:
Gamma_g: 3-tensor with dimensions k,i,j in the respective order

"""
# Derivative of metric:
Dg = lambda x: T.jacobian(g(x).flatten(),x).reshape((d,d,d))
# Inverse metric (cometric):
gsharp = lambda x: T.nlinalg.matrix_inverse(g(x))

# Christoffel symbols:
Gamma_g = lambda x: 0.5*(T.tensordot(gsharp(x),Dg(x),axes = [1,0])\

+T.tensordot(gsharp(x),Dg(x),axes = [1,0]).dimshuffle(0,2,1)\
-T.tensordot(gsharp(x),Dg(x),axes = [1,2]))

Straight lines in Rn are lines with no acceleration and path minimizers between
two points. Geodesics on a manifold are defined in a similar manner. The acceleration
of a geodesic γ is zero, i.e. Dtγ̇ = 0, in which Dt denotes the covariant derivative.
Moreover, geodesics determines the shortest distances between points on M. Let
x0 ∈ M, (U,ϕ) be a chart around x0 and consider v0 ∈ Tx0M, a tangent vector at
x0. A geodesic γ : I →M, I = [0, 1], γt = (xit)i=1,...,d, satisfying γ0 = x0, γ̇0 = v0 can
be obtained by solving the geodesic equations

ẍkt + ẋitẋ
j
tΓ

k
ij(γt) = 0 . (2.5)

The goal is to solve this second order ordinary differential equation (ODE) with
respect to xkt . We first rewrite the ODE in term of wkt = ẋkt and xkt to instead have
a system of first order ODE of the form

ẇkt = −witwjtΓkij(γt) , ẋkt = wkt ,
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which can be solved by numerical integration. For this, we can use the Euler method

yn+1 = yn + f(tn, yn)∆t, ∆t = tn+1 − tn , (2.6)

or by higher-order integrators such as a fourth-order Runge-Kutta method. Both
integrators are available in symbolic form in the code repository. In Theano, we use
the symbolic for-loop theano.scan for the loop over time-steps. As a consequence,
symbolic derivatives of the numerical integrator can be evaluated. For example, we
will later use derivatives with respect to the initial values when solving the geodesic
matching problem in the definition of the Logarithm map. In addition, it is possible
to solve stochastic differential equations in a similar way, see Appendix A. The
symbolic implementation of the integrator method is shown below.

Python code
"""
Numerical Integration Method

Args:
ode: Symbolic ode function to be solved
integrator: Integration scheme (Euler, RK4, ...)
x: Initial values of variables to be updated by integration method
*y: Additional variables for ode.

Returns:
Tensor (t,xt)

t: Time evolution
xt: Evolution of x

"""
def integrate(ode,integrator,x,*y):

(cout, updates) = theano.scan(fn=integrator(ode),
outputs_info=[T.constant(0.),x],
sequences=[*y],
n_steps=n_steps)

return cout

Based on the symbolic implementation of the integrators, solutions to the geo-
desic equations are obtained by the following code.

Python code
"""
Geodesic Equation

Args:
xq: Tensor with x and xdot components.

Returns:
ode_geodesic: Tensor (dx,dxdot).
geodesic: Tensor (t,xt)

t: Time evolution
xt: Geodesic path

"""
def ode_geodesic(t,xq):
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dxdott = - T.tensordot(T.tensordot(xq[1], Gamma_g(xq[0]), axes=[0,1]),
xq[1],axes=[1,0])

dxt = xq[1]
return T.stack((dxt,dxdott))

# Geodesic:
geodesic = lambda x,xdot: integrate(ode_geodesic, T.stack((x,xdot)))

Figure 2 shows examples of geodesics on three different manifolds obtained as
the solution to the geodesic equations in (2.5) using the above code.
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Figure 2: The solution of the geodesic equations for three different manifolds; the
sphere S2, an ellipsoid, and landmark manifold defined in the LDDMM framework. The
arrows symbolizes the initial tangent vector v0.

2.2 The Exponential and Logarithm Maps

For a geodesic γvt , t ∈ [0, 1] with initial velocity γ̇v0 = v, the exponential map,
Expx : TxM→M, x ∈M is defined by

Expx(v) = γv1 , (2.7)

and can be numericaly computed from the earlier presented geodesic equation.

Python code
"""
Exponential map

Args:
x: Initial point of geodesic
v: Velocity vector

Returns:
y: Endpoint of geodesic

"""
Exp = lambda x,v: geodesic(x,v)[1][-1,0]
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Where defined, the inverse of the exponential map is denoted the logarithm
map. For computational purposes, we can define the logarithm map as finding a
minimizing geodesic between x1, x2 ∈M, that is

Log(x1, x2) = arg min
v
‖Expx1(v)− x2‖2

M , (2.8)

for a norm coming for example from the embedding ofM in R3. From the logarithm,
we also get the geodesic distance by

d(x, y) = ‖Log(x, y)‖ . (2.9)

The logarithm map can be implemented in Theano by using the symbolic calcu-
lations of derivatives by computing the gradient of the loss function (2.8) with
Theano function T.grad, and then use it in a standard minimisation algorithm such
as BFGS. An example implementation is given below, where we used the function
minimize from the Scipy package.

Python code
"""
Logarithm map

Args:
v0: Initial tangent vector
x1: Initial point for geodesic
x2: Target point on the manifold

Return:
Log: Tangent vector

"""
# Loss function:
loss = lambda v,x1,x2: 1./d*T.sum(T.sqr(Exp(x1,v)-x2))
dloss = lambda v,x1,x2: T.grad(loss(v,x1,x2),v)
# Logarithm map: (v0 initial guess)
Log = minimize(loss, v0, jac=dloss, args=(x1,x2))

2.3 Geodesics in Hamiltonian Form

In section 2.1, geodesics were computed as solutions to the standard second order
geodesic equations. We now compute geodesics from a Hamiltonian viewpoint. Let
the manifoldM be equipped with a cometric g∗ and consider a connection ∇ onM.
Given a point x ∈ M and a covector p ∈ T ∗xM, geodesics can be obtained as the
solution to Hamilton’s equations, given by the derivative of the Hamiltonian, which
in our case is

H(x, p) = 1
2
〈p, g∗x(p)〉T ∗

xM×T ∗
xM . (2.10)

Hamilton’s equations are then

d

dt
x = ∇pH(x, p)

d

dt
p = −∇xH(x, p) , (2.11)
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and describe the movement of a particle at position x ∈ M with momentum p ∈
T ∗xM.

Depending on the form of the Hamiltonian and in particular of the metric, the
implementation of Hamilton’s equations (2.11) can be difficult. In the present case,
the metric on M is inherited from an embedding F , hence g∗ is defined only via
derivatives of F , which makes the computation possible with Theano.

Python code
"""
Calculate the Exponential map defined by Hamilton’s equations.

Args:
x: Point on manifold
p: Momentum vector at x
gsharp(x): Matrix representation of the cometric at x

Returns:
Exp: Tensor (t,xt)

t: Time evolution
xt: Geodesic path

"""
# Hamiltonian:
H = lambda x,p: 0.5*T.dot(p,T.dot(gsharp(x),p))

# Hamilton’s equation
dx = lambda x,p: T.grad(H(x,p),p)
dp = lambda x,p: -T.grad(H(x,p),x)
def ode_Hamiltonian(t,x):

dxt = dx(x[0],x[1])
dpt = dp(x[0],x[1])
return T.stack((dxt,dpt))

# Geodesic:
Exp = lambda x,v: integrate(ode_Ham,T.stack((x,g(v))))

Calculating geodesics on a Riemannian manifoldM by solving Hamilton’s equa-
tions can be generalized to manifolds for which only a sub-Riemannian structure is
available. An example of such geodesics is given in section 4 on a different construc-
tion, the frame bundle.

Example 2.1 (Geodesic on the sphere). Consider the sphere S2 ⊂ R3 in stereo-
graphic coordinates such that for (x, y) ∈ R2, a point on the sphere is given by
F (x, y) with F defined in (2.2). Equip S2 with the metric g defined in (2.1) and let
x0 = F (0, 0) ∈ S2 and v0 = dF (1,−1) ∈ Tx0S

2. The initial momentum vector is
chosen as the corresponding covector of v0 defined by the flat map [ : TM→ T ∗M,
i.e. p0 = v[0. The geodesic, or the solution to Hamilton’s equations can be seen in
the left plot of Figure 3.

2.4 Parallel Transport

Let againM be a d-dimensional manifold with an affine connection ∇ and let (U,ϕ)
denote a local chart onM with coordinate basis ∂i = ∂

∂xi
for i = 1, . . . , d. A vector
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Figure 3: (left) Geodesic defined by the solution to Hamilton’s equations (2.11) with
initial point x0 = F (0, 0) ∈ S2 and velocity v0 = dF (1,−1) ∈ Tx0S2. See Example 2.1.
(right) Parallel transport of vector v = dF

(
−1

2 ,−1
2

)
along the curve γt = F (t2,− sin(t)).

See Example 2.2.

field V along a curve γt, is said to be parallel if the covariant derivative of V along
γt is zero, i.e. ∇γ̇tV = 0. It can be shown that given a curve γ : I → M and a
tangent vector v ∈ Tγt0M there exists a unique parallel vector field V along γ such
that Vt0 = v. We further assume that γt = (γit)i=1,...,d in local coordinates and we
let Vt = vi(t)∂i be a vector field. V is then parallel to the curve γt if the coefficients
vi(t) solve the following differential equation,

v̇k(t) + Γkij(γt)γ̇
i
tv
j(t) = 0 . (2.12)

The parallel transport can be implemented in an almost similar manner as the
geodesic equations introduced in section 2.1.

Python code
"""
Parallel Transport

Args:
gamma: Discretized curve
dgamma: Tangent vector of gamma to each time point
v: Tangent vector that will be parallel transported.

Returns:
pt: Tensor (t,vt)

t: Time Evolution
vt: Parallel transported tangent vector at each time point

"""
def ode_partrans(gamma,dgamma,t,v):

dpt = - T.tensordot(T.tensordot(dgamma, Gamma_g(gamma), axes = [0,1]),
v, axes = [1,0])

return dpt
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# Parallel transport
pt = lambda v,gamma,dgamma: integrate(ode_partrans,v,gamma,dgamma)

Example 2.2. In this example, we consider a tangent vector v = dF (−1
2
,−1

2
) ∈

TxS
2 for x = F (0, 0) ∈ S2 that we want to parallel transport along the curve

γ : [0, 1]→ S2 given by γt = F (t2,− sin(t)). The solution of the problem is illustrated
in the right panel of Figure 3.

2.5 Curvature

The curvature of a Riemannian manifoldM is described by the Riemannian curva-
ture tensor, a (3, 1)-tensor R : T (M)× T (M)× T (M)→ T (M) defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z . (2.13)

Let (U,ϕ) be a local chart onM and let ∂i for i = 1, . . . , d denote the local coordinate
basis with dxi being the dual basis. Given this local basis, the curvature tensor is,
in coordinates, given as

R = R m
ijk dxi ⊗ dxj ⊗ dxk ⊗ ∂m , (2.14)

where the components R m
ijk depend on the Christoffel symbols as follow

R(∂i, ∂j)∂k = R m
ijk ∂m = (ΓljkΓ

m
il − ΓlikΓ

m
jl + ∂iΓ

m
jk − ∂jΓmik)∂m . (2.15)

In Theano, the Riemannian curvature tensor can be computed in coordinates as
follow.

Python code
"""
Riemannian curvature tensor in coordinates

Args:
x: point on manifold

Returns:
4-tensor R_ijk^m in with order i,j,k,m

"""
def R(x):

return (T.tensordot(Gamma_g(x),Gamma_g(x),(0,2)).dimshuffle(3,0,1,2)
-T.tensordot(Gamma_g(x),Gamma_g(x),(0,2)).dimshuffle(0,3,1,2)
+T.jacobian(Gamma_g(x).flatten(),x).reshape((d,d,d,d)).dimshuffle(3,1,2,0)
-T.jacobian(Gamma_g(x).flatten(),x).reshape((d,d,d,d)).dimshuffle(1,3,2,0))

In addition to the curvature tensor R m
ijk , the Ricci and scalar curvature can be

computed by contracting the indices as

Rij = R k
kij , S = gijRij . (2.16)

The sectional curvature can also be computed and describes the curvature of a
Riemannian manifold by the curvature of a two-dimensional sub-manifold. Let Π be
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a two-dimensional sub-plane of the tangent space at a point x ∈ M. Let e1, e2 be
two linearly independent tangent vectors spanning Π. The sectional curvature is the
Gaussian curvature of the sub-space formed by geodesics passing x and tangent to
Π, that is

κ(e1, e2) =
〈R(e1, e2)e2, e1〉

‖e1‖2‖e2‖2 − 〈e1, e2〉2
. (2.17)

Example 2.3 (Curvature of S2). We consider x = F (0, 0) ∈ S2 and the orthonormal
basis vectors e1 = dF (0.5, 0), e2 = dF (0, 0.5) in the tangent space TxM with respect
to the metric g. As expected, we found that the Gaussian curvature of S2 is 1 and
its scalar curvature is 2 [Lee06].

The Ricci, scalar and sectional curvature have also been implemented in Theano
as follow.

Python code
"""
Different curvature measures

Args:
x: point on manifold
e1, e2: linearly independent tangent vectors

"""
# Ricci curvature:
Ricci_curv = lambda x: T.tensordot(R(x),T.eye(d),((0,3),(0,1)))
# Scalar curvature:
S_curv = lambda x: T.tensordot(Ricci_curv(x),gsharp(x),((0,1),(0,1)))
# Sectional curvature:
def sec_curv(x,e1,e2):

Rflat = T.tensordot(R(x),g(x),[3,0])
sec = T.tensordot(

T.tensordot(
T.tensordot(

T.tensordot(Rflat, e1, [0,0]),
e2, [0,0]),

e2, [0,0]),
e1, [0,0])

return sec

3 Dynamics on Lie Groups

In this section, we consider a manifold equipped with a smooth group structure, that
isM = G is a Lie group. As the most interesting finite dimensional Lie groups are
isomorphic to matrix groups, we can without loss of generalities represent elements
of Lie group G by matrices. We will give examples of how various fundamental Lie
group constructions can be written with Theano and how to compute geodesics
in the Hamiltonian and Lagrangian setting. We will mostly follow [MR99] for the
notation and definitions. We will use G = SO(3), the three dimensional rotation
group acting on R3 as an illustration, where an element of G is represented by a
coordinate basis as for example in Figure 4.
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Figure 4: We show an example of an element of SO(3) represented as a matrix g ∈ R3×3.
The vectors represent each column of g.

The group operation on G defines the left and right translation maps La(g) =
ag and Ra(g) = ga for a, g ∈ G. As elements of G are represented by matrices,
these maps are in Theano computed by matrix multiplications. Their corresponding
tangent maps dL and dR can be directly obtained by taking symbolic derivatives.
The left and right translation maps relate elements of the Lie algebra g of the group
with the left (and right) invariant vector fields Xη(g) := dLg(η) on TG, where η ∈ g.
The algebra structure on g is then defined from the Jacobi-Lie bracket of vector fields
[ξ, η] = [Xξ, Xη], ξ, η ∈ g.

Using invariance under the group action, either left or right, an inner product
on g = TeG can be extended to a Riemannian metric on G by setting 〈v, w〉g =
〈dLav, dLaw〉La(g) for v, w ∈ TgG. Invariant metrics can thus be identified with a
symmetric positive definite inner product 〈·, ·〉A on g, where after fixing a basis
for g, we can consider that A ∈ Sym+(g) and 〈·, ·〉A = 〈·, A·〉. Hence, A−1 is the
corresponding co-metric.

In Theano, these constructions can be formulated as shown below. A basis ei for
g is fixed, and LAtoV is the inverse of the mapping v → eiv

i between V = Rd and
the Lie algebra g.

Python code
"""
General functions for Lie groups

Args:
g,h: Elements of G
v: Tangent vector
xi,eta: Elements of the Lie Algebra
d: Dimension of G
vg,wg: Elements of tangent space at g

"""

L = lambda g,h: T.tensordot(g,h,(1,0)) # left translation L_g(h)=gh
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R = lambda g,h: T.tensordot(h,g,(1,0)) # right translation R_g(h)=hg

# Derivative of L
def dL(g,h,v):

dL = T.jacobian(L(theano.gradient.disconnected_grad(g),h).flatten(),
h).reshape((N,N,N,N))

return T.tensordot(dL,v,((2,3),(0,1)))

# Lie bracket
def bracket(xi,eta):

return T.tensordot(xi,eta,(1,0))-T.tensordot(eta,xi,(1,0))

# Left-invariant metric
def g(g,v,w):

xiv = dL(inv(g),g,v)
xiw = dL(inv(g),g,w)
v = LAtoV(xiv)
w = LAtoV(xiw)
return T.dot(v,T.dot(A,w))

3.1 Euler-Poincaré Dynamics

In the context of Lie groups, we can also derive the geodesic equations for a left-
invariant metric. Geodesics on the Lie group can, similar to geodesics on mani-
folds defined in section 2.3, be described as solutions to Hamilton’s equations for a
Hamiltonian generated from the left-invariant metric. In this section, we will, how-
ever, present another method for calculating geodesics based on the Euler-Poincaré
equations.

The conjugation map h 7→ aha−1 for fixed a ∈ G has as a derivative the adjoint
map Ad(a) : g→ g, Ad(a)X = (La)∗(Ra−1)∗(X). The derivative of Ad with respect
to a is the Lie bracket adξ : g → g, adξ(η) = [ξ, η]. The coadjoint action is defined
by 〈ad∗ξ(α), η〉 = 〈α, adξ(η)〉, α ∈ g∗ with 〈·, ·〉 the standard pairing on the Lie
algebra g. For the kinetic Lagrangian l(ξ) = ξTAξ, ξ ∈ g, a geodesic is a solution of
the Euler-Poincaré equation

∂t
δl

δξ
= ad∗ξ

δl

δξ
, (3.1)

together with the reconstruction equation ∂tgt = gtξt. This relatively abstract set of
equations can be expressed in Theano with the following code.

Python code
"""
Euler-Poincare Geodesic Equations

Args:
a,g: Element of G
xi,eta: Element of Lie Algebra
p,pp,mu: Elements of the dual Lie Algebra

Returns:
EPrec: Tensor (t,xt)

t: Time evolution
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gt: Geodesic path in G
"""
# Adjoint functions:
Ad = lambda a,xi: dR(inv(a),a,dL(a,e,xi))
ad = lambda xi,eta: bracket(xi,eta)
coad = lambda p,pp: T.tensordot(T.tensordot(C,p,(0,0)),pp,(1,0))

# Euler-Poincare equations:
def ode_EP(t,mu):

xi = T.tensordot(inv(A),mu,(1,0))
dmut = -coad(xi,mu)
return dmut

EP = lambda mu: integrate(ode_EP,mu)

# reconstruction
def ode_EPrec(mu,t,g):

xi = T.tensordot(inv(A),mu,(1,0))
dgt = dL(g,e,VtoLA(xi))
return dgt

EPrec = lambda g,mus: integrate(ode_EPrec,g,mus)

Example 3.1 (Geodesic on SO(3)). Let g0 ∈ G be the identity matrix. An example
of a geodesic on SO(3) found as the solution to the Euler-Poincaré equation is shown
in Figure 5.
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Figure 5: (left) Geodesic on SO(3) found by the Euler-Poincaré equations. (right) The
geodesic on SO(3) projected to the sphere using the left action g.x = gx for x ∈ S2 ⊂ R3.

3.2 Brownian motion on G

In the following subsection, we will go through a construction of Brownian motions
on a group G where the evolution is given as a Stratonovich SDE. With a group
structure, we can simulate a Brownian motion which remains in the group G. Using
the inner product A, let e1, . . . , ed be an orthonormal basis for g, and construct an
orthonormal set of vector fields on the group as Xi(g) = dLgei, for g ∈ G. Recall that
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the structure constant of the Lie algebra Ci
jk are the same as in the commutator of

these vector fields, that is
[Xj, Xk] = Ci

jkXi . (3.2)

The corresponding Brownian motion on G is the following Stratonovich SDE

dgt = −1

2

∑

j,i

Cj
ijXi(gt)dt+Xi(gt) ◦ dW i

t , (3.3)

whereWt is an Rd-valued Wiener processes. We refer to [Lia04] for more information
on Brownian motions on Lie groups.

In Theano, the stochastic process (3.3) can be integrated with the following code.

Python code
"""
SDE for Brownian Motions on a Lie group G

Args:
g: Starting point for the process
dW: Steps of a Euclidean Brownian motion

Returns:
Tensor (t,gt)

t: Time evolution
gt: Evolution of g

"""
def sde_Brownian(dW,t,g):

X = T.tensordot(dL(g,e,eiLA),sigma,(2,0))
det = -.5*T.tensordot(T.diagonal(C,0,2).sum(1),X,(0,2))
sto = T.tensordot(X,dW,(2,0))
return (det,sto)

Brownian = lambda g,dWt: \
integrate_sde(sde_Brownian,integrator_stratonovich,g,dWt)

Here, we used integrate_sde which is a discrete time stochastic integrator as
described in section A.2.

Example 3.2 (Brownian motion on SO(3)). Figure 6 shows an example of a Brow-
nian motion on SO(3). The initial point x0 ∈ SO(3) for the Brownian motion was
the 3-dimensional identity matrix.

There are other ways of defining stochastic processes on a Lie group G. An ex-
ample can be found in [ACH17] for finite dimensional Lie groups and in [Hol15]
for infinite dimensions. See also [CHR] for the general derivation of these stochas-
tic equations. In this theory, the noise is introduced in the reconstruction relation
to form the motion on the dual of the Lie algebra to the Lie group and appears
in the momentum formulation of the Euler-Poincaré equation given in (3.1). This
framework has also been implemented in Theano and can be found in the reposi-
tory. Another interesting approach, not yet implemented in Theano, is the one of
[ACC14], where noise is introduced on the Lie group, and an expected reduction by
symmetries results in a dissipative deterministic Euler-Poincaré equation.
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Figure 6: (left) Brownian motion on the group SO(3) defined by (3.3). The initial point,
x0 ∈ SO(3), was set to the identity matrix. (right) The projection by the left action of the
Brownian motion on SO(3) to the sphere

4 Sub-Riemannian Frame Bundle Geometry

We now consider dynamical equations on a more complicated geometric construc-
tion, a frame bundle or more generally fibre bundles. A frame bundle FM =
{FxM}x∈M is the union of the spaces FxM, the frames of the tangent space
at x ∈ M. A frame ν : Rd → TxM is thus an ordered basis for the tangent
space TxM. The frame bundle FM is a fibre bundle π : FM → M with pro-
jection π and can be equipped with a natural sub-Riemannian structure induced
by the metric g on M [Mok78]. Given a connection on M the tangent space
TFM can be split into a horizontal and vertical subspace, HFM and V FM, i.e.
TFM = HFM⊕ V FM. Consider a local trivialization u = (x, ν) of FM so that
π(u) = x. A path ut = (xt, νt) on FM is horizontal if u̇t ∈ HFM for all t. A
horizontal motion of ut corresponds to a parallel transport of the frame along the
curve π(ut) on M. Consequently, the parallel transport νt of a frame ν0 of Tx0M
along a curve xt onM is called a horizontal lift of xt.

Let ∂i = ∂
∂xi

, i = 1, . . . , d be a coordinate frame and assume that the frame ν
has basis vectors να for α = 1, . . . , d such that (x, ν) has coordinates (xi, νiα) where
να = νiα

∂
∂xi

. In these coordinates, a matrix representation of a sub-Riemannian
metric gFM : TFM? → HFM is given by

(gFM)ij =

(
W−1 −W−1ΓT

−ΓW−1 ΓW−1ΓT

)
, (4.1)

where (W−1)ij = δαβνiαν
j
β and the matrix Γ = (Γkαi ) has elements Γkαi = Γkijν

j
α.

We refer to [Str86, Mok78, Som15] for more details on sub-Riemannian structures
and the derivation of the sub-Riemannian metric on FM. Using the sub-Riemannian
metric gFM, normal geodesics on FM can be generated by solving Hamilton’s equa-
tions described earlier in (2.11).
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Example 4.1 (Normal sub-Riemannian geodesics on FM). With the same setup
as in Example 2.1, let u0 = (x0, ν0) ∈ FS2 such that x0 = F (0, 0) and ν0 has
orthonormal frame vectors ν1 = dF (0.5, 0), ν2 = dF (0, 0.5). Figure 7 shows two
geodesics on FS2 visualised on S2 with different initial momenta.
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Figure 7: Geodesics on FS2 solving Hamiltion’s equations for the sub-Riemannian metric
gFM with different initial momenta. The curves on S2 show the evolution of xt while the
evolution of the frame νt is shown by the tangent vectors in TxtS2.

4.1 Curvature

The curvature form on the frame bundle is defined from the Riemannian curvature
tensor R ∈ T 3

1 (M) described in section 2.5 [KSM93]. Let u = (x, ν) be a point in
FM, the curvature form Ω: TFM× TFM→ gl(d) on the frame bundle is

Ω(vu, wu) = u−1R(π∗(vu), π∗(wu))u , vu, wu ∈ TuFM , (4.2)

where π∗ : TFM→ TM is the projection of a tangent vector of FM to a tangent
vector ofM. By applying the relation, Ω(vu, wu) = Ω(hu(π∗(vu)), hu(π∗(wu))), where
hu : Tπ(u)M → HuFM denotes the horizontal lift, the curvature tensor R can be
considered as a gl(d) valued map

Ru : T 2(Tπ(u)M)→ gl(d)

(v, w) 7→ Ω(hu(π∗(vu)), hu(π∗(wu))) ,
(4.3)

for u ∈ FM. The implementation of the curvature form Ru is shown in the code
below.

Python code
"""
Riemannian Curvature form
R_u (also denoted Omega) is the gl(n)-valued curvature form u^{-1}Ru for a frame u for T_xM

Args:
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x: point on the manifold

Returns:
4-tensor (R_u)_ij^m_k with order i,j,m,k

"""
def R_u(x,u):

return T.tensordot(T.nlinalg.matrix_inverse(u),
T.tensordot(R(x),u,(2,0)),
(1,2)).dimshuffle(1,2,0,3)

Example 4.2 (Curvature on S2). Let u = (x, ν) ∈ FM with x = F (0, 0) and ν as
shown in Figure 8 (solid arrows). We visualize the curvature at u by the curvature
form Ω(ν1, ν2), calculated by applying R to the basis vectors of ν. The curvature
is represented in Figure 8 by the dashed vectors showing the direction for which
each basis vector change by parallel transporting the vectors around an infinitesimal
parallelogram spanned by ν.
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Figure 8: Curvature of each basis vector of ν. The solid arrows represents the basis
vectors, while the dashed arrows are the curvature form Ω(ν1, ν2). The figure shows in
which direction the basis vectors would change if they were parallel transported around an
infinitesimal parallelogram spanned by the basis vectors of ν.

4.2 Development and Stochastic Development

The short description of the development process in this section is based on the
book [Hsu02]. The presented approach has also been described in [Elw88, Som15,
SS17], where the method is used for generalisation of Brownian motions to manifolds.

Using the frame bundle and its horizontal and vertical splitting, deterministic
paths and stochastic processes on FM can be constructed from paths and stochas-
tic processes on Rd. In the deterministic case, this process is called development
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and when mapping Euclidean semi-martingales toM-valued semi-martingales, the
corresponding mapping is stochastic development. The development unrolls paths
on FM by taking infinitesimal steps corresponding to a curve in Rd along a ba-
sis of HFM. Let e ∈ Rd and u = (x, ν) ∈ FM, then a horizontal vector field
He ∈ HuFM can be defined by the horizontal lift of the vector νe ∈ TxM, that is

He(x) = hu(νe) .

If e1, . . . , ed is the canonical basis of Rd, then for any u ∈ FM, a basis for the
horizontal subspace HuFM is represented by the horizontal vector fields Hi(x) =
Hei(x), i = 1, . . . , d. Consider a local chart (U,ϕ) onM, the coordinate basis ∂i = ∂

∂xi

on U , and the projection map π : FM→M, then the coordinate basis ∂i induces
a local basis on the subset Ũ = π−1(U) ⊆ FM. Notice that the basis vectors
νe1, . . . , νed of TxM can be written as νej = νij∂i for each j = 1, . . . , d. Hence (xi, νij)

is a chart for Ũ and
(
∂
∂xi
, ∂
∂νij

)
spans the tangent space TuFM. The horizontal vector

fields can be written in this local coordinate basis as

Hi(q) = νji
∂

∂xj
− νji νlmΓkjl

∂

∂νkm
. (4.4)

The code below shows how these horizontal vector fields in the local basis can be
implemented in Theano.

Python code
"""
Horizontal Vector Field Basis

Args:
x: Point on the manifold
nu: Frame for the tangent space at x
Gamma_g(x): Christoffel symbols at x

Returns:
Matrix of coordinates for each basis vector

"""
def Hori(x,nu):

dnu = - T.tensordot(nu, T.tensordot(nu,Gamma_g(x),axes = [0,2]),
axes = [0,2])

dnu = dnu.reshape((nu.shape[1],dnu.shape[1]*dnu.shape[2]))
return T.concatenate([nu,dnu.T], axis = 0)

Example 4.3 (Horizontal vector fields). Figure 9 illustrates the horizontal vector
fields Hi at a point u ∈ FS2. Let u = (x, ν) with x = F (0.1, 0.1) ∈ S2 and ν being
the black frame shown in the figure. The horizontal basis for u is then found by
(4.4) and is plotted in Figure 9 with the red frame being the horizontal basis vectors
for x and the blue frames are the horizontal basis vectors for each frame vector
in ν. The horizontal basis vectors describe how the point x and the frame ν change
horizontally.

Let now Wt be a Rd-valued Euclidean semi-martingale, e.g. a Brownian motion.
The stochastic version of the development maps Wt to FM by the solution to the
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Figure 9: Horizontal vector fields for the point u = (x, ν) ∈ FM with x = F (0.1, 0.1) and
the frame ν visualized with black arrows. The horizontal tangent vectors at x is shown in
red and the horizontal tangent vectors for each tangent vector at ν is shown in blue.

Stratonovich stochastic differential equation

dUt =
d∑

i=1

Hi(Ut) ◦ dW i
t . (4.5)

The solution Ut to this stochastic differential equation is a path in FM for which a
stochastic path onM can be obtained by the natural projection π : Ut →M. The
stochastic development of Wt will be denoted ϕu0(Wt) where u0 ∈ FM is the initial
point on FM. In Theano this Stratonovich stochastic differential equation can be
implemented as follow.

Python code
"""
Stochastic Development

Args:
dW: Steps of stochastic process
u: Point in FM
drift: Vector of constant drift of W

Returns:
det: Matrix of deterministic evolution of process on FM
sto: Matrix of stochastic evolution of the process

"""
def stoc_dev(dW,u,drift):

x = u[0:d]
nu = u[d:(d+rank*d)].reshape((d,rank))
det = T.tensordot(Hori(x,nu), drift, axes = [1,0])
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sto = T.tensordot(Hori(x,nu), dW, axes = [1,0])
return det, sto

The variable drift can be used to find the stochastic development of a process
with defined drift. The numerical solution to this SDE requires the use of stochastic
numerical integration methods, described in the appendix A, such as the Euler-Heun
scheme, used in the example below.

Example 4.4 (Deterministic and stochastic Development). Let γt be a curve in R2

defined by
γ(t) = (20 sin(t), t2 + 2t), t ∈ [0, 10] ,

and x = F (0, 0) ∈ S2. Consider the orthonormal frame for TxM given by the Gram-
Schmidt decomposition based on the metric g of the vectors v1 = dF (−1, 1), v2 =
dF (1, 1). The curve γt is a deterministic process in R2 and hence (4.5) can be applied
to obtain the development of γt to S2. In Figure 10 is shown the curve γt and its
development on the sphere.
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Figure 10: (left) The curve γt defined in Example 4.4. The red and green point denotes
the start and endpoint respectively. (right) The development of γt on the sphere.

Let then Xt be a stochastic process in R2 defined from a Brownian motion, Wt,
with drift, β. Discretizing in time, the increments dWt follow the normal distribution
N (0, dtI2), here with dt = 0.0001. Let β = (0.5, 0.5) such that

dXt = dWt + βdt .

A sample path of Xt is shown in Figure 11. The stochastic development of Xt is
obtained as the solution to the Stratonovich stochastic differential equation defined
in (4.5). The resulting stochastic development on S2 is shown in the right plot of
Figure 11.

4.3 Most Probable Path equations

The most common distance measure on Riemannian manifolds is the geodesic dis-
tance. However, in contexts where data exhibit non-trivial covariance, it is argued in
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Figure 11: (left) The stochastic process Xt defined in Example 4.4. The red and green
point denotes the start–and endpoint respectively of the process. (right) The stochastic
development of Xt on S2.

[Som15, SS17] that weighting the geodesic energy by the inverse of the covariance,
the precision, gives a useful generalization of the geodesic distance. Extremal paths
for the corresponding variational problem are precisely projections of FM geodesics
with respect to the sub-Riemannian metric gFM constructed earlier. These paths also
have an interpretation as being most probable for a specific measure on the path
space.

More formally, let Xt be a stochastic process with X0 = x0. Most probable
paths in the sense of Onsager-Machlup [FK82] between x0, y ∈ M are curves
γt : [0, 1]→M, γ0 = x0 maximizing

µMε (γt) = P (dg(Xt, γt) < ε, ∀t ∈ [0, 1]) , (4.6)

for ε→ 0 and with the Riemannian distance dg. Most probable paths are in general
not geodesics but rather extremal paths for the Onsager-Machlup functional

∫ 1

0

LM(γt, γ̇t) dt = −E[γt] +
1

12

∫ 1

0

S(γt) dt . (4.7)

Here, S denotes the scalar curvature of M and the geodesic energy is given by
E[γt] = 1

2

∫ 1

0
‖γ̇t‖2

g dt. In comparison, geodesics only minimize the energy E[γt].
Instead of calculating the MPPs based on the Onsager-Machlup functional on

the manifold, the MPPs for the driving process Wt can be found. It has been shown
in [SS17] that under reasonable conditions, the MPPs of the driving process exist
and coincide with projections of the sub-Riemannian geodesics on FM obtained
from (2.11) with the sub-Riemannian metric gFM. The implementation of the MPPs
shown below is based on this result and hence returns the tangent vector in TuFM
which leads to the sub-Riemannian geodesic on FM starting at u and hitting the
fibre at y.

Let Wt be a standard Brownian motion and Xt = ϕu0(Wt), the stochastic de-
velopment of Wt with initial point u0 ∈ FM. Then, the most probable path of
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the driving process Wt from x0 = π(u0) to y ∈ M is defined as a smooth curve
γt : [0, 1]→M with γ0 = x0, γ1 = y satisfying

arg min
γt,γ0=x0,γ1=y

∫ 1

0

−LRn

(
ϕ−1
u0

(γt),
d

dt
ϕ−1
u0

(γt)

)
dt , (4.8)

that is, the anti-development ϕ−1
u0

(γt) is the most probable path of Wt in Rn. The
implementation of the MPPs is given below.

Python code
"""
Most probable paths for the driving process

Args:
u: Starting point in FM
y: Point on M

Returns:
MPP: vector in T_uFM for sub-Riemannian geodesic hitting fiber above y

"""
loss = lambda v,u,y: 1./d*T.sum((Expfm(u,g(u,v))[0:d]-y)**2)
dloss = lambda v,u,y: T.grad(loss(v,u,y),v)
# Returns the optimal horizontal tangent vector defining the MPP:
MPP = minimize(loss, np.zeros(d.eval()), jac=dloss, args=(u,y))

Example 4.5 (Most Probable Path on ellipsoid). Let u0 = (x0, ν0) ∈ FM for which
x0 = F (0, 0) and ν0 consists of the tangent vectors dF (0.1, 0.3), dF (0.3, 0.1) and
y = F (0.5, 0.5) ∈ S2. We then obtain a tangent vector v = (1.03,−5.8, 0, 0, 0, 0) ∈
Hu0FM which leads to the MPP shown in Figure 12 as the blue curve. For com-
parison, the Riemannian geodesic between x0 and y is shown in green.
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Figure 12: A most probable path between x0 = F (0, 0) and y = F (0.5, 0.5) (red point) on
an ellipsoid. The blue curve is the MPP and the green the Riemannian geodesic between
x0 and y.
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5 Landmark Dynamics

In this section, we will apply the previous generic algorithms to the example of
the manifold of landmarks, seen as a finite dimensional representation of shapes
in the Large Deformation Diffeomorphic Metric Mapping (LDDMM). We will not
review this theory in details here but only show how to adapt the previous code to
this example. We refer to the book [BMTY05] for more details and LDDMM and
landmark dynamics.

Let M ∼= Rdn be the manifold of n landmarks with positions xi ∈ Rd on a
d-dimensional space. From now on, we will only consider landmarks in a plane, that
is d = 2. In the LDDMM framework, deformations of shapes are modelled as flows
on the group of diffeomorphisms acting on any data structure, which in this case
are landmarks. To apply this theory, we need to have a special space, a reproducing
kernel Hilbert space (RKHS), denoted by V . In general, an RKHS is a Hilbert space
of functions for which evaluations of a function v ∈ V at a point x ∈ M can be
performed as an inner product of v with a kernel evaluated at x. In particular, for
v ∈ V , v(x) = 〈Kx, v〉V for all x ∈ M , for which Kx = K(., x). In all the examples
of this paper, we will use a Gaussian kernel given by

K(xi,xj) = α · exp

(‖xi − xj‖2

2σ2

)
, (5.1)

with standard deviation σ = 0.1 and a scaling parameter α ∈ Rd.
The diffeomorphisms modelling the deformation of shapes in M is defined by

the flow
∂tϕ(t) = vt ◦ ϕ(t), for vt ∈ V , (5.2)

where ϕ : M → M and ◦ means evaluation vt(ϕ) for a time-dependent vector
field vt. Given a shape x1 ∈ M, a deformation of x1 can be obtained by applying
to x1 a diffeomorphism ϕ obtained as a solution of (5.2) for times bteween 0 and 1.
We write x2 = ϕ(1) · x1, the resulting deformed shape.

Let a shape x in the landmark manifoldM be given as the vector of positions
x = (x1

1, x
2
1, . . . , x

1
n, x

2
n), where the upper indices are the positions of each landmark

on the image. Consider ξ, η ∈ T ∗xM. The cometric onM is thus

g∗x(ξ, η) =
n∑

i,j=1

ξiK(xi,xj)ηj , (5.3)

where the components of the cometric are gij = K(xi,xj) for xi = (x1
i , x

2
i ). The

coordinates of the metric are the inverse kernel matrix gij = K−1(xi,xj) and the
cometric (5.3) corresponds to the standard landmark Hamiltonian when ξ = η = p,
the momentum vector of the landmarks.

Recall that the Christoffel symbols depend only on the metric, hence they can
be obtained by the general equation (2.4). Geodesics on M can then be obtained
as solutions of Hamilton’s equations described in section 2.3 with this landmark
Hamiltonian. An example of geodesics for two landmarks is shown in Figure 13
along with an example of a geodesic on the frame bundle FM, obtained as the
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Figure 13: Geodesics on the landmark manifold. (left) Geodesic onM found with Hamil-
ton’s equations. (right) Geodesic on FM as the solution to Hamilton’s equations generated
from the sub-Riemannian structure on FM.

solution to Hamilton’s equations generated from the sub-Riemannian structure on
FM described in section 4.

Example 5.1 (Stochastic Development). We use a two landmarks manifold M,
that is dim(M) = 4. Then, as in Example 4.4, we consider the curve γt = (20 sin(t),
t2 + 2t), t ∈ [0, 10] (Figure 14 top left panel) and a point x = (0, 1, 0.5, 1) ∈ M.
The initial frame for each landmark is given as the canonical basis vectors e1 =
(1, 0), e2 = (0, 1) shown in Figure 14 (top right panel) as well as the deterministic
development of γt to M. Figure 14 (bottom right panel) shows an example of a
stochastic development for a 4-dimensional stochastic process Wt displayed on the
bottom left panel. Notice that in the deterministic case, a single curve was used
for both landmarks, thus their trajectories are similar and only affected by the
correlation between landmarks. In the stochastic case, the landmarks follow different
stochastic paths, also affected by the landmarks interaction.

The examples shown in this section can, in addition, be applied to a higher di-
mensional landmark manifold as seen in figure 1. For more examples on Theano code
used with more landmarks on for example the Corpus Callosum shapes, we refer to
[KS17, AHPS17]. For another stochastic deformation of shapes in the context of com-
putational anatomy, with examples on landmarks, we refer to [AHS17, AHPS17],
where the focus was on noise inference in these models. These works were inspired
by [Hol15], where stochastic models for fluid dynamics were introduced such that ge-
ometrical quantities remain preserved, and applied for finite dimensions in [ACH17].
In the same theme of stochastic landmark dynamics, [MS17] introduced noise and
dissipation to also tackle noise inference problems.
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Figure 14: Deterministic development (top left) The curve γt defined in Example 5.1. The
red and green point denotes the start–and endpoint of the process respectively using the
displayed frame. (right) The development of γt on each landmark. Bottom row: Stochas-
tic development (left) Brownian motion, Wt, in R4 plotted as two processes. (right) The
stochastic development of Wt to the manifold.

6 Non-Linear Statistics

This section focuses on a selection of basic statistical concepts generalized to man-
ifolds and how these can be implemented in Theano. We refer to [Pen06] for an
overview of manifold valued statistics.

6.1 Fréchet Mean

The Fréchet Mean is an intrinsic generalization of the mean-value in Euclidean
space [Fré48]. Consider a manifoldM with a distance d and let P be a probability
measure onM. The Fréchet mean set is defined as the set of points minimizing the
function

F (y) = arg min
x∈M

EP [d(x, y)2], y ∈M . (6.1)

Unlike the Euclidean mean, the solution to (6.1) is not necessarily unique. If the
minimum exists and is unique, the minimum is called the Fréchet mean. The Fréchet
mean for a sample of data points y1, . . . , yn is estimated as

Fȳ = arg min
x∈M

1

n

n∑

i=1

d(x, yi)
2 . (6.2)
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When considering a Riemannian manifold, a natural choice of distance measure
is the geodesic distance described in section 2.1. With this choice of distance, the
empirical Fréchet mean reduces to

Fȳ = arg min
x∈M

1

n

n∑

i=1

‖Log(x, yi)‖2 , (6.3)

which can be implemented in Theano as follow.

Python code
"""
Frechet Mean

Args:
x: Point on the manifold
y: Data points
x0: Initial point for optimization

Returns:
The average loss from x to data y

"""
def Frechet_mean(x,y):

(cout,updates) = theano.scan(fn=loss, non_sequences=[v0,x],
sequences=[y], n_steps=n_samples)

return 1./n_samples*T.sum(cout)
dFrechet_mean = lambda x,y: T.grad(Frechet_mean(x,y),x)
FMean = minimize(Frechet_mean, x0, jac=dFrechet_mean, args=y)

x

1

0

1

y

1

0

1
1

0

1

x

1

0

1

y

1

0

1
1

0

1

Figure 15: (left) Sampled data points, with the red point being the initial guess of the
mean. (right) The resulting empirical Frechet mean. The iterated results are visualized as
red dots. The final result is the largest red dot with the distance minimizing geodesics to
each datapoint.
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Example 6.1 (Fréchet mean on S2). Consider the Levi-Civita connection on S2

and equip S2 with the geodesic distance given in (2.9). A sample set of size 20 is
generated on the northern hemisphere. Each coordinate of a sample point has been
drawn from a normal distribution with mean 0 and standard deviation 0.2. The
initial guess of the Fréchet mean is F (0.4,−0.4). The sample set and initial mean
are shown in the left plot of Figure 15. The resulting empirical Frechet mean found
with the implementation above is visualized in Figure 15.

The Fréchet mean can not just be used to calculate the mean on manifolds.
In [SS17], the authors presented a method for estimating the mean and covariance
of normal distributions on manifolds by calculating the Fréchet mean on the frame
bundle. The next section will describe a way to generalize normal distributions to
manifolds.

6.2 Normal Distributions

Normal distributions in Euclidean spaces can be considered as the transition distri-
bution of Brownian motions. The generalization of normal distributions to manifolds
can be defined in a similar manner. In [Elw88], isotropic Brownian motions onM
are constructed as the stochastic development of isotropic Brownian motions on
Rn based on an orthonormal frame. However, [Som16, SS17] suggested performing
stochastic development with non-orthonormal frames, which leads to anisotropic
Brownian motions on M. Let Wt be a Brownian motion on R2 and consider the
initial point u = (x, ν) ∈ FS2, for x = F (0, 0) and ν the frame consisting of the
canonical basis vectors e1, e2. An example of a Brownian motion path on the sphere,
derived as the stochastic development of Wt in R2, is shown in Figure 16.

Based on the definition of Brownian motions on a manifold, normal distribu-
tions can be generalized as the transition distribution of Brownian motions onM.
Consider the generalization of the normal distribution N (µ,Σ). When defining the
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Figure 16: (left) Brownian motion, Wt, in R2. (right) The stochastic development of Wt

to the sphere with initial point u = (x, ν), for x = F (0, 0) and ν the frame consisting of
the canonical basis vectors e1, e2.
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normal distribution onM as the stochastic development of Brownian motions, the
initial point onM is the mean and the initial frame represents the covariance of the
resulting normal distribution.

Example 6.2 (Normal distributions on S2). Let Wt be a Brownian motion on R2

and consider x = F (0, 0) ∈ S2 being the mean of the normal distributions in this
example. Two normal distributions with different covariance matrices have been
generated, one isotropic and one anisotropic distribution. The normal distributions
are N (0,Σi) for i = 1, 2 with covariance matrices

Σ1 =

(
0.15 0

0 0.15

)
, Σ2 =

(
0.2 0.1
0.1 0.1

)
. (6.4)

As explained above, the initial frame ν represents the covariance of the normal
distribution on a manifoldM. Therefore, we chose ν1 with basis vectors being the
columns of Σ1 and ν2 with basis vectors represented by the columns of Σ2. Density
plots of the resulting normal distributions are shown in Figure 17.
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Figure 17: (left) Density estimate of the isotropic normal distribution on S2 with covari-
ance Σ1 given in (6.4). (right) Density estimate of the anisotropic normal distribution on
S2 with covariance Σ2.

7 Conclusion

In this paper, we have shown how the Theano framework and Python can be used
for implementation of concepts from differential geometry and non-linear statistics.
The opportunity to perform symbolic calculations makes implementations of even
complex concepts such as stochastic integration and fibre bundle geometry easy and
concise. The symbolic representation is often of great practical value for the imple-
mentation process, leading to shorter code, fewer bugs, and faster implementations,
and formulas can almost directly be translated to Theano code. As seen in the ex-
amples, the symbolic representation of functions allows taking derivatives of any
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variables and of any order. The task of calculating gradients for optimization pro-
cedures can be difficult and prone to errors while with symbolic calculations, only a
few lines of code is needed to optimize over, for instance, the parameters of a stochas-
tic integrator or the evolution of a sub-Riemannian geodesic. This makes numerical
testing of new ideas fast and efficient and easily scalable to useful applications if
optimized for parallel computers of GPUs.

We have just shown here a small fragment of mathematical problems which can
be implemented with Theano and other similar software. Other problems that could
be solved using these methods can be found in statistical analysis on manifold-
valued data, such as geodesic regression, longitudinal analysis, and PCA, or in
computational anatomy, by solving registration problem on continuous shapes and
images and analysing or modelling shape deformations. For example, we refer to
[KS17, AHPS17, AHS17] for further examples of Theano in the field of computa-
tional anatomy which were not treated here.

Packages such as Theano have their limitations, and one must sometimes be
careful in the implementation and aware of the limitations of the algorithms. For
example, if equations are simple enough that derivatives can be written explicitly,
the code can in some situations be faster when computing from the explicit formula
rather than relying on the automatic differentiation. For complicated constructions,
the compilation step can be computationally intensive as well as memory demanding.
Such limitations can be overcome by carefully writing the code in order to limit
the compilation time and have the parameters of Theano properly adjusted to the
machine at hand.

With this paper and its accompanying code1, we hope to stimulate the use of
modern symbolic and numerical computation frameworks for experimental appli-
cations in mathematics, for computations in applied mathematics, and for data
analysis by showing how the resulting code allows for flexibility and simplicity in
implementing many experimental mathematics endeavours.
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A Stochastic integration

In the following, we will give a brief description of some basic theory on stochastic
differential equations and stochastic integration methods. The symbolic specifica-
tion in Theano allows us to take derivatives of parameters specifying the stochastic
evolutions, and the presented methods can, therefore, be used for e.g. maximum
likelihood estimation over stochastic processes. The theory in this appendix is based
on [Sch10].

A.1 Stochastic Differential Equations

We consider here stochastic processes, Ut in Rn, solutions to SDEs of the form

dUt = f(Ut, t)dt+ g(Ut, t)dWt, t ∈ [0, T ] , (A.1)

with drift f(Ut, t) and diffusion field g(Ut, t), functions from Rn × R to Rn.
There are two types of stochastic differential equations; Itô and Stratonovich

differential equations. The Stratonovich SDEs are usually denoted with ◦, such that
(A.1) reduces to

dUt = f(Ut, t)dt+ g(Ut, t) ◦ dWt . (A.2)

For integration of deterministic ODEs, solutions to the integral equation can be
defined as the limit of a sum of finite differences over the time interval. In this case,
it does not matter in which point of the intervals the function is evaluated. For
stochastic integrals, this is not the case. Itô integrals are defined by evaluating at
the left point of the interval, while Stratonovich integrals use the average between
the value at the two endpoints of the interval. The two integrals do not result in
equal solutions, but they are related by

g(Ut, t)dWt = 1
2
dg(Ut, t)g(Ut, dt)dt+ g(Ut, t) ◦ dWt , (A.3)

where dg denotes the Jacobian of g [BMB+01]. Whether to choose Itô or the Stra-
tonovich framework depends on the problem to solve. One benefit from choosing
the Stratonovich integral is that it obeys the chain rule making it easy to use in a
geometric context.

A.2 Discrete Stochastic Integrators

We generally need numerical integration to find solutions to SDEs. There are several
versions of numerical integrators of different order of convergence. Two simple inte-
grators are the Euler method for Itô SDEs and the Euler-Heun for the Stratonovich
SDEs.

Euler Method. Consider an Itô SDE as defined in (A.1). Let 0 = t0 < t1 < · · · <
tn = T be a discretization of the interval [0, T ] for which the stochastic process is
defined and assume ∆t = T/n. Initialize the stochastic process, U0 = u0 for some
initial value u0. The process Ut is then recursively defined for each time point ti by,

Uti+1
= Uti + f(Uti , ti)∆t+ g(Uti , ti)∆Wi , (A.4)
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in which ∆Wi = Wti+1
−Wti . Given an Itô stochastic differential equation, sde_f,

the Euler method can be implemented in Theano by the following code example.

Python code
"""
Euler Numerical Integration Method

Args:
sde: Stochastic differential equation to solve
integrator: Choice of integrator_ito or integrator_stratonovich
x: Initial values for process
dWt: Steps of stochastic process
*ys: Additional arguments to define the sde

Returns:
integrate_sde: Tensor (t,xt)

t: Time evolution
xt: Evolution of x

"""
def integrator_ito(sde_f):

def euler(dW,t,x,*ys):
(detx, stox, X, *dys) = sde_f(dW,t,x,*ys)
ys_new = ()
for (y,dy) in zip(ys,dys):

ys_new = ys_new + (y+dt*dy,)
return (t+dt,x + dt*detx + stox, *ys_new)

return euler

# Integration:
def integrate_sde(sde,integrator,x,dWt,*ys):

(cout, updates) = theano.scan(fn=integrator(sde),
outputs_info=[T.constant(0.),x, *ys],
sequences=[dWt],
n_steps=n_steps)

return cout

Euler-Heun Method. An equivalent integration method as the Euler method for
Itô SDEs, is the Euler-Heun method used to approximate the solution to Stratono-
vich SDEs. Consider a similar discretization as in the Euler method. The Euler-Heun
numerical integration method is then defined as,

Uti+1
= Uti + f(Uti , ti)∆t+ 1

2

(
g(Uti , ti) + g(Ûti , ti)

)
∆Wi , (A.5)

where Ûti = Uti + g(Uti , ti)∆Wi. The implementation of the Euler-Heun method is
similar to the Euler method, such that based on a Stratonovich SDE, sde_f, the
implementation can be executed as follows,
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Python code
"""
Euler-Heun Numerical Integration Method

Args:
sde: Stochastic differential equation to solve
integrator: Choice of integrator_ito or integrator_stratonovich
x: Initial values for process
dWt: Steps of stochastic process
*ys: Additional arguments to define the sde

Returns:
integrate_sde: Tensor (t,xt)

t: Time evolution
xt: Evolution of x

"""
def integrator_stratonovich(sde_f):

def euler_heun(dW,t,x,*ys):
(detx, stox, X, *dys) = sde_f(dW,t,x,*ys)
tx = x + stox
ys_new = ()
for (y,dy) in zip(ys,dys):

ys_new = ys_new + (y+dt*dy,)
return (t+dt,

x + dt*detx + 0.5*(stox + sde_f(dW,t+dt,tx,*ys)[1]),
*ys_new)

return euler_heun

# Integration:
def integrate_sde(sde,integrator,x,dWt,*ys):

(cout, updates) = theano.scan(fn=integrator(sde),
outputs_info=[T.constant(0.),x, *ys],
sequences=[dWt],
n_steps=n_steps)

return cout
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