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Abstract

We establish a central limit theorem for multivariate summary statistics of
non-stationary α-mixing spatial point processes and a subsampling estimator
of the covariance matrix of such statistics. The central limit theorem is crucial
for establishing asymptotic properties of estimators in statistics for spatial
point processes. The covariance matrix subsampling estimator is flexible and
model free. It is needed e.g. to construct confidence intervals and ellipsoids
based on asymptotic normality of estimators. We also provide a simulation
study investigating an application of our results to estimating functions.

Keywords: α-mixing, central limit theorem, estimating function, random field,
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1 Introduction
Let X denote a spatial point process on Rd observed on some bounded window
W ⊂ Rd. In statistics for spatial point processes, much interest is focused on possibly
multivariate summary statistics or estimating functions TW (X) of the form

TW (X) =
6=∑

u1,...,up∈X∩W
h(u1, . . . , up) (1.1)

where h : Rp → Rq, p, q ≥ 1, and the 6= signifies that summation is over pairwise
distinct points. Central limit theorems for such statistics have usually been developed
using either of the two following approaches, both based on assumptions of α-mixing.
One approach uses Bernstein’s blocking technique and a telescoping argument that
goes back to Ibragimov and Linnik (1971, Chapter 18, Section 4). This approach
has been used in a number of papers like Guan and Sherman (2007), Guan and Loh
(2007), Prokes̆ová and Jensen (2013), Guan et al. (2015), and Xu et al. (2018). The
other approach is due to Bolthausen (1982) who considered stationary random fields
and whose proof was later generalised to non-stationary random fields by Guyon
(1995) and Karácsony (2006). This approach is e.g. used in Waagepetersen and Guan
(2009), Coeurjolly and Møller (2014), Biscio and Coeurjolly (2016), Coeurjolly (2017),
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and Poinas et al. (2017). Regarding the point process references mentioned above, it
is characteristic that essentially the same central limit theorems are (re-)invented
again and again for each specific setting and statistic considered. We therefore find
it useful to provide a unified framework to state, once and for all, a central limit
theorem under general non-stationary settings for multivariate point process statistics
TW (X) admitting certain additive decompositions. We believe this can save a lot of
work and tedious repetitions in future applications of α-mixing point processes. The
framework of α-mixing is general and easily applicable to e.g. Cox and cluster point
processes and a wide class of determinantal point processes (DPPs) (Poinas et al.,
2017). For certain model classes other approaches may be more relevant. For Gibbs
processes it is often convenient to apply central limits for conditionally centered
random fields (Jensen and Künsch, 1994; Coeurjolly and Lavancier, 2017) while
Heinrich (1992) developed a central limit theorem specifically for the case of Poisson
cluster point processes using their strong independence properties.

Consider for example (1.1) and assume that {C(l)}l∈L forms a disjoint partitioning
of Rd. Then we can decompose TW (X) as

TW (X) =
∑

l∈L
fl,W (X) (1.2)

with

fl,W (X) =
∑

u1∈X∩C(l)∩W

6=∑

u2,...,up∈(X∩W )\{u1}
h(u1, . . . , up).

Thus TW (X) can be viewed as a sum of the variables in a discrete index set random
field {fl,W (X)}l∈L. This is covered by our set-up provided h satisfies certain finite
range conditions, see the following sections for details. In connection to the Bolthausen
approach, we remark that Guyon (1995) does not cover the case where the function
f in (1.2) depends on the observation window. This kind of generalisation is e.g.
needed in Jalilian et al. (2017). By considering triangular arrays, Karácsony (2006) is
more general than Guyon (1995), but Karácsony (2006) on the other hand considers
a combination of increasing domain and infill asymptotics that is not so natural in a
spatial point process framework. Moreover, the results in Guyon (1995) and Karácsony
(2006) are not applicable to non-parametric kernel estimators depending on a band
width converging to zero. Using Bolthausen’s approach, we establish a central limit
theorem that does not have these limitations. For completeness we also provide in
the supplementary material a central limit theorem based on Bernstein’s blocking
technique and we discuss why its conditions may be more restrictive than those for
our central limit theorem.

A common problem regarding application of central limit theorems is that the
variance of the asymptotic distribution is intractable or difficult to compute. However,
knowledge of the variance is needed for instance to assess the efficiency of an estimator
or to construct confidence intervals and ellipsoids. Bootstrap and subsampling
methods for estimation of the variance of statistics of random fields have been studied
in e.g. Politis and Romano (1994) and Lahiri (2003). For statistics of points processes,
these methods have been considered in e.g. Guan and Sherman (2007), Guan and
Loh (2007), Loh (2010) and Mattfeldt et al. (2013) but they have been limited to
stationary or second-order intensity reweighted stationary point processes in R2 and
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only for estimators of the intensity and Ripley’s K-function. For general statistics of
the form (1.2), we adapt results from Sherman (1996) and Ekström (2008) to propose
a subsampling estimator of the variance. We establish its asymptotic properties
in the framework of a possibly non-stationary α-mixing point process and discuss
its application to estimate the variance of point process estimating functions. The
good performance of our subsampling estimator is illustrated in a simulation study
considering coverage of approximate confidence intervals when estimates of intensity
function parameters are obtained by composite likelihood.

In Section 2 we define notation and the different α-mixing conditions used in our
paper. Section 3 states the central limit theorem based on Bolthausen’s technique and
the subsampling estimator is described in Section 4. Application of our subsampling
estimator to estimating functions is discussed in Section 5 and is illustrated in a
simulation study in Section 6. Finally, our subsampling estimator is discussed in
relation to other approaches in Section 7. The proofs of our results are presented in
the Appendix. A discussion on Bernstein’s blocking technique approach, technical
lemmas, and some extensive technical derivations are provided in the supplementary
material.

2 Mixing spatial point processes and random
fields

For d ∈ N = {1, 2, . . .}, we define a random point process X on Rd as a random
locally finite subset of Rd and refer to Daley and Vere-Jones (2003) and Daley and
Vere-Jones (2008) for measure theoretical details. We define a lattice L as a countable
subset of Zd where Z = N ∪ {0,−1,−2, . . .}. When considering vertices of a lattice,
we use bold letter, for instance i ∈ Zd. We define

d(x, y) = max{|xi − yi| : 1 ≤ i ≤ d}, x, y ∈ Rd.

Reusing notation we also define

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}, A,B ⊂ Rd.

For a subset A ⊆ Rd we denote by |A| the cardinality or Lebesgue measure of A.
The meaning of | · | and d( · , · ) will be clear from the context. Moreover, for R ≥ 0,
we define A⊕R = {x ∈ Rd : infy∈A d(x, y) ≤ R}.

The α-mixing coefficient of two random variables X and Y is

α(X, Y ) = α(σ(X), σ(Y ))
= sup{|P (A ∩B)− P (A)P (B)| : A ∈ σ(X), B ∈ σ(Y )},

where σ(X) and σ(Y ) are the σ-algebras generated by X and Y , respectively. This
definition extends to random fields on a lattice and point processes as follows. The
α-mixing coefficient of a random field {Z(l)}l∈L on a lattice L and a point process
X are given for m, c1, c2 ≥ 0 by

αZc1,c2(m) = sup{α(σ((Z(l) : l ∈ I1)), σ((Z(k) : k ∈ I2))) :
I1 ⊂ L, I2 ⊂ L, |I1| ≤ c1, |I2| ≤ c2, d(I1, I2) ≥ m}
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and

αX
c1,c2(m) = sup{α(σ(X ∩ E1), σ(X ∩ E2)) :

E1 ⊂ Rd, E2 ⊂ Rd, |E1| ≤ c1, |E2| ≤ c2, d(E1, E2) ≥ m}.

Note that the definition of αX
c1,c2 differs from the usual definition in spatial statistics,

see e.g. Waagepetersen and Guan (2009), by the use of d(·, ·) in place of the Euclidean
norm. This choice has been made to ease the proofs and makes no substantial
difference since all the norms in Rd are equivalent. For a matrix M we use the
Frobenius norm |M | = (∑i,jM

2
i,j)1/2.

3 Central limit theorem based on Bolthausen’s
approach

We consider a sequence of statistics TWn(X) where {Wn}n∈N is a sequence of increasing
compact observation windows that verify

(H1) W1 ⊂ W2 ⊂ . . . and |⋃∞l=1Wl| =∞.

Note that we do not assume that each Wi is convex and that ∪∞i=1Wi = Rd as it is
usually the case in spatial statistics, see e.g. Waagepetersen and Guan (2009) or Biscio
and Lavancier (2017). We assume that TWn(X) can be additively decomposed as

TWn(X) =
∑

l∈Dn(Wn)
fn,l,Wn(X) (3.1)

where for n, q ∈ N, Dn is a finite index set defined below, and fn,l,Wn is a function on
the sample space of X to Rq. We assume that fn,l,Wn(X) depends on X only through
X ∩Wn ∩ C⊕Rn (l) for some R ≥ 0, where Cn(l) is a hyper cube of side length sn > 0,

Cn(l) =
d∏

j=1
(lj − sn/2, lj + sn/2], l ∈ snZd, (3.2)

and C⊕Rn (l) = Cn(l)⊕R. Thus the Cn(l), l ∈ snZd, form a disjoint partition of Rd.
We denote by vn = |C⊕Rn (l)| the common volume of the C⊕Rn (l) and Dn(A) is defined
for any A ⊂ Rd by

Dn(A) = {l ∈ snZd : Cn(l) ∩ A 6= ∅}. (3.3)
For brevity, we write Dn in place of Dn(Wn). Then Wn is the disjoint union of
Cn(l) ∩Wn, l ∈ Dn.

For n ∈ N and l ∈ Zd let for ease of notation Zn(l) = fn,l,Wn(X) and consider the
following assumptions.

(H2) There exists 0 ≤ η < 1 such that sn = |Wn|η/d, and if η > 0, |Dn| = O(|Wn|/sdn).
Further, there exists ε > 0 such that supn∈N αX

2vn,∞(s) = O(1/sd+ε).
(H3) There exists τ > 2d/ε such that sup

n∈N
sup
l∈Dn

E|Zn(l)− EZn(l)|2+τ <∞.
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(H4) We have 0 < lim infn→∞ λmin
( Σn
|Dn|

)
, where Σn = VarTWn(X) and λmin(M)

denotes the smallest eigen value of a symmetrix matrix M .

We then obtain the following theorem.

Theorem 3.1. Let {TWn(X)}n∈N be a sequence of q-dimensional statistics of the
form (3.1). If (H1)–(H4) hold, then we have the convergence

Σ−
1
2

n

(
TWn(X)− ETWn(X)

)
distr.−−−→
n→∞ N (0, Iq)

where Σn = VarTWn(X), and Iq is the identity matrix.

Remark 3.2. The existence of Σ−
1
2

n for n large enough is ensured by (H4).

Remark 3.3. In many applications we can simply take η = 0 so that sn = 1. In
that case, we do not require further assumptions on Dn. However, in applications
dealing with kernel estimators depending on a bandwidth hn tending towards 0, we
may have VarTWn(X) of the order |Wn|hdn (e.g. Heinrich and Klein, 2014). Then,
(H4) can be fulfilled if sn = 1/hn and η > 0 so that by (H2), |Dn| is also of the order
|Wn|/sdn = |Wn|hdn.

Remark 3.4. For a point process, moments are calculated using so-called joint
intensity functions. To verify (H3) it often suffices to assume boundedness of the
joint intensities up to order 2(2 + dτe).

Remark 3.5. As presented in Section S1, the convergence in Theorem 3.1 can be
proved under different assumptions using Bernstein’s blocking technique. However,
as explained in Section S2, assumptions on the observation windows and on the
asymptotic variance of TWn(X) are more restrictive when working with Bernstein’s
blocking technique than with Bolthausen’s approach.

4 Subsampling variance estimator
By Theorem 3.1, for α ∈ (0, 1), we may establish an asymptotic 1 − α confidence
ellipsoid for ETWn(X) using the 1− α quantile q1−α of the χ2(q) distribution, i.e.

P
(
E(X) ≤ q1−α

)
−−−→
n→∞ 1− α (4.1)

where

E(X) = |Dn|−1(TWn(X)− ETWn(X)
)T
(

Σn

|Dn|

)−1 (
TWn(X)− ETWn(X)

)
.

The matrix Σn is usually not known in practice. Thus we suggest to replace Σn/|Dn|
by a subsampling estimate, adapting results from Sherman (1996) and Ekström
(2008) to establish the consistency of the subsampling estimator.

The setting and notation are as in Section 3 except that we only consider
rectangular windows Wn so that (H1) is replaced with the following assumption.
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(S0) We let {mn}n∈N be a sequence in Nd such that the rectangles defined by
Wn = ∏d

j=1(−mn,j/2,mn,j/2) verifies W1 ⊂ W2 ⊂ · · · and |
⋃∞
n=1Wn| =∞.

Let {kn}n∈N be a sequence in Nd, consider for t ∈ Zd the (overlapping) sub-
rectangles

Bkn,t =
d∏

j=1
(tj − kn,j/2, tj + kn,j/2), (4.2)

and define Tkn,n = {t ∈ Zd : Bkn,t ⊂ Wn}. We want to estimate

ςn = Var(TWn(X))
|Dn|

= Σn

|Dn|

where TWn(X) is as in (3.1). We suggest the subsampling estimator

ς̂n = 1
|Tkn,n|

∑

t∈Tkn,n


 TBkn,t(X)
√
|Dn(Bkn,t)|

− 1
|Tkn,n|

∑

s∈Tkn,n

TBkn,s(X)
√
|Dn(Bkn,s)|




2

. (4.3)

To establish consistency of ς̂n we consider the following assumptions.

(S1) For j = 1, . . . , d, kn,j < mn,j. There is at least one j such that mn,j goes to
infinity. If mn,j →∞ as n→∞, so does kn,j and kn,j/mn,j → 0 as n→∞. If
mn,j converges to a constant, then kn,j converges to a constant less than or equal
to the previous constant. Moreover, (maxi kdn,i)/

∏d
i=1(mn,i − kn,i) converges

towards 0 as n tends to infinity.
(S2) For some ε′ > 0, supn∈N supl∈Tkn,n

E(|Zn(l)− E(Zn(l))|4+ε′) < +∞.
(S3) We have |Dn|−1Σn − |Tkn,n|−1∑

t∈Tkn,n
|Dn(Bkn,t)|−1 Var(TBkn,t(X)) → 0 as

n→∞ and lim supn→∞ λmax(Σn) <∞ where λmax(M) denotes the maximal
eigen value of a symmetric matrix M .

(S4) |Tkn,n|−1∑
t∈Tkn,n

{E(TBkn,t(X)) − E(|Tkn,n|−1∑
s∈Tkn,n

TBkn,s(X))}2 → 0 as
n→∞.

(S5) There exists c > 0 and δ > 0, such that supp∈N αX
p,p(m)/p ≤ c/md+δ and, for

vn as below (3.2), vn
∏d
j=1(2kn,j + 1)/(maxi kn,i − sn)d+δ converges towards 0

as n tends to infinity.
(S6) There exists c, δ′ > 0 and ε′ > ε > 0 such that αX

5vn,5vn(r) ≤ c r−5d 6+ε
ε
−δ′ .

Theorem 4.1. Let {TWn(X)}n∈N be a sequence of q-dimensional statistics of the
form (3.1). Let further ς̂n be defined as in (4.3) and assume that (S0)–(S6) hold.
Then we have the convergence

E



∣∣∣∣∣ς̂n −

Σn

|Dn|

∣∣∣∣∣

2

 −−−→

n→∞ 0.

For practical application, it is enough to state Theorem 4.1 with convergence
in probability but the proof is easier when considering mean square convergence.
Assumption (S1) ensures that the sub-rectangles are large enough to mimic the
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behaviour of the point process on Wn while at the same time their number grows
to infinity. Assumption (S2) looks stronger than (H3) for Theorem 3.1. However,
in (H3) note that τ depends on the mixing properties of the process controlled
by (H2). Thus, depending on the mixing properties, (S2) is not much stronger
than (H3). Assumption (S3) should hold for any process that is not too exotic
and ensures that the variance of the studied statistic on each sub-rectangle is not
too different from Σn. In particular, it holds naturally if there exists a matrix Σ̃
such that limn→∞|Dn(A)|−1 Var(TA(X)) = Σ̃, A = Wn or A = Bkn,t, with t ∈ Tkn,n.
The condition (S4) is needed to control that the expectations over sub-rectangles
Bkn,t do not vary too much. For instance, this assumption is automatically verified
if the point process X is stationary or if the statistics (1.2) are centred so that
ETWn(X) = ETBkn,t(X) = 0, for t ∈ Tkn,n, see Section 5. Moreover, depending on
the statistic (1.2), this assumption may also be verified if X is second-order intensity
reweighted stationary as assumed for the bootstrap method developed by Loh (2010).
Note that (S5) includes a condition on the size of the Bkn,t that holds trivially
if sn = 1, which is usually the case if we do not consider non-parametric kernel
estimators. We use two different α-mixing conditions (S5)–(S6) to apply Theorem 4.1.
Moreover, the decreasing rate in (S6) is restrictive due to the constant 5d. Hence,
mixing conditions are stronger than for Theorem 3.1. However, in the proof of
Theorem 4.1, assumption (S6) is used only to verify (C.4) which ensures the validity
of the assumption (i) of Theorem C.1. Depending on the problem considered, (C.4)
may be verified without additional constraints on the α-mixing coefficient. For
example, if we are in the setting of Biscio and Lavancier (2016, Section 4.1) where in
particular X is a stationary determinantal point process, then (C.4) is an immediate
consequence of Biscio and Lavancier (2016, Proposition 4.2).
Remark 4.2. By Theorems 3.1 and 4.1, we may replace the confidence ellipsoid
in (4.1) by a subsampling confidence ellipsoid Ên, i.e.

P
(
Ên(X) ≤ q1−α

)
−−−→
n→∞ 1− α (4.4)

where

Ên(X) = |Dn|−1(TWn(X)− ETWn(X)
)T
ς̂−1
n

(
TWn(X)− ETWn(X)

)
.

Remark 4.3. Although the size of the Bkn,t is controlled by assumptions (S1)
and (S5), we have not addressed the issue of finding their optimal size, i.e. the one
ensuring the fastest convergence rate in Theorem 4.1. Concerning that problem, there
are several recommendations in the literature, see for instance Lahiri (2003).
Remark 4.4. Note that the centers of the Bkn,t are chosen to be a subset of Zd
but any other fixed lattice could be used as well. Further, similarly to Loh (2010)
and Ekström (2008), it is possible to extend Theorem 4.1 by relaxing the assumption
in (S0) that the windows are rectangular.

5 Variance estimation for estimating functions
Consider a parametric family of point processes {Xθ : θ ∈ Θ} for a non-empty subset
Θ ⊆ Rq, q ∈ N. We further assume that we observe a realisation of Xθ0 for a θ0 ∈ Θ.
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To estimate θ it is common to use estimating functions of the form

en(θ) =
6=∑

u1,...,up∈Xθ0∩Wn

hθ(u1, . . . , up)−
∫

W p
n

hθ(u1, . . . , up)ρ(p)
θ (u1, . . . , up)du1 . . . dup,

(5.1)

where hθ is a function from Rdp into Rq, and ρ(p)
θ denotes the p-th order joint intensities

of Xθ. Then an estimate θ̂n of θ0 is obtained by solving en(θ) = 0. The case p = 1
is relevant if interest is focused on estimation of the intensity function λθ(u) = ρ

(1)
θ .

Several papers have discussed choices of h and studied asymptotic properties of θ̂n
for the case p = 1, see for instance Waagepetersen (2007), Guan and Shen (2010),
and Guan et al. (2015). A popular and simple choice is hθ(u) = ∇θλθ(u)/λθ(u) where
∇θ denotes the gradient with respect to θ. In this case en can be viewed as the score
of a composite likelihood.

In the references aforementioned, the asymptotic results are of the form

|Wn|1/2
(
S−1
n (θ0)Σn,θ0

|Wn|
S−1
n (θ0)

)−1/2
(θ̂n − θ0) distr.−−−→

n→∞ N (0, Iq), (5.2)

where Sn(θ0) = |Wn|−1E(−den(θ0)/dθT ) and Σn,θ0 = Var en(θ0). The matrix Σn,θ0 is
crucial but usually unknown. To estimate Σn,θ0 , a bootstrap method was proposed
in Guan and Loh (2007) under several mild mixing and moment conditions. How-
ever, their method has been established only for second-order intensity reweighted
stationary point processes on R2 when p = 1 and for a specific function h. Using the
theory established in Section 4, we propose a subsampling estimator of Σn,θ0 that
may be used in a more general setting but under slightly stronger mixing conditions.
Following the notation in Sections 3 and 4, for θ ∈ Θ, we let TWn,θ(Xθ0) = en(θ) and

Zn,θ(l) =
∑

u1∈Xθ0∩C(l)∩Wn

6=∑

u2,...,up∈(Xθ0∩Wn)\{u1}
hθ(u1, . . . , up)

−
∫

C(l)∩Wn

∫

W p−1
n

hθ(u1, . . . , up)ρ(p)
θ (u1, . . . , up)du1 . . . dup.

Further ς̂n(θ) is defined as in (4.3) but now stressing the dependence on θ. In practice,
if |Wn|/|Dn| → 1, we estimate Σn,θ0/|Wn| by ς̂n(θ̂n). The validity of this relies in a
standard way on a Taylor expansion

ς̂n(θ̂n) = ς̂n(θ0) + d
dθ ς̂n(θ∗)(θ̂n − θ0)

where ‖θ∗ − θ0‖ ≤ ‖θ̂n − θ0‖ and one needs to check that dς̂n(θ∗)/dθ is bounded
in probability. We illustrate with our simulation study in the next section, the
applicability of ς̂n(θ̂n) to estimate Σn,θ0/|Wn|.

6 Simulation study
To assess the performance of our subsampling estimator, we estimate by simulation
the coverage achieved by asymptotic 95% confidence intervals when considering
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intensity estimation by composite likelihood as discussed in the previous section. The
confidence intervals are obtained in the standard way using the asymptotic normality
(5.2) and replacing Σn,θ0/|Wn| by our subsampling estimator.

When computing ς̂n, the user must specify the shape, the size, and the possible
overlapping of the sub-rectangles (blocks) used for the subsampling estimator. For sim-
plicity we assume that Wn = [0, n]2 ⊂ R2 and use square blocks. We denote by bl the
sidelength of the blocks and by κ the maximal proportion of overlap possible between
two blocks. The block centres are located on a grid (Wn ∩ hn,κZ2) + hn,κ(1/2, 1/2)
where hn,κ is chosen such that κ is the ratio between the area of the overlap of two
contiguous blocks located at hn,κ(1/2, 1/2) and hn,κ(1/2, 1/2+1), and the area of one
block. For instance, for W1 = [0, 1]2, bl = 0.5 and κ = 0.5, the centers of the blocks
completely included in W1 are (0.25, 0.25); (0.5, 0.25); (0.75, 0.25); (0.25, 0.5), . . . and
so on until (0.75, 0.75). The simulations have been done for every possible combination
between n = 1, 2, 3, bl = 0.2, 0.5, κ = 0, 0.5, 0.75, 0.875, and the four following point
process models: a non-stationary Poisson point process, two different non-stationary
log-Gaussian Cox processes (LGCPs), and a non-stationary determinantal point
process (DPP). For a presentation of these models, we refer to Baddeley et al. (2015).

For each point process simulation, the intensity is driven by a realisation Z1
of a zero mean Gaussian random field with exponential covariance function (scale
parameter 0.5 and variance 0.1). As specified below, we have for each realisation of
Z1 chosen the parameters so that the average number of points on |Wn| is 100|Wn|
(100, 400 or 900).

For the non-stationary Poisson point processes we use the intensity function

λn(x) = exp
(
θ0,n + Z1(x)

)
(6.1)

where θ0,n = log(100|Wn|)− log
∫
Wn

exp(Z1(x))dx. For the two LGCPs, the random
intensity functions are of the form

Λn(x) = exp
(
θ0,n + Z1(x) + Z2(x)

)
(6.2)

where θ0,n = log(100|Wn|)− Var(Z2(0))/2− log
∫
Wn

exp(Z1(x))dx, and where Z2 is
a zero mean Gaussian random field independent of Z1 and also with exponential
covariance function (scale parameter 0.05, and variance 0.25 for one LGCP and 1
for the other). The non-stationary DPP has been simulated by: First simulating a
stationary DPP using the Gaussian kernel

Cn(x, y) = λn,dom exp
(
−|x− y|

2

β

)
,

where β ' 0.04 and λn,dom = 100|Wn|/
∫
Wn

exp(Z1(x) − maxx∈Wn Z1(x))dx; Sec-
ond, applying an independent thinning with probability λ′n(x) = exp

(
Z1(x) −

maxx∈Wn Z1(x)
)
, x ∈ Wn, of retaining af point. Specifically, β actually equals

1/
√
πλn,dom and corresponds to the most repulsive Gaussian DPP according to La-

vancier et al. (2014). Following Appendix A in Lavancier et al. (2014), the result is
then a realisation of a non-stationary DPP with kernel

C ′n(x, y) =
√
λ′n(x)λ′n(y)λn,dom exp

(
−|x− y|

2

β

)
. (6.3)

9



The intensity of the DPP is given by λn(x) = C ′n(x, x) = λn,domλ
′
n(x). Realisations

of the DPP and each LGCP are plotted in Figure 1 along with the corresponding
pair correlation functions defined by g(r) = λ(2)(u, v)/λ(u)λ(v) where r = |u − v|,
and λ, λ(2) denote the intensity and second order product density, respectively. Note
that in the DPP case, the pair correlation function depends on the realisation of Z1
via β. In Figure 1 the DPP pair correlation function is plotted with β = 0.04.

For each of the models, the intensity function is of log-linear form λθ(x) =
exp(θ0+θ1Z1(x)), x ∈ R2 where Z1 is considered as a known covariate. The parameter
θ = (θ0, θ1) is estimated using composite likelihood which is implemented in the
R-package spatstat (Baddeley et al., 2015) procedure ppm. The true value of θ1 is
one while the true value of θ0 depends on the window Wn and the realization of Z1.
For each combination of n, bl, κ and point process type we apply the estimation
procedure to 5000 simulations and compute the estimated coverage of the confidence
interval for the parameter θ1. The results are plotted in Figure 2. The Monte
Carlo standard error for the estimated coverages is approximately 0.003. For each
combination of bl and n, the corresponding plot shows the estimated coverage for
combinations of κ = 0, 0.5, 0.75, 0.875 and the four point process models. To aid the
visual interpretation, points are connected by line segments.

0.0 0.1 0.2 0.3 0.4
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2
.5

g
(r

)

r
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LGCP var=0.25
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Figure 1: From left to right, the first three panels show a realisation on [0, 2]2 of a LGCP
with variance parameter 0.25, a LGCP with variance parameter 1, and a DPP. Last panel:
a plot of the corresponding theoretical pair correlation functions.

Except for the lower left plot, the results seem rather insensitive to the choice
of κ (in the lower left plot, bl = 0.5 seems to be too large relative to the window W1).
From a computational point of view κ = 0 is advantageous and is never outperformed
in terms of coverage by other choices of κ. The results are more sensitive to the
choice of bl. For the LGCPs we see the anticipated convergence of the estimated
coverages to 95% when bl = 0.5 and n is increased but not when bl = 0.2. This
suggests that bl = 0.2 is too small for the statistics on blocks to represent the statistic
on the windows W1 −W3 in case of the LGCPs. Among the LGCPs, the coverages
are closer to 95% for the LGCP with the lowest variance. For the Poisson process
and the DPP, the estimated coverages are very close to 95% both for bl = 0.2 and
bl = 0.5 except for the small window W1. The general impression from the simulation
study is that the subsampling method works well when the point patterns are of
reasonable size (hundreds of points), and the blocks are of appropriate size relative
to the observation window.
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Figure 2: Estimated coverages of the confidence intervals for θ1 when using the subsampling
estimator (4.3). Upper row to lower row: bl = 0.2, 0.5. Left column to right column:
n = 1, 2, 3. In each plot the estimated coverage is computed for four point process models:
non-stationary Poisson point process, DPP, and two LGCPs; and κ = 0, 0.5, 0.75, 0.875.
The lines joining the points just serve to aid visual interpretation. The straight horizontal
red line indicates the value 0.95.

7 Discussion
Our simulations have shown that the subsampling estimator may be used to obtain
confidence intervals in the framework of intensity estimation by composite likelihood.
The results obtained were satisfying with estimated coverages close to the nominal
level 95% except for small point patterns and provided a suitable block size was used.

These results may be compared with the estimated coverage obtained when
using the variance estimate provided by the function vcov.kppm of the R-package
spatstat. This function computes an estimate of the asymptotic variance of the
composite likelihood estimators by plugging in a parametric estimate of the pair
correlation function into the theoretical expression for the covariance matrix following
Waagepetersen (2007). Using vcov.kppm for the simulated realisations of LGCPs
from Section 6, the estimated coverages of the resulting approximate confidence
intervals for the parameter θ1 ranges from 93% to 96% (including results for n = 1
and cases with a misspecified parametric model for the pair correlation function).
Thus, the results are closer to the nominal level of the confidence interval than for
the subsampling estimator. On the other hand, the subsampling estimator is much
more flexible as it is model free and may be applied to any statistic of the form (3.1),
in any dimension.

We have also compared our subsampling estimator with the thinned block boot-
strap estimator proposed in Guan and Loh (2007) and got very similar results within
the simulation study settings of that paper. This is to be expected given the similari-
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ties of the methods. However, the method in Guan and Loh (2007) requires that it is
possible to thin the point process into a second-order stationary point process.
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The following appendix contains the proofs of Theorems 3.1 and 4.1. The last section
of the appendix contains a number of technical lemmas used in the proofs of the
main results. Proofs of technical lemmas and some lengthy technical derivations are
available in the supplementary material.

A Proof of Theorem 3.1
Suppose first that we have verified Theorem 3.1 in the univariate case q = 1. Then,
by (H4) and Lemma F.3, we may use the extension of the Cramér-Wold device in
Lemma F.6 to verify Theorem 3.1 also for q > 1. We thus focus on the case q = 1.

The proof of Theorem 3.1 for q = 1 follows quite closely Karácsony (2006) and is
based on the following theorem which is proved in Section B.
Theorem A.1. Let the situation be as in Theorem 3.1 with q = 1, and assume in
addition
(Hb) Zn(l) is uniformly bounded with respect to n ∈ N and l ∈ Dn.
Then

1
σn

∑

l∈Dn

(
Zn(l)− EZn(l)

)
distr.−−−→
n→∞ N (0, 1)

where σ2
n = Var∑l∈Dn Zn(l).

Proof of Theorem 3.1. Define for L > 0 and n ∈ N:
• for l ∈ Zd, Z(L)

n (l) = Zn(l) 1
(
Zn(l) ∈ [−L,L]

)
,

• for l ∈ Zd, Z̆(L)
n (l) = Zn(l)− Z(L)

n (l),
• Xn = 1

σn

∑
l∈Dn

(
Zn(l)− EZn(l)

)
,

• X(L)
n = 1

σn

∑
l∈Dn

(
Z(L)
n (l)− EZ(L)

n (l)
)
,

• X̆(L)
n = 1

σn

∑
l∈Dn

(
Z̆(L)
n (l)− EZ̆(L)

n (l)
)
.

By Lemma F.2, we have for s ≥ 0,

α
Z̆Ln
1,1 (snr) ≤ αX

vn,vn(snr − sn − 2R).

Further, by (H1)–(H2), sn is not decreasing with respect to n so we may find r0 ≥ 1
such that for all r ≥ r0 and n ∈ N, sn(1 − 1/r) − 2R/r > 0. Combining this with
(H2), there exist constants c0, c1 > 0 so that

sup
n∈N

∞∑

r=1
rd−1αZ̆

(L)
n

1,1 (rsn)
τ

2+τ

≤ c0 + c1 sup
n∈N

∞∑

r=r0

rd−1(rsn − sn − 2R)
−(d+ε)τ

2+τ

≤ c0 + c1 sup
n∈N

∞∑

r=r0

rd−1− (d+ε)τ
2+τ

(
sn
(
1− 1

r

)
− 2R

r

)−(d+ε)τ
2+τ

≤ c0 + c1 sup
n∈N

(
sn
(
1− 1

r0

)
− 2R

r0

)−(d+ε)τ
2+τ ∞∑

r=r0

rd−1− (d+ε)τ
2+τ .
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By (H3), the last expression in the inequality is bounded. We may then adapt
Theorem 1 in Fazekas et al. (2000) to the lattice snZd and so there exist a constant
c2 > 0 such that

E(X̆(L)
n )2 = E

∣∣∣∣
1
σn

∑

l∈Dn

(
Z̆(L)
n (l)− EZ̆(L)

n (l)
)∣∣∣∣

2

≤ 1
σ2
n

(
1 + 16d

∞∑

r=1
(2r + 1)d−1αZ̆

(L)
n

1,1 (rsn)
τ

2+τ
) ∑

l∈Dn

(
E|Z̆(L)

n (l)|2+τ
) 2

2+τ

≤ c2|Dn|
σ2
n

sup
n∈N

sup
l∈Dn

(
E|Z̆(L)

n (l)|2+τ
) 2

2+τ .

By (H3),
sup
n∈N

sup
l∈Dn

(
E|Z̆(L)

n (l)|2+τ
) 2

2+τ −−−→
L→∞ 0.

Hence, it follows from the two last equations and (H4) that

sup
n∈N

E(X̆(L)
n )2 −−−→

L→∞ 0. (A.1)

We denote by σ2
n(L) the variance of σnX(L)

n . Noticing that EX2
n = 1, we have

σ2
n(L)
σ2
n

− 1 = E(X(L)
n )2 − EX2

n

= E(Xn − X̆(L)
n )2 − EX2

n

= E(X̆(L)
n )2 − 2E(XnX̆

(L)
n ).

Then, by the Cauchy-Schwarz inequality and (A.1),

sup
n∈N

∣∣∣∣∣
σ2
n(L)
σ2
n

− 1
∣∣∣∣∣ −−−→L→∞ 0. (A.2)

For n ∈ N, we have
∣∣∣EeitXn − e− t

2
2
∣∣∣

=
∣∣∣E
[(
eitX̆

(L)
n − 1

)
eitX

(L)
n + eitX

(L)
n − e− t

2
2
]∣∣∣

≤ E
∣∣∣eitX̆

(L)
n − 1

∣∣∣ +
∣∣∣EeitX

(L)
n − e−

σ2
n(L)
σ2
n

t2
2
∣∣∣+

∣∣∣e
−σ

2
n(L)
σ2
n

t2
2 − e− t

2
2
∣∣∣. (A.3)

Since for all x ∈ R, |eix − 1| ≤ |x|,

E|eitX̆(L)
n − 1| ≤ E|tX̆(L)

n | ≤ |t| sup
n∈N

√
E(X̆(L)

n )2. (A.4)

Writing δL = supn∈N|σ
2
n(L)
σ2
n
− 1| and Un = σn

σn(L)X
(L)
n , we have

∣∣∣∣EeitX
(L)
n − e−

σ2
n(L)
σ2
n

t2
2
∣∣∣∣

=
∣∣∣∣Ee

it
σn(L)
σn

Un − e−
σ2
n(L)
σ2
n

t2
2
∣∣∣∣ ≤ sup

v∈[1−δL,1+δL]

∣∣∣∣EeitvUn − e−
(tv)2

2

∣∣∣∣
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so by Theorem A.1 and Corollary 1 to Theorem 3.6.1 in Lukacs (1970), for L ≥ 0,
∣∣∣∣EeitX

(L)
n − e−

σ2
n(L)
σ2
n

t2
2
∣∣∣∣ −−−→n→∞ 0. (A.5)

Moreover, by a first order Taylor expansion with remainder,

sup
n∈N

∣∣∣∣e
−σ

2
n(L)
σ2
n

t2
2 − e− t

2
2

∣∣∣∣

= e−
t2
2 sup
n∈N

∣∣∣∣e
−(σ

2
n(L)
σ2
n
−1) t

2
2 − 1

∣∣∣∣ ≤
t2

2 δL + t4

8 exp(δL
t2

2 )δ2
L.

(A.6)

Therefore, by (A.3), (A.4), (A.5), and (A.6),

lim sup
n→∞

∣∣∣∣EeitXn − e−
t2
2

∣∣∣∣ ≤ |t| sup
n∈N

√
E(X̆(L)

n )2 + t2

2 δL,

which by (A.1) and (A.2) tends to 0 as L tends to infinity.

B Proof of Theorem A.1
For ease of presentation, we assume that the bound in (Hb) is 1. Define

• Yn(l) = Zn(l)− EZn(l),
• Sn = ∑

l∈Dn Yn(l),
• an = ∑

i,j∈Dn, d(i,j)≤mn E[Yn(i)Yn(j)],
• S̄n = 1√

an

∑
l∈Dn Yn(l),

• S̄n(i) = 1√
an

∑
j∈Dn, d(i,j)≤mn Yn(j),

where if η = 0, mn = |Dn|1/(2d+ε/2) and if η > 0, mn = |Wn|ξ/d with ξ verifying
max{η, d(1− η)/(2(d+ ε))} < ξ < (1 + η)/2. Note that such ξ always exists. Then,
by (H1)–(H2),

mn →∞, mn/sn →∞, (B.1)
√
|Dn|m−d−εn −−−→

n→∞ 0, (B.2)

and √
|Dn|(mn/sn)−d −−−→

n→∞ ∞. (B.3)

By Lemma F.5, supn∈N ES̄2
n <∞. Thus by Lemma 2 in Bolthausen (1982) (see

also the discussion in Biscio et al., 2017), Theorem A.1 is proved if

E[(it− S̄n)eitS̄n ] −−−→
n→∞ 0. (B.4)

Notice that
(it− S̄n)eitS̄n = A1 − A2 − A3,
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where

A1 = iteitS̄n
(
1− 1

an

∑

i,j∈Dn
d(i,j)≤mn

Yn(i)Yn(j)
)
, (B.5)

A2 = eitS̄n√
an

∑

i∈Dn
Yn(i)(1− itS̄n(i)− e−itS̄n(i)), (B.6)

A3 = 1√
an

∑

i∈Dn
Yn(i)eit(S̄n−S̄n(i)). (B.7)

Hence, (B.4) follows from the convergences to zero of A1, A2, and A3 as established
in Section S4 in the supplementary material.

C Proof of Theorem 4.1
The proof is based on the following result for a random field on a lattice that is
proved in Section D.

Theorem C.1. For n ∈ N, let Rn be a random field on Zd, {Wn}n∈N be a sequence
of compact sets verifying (S0) and, for n ∈ N, let {Bkn,t : kn ∈ Nd, t ∈ Tkn,n} be
sub-rectangles defined as in (4.2) and such that (S1) holds. For q, n ∈ N and t ∈ Zd,
let further Ψ be a function defined on subsets of the sample space of Rn and taking
values in Rq and let ΨA = Ψ((Rn(l) : l ∈ Zd ∩ A)), for A = Bkn,t or A = Wn. We
assume that the following assumptions hold:

(i) {|ΨBkn,t − EΨBkn,t|4 : t ∈ Tkn,n, n ∈ N} is uniformly integrable,
(ii) αRnbn,bn(maxi kn,i)→ 0 as n→∞, where bn = ∏d

j=1(2kn,j + 1),
(iii) Var(ΨWn)− 1

|Tkn,n|
∑

t∈Tkn,n
Var(ΨBkn,t)→ 0 as n→∞,

(iv) 1
|Tkn,n|

∑
t∈Tkn,n

(
E(ΨBkn,t)− E(∑s∈Tkn,n

ΨBkn,s
|Tkn,n|

)
)2 → 0 as n→∞.

Let further

ς̂Rnn = 1
|Tkn,n|

∑

t∈Tkn,n

(
Ψ(Bkn,t)−

1
|Tkn,n|

∑

t∈Tkn,n

Ψ(Bkn,t)
)2
.

Then, we have the convergence,

lim
n→∞E(|ς̂Rnn −Kn|2) = 0

where Kn = Var(ΨWn).

Below, we check the assumptions (i)–(iii) in Theorem C.1 with Rn(l) = Zn(l)
and ΨA = TA(X)/

√
|Dn(A)|, for A ⊂ Rd. Then, Theorem 4.1 is proved directly by

Theorem C.1.
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Assumption (i).

For l ∈ Zd and n ∈ N, let Yn(l) = Zn(l)− E(Zn(l)) such that

TBkn,t(X)− E(TBkn,t(X)) =
∑

l∈Dn(Bkn,t)
Yn(l). (C.1)

Let ε′ be as in (S2), then by Lemma F.2 and (S6), we have for ε < ε′,
∞∑

r=1

(
αZn5,5(r)

) ε
6+ε r5d−1 ≤

∞∑

r=1

(
αX

5vn,5vn(r − 1− 2R)
) ε

6+ε r5d−1 <∞. (C.2)

Then, by (S2) and (C.2) we may apply Theorem 1 in Fazekas et al. (2000) which
states the existence of c1 > 0 such that

E
∣∣∣∣∣

∑

l∈Dn(Bkn,t)

Yn(l)√
|Dn(Bkn,t)|

∣∣∣∣∣

4+ε′/2

≤ c1 max{U, V } (C.3)

where

U =
∑

l∈Dn(Bkn,t)

(
E
∣∣∣∣

Yn(l)√
|Dn(Bkn,t)|

∣∣∣∣
4+ε′) 4+ε′/2

4+ε′
,

V =
{ ∑

l∈Dn(Bkn,t)

(
E
∣∣∣∣

Yn(l)√
|Dn(Bkn,t)|

∣∣∣∣
2+ε′/2) 2

2+ε′/2
}2+ε′/4

.

Further, by (S2), there exists a constant c2 such that

U ≤ c2
|Dn(Bkn,t)|

|Dn(Bkn,t)|2+ε′/4 = c2

|Dn(Bkn,t)|1+ε′/4

and

V ≤
(
c2
|Dn(Bkn,t)|
|Dn(Bkn,t)|

)2+ε′/4

= c
2+ε′/4
2 .

Both of the last upper bounds on U and V are bounded. Therefore, by (C.1) and (C.3),

sup
n∈N

sup
t∈Tkn,n

E

∣∣∣∣∣∣
TBkn,t(X)− E

(
TBkn,t(X)

)

√
|Dn(Bkn,t)|

∣∣∣∣∣∣

4+ε′/2

<∞ (C.4)

which implies (i) by (25.13) in Billingsley (1995).

Assumption (ii).

For c, δ as in (S5) and vn as below (3.2), we have by Lemma F.2,

αZnbn,bn(max
i
kn,i) ≤ αX

bnvn,bnvn(max
i
kn,i − sn − 2R) ≤ c

bnvn
(maxi kn,i − sn)d+δ

which by (S5) converges towards 0 as n tends to infinity.
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Assumptions (iii)–(iv).

Assumptions (iii)–(iv) are the same as (S3)–(S4).

D Proof of Theorem C.1
The proof of Theorem C.1 is based on several applications of the following Theo-
rem D.1 which states an intermediate result and is proved in Section E. Consequently,
these theorems may looks similar at first sight.

Theorem D.1. For n ∈ N, let Rn be a random field on Zd, {Wn}n∈N be a sequence
of compact sets verifying (S0) and, for n ∈ N, let {Bkn,t : kn ∈ Nd, t ∈ Tkn,n} be
sub-rectangles defined as in (4.2) and verifying (S1). For q, n ∈ N and t ∈ Zd, let
further h be a function defined on subsets of the sample space of Rn, taking values
into Rq and let hA = h((Rn(l) : l ∈ Zd ∩ A)) for A = Bkn,t or A = Wn. We assume
that the following assumptions hold:

(i’) {h2
Bkn,t

: t ∈ Tkn,n, n ∈ N} is uniformly integrable,

(ii’) αRnbn,bn(maxi kn,i)→ 0 as n→∞, where bn = ∏d
j=1(2kn,j + 1),

(iii’) E
(∑

t∈Tkn,n

hBkn,t
|Tkn,n|

)
− E(hWn)→ 0 as n→∞.

Then, we have the convergence

1
|Tkn,n|

∑

t∈Tkn,n

(
hBkn,t − E(hWn)

)
L2−−−→

n→∞ 0.

We now give the proof of Theorem C.1 and to shorten, we define ΨBkn =∑
t∈Tkn,n

ΨBkn,t/|Tkn,n|. For x = (x1, . . . , xd)T ∈ Rd and M a square matrix in
Rd × Rd, we further denote by |x| =

√∑d
i=1 x

2
i and |M | =

√∑
i,jM

2
ij the Euclidean

norms of x and M , respectively, and by x2 the matrix xxT .
From the statement of Theorem C.1, we have

ς̂Rnn = 1
|Tkn,n|

∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn,t) + E(ΨBkn,t)
− E(ΨBkn ) + E(ΨBkn )−ΨBkn

)2
.

Hence,
ς̂Rnn = C1 + C2 + C3 + C4 + C5 + C6, (D.1)

where the terms C1–C6 are all q × q matrices given below:

C1 = 1
|Tkn,n|

∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn,t)

)2
,

C2 = 1
|Tkn,n|

∑

t∈Tkn,n

(
E(ΨBkn,t)− E(ΨBkn )

)2
,

C3 =
(
E(ΨBkn )−ΨBkn

)2
,
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C4 = 1
|Tkn,n|

∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn,t)

)(
E(ΨBkn,t)− E(ΨBkn )

)T

+ 1
|Tkn,n|

∑

t∈Tkn,n

(
E(ΨBkn,t)− E(ΨBkn )

)(
ΨBkn,t − E(ΨBkn,t)

)T
,

C5 = 1
|Tkn,n|

∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn,t)

)(
E(ΨBkn )−ΨBkn

)T

+ 1
|Tkn,n|

∑

t∈Tkn,n

(
E(ΨBkn )−ΨBkn

)(
ΨBkn,t − E(ΨBkn,t)

)T
,

C6 = 1
|Tkn,n|

∑

t∈Tkn,n

(
E(ΨBkn,t)− E(ΨBkn )

)(
E(ΨBkn )−ΨBkn

)T

+ 1
|Tkn,n|

∑

t∈Tkn,n

(
E(ΨBkn )−ΨBkn

)(
E(ΨBkn,t)− E(ΨBkn )

)T
.

The assumption (iv), implies directly that

C2 −−−→n→∞ 0. (D.2)

By applying the Cauchy-Schwarz inequality for each sum in C4, we have E(|C4|2) ≤
4E(|C1|)|C2|. Further, by (i) and (25.11) in Billingsley (1995), E(|C1|) is uniformly
bounded with respect to n ∈ N and t ∈ Zd. Thus, by (D.2), it follows that

E(|C4|2) −−−→
n→∞ 0. (D.3)

We have

C5 + C6 =
E(ΨBkn )−ΨBkn

|Tkn,n|
∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn )

)T

+ 1
|Tkn,n|

∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn )

)(
E(ΨBkn )−ΨBkn

)T

= − 2(E(ΨBkn )−ΨBkn )2

so
C3 + C5 + C6 = −

(
E(ΨBkn )−ΨBkn

)2
. (D.4)

Let Yn = 1
|Tkn,n|

∑
t∈Tkn,n

(ΨBkn,t − E(ΨBkn,t)) and notice that C3 + C5 + C6 = −Y 2
n .

Using (i)–(ii), we may apply Theorem D.1 with h· = Ψ· − E(Ψ·) so that

E(|Yn|2) −−−→
n→∞ 0. (D.5)

Using (i)–(ii) and (iii), we may apply Theorem D.1 with h· = (Ψ· − E(Ψ·))2. Hence,

1
|Tkn,n|

∑

t∈Tkn,n

(
ΨBkn,t − E(ΨBkn,t)

)2 − E
((

ΨWn − E(ΨWn)
)2) L2−−−→n→∞ 0

which may be written as the convergence

C1 −Kn
L2−−−→n→∞ 0. (D.6)
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By Theorem 4.5.4 in Chung (2001), (D.6) implies that |C1 −Kn|2 is uniformly inte-
grable with respect to n. Moreover, E(|C1|2) = E(|C1−Kn+Kn|2) ≤ E(|C1−Kn|2)+
|Kn|2 and it follows from (S3) that Kn is uniformly bounded. Thus, |C1|2 is uniformly
integrable so that by Lemma F.7, Y 4

n is also uniformly integrable. Further, (D.5)
implies that Y 2

n
P−−−→

n→∞ 0 so by Theorem 4.5.4 in Chung (2001), we have Yn L2−−−→
n→∞ 0.

By (D.4), the last implies that

C3 + C5 + C6
L2−−−→

n→∞ 0. (D.7)

Finally, Theorem C.1 is proved by combining (D.1), (D.2), (D.3), (D.6), and (D.7).

E Proof of Theorem D.1

E
∣∣∣∣
∑

t∈Tkn,n

hBkn,t

|Tkn,n|
− E(hWn)

∣∣∣∣
2

= E
∣∣∣∣
∑

t∈Tkn,n

hBkn,t − E(hBkn,t)
|Tkn,n|

∣∣∣∣
2

+
∣∣∣∣
∑

t∈Tkn,n

E(hBkn,t)
|Tkn,n|

− E(hWn)
∣∣∣∣
2 (E.1)

Hence, if in (E.1) the first expectation on the right-hand side converges to 0 as n
tends to infinity, Theorem D.1 is proved by (iii’) and (E.1). We have

E
∣∣∣∣
∑

t∈Tkn,n

hBkn,t − E(hBkn,t)
|Tkn,n|

∣∣∣∣
2
≤ 1
|Tkn,n|2

∑

t1,t2∈Tkn,n

Cov(|hBkn,t1
|, |hBkn,t2

|)

= M1 +M2,

where

M1 = 1
|Tkn,n|2

∑

t1,t2∈Tkn,n,
d(Zd∩Bkn,t1 ,Z

d∩Bkn,t2 )≤max kn,i

Cov(|hBkn,t1
|, |hBkn,t2

|),

M2 = 1
|Tkn,n|2

∑

t1,t2∈Tkn,n,
d(Zd∩Bkn,t1 ,Z

d∩Bkn,t2 )>max kn,i

Cov(|hBkn,t1
|, |hBkn,t2

|).

Regarding M1, for a given t1 ∈ Tkn,n, there is at most (2 maxi kn,i + 1)d choices for t2.
Thus,

M1 ≤
(2 maxi kn,i + 1)d

|Tkn,n|
sup

t1,t2∈Tkn,n,
d(Zd∩Bkn,t1 ,Z

d∩Bkn,t2 )≤max kn,i

Cov(|hBkn,t1
|, |hBkn,t2

|)

≤ (2 maxi kn,i + 1)d
|Tkn,n|

sup
t1,t2∈Tkn,n,

d(Zd∩Bkn,t1 ,Z
d∩Bkn,t2 )≤max kn,i

√
E(|hBkn,t1

|2)E(|hBkn,t2
|2).

By (i’), there exists a constant c1 > 0 such that

M1 ≤
(2 maxi kn,i + 1)d

|Tkn,n|
c1 = (2 maxi kn,i + 1)d

∏d
i=1(mn,i − kn,i + 1)

c1.
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which by (S1) implies that M1 tends to 0 as n tends to infinity. We have

M2 ≤ sup
t1,t2∈Tkn,n,

d(Zd∩Bkn,t1 ,Z
d∩Bkn,t2 )>max kn,i

Cov(|hBkn,t1
|, |hBkn,t2

|).

Further, by (4.2) for all t ∈ Zd, |ZdBkn,t
| ≤ bn, where bn = ∏d

j=1(2kn,j + 1). Then, by
Lemma 1 in Sherman (1996), for any η > 0, we have

M2 ≤ 4η2αZnbn,bn(max kn,i) + 3√c2

√
E(X(η)

1 )2 + 3√c2

√
E(X(η)

2 )2 (E.2)

where for i = 1, 2, Xi = |hBkn,ti
|, Xη

i = Xi 1(Xi ≥ η), and c2 = supt∈Tkn,n
E(|hBkn,t|2)

which by (i’) is finite. Hence, by first taking lim sup as n tends to infinity and second
as η tends to infinity, it follows by (E.2), (i’), and (ii’), that M2 tends to 0 as n
tends to infinity. Therefore, E

∣∣∣
∑

t∈Tkn,n
(hBkn,t −E(hBkn,t))/|Tkn,n|

∣∣∣
2 converges to 0 as

n tends to infinity.

F Lemmas
This section contains a number of technical lemmas used in the proofs of the main
results. Proofs of the lemmas are given in the supplementary material.
Lemma F.1. For all l,k ∈ snZd, we have

d(l,k)− sn − 2R ≤ d
(
C⊕Rn (l), C⊕Rn (k)

)
≤ d(l,k) + sn + 2R.

Lemma F.2. For c1, c2, r ≥ 0, we have

αZc1,c2(r) ≤ αX
c1vn,c2vn(r − sn − 2R).

Lemma F.3. We have
lim sup
n→∞

λmax

(
Σn

|Dn|

)
<∞.

where λmax(M) denotes the maximal eigen value of a symmetric matrix M .
Lemma F.4. For k ∈ N and i ∈ snZd,

|{j ∈ snZd : d(i, j) = snk}| ≤ 3dkd−1.

Lemma F.5. Under the assumptions (Hb), (H2), and (H4), we have the convergence
∣∣∣∣∣1−

an
σ2
n

∣∣∣∣∣ −−−→n→∞ 0.

Lemma F.6 (Biscio et al. (2017)). Let {Xn}n∈N be a sequence of random variables
in Rp, for p ∈ N, such that

0 < lim inf
n→∞ λmin

(
Var(Xn)

)
< lim sup

n→∞
λmax

(
Var(Xn)

)
<∞,

where for a symmetric matrix M , λmin(M) and λmax(M) denote the minimal and
maximal eigen values of M .

Then, Var(Xn)−1/2Xn
distr.−−−→n→∞ N (0, Ip) if for all a ∈ Rp,

(
aT Var(Xn)a

)− 1
2aTXn

distr.−−−→n→∞ N (0, 1).
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Lemma F.7. Let the situation be as in Appendix D. We have

|Yn|4 ≤ q|C1|2.

Proof of Lemma F.7. For any vector x, let [x]i denotes its i-th coordinate. By the
Cauchy-Schwarz inequality,

|Yn|2 ≤
1

|Tkn,n|
q∑

i=1

∑

t∈Tkn,n

[ΨBkn,t − E(ΨBkn,t)]
2
i .

so that by applying the Cauchy-Schwarz inequality on the first sum,

|Yn|4 ≤
q

|Tkn,n|2
q∑

i=1

( ∑

t∈Tkn,n

[ΨBkn,t − E(ΨBkn,t)]
2
i

)2
.

On the other hand,

|C1|2 = 1
|Tkn,n|2

q∑

i,j=1

( ∑

t∈Tkn,n

[ΨBkn,t − E(ΨBkn,t)]i[ΨBkn,t − E(ΨBkn,t)]j
)2

which implies that |Yn|4 ≤ q|C1|2.
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Supplemental material
S1 Central limit theorem by blocking technique
For 0 < β < γ < 1 and ln = (l1,n, . . . , ld,n) ∈ nγZ, define blocks

Bn(ln) =
d∏

j=1

(
lj,n − (nγ − nβ)/2, lj,n + (nγ − nβ)/2

]
. (S1.1)

For n ∈ N, we denote by wn = (nγ − nβ)d the volume of each Bn(ln). Note that
contrary to (3.2) the union of blocks defined in (S1.1) over nγZ do not cover Rd. To
apply the blocking technique central limit theorem we assume that TWn(X) can be
approximated (see (C5) below) by a sum

∑

kn∈En
fn,Bn(kn)(X)

where
En = {l ∈ nγZ, Bn(l) ⊂ Wn} (S1.2)

and for each n and kn ∈ nγZ, fn,Bn(kn)(X) is a q ≥ 1 dimensional statistic depending
on X only through X ∩ (Bn(kn)⊕R). We consider the following conditions.

(C1) The cardinality |En| of En verifies |En| = O(nd(1−γ)).
(C2) There exists ε > 0 such that supm≥0 α

X
m,m(s)/m = O( 1

sd+ε ) and 2d/(2d+ ε) <
β < γ < 1.

(C3) There exists a τ > 0 so that

sup
n∈N

∑

kn∈En
E
∣∣∣(wn|En|)−

1
2 [fn,Bn(kn)(X)− E(fn,Bn(kn)(X))]

∣∣∣
2+τ

<∞.

(C4) There exists a positive definite matrix Σ, such that for all kn ∈ nγZ,

lim
n→∞w

−1
n Var fn,Bn(kn)(X) = Σ.

A preliminary central limit theorem is then given below.

Theorem S1.1. If (C1)–(C4) holds,

(wn|En|)−
1
2
∑

k∈En

(
fn,Bn(k)(X)− E[fn,Bn(k)(X)]

)
distr.−−−→
n→∞ N(0,Σ).

(C5) limn→∞Var
[
|Wn|−

1
2TWn(X)− (wn|En|)−

1
2
∑

k∈En fn,Bn(k)(X)
]

= 0.

A prerequisite for verifying (C5) will typically be limn→∞|Wn|/(wn|En|) = 1, see for
instance Prokes̆ová and Jensen (2013). In other words, Wn can be approximated well
by the sum of blocks Bn(kn) contained in Wn. This implies that Wn expands in all
directions and, in light of (C1), that |Wn| is proportional to nd.
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The next theorem follows easily from Theorem S1.1 and Chebyshev’s inequality.

Theorem S1.2. If (C1)–(C5) hold, then

|Wn|−
1
2
(
TWn(X)− ETWn(X)

)
distr.−−−→N→∞ (0,Σ),

where Σ = limn→∞|Wn|−1 VarTWn(X).

In the literature, Theorem S1.1 usually appears as an intermediary result in the
proof of Theorem S1.2. However, in addition to ease the reading of the proof, we
believe that it is important to state these theorems separately in order to easily
understand the differences with Theorem 3.1.

Conditions (C3)–(C4) ensure that we may use Lyapunov’s central limit theorem
in the proof of S1.1. Other central limit theorems, e.g. Lindeberg’s, for triangular
arrays could be used instead.

S2 Comparison between Theorems 3.1 and S1.2
Theorems 3.1 and S1.1 are both based on subdivisions of Rd into blocks or sub-
squares. However, for Theorem S1.1, we consider a set of blocks that do not cover Wn.
For this reason we need condition (C5) for Theorem S1.2, i.e. that contributions to
TWn(X) from the omitted part of |Wn| are negligible asymptotically.

The condition (C5) is usually not stated explicitly in the aforementioned references
that used a central limit theorem based on the blocking technique. Instead (C5) is
checked by direct calculation for the specific statistics considered. Note that in all
these references, statistics of the form (1.1) are considered with p = 2 and additional
assumptions on fl,W in (1.2) and X are imposed. For instance, it is often assumed
that fl,W is bounded with finite range and that the total variation of the reduced
factorial cumulant measures of X up to order 4 is finite. However, under our general
setting we have not been able to make such a calculation. Therefore, (C5) must be
checked for each application, using specific properties of X and fl,W .

The remaining assumptions in Theorems 3.1 and S1.2 may be separated in different
categories: (H1), (C1) (together with (C5)) deal with the observation windows; (H2),
(C2) are mixing conditions of the point process X; (H3), (C3) are moment conditions
of the statistics TW (X) that ensure uniform integrability; and finally (H4), (C4)
control the asymptotic variance.

The main difference between the theorems is the conditions on the observation
windows. Assumption (H1) is rather weak and does not impose strong restrictions
on the shape of the observation window. For instance, if d = 2, (H1) holds for a
sequence of rectangles Wn of width n and constant length. However, (C1) does not
hold for this choice of Wn since |Wn| = O(n). Moreover, it is worth mentioning that
we do not assume in Theorems 3.1 and S1.2 that Wn is convex as is usually done
in the literature, see for instance Guan and Sherman (2007), Waagepetersen and
Guan (2009) and Prokes̆ová and Jensen (2013). The mixing coefficient conditions
(H2) and (C2) have both been used extensively in spatial statistics. We are not
aware of point process examples where one condition holds and the other does
not. So for applications in point process statistics it is not clear that one is more
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advantageous than the other. In (H3), we require that τ > 2d/ε, where ε is the
same as in (H2), but in (C3) we only have τ > 0. Hence, it seems that Theorem 3.1
requires stronger moments conditions on X than Theorem S1.2. However, as discussed
above, further assumptions on the moments of X are usually needed to check (C5).
Assumptions (H4) is weaker than (C4) since it does not assume the existence of a
limiting variance.

In conclusion, Theorem S1.2 is more restrictive regarding the conditions on the
observation windows than Theorem 3.1 and requires (C5) whose verification may
be very challenging in practice and typically requires further assumptions. Thus in
general we recommend to use Theorem 3.1 instead of Theorem S1.2.

S3 Proof of Theorem S1.1
For n ∈ N, a ∈ Rq and kn ∈ En, define

Xn(kn) = aT (wn|En|)−
1
2 (fn,Bn(kn)(X)− E[fn,Bn(kn)(X)])

and for t ∈ R, φn(t) = Eeit
∑

kn∈En Xn(kn). Further, let {X ′n(kn)}kn∈En be a sequence
of mutually independent random variables such that for n ∈ N and kn ∈ En, X ′n(kn)
has the same distribution as Xn(kn). Finally, we write φ′n the characteristic function
of ∑kn∈En X

′
n(kn). For t ∈ R, we have

φn(t)− φ′n(t) = E
( ∏

kn∈En
eitXn(kn)

)
−

∏

kn∈En
E(eitX′n(kn))

= E
( ∏

kn∈En
eitXn(kn)

)
−

∏

kn∈En
E(eitXn(kn)). (S3.1)

Then, denoting j1, . . . , j|En| the elements of En

φn(t)− φ′n(t) = E
( |En|∏

k=1
eitXn(jk)

)
− E(eitXn(j1))E

( |En|∏

k=2
eitXn(jk)

)

+ E(eitXn(j1))
[
E
( |En|∏

k=2
eitXn(jk)

)
−
|En|∏

k=2
E(eitXn(jk))

]
.

(S3.2)

Since the term inside the bracket in (S3.2) is as (S3.1) up to the index of the product,
we may repeat the operation done between (S3.1) and (S3.2) |En| − 2 times. Hence

φn(t)− φ′n(t)

=
|En|−1∑

s=1

[
E
( |En|∏

k=s
eitXn(jk)

)
− E(eitXn(js))E

( |En|∏

k=s+1
eitXn(jk)

)] s−1∏

k=1
E(eitXn(jk))

with the convention that a product equals 1 if it runs over the null set. Thus, it
follows that

|φn(t)− φ′n(t)| ≤
|En|−1∑

s=1

∣∣∣∣E
( |En|∏

k=s
eitXn(jk)

)
− E(eitXn(js))E

( |En|∏

k=s+1
eitXn(jk)

)∣∣∣∣

≤
|En|−1∑

s=1

∣∣∣∣Cov
(
eitXn(js),

|En|∏

k=s+1
eitXn(jk)

)∣∣∣∣.
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Then, by Doukhan (1994, Lemma 3, p.10) and (S1.1),

|φn(t)− φ′n(t)| ≤ 4
|En|−1∑

s=1
αX
wn,(|En|−s)wn(2nβ) ≤ 4

|En|−1∑

s=1
αX

(|En|−s)wn,(|En|−s)wn(2nβ).

Hence,

|φn(t)− φ′n(t)| ≤ 4|En|2wn sup
m≥0

αX
m,m(2nβ)
m

. (S3.3)

By (C1), there exists c > 0 such that |En| ≤ cnd(1−γ) so by (C2) and (S3.3),

|φn(t)− φ′n(t)| ≤ 4c2

2ε n
2d−dγ−β(d+ε) ≤ 4c2

2ε n
2d−β(2d+ε) (S3.4)

which tends to 0 by (C2). We verify now (27.16) in Billingsley (1995) to apply
Lyapunov’s central limit theorem on ∑l∈En X

′
n(kn). By (C3) we have

∑

kn∈En
E|X ′n(kn)− EX ′n(kn)|2+τ = O

(
(wn|En|)−(1+ τ

2 )). (S3.5)

Further, it follows by (C4) that
∑

kn∈En
VarX ′n(kn) −−−→

n→∞ aTΣa. (S3.6)

Hence by (S3.5)–(S3.6),

∑

kn∈En

E|X ′n(kn)− EX ′n(kn)|2+τ
(∑

kn∈En VarX ′n(kn)
)2+τ = O

(
(wn|En|)−(1+ τ

2 )) (S3.7)

which tends to 0 as n goes to infinity. Therefore, using (S3.7) and the independence
of {X ′n(kn)}kn∈En for n ∈ N, we have by Lyapunov’s central limit theorem, see
Billingsley (1995, Theorem 27.3, p.362), that

φ′n(t) −−−→
n→∞ e−

1
2a
TΣat. (S3.8)

Finally, Theorem S1.1 is proved by (S3.3), (S3.4), (S3.8) and the Cramér-Wold device,
see for instance Billingsley (1995, Theorem 29.4, p.383).

S4 Convergences of (B.5)–(B.7)
Convergence of A1

Since |ieitS̄n| = 1 and

E
(
1− 1

an

∑

i,j∈Dn
d(i,j)≤mn

Yn(i)Yn(j)
)

= 0,
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we have

E|A1|2 = t2

a2
n

Var
( ∑

i,j∈Dn
d(i,j)≤mn

Yn(i)Yn(j)
)

= t2

a2
n

∑

In
Cov

(
Yn(i)Yn(j), Yn(i′)Yn(j′)

)
, (S4.1)

where In = {i, i′, j, j′ ∈ Dn : d(i, j) ≤ mn, d(i′, j′) ≤ mn}. We denote by B1 the
terms in the last sum verifying d(j, j′) ≥ 3mn and by B2 the others. If d(i, j) ≤ mn,
d(i′, j′) ≤ mn, and d(j, j′) ≥ 3mn then

min{d(i, j′), d(i, i′), d(j, j′), d(j, i′)} ≥ d(j, j′)− 2mn

so by Doukhan (1994, Lemma 3, p.10),

Cov
(
Yn(i)Yn(j), Yn(i′)Yn(j′)

)
≤ 4αZn2,2(d(j, j′)− 2mn).

Let m′n = dmn/sne be the smallest integer greater than mn/sn. Assuming that
d(i, j) ≤ mn and d(i′, j′) ≤ mn, for j, j′ ∈ Dn, there are at most (2m′n + 1)d choices
for i and the same for i′ when j respectively j′ is given. Thus from (S4.1) and the
last equation,

B1 ≤ 4 t
2

a2
n

|Dn|(2m′n + 1)2d sup
j∈Dn

∑

j′∈Dn
d(j,j′)≥3mn

αZn2,2(d(j, j′)− 2mn).

Then by Lemma F.4,

B1 ≤ 43dt2
a2
n

|Dn|(2m′n + 1)2d sup
j∈Dn

∑

r∈snZ
r≥3mn

(r/sn)d−1αZn2,2(r − 2mn),

and by Lemma F.2

B1 ≤ 43dt2
a2
n

|Dn|(2m′n + 1)2d ∑

r∈snZ
r≥3mn

(r/sn)d−1αX
2vn,2vn(r − 2mn − sn − 2R).

Invoking (H2), and noting that r − 2mn − sn − 2R > 0 for n large enough when
r ≥ 3mn,

B1 ≤ 43dt2
a2
n

|Dn|(2m′n + 1)2d ∑

r∈Z
r≥3mn

(r/sn)d−1(r − 2mn − sn − 2R)−d−ε

= 43dt2
a2
n

|Dn|(2m′n + 1)2d ∑

r∈snZ
r≥3mn

(r/sn)d−1r−d−ε
(

1− 2mn + sn + 2R
r

)−d−ε

= 43dt2|Dn|2
a2
n

|Dn|−1 (2m′n + 1)2d∑

z∈Z
z≥3mn/sn

z−1−εs−d−εn

(
1− 2mn + sn + 2R

snz

)−d−ε
.
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When snz ≥ 3mn, 1− (2mn + sn + 2R)/(snz) ≥ (1− (2mn + sn + 2R)/(3mn)) where
1− (2mn + sn + 2R)/(3mn) converges to 1/3 by (B.1). Also, sn is increasing. Thus
the infinite sum is finite. Moreover, by Lemma F.5 and (H4), |Dn|/an is uniformly
bounded with respect to n. Hence, up to a constant, the above expression is bounded
by |Dn|−1(2m′n + 1)2d which by (B.3) converges to 0 so

B1 −−−→n→∞ 0. (S4.2)

Turning to
B2 = t2

a2
n

∑

I′n
Cov

(
Yn(i)Yn(j), Yn(i′)Yn(j′)

)
.

where I ′n = {i, i′, j, j′ ∈ Dn : d(i, j) ≤ mn, d(i′, j′) ≤ mn, d(j, j′) < 3mn}. Let

h = min{d(i, j′), d(i, i′), d(j, j′), d(j, i′)}.

Then by Doukhan (1994, Lemma 3, p. 10),

Cov
(
Yn(i)Yn(j), Yn(i′)Yn(j′)

)
≤ 4αZn2,2(h). (S4.3)

We now bound B2 by the sum of four terms B2,k, k = 1, . . . , 4 according to whether
h = d(i, j′), h = d(i, i′), h = d(j, j′), or h = d(j, i′) and also apply (S4.3). Thus,

B2,1 = t2

a2
n

∑

I′n
4αZn2,2

(
d(i, j′)

)

and similarly for B2,k, k = 2, 3, 4.
Given j′ ∈ Dn, if d(j, j′) < 3mn, there are at most (6m′n + 1)d choices for j, and

given j′ ∈ Dn, there are at most (2m′n + 1)d choices for i′ if d(i′, j′) ≤ mn. Also
d(i, j′) ≤ 4mn if both d(j, j′) < 3mn and d(i′, j′) ≤ mn. Thus,

B2,1 ≤ 4 t
2

a2
n

|Dn|(6m′n + 1)2d ∑

i∈Dn
d(i,j′)<4mn

αZn2,2
(
d(i, j′)

)
.

Then, by Lemma F.4 and Lemma F.2

B2,1 ≤ 43dt2
a2
n

|Dn|(6m′n + 1)2d ∑

r∈snZ
0<r≤4mn

(r/sn)d−1αX
2vn,2vn(r − sn − 2R).

Following the approach for B1, and noting that zsn − sn − 2R > 0 for z > 0 and n
large enough, it follows by (H2) that

B2,1 ≤43dt2
a2
n

|Dn|(6m′n + 1)2d∑

z∈Z
0<z≤4mn/sn

zd−1(zsn − sn − 2R)−d−ε

=43dt2
a2
n

|Dn|(6m′n + 1)2d∑

z∈Z
0<z≤4mn/sn

z−1−ε
(
sn −

sn + 2R
z

)−d−ε
.
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Hence, similarly to (S4.2),
B2,1 −−−→n→∞ 0.

By the same reasoning B2,k, k = 2, 3, 4 also converge to zero so that

B2 −−−→n→∞ 0. (S4.4)

Therefore, by (S4.1), (S4.2), and (S4.4),

E|A1| ≤
√
E|A1|2 −−−→n→∞ 0. (S4.5)

Convergence of A2

According to the formula of the remainder of Taylor’s expansion, there exists a
constant c such that

|1− itS̄n(i)− e−itS̄n(i)| ≤ ct2S̄2
n(i).

Then, since supn∈N supi∈Dn|Yn(i)| ≤ 1 by (Hb), we have

E|A2| ≤
1√
an

∑

i∈Dn
E|1− itS̄n(i)− e−itS̄n(i)| ≤ 1√

an
|Dn| sup

i∈Dn
E
(
ct2S̄2

n(i)
)
.

Thus, for Jn(i) = {j, j′ ∈ Dn : d(i, j) ≤ mn, d(i, j′) ≤ mn},

E|A2| ≤
ct2

a
3
2
n

|Dn| sup
i∈Dn

∑

Jn(i)
E
(
Yn(j)Yn(j′)

)

and as the variables Yn are centred,

E|A2| ≤
ct2

a
3
2
n

|Dn| sup
i∈Dn

∑

Jn(i)
Cov

(
Yn(j), Yn(j′)

)
.

Then, by Doukhan (1994, Lemma 3, p. 10),

E|A2| ≤
ct2

a
3
2
n

|Dn| sup
i∈Dn

∑

Jn(i)
4αZn1,1

(
d(j, j′)

)
.

By the triangular inequality, we have in the last sum, d(j, j′) ≤ 2mn. Further, if
d(i, j′) ≤ mn, there are at most (2m′n + 1)d choices possible for j′. Thus,

E|A2| ≤
4ct2

a
3
2
n

|Dn|(2m′n + 1)d sup
i∈Dn

sup
j′∈Dn

∑

j∈Dn
d(j,j′)≤2mn

αZn1,1
(
d(j, j′)

)

and by Lemma F.4

E|A2| ≤ 43dct2

a
3
2
n

|Dn|(2m′n + 1)d
(
1 +

∑

r∈snZ
0<r≤2mn

(r/sn)d−1αZn1,1(r)
)
.
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Then, by Lemma F.2

E|A2| ≤ 43dct2

a
3
2
n

|Dn|(2m′n + 1)d
(
1 +

∑

r∈snZ
0<r≤2mn

(r/sn)d−1αX
vn,vn(r − sn − 2R)

)
.

Thus, using (H2) we have

E|A2| ≤ 43dct2

a
3
2
n

|Dn|(2m′n + 1)d
{

1 +
∑

z∈Z
0<z≤2mn/sn

z−1−ε
(
sn −

sn + 2R
z

)−d−ε}

≤ 4
3dct2|Dn|

√
|Dn|

ana
1
2
n

(2m′n + 1)d√
|Dn|

{
1 +

∑

z∈Z
0<z≤2mn/sn

z−1−ε
(
sn −

sn + 2R
z

)−d−ε}
.

Hence, by (H4), Lemma F.5, and (B.3) it follows that
E|A2| −−−→n→∞ 0. (S4.6)

Convergence of A3

We have by Doukhan (1994, Lemma 3, p. 10)

|EA3| ≤
1√
an

∑

i∈Dn

∣∣∣Cov(Yn(i), eit(S̄n−S̄n(i)))
∣∣∣

≤ 4|Dn|√
an

αZn1,∞(mn).

Then by Lemma F.2

|EA3| ≤
4|Dn|√
an

αX
vn,∞(mn − sn − 2R)

=
4
√
|Dn|√
an

√
|Dn|αX

vn,∞(mn − sn − 2R).
(S4.7)

Thus by Lemma F.5, assumption (H4), and (B.2), |EA3| tends to zero.

S5 Proofs of lemmas

S5.1 Proof of Lemma F.1
For x ∈ C⊕Rn (l) and y ∈ C⊕Rn (k),

d(x, y) = max{|x1 − y1|, |x2 − y2| . . . , |xd − yd|}
and by (3.2),

|li − ki| − sn − 2R ≤ |xi − yi| ≤ |li − ki|+ sn + 2R.
Therefore,

d(l,k)− sn − 2R ≤ d(x, y) ≤ d(l,k) + sn + 2R
so we have

d(l,k)− sn − 2R ≤ d
(
C⊕Rn (l), C⊕Rn (k)

)
≤ d(l,k) + sn + 2R.
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S5.2 Proof of Lemma F.2
Let I1 ⊂ snZd and I2 ⊂ snZd be such that |I1| ≤ c1, |I2| ≤ c2 and d(I1, I2) ≥ r.
Then,

α
(
σ((Zn(l))l∈I1), σ((Zn(k))k∈I2)

)
≤ α

(
X ∩

⋃

l∈I1

C⊕Rn (l),X ∩
⋃

k∈I2

C⊕Rn (k)
)
. (S5.1)

Further, since |I1| ≤ c1, |I2| ≤ c2,
∣∣∣∣
⋃

l∈I1

C⊕Rn (l)
∣∣∣∣ ≤ c1vn, and

∣∣∣∣
⋃

k∈I2

C⊕Rn (k)
∣∣∣∣ ≤ c2vn,

and as d(I1, I2) ≥ r, we have by Lemma F.1,

d
(⋃

l∈I1

C⊕R(l),
⋃

k∈I2

C⊕R(k)
)

= inf
l∈I1,k∈I2

d(C⊕R(l), C⊕R(k))

≥ inf
l∈I1,k∈I2

d(l,k)− sn − 2R

≥ r − sn − 2R.

It follows by (S5.1) that for l ∈ I1, k ∈ I2,

α
(
σ((Zn(l))l∈I1), σ((Zn(k))k∈I2)

)
≤ αX

c1vn,c2vn(r − sn − 2R)

which concludes the proof.

S5.3 Proof of Lemma F.3
By Lemma F.2, for c1, c2, r ≥ 0 we have

αZnc1,c2(rsn) ≤ αX
c1vn,c2vn(rsn − sn − 2R).

Thus, for τ as in (H3), we have by (H2), supn∈N
∑∞
r=1 r

d−1αZn1,1(rsn)
τ

2+τ <∞. Using
this last result and (H3), we may apply Theorem 1 in Fazekas et al. (2000) which
states that

E
∣∣∣∣
∑

l∈Dn
Zn(l)

∣∣∣∣
2
≤
(
1 + 8

∞∑

r=1
αZn1,1(rsn)

τ
2+τ rd−1

) ∑

l∈Dn
(E|Zn(l)|2+τ )

2
2+τ .

Hence, by (H3),
sup
a∈Rq

sup
n∈N

aT Var (∑l∈Dn Zn(l))a
|Dn||a|2

<∞ (S5.2)

which implies that lim supn→∞ λmax
(
Var (∑l∈Dn Zn(l))/|Dn|

)
<∞.
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S5.4 Proof of Lemma F.4
Without loss of generality, we let i = 0. Then,

|{j ∈ snZd : d(0, j) = snk}|
= |{j ∈ snZd : d(0, j) ≤ snk}| − |{j ∈ snZd : d(0, j) ≤ sn(k − 1)}|.

When d(0, j) ≤ snk, each coordinate of j may take 2k + 1 values, so

|{j ∈ snZd : d(0, j) = snk}| = (2k + 1)d − (2k − 1)d.

Further, by the binomial theorem

|{j ∈ snZd : d(0, j) = snk}| =
d∑

i=1

(
d

i

)
(2k)d−i

(
1i − (−1)i

)

≤ kd−1
d∑

i=1

(
d

i

)
2d−i

(
1i − (−1)i

)

≤ 3dkd−1.

S5.5 Proof of Lemma F.5
Since σ2

n = Var
(∑

l∈Dn Zn(l)
)

= Var
(∑

l∈Dn Yn(l)
)
, we have

σ2
n = an +

∑

i,j∈Dn
d(i,j)>mn

E[Yn(j)Yn(i)].

Thus,

|σ2
n − an| ≤

∑

i,j∈Dn
d(i,j)>mn

∣∣∣E[Yn(j)Yn(i)]
∣∣∣

≤
∑

i,j∈Dn
d(i,j)>mn

∣∣∣Cov
(
Zn(j), Zn(i)

)∣∣∣.

Then, by (Hb) and Doukhan (1994, Lemma 3, p. 10),

|σ2
n − an| ≤ 4

∑

i,j∈Dn
d(i,j)>mn

αZn1,1
(
d(i, j)

)
.

Thus, by Lemma F.4,

|σ2
n − an| ≤ 4(3d)|Dn|

∑

r∈snZ
r>mn

(r/sn)d−1αZ1,1(r).

Using Lemma F.2, (H2), and noting that r − sn − 2R > 0 for n large enough when
r > mn,

|σ2
n − an| ≤ 4(3d)|Dn|

∑

r∈snZ
r>mn

(r/sn)d−1(r − sn − 2R)−d−ε.
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Thus ∣∣∣∣∣1−
an
σ2
n

∣∣∣∣∣ ≤
4(3d)|Dn|

σ2
n

∑

z∈Z
z>mn/sn

z−1−ε
(
sn −

sn + 2R
z

)−d−ε
. (S5.3)

By (H4), |Dn|/σ2
n is bounded. Further, since mn/sn tends to infinity, the infinite

sum tends to zero. Thus we obtain
∣∣∣∣∣1−

an
σ2
n

∣∣∣∣∣ −−−→n→∞ 0.
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