
www.csgb.dk

RESEARCH REPORT 2019

CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Rikke Eriksen and Markus Kiderlen

Uniqueness of the measurement function in Crofton’s formula

No. 07, August 2019



Uniqueness of the measurement function in
Crofton’s formula

Rikke Eriksen and Markus Kiderlen

CSGB, Department of Mathematics, Aarhus University
rke@math.au.dk, kiderlen@math.au.dk

Abstract
Crofton’s intersection formula states that the (n − j)’th intrinsic volume of
a compact convex set in Rn can be obtained as an invariant integral of the
(k− j)’th intrinsic volume of sections with k-planes. This paper discusses the
question if the (k−j)’th intrinsic volume can be replaced by other functionals,
that is, if the measurement function in Crofton’s formula is unique.

The answer is negative: we show that the sums of the (k − j)’th intrinsic
volume and certain translation invariant continuous valuations of homogeneity
degree k yield counterexamples. If the measurement function is local, these
turn out to be the only examples when k = 1 or when k = 2 and we restrict
considerations to even measurement functions. Additional examples of local
functionals can be constructed when k ≥ 2.

Keywords: Crofton’s formula, Klain functional, Local functions, Spherical lift-
ing, Uniqueness, Valuation

This paper is dedicated to the memory of Wolfgang Weil, a kind colleague and teacher.

1 Introduction and main results

1.1 Uniqueness of local measurement functions in Crofton’s
formula

The classical Crofton formula [18] for compact convex sets K states that the in-
variantly integrated j-th intrinsic volume Vj of the intersection of K with a k-
dimensional flat E is essentially an intrinsic volume of K:

∫

A(n,k)

Vj(K ∩ E)dµk(E) = αn,j,kVn+j−k(K). (1.1)

Here µk is an (appropriately normalized) invariant measure on the space A(n, k) of
all k-flats (k-dimensional affine subspaces of Rn), αn,j,k > 0 is a known constant and
0 ≤ j ≤ k ≤ n− 1.
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We will make use of the following notation. For a linear topological space X
of finite dimension, we will write B(X) for the Borel σ-algebra on X and denote
the family of all compact convex subsets of X by K(X). We will write Kk(X) for
the subfamily of all such sets of dimension at most k, 0 ≤ k ≤ dimX. Clearly,
KdimX(X) = K(X). In contrast to the standard literature (e.g. [18]) we include the
empty set in these classes.

To simplify notation, we introduce the Crofton operator Ck : (Kk(Rn))R →
(K(Rn))R by

(Ck ϕ)(K) =

∫

A(n,k)

ϕ(K ∩ E)dµk(E), K ∈ K(Rn) (1.2)

for a measurement function ϕ : Kk(Rn) → R. Here and in the rest of the paper we
assume that E 7→ ϕ(K ∩ E) is integrable for all K ∈ K(Rn). Due to (1.1) there
exists a measurement function ϕ solving Ck(ϕ) = Vj for any j ∈ {n−k, . . . , n}. The
purpose of the present paper is to discuss uniqueness of such a solution, possibly
under additional restrictions on ϕ. As Ck is linear, the equality Ck(ϕ) = Vj has at
most one solution if and only if its kernel ker Ck is trivial. We will therefore describe
properties of the kernel of the Crofton operator.

Unless otherwise stated, we will assume that n ∈ {2, 3, . . . } and k ∈ {1, . . . ,
n − 1}, thereby excluding the trivial case k = 0. However, the case k = 0 will
be discussed when measurement functions on smaller domains are considered; see
Section 1.2.

For general k ∈ {1, . . . , n−1} the kernel of Ck is not trivial and we will give non-
vanishing examples of measurement functions in ker Ck later. We therefore impose
additional assumption on ϕ, which are typically geometrically motivated. A set of
rather strong assumptions would be the defining properties of the intrinsic volumes:
continuity, motion invariance and additivity. However, due to Hadwiger’s charac-
terization theorem of the intrinsic volumes, applied in k-flats, such a measurement
function must be a linear combination of V0, . . . , Vk, and thus ϕ ∈ ker Ck if and only
if ϕ ≡ 0 by (1.1).

Can the assumptions imposed on ϕ be relaxed? The first result shows that there
are non-trivial elements in ker Ck, if the motion invariance is weakened and replaced
by translation invariance.

To state the result let linK = aff K − x, where aff K is the affine hull of K, and
x is an arbitrary element of K ∈ K(Rn) \ {∅}. We will write νk for the invariant
probability measure on the Grassmannian G(n, k) of k-dimensional linear subspaces
of Rn.

Proposition 1. Let f : G(n, k)→ R be a νk-integrable function and define

ϕf (K) =

{
Vk(K)f(linK), if dimK = k,

0, otherwise,

for K ∈ Kk(Rn). Then

(i) ϕf is translation invariant and additive.

(ii) If f is continuous, then ϕf is continuous.
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(iii) If f 6≡ 0 then ϕf 6≡ 0.

(iv) We have ∫

G(n,k)

f(L)νk(dL) = 0 (1.3)

if and only if Ck(ϕf ) ≡ 0 on K(Rn).

The aim of the following considerations is to introduce a natural geometric prop-
erty and impose it to the measurement function ϕ. The Crofton formula and a
number of other integral geometric relations are widely used in geometric sam-
pling. Many of the stereological estimators obtained this way share a local property.
Roughly speaking, this means that they can be seen as sums or integrals of con-
tributions which only depend on an infinitesimal neighbourhood of the location
considered. This is not only true for volume and surface area estimators under IUR
sampling [2] but also under vertical and local designs. For instance [9], the nucleator
and the surfactor are of this type. Wolfgang Weil [22] gave a formal definition of
the local property, which we will recall below. He named functionals which have
the local property and are in addition continuous and translation invariant, local
functionals on K(Rn). Among other things, he showed that any local functional ϕ is
a standard functional in the sense of translation invariant valuation theory, that is,
ϕ is continuous, translation invariant and additive on K(Rn). It is an open problem
if any standard functional is local, however the two notions are indeed equivalent
for n ∈ {1, 2}; see for instance Proposition 7 combined with equation (1.8). As our
main focus are Crofton formulae in R3, where only planes of dimension k ∈ {1, 2}
are of practical interest, we thus could have developed our theory using standard
functionals. An exact definition of local functionals on K(Rn) is given in Definition 5
in Section 2.3, below. We already mention here that ϕ has the local property if it
satisfies the following condition. For each K ∈ K(Rn) there exists a finite signed
Borel measure Φ(K, ·), such that ϕ(K) = Φ(K,Rn), and Φ(K, ·) is local, meaning
that the intersection of K with an open neighbourhood of a Borel set A already
determines Φ(K,A). The transition kernel Φ is called a local extension of ϕ. For our
considerations we need to extend this definition to include functionals only acting on
compact convex sets of dimension at most k. A natural way of doing this is to con-
sider the restrictions of ϕ to compact convex subsets of linear subspaces L ∈ G(n, k)
and to require them to be local in the sense of Definition 5, when identifying L with
Rk. However, this would only give us translation invariance of the functional in each
L ∈ G(n, k) and not necessarily in all of Rn. We therefore say that a functional
ϕ : Kk(Rn) → R is local if it is translation invariant and each restriction of ϕ to
subsets of a k-dimensional linear subspace L are local in L in the sense of Wolfgang
Weil; see Definitions 5 and 6 for details. Note that a local functional ϕ : Kk(Rn)→ R
is continuous on K(L) for all L ∈ G(n, k).

Our first main result is an extension of [22, Theorem 2.1] to local functionals
on Kk(Rn), k ∈ {1, . . . , n} and it gives a decomposition of a local functional ϕ :
Kk(Rn)→ R into homogeneous, local functionals ϕ(j), j = 0, . . . , k.

Before stating this result we need to fix some notation. Let κk be the k-dimen-
sional volume of the unit ball in Rk. For each L ∈ G(n, k), define the Euclidean unit
ball in L to be BL = Bn ∩ L , where Bn is the unit ball in Rn and let SLk−1(K, ·) be
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the (k − 1)’th surface measure of a compact convex set K ∈ K(L) with L as am-
bient space. Let ℘̃k-1

j-1 (L) be the family of spherical polytopes of dimension at most
j − 1 in L, where the dimension of a spherical polytope is defined to be one smaller
than the dimension j of its positive hull in L. For k = n, we simplify notation and
write ℘̃n-1

j-1 = ℘̃n-1
j-1 (Rn). For a polytope P , let Fj(P ) be the collection of j-faces of

P , j = 0, . . . , n and for F ∈ Fj(P ) we denote by λF the restiction to F of the
Lebesgue measure in the affine hull of F . We further let NL(P, F ) be the normal
cone of P ⊂ L at F in the subspace L and let nL(P, F ) denote the intersection of
the unit sphere Sn−1 with NL(P, F ). For k = n, we write, n(P, F ) = nRn(P, F ). A
function ψ : Sn−1 ∩ L→ R is called centered if

∫

Sn−1∩L
uψ(u)Hk−1(du) = 0,

where Hk−1 is the (k − 1)-dimensional Hausdorff measure in Rn.

Theorem 2. Let ϕ : Kk(Rn) → R be a local functional with local extension ΦL :
K(L)× B(L)→ R for each L ∈ G(n, k). Then ϕ has a unique representation

ϕ(K) =
k∑

j=0

ϕ(j)(K) (1.4)

with j-homogeneous local functionals ϕ(j) on Kk(Rn).
In addition, for each L ∈ G(n, k) there is a decomposition

ΦL(K, ·) =
k∑

j=0

Φ
(j)
L (K, ·), (1.5)

K ∈ K(L), such that Φ
(j)
L is a local extension of ϕ(j) restricted to L, for j = 0, . . . , k.

For a polytope P ∈ K(L), each Φ
(j)
L has the form

Φ
(j)
L (P, ·) =

∑

F∈Fj(P )

g
(j)
L (nL(P, F ))λF , (1.6)

where g(j)
L : ℘̃k−1

k−j−1(L) → R, j = 0, . . . , k, are (uniquely determined by Φ
(j)
L ) simple

additive and continuous functions, the so-called associated functions of ΦL.
Moreover we have

ϕ(k)(K) = c
(k)
L Vk(K) (1.7)

for all K ∈ K(L), where c(k)
L = ϕ(k)(κ

−1/k
k BL) and

ϕ(0)(K) = c(0)V0(K) (1.8)

for K ∈ Kk(Rn), where c(0) = ϕ(0)({0}). If further x ∈ L⊥, then

ϕ(k−1)(K) =

∫

Sn−1∩L
θ(L, v)SLk−1(K − x, dv) (1.9)

for all K ∈ K(L + x), where θ(L, v) = g
(k−1)
L ({v}), is continuous in v and centered

for fixed L.
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Note that (1.4)-(1.7) is an extension of [22, Theorem 2.1] to functionals acting
on the subfamilies Kk(Rn) of K(Rn), k < n. However, continuity of g(j)

L appears to
be a new result.

By linearity of the Crofton operator Ck, a local functional is in the kernel of Ck if
and only if each homogeneous functional in its decomposition is in the kernel of Ck.
By (1.7), (1.8) and (1.9) we have explicit descriptions of local functionals acting
on compact convex sets of dimension at most 2. Using these descriptions our main
result can be proven. It shows that the only local functionals in ker C1 and the only
even local functionals in ker C2 are the examples given in Proposition 1. This result
cannot be improved as there are other examples in all remaining cases.

Theorem 3. Let n ∈ N and k ≤ n− 1 be given.

1. For k = 1 the local functionals in ker C1 are precisely the functionals ϕ = ϕf
with some f : G(n, k)→ R satisfying (1.3).

2. For k = 2 the even local functionals in ker C2 are precisely the functionals
ϕ = ϕf with some f : G(n, k)→ R satisfying (1.3).

3. For k ≥ 2 there is a local functional ϕ of homogeneity degree k − 1 in ker Ck,
which is not trivial, as there exists K ∈ K(Rn) such that {E ∈ A(n, k) :
ϕ(K ∩ E) 6= 0} is not a set of µk-measure zero.

Thus we have a complete description of the kernel of the Crofton operator, when
considering local and even functionals acting on intersections of compact convex sets
in Rn with either 1- or 2-dimensional flats. The proof of the theorem makes use of the
decomposition of ϕ into homogeneous parts (Theorem 2), which reduces the problem
to considering homogeneous local functionals in the kernel of the Crofton operator.
The explicit expression for the 0-homogeneous functional ϕ(0) in (1.7) shows that
ϕ(0) ∈ ker Ck if and only if ϕ(0) = 0. Together with (1.8) this gives the claim for
k = 1. For k = 2 and ϕ being even rewriting the 1-homogeneous functional gives
a connection to the kernel of the Radon transform on Grassmannians, which has
well understood properties (see, for instance [5]). Using injectivity properties of this
transform, the 1-homogeneous functional must vanish, yielding Theorem 3.2.

The relation to the Radon transform also leads to the existence of a non-trivial
(k − 1)-homogeneous local functional in the kernel of the Crofton operator, when
k > 2, hence yielding Theorem 3.3 for k > 2. For k = 2 we start by explicitly
constructing a 1-homogeneous local functional in the kernel of the Crofton operator
when n = 3. Examples in higher dimensions are then constructed by averaging a
three-dimensional counterexample over all three-dimensional subspaces containing
a given K ∈ K2(Rn); for details see Section 2.3. This yields Theorem 3.3.

1.2 Variations: Measurement functions on smaller domains

The problem becomes more involved when considering functionals acting on specific
subsets of K(Rn). To discuss this more general setting, we fix M ⊂ K(Rn) and
consider the collection

Mk = {K ∩ E : K ∈M, E ∈ A(n, k)}
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of section profiles of sets in M with k-flats. The uniqueness of the measurement
function ϕ :Mk → R in a suitable Crofton formula is again equivalent to a trivial
kernel ker Ck, where the Crofton operator Ck is now a function from MR

k to MR

defined by (1.2), but with K ∈M.
To appreciate the difficulty of the problem consider k = 0 and let f(x) = ϕ({x}).

The measurement function ϕ : Mk → R is an element of ker C0 if and only if
ϕ(∅) = 0 and ∫

K

f(x)dx = 0 (1.10)

for all K ∈ M. When M is ’large’, for instance when it contains all axis-parallel
cubes, we obviously have f = 0 almost everywhere by Dynkin’s lemma (see, [3,
Theorem 1.6.1]). However if

M = {gK0 : g is a rigid motion in Rn}

consists of all rigid motions of a fixed non-empty compact convex set K0, the ex-
istence of non-vanishing functions f is not trivial at all. When K0 is a Euclidean
ball, a non-vanishing solution f of (1.10) can be given in terms of a Bessel function,
and all solutions (within the Schwartz class of distributions) can be characterized.
Whether there are other sets K0 for which (1.10) has a non-vanishing solution f ,
is the Pompeiu problem; see, for instance [14]. This long-standing problem is still
open in arbitrary dimension, but the case n = 3 has been settled by Ramm [15]
even without convexity assumptions. His result implies that (1.10) holds for some
K0 with C1-smooth boundary if and only if f = 0 almost everywhere.

We cannot solve this uniqueness problem in full generality, but state a result in
the special case whereM consist of all n-dimensional balls. We restrict attention to
motion invariant measurement functions.

Theorem 4. Let n ∈ N, k ∈ {0, . . . , n− 1} andM be the set of all n-dimensional
balls and assume that ϕ :Mk → R is motion invariant. Then

∫

A(n,k)

ϕ(K ∩ E)dµk(E) = 0 (1.11)

for all K ∈M if and only if
ϕ(K ∩ E) = 0

for µk-almost all E ∈ A(n, k).

Remark that all compact convex sets of dimension 1 are balls and hence the above
theorem states that the kernel of the Crofton operator is trivial when considering
motion invariant functionals defined on all 1-dimensional compact, convex sets in Rn.

The proof of this theorem makes use of the fact that a translation invariant
functional of a lower dimensional ball does not depend on the center of the ball.
Furthermore, due to rotation invariance each intersection K ∩ E can be replaced
by a k-dimensional ball of equal radius within a fixed flat in G(n, k). Hence ϕ only
depends on the radius of the ball E ∩K. The proof of Theorem 4 will be given in
Section 2.4. It exploits that the left side of (1.11) can be written as a Riemann-
Liouville integral whose injectivity properties are known.
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1.3 Table of contents

The paper is structured as follows. In Section 2.1 some preliminary definitions and
notations are introduced. In Section 2.2 the proof of Proposition 1 is given by con-
structing non-zero functionals in the kernel of the Crofton operator. Section 2.3 is
devoted to considering local functionals. The definition of these is given and the
first main result, Theorem 2 is proven. The section ends with a proof of Theorem 3,
using the results of Theorem 2. Finally, in Section 2.4, we consider functionals on
subsets of Kk(Rn) and give a proof of Theorem 4.

2 Proofs

2.1 Notation and preliminaries

Before giving the proofs of the above stated results we will introduce some further
notation. Let A ⊂ Rn, we will denote its boundary by bdA, its interior by intA
and its relative interior by relintA. The orthogonal complement of A is given by A⊥
and the convex hull by conv(A). If A is convex, its dimension is defined to be the
dimension of its affine hull. The dual cone of A is given by

A◦ = {x ∈ Rn : 〈x, y〉 ≤ 0 ∀y ∈ A}.

Note that the dual of the convex cone C = {αa : a ∈ A and α ≥ 0} of A satisfies
C◦ = A◦.

We have already introduced the notation ℘̃n-1
j-1 , the set of spherical polytopes in

Rn of dimension at most j− 1. We will make use of the subset ℘n-1
j-1 , consisting of all

spherical polytopes of exact dimension j − 1.
Throughout this paper we consider G(n, k) and A(n, k) endowed with the Fell

topology, which induces Borel σ-algebras as in [17, p. 582]. Let j, l ∈ N with j, l < n
and consider E ∈ A(n, l), (E ∈ G(n, k)). We define the space of all affine (linear)
subspaces of dimension j incident to E by A(E, j), (G(E, j)). As in [17, Section 13.2]
we denote the appropriately normalized, invariant measures of these spaces by µEj
and νEj , respectively. Further, for L ∈ G(n, k), we let the set of all convex polytopes
in L be denoted by P(L).

2.2 Construction of non-zero kernel functionals

Proof of Proposition 1: Fix f : G(n, k) → R and let ϕf be defined as in Propo-
sition 1. We show (i). By translation invariance of the intrinsic volume and the
function K 7→ linK, ϕf becomes translation invariant. To show additivity, we need
to prove that

ϕf (K) + ϕf (M)− ϕf (K ∩M) = ϕf (K ∪M). (2.1)

holds for all K,M ∈ Kk(Rn) with K ∪M ∈ Kk(Rn). Equation (2.1) is trivially true
when dim(K∪M) < k, so we may assume dim(K∪M) = k. If dimK = dimM = k,
then aff M = aff K = aff(K ∪M) and (2.1) follows by additivity of the intrinsic
volume. This leaves us with the case where dim(K ∪M) = k and one of the sets
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has dimension strictly less than k. Without loss of generality we may assume that
j = dimM < k. As dim(K ∪M) = k then there exists z ∈ K \ aff M . Since K ∪M
is convex we have

{αM + (1− α)z : α ∈ [0, 1)} ⊂ K ∪M \ aff M.

As K is closed, we obtainM ⊂ K and hence in this case (2.1) trivially follows. Thus
ϕf is additive.

We now show (ii). Assume that f is continuous and let (Km) be a sequence with
Km ∈ Kk(Rn) converging to K ∈ Kk(Rn). If dimK = k then lin(Km) converges to
lin(K) and so by continuity of the intrinsic volumes and f we get

ϕf (Km)→ ϕf (K) for m→∞.

If dimK < k then

|ϕf (Km)− ϕf (K)| = |ϕf (Km)| ≤ ‖f‖∞Vk(Km)→ 0

as m → ∞, where we used the facts that the continuous function f has a finite
maximum norm on the compact set G(n, k), and that Vk is continuous. Hence ϕ
is continuous yielding (ii). As (iii) is obvious it remains to show (iv). For fixed
K ∈ K(Rn), L ∈ G(n, k) and x ∈ L⊥ remark that if dim(K ∩ (L + x)) = k then
lin(K ∩ (L + x)) = L and otherwise Vk(K ∩ (L + x)) = 0. Hence using Fubini’s
Theorem ∫

A(n,k)

|ϕf (K ∩ E)|µk(dE) = Vn(K)

∫

G(n,k)

|f(L)|νk(dL).

Thus, the integrability of f implies the integrability of ϕf . The same arguments
also show [Ck(ϕf )](K) = Vn(K)

∫
G(n,k)

f(L)νk(dL), which clearly implies (iv). This
finishes the proof of Proposition 1.

It should be remarked that the vector space of integrable real functions f on
G(n, k) satisfying (1.3) is infinite dimensional. Hence Proposition 1 yields a large
number of nontrivial functionals in ker Ck.

2.3 Local functionals

For the reader’s convenience, we recall the definition of local functionals ϕ due to
Wolfgang Weil in [22]. In contrast to [22] the empty set is an element of the domain
of ϕ here.

Definition 5. A functional ϕ : K(Rn)→ R is called local, if it has a local exten-
sion Φ : K(Rn)×B(Rn)→ R, which is a measurable function on K(Rn) in the first
variable and a finite signed Borel measure on Rn in the second variable and such
that Φ has the following properties:

(i) ϕ(K) = Φ(K,Rn) for all K ∈ K(Rn),

(ii) Φ is translation covariant, that is, Φ(K+x,A+x) = Φ(K,A) for K ∈ K(Rn),
A ∈ B(Rn) and x ∈ Rn,
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(iii) Φ is locally determined, that is, Φ(K,A) = Φ(M,A) for K,M ∈ K(Rn), A ∈
B(Rn), if there is an open set U ⊂ Rn with K ∩ U = M ∩ Uand A ⊂ U ,

(iv) K 7→ Φ(K, ·) is weakly continuous on K(Rn) (w.r.t. the Hausdorff metric).

If ϕ is local with local extension Φ, then Φ(∅, ·) = 0 due to (ii) and (iii), and
hence ϕ(∅) = 0 by (i).

To prove Theorem 2 we first need to extend the above definition to include
functionals acting on compact convex subsets of Rn of dimension at most k, k ∈
{1, . . . , n}.

Definition 6. A functional ϕ : Kk(Rn) → R is called local if and only if ϕ is
translation invariant and for all L ∈ G(n, k), ϕ restricted to K(L) is local, i.e.
ϕL : K(L)→ R, K 7→ ϕ(K) is local in the sense of Definition 5 where L is identified
with Rk. The local extension of ϕL is denoted by ΦL : K(L)× B(L)→ R.

More explicitly, choosing an orthonormal basis u1, . . . , uk of L ∈ G(n, k), we can
identify L with Rk using the isometry ˆ : Rk → L, a 7→∑k

i=1 aiui. Then ϕL is local
on L if and only if ϕ̂L : K(Rk)→ R, K 7→ ϕ(K̂) is local on Rk.

Now for k = n Theorem 2 was proven by Wolfgang Weil in [22] except for the
continuity of the associated functions and equations (1.8) and (1.9), which both
are consequences of this continuity property. We will therefore start out by proving
the mentioned continuity in the case k = n. This will afterwards be used to prove
Theorem 2 for general k ∈ {1, . . . , n}.
Proof of continuity of associated functions: Let ϕ : K(Rn)→ R be local with exten-
sion Φ : K(Rn) × B(Rn) → R. The associated functions of Φ, f (j) : ℘̃n-1

n-j-1 → R are
shown in [22] to vanish on ℘̃n-1

n-j-1 / ℘
n-1
n-j-1 for all j ∈ {0, . . . , n}. Fix j ∈ {0, . . . , n} and

consider the mapping P : ℘̃n-1
n-j-1 → P(Rn), p 7→ P (p) = p◦ ∩Q, where Q =

[
−1

2
, 1

2

]n.
This mapping is continuous which can be seen by decomposing it into the following
three maps

p 7→ conv(p ∪ {0}) 7→ [conv(p ∪ {0})]◦ = p◦ 7→ p◦ ∩Q.

Continuity of the first and the last map is due to the continuity of the convex hull
operator and the intersection operation of compact convex sets which cannot be
separated by a hyperplane (see for instance [18, Theorem 1.8.10]), respectively. We
note that the dual cone map on convex sets in the unit ball Bn is continuous in the
Hausdorff metric by [19, Theorem 1]. The relationship between the Hausdorff metric
and the Fell topology combined with the characterization of the Fell topology (see
for instance [17, Theorem 12.2.2, 12.3.3]), yields continuity of the second map and
therefore also continuity of P .

If p ∈ ℘n−1
n−i−1 with i ≥ j, then there is an i-face F ∈ Fi(P (p)) with 0 ∈ relintF

and n(P (p), F ) = p. Furthermore F ∩ intQ ⊂ relintF and all other i-faces of P (p)
do not hit intQ. Now let (pm) be a sequence in ℘̃n-1

n-j-1 converging to p ∈ ℘̃n-1
n-j-1 and

put A = εBn with ε < 1
2
. The fact that A ⊂ intQ and the above observations imply

1{n−j−1}(dim pm)f (j)(pm)εjκj = Φ(j)(P (pm), A)

→ Φ(j)(P (p), A) = 1{n−j−1}(dim p)f (j)(p)εjκj
(2.2)
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as m→∞, where the weak continuity of K 7→ Φ(K, ·) combined with the Portman-
teau theorem was used, as Φ(j)(P (p), bdA) = 0. As f (j) vanishes on ℘̃n-1

n-j-1 \℘n-1
n-j-1, we

have 1{n−j−1}(dim q)f (j)(q) = f (j)(q) for all q ∈ ℘̃n-1
n-j-1, so (2.2) implies the continuity

of f (j).

Proof of Theorem 2: Let ϕ : Kk(Rn) → R be local in the sense of Definition 6. Fix
L ∈ G(n, k) and x ∈ L⊥. Let E denote the affine subspace L+ x and let u1, . . . , uk
denote an orthonormal basis of L. It follows that ϕ̂L : K(Rk) → R is local by
Definition 6. Due to [22, Theorem 2.1], applied to Rk, there are j-homogeneous local
functionals ϕ̂(j)

L on K(Rk) such that ϕ̂L =
∑k

j=0 ϕ̂
(j)
L . Furthermore, ϕ(k)

L = c
(k)
L Vk with

some constant c(k)
L ∈ R, possibly depending on L. Let ˜ : L → Rk be the inverse of

ˆ : Rk → L and put ϕ(j)
L (K) = ϕ̂L(K̃ − x) for K ∈ K(E) and j = 0, . . . , k. Then

ϕ(K) = ϕL(K − x) = ϕ̂L(K̃ − x) =
k−1∑

j=0

ϕ
(j)
L (K), (2.3)

where ϕ(j)
L is local on L and j-homogeneous, and ϕ(k)

L = c
(k)
L Vk.

For each j ∈ {0, . . . , k} we make the above definition independent of L by defining
the functionals ϕ(j)(K) = ϕ

(j)
L (K) for all K ∈ Kk(Rn) contained in a translation of

L ∈ G(n, k). Note that this definition is independent of the choice of L. If L,L′ ∈
G(n, k) are such that K is contained in translates of L and L′ then (2.3) and the
homogeneity of ϕ(j)

L give

0 =
k∑

j=0

αj
(
ϕ

(j)
L (K)− ϕ(j)

L′ (K)
)
,

for all α > 0, implying ϕ(j)
L (K) = ϕ

(j)
L′ (K). Hence (2.3) becomes (1.4). Representation

(1.4) is unique, due to a standard homogeneity argument.
For the proof of the second part of the theorem, we let L ∈ G(n, k). By [22,

Theorem 2.1] there is a local extension, Φ̂L : K(Rk) × B(Rk) → R of ϕ̂L with a
unique representation

Φ̂L(K, ·) =
k∑

j=0

Φ̂
(j)
L (K, ·)

for K ∈ K(Rk), such that Φ̂
(j)
L is a local extension of ϕ̂(j)

L . Using the identification of
L with Rk yields (1.5). Furthermore [22, Theorem 2.1] also gives that for a polytope
P ⊂ L and A ∈ B(L)

Φ̂
(j)
L (P̃ , Ã) =

∑

F̃∈Fj(P̃ )

f
(j)
L

(
n(P̃ , F̃ )

)
λF̃ (Ã).

We remark that F̃ ∈ Fj(P̃ ) if and only if F ∈ Fj(P ) and by defining g
(j)
L :

℘̃k−1
k−j−1(L) → R, g(j)

L (p) = f
(j)
L (p̃), equation (1.6) follows from n(P̃ , F̃ ) = ˜nL(P, F )

and
Φ

(j)
L (P,A) = Φ̂

(j)
L (P̃ , Ã) =

∑

F∈Fj(P )

g
(j)
L (nL(P, F ))λF (A).
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We have previously proved that f (j) is continuous for all j and so g(j)
L is continuous.

Also by direct calculation it follows that g(j)
L inherits simple additivity from f (j) for

all j and for any fixed local extension uniqueness follows by uniqueness of f (j) given
in [22, Theorem 2.1]. This proves the asserted properties of the decomposition (1.6).
We remark that

ϕ
(j)
L (P ) = Φ̂

(j)
L (P̃ ,Rk) =

∑

F∈Fj(P )

g
(j)
L (nL(P, F ))Vj(F ). (2.4)

For j = 0, V0(∅) = 0 = ϕ(0)(∅) and hence, for fixed L ∈ G(n, k), we may
consider a non-empty convex polytope P ⊂ L. Using (2.4) combined with the simple
additivity of g(0)

L yields

ϕ
(0)
L (P ) =

∑

x∈vert(P )

g
(0)
L (nL(P, x)) = g

(0)
L (Sn−1 ∩ L),

where vert(P ) denotes the set of vertices of the polytope P . Applying this twice,
first with P = {0}, and then with an arbitrary P ∈ P(L), shows ϕ(0)

L (P ) =

ϕ(0)({0})V0(P ) for all P ∈ P(L). The functional ϕ(0)
L is local, so Definition 5 (i)

and (iv) imply that it is continuous on K(L). A standard approximation argument
in L now shows ϕ(0)

L = ϕ(0)({0})V0 on K(L), which yields (1.8).
Concerning the case j = k, we have already remarked after (2.3), that ϕ(k)(K) =

ϕ
(k)
L (K) = c

(k)
L Vk(K) for all K ∈ K(L) holds.

For the proof of the case j = k − 1 we will show the following more general
result which essentially follows from Wolfgang Weil’s paper [22] and McMullen’s
characterization of standard functionals of homogeneity degree n − 1; see [13] and
e.g. [1, Theorem 3.1(iii)]. Recall that a standard functional ψ : Kk(Rn) → R is a
continuous translation invariant valuation.

Proposition 7. Let ϕ : Kk(Rn)→ R be given. The following statements are equiv-
alent:

1. ϕ is a local functional of homogeneity degree k − 1.

2. ϕ is translation invariant and homogeneous of degree k − 1. For each L ∈
G(n, k) the restriction of ϕ to L is a standard functional.

3. There is a function

θ : {(L, v) : L ∈ G(n, k), v ∈ Sn−1 ∩ L} → R

such that θ(L, ·) is continuous and centered on Sn−1 ∩ L for all L ∈ G(n, k),
and

ϕ(K) =

∫

Sn−1∩L
θ(L, v)SLk−1(K − x, dv) (2.5)

for all K ∈ K(L+x), where x ∈ L⊥ and SLk−1(K−x, ·) is the (k−1)’th surface
measure of K − x with L as ambient space.

The function θ in 3. is uniquely determined by ϕ.

11



Note that uniqueness of the function θ in 3. implies that ϕ is even if and only if
θ(L, ·) is even for all L ∈ G(n, k).

Another consequence of Proposition 7 is the fact that every (k − 1)-homoge-
neous local functional on Kk(Rn) is a valuation. This can be seen as in the proof of
Proposition 1 taking into account the additivity in the first variable of the surface
area measure (see, for instance [17, Theorem 14.2.2]).

Proof of Proposition 7: Start by assuming that ϕ : Kk(Rn)→ R is local and (k−1)-
homogeneous. Identifying L with Rk it follows that ϕ̂L : K(Rk)→ R is local, hence
it satisfies Definition 5 and so by [22] it is a standard functional yielding the second
statement.

Assuming 2. it follows by translation invariance of ϕ that it is enough to consider
compact convex subsets of L ∈ G(n, k). For each L ∈ G(n, k) the restriction of
ϕ to K(L) has a representation (2.5) with a function θ(L, ·) that is centered and
continuous on Sn−1 ∩ L by McMullen’s characterization of standard functionals
applied in L; see [1, Theorem 3.1(iii)]. This proves the implication 2.⇒ 3.

Assume now that 3. holds. Due to [1, Theorem 3.1(iii)] the restriction of ϕ to
K(L) is a standard functional on K(L) of homogeneity degree k − 1. Relation (2.5)
implies ϕ(K+x) = ϕ(K) for all x ∈ (linK)⊥ and therefore ϕ is translation invariant
and homogeneous of degree k−1. By [22, Theorem 3.1] it follows that each restriction
of ϕ to L ∈ G(n, k) is local and so ϕ is local of homogeneity degree k − 1.

We remark the following consequences of Theorem 2 for the solution of our
uniqueness problem.

Lemma 8. For k ∈ {1, . . . , n− 1}, a local functional ϕ : Kk(Rn)→ R with decom-
position (1.4) satisfies

1. ϕ ∈ ker Ck if and only if ϕ(0), . . . , ϕ(k) ∈ ker Ck.
2. ϕ(0) ∈ ker Ck if and only if ϕ(0) = 0.
3. ϕ(k) ∈ ker Ck if and only if ϕ(k) = ϕf with f : G(n, k)→ R satisfying (1.3).

Proof. Let k ∈ {1, . . . , n − 1} and ϕ be given as in the lemma. By decomposition
(1.4) we have

∫

A(n,k)

ϕ(αK ∩ E)µk(dE)

=
k∑

j=0

αn−k+j

∫

G(n,k)

∫

L⊥
ϕ(j)(K ∩ (L+ t))λL⊥(dt)νk(dL)

=
k∑

j=0

αn−k+j

∫

A(n,k)

ϕ(j)(K ∩ E)µk(dE)

for all α > 0, which yields 1. by comparing coefficients. Due to (1.8), combined with
Crofton’s formula (1.1), we have ϕ(0) ∈ ker Ck if and only if

0 =

∫

A(n,k)

ϕ(0)({0})V0(K ∩ E)µk(dE) = ϕ(0)({0})αn,0,kVn−k(K)

for all K ∈ K(Rn), where the constant αn,0,k is positive. Thus 2. holds.
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In view of (1.7) we have ϕ(k) = ϕf with f(L) = c
(k)
L for all L ∈ G(n, k), and the

last claim follows from Proposition 1(iv).

This lemma implies Theorem 3(i). For (ii) we need to treat the (k − 1)-homo-
geneous part. Let therefore ϕ be a local functional of homogeneity degree k − 1,
and assume that ϕ is even. In particular, due to Theorem 2 and the remark given
below the Theorem, ϕ is a translation invariant even valuation. Its Klain function
Kϕ : G(n, k − 1)→ R is defined by

Kϕ(M) =
1

κk−1

ϕ
(
Bn ∩M

)
,

forM ∈ G(n, k−1). Strictly speaking, this is a slight extension of Klain’s [10] original
definition (he calls Kϕ the generating function of ϕ), which was only formulated for
continuous translation invariant even valuations. In the present context ϕ need not
be continuous, but (2.5) and the fact that θ(L, ·) in this formula must be even, imply

Kϕ(M) = 2θ
(
span(M ∪ {u}), u

)
(2.6)

for all unit vectors u ∈M⊥, and thus, using (2.5) again,

ϕ(K) = Kϕ(M)Vk−1(K) (2.7)

for allK ∈ K(M). AlthoughKϕ need not be continuous on G(n, k−1), it determines
ϕ like in the classical case. In fact, (2.5) and (2.6) yield the explicit inversion formula

ϕ(K) =
1

2

∫

Sn−1∩L
Kϕ(L ∩ v⊥)SLk−1(K, dv)

for all K ∈ K(L) and L ∈ G(n, k).
For i, j ∈ {1, . . . , n−1} the Radon transform on Grassmannians Ri,j : L1(G(n, i))

→ L1(G(n, j)) is defined by

(Ri,j f)(L) =

∫

G(L,i)

f(M)νLi (dM)

for L ∈ G(n, j) and an integrable function f ∈ L1(G(n, i)). We remark that Ri,j is
well defined since for f ∈ L1(G(n, i))

∫

G(n,j)

|(Ri,j f)(L)|νj(dL) ≤
∫

G(n,i)

|f(M)|νi(dM).

This also implies that the Radon transform is Lipschitz continuous.

Proposition 9. Let k ∈ {1, . . . , n− 1}. Assume that the even (k− 1)-homogeneous
local functional on ϕ : Kk(Rn)→ R has Klain function Kϕ. Then

∫

A(n,k)

ϕ(P ∩ E)µk(dE) = 0 (2.8)

for all convex polytopes P ∈ Kn−1(Rn) if and only if Rk−1,n−1

(
Kϕ

)
= 0.
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Proof. Let P ⊂ v⊥ be a convex polytope of dimension n− 1 with v ∈ Sn−1. For any
fixed L ∈ G(n, k) (2.7) implies

∫

L⊥
ϕ(P ∩ (L+ x))λL⊥(dx) = Kϕ(L ∩ v⊥)

∫

L⊥
Vk−1(P ∩ (L+ x))λL⊥(dx).

The translative integral on the right is proportional to the mixed volume

V
(
P [n− 1], BL[1]

)
=

2

n
‖v|L‖Vn−1(P );

see, e.g. [20, p. 177] and [18, Section 5.1]. Hence, (2.8) holds for all convex polytopes
of dimension n− 1 if and only if

∫

G(n,n−k)

Kϕ(L⊥ ∩ v⊥)‖v|L⊥‖νn−k(dL) = 0

for all v ∈ Sn−1. Here we also replaced the integration with respect to νk by an inte-
gration with respect to νn−k by taking orthogonal complements. Using a Blaschke-
Petkantschin formula (see, for instance [17, Theorem 7.2.4]) this can be shown to be
equivalent to

∫

G(span{v},n−k+1)

Kϕ(L⊥)h(L, v) ν
span{v}
n−k+1 (dL) = 0,

where
h(L, v) =

∫

G(L,n−k)

‖v|M⊥‖[M, span{v}]k−1νLn−k(dM)

depends on the subspace determinant [M, span{v}], which is here the sine of the
angle between v and M . The function h(L, v) is clearly positive and independent of
L ∈ G(span{v}, n − k + 1), as any plane in this space can be rotated to any other
plane by a rotation fixing v.

Putting things together, we see that (2.8) holds for all convex polytopes of di-
mension n− 1 if and only if

∫

G(v⊥,k−1)

Kϕ(L)νv
⊥
k−1(dL) = 0

for all unit vectors v, where we again took orthogonal complements. This is the
assertion.

By [5], the Radon transform, Ri,j, i < j, on the set of all square integrable
functions L2(G(n, i)) is injective if and only if i+ j ≤ n. Hence Rk−1,n−1 is injective
when acting on L2(G(n, i)) if and only if k ∈ {1, 2}. We note that the kernel of Ri,j

when Ri,j acts on L2(G(n, i)) is trivial if and only if its kernel is trivial when it acts
on L1(G(n, i)). This can be proven using similar arguments as given in the proof of
the theorem below.

Theorem 10. There is no non-trivial even local functional on K2(Rn) of homogene-
ity degree 1 in the kernel of the Crofton operator with 2-flats.

Let 2 < k < n. There are non-trivial even local functionals on Kk(Rn) of homo-
geneity degree k − 1 in the kernel of the Crofton operator with k-flats.
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Proof. For k = 2 the kernel of Rk−1,n−1 is trivial and for any ϕ ∈ ker Ck, Proposi-
tion 9 gives that its Klain function Kϕ is in the kernel of Rk−1,n−1, which implies
that Kϕ ≡ 0 and hence ϕ is trivial. This proves that there are no non-trivial even
local functionals on K2(Rn) of homogeneity degree 1 in the kernel of the Crofton
operator with 2-flats.

On the other hand if 2 < k < n then there exists a non-trivial function f ∈
ker Rk−1,n−1. Using convolution on the compact Lie group SO(n) of all proper rota-
tions and the subgroup SO(n)/SO(k× (n−k)), which can be identified with G(n, k)
(see [4]) we can approximate f with continuous functions in the kernel of Rk−1,n−1.
This implies that there exist non-trivial continuous functions in ker Rk−1,n−1. Let-
ting Kϕ be one such function we can construct ϕ by (2.7) yielding a continuous even
local (k− 1)-homogeneous function. By Proposition 9 we have (Ck ϕ)(P ) = 0 for all
polytopes P ∈ Kn−1(Rn). Using approximation of compact convex sets by polytopes
from the outside implies that ϕ ∈ ker Ck and so the last statement of the theorem
follows.

Proof of Theorem 3.1 and 3.2: Note that by Lemma 8 a local functional ϕ is in
ker Ck if and only if ϕ(0) = 0, ϕ(k) = ϕf for some f satisfying (1.3). If k = 1 then
ϕ = ϕf by Theorem 2 proving Theorem 3.1. Assuming that k = 2 and that ϕ is in
addition even, ϕ(1) = 0 by Theorem 10 and hence ϕ = ϕf .

For the poof of Theorem 3.3 we note that Theorem 10 states that if k > 2
then there exists non-trivial (k − 1)-homogeneous even local functionals ϕ ∈ ker Ck

and hence we only need to construct examples of non-trivial 1-homogeneous local
functionals in ker C2. To explicitly make such a construction, we need to consider
local functionals which are not necessarily even. For this we will make use of the
translational Crofton formula for the surface area measures; see [6, Theorem 3.1]:
For K ∈ K(Rn) and L ∈ G(n, k), we have

∫

L⊥
SLk−1((K − x) ∩ L, ·)λL⊥(dx) = πL,1Sn−1(K, ·). (2.9)

This relation makes use of the operator πL,m with m = 1, which is described in the
following. For m ∈ Z, m > −k, the m-weighted spherical projection πL,m maps any
finite signed Borel measure µ on Sn−1 into the space of finite signed Borel measures
on Sn−1 ∩ L. The measure πL,mµ is defined as the image of the measure µm, given
by

µm(A) =

∫

A

‖u|L‖m µ(du),

(where A ⊂ Sn−1 is a Borel set) under the spherical projection

pL : Sn−1 \ L⊥ → Sn−1 ∩ L, v 7→ v|L
‖v|L‖ .

For m ≤ 0 one must restrict considerations to a subclass of measures to assure that
πL,mµ is a well-defined finite signed measure.

If f is a continuous function on the sphere, its m-weighted spherical projection
on L is the density of them-weighted spherical projection of the measure

∫
(·) f(v) dv.
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More explicitly, this is the function given by

[πL,mf ](u) =

∫

p−1
L ({u})

f(v)〈u, v〉k+m−1 dv, (2.10)

for u ∈ Sn−1∩L. For more details on πL,m and the m-weighted spherical lifting π∗L,m,
see [7]. For later use, we remark that

[π∗L,mf(·)](u) = ‖u|L‖mf(pL(u)) (2.11)

for all integrable functions f : Sn−1 ∩ L → R, u ∈ Sn−1 \ L⊥ and L ∈ G(n, k). By
[7, (5.4) and (5.5)], πL,m and π∗L,m can be considered as transpose operators, as

∫

Sn−1∩L
f d(πL,mµ) =

∫

Sn−1

(π∗L,mf) dµ (2.12)

for all integrable functions f on Sn−1 ∩ L and all finite signed measures µ, and
∫

Sn−1∩L
(πL,mf) dµ =

∫

Sn−1

f d(π∗L,mµ) (2.13)

for all integrable functions f on Sn−1 and all finite signed measures µ on Sn−1 ∩ L.
The following proposition is a counterpart to Proposition 9 for (k − 1)-homo-

geneous local functionals, but without the evenness assumption. We recall that,
according to (1.9) for any (k − 1)-homogeneous local functional ϕ there is an asso-
ciated function θ on the compact domain D = {(L, v) ∈ G(n, k) × Sn−1 : v ∈ L}
such that

ϕ(K) =

∫

Sn−1∩L
θ(L, v)SLk−1(K − x, dv) (2.14)

for all compact convex sets K contained in x + L, where L ∈ G(n, k) and x ∈ L⊥.
To avoid technicalities, we consider only the case where the associated function θ is
continuous on D.

Theorem 11. Let ϕ be a (k−1)-homogeneous local functional on Kk(Rn) such that
its associated function θ(L, v) given by (2.14) is continuous.

Then ϕ ∈ ker Ck if and only if
∫

G(n,k)

[
π∗L,1θ

(
L, ·
)]
νk(dL) = 0 (2.15)

on Sn−1.

Proof. Let ϕ be a (k − 1)-homogeneous local functional on Kk(Rn) and let θ(L, v)
given by (2.14). Due to (2.14) and (2.9), we have

(Ck ϕ)(K) =

∫

G(n,k)

∫

Sn−1∩L
θ
(
L, v

)[
πL,1Sn−1(K, ·)

]
(dv) νk(dL)

=

∫

G(n,k)

∫

Sn−1

[
π∗L,1θ

(
L, ·
)]

(v)Sn−1(K, dv) νk(dL)
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for all K ∈ K(Rn), where we used (2.12) for the last equality. In view of (2.11)
and the assumption that θ is continuous, (L, v) 7→ [π∗L,1θ

(
L, ·
)
](v) is continuous and

hence bounded, so an application of Fubini’s theorem implies

(Ck ϕ)(K) =

∫

Sn−1

h(v)Sn−1(K, dv), (2.16)

where
h(v) =

∫

G(n,k)

[
π∗L,1θ

(
L, ·
)]

(v) νk(dL)

defines a continuous function on Sn−1. For instance by decomposing the Hausdorff
measure on the sphere like in [7, (3.3)], one can show that the function h is centered.

Concluding, we see that ϕ ∈ ker Ck if and only if the right hand side of (2.16)
is zero for all K ∈ K(Rn). [13, Theorem 3] now shows that this is equivalent to
(2.15).

We use the notation in [7] to give an example of a function θ satisfying (2.15)
by writing it as linear combination of spherical projections of spherical harmonics.

Let ω be a continuous function on Sn−1. If we put θ(L, ·) = πL,mω, then (2.15)
is equivalent to π(k)

1,mω = 0 on Sn−1, where

π
(k)
1,mω =

∫

G(n,k)

[π∗L,1πL,mω] νk(dL). (2.17)

The operators π(k)
1,m act as multiples of the identity on any space of spherical har-

monics of order r ∈ N0: if ωr is a spherical harmonic of order r, then

π
(k)
1,mωr = an,k,1,m,r ωr, (2.18)

with the multiplier an,k,1,m,r given as a rather complicated finite sum in [7, Theo-
rem 9.1]. This suggests to finding m, r such that the multipliers vanishes. However,
the choice of m is nontrivial. If we for instance choose m = 1 − k, which can be
shown to correspond to

ϕ(K) =

(
n− 1

k − 1

)∫

Sn−1

ω(u)Sk−1(K, du), (2.19)

K ∈ K(Rn), by [7, Theorem 6.2], then all multipliers in (2.18) are non-vanishing by
[7, p. 41]. Hence there are only trivial maps ϕ of type (2.19) in ker Ck. For many
other choices of m explicit formulae for an,k,1,m,r are not available.

We therefore construct counterexamples as follows: Fix r ∈ N0 \ {1} and choose
different integers m and m′. As two numbers are always linearly dependent, there
are α, β ∈ R with (α, β) 6= 0 such that

αan,k,1,m,r + βan,k,1,m′,r = 0. (2.20)

Let ωr be a spherical harmonic of order r and set

θ(L, ·) = [απL,m + βπL,m′ ]ωr − 〈xL, ·〉, (2.21)

where xL ∈ L is chosen such that θ(L, ·) is centered. This defines a continuous
function θ. Due to (2.18) and (2.20), equation (2.15) holds on Sn−1, and Theorem 11
thus implies that the (k − 1)-homogeneous local functional ϕ with this associated
function θ is an element of ker Ck.
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Proposition 12. There exist non-trivial local functionals ϕ on K2(Rn) of homo-
geneity degree 1 in ker C2.

Before giving the proof we will introduce some notation. Let j, l ∈ N with j <
l ≤ n and L ∈ G(n, l). The spherical projection on the sphere in L′ ∈ G(L, j) in the
ambient space L is

pLL′ : (Sn−1 \ (L′)⊥) ∩ L→ Sn−1 ∩ L′, v 7→ v|L′
‖v|L′‖ .

If L = Rn then pLL′ coincides with the already defined spherical projection.

Proof. Let n ∈ N, n ≥ 3 and fix u0 ∈ Sn−1. For each L ∈ G(n, 3) define ψL :
K2(L)→ R by for L′ ∈ G(L, 2)

ψL(K ′) =

∫

Sn−1∩L′
θL(L′, v)SL

′
1 (K ′, dv)

for K ′ ∈ K2(L) with K ⊂ L′ and L * u⊥0 . When L ⊆ u⊥0 put ψL(K ′) = 0. Here
θL : {(L′, v) ∈ G(L, 2) × Sn−1 : v ∈ L′} → R is given as in (2.21) when identifying
L with R3 and choosing ωr to be a certain spherical harmonic of order r = 5. More
explicitly, we set

θL(L′, ·) = (απLL′,1 + βπLL′,2)P 3
5 (〈pL(u0), ·〉)− 〈xL′ , ·〉. (2.22)

with
(πLL′,mf)(v) =

∫

(pL
L′ )
−1({v})

f(u)〈v, u〉k+m−1du

and P 3
5 (t) = 1

8
(63t5 − 70t3 + 15t) being the fifth order Legendre polynomial of

dimension 3; see for instance [8, p. 85]. Note that P 3
5 (〈pL(u0), ·〉) is a spherical

harmonic of order 5 on Sn−1∩L′ for any u0 ∈ Sn−1∩L. As P 3
5 is odd also θL(L′, ·) is

an odd function. Furthermore, we define ψL+x(K) = ψL(K − x) for all K ∈ K2(L)
and x ∈ Rn. Using this we define ϕ : K2(Rn)→ R as

ϕ(K ′) =

∫

A(aff K′,3)

ψF (K ′)µaff K′
2 (dF ) (2.23)

forK ′ ∈ K2(Rn). Note that by definition of ψF , the map ϕ is translation invariant. As
ψF is 1-homogeneous and local for each F ∈ A(n, 3) the map ϕ is 1-homogeneous and
local. Also, if θL satisfies (2.15) for all L ∈ G(n, 3) then by Theorem 11, ψF ∈ ker C2

for all F ∈ A(n, 3) and using [17, Theorem 7.1.2] we get
∫

A(n,2)

ϕ(K ∩ E)µ2(dE) =

∫

A(n,3)

∫

A(F,2)

ψF (K ∩ E)µF2 (dE)µ3(dF ) = 0

for K ∈ K(Rn). Hence we need to construct functionals θL satisfying (2.15) for all
L ∈ G(n, 3) such that ϕ is non-trivial. In view of Lemma 13, below, we need to
find L′0 ∈ G(n, 2), L0 ∈ G(n, 3) with u0 ∈ L′0 ⊂ L0 and a set K ′ ∈ K(L′0) such
that ψL0(K ′) > 0 holds. From now on we fix L′0 ∈ G(n, 2) and L0 ∈ G(n, 3) with
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u0 ∈ L′0 ⊂ L0 (implying pL0(u0) = u0) and show the existence of K ′ ⊂ L′0 with
the required properties. We identify these spaces with R3 and a two-dimensional
subspace L of R3, respectively. With this identification in mind, the mapK ′ 7→ ψ(K ′)
given by the right hand side of (2.14) corresponds to ψL0 . Let θR3

= θ be given as
in (2.21) with m = 1, m′ = 2 and r = 5. Explicit calculation gives

a3,2,1,2,5 =
97

1536
π and a3,2,1,1,5 =

344

1575
.

We therefore put

α = −176128 and β = 50925π. (2.24)

This implies that the function θ satisfies (2.15) when n = 3 and k = 2. Let
u1 be a unit vector in L orthogonal to u0. For abbreviation, we put fm(·) =
πL,mP

3
5 (〈pL(u0), ·〉). Note that θ(L, ·) is the sum of the function f = αf1 + βf2

and the linear function 〈xL, ·〉. As xL is a multiple of u0, it is enough to show that
s 7→ f(su0 +

√
1− s2u1) is not linear. Now, for m ∈ N and s ∈ (0, 1) we have

gm(s) =
∂4

∂s4
fm(su0 +

√
1− s2u1)

=
∂4

∂s4

∫

p−1
L ({su0+

√
1−s2u1})

P 3
5 (〈u0, v〉)〈su0 +

√
1− s2u1, v〉m+1dv

= 2

∫ 1

0

∂4

∂s4
P 3

5

(
st
)
tm+1(1− t2)−1/2dt

= 1890s

∫ 1

0

tm+6(1− t2)−1/2dt.

Now ∫ 1

0

tγ(1− t2)−1/2dt =

√
π

2

Γ
(
γ+1

2

)

Γ
(
γ+2

2

) , γ > −1,

which yields

gm(s) = s
1890
√
π

2

Γ(m+7
2

)

Γ(m+8
2

)
,

so g2(s) = 33075π
128

s and g1(s) = 864s. Due to (2.24), we obtain

∂4

∂s4
f(su0 +

√
1− s2u1) = αg1(s) + βg2(s) = −1512000πs 6= 0,

for s 6= 0. So θ(L, ·) does not vanish. As θ(L, ·) is centered and non-vanishing, the
associated local functional ψ given by (2.14) cannot be vanishing by Proposition 7.
Therefore, there must be a set K ′ ∈ K(L) with ψ(K ′) 6= 0. Possibly changing the
signs of α and β, we can assure ψ(K ′) > 0 and the proposition is shown.

In the above proof Lemma 13 was used. In the proof of this lemma we will work
with Lipschitz functions and therefore introduce metrics that induce the natural
topologies. Identifying rotations with their matrix representations with respect to
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the standard basis, we can for instance use the Frobenius norm on SO(n). On G(n, k)
we can work with the metric dk given by

dk(L, L̃) = d(Bn ∩ L,Bn ∩ L̃), L, L̃ ∈ G(n, k),

where d is the Hausdorff metric on K(Rn). It is now clear that for L0 ∈ G(n, k),
ϑ 7→ ϑL′0 is non-expansive, that is, this mapping is Lipschitz with constant at most 1.

Lemma 13. Let n ≥ 3, u0 ∈ Sn−1, L′0 ∈ G(n, 2) and L0 ∈ G(n, 3) with u0 ∈ L′0 ⊂ L0

be given. Furthermore, let ϕ be defined as in (2.23).
If there is a compact convex set K ′ ∈ K2(L′0) with ψL0(K ′) > 0, then there is a

compact convex set K0 in Rn such that

G = {E ∈ G(n, 2) : ϕ(K0 ∩ E) > 0} (2.25)

contains an open neighbourhood of L′0 and has therefore positive µ2-measure.

Proof. Let L0, L
′
0, K

′ and u0 as assumed in the Lemma. The assumption on K ′

implies
ψL(K ′) = ψL0(K ′) > 0 (2.26)

for all L ∈ G(L′0, 3). In fact, if ϑ is a rotation fixing L′0 pointwise and satisfying
ϑL = L0, then

[πL0

L′0,m
P 3

5 (〈u0, ·〉)](v) = [πϑLϑL′0,mP
3
5 (〈ϑu0, ·〉)](ϑv) = [πLL′0,mP

3
5 (〈u0, ·〉)](v),

v ∈ Sn−1 ∩ L′0, implying θL(L′0, ·) = θL0(L′0, ·) and hence ψL(K ′) = ψL0(K ′).
As θL0(L′0, ·) is an odd function, K ′ ∈ K2(L′0) must be two-dimensional by (2.26)

and without loss of generality, we may assume that 0 is a relative interior point
of K ′.

Let R0 > 0 be such that K ′ is contained in the interior of R0B
n, and put

K0 = (K ′+ (L′0)⊥)∩RBn. Then L′0 hits the interior of K0 and K0 ∩L′0 = K ′. More
generally, for all z ∈ (L′0)⊥ in a bounded neighbourhood U of 0 the plane L′0 hits
the interior of K0 − z and (K0 − z) ∩ L′0 = K ′. All the sets K0 − z with z ∈ U are
contained in a ball of radius R > 0, say. In addition, we may assume that all these
sets contain the ball rBn for some r > 0. We will later require that all translations
K0 − x with x ∈ Rn and ‖x‖ ≤ supz∈U ‖z‖ are contained in a given neighbourhood
W of K0. This can be achieved by shrinking U even further, if necessary.

For all L ∈ G(L′0, 3) we have u0|L = u0, so ‖u0|ϑL0‖ ≥ 1
2
in a neighbourhood of

the identity id in SO(n). It is therefore easy to show that ϑ 7→ pϑL(u0) is Lipschitz
in this neighbourhood with a Lipschitz constant that is independent of L. As P 3

5 is
Lipschitz on [−1, 1], the function

ϑ 7→ P 3
5

(
〈ϑ−1pϑL(u0), v〉

)

is Lipschitz in a neighbourhood of id in SO(n) with a Lipschitz constant that can
be chosen independent of v ∈ Sn−1 and L ∈ G(L′0, 3). It follows that

ϑ 7→πϑLϑL′0,mP
3
5

(
〈pϑL(u0), ·〉

)
(ϑw)

=

∫

(pL
L′0

)−1({w})
P 3

5

(
〈ϑ−1pϑL(u0), v〉

)
〈v, w〉m+1dv
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and hence ϑ 7→ θϑL(ϑL′0, ϑw) is Lipschitz in a neighbourhood of id with a Lipschitz
constant that can be chosen independent of w ∈ Sn−1 ∩ L′0 and L ∈ G(L′0, 3). Now
let K be a convex body in RBn containing the ball rBn and observe that

ψϑL(K ∩ ϑL′0) =

∫

Sn−1∩L′0
θϑL(ϑL′0, ϑw)S

L′0
1

(
(ϑ−1K) ∩ L′0, dw

)
.

Hence,

|ψϑL(K ∩ ϑL′0)− ψL(K0 ∩ L′0)| (2.27)

≤
∫

Sn−1∩L′0
sup

w∈Sn−1∩L′0
|θϑL(ϑL′0, ϑw)− θL(L′0, w)|SL

′
0

1

(
(ϑ−1K) ∩ L′0, dw

)

+

∣∣∣∣
∫

Sn−1∩L′0
θL(L′0, w)[S

L′0
1

(
(ϑ−1K) ∩ L′0, ·

)
− SL

′
0

1

(
K0 ∩ L′0, ·

)
](dw)

∣∣∣∣

Due to the monotonicity and motion invariance of the first intrinsic volume V1, the
total mass of SL

′
0

1

(
(ϑ−1K) ∩ L′0, ·

)
is

2V1((ϑ−1K) ∩ L′0) ≤ 2V1(ϑ−1K) ≤ 2V1(RBn),

so the first expression in (2.27) is Lipschitz in ϑ in a neighbourhood of id with a
Lipschitz constant that does not depend onK or L. The expression of θ in (2.22) and
continuity of P 3

5 implies that the integrand in the second term of (2.27) is bounded
by a constantM , which does not depend on L, and thus this second term is bounded
by

M
∣∣V1

(
K ∩ ϑL′0

)
− V1

(
K0 ∩ L′0

)∣∣ .
Now (ϑ,K) 7→ V1(K ∩ ϑL′0) is a Lipschitz function when we restrict considerations
to compact convex sets contained in RBn and containing rBn, with a Lipschitz
constant that depends on r and R only. In fact, that L 7→ K ∩ L is Lipschitz with
a constant that depends on r and R only, follows for instance from [12, Lemma 2.2]
and the explicit form of the Lipschitz constant in [11]. Due to its interpretation as
multiple of the mean width (see for instance [18, pages 50, 297 and 231]) the first
intrinsic volume is Lipschitz with constant nκn/κn−1.

Concluding, as (2.26) implies that 2ε = ψL(K0∩L′0) is positive, the bound (2.27)
yields

ψϑL(K ∩ ϑL′0) > ε > 0 (2.28)

for all ϑ in a sufficiently small open neighbourhood V of id, all L ∈ G(L′0, 3), and
all K in a sufficiently small neighbourhood W of K0. Hence, if z ∈ U and ϑ ∈ V ,
we get

ϕ(K0 ∩ ϑ(L′0 + z)) =

∫

G(L′0,3)

ψϑL((K0 − ϑz) ∩ ϑL′0)ν
L′0
2 (dL) > ε,

where we used K = K0 − ϑz in (2.28). It follows that G in (2.25) contains an open
neighbourhood of L′0 and the assertion is shown.
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2.4 Motion invariant functionals

The proof of Theorem 4 makes use of the Riemann-Liouville integral

(Iαg)(x) = Γ(α)−1

∫ x

0

g(t)(x− t)α−1λ(dt)

of locally integrable functions g : [0,∞) → R, where α > 0 is a parameter. For
arbitrary α, β > 0 we have

Iα+βg = IαIβg (2.29)

and
d

dx
(Iα+1g) = Iαg; (2.30)

see [16] for details.

Lemma 14. Let α > 0 and a locally integrable function g : [0,∞)→ R be given. If
Iαg(x) ≡ 0 on [0,∞) then g ≡ 0 almost everywhere on [0,∞).

Proof. Let m > α be an integer and set β = m − α > 0. The assumption Iαg ≡ 0
and (2.29) yield Img ≡ 0 on [0,∞), and applying (2.30) (m− 1) times gives

0 = I1g(x) =

∫ x

0

g(t)dt

for all x ≥ 0. As the Radon-Nikodym derivative of a measure is uniquely determined
almost everywhere, the claim follows.

This can now be used to prove Theorem 4.

Proof of Theorem 4: Let L ∈ G(n, k) and let ϕ : Mk → R be a motion invariant
map. Let h : (0,∞) → R be given by h(r) = ϕ(r1/2(Bn ∩ L)). By the motion
invariance of ϕ, h is independent of L ∈ G(n, k). Since rBn∩(L+x) is either empty,
a point or a k-dimensional ball of radius

√
r2 − ‖x‖2 for x ∈ L⊥ we get that

∫

A(n,k)

ϕ(rBn ∩ E)µk(dE) =

∫

G(n,k)

∫

L⊥∩rBn

h(r2 − ‖x‖2)λL⊥(dx)νk(dL)

=

∫ r

0

h(r2 − s2)sn−k−1ds(n− k)κn−k

for all rBn ∈ M with r > 0. The last equality follows by identifying L⊥ with Rn−k

and introducing spherical coordinates (see, for instance [9]). As νk is a probability
measure and (n − k)κn−k 6= 0, a substitution shows that the left hand side of the
last displayed formula is zero if and only if

0 =

∫ r2

0

h(t)(r2 − t)α−1(dt) = Γ(α)(Iαh)(r2),

where α = n−k
2

> 0. Concluding, (1.11) is equivalent to (Iαh)(t) = 0 for all t > 0,
and Lemma 14 proves the claim.
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